-
-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
bridge derivation: Newton's Second Law for the Center of Mass to torque and moment of inertia for rotational motion #16
Comments
prompt to Gemini 2.0 Flash Thinking Experimental 01-21 https://aistudio.google.com/prompts/In mathematical Physics a derivation is comprised of steps and expressions. An expression is Is there a derivation that bridges Newton's Second Law for the Center of Mass to the concepts of torque and moment of inertia which describe rotational motion? thoughtsHere's a thinking process to construct the derivation connecting Newton's Second Law for the Center of Mass to torque and moment of inertia:
This refined approach using angular momentum provides a more rigorous and general derivation of rotational dynamics from linear dynamics. It naturally leads to the concepts of torque and moment of inertia. The initial request was to bridge to torque and moment of inertia, and this derivation path clearly achieves that. responseYes, there is a derivation that bridges Newton's Second Law for the Center of Mass to the concepts of torque and moment of inertia. It's a fundamental derivation in physics that shows how rotational motion arises from the same basic principles governing linear motion. Here's a step-by-step derivation: 1. Start with Newton's Second Law for a System of Particles: Consider a system of n particles. For each particle i with mass mi, its equation of motion according to Newton's Second Law is: Fnet, i = mi ai where:
2. Identify Forces: External and Internal: The net force on each particle can be divided into two types:
So, Fnet, i = Fext, i + Σj≠i Fint, ij 3. Sum Newton's Second Law over all Particles: Sum the equation of motion for all particles in the system: Σi Fnet, i = Σi mi ai Substituting the forces: Σi (Fext, i + Σj≠i Fint, ij) = Σi mi ai 4. Consider the Sum of Internal Forces: Due to Newton's Third Law, for every internal force Fint, ij, there is an equal and opposite force Fint, ji. When we sum over all internal forces, they cancel out in pairs: Σi Σj≠i Fint, ij = 0 5. Simplify to Net External Force and Center of Mass: Therefore, the equation simplifies to: Σi Fext, i = Σi mi ai The left side is the net external force acting on the entire system, let's call it Fext, net: Fext, net = Σi Fext, i For the right side, recall the definition of the center of mass (CM) position vector RCM: RCM = (Σi mi ri) / M where M = Σi *mi is the total mass of the system and ri is the position vector of the i-th particle. Differentiating RCM twice with respect to time gives the acceleration of the center of mass ACM: ACM = d2RCM / dt2 = (Σi mi ai) / M Therefore, Σi mi ai = M ACM 6. Newton's Second Law for the Center of Mass: Substituting this back into our equation: Fext, net = M ACM This is Newton's Second Law for the Center of Mass. It states that the center of mass of a system of particles moves as if it were a single particle of mass M, subjected to the net external force acting on the system. 7. Introduce Torque: Now, to bring in torque, we need to consider the rotational effect of forces. Torque (τ) about a point O due to a force F acting at position r (relative to O) is defined as the cross product: τ = r × F Let's consider the torque about a fixed point (origin) for the i-th particle due to the net force on it: τi = ri × Fnet, i = ri × mi ai 8. Net Torque on the System: The net torque on the system is the sum of torques on each particle: τnet = Σi τi = Σi (ri × Fnet, i) Again, separate forces into external and internal: τnet = Σi ri × (Fext, i + Σj≠i Fint, ij) τnet = Σi (ri × Fext, i) + Σi Σj≠i (ri × Fint, ij) 9. Consider Torque due to Internal Forces: For internal forces to contribute to zero net torque, we need an additional assumption beyond Newton's Third Law. We assume that internal forces are central forces, meaning they act along the line joining the particles. If Fint, ij is along the line connecting particle i and j, then Fint, ij is parallel to (ri - rj). However, we have terms like ri × Fint, ij. To show the sum of internal torques is zero, we need to consider the pairs of internal forces: Consider the pair of torques due to internal forces between particles i and j: τint, ij + τint, ji = (ri × Fint, ij) + (rj × Fint, ji) Since Fint, ji = - Fint, ij: τint, ij + τint, ji = (ri × Fint, ij) - (rj × Fint, ij) = (ri - rj) × Fint, ij If Fint, ij is a central force, it's along the direction of (rj - ri) or (ri - rj). Therefore, (ri - rj) and Fint, ij are parallel (or anti-parallel), and their cross product is zero: (ri - rj) × Fint, ij = 0 Thus, the sum of all internal torques is zero: Σi Σj≠i (ri × Fint, ij) = 0 10. Net Torque is due to External Forces: The net torque on the system is then due only to external forces: τnet = Σi (ri × Fext, i) = τext, net 11. Relate Torque to Angular Momentum and Moment of Inertia: We know that torque is also related to the time rate of change of angular momentum (L). For a system of particles, the total angular momentum about the origin is: L = Σi Li = Σi (ri × pi) = Σi (ri × mi vi) Taking the time derivative of L: dL/dt = d/dt [Σi (ri × mi vi)] = Σi d/dt (ri × mi vi) Using the product rule for differentiation of cross products: d/dt (ri × mi vi) = (dri/dt × mi vi) + (ri × d(mi vi)/dt) Since dri/dt = vi and d(mi vi)/dt = mi ai = Fnet, i: d/dt (ri × mi vi) = (vi × mi vi) + (ri × Fnet, i) The first term (vi × mi vi) = 0 because the cross product of a vector with itself is zero. The second term is the torque τi. So, d/dt (ri × mi vi) = τi Summing over all particles: dL/dt = Σi τi = τnet = τext, net Thus, the net external torque is equal to the time rate of change of the total angular momentum of the system: τext, net = dL/dt 12. Introduce Moment of Inertia for Rigid Body Rotation: For a rigid body rotating about a fixed axis, the angular momentum can be expressed in terms of the moment of inertia (I) and angular velocity (ω). If we consider rotation about a fixed axis (say, the z-axis), and assume the body is rigid, then for each particle in the body, its velocity can be related to the angular velocity: vi = ω × ri And the angular momentum component along the axis of rotation (z-axis) is: Lz = Σi (ri × mi vi) · k (where k is the unit vector along the z-axis) For rotation about a fixed axis, if we assume ω is along the z-axis (ω = ω k), and ri is in the xy-plane (for simplicity, though it generalizes), then |vi| = r⊥,i ω, where r⊥,i is the perpendicular distance of the i-th particle from the axis of rotation. And the direction of vi is tangential. After some vector algebra (and simplifying to rotation about a fixed axis), we can show that for a rigid body rotating about a fixed axis, the component of angular momentum along the axis of rotation is: Lz = (Σi mi r⊥,i2) ω = I ω where I = Σi mi r⊥,i2 is the moment of inertia of the rigid body about the axis of rotation. Then, if the moment of inertia I is constant (rigid body, fixed axis), the component of the net torque along the axis of rotation is: τz, net = dLz/dt = d(I ω)/dt = I (dω/dt) = I α where α = dω/dt is the angular acceleration about the axis of rotation. 13. Rotational Analog of Newton's Second Law: Therefore, we arrive at the rotational analog of Newton's Second Law: τz, net = I α This equation relates the net torque about an axis to the angular acceleration about the same axis, with the moment of inertia acting as the "rotational mass" resisting changes in rotational motion. Summary of the Derivation's Bridge:
