-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatglm.cpp
1597 lines (1367 loc) · 61.8 KB
/
chatglm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "chatglm.h"
#include <algorithm>
#include <codecvt>
#include <cstring>
#include <fcntl.h>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <locale>
#include <numeric>
#include <random>
#include <regex>
#include <string>
#include <sys/stat.h>
#include <thread>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <io.h>
#include <stdio.h>
#include <windows.h>
#endif
#ifdef GGML_USE_CUBLAS
#include <ggml-cuda.h>
#endif
namespace chatglm {
static std::string shape_to_string(ggml_tensor *tensor) {
std::ostringstream oss;
oss << '[';
for (int i = tensor->n_dims - 1; i >= 0; i--) {
oss << tensor->ne[i] << (i > 0 ? ", " : "");
}
oss << ']';
return oss.str();
}
static std::string strides_to_string(ggml_tensor *tensor) {
std::ostringstream oss;
oss << '[';
for (int i = tensor->n_dims - 1; i >= 0; i--) {
oss << tensor->nb[i] << (i > 0 ? ", " : "");
}
oss << ']';
return oss.str();
}
std::string to_string(ggml_tensor *tensor, bool with_data) {
std::ostringstream oss;
oss << "ggml_tensor(";
if (with_data) {
if (tensor->n_dims > 3)
oss << "[";
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
if (tensor->n_dims > 2)
oss << (i3 > 0 ? ",\n\n[" : "[");
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
if (tensor->n_dims > 1)
oss << (i2 > 0 ? ",\n\n[" : "[");
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
oss << (i1 > 0 ? ",\n[" : "[");
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
auto ptr = (char *)tensor->data + i3 * tensor->nb[3] + i2 * tensor->nb[2] + i1 * tensor->nb[1] +
i0 * tensor->nb[0];
float val;
if (tensor->type == GGML_TYPE_F32) {
val = *(float *)ptr;
} else if (tensor->type == GGML_TYPE_F16) {
val = ggml_fp16_to_fp32(*(ggml_fp16_t *)ptr);
} else {
CHATGLM_THROW << "unimplemented";
}
oss << (i0 > 0 ? ", " : "") << std::setw(7) << std::fixed << std::setprecision(4) << val;
}
oss << "]";
}
if (tensor->n_dims > 1)
oss << "]";
}
if (tensor->n_dims > 2)
oss << "]";
}
if (tensor->n_dims > 3)
oss << "]";
oss << ", ";
}
oss << "shape=" << shape_to_string(tensor) << ", stride=" << strides_to_string(tensor) << ")";
return oss.str();
}
ggml_tensor *tensor_assign_buffers(ggml_tensor *tensor) {
#ifdef GGML_USE_CUBLAS
ggml_cuda_assign_buffers(tensor);
#endif
return tensor;
}
ggml_tensor *tensor_to_device(ggml_tensor *tensor) {
#ifdef GGML_USE_CUBLAS
if (tensor->backend == GGML_BACKEND_CPU) {
tensor->backend = GGML_BACKEND_GPU;
ggml_cuda_transform_tensor(tensor->data, tensor);
}
#endif
return tensor;
}
ggml_tensor *tensor_to_cpu(ggml_tensor *tensor) {
#ifdef GGML_USE_CUBLAS
if (tensor->backend != GGML_BACKEND_CPU) {
ggml_cuda_free_data(tensor);
tensor->backend = GGML_BACKEND_CPU;
}
#endif
return tensor;
}
const std::string ToolCallMessage::TYPE_FUNCTION = "function";
const std::string ToolCallMessage::TYPE_CODE = "code";
const std::string ChatMessage::ROLE_USER = "user";
const std::string ChatMessage::ROLE_ASSISTANT = "assistant";
const std::string ChatMessage::ROLE_SYSTEM = "system";
const std::string ChatMessage::ROLE_OBSERVATION = "observation";
void BaseTokenizer::check_chat_messages(const std::vector<ChatMessage> &messages) {
CHATGLM_CHECK(messages.size() % 2 == 1) << "invalid chat messages size " << messages.size();
for (size_t i = 0; i < messages.size(); i++) {
const std::string &target_role = (i % 2 == 0) ? ChatMessage::ROLE_USER : ChatMessage::ROLE_ASSISTANT;
CHATGLM_CHECK(messages[i].role == target_role)
<< "expect messages[" << i << "].role to be " << target_role << ", but got " << messages[i].role;
}
}
// Adapted from https://github.com/ggerganov/llama.cpp/blob/master/llama.cpp
void ggml_graph_compute_helper(std::vector<uninitialized_char> &buf, ggml_cgraph *graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = (uint8_t *)buf.data();
}
ggml_graph_compute(graph, &plan);
}
// for debugging purpose
[[maybe_unused]] static inline ggml_tensor *add_zero(ggml_context *ctx, ggml_tensor *tensor) {
