forked from sigma-py/quadpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_albrecht.py
174 lines (138 loc) · 4.55 KB
/
_albrecht.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy
import sympy
from mpmath import mp
from ..helpers import article
from ._helpers import S2Scheme, register
_source = article(
authors=["J. Albrecht"],
title="Formeln zur numerischen Integration über Kreisbereiche",
journal="ZAMM",
volume="40",
number="10-11",
year="1960",
pages="514–517",
url="https://doi.org/10.1002/zamm.19600401014",
)
frac = sympy.Rational
pi = sympy.pi
cos = numpy.vectorize(sympy.cos)
sin = numpy.vectorize(sympy.sin)
sqrt = numpy.vectorize(sympy.sqrt)
pm_ = numpy.array([+1, -1])
roots = mp.polyroots
linear_solve = mp.lu_solve
def albrecht_1():
# Equals Albrecht-Collatz, Lether(2)
d = {"d4_aa": [[frac(1, 4)], [frac(1, 2)]]}
return S2Scheme("Albrecht 1", d, 3, _source)
def albrecht_2():
d = {"zero2": [[frac(1, 4)]], "d6.1": [[frac(1, 8)], [sqrt(frac(2, 3))]]}
return S2Scheme("Albrecht 2", d, 5, _source)
def albrecht_3():
sqrt29 = sqrt(29)
a1, a2 = (551 + pm_ * 41 * sqrt29) / 6264
rho1, rho2 = sqrt((27 - pm_ * 3 * sqrt29) / 52)
d = {"d4.1": [[frac(2, 27)], [sqrt(frac(3, 4))]], "d4.0": [[a1, a2], [rho1, rho2]]}
return S2Scheme("Albrecht 3", d, 7, _source)
def albrecht_4():
sqrt111 = sqrt(111)
rho1, rho2 = sqrt((96 - pm_ * 4 * sqrt(111)) / 155)
B0 = frac(251, 2304)
B1, B2 = (110297 + pm_ * 5713 * sqrt111) / 2045952
C = frac(125, 3072)
d = {
"zero2": [[B0]],
"d6.0": [[B1, B2], [rho1, rho2]],
"d6.1": [[C], [sqrt(frac(4, 5))]],
}
return S2Scheme("Albrecht 4", d, 9, _source)
def albrecht_5():
# The values are solutions of
# 6317094x^3 - 10022245*x^2 + 4149900*x - 336375 = 0
sigma2 = roots([6317094, -10022245, 4149900, -336375])
A = numpy.vander(sigma2, increasing=True).T
b = numpy.array([frac(168899, 1350000), frac(7661, 180000), frac(71, 3000)])
B = linear_solve(A, b)
sqrt19 = sqrt(19)
# ERR Stroud incorrectly lists sqrt(10) for s1.
s1, s2 = sqrt((125 - pm_ * 10 * sqrt19) / 366)
# ERR Stroud incorrectly lists 749489_3_.0 instead of 749489_2_.0
C1, C2 = (7494892 + pm_ * 1053263 * sqrt19) / 205200000
D = frac(81, 3125)
u = sqrt(frac(5, 6)) * cos(pi / 8)
v = sqrt(frac(5, 6)) * sin(pi / 8)
d = {
"d4_a0": [B, [sqrt(sigma2[0]), sqrt(sigma2[1]), sqrt(sigma2[2])]],
"d4_aa": [[C1, C2], [s1, s2]],
"d4_ab": [[D], [u], [v]],
}
return S2Scheme("Albrecht 5", d, 11, _source)
def albrecht_6():
# The values are solutions of
# 11025*x^3 - 19020*x^2 + 9370*x - 1212 = 0
sigma2 = roots([11025, -19020, 9370, -1212])
A = numpy.vander(sigma2, increasing=True).T
b = numpy.array([frac(1432433, 18849024), frac(1075, 31104), frac(521, 25920)])
B = linear_solve(A, b)
B0 = frac(2615, 43632)
C = frac(16807, 933120)
d = {
"zero2": [[B0]],
"d10.0": [B, sqrt(sigma2)],
"d10.1": [[C], [sqrt(frac(6, 7))]],
}
return S2Scheme("Albrecht 6", d, 13, _source)
def albrecht_7():
sqrt21 = sqrt(21)
wt1, wt2 = (4998 + pm_ * 343 * sqrt21) / 253125
tau1, tau2 = sqrt((21 - pm_ * sqrt21) / 28)
# The values are solutions of
# 4960228*x^4 - 10267740*x^3 + 6746490*x^2 - 1476540*x + 70425 = 0
sigma2 = roots([4960228, -10267740, 6746490, -1476540, 70425])
A = numpy.vander(sigma2, increasing=True).T
b = numpy.array(
[frac(57719, 675000), frac(9427, 270000), frac(193, 9000), frac(113, 7200)]
)
ws = linear_solve(A, b)
d = {
"d8.0": [ws, sqrt(sigma2)],
"d8.1": [[wt1, wt2], [tau1, tau2]],
}
return S2Scheme("Albrecht 7", d, 15, _source)
def albrecht_8():
m0 = frac(496439663, 13349499975)
sqrt7 = sqrt(7)
wt1, wt2 = (125504 + pm_ * 16054 * sqrt7) / 8751645
tau1, tau2 = sqrt((14 - pm_ * sqrt7) / 18)
# The values are solutions of
# 160901628*x^4 - 364759920*x^3 + 274856190*x^2 - 76570340*x
# + 6054195 = 0
sigma2 = roots([160901628, -364759920, 274856190, -76570340, 6054195])
A = numpy.vander(sigma2, increasing=True).T
b = numpy.array(
[
frac(121827491812, 1802182496625),
frac(48541, 1666980),
frac(977, 55566),
frac(671, 52920),
]
)
ws = linear_solve(A, b)
d = {
"zero2": [[m0]],
"d10.0": [ws, sqrt(sigma2)],
"d10.1": [[wt1, wt2], [tau1, tau2]],
}
return S2Scheme("Albrecht 8", d, 17, _source)
register(
[
albrecht_1,
albrecht_2,
albrecht_3,
albrecht_4,
albrecht_5,
albrecht_6,
albrecht_7,
albrecht_8,
]
)