Conclusion: This derivation demonstrates how the concepts of torque and moment of inertia, which are crucial for describing rotational motion, naturally emerge from Newton's Second Law and the consideration of extended systems of particles. It shows that rotational dynamics is not a separate set of laws but rather a consequence of applying Newton's laws in a rotational context. The derivation highlights the importance of forces, their points of application, and the distribution of mass in understanding both linear and rotational motion. promptRewrite the above answers using Latex thoughtsThe user wants the previous answer rewritten using LaTeX. I need to go through each step of the derivation and convert the symbols, equations, and mathematical expressions into LaTeX format. I should pay attention to:
I will proceed step-by-step and convert each part to LaTeX. After converting each step, I will review it to ensure correctness and readability in LaTeX format. responseYes, here is the derivation that bridges Newton's Second Law for the Center of Mass to the concepts of torque and moment of inertia, rewritten using LaTeX: 1. Start with Newton's Second Law for a System of Particles: Consider a system of (n) particles. For each particle (i) with mass (m_i), its equation of motion according to Newton's Second Law is: [ where:
2. Identify Forces: External and Internal: The net force on each particle can be divided into two types:
So, 3. Sum Newton's Second Law over all Particles: Sum the equation of motion for all particles in the system: [ Substituting the forces: [ 4. Consider the Sum of Internal Forces: Due to Newton's Third Law, for every internal force ( \mathbf{F}{\text{int}, ij} ), there is an equal and opposite force ( \mathbf{F}{\text{int}, ji} ). When we sum over all internal forces, they cancel out in pairs: [ 5. Simplify to Net External Force and Center of Mass: Therefore, the equation simplifies to: [ The left side is the net external force acting on the entire system, let's call it ( \mathbf{F}_{\text{ext, net}} ): [ For the right side, recall the definition of the center of mass (CM) position vector ( \mathbf{R}_{\text{CM}} ): [ where ( M = \sum_{i} m_i ) is the total mass of the system and ( \mathbf{r}_i ) is the position vector of the (i)-th particle. Differentiating ( \mathbf{R}{\text{CM}} ) twice with respect to time gives the acceleration of the center of mass ( \mathbf{A}{\text{CM}} ): [ Therefore, ( \sum_{i} m_i \mathbf{a}i = M \mathbf{A}{\text{CM}} ) 6. Newton's Second Law for the Center of Mass: Substituting this back into our equation: [ This is Newton's Second Law for the Center of Mass. 7. Introduce Torque: Now, to bring in torque, we need to consider the rotational effect of forces. Torque ((\boldsymbol{\tau})) about a point (O) due to a force ( \mathbf{F} ) acting at position ( \mathbf{r} ) (relative to (O)) is defined as the cross product: [ Let's consider the torque about a fixed point (origin) for the (i)-th particle due to the net force on it: [ 8. Net Torque on the System: The net torque on the system is the sum of torques on each particle: [ Separate forces into external and internal: [ [ 9. Consider Torque due to Internal Forces: For internal forces to contribute to zero net torque, we assume that internal forces are central forces. Then the sum of torques due to internal forces is zero: [ 10. Net Torque is due to External Forces: The net torque on the system is then due only to external forces: [ 11. Relate Torque to Angular Momentum and Moment of Inertia: We know that torque is also related to the time rate of change of angular momentum ((\mathbf{L})). For a system of particles, the total angular momentum about the origin is: [ Taking the time derivative of ( \mathbf{L} ): [ Using the product rule for differentiation of cross products: [ Since ( \frac{d\mathbf{r}_i}{dt} = \mathbf{v}_i ) and ( \frac{d(m_i \mathbf{v}_i)}{dt} = m_i \mathbf{a}i = \mathbf{F}{\text{net}, i} ): [ The first term ( (\mathbf{v}_i \times m_i \mathbf{v}_i) = \mathbf{0} ). The second term is the torque ( \boldsymbol{\tau}_i ). So, ( \frac{d}{dt} (\mathbf{r}_i \times m_i \mathbf{v}_i) = \boldsymbol{\tau}_i ) Summing over all particles: [ Thus, the net external torque is equal to the time rate of change of the total angular momentum of the system: [ 12. Introduce Moment of Inertia for Rigid Body Rotation: For a rigid body rotating about a fixed axis (say, the z-axis), the angular momentum component along the axis of rotation (z-axis) is: [ For rotation about a fixed axis, (L_z = I \omega), where the moment of inertia (I) is: [ Then, if the moment of inertia (I) is constant, the component of the net torque along the axis of rotation is: [ where ( \alpha = \frac{d\omega}{dt} ) is the angular acceleration about the axis of rotation. 13. Rotational Analog of Newton's Second Law: Therefore, we arrive at the rotational analog of Newton's Second Law: [ This equation relates the net torque about an axis to the angular acceleration about the same axis, with the moment of inertia acting as the "rotational mass". This derivation shows how the concepts of torque and moment of inertia emerge from Newton's Second Law. |
Manual corrections to the Latex using https://www.overleaf.com/ generate a 4 page PDF with 27 expressions. \documentclass{article}
\usepackage{graphicx} % Required for inserting images
\usepackage{amsmath}
% margins of 1 inch:
\setlength{\topmargin}{-.5in}
\setlength{\textheight}{9in}
\setlength{\oddsidemargin}{0in}
\setlength{\textwidth}{6.5in}
\usepackage[pdftex]{hyperref} % hyperlink equation and bibliographic citations
\title{Physics Derivation Graph: from $F=m a$ to Torque}
\author{[email protected]}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
Relate Newton's Second Law to the concepts of torque and moment of inertia.