ggml_tensor *zeros = ggml_new_tensor(ctx, tensor->type, tensor->n_dims, tensor->ne);
ggml_set_f32(zeros, 0);
tensor_to_device(zeros);
ggml_tensor *out = tensor_assign_buffers(ggml_add(ctx, tensor, zeros));
return out;
}
void ModelContext::init_device_context() {
#ifdef GGML_USE_METAL
ctx_metal = make_unique_ggml_metal_context(1);
const size_t max_size = ggml_get_max_tensor_size(ctx_w.get());
void *weight_data = weight_buffer.empty() ? ggml_get_mem_buffer(ctx_w.get()) : (void *)weight_buffer.data();
size_t weight_size = weight_buffer.empty() ? ggml_get_mem_size(ctx_w.get()) : weight_buffer.size();
CHATGLM_CHECK(ggml_metal_add_buffer(ctx_metal.get(), "weights", weight_data, weight_size, max_size));
CHATGLM_CHECK(ggml_metal_add_buffer(ctx_metal.get(), "kv", ggml_get_mem_buffer(ctx_kv.get()),
ggml_get_mem_size(ctx_kv.get()), 0));
void *compute_data = ctx_b ? ggml_get_mem_buffer(ctx_b.get()) : compute_buffer.data();
size_t compute_size = ctx_b ? ggml_get_mem_size(ctx_b.get()) : compute_buffer.size();
CHATGLM_CHECK(ggml_metal_add_buffer(ctx_metal.get(), "compute", compute_data, compute_size, 0));
CHATGLM_CHECK(ggml_metal_add_buffer(ctx_metal.get(), "scratch", scratch.data, scratch.size, 0));
#endif
}
// ===== streamer =====
void StreamerGroup::put(const std::vector<int> &output_ids) {
for (auto &streamer : streamers_) {
streamer->put(output_ids);
}
}
void StreamerGroup::end() {
for (auto &streamer : streamers_) {
streamer->end();
}
}
// reference: https://stackoverflow.com/questions/216823/how-to-trim-a-stdstring
// trim from start (in place)
static inline void ltrim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](unsigned char ch) { return !std::isspace(ch); }));
}
// trim from end (in place)
static inline void rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(), [](unsigned char ch) { return !std::isspace(ch); }).base(), s.end());
}
// trim from both ends (in place)
static inline void trim(std::string &s) {
rtrim(s);
ltrim(s);
}
void TextStreamer::put(const std::vector<int> &output_ids) {
if (is_prompt_) {
// skip prompt
is_prompt_ = false;
return;
}
static const std::vector<char> puncts{',', '!', ':', ';', '?'};
token_cache_.insert(token_cache_.end(), output_ids.begin(), output_ids.end());
std::string text = tokenizer_->decode(token_cache_);
if (is_first_line_) {
ltrim(text);
}
if (text.empty()) {
return;
}
std::string printable_text;
if (text.back() == '\n') {
// flush the cache after newline
printable_text = text.substr(print_len_);
is_first_line_ = false;
token_cache_.clear();
print_len_ = 0;
} else if (std::find(puncts.begin(), puncts.end(), text.back()) != puncts.end()) {
// last symbol is a punctuation, hold on
} else if (text.size() >= 3 && text.compare(text.size() - 3, 3, "�") == 0) {
// ends with an incomplete token, hold on
} else {
printable_text = text.substr(print_len_);
print_len_ = text.size();
}
os_ << printable_text << std::flush;
}
void TextStreamer::end() {
std::string text = tokenizer_->decode(token_cache_);
if (is_first_line_) {
ltrim(text);
}
os_ << text.substr(print_len_) << std::endl;
is_prompt_ = true;
is_first_line_ = true;
token_cache_.clear();
print_len_ = 0;
}
void PerfStreamer::put(const std::vector<int> &output_ids) {
CHATGLM_CHECK(!output_ids.empty());
if (num_prompt_tokens_ == 0) {
// before prompt eval
start_us_ = ggml_time_us();
num_prompt_tokens_ = output_ids.size();
} else {
if (num_output_tokens_ == 0) {
// first new token
prompt_us_ = ggml_time_us();
}
num_output_tokens_ += output_ids.size();
}
}
void PerfStreamer::reset() {
start_us_ = prompt_us_ = end_us_ = 0;
num_prompt_tokens_ = num_output_tokens_ = 0;
}
std::string PerfStreamer::to_string() const {
std::ostringstream oss;
oss << "prompt time: " << prompt_total_time_us() / 1000.f << " ms / " << num_prompt_tokens() << " tokens ("
<< prompt_token_time_us() / 1000.f << " ms/token)\n"
<< "output time: " << output_total_time_us() / 1000.f << " ms / " << num_output_tokens() << " tokens ("
<< output_token_time_us() / 1000.f << " ms/token)\n"
<< "total time: " << (prompt_total_time_us() + output_total_time_us()) / 1000.f << " ms";
