forked from ZFTurbo/KAGGLE_AVITO_2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paths10_run_xgboost.py
523 lines (450 loc) · 22.3 KB
/
s10_run_xgboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# coding: utf-8
__author__ = 'ZFTurbo: https://kaggle.com/zfturbo'
import datetime
import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.cross_validation import KFold
from sklearn.metrics import roc_auc_score
import xgboost as xgb
import random
import statistics
import pickle
import os
from heapq import nlargest
from operator import itemgetter
import zipfile
from sklearn.metrics import roc_auc_score
import time
import shutil
import json
random.seed(2016)
def tied_rank(x):
"""
Computes the tied rank of elements in x.
This function computes the tied rank of elements in x.
Parameters
----------
x : list of numbers, numpy array
Returns
-------
score : list of numbers
The tied rank f each element in x
"""
sorted_x = sorted(zip(x, range(len(x))))
r = [0 for k in x]
cur_val = sorted_x[0][0]
last_rank = 0
for i in range(len(sorted_x)):
if cur_val != sorted_x[i][0]:
cur_val = sorted_x[i][0]
for j in range(last_rank, i):
r[sorted_x[j][1]] = float(last_rank + 1 + i) / 2.0
last_rank = i
if i == len(sorted_x) - 1:
for j in range(last_rank, i + 1):
r[sorted_x[j][1]] = float(last_rank + i + 2) / 2.0
return r
def auc(actual, posterior):
"""
Computes the area under the receiver-operater characteristic (AUC)
This function computes the AUC error metric for binary classification.
Parameters
----------
actual : list of binary numbers, numpy array
The ground truth value
posterior : same type as actual
Defines a ranking on the binary numbers, from most likely to
be positive to least likely to be positive.
Returns
-------
score : double
The mean squared error between actual and posterior
"""
r = tied_rank(posterior)
num_positive = len([0 for x in actual if x == 1])
num_negative = len(actual) - num_positive
sum_positive = sum([r[i] for i in range(len(r)) if actual[i] == 1])
auc = ((sum_positive - num_positive * (num_positive + 1) / 2.0) /
(num_negative * num_positive))
return auc
def auc_xgboost(preds, real):
return "auc", auc(real.get_label(), preds)
def restore_data(path):
data = dict()
if os.path.isfile(path):
file = open(path, 'rb')
data = pickle.load(file)
return data
def create_feature_map(features):
outfile = open('xgb.fmap', 'w')
for i, feat in enumerate(features):
outfile.write('{0}\t{1}\tq\n'.format(i, feat))
outfile.close()
def get_importance(gbm, features):
importance = dict()
create_feature_map(features)
importance_arr = gbm.get_fscore(fmap='xgb.fmap')
importance['default'] = sorted(importance_arr.items(), key=itemgetter(1), reverse=True)
for f in ['weight', 'gain', 'cover']:
try:
importance_arr = gbm.get_score(fmap='xgb.fmap', importance_type=f)
importance[f] = sorted(importance_arr.items(), key=itemgetter(1), reverse=True)
except:
importance[f] = 'Old version of XGBoost'
return importance
def intersect(a, b):
return list(set(a) & set(b))
def list_diff(a, b):
return list(set(a) - set(b))
def print_features_importance(imp):
for i in range(len(imp)):
print("# " + str(imp[i][1]))
print('output.remove(\'' + imp[i][0] + '\')')
def save_features_importance(out_file, features, imp):
out = open(out_file, "w")
out.write(str(features) + '\n\n')
out.write(str(imp) + '\n\n')
out.close()
def after_iteration(filename, n_iterations):
def callback(env):
if env.iteration > 0 and env.iteration % n_iterations == 0:
env.model.save_model(filename)
if 0:
pd.Series(env.model.get_score(fmap=filename + '.fmap',
importance_type='weight'))\
.sort_values(ascending=False)\
.to_csv(filename + '.weight.csv')
pd.Series(env.model.get_score(fmap=filename + '.fmap',
importance_type='gain'))\
.sort_values(ascending=False)\
.to_csv(filename + '.gain.csv')
pd.Series(env.model.get_score(fmap=filename + '.fmap',
importance_type='cover'))\
