-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2.1 Regresi Logistik di R.R
56 lines (43 loc) · 1.36 KB
/
2.1 Regresi Logistik di R.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Logistic Regression
# sumber : http://www.sthda.com/english/articles/36-classification-methods-essentials/151-logistic-regression-essentials-in-r/
library(tidyverse)
library(caret)
library(lattice)
theme_set(theme_bw())
# Proses Preprocessing
# load dataset
data("PimaIndiansDiabetes2", package = "mlbench")
df <- PimaIndiansDiabetes2
# Membersihkan data NA
df <- na.omit(df)
# Check dataframe
class(df)
summary(df)
# Memisahkan data training dan data set
set.seed(40)
df.sample <- df$diabetes %>% createDataPartition(p = 0.8, list = F)
data.train <- df[df.sample, ]
data.test <- df[-df.sample, ]
# Metode Regresi Logistik
# Simple Code
# Membuat model
model <- glm( diabetes ~., data = data.train, family = binomial())
summary(model)
# Membuat probebilitas
probabilitas <- model %>% predict(data.test, type = "response")
prediksi.class <- ifelse(probabilitas> 0.5, "pos", "neg")
# Akurasi Model
mean(prediksi.class == data.test$diabetes)
model <- glm( diabetes ~ glucose, data = data.train, family = binomial)
summary(model)$coef
# plot
data.train %>%
mutate(probabilitas = ifelse(diabetes == "pos", 1,0)) %>%
ggplot(aes(glucose, probabilitas)) +
geom_point(alpha = 0.2) +
geom_smooth(method = "glm", method.args = list(family = "binomial")) +
labs(
title = "Model Regresi Logistik",
x = "Konsentrasi Glukosa Plasma",
y = "Probabilitas positif diabetes"
)