return oss.str();
}
#ifdef _POSIX_MAPPED_FILES
MappedFile::MappedFile(const std::string &path) {
int fd = open(path.c_str(), O_RDONLY);
CHATGLM_CHECK(fd > 0) << "cannot open file " << path << ": " << strerror(errno);
struct stat sb;
CHATGLM_CHECK(fstat(fd, &sb) == 0) << strerror(errno);
size = sb.st_size;
data = (char *)mmap(nullptr, size, PROT_READ, MAP_SHARED, fd, 0);
CHATGLM_CHECK(data != MAP_FAILED) << strerror(errno);
CHATGLM_CHECK(close(fd) == 0) << strerror(errno);
}
MappedFile::~MappedFile() { CHATGLM_CHECK(munmap(data, size) == 0) << strerror(errno); }
#elif defined(_WIN32)
MappedFile::MappedFile(const std::string &path) {
int fd = open(path.c_str(), O_RDONLY);
CHATGLM_CHECK(fd > 0) << "cannot open file " << path << ": " << strerror(errno);
struct _stat64 sb;
CHATGLM_CHECK(_fstat64(fd, &sb) == 0) << strerror(errno);
size = sb.st_size;
HANDLE hFile = (HANDLE)_get_osfhandle(fd);
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
CHATGLM_CHECK(hMapping != NULL) << strerror(errno);
data = (char *)MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
CloseHandle(hMapping);
CHATGLM_CHECK(data != NULL) << strerror(errno);
CHATGLM_CHECK(close(fd) == 0) << strerror(errno);
}
MappedFile::~MappedFile() { CHATGLM_CHECK(UnmapViewOfFile(data)) << strerror(errno); }
#endif
void ModelLoader::seek(int64_t offset, int whence) {
if (whence == SEEK_SET) {
ptr = data + offset;
} else if (whence == SEEK_CUR) {
ptr += offset;
} else if (whence == SEEK_END) {
ptr = data + size + offset;
} else {
CHATGLM_THROW << "invalid seek mode " << whence;
}
}
std::string ModelLoader::read_string(size_t length) {
std::string s(ptr, ptr + length);
ptr += length;
return s;
}
void ModelLoader::checked_read_tensor_meta(const std::string &name, int target_ndim, int64_t *target_ne,
ggml_type target_dtype) {
// read and check tensor name
{
int name_size = read_basic<int>();
CHATGLM_CHECK(name_size == (int)name.size())
<< "tensor " << name << " name size mismatch: expect " << name.size() << " but got " << name_size;
std::string weight_name = read_string(name_size);
CHATGLM_CHECK(weight_name == name) << "tensor name mismatch: expect " << name << " but got " << weight_name;
}
// read and check tensor shape
{
int ndim = read_basic<int>();
CHATGLM_CHECK(ndim == target_ndim)
<< "tensor " << name << " ndim mismatch: expect " << target_ndim << " but got " << ndim;
for (int i = ndim - 1; i >= 0; i--) {
int dim_size = read_basic<int>();
CHATGLM_CHECK(dim_size == target_ne[i]) << "tensor " << name << " shape mismatch at dim " << i
<< ": expect " << target_ne[i] << " but got " << dim_size;
}
}
// read and check tensor dtype
{
ggml_type dtype = (ggml_type)read_basic<int>();
CHATGLM_CHECK(dtype == target_dtype)
<< "tensor " << name << " dtype mismatch: expect " << target_dtype << " but got " << dtype;
}
}
void *ModelLoader::read_tensor_data(size_t nbytes) {
constexpr int64_t MEM_ALIGNED = 16;
const int64_t data_offset = (tell() + (MEM_ALIGNED - 1)) & ~(MEM_ALIGNED - 1);
void *tensor_data = data + data_offset;
seek(data_offset + nbytes, SEEK_SET);
return tensor_data;
}
void ModelLoader::read_tensor(const std::string &name, ggml_tensor *tensor) {
checked_read_tensor_meta(name, tensor->n_dims, tensor->ne, tensor->type);
tensor->data = read_tensor_data(ggml_nbytes(tensor));
}
// ===== modules =====
ggml_tensor *Embedding::forward(ModelContext *ctx, ggml_tensor *input) const {
ggml_tensor *output = ggml_get_rows(ctx->ctx_b.get(), weight, input);
return output;
}
ggml_tensor *Linear::forward(ModelContext *ctx, ggml_tensor *input) const {
// input: [seqlen, in_features]
ggml_context *gctx = ctx->ctx_b.get();
ggml_tensor *output = tensor_assign_buffers(ggml_mul_mat(gctx, weight, input)); // [seqlen, out_features]
if (bias) {
output = tensor_assign_buffers(ggml_add_inplace(gctx, output, bias));
}
return output;
}
ggml_tensor *LayerNorm::forward(ModelContext *ctx, ggml_tensor *input) const {
// input: [seqlen, normalized_shape]
ggml_context *gctx = ctx->ctx_b.get();
auto ggml_norm_fn = inplace ? ggml_norm_inplace : ggml_norm;