.sort_values(ascending=False)\
.to_csv(filename + '.cover.csv')
# print(env.evaluation_result_list)
# print(env.iteration % n_iterations)
# print(env.model.attributes())
return callback
# Save to JSON file
def store_json(data, path):
f = open(path, 'w')
json.dump(data, f)
f.close()
# Read previously saved data from JSON file
def read_from_json(path):
data = ''
if os.path.isfile(path):
f = open(path, 'r')
data = json.load(f)
f.close()
else:
print('No file {}'.format(path))
exit()
return data
def run_default_test(train, test, features, target, random_state=0):
eta = 0.05
max_depth = 8
subsample = 0.9
colsample_bytree = 0.8
start_time = time.time()
print('XGBoost params. ETA: {}, MAX_DEPTH: {}, SUBSAMPLE: {}, COLSAMPLE_BY_TREE: {}'.format(eta, max_depth, subsample, colsample_bytree))
params = {
"objective": "binary:logistic",
"booster" : "gbtree",
"eval_metric": "auc",
"eta": eta,
"max_depth": max_depth,
"subsample": subsample,
"colsample_bytree": colsample_bytree,
"silent": 1,
"seed": random_state
}
num_boost_round = 1000
early_stopping_rounds = 100
test_size = 0.05
# X_train, X_valid = train_test_split(train, test_size=test_size, random_state=random_state)
split = round((1-test_size)*len(train.index))
X_train = train[0:split]
X_valid = train[split:]
print('Length train:', len(X_train.index))
print('Length valid:', len(X_valid.index))
y_train = X_train[target]
y_valid = X_valid[target]
dtrain = xgb.DMatrix(X_train[features], y_train)
dvalid = xgb.DMatrix(X_valid[features], y_valid)
watchlist = [(dtrain, 'train'), (dvalid, 'eval')]
# gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds, feval=auc_xgboost, verbose_eval=True)
model_intermediate_file = os.path.join('models', 'temp_runtime_model.bin')
model_iteration_num_file = os.path.join('models', 'last_iteration_num.txt')
start_iteration = 0
for run_number in range(20):
if os.path.isfile(model_iteration_num_file):
start_iteration = read_from_json(model_iteration_num_file)
print('Start from iteration: {}'.format(start_iteration))
if os.path.isfile(model_intermediate_file):
print('Use saved model : {}'.format(model_intermediate_file))
if 0:
gbm = xgb.train(params, dtrain, num_boost_round,
evals=watchlist,
early_stopping_rounds=early_stopping_rounds,
verbose_eval=True,
xgb_model=model_intermediate_file if os.path.isfile(model_intermediate_file) else None,
callbacks=[after_iteration(model_intermediate_file, 2)]
)
gbm = xgb.train(params, dtrain, num_boost_round,
evals=watchlist,
early_stopping_rounds=early_stopping_rounds,
verbose_eval=True,
xgb_model=model_intermediate_file if os.path.isfile(model_intermediate_file) else None,
)
print('Best iteration: {}'.format(gbm.best_iteration))
print("Validating...")
start_iteration = gbm.best_iteration
check = gbm.predict(xgb.DMatrix(X_valid[features]), ntree_limit=gbm.best_iteration)
score = roc_auc_score(X_valid[target].values, check)
score_kaggle = auc(X_valid[target].values, check)
print('Check error value: {:.6f} (Kaggle: {:.6f})'.format(score, score_kaggle))
model_path = os.path.join('models', 'model_' + str(score) + '_eta_' + str(eta) + '_md_'
+ str(max_depth) + '_test_size_' + str(test_size)
+ '_iter_' + str(start_iteration) + '.bin')
additional_data_path = os.path.join('models', 'model_' + str(score) + '_eta_' + str(eta) + '_md_'
+ str(max_depth) + '_test_size_' + str(test_size)
+ '_iter_' + str(start_iteration) + '_features_importance.txt')
gbm.save_model(model_path)
imp = get_importance(gbm, features)
print('Importance array: ', imp)
save_features_importance(additional_data_path, features, imp)
gbm.save_model(model_intermediate_file)
store_json(start_iteration, model_iteration_num_file)
# Check model
gbm1 = xgb.Booster()
gbm1.load_model(model_path)
check1 = gbm1.predict(xgb.DMatrix(X_valid[features]))
score1 = roc_auc_score(X_valid[target].values, check1)
print('Check model score: {}'.format(score1))
print("Predict test set...")