\end{abstract}
\section{Newton's Second Law for a System of Particles}
Consider a system of $n$ particles. For each particle $i$ with mass $m_i$, its equation of motion according to Newton's Second Law is:
\begin{equation}
\vec{F}_{\text{net}, i} = m_i \vec{a}_i
\end{equation}
where:
\begin{itemize}
\item $ \vec{F}_{\text{net}, i} $ is the net force acting on the $i$-th particle.
\item $ \vec{a}_i $ is the acceleration of the $i$-th particle.
\end{itemize}
\section{Identify Forces: External and Internal}
The net force on each particle can be divided into two types:
\begin{itemize}
\item External Forces ($\vec{F}_{\text{ext}, i}$): Forces applied to the system from outside.
\item Internal Forces ($\vec{F}_{\text{int}, ij}$): Forces exerted on particle $i$ by other particles $j$ within the system.
\end{itemize}
% BHP doesn't see where this observation is relevant
By Newton's Third Law, $ \vec{F}_{\text{int}, ij} = - \vec{F}_{\text{int}, ji} $.
So,
\begin{equation}
\vec{F}_{\text{net}, i} = \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij}
\end{equation}
\section{Sum Newton's Second Law over all Particles}
Sum the equation of motion for all particles in the system:
\begin{equation}
\sum_{i} \vec{F}_{\text{net}, i} = \sum_{i} m_i \vec{a}_i
\end{equation}
Substituting the forces:
\begin{equation}
\sum_{i} \left( \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij} \right) = \sum_{i} m_i \vec{a}_i
\end{equation}
\section{Consider the Sum of Internal Forces}
Due to Newton's Third Law, for every internal force $ \vec{F}_{\text{int}, ij} $, there is an equal and opposite force $ \vec{F}_{\text{int}, ji} $. When we sum over all internal forces, they cancel out in pairs:
\begin{equation}
\sum_{i} \sum_{j \neq i} \vec{F}_{\text{int}, ij} = \vec{0}
\end{equation}
\section{Simplify to Net External Force and Center of Mass}
Therefore, the equation simplifies to:
\begin{equation}
\sum_{i} \vec{F}_{\text{ext}, i} = \sum_{i} m_i \vec{a}_i
\end{equation}
The left side is the net external force acting on the entire system, let's call it $ \vec{F}_{\text{ext, net}} $:
\begin{equation}
\vec{F}_{\text{ext, net}} = \sum_{i} \vec{F}_{\text{ext}, i}
\end{equation}
For the right side, recall the definition of the center of mass (CM) position vector $ \vec{R}_{\text{CM}} $:
\begin{equation}
\vec{R}_{\text{CM}} = \frac{\sum_{i} m_i \vec{r}_i}{M}
\end{equation}
where $ M = \sum_{i} m_i $ is the total mass of the system and $ \vec{r}_i $ is the position vector of the $i$-th particle.
Differentiating $ \vec{R}_{\text{CM}} $ twice with respect to time gives the acceleration of the center of mass $ \vec{A}_{\text{CM}} $:
\begin{equation}
\vec{A}_{\text{CM}} = \frac{d^2 \vec{R}_{\text{CM}}}{dt^2} = \frac{\sum_{i} m_i \vec{a}_i}{M}
\end{equation}
Therefore, $ \sum_{i} m_i \vec{a}_i = M \vec{A}_{\text{CM}} $
\section{Newton's Second Law for the Center of Mass}
Substituting this back into our equation:
\begin{equation}
\vec{F}_{\text{ext, net}} = M \vec{A}_{\text{CM}}
\end{equation}
This is Newton's Second Law for the Center of Mass.