ggml_tensor *output = tensor_assign_buffers(ggml_norm_fn(gctx, input, eps));
output = tensor_assign_buffers(ggml_mul_inplace(gctx, output, weight));
output = tensor_assign_buffers(ggml_add_inplace(gctx, output, bias));
return output;
}
ggml_tensor *RMSNorm::forward(ModelContext *ctx, ggml_tensor *input) const {
ggml_context *gctx = ctx->ctx_b.get();
auto ggml_rms_norm_fn = inplace ? ggml_rms_norm_inplace : ggml_rms_norm;
ggml_tensor *output = tensor_assign_buffers(ggml_rms_norm_fn(gctx, input, eps));
output = tensor_assign_buffers(ggml_mul_inplace(gctx, output, weight));
return output;
}
// Adapted from https://github.com/ggerganov/llama.cpp/blob/master/examples/common.cpp
int get_num_physical_cores() {
unsigned int n_threads = std::thread::hardware_concurrency();
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}
int get_default_num_threads() {
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_METAL)
return 1;
#else
return std::min(get_num_physical_cores(), 16);
#endif
}
std::string to_string(ModelType model_type) {
switch (model_type) {
case ModelType::CHATGLM:
return "ChatGLM";
case ModelType::CHATGLM2:
return "ChatGLM2";
case ModelType::CHATGLM3:
return "ChatGLM3";
case ModelType::BAICHUAN7B:
return "Baichuan7B";
case ModelType::BAICHUAN13B:
return "Baichuan13B";
case ModelType::INTERNLM:
return "InternLM";
default:
CHATGLM_THROW << "unknown model type " << (int)model_type;
}
}
BaseModelForCausalLM::BaseModelForCausalLM(ModelConfig config, size_t mem_size, size_t scratch_size, size_t num_weights)
: config(config) {
ctx_.dtype = config.dtype;
const size_t ctx_w_size = num_weights * ggml_tensor_overhead();
const size_t ctx_kv_size = 2 * config.num_hidden_layers *
(config.max_length * config.hidden_size / config.num_attention_heads *
config.num_kv_heads * ggml_type_size(GGML_TYPE_F16) +
ggml_tensor_overhead());
ctx_.ctx_w = make_unique_ggml_context(ctx_w_size, nullptr, true);
ctx_.ctx_kv = make_unique_ggml_context(ctx_kv_size + 1 * MB, nullptr, false); // 1MB extra for MPS
ctx_.compute_buffer.resize(mem_size);
ctx_.scratch_buffer.resize(scratch_size);
ctx_.scratch = {0, ctx_.scratch_buffer.size(), ctx_.scratch_buffer.data()};
#ifdef GGML_USE_CUBLAS
ggml_cuda_set_scratch_size(scratch_size);
#endif
}
int BaseModelForCausalLM::generate_next_token(const std::vector<int> &input_ids, const GenerationConfig &gen_config,
int n_past, int n_ctx) {
ctx_.ctx_b = make_unique_ggml_context(ctx_.compute_buffer.size(), ctx_.compute_buffer.data(), false);
ctx_.gf = {};
int n_threads = gen_config.num_threads; // user defined
if (n_threads <= 0) {
n_threads = get_default_num_threads(); // default thread num
}
int curr_input_ids_size = input_ids.size() - n_past;
if (curr_input_ids_size >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
n_threads = 1; // use 1 thread if BLAS is enabled
}
ggml_tensor *curr_input_ids = ggml_new_tensor_1d(ctx_.ctx_b.get(), GGML_TYPE_I32, curr_input_ids_size);
memcpy(curr_input_ids->data, input_ids.data() + n_past, ggml_nbytes(curr_input_ids));
ggml_tensor *lm_logits = forward(&ctx_, curr_input_ids, n_past, n_ctx);
lm_logits->backend = GGML_BACKEND_CPU;
ggml_build_forward_expand(&ctx_.gf, lm_logits);
#ifdef GGML_USE_METAL
ggml_metal_graph_compute(ctx_.ctx_metal.get(), &ctx_.gf);
#else
ggml_graph_compute_helper(ctx_.work_buffer, &ctx_.gf, n_threads);
#endif
#ifdef GGML_PERF
ggml_graph_print(&ctx_.gf);
#endif
int vocab_size = lm_logits->ne[0];
float *next_token_logits = (float *)lm_logits->data;
// check nan
for (int i = 0; i < vocab_size; i++) {
CHATGLM_CHECK(std::isfinite(next_token_logits[i])) << "nan/inf encountered at lm_logits[" << i << "]";
}
// logits pre-process
if (gen_config.repetition_penalty != 1.f) {
sampling_repetition_penalty(next_token_logits, next_token_logits + vocab_size, input_ids,
gen_config.repetition_penalty);
}
int next_token_id;
if (gen_config.do_sample) {
// temperature sampling
if (gen_config.temperature > 0) {
sampling_temperature(next_token_logits, next_token_logits + vocab_size, gen_config.temperature);
}
std::vector<TokenIdScore> token_scores(vocab_size);
for (int i = 0; i < vocab_size; i++) {