test_prediction = gbm.predict(xgb.DMatrix(test[features]), ntree_limit=gbm.best_iteration)
print('Training time: {} minutes'.format(round((time.time() - start_time)/60, 2)))
return test_prediction.tolist(), score
def run_default_test_without_validation(train, features, target, random_state=0):
eta = 0.03
max_depth = 10
subsample = 0.8
colsample_bytree = 0.8
start_time = time.time()
print('XGBoost params. ETA: {}, MAX_DEPTH: {}, SUBSAMPLE: {}, COLSAMPLE_BY_TREE: {}'.format(eta, max_depth, subsample, colsample_bytree))
params = {
"objective": "binary:logistic",
"booster" : "gbtree",
"eval_metric": "auc",
"eta": eta,
"max_depth": max_depth,
"subsample": subsample,
"colsample_bytree": colsample_bytree,
"silent": 1,
"seed": random_state
}
num_boost_round = 1000
print('Length train:', len(train.index))
dtrain = xgb.DMatrix(train[features], train[target])
watchlist = [(dtrain, 'train')]
# gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds, feval=auc_xgboost, verbose_eval=True)
model_intermediate_file = os.path.join('models', 'temp_runtime_model.bin')
model_iteration_num_file = os.path.join('models', 'last_iteration_num.txt')
start_iteration = 0
for run_number in range(5):
if os.path.isfile(model_iteration_num_file):
start_iteration = read_from_json(model_iteration_num_file)
print('Start from iteration: {}'.format(start_iteration))
if os.path.isfile(model_intermediate_file):
print('Use saved model : {}'.format(model_intermediate_file))
gbm = xgb.train(params, dtrain, num_boost_round,
evals=watchlist,
verbose_eval=True,
xgb_model=model_intermediate_file if os.path.isfile(model_intermediate_file) else None,
)
print('Best iteration: {}'.format(gbm.best_iteration))
print("Validating...")
start_iteration = gbm.best_iteration
score = 'unknown'
model_path = os.path.join('models', 'model_' + str(score) + '_eta_' + str(eta) + '_md_'
+ str(max_depth) + '_iter_' + str(start_iteration) + '.bin')
additional_data_path = os.path.join('models', 'model_' + str(score) + '_eta_' + str(eta) + '_md_'
+ str(max_depth) + '_iter_' + str(start_iteration) + '_features_importance.txt')
gbm.save_model(model_path)
imp = get_importance(gbm, features)
print('Importance array: ', imp)
save_features_importance(additional_data_path, features, imp)
gbm.save_model(model_intermediate_file)
store_json(start_iteration, model_iteration_num_file)
print('Training time: {} minutes'.format(round((time.time() - start_time)/60, 2)))
return test_prediction.tolist()
def run_test_with_model(train, test, features, target, random_state=0):
start_time = time.time()
test_size = 0.02
# X_train, X_valid = train_test_split(train, test_size=test_size, random_state=random_state)
split = round((1-test_size)*len(train.index))
X_train = train[0:split]
X_valid = train[split:]
print('Length train:', len(X_train.index))
print('Length valid:', len(X_valid.index))
# watchlist = [(dtrain, 'train'), (dvalid, 'eval')]
# gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds, feval=auc_xgboost, verbose_eval=True)
# gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds, verbose_eval=True)
gbm = xgb.Booster()
gbm.load_model("models/model_0.968276662916_eta_0.2_md_5_test_size_0.02.bin")
print("Validating...")
check = gbm.predict(xgb.DMatrix(X_valid[features]))
score = roc_auc_score(X_valid[target].values, check)
score_kaggle = auc(X_valid[target].values, check)
print('Check error value: {:.6f} (Kaggle: {:.6f})'.format(score, score_kaggle))
imp = get_importance(gbm, features)
print('Importance array: ', imp)
print("Predict test set...")
test_prediction = gbm.predict(xgb.DMatrix(test[features]))
print('Training time: {} minutes'.format(round((time.time() - start_time)/60, 2)))
return test_prediction.tolist(), score
def create_submission(score, test, prediction):
# Make Submission
now = datetime.datetime.now()
sub_file = './subm/submission_' + str(score) + '_' + str(now.strftime("%Y-%m-%d-%H-%M")) + '.csv'
print('Writing submission: ', sub_file)
f = open(sub_file, 'w')
f.write('id,probability\n')
total = 0
for id in test['id']:
str1 = str(id) + ',' + str(prediction[total])
str1 += '\n'
total += 1
f.write(str1)
f.close()
print('Creating zip-file...')