\section{Introduce Torque}
Now, to bring in torque, we need to consider the rotational effect of forces. Torque ($\vec{\tau}$) about a point $O$ due to a force $ \vec{F} $ acting at position $ \vec{r} $ (relative to $O$) is defined by the cross product:
\begin{equation}
\vec{\tau} = \vec{r} \times \vec{F}
\end{equation}
Consider the torque about a fixed point (origin) for the $i$-th particle due to the net force on it:
\begin{equation}
\vec{\tau}_i = \vec{r}_i \times \vec{F}_{\text{net}, i} = \vec{r}_i \times m_i \vec{a}_i
\end{equation}
\section{Net Torque on the System}
The net torque on the system is the sum of torques on each particle:
\begin{equation}
\vec{\tau}_{\text{net}} = \sum_{i} \vec{\tau}_i = \sum_{i} (\vec{r}_i \times \vec{F}_{\text{net}, i})
\end{equation}
Separate forces into external and internal:
\begin{equation}
\vec{\tau}_{\text{net}} = \sum_{i} \vec{r}i \times \left( \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij} \right)
\end{equation}
\begin{equation}
\vec{\tau}_{\text{net}} = \sum_{i} (\vec{r}i \times \vec{F}_{\text{ext}, i}) + \sum_{i} \sum_{j \neq i} (\vec{r}i \times \vec{F}_{\text{int}, ij})
\end{equation}
\section{Consider Torque due to Internal Forces}
For internal forces to contribute to zero net torque, we assume that internal forces are central forces. Then the sum of torques due to internal forces is zero:
\begin{equation}
\sum_{i} \sum_{j \neq i} (\vec{r}_i \times \vec{F}_{\text{int}, ij}) = \vec{0}
\end{equation}
\section{Net Torque is due to External Forces}
The net torque on the system is then due only to external forces:
\begin{equation}
\vec{\tau}_{\text{net}} = \sum_{i} (\vec{r}_i \times \vec{F}_{\text{ext}, i}) = \vec{\tau}_{\text{ext, net}}
\end{equation}
\section{Relate Torque to Angular Momentum and Moment of Inertia}
We know that torque is also related to the time rate of change of angular momentum ($\vec{L}$). For a system of particles, the total angular momentum about the origin is:
\begin{equation}
\vec{L} = \sum_{i} \vec{L}_i = \sum_{i} (\vec{r}_i \times \vec{p}_i) = \sum_{i} (\vec{r}_i \times m_i \vec{v}_i)
\end{equation}
Taking the time derivative of $ \vec{L} $:
\begin{equation}
\frac{d\vec{L}}{dt} = \frac{d}{dt} \left[ \sum_{i} (\vec{r}_i \times m_i \vec{v}i) \right] = \sum_{i} \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i)
\end{equation}
Using the product rule for differentiation of cross products:
\begin{equation}
\frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \left( \frac{d\vec{r}_i}{dt} \times m_i \vec{v}_i \right) + \left( \vec{r}_i \times \frac{d(m_i \vec{v}_i)}{dt} \right)
\end{equation}
Since $ \frac{d\vec{r}_i}{dt} = \vec{v}_i $ and $ \frac{d(m_i \vec{v}_i)}{dt} = m_i \vec{a}_i = \vec{F}_{\text{net}, i} $:
\begin{equation}
\frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = (\vec{v}_i \times m_i \vec{v}_i) + (\vec{r}i \times \vec{F}_{\text{net}, i})
\end{equation}
The first term ( $\vec{v}_i \times m_i \vec{v}_i) = \vec{0} $. The second term is the torque $ \vec{\tau}_i $.
So, $ \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \vec{\tau}_i $
Summing over all particles:
\begin{equation}
\frac{d\vec{L}}{dt} = \sum_{i} \vec{\tau}_i = \vec{\tau}_{\text{net}} = \vec{\tau}_{\text{ext, net}}
\end{equation}
Thus, the net external torque is equal to the time rate of change of the total angular momentum of the system:
\begin{equation}
\vec{\tau}_{\text{ext, net}} = \frac{d\vec{L}}{dt}
\end{equation}
\section{Introduce Moment of Inertia for Rigid Body Rotation}
For a rigid body rotating about a fixed axis (say, the z-axis), the angular momentum component along the axis of rotation (z-axis) is:
\begin{equation}
L_z = \sum_{i} (\vec{r}_i \times m_i \vec{v}_i) \cdot \vec{k}
\end{equation}
For rotation about a fixed axis, $L_z = I \omega$, where the moment of inertia $I$ is:
\begin{equation}
I = \sum_{i} m_i r_{\perp,i}^2
\end{equation}
and $r_{\perp,i}$ is the perpendicular distance of the $i$-th particle from the axis of rotation, and $\omega$ is the angular speed.
Then, if the moment of inertia $I$ is constant, the component of the net torque along the axis of rotation is:
\begin{equation}
\tau_{z, \text{net}} = \frac{dL_z}{dt} = \frac{d(I \omega)}{dt} = I \frac{d\omega}{dt} = I \alpha
\end{equation}
where $ \alpha = \frac{d\omega}{dt} $ is the angular acceleration about the axis of rotation.
\section{Rotational Analog of Newton's Second Law}
Therefore, we arrive at the rotational analog of Newton's Second Law:
\begin{equation}
\tau_{z, \text{net}} = I \alpha
\end{equation}
This equation relates the net torque about an axis to the angular acceleration about the same axis, with the moment of inertia acting as the ``rotational mass."
\end{document} |
BLUF/tl;dr: LLM inserted descriptive labels. These labels are necessary for references in the derivation. After the LLM provided the labels I compared the pre- and post- versions of the .tex file in BeyondCompare and found the labels were correctly placed in the .tex file. prompt to Gemini 2.0 Flash Thinking Experimental 01-21, https://aistudio.google.com/prompts/For the following Latex file, write out the file and insert a label for each equation. The label that is added should be descriptive of the equation and contain no spaces, only underscores. Don't provide any commentary. Just write the revised Latex file content as your answer.
thoughtsThe user wants me to modify a LaTeX file.
Let's go through each equation and create a descriptive label: Equation 1: Now I will insert these labels into the LaTeX file. response\documentclass{article}
\usepackage{graphicx} % Required for inserting images
\usepackage{amsmath}
% margins of 1 inch:
\setlength{\topmargin}{-.5in}
\setlength{\textheight}{9in}
\setlength{\oddsidemargin}{0in}
\setlength{\textwidth}{6.5in}
\usepackage[pdftex]{hyperref} % hyperlink equation and bibliographic citations
\title{Physics Derivation Graph: from $F=m a$ to Torque}
\author{[email protected]}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
Relate Newton's Second Law to the concepts of torque and moment of inertia.
\end{abstract}
\section{Newton's Second Law for a System of Particles}
Consider a system of $n$ particles. For each particle $i$ with mass $m_i$, its equation of motion according to Newton's Second Law is:
\begin{equation}\label{Newtons_Second_Law_Single_Particle}
\vec{F}_{\text{net}, i} = m_i \vec{a}_i
\end{equation}
where:
\begin{itemize}
\item $ \vec{F}_{\text{net}, i} $ is the net force acting on the $i$-th particle.