token_scores[i] = TokenIdScore(i, next_token_logits[i]);
}
// top_k sampling
if (0 < gen_config.top_k && gen_config.top_k < (int)token_scores.size()) {
sampling_top_k(token_scores.data(), token_scores.data() + gen_config.top_k,
token_scores.data() + token_scores.size());
token_scores.resize(gen_config.top_k);
}
// top_p sampling
if (0.f < gen_config.top_p && gen_config.top_p < 1.f) {
auto pos = sampling_top_p(token_scores.data(), token_scores.data() + token_scores.size(), gen_config.top_p);
token_scores.resize(pos - token_scores.data());
}
// sample next token
sampling_softmax_inplace(token_scores.data(), token_scores.data() + token_scores.size());
for (size_t i = 0; i < token_scores.size(); i++) {
next_token_logits[i] = token_scores[i].score;
}
thread_local std::random_device rd;
thread_local std::mt19937 gen(rd());
std::discrete_distribution<> dist(next_token_logits, next_token_logits + token_scores.size());
next_token_id = token_scores[dist(gen)].id;
} else {
// greedy search
next_token_id = std::max_element(next_token_logits, next_token_logits + vocab_size) - next_token_logits;
}
return next_token_id;
}
void BaseModelForCausalLM::sampling_repetition_penalty(float *first, float *last, const std::vector<int> &input_ids,
float penalty) {
CHATGLM_CHECK(penalty > 0) << "penalty must be a positive float, but got " << penalty;
const float inv_penalty = 1.f / penalty;
const int vocab_size = last - first;
std::vector<bool> occurrence(vocab_size, false);
for (const int id : input_ids) {
if (!occurrence[id]) {
first[id] *= (first[id] > 0) ? inv_penalty : penalty;
}
occurrence[id] = true;
}
}
void BaseModelForCausalLM::sampling_temperature(float *first, float *last, float temp) {
const float inv_temp = 1.f / temp;
for (float *it = first; it != last; it++) {
*it *= inv_temp;
}
}
void BaseModelForCausalLM::sampling_top_k(TokenIdScore *first, TokenIdScore *kth, TokenIdScore *last) {
std::nth_element(first, kth, last, std::greater<TokenIdScore>());
}
TokenIdScore *BaseModelForCausalLM::sampling_top_p(TokenIdScore *first, TokenIdScore *last, float top_p) {
// fast top_p in expected O(n) time complexity
sampling_softmax_inplace(first, last);
while (first + 1 < last) {
const float pivot_score = (last - 1)->score; // use mid score?
TokenIdScore *mid =
std::partition(first, last - 1, [pivot_score](const TokenIdScore &x) { return x.score > pivot_score; });
std::swap(*mid, *(last - 1));
const float prefix_sum =
std::accumulate(first, mid, 0.f, [](float sum, const TokenIdScore &x) { return sum + x.score; });
if (prefix_sum >= top_p) {
last = mid;
} else if (prefix_sum + mid->score < top_p) {
first = mid + 1;
top_p -= prefix_sum + mid->score;
} else {
return mid + 1;
}
}
return last;
}
void BaseModelForCausalLM::sampling_softmax_inplace(TokenIdScore *first, TokenIdScore *last) {
float max_score = std::max_element(first, last)->score;
float sum = 0.f;
for (TokenIdScore *p = first; p != last; p++) {
float s = std::exp(p->score - max_score);
p->score = s;
sum += s;
}
float inv_sum = 1.f / sum;
for (TokenIdScore *p = first; p != last; p++) {
p->score *= inv_sum;
}
}
std::vector<int> BaseModelForCausalLM::generate(const std::vector<int> &input_ids, const GenerationConfig &gen_config,
BaseStreamer *streamer) {
CHATGLM_CHECK(gen_config.max_length <= config.max_length)
<< "requested max_length (" << gen_config.max_length << ") is larger than model's max_length ("
<< config.max_length << ")";
std::vector<int> output_ids;
output_ids.reserve(gen_config.max_length);
output_ids = input_ids;
if (streamer) {
streamer->put(input_ids);
}
int n_past = 0;
const int n_ctx = input_ids.size();
const int max_new_tokens = (gen_config.max_new_tokens > 0) ? gen_config.max_new_tokens : gen_config.max_length;
while ((int)output_ids.size() < std::min(gen_config.max_length, n_ctx + max_new_tokens)) {
int next_token_id = generate_next_token(output_ids, gen_config, n_past, n_ctx);
n_past = output_ids.size();
output_ids.emplace_back(next_token_id);
if (streamer) {
streamer->put({next_token_id});
}
if (next_token_id == config.eos_token_id ||