z = zipfile.ZipFile(sub_file + ".zip", "w", zipfile.ZIP_DEFLATED)
z.write(sub_file)
z.close()
# Copy code
shutil.copy2(__file__, sub_file + ".py")
def get_features(train):
output = list(train.columns.values)
output.remove('itemID_1')
output.remove('itemID_2')
output.remove('isDuplicate')
return sorted(output)
def decrease_size_dataframe(df):
float_decr = 0
int8_decr = 0
int16_decr = 0
int32_decr = 0
for col in df.columns:
if df[col].dtype == np.float64:
df[col] = df[col].astype(np.float32)
float_decr += 1
elif df[col].dtype == np.int64:
col_min, col_max = df[col].min(), df[col].max()
if col_min >= -128 and col_max <= 127:
df[col] = df[col].astype(np.int8)
int8_decr += 1
elif col_min >= -32768 and col_max <= 32767:
df[col] = df[col].astype(np.int16)
int16_decr += 1
elif col_min >= -2147483648 and col_max <= 2147483647:
df[col] = df[col].astype(np.int32)
int32_decr += 1
# df.to_hdf(f_store, key, format='t', complevel=9, complib='blosc')
print('Float decrease: {}'.format(float_decr))
print('Int8 decrease: {}'.format(int8_decr))
print('Int16 decrease: {}'.format(int16_decr))
print('Int32 decrease: {}'.format(int32_decr))
def read_test_train_old():
print("Load train.csv")
# train = pd.read_csv("../modified_data/train.csv")
# train = pd.read_csv("../modified_data/train_ad_pairs.csv")
train = pd.read_csv("../modified_data/train_original.csv")
decrease_size_dataframe(train)
# for f in list(train.columns.values):
# print(train[f].describe())
# train = train.drop(['ids_equality'], axis=1)
# print(list(train.columns.values)[280])
# print(train[list(train.columns.values)[280]].describe())
null_count = train.isnull().sum().sum()
if null_count > 0:
print('Nans:', null_count)
cols = train.isnull().any(axis=0)
print(cols[cols == True])
rows = train.isnull().any(axis=1)
print(rows[rows == True])
print('NANs in train, please check it!')
exit()
print("Load test.csv")
test = pd.read_csv("../modified_data/test.csv")
decrease_size_dataframe(test)
null_count = test.isnull().sum().sum()
if null_count > 0:
print('Nans:', null_count)
cols = test.isnull().any(axis=0)
print(cols[cols == True])
print('NANs in test, please check it!')
exit()
# test.fillna(-1, inplace=True)
features = get_features(train, test)
return train, test, features
def read_train():
print("Load train.csv")
train = pd.read_hdf("../modified_data/train_original.csv.hdf", 'table')
null_count = train.isnull().sum().sum()
if null_count > 0:
print('Nans:', null_count)
cols = train.isnull().any(axis=0)
print(cols[cols == True])
rows = train.isnull().any(axis=1)
print(rows[rows == True])
print('NANs in train, please check it!')
exit()
features = get_features(train)
return train, features
train, features = read_train()
excl = list_diff(list(train.columns.values), features)
print('Length of train: ', len(train))
print('Features [{}]: {}'.format(len(features), sorted(features)))
print('Excluded [{}]: {}'.format(len(excl), sorted(excl)))
# test_prediction, score = run_default_test(train, test, features, 'isDuplicate')
test_prediction, score = run_default_test_without_validation(train, features, 'isDuplicate')