\item $ \vec{a}_i $ is the acceleration of the $i$-th particle.
\end{itemize}
\section{Identify Forces: External and Internal}
The net force on each particle can be divided into two types:
\begin{itemize}
\item External Forces ($\vec{F}_{\text{ext}, i}$): Forces applied to the system from outside.
\item Internal Forces ($\vec{F}_{\text{int}, ij}$): Forces exerted on particle $i$ by other particles $j$ within the system.
\end{itemize}
% BHP doesn't see where this observation is relevant
By Newton's Third Law, $ \vec{F}_{\text{int}, ij} = - \vec{F}_{\text{int}, ji} $.
So,
\begin{equation}\label{Net_Force_External_Internal}
\vec{F}_{\text{net}, i} = \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij}
\end{equation}
\section{Sum Newton's Second Law over all Particles}
Sum the equation of motion for all particles in the system:
\begin{equation}\label{Sum_Newtons_Second_Law}
\sum_{i} \vec{F}_{\text{net}, i} = \sum_{i} m_i \vec{a}_i
\end{equation}
Substituting the forces:
\begin{equation}\label{Sum_Forces_External_Internal}
\sum_{i} \left( \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij} \right) = \sum_{i} m_i \vec{a}_i
\end{equation}
\section{Consider the Sum of Internal Forces}
Due to Newton's Third Law, for every internal force $ \vec{F}_{\text{int}, ij} $, there is an equal and opposite force $ \vec{F}_{\text{int}, ji} $. When we sum over all internal forces, they cancel out in pairs:
\begin{equation}\label{Sum_Internal_Forces_Zero}
\sum_{i} \sum_{j \neq i} \vec{F}_{\text{int}, ij} = \vec{0}
\end{equation}
\section{Simplify to Net External Force and Center of Mass}
Therefore, the equation simplifies to:
\begin{equation}\label{Sum_External_Forces_Mass_Accel}
\sum_{i} \vec{F}_{\text{ext}, i} = \sum_{i} m_i \vec{a}_i
\end{equation}
The left side is the net external force acting on the entire system, let's call it $ \vec{F}_{\text{ext, net}} $:
\begin{equation}\label{Net_External_Force_Definition}
\vec{F}_{\text{ext, net}} = \sum_{i} \vec{F}_{\text{ext}, i}
\end{equation}
For the right side, recall the definition of the center of mass (CM) position vector $ \vec{R}_{\text{CM}} $:
\begin{equation}\label{Center_of_Mass_Position}
\vec{R}_{\text{CM}} = \frac{\sum_{i} m_i \vec{r}_i}{M}
\end{equation}
where $ M = \sum_{i} m_i $ is the total mass of the system and $ \vec{r}_i $ is the position vector of the $i$-th particle.
Differentiating $ \vec{R}_{\text{CM}} $ twice with respect to time gives the acceleration of the center of mass $ \vec{A}_{\text{CM}} $:
\begin{equation}\label{Center_of_Mass_Acceleration}
\vec{A}_{\text{CM}} = \frac{d^2 \vec{R}_{\text{CM}}}{dt^2} = \frac{\sum_{i} m_i \vec{a}_i}{M}
\end{equation}
Therefore, $ \sum_{i} m_i \vec{a}_i = M \vec{A}_{\text{CM}} $
\section{Newton's Second Law for the Center of Mass}
Substituting this back into our equation:
\begin{equation}\label{Newtons_Second_Law_Center_of_Mass}
\vec{F}_{\text{ext, net}} = M \vec{A}_{\text{CM}}
\end{equation}
This is Newton's Second Law for the Center of Mass.
\section{Introduce Torque}
Now, to bring in torque, we need to consider the rotational effect of forces. Torque ($\vec{\tau}$) about a point $O$ due to a force $ \vec{F} $ acting at position $ \vec{r} $ (relative to $O$) is defined by the cross product:
\begin{equation}\label{Torque_Definition}
\vec{\tau} = \vec{r} \times \vec{F}
\end{equation}
Consider the torque about a fixed point (origin) for the $i$-th particle due to the net force on it:
\begin{equation}\label{Torque_Particle_NetForce}
\vec{\tau}_i = \vec{r}_i \times \vec{F}_{\text{net}, i} = \vec{r}_i \times m_i \vec{a}_i
\end{equation}
\section{Net Torque on the System}
The net torque on the system is the sum of torques on each particle:
\begin{equation}\label{Net_Torque_System_Particles}
\vec{\tau}_{\text{net}} = \sum_{i} \vec{\tau}_i = \sum_{i} (\vec{r}_i \times \vec{F}_{\text{net}, i})
\end{equation}
Separate forces into external and internal:
\begin{equation}\label{Net_Torque_External_Internal_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} \vec{r}i \times \left( \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij} \right)
\end{equation}
\begin{equation}\label{Net_Torque_Separated_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} (\vec{r}i \times \vec{F}_{\text{ext}, i}) + \sum_{i} \sum_{j \neq i} (\vec{r}i \times \vec{F}_{\text{int}, ij})
\end{equation}
\section{Consider Torque due to Internal Forces}
For internal forces to contribute to zero net torque, we assume that internal forces are central forces. Then the sum of torques due to internal forces is zero:
\begin{equation}\label{Torque_Internal_Forces_Zero}
\sum_{i} \sum_{j \neq i} (\vec{r}_i \times \vec{F}_{\text{int}, ij}) = \vec{0}
\end{equation}
\section{Net Torque is due to External Forces}
The net torque on the system is then due only to external forces:
\begin{equation}\label{Net_Torque_External_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} (\vec{r}_i \times \vec{F}_{\text{ext}, i}) = \vec{\tau}_{\text{ext, net}}
\end{equation}
\section{Relate Torque to Angular Momentum and Moment of Inertia}
We know that torque is also related to the time rate of change of angular momentum ($\vec{L}$). For a system of particles, the total angular momentum about the origin is:
\begin{equation}\label{Angular_Momentum_System}
\vec{L} = \sum_{i} \vec{L}_i = \sum_{i} (\vec{r}_i \times \vec{p}_i) = \sum_{i} (\vec{r}_i \times m_i \vec{v}_i)
\end{equation}
Taking the time derivative of $ \vec{L} $:
\begin{equation}\label{Time_Derivative_Angular_Momentum}
\frac{d\vec{L}}{dt} = \frac{d}{dt} \left[ \sum_{i} (\vec{r}_i \times m_i \vec{v}i) \right] = \sum_{i} \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i)
\end{equation}
Using the product rule for differentiation of cross products:
\begin{equation}\label{Product_Rule_Derivative_Cross_Product}
\frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \left( \frac{d\vec{r}_i}{dt} \times m_i \vec{v}_i \right) + \left( \vec{r}_i \times \frac{d(m_i \vec{v}_i)}{dt} \right)
\end{equation}
Since $ \frac{d\vec{r}_i}{dt} = \vec{v}_i $ and $ \frac{d(m_i \vec{v}_i)}{dt} = m_i \vec{a}_i = \vec{F}_{\text{net}, i} $:
\begin{equation}\label{Derivative_Term_Substitution}
\frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = (\vec{v}_i \times m_i \vec{v}_i) + (\vec{r}i \times \vec{F}_{\text{net}, i})
\end{equation}
The first term ( $\vec{v}_i \times m_i \vec{v}_i) = \vec{0} $. The second term is the torque $ \vec{\tau}_i $.