std::find(config.extra_eos_token_ids.begin(), config.extra_eos_token_ids.end(), next_token_id) !=
config.extra_eos_token_ids.end()) {
break;
}
}
if (streamer) {
streamer->end();
}
return output_ids;
}
// ===== ChatGLM-6B =====
ChatGLMTokenizer::ChatGLMTokenizer(std::string_view serialized_model_proto) {
const auto status = sp.LoadFromSerializedProto(serialized_model_proto);
CHATGLM_CHECK(status.ok()) << status.ToString();
bos_token_id = sp.PieceToId("<sop>");
eos_token_id = sp.PieceToId("<eop>");
mask_token_id = sp.PieceToId("[MASK]");
gmask_token_id = sp.PieceToId("[gMASK]");
pad_token_id = sp.PieceToId("<pad>");
}
std::vector<int> ChatGLMTokenizer::encode(const std::string &text, int max_length) const {
std::string input = preprocess(text);
std::vector<int> ids;
sp.Encode(input, &ids);
ids.insert(ids.end(), {gmask_token_id, bos_token_id});
if ((int)ids.size() > max_length) {
// sliding window: always take the last max_length tokens
ids.erase(ids.begin(), ids.end() - max_length);
}
return ids;
}
std::vector<int> ChatGLMTokenizer::encode_messages(const std::vector<ChatMessage> &messages, int max_length) const {
std::string prompt = build_prompt(messages);
std::vector<int> input_ids = encode(prompt, max_length);
return input_ids;
}
std::string ChatGLMTokenizer::build_prompt(const std::vector<ChatMessage> &messages) {
check_chat_messages(messages);
std::ostringstream oss_prompt;
if (messages.size() == 1) {
oss_prompt << messages.front().content;
} else {
for (size_t i = 0; i < messages.size(); i += 2) {
oss_prompt << "[Round " << i / 2 << "]\n问:" << messages[i].content << "\n答:";
if (i + 1 < messages.size()) {
oss_prompt << messages[i + 1].content << "\n";
}
}
}
return oss_prompt.str();
}
std::string ChatGLMTokenizer::decode(const std::vector<int> &ids) const {
std::string text;
sp.Decode(ids, &text);
text = postprocess(text);
return text;
}
static std::string regex_replace(const std::string &input, const std::regex ®ex,
std::function<std::string(const std::smatch &)> format) {
std::ostringstream oss;
int last_index = 0;
for (auto it = std::sregex_iterator(input.begin(), input.end(), regex); it != std::sregex_iterator(); it++) {
oss << it->prefix() << format(*it);
last_index = it->position() + it->length();
}
oss << input.substr(last_index);
return oss.str();
}
std::string ChatGLMTokenizer::preprocess(const std::string &text) {
std::string output;
// newline token
{
static const std::regex newline_regex("\n");
output = std::regex_replace(text, newline_regex, "<n>");
}
// tab token
{
static const std::regex tab_regex("\t");
output = std::regex_replace(output, tab_regex, "<|tab|>");
}
// blank tokens
{
static const std::regex pattern(R"([ ]{2,80})");
output = regex_replace(output, pattern, [](const std::smatch &sm) {
std::ostringstream oss;
oss << "<|blank_" << sm.str().size() << "|>";
return oss.str();
});
}
return output;
}
static inline std::string replace_punctuations(const std::string &text) {
// reference: https://stackoverflow.com/questions/37989081/how-to-use-unicode-range-in-c-regex
static std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
static const std::vector<std::pair<std::wregex, std::wstring>> punct_map{
{std::wregex(converter.from_bytes(R"(([\u4e00-\u9fff]),)")), converter.from_bytes("$1,")},
{std::wregex(converter.from_bytes(R"(,([\u4e00-\u9fff]))")), converter.from_bytes(",$1")},
{std::wregex(converter.from_bytes(R"(([\u4e00-\u9fff])!)")), converter.from_bytes("$1!")},
{std::wregex(converter.from_bytes(R"(!([\u4e00-\u9fff]))")), converter.from_bytes("!$1")},
{std::wregex(converter.from_bytes(R"(([\u4e00-\u9fff]):)")), converter.from_bytes("$1:")},
{std::wregex(converter.from_bytes(R"(:([\u4e00-\u9fff]))")), converter.from_bytes(":$1")},
{std::wregex(converter.from_bytes(R"(([\u4e00-\u9fff]);)")), converter.from_bytes("$1;")},
{std::wregex(converter.from_bytes(R"(;([\u4e00-\u9fff]))")), converter.from_bytes(";$1")},
{std::wregex(converter.from_bytes(R"(([\u4e00-\u9fff])\?)")), converter.from_bytes("$1?")},
{std::wregex(converter.from_bytes(R"(\?([\u4e00-\u9fff]))")), converter.from_bytes("?$1")},