# test_prediction, score = run_test_with_model(train, test, features, 'isDuplicate')
# print('Real score = {}'.format(score))
# create_submission(score, test, test_prediction)
# LS: 0.932189 LB: 0.84365 - Long run
# LS: 0.923190 LB: 0.84134 - Train only on last part of data
# LS: 0.895049 LB: 0.83615 - epochs = 20, eta = 0.2, max_depth = 10 0.5 from train
# LS: 0.918594 LB: 0.83324 - epochs = 20, depth = 20
# LS: 0.912189 LB: 0.84492 - epochs = 5000, depth = 3
# LS: 0.934948 LB: 0.91291 - epochs = 100, depth = 3, eta = 0.2
# LS: 0.955502 LB: 0.92396 - epochs = 5000, depth = 3, eta = 0.2, test_size = 0.1
# LS: 0.954937 LB: 0.92376 - epochs = 5000 (2683), depth = 3, eta = 0.2, test_size = 0.05
# LS: 0.955618 LB: 0.92393 - epochs = 5000 (3451), depth = 3, eta = 0.2, test_size = 0.02
# LS: 0.958303 LB: 0.92495 - epochs = 5000 (2599), depth = 4, eta = 0.2, test_size = 0.02
# LS: 0.958776 LB: 0.92527 - epochs = 5000 (1191), depth = 5, eta = 0.2, test_size = 0.02
# LS: 0.960701 LB: 0.92620 - epochs = 5000 (3572), depth = 5, eta = 0.1, test_size = 0.02
# LS: 0.960472 LB: 0.92659 - epochs = 5000 (3477), depth = 5, eta = 0.1, test_size = 0.02 (Modified train)
# LS: 0.961548 LB: 0.92692 - epochs = 5000 (2245), depth = 6, eta = 0.1, test_size = 0.02 (Modified train)
# LS: 0.962546 LB: 0.92684 - epochs = 5000 (1630), depth = 7, eta = 0.1, test_size = 0.02 (Modified train) - slightly worse
# LS: 0.964071 LB: 0.92751 - epochs = 10000 (9180), depth = 6, eta = 0.05, test_size = 0.02 (CSBT: 0.7 - CS: 0.7)
# LS: 0.964182 LB: 0.92748 - epochs = 10000 (9751), depth = 6, eta = 0.05, test_size = 0.02 (CSBT: 0.8 - CS: 0.8) - slightly worse
# LS: 0.963186 LB: 0.92717 - epochs = 10000 (7945), depth = 6, eta = 0.05, test_size = 0.02 (CSBT: 0.6 - CS: 0.6)
# LS: 0.963882 LB: 0.92774 - epochs = 10000 (8922), depth = 6, eta = 0.05, test_size = 0.02 (CSBT: 0.7 - CS: 0.7) - Damerau-Levin
# LS: 0.965184 LB: 0.93051 - epochs = 15000 (8922), depth = 5, eta = 0.2, test_size = 0.02 (CSBT: 0.7 - CS: 0.7) - Many JSON Params (570.94 minutes)
# LS: 0.966756 LB: 0.93251 - epochs = 15000 (7474), depth = 6, eta = 0.05, test_size = 0.02 (CSBT: 0.7 - CS: 0.7) - Many JSON Params (1582.71 minutes)
# LS: 0.968624 LB: 0.93287 - epochs = 15000 (9099), depth = 7, eta = 0.04, test_size = 0.02 (CSBT: 0.7 - CS: 0.7) - Many JSON Params (2334 minutes)
# LS: 0.969687 LB: 0.93294 - epochs = 15000 (8415), depth = 8, eta = 0.04, test_size = 0.02 (CSBT: 0.7 - CS: 0.7) (2806 minutes)
# LS: 0.965264 LB: 0.93130 - epochs = 15000 (3125), depth = 5, eta = 0.2, test_size = 0.02 (CSBT: 0.7 - CS: 0.7) - Many JSON Params (872.94 minutes)
# LS: 0.963257 LB: 0.92629 - epochs = 15000 (2111), depth = 5, eta = 0.2, test_size = 0.02 (CSBT: 0.7 - CS: 0.7) - Use only last 0.5 of train data (384 minutes) - BAD!
# LS: 0.965393 LB: 0.92582 - epochs = 15000 (5681), depth = 5, eta = 0.2, test_size = 0.02 (CSBT: 0.8 - SS: 0.9) - Removed strange pairs from train (722.94 minutes) - BAD!
# LS: 0.970019 LB: 0.92843 - epochs = 15000 (2860), depth = 8, eta = 0.2, test_size = 0.02 (CSBT: 0.8 - SS: 0.9) - Default input (1333 minutes)
# LS: 0.966588 LB: 0.93135 - epochs = 15000 (4883), depth = 5, eta = 0.2, test_size = 0.02 (CSBT: 0.8 - SS: 0.9) - Extended input (3117753) (1548 minutes)
# LS: 0.968245 LB: 0.93546 - epochs = 15000 (4000), depth = 5, eta = 0.2, test_size = 0.02 (CSBT: 0.8 - SS: 0.9) - Default input, new params (???? minutes)
# LS: 0.976678 LB: 0.94453 - epochs = 20000 (10000), depth = 8, eta = 0.05, test_size = 0.05 (CSBT: 0.7 - SS: 0.7) - Default input, 512 Features (5972 minutes)
# LS: 0.976437 LB: 0.94272 - epochs = 20000 (4969), depth = 8, eta = 0.05, test_size = 0.05 (CSBT: 0.8 - SS: 0.9) - Default input, 559 Features
# LS: 0.977122 LB: 0.94292 - epochs = 20000 (4971), depth = 9, eta = 0.04, test_size = 0.02 (CSBT: 0.7 - SS: 0.7) - Default input, 559 Features
# LS: 0.976655 LB: 0.94270 - epochs = 20000 (5971), depth = 8, eta = 0.05, test_size = 0.05 (CSBT: 0.8 - SS: 0.9) - Default input, 559 Features
# LS: 0.977265 LB: 0.94284 - epochs = 20000 (5873), depth = 9, eta = 0.04, test_size = 0.02 (CSBT: 0.7 - SS: 0.7) - Default input, 559 Features