So, $ \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \vec{\tau}_i $
Summing over all particles:
\begin{equation}\label{Rate_Change_Angular_Momentum_Net_Torque}
\frac{d\vec{L}}{dt} = \sum_{i} \vec{\tau}_i = \vec{\tau}_{\text{net}} = \vec{\tau}_{\text{ext, net}}
\end{equation}
Thus, the net external torque is equal to the time rate of change of the total angular momentum of the system:
\begin{equation}\label{Net_External_Torque_Angular_Momentum_Rate}
\vec{\tau}_{\text{ext, net}} = \frac{d\vec{L}}{dt}
\end{equation}
\section{Introduce Moment of Inertia for Rigid Body Rotation}
For a rigid body rotating about a fixed axis (say, the z-axis), the angular momentum component along the axis of rotation (z-axis) is:
\begin{equation}\label{Angular_Momentum_Z_Component}
L_z = \sum_{i} (\vec{r}_i \times m_i \vec{v}_i) \cdot \vec{k}
\end{equation}
For rotation about a fixed axis, $L_z = I \omega$, where the moment of inertia $I$ is:
\begin{equation}\label{Moment_of_Inertia_Definition}
I = \sum_{i} m_i r_{\perp,i}^2
\end{equation}
and $r_{\perp,i}$ is the perpendicular distance of the $i$-th particle from the axis of rotation, and $\omega$ is the angular speed.
Then, if the moment of inertia $I$ is constant, the component of the net torque along the axis of rotation is:
\begin{equation}\label{Torque_Z_Component_Angular_Acceleration}
\tau_{z, \text{net}} = \frac{dL_z}{dt} = \frac{d(I \omega)}{dt} = I \frac{d\omega}{dt} = I \alpha
\end{equation}
where $ \alpha = \frac{d\omega}{dt} $ is the angular acceleration about the axis of rotation.
\section{Rotational Analog of Newton's Second Law}
Therefore, we arrive at the rotational analog of Newton's Second Law:
\begin{equation}\label{Rotational_Newtons_Second_Law}
\tau_{z, \text{net}} = I \alpha
\end{equation}
This equation relates the net torque about an axis to the angular acceleration about the same axis, with the moment of inertia acting as the ``rotational mass."
\end{document} |
prompt to Gemini 2.0 Flash Thinking Experimental 01-21, https://aistudio.google.com/prompts/The following Latex file contains a derivation with many steps. Sometimes a previous expression is referenced implicitly. Edit the following text to manually insert references where appropriate. For example replace text like "substitute the forces" with "substitute Eq.~\ref{} to get". Be sure to reference the relevant equation labels so that Latex can compile the document.
thoughtsThe user wants me to edit a Latex file to add equation references.
Let's go through the document section by section and find implicit references. Section 1: Newton's Second Law for a System of Particles
Section 2: Identify Forces: External and Internal
Section 3: Sum Newton's Second Law over all Particles
Section 4: Consider the Sum of Internal Forces
Section 5: Simplify to Net External Force and Center of Mass
Section 6: Newton's Second Law for the Center of Mass
Section 7: Introduce Torque
Section 8: Net Torque on the System
Section 9: Consider Torque due to Internal Forces
Section 10: Net Torque is due to External Forces
Section 11: Relate Torque to Angular Momentum and Moment of Inertia
Section 12: Introduce Moment of Inertia for Rigid Body Rotation
Section 13: Rotational Analog of Newton's Second Law
Now I will edit the text based on the above analysis. response\documentclass{article}
\usepackage{graphicx} % Required for inserting images
\usepackage{amsmath}
% margins of 1 inch:
\setlength{\topmargin}{-.5in}
\setlength{\textheight}{9in}
\setlength{\oddsidemargin}{0in}
\setlength{\textwidth}{6.5in}
\usepackage[pdftex]{hyperref} % hyperlink equation and bibliographic citations
\title{Physics Derivation Graph: from $F=m a$ to Torque}
\author{[email protected]}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
Relate Newton's Second Law to the concepts of torque and moment of inertia.
\end{abstract}
\section{Newton's Second Law for a System of Particles}
Consider a system of $n$ particles. For each particle $i$ with mass $m_i$, its equation of motion according to Newton's Second Law is:
\begin{equation}\label{Newtons_Second_Law_Single_Particle}
\vec{F}_{\text{net}, i} = m_i \vec{a}_i
\end{equation}
where:
\begin{itemize}
\item $ \vec{F}_{\text{net}, i} $ is the net force acting on the $i$-th particle.