};
std::wstring w_output = converter.from_bytes(text);
for (const auto &punct_pair : punct_map) {
w_output = std::regex_replace(w_output, punct_pair.first, punct_pair.second);
}
std::string output = converter.to_bytes(w_output);
return output;
}
std::string ChatGLMTokenizer::postprocess(const std::string &text) {
std::string output;
// newline token
{
static const std::regex pattern(R"(<n>)");
output = std::regex_replace(text, pattern, "\n");
}
// tab token
{
static const std::regex pattern(R"(<\|tab\|>)");
output = std::regex_replace(output, pattern, "\t");
}
// blank tokens
{
static const std::regex pattern(R"(<\|blank_(\d+)\|>)");
output = regex_replace(output, pattern,
[](const std::smatch &sm) { return std::string(std::stoi(sm[1].str()), ' '); });
}
// punctuations
output = replace_punctuations(output);
return output;
}
ggml_tensor *GLMContextMasker::operator()(ModelContext *ctx, ggml_tensor *attn_scores, int n_past) const {
// attn_scores is of shape [heads, qlen, klen]
ggml_context *gctx = ctx->ctx_b.get();
const int qlen = attn_scores->ne[1];
const int num_attention_heads = attn_scores->ne[2];
ggml_tensor *inf = ggml_new_tensor_3d(gctx, attn_scores->type, 1, qlen - 1, num_attention_heads);
ggml_set_f32(inf, -INFINITY);
tensor_to_device(inf); // TODO: optimize
ggml_tensor *masked_attn_scores = tensor_assign_buffers(
ggml_view_3d(gctx, attn_scores, 1, qlen - 1, num_attention_heads, qlen * ggml_element_size(attn_scores),
qlen * qlen * ggml_element_size(attn_scores), (qlen - 1) * ggml_element_size(attn_scores)));
ggml_build_forward_expand(&ctx->gf, ggml_cpy(gctx, inf, masked_attn_scores));
return attn_scores;
}
ggml_tensor *GLMBlock::forward(ModelContext *ctx, ggml_tensor *hidden_states, ggml_tensor *position_ids, int n_past,
int n_ctx) const {
ggml_context *gctx = ctx->ctx_b.get();
ggml_tensor *alpha = ggml_new_f32(gctx, alpha_value);
ggml_tensor *attn_input = input_layernorm.forward(ctx, hidden_states);
ggml_tensor *attn_output = attention.forward(ctx, attn_input, position_ids, n_past, n_ctx);
ggml_build_forward_expand(&ctx->gf, attn_output);
attn_input = tensor_assign_buffers(ggml_scale_inplace(gctx, attn_input, alpha));
hidden_states = tensor_assign_buffers(ggml_add_inplace(gctx, attn_input, attn_output));
ggml_tensor *mlp_input = post_attention_layernorm.forward(ctx, hidden_states);
ggml_tensor *mlp_output = mlp.forward(ctx, mlp_input);
ggml_build_forward_expand(&ctx->gf, mlp_output);
mlp_input = tensor_assign_buffers(ggml_scale_inplace(gctx, mlp_input, alpha));
ggml_tensor *output = tensor_assign_buffers(ggml_add_inplace(gctx, mlp_input, mlp_output));
return output;
}
ChatGLMForCausalLM::ChatGLMForCausalLM(const ModelConfig &config)
: BasicModelForCausalLM(config, MEM_SIZE, SCRATCH_SIZE, num_weights(config.num_hidden_layers)) {
state_dict_ = state_dict();
}
void ChatGLMForCausalLM::load(ModelLoader &loader) {
for (auto &item : state_dict_) {
const std::string &name = item.first;
ggml_tensor *tensor = item.second;
if (name != "lm_head.weight") {
loader.read_tensor(name, tensor);
}
}
lm_head.weight->data = transformer.word_embeddings.weight->data; // tied weight
to_device();
ctx_.weight_buffer = std::string_view(loader.data, loader.size);
ctx_.init_device_context();
}
StateDict ChatGLMForCausalLM::state_dict() const {
StateDict sd;
sd.reserve(num_weights(config.num_hidden_layers));
sd.emplace_back("transformer.word_embeddings.weight", transformer.word_embeddings.weight);
for (int i = 0; i < config.num_hidden_layers; i++) {
std::string layer_prefix = "transformer.layers." + std::to_string(i) + '.';
sd.emplace_back(layer_prefix + "input_layernorm.weight", transformer.layers[i].input_layernorm.weight);
sd.emplace_back(layer_prefix + "input_layernorm.bias", transformer.layers[i].input_layernorm.bias);
sd.emplace_back(layer_prefix + "attention.query_key_value.weight",
transformer.layers[i].attention.query_key_value.weight);
sd.emplace_back(layer_prefix + "attention.query_key_value.bias",
transformer.layers[i].attention.query_key_value.bias);
