-
Notifications
You must be signed in to change notification settings - Fork 26
/
demo.py
206 lines (157 loc) · 7.58 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import glob
import os
from typing import Tuple
import torch
from PIL import Image
from torch.utils import data
import numpy as np
import torchvision.transforms as tvf
from tqdm import tqdm
import cv2
from main import VPRModel
class BaseDataset(data.Dataset):
"""Dataset with images from database and queries, used for inference (testing and building cache).
"""
def __init__(self, img_path):
super().__init__()
self.img_path = img_path
# path to images
if 'query' in self.img_path:
img_path_list = glob.glob(self.img_path + '/**/**/*.jpg', recursive=True)
self.img_path_list = img_path_list
elif 'db' in self.img_path:
img_path_list = glob.glob(self.img_path + '/**/**/*.jpg', recursive=True)
# sort images for db
self.img_path_list = sorted(img_path_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
else:
raise ValueError('img_path should be either query or db')
assert len(self.img_path_list) > 0, f'No images found in {self.img_path}'
def __getitem__(self, index):
img = load_image(self.img_path_list[index])
return img, index
def __len__(self):
return len(self.img_path_list)
class InferencePipeline:
def __init__(self, model, dataset, feature_dim, batch_size=4, num_workers=4, device='cuda'):
self.model = model
self.dataset = dataset
self.feature_dim = feature_dim
self.batch_size = batch_size
self.num_workers = num_workers
self.device = device
self.dataloader = data.DataLoader(self.dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
pin_memory=True,
drop_last=False)
def run(self, split: str = 'db') -> np.ndarray:
if os.path.exists(f'./LOGS/global_descriptors_{split}.npy'):
print(f"Skipping {split} features extraction, loading from cache")
return np.load(f'./LOGS/global_descriptors_{split}.npy')
self.model.to(self.device)
with torch.no_grad():
global_descriptors = np.zeros((len(self.dataset), self.feature_dim))
for batch in tqdm(self.dataloader, ncols=100, desc=f'Extracting {split} features'):
imgs, indices = batch
imgs = imgs.to(self.device)
# model inference
descriptors = self.model(imgs)
descriptors = descriptors.detach().cpu().numpy()
# add to global descriptors
global_descriptors[np.array(indices), :] = descriptors
# save global descriptors
np.save(f'./LOGS/global_descriptors_{split}.npy', global_descriptors)
return global_descriptors
def load_image(path):
image_pil = Image.open(path).convert("RGB")
# add transforms
transforms = tvf.Compose([
tvf.Resize((320, 320), interpolation=tvf.InterpolationMode.BICUBIC),
tvf.ToTensor(),
tvf.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
# apply transforms
image_tensor = transforms(image_pil)
return image_tensor
def load_model(ckpt_path):
# Note that images must be resized to 320x320
model = VPRModel(backbone_arch='resnet50',
layers_to_crop=[4],
agg_arch='MixVPR',
agg_config={'in_channels': 1024,
'in_h': 20,
'in_w': 20,
'out_channels': 1024,
'mix_depth': 4,
'mlp_ratio': 1,
'out_rows': 4},
)
state_dict = torch.load(ckpt_path)
model.load_state_dict(state_dict)
model.eval()
print(f"Loaded model from {ckpt_path} Successfully!")
return model
def calculate_top_k(q_matrix: np.ndarray,
db_matrix: np.ndarray,
top_k: int = 10) -> np.ndarray:
# compute similarity matrix
similarity_matrix = np.matmul(q_matrix, db_matrix.T) # shape: (num_query, num_db)
# compute top-k matches
top_k_matches = np.argsort(-similarity_matrix, axis=1)[:, :top_k] # shape: (num_query_images, 10)
return top_k_matches
def record_matches(top_k_matches: np.ndarray,
query_dataset: BaseDataset,
database_dataset: BaseDataset,
out_file: str = 'record.txt') -> None:
with open(f'{out_file}', 'a') as f:
for query_index, db_indices in enumerate(tqdm(top_k_matches, ncols=100, desc='Recording matches')):
pred_query_path = query_dataset.img_path_list[query_index]
for i in db_indices.tolist():
pred_db_paths = database_dataset.img_path_list[i]
f.write(f'{pred_query_path} {pred_db_paths}\n')
def visualize(top_k_matches: np.ndarray,
query_dataset: BaseDataset,
database_dataset: BaseDataset,
visual_dir: str = './LOGS/visualize',
img_resize_size: Tuple = (320, 320)) -> None:
if not os.path.exists(visual_dir):
os.makedirs(visual_dir)
for q_idx, db_idx in enumerate(tqdm(top_k_matches, ncols=100, desc='Visualizing matches')):
pred_q_path = query_dataset.img_path_list[q_idx]
q_array = cv2.imread(pred_q_path, cv2.IMREAD_COLOR)
q_array = cv2.resize(q_array, img_resize_size, interpolation=cv2.INTER_CUBIC)
gap_array = np.ones((q_array.shape[0], 10, 3)) * 255 # white gap
for i in db_idx.tolist():
pred_db_paths = database_dataset.img_path_list[i]
db_array = cv2.imread(pred_db_paths, cv2.IMREAD_COLOR)
db_array = cv2.resize(db_array, img_resize_size, interpolation=cv2.INTER_CUBIC)
q_array = np.concatenate((q_array, gap_array, db_array), axis=1)
result_array = q_array.astype(np.uint8)
# result_array = cv2.cvtColor(result_array, cv2.COLOR_RGB2BGR)
# save result as image using cv2
cv2.imwrite(f'{visual_dir}/{os.path.basename(pred_q_path)}', result_array)
def main():
# load images
query_path = '' # path to query images folder path
datasets_path = '' # path to database images folder path
assert query_path == '' and datasets_path == '', 'Please specify the path to the query and datasets'
query_dataset = BaseDataset(query_path)
database_dataset = BaseDataset(datasets_path)
# load model
model = load_model('./LOGS/resnet50_MixVPR_4096_channels(1024)_rows(4).ckpt')
# set up inference pipeline
database_pipeline = InferencePipeline(model=model, dataset=database_dataset, feature_dim=4096)
query_pipeline = InferencePipeline(model=model, dataset=query_dataset, feature_dim=4096)
# run inference
db_global_descriptors = database_pipeline.run(split='db') # shape: (num_db, feature_dim)
query_global_descriptors = query_pipeline.run(split='query') # shape: (num_query, feature_dim)
# calculate top-k matches
top_k_matches = calculate_top_k(q_matrix=query_global_descriptors, db_matrix=db_global_descriptors, top_k=10)
# record query_database_matches
record_matches(top_k_matches, query_dataset, database_dataset, out_file='./LOGS/record.txt')
# visualize top-k matches
visualize(top_k_matches, query_dataset, database_dataset, visual_dir='./LOGS/visualize')
if __name__ == '__main__':
main()