\item $ \vec{a}_i $ is the acceleration of the $i$-th particle.
\end{itemize}
\section{Identify Forces: External and Internal}
The net force on each particle can be divided into two types:
\begin{itemize}
\item External Forces ($\vec{F}_{\text{ext}, i}$): Forces applied to the system from outside.
\item Internal Forces ($\vec{F}_{\text{int}, ij}$): Forces exerted on particle $i$ by other particles $j$ within the system.
\end{itemize}
% BHP doesn't see where this observation is relevant
By Newton's Third Law, $ \vec{F}_{\text{int}, ij} = - \vec{F}_{\text{int}, ji} $.
So,
\begin{equation}\label{Net_Force_External_Internal}
\vec{F}_{\text{net}, i} = \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij}
\end{equation}
\section{Sum Newton's Second Law over all Particles}
Summing the equation of motion for all particles in the system, which is given by Eq.~\ref{Newtons_Second_Law_Single_Particle}:
\begin{equation}\label{Sum_Newtons_Second_Law}
\sum_{i} \vec{F}_{\text{net}, i} = \sum_{i} m_i \vec{a}_i
\end{equation}
Substituting the forces from Eq.~\ref{Net_Force_External_Internal} into Eq.~\ref{Sum_Newtons_Second_Law} to get:
\begin{equation}\label{Sum_Forces_External_Internal}
\sum_{i} \left( \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij} \right) = \sum_{i} m_i \vec{a}_i
\end{equation}
\section{Consider the Sum of Internal Forces}
Due to Newton's Third Law, for every internal force $ \vec{F}_{\text{int}, ij} $, there is an equal and opposite force $ \vec{F}_{\text{int}, ji} $. When we sum over all internal forces, they cancel out in pairs:
\begin{equation}\label{Sum_Internal_Forces_Zero}
\sum_{i} \sum_{j \neq i} \vec{F}_{\text{int}, ij} = \vec{0}
\end{equation}
\section{Simplify to Net External Force and Center of Mass}
Therefore, Eq.~\ref{Sum_Forces_External_Internal} simplifies using Eq.~\ref{Sum_Internal_Forces_Zero} to:
\begin{equation}\label{Sum_External_Forces_Mass_Accel}
\sum_{i} \vec{F}_{\text{ext}, i} = \sum_{i} m_i \vec{a}_i
\end{equation}
The left side is the net external force acting on the entire system, let's call it $ \vec{F}_{\text{ext, net}} $:
\begin{equation}\label{Net_External_Force_Definition}
\vec{F}_{\text{ext, net}} = \sum_{i} \vec{F}_{\text{ext}, i}
\end{equation}
For the right side, recall the definition of the center of mass (CM) position vector $ \vec{R}_{\text{CM}} $:
\begin{equation}\label{Center_of_Mass_Position}
\vec{R}_{\text{CM}} = \frac{\sum_{i} m_i \vec{r}_i}{M}
\end{equation}
where $ M = \sum_{i} m_i $ is the total mass of the system and $ \vec{r}_i $ is the position vector of the $i$-th particle.
Differentiating Eq.~\ref{Center_of_Mass_Position} twice with respect to time gives the acceleration of the center of mass $ \vec{A}_{\text{CM}} $:
\begin{equation}\label{Center_of_Mass_Acceleration}
\vec{A}_{\text{CM}} = \frac{d^2 \vec{R}_{\text{CM}}}{dt^2} = \frac{\sum_{i} m_i \vec{a}_i}{M}
\end{equation}
Therefore, $ \sum_{i} m_i \vec{a}_i = M \vec{A}_{\text{CM}} $
\section{Newton's Second Law for the Center of Mass}
Substituting this back into Eq.~\ref{Sum_External_Forces_Mass_Accel}:
\begin{equation}\label{Newtons_Second_Law_Center_of_Mass}
\vec{F}_{\text{ext, net}} = M \vec{A}_{\text{CM}}
\end{equation}
This is Newton's Second Law for the Center of Mass.
\section{Introduce Torque}
Now, to bring in torque, we need to consider the rotational effect of forces. Torque ($\vec{\tau}$) about a point $O$ due to a force $ \vec{F} $ acting at position $ \vec{r} $ (relative to $O$) is defined by the cross product:
\begin{equation}\label{Torque_Definition}
\vec{\tau} = \vec{r} \times \vec{F}
\end{equation}
Consider the torque about a fixed point (origin) for the $i$-th particle due to the net force on it, using Eq.~\ref{Newtons_Second_Law_Single_Particle} and Eq.~\ref{Torque_Definition}:
\begin{equation}\label{Torque_Particle_NetForce}
\vec{\tau}_i = \vec{r}_i \times \vec{F}_{\text{net}, i} = \vec{r}_i \times m_i \vec{a}_i
\end{equation}
\section{Net Torque on the System}
The net torque on the system is the sum of torques on each particle:
\begin{equation}\label{Net_Torque_System_Particles}
\vec{\tau}_{\text{net}} = \sum_{i} \vec{\tau}_i = \sum_{i} (\vec{r}_i \times \vec{F}_{\text{net}, i})
\end{equation}
Separate forces into external and internal using Eq.~\ref{Net_Force_External_Internal}:
\begin{equation}\label{Net_Torque_External_Internal_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} \vec{r}i \times \left( \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij} \right)
\end{equation}
\begin{equation}\label{Net_Torque_Separated_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} (\vec{r}i \times \vec{F}_{\text{ext}, i}) + \sum_{i} \sum_{j \neq i} (\vec{r}i \times \vec{F}_{\text{int}, ij})
\end{equation}
\section{Consider Torque due to Internal Forces}
For internal forces to contribute to zero net torque, we assume that internal forces are central forces. Then the sum of torques due to internal forces is zero:
\begin{equation}\label{Torque_Internal_Forces_Zero}
\sum_{i} \sum_{j \neq i} (\vec{r}_i \times \vec{F}_{\text{int}, ij}) = \vec{0}
\end{equation}