sd.emplace_back(layer_prefix + "attention.dense.weight", transformer.layers[i].attention.dense.weight);
sd.emplace_back(layer_prefix + "attention.dense.bias", transformer.layers[i].attention.dense.bias);
sd.emplace_back(layer_prefix + "post_attention_layernorm.weight",
transformer.layers[i].post_attention_layernorm.weight);
sd.emplace_back(layer_prefix + "post_attention_layernorm.bias",
transformer.layers[i].post_attention_layernorm.bias);
sd.emplace_back(layer_prefix + "mlp.dense_h_to_4h.weight", transformer.layers[i].mlp.dense_h_to_4h.weight);
sd.emplace_back(layer_prefix + "mlp.dense_h_to_4h.bias", transformer.layers[i].mlp.dense_h_to_4h.bias);
sd.emplace_back(layer_prefix + "mlp.dense_4h_to_h.weight", transformer.layers[i].mlp.dense_4h_to_h.weight);
sd.emplace_back(layer_prefix + "mlp.dense_4h_to_h.bias", transformer.layers[i].mlp.dense_4h_to_h.bias);
}
sd.emplace_back("transformer.final_layernorm.weight", transformer.final_layernorm.weight);
sd.emplace_back("transformer.final_layernorm.bias", transformer.final_layernorm.bias);
sd.emplace_back("lm_head.weight", lm_head.weight);
return sd;
}
// ===== ChatGLM2-6B =====
ChatGLM2Tokenizer::ChatGLM2Tokenizer(std::string_view serialized_model_proto) {
const auto status = sp.LoadFromSerializedProto(serialized_model_proto);
CHATGLM_CHECK(status.ok()) << status.ToString();
int special_id = sp.GetPieceSize();
mask_token_id = special_id++;
gmask_token_id = special_id++;
smask_token_id = special_id++;
sop_token_id = special_id++;
eop_token_id = special_id++;
}
std::vector<int> ChatGLM2Tokenizer::encode(const std::string &text, int max_length) const {
std::vector<int> ids;
sp.Encode(text, &ids);
ids.insert(ids.begin(), {gmask_token_id, sop_token_id}); // special prefix
if ((int)ids.size() > max_length) {
// sliding window: drop the least recent history while keeping the two special prefix tokens
int num_drop = (int)ids.size() - max_length;
ids.erase(ids.begin() + 2, ids.begin() + 2 + num_drop);
}
return ids;
}
std::string ChatGLM2Tokenizer::decode(const std::vector<int> &ids) const {
// filter out special tokens
std::vector<int> normal_ids(ids);
normal_ids.erase(std::remove_if(normal_ids.begin(), normal_ids.end(), [this](int id) { return is_special_id(id); }),
normal_ids.end());
std::string text;
sp.Decode(normal_ids, &text);
text = replace_punctuations(text);
return text;
}
std::vector<int> ChatGLM2Tokenizer::encode_messages(const std::vector<ChatMessage> &messages, int max_length) const {
std::string prompt = build_prompt(messages);
std::vector<int> input_ids = encode(prompt, max_length);
return input_ids;
}
std::string ChatGLM2Tokenizer::build_prompt(const std::vector<ChatMessage> &messages) {
check_chat_messages(messages);
std::ostringstream oss_prompt;
for (size_t i = 0; i < messages.size(); i += 2) {
oss_prompt << "[Round " << i / 2 + 1 << "]\n\n问:" << messages[i].content << "\n\n答:";
if (i < messages.size() - 1) {
oss_prompt << messages[i + 1].content << "\n\n";
}
}
return oss_prompt.str();
}
bool ChatGLM2Tokenizer::is_special_id(int id) const {
return id == mask_token_id || id == gmask_token_id || id == smask_token_id || id == sop_token_id ||
id == eop_token_id;
}
ChatGLM2ForCausalLM::ChatGLM2ForCausalLM(const ModelConfig &config)
: BasicModelForCausalLM(config, MEM_SIZE, SCRATCH_SIZE, num_weights(config.num_hidden_layers)) {
state_dict_ = state_dict();
}
void ChatGLM2ForCausalLM::load(ModelLoader &loader) {
std::unordered_map<std::string, std::string> glu_name_map;
for (int i = 0; i < config.num_hidden_layers; i++) {
std::string layer_prefix = "transformer.encoder.layers." + std::to_string(i) + '.';
glu_name_map.emplace(layer_prefix + "mlp.gate_proj.weight", layer_prefix + "mlp.dense_h_to_4h.weight");
glu_name_map.emplace(layer_prefix + "mlp.up_proj.weight", layer_prefix + "mlp.dense_h_to_4h.weight");
}
for (auto it = state_dict_.begin(); it != state_dict_.end(); it++) {
const std::string &name = it->first;
ggml_tensor *tensor = it->second;
auto glu_it = glu_name_map.find(name);
if (glu_it != glu_name_map.end()) {
// for compatibility: load gate_proj & up_proj from dense_h_to_4h