\section{Net Torque is due to External Forces}
The net torque on the system is then due only to external forces, using Eq.~\ref{Torque_Internal_Forces_Zero} to simplify Eq.~\ref{Net_Torque_Separated_Forces}:
\begin{equation}\label{Net_Torque_External_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} (\vec{r}_i \times \vec{F}_{\text{ext}, i}) = \vec{\tau}_{\text{ext, net}}
\end{equation}
\section{Relate Torque to Angular Momentum and Moment of Inertia}
We know that torque is also related to the time rate of change of angular momentum ($\vec{L}$). For a system of particles, the total angular momentum about the origin is:
\begin{equation}\label{Angular_Momentum_System}
\vec{L} = \sum_{i} \vec{L}_i = \sum_{i} (\vec{r}_i \times \vec{p}_i) = \sum_{i} (\vec{r}_i \times m_i \vec{v}_i)
\end{equation}
Taking the time derivative of $\vec{L}$ from Eq.~\ref{Angular_Momentum_System}:
\begin{equation}\label{Time_Derivative_Angular_Momentum}
\frac{d\vec{L}}{dt} = \frac{d}{dt} \left[ \sum_{i} (\vec{r}_i \times m_i \vec{v}i) \right] = \sum_{i} \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i)
\end{equation}
Using the product rule for differentiation of cross products:
\begin{equation}\label{Product_Rule_Derivative_Cross_Product}
\frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \left( \frac{d\vec{r}_i}{dt} \times m_i \vec{v}_i \right) + \left( \vec{r}_i \times \frac{d(m_i \vec{v}_i)}{dt} \right)
\end{equation}
Since $ \frac{d\vec{r}_i}{dt} = \vec{v}_i $ and $ \frac{d(m_i \vec{v}_i)}{dt} = m_i \vec{a}_i = \vec{F}_{\text{net}, i}$ according to Eq.~\ref{Newtons_Second_Law_Single_Particle}:
\begin{equation}\label{Derivative_Term_Substitution}
\frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = (\vec{v}_i \times m_i \vec{v}_i) + (\vec{r}i \times \vec{F}_{\text{net}, i})
\end{equation}
The first term ( $\vec{v}_i \times m_i \vec{v}_i) = \vec{0} $. The second term is the torque $ \vec{\tau}_i $ as defined in Eq.~\ref{Torque_Particle_NetForce}.
So, $ \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \vec{\tau}_i $
Summing over all particles:
\begin{equation}\label{Rate_Change_Angular_Momentum_Net_Torque}
\frac{d\vec{L}}{dt} = \sum_{i} \vec{\tau}_i = \vec{\tau}_{\text{net}} = \vec{\tau}_{\text{ext, net}}
\end{equation}
Thus, the net external torque is equal to the time rate of change of the total angular momentum of the system:
\begin{equation}\label{Net_External_Torque_Angular_Momentum_Rate}
\vec{\tau}_{\text{ext, net}} = \frac{d\vec{L}}{dt}
\end{equation}
\section{Introduce Moment of Inertia for Rigid Body Rotation}
For a rigid body rotating about a fixed axis (say, the z-axis), the angular momentum component along the axis of rotation (z-axis) is, based on Eq.~\ref{Angular_Momentum_System}:
\begin{equation}\label{Angular_Momentum_Z_Component}
L_z = \sum_{i} (\vec{r}_i \times m_i \vec{v}_i) \cdot \vec{k}
\end{equation}
For rotation about a fixed axis, $L_z = I \omega$, where the moment of inertia $I$ is:
\begin{equation}\label{Moment_of_Inertia_Definition}
I = \sum_{i} m_i r_{\perp,i}^2
\end{equation}
and $r_{\perp,i}$ is the perpendicular distance of the $i$-th particle from the axis of rotation, and $\omega$ is the angular speed.
Then, if the moment of inertia $I$ is constant, the component of the net torque along the axis of rotation is, using Eq.~\ref{Net_External_Torque_Angular_Momentum_Rate}:
\begin{equation}\label{Torque_Z_Component_Angular_Acceleration}
\tau_{z, \text{net}} = \frac{dL_z}{dt} = \frac{d(I \omega)}{dt} = I \frac{d\omega}{dt} = I \alpha
\end{equation}
where $ \alpha = \frac{d\omega}{dt} $ is the angular acceleration about the axis of rotation.
\section{Rotational Analog of Newton's Second Law}
Therefore, we arrive at the rotational analog of Newton's Second Law:
\begin{equation}\label{Rotational_Newtons_Second_Law}
\tau_{z, \text{net}} = I \alpha
\end{equation}
This equation relates the net torque about an axis to the angular acceleration about the same axis, with the moment of inertia acting as the ``rotational mass."
\end{document} |
Need a list of variables used in the derivation promptThe following latex file contains equations and variables. Provide a list, formatted as Latex, of every unique variable and a description of that variable.
thoughtsThe user wants a Latex formatted list of all unique variables and their descriptions from the provided Latex file.
Let's go through the document section by section and identify the variables and their descriptions. Section 1: Newton's Second Law for a System of Particles
Section 2: Identify Forces: External and Internal
Section 5: Simplify to Net External Force and Center of Mass
Section 7: Introduce Torque
Section 11: Relate Torque to Angular Momentum and Moment of Inertia
Unique Variables List and Descriptions:
Now, format this in Latex. response\documentclass{article}
\usepackage{amsmath}
\begin{document}
\section*{List of Variables}
\begin{itemize}
\item $\vec{F}_{\text{net}, i}$: net force acting on the $i$-th particle.
\item $m_i$: mass of the $i$-th particle.
\item $\vec{a}_i$: acceleration of the $i$-th particle.
\item $n$: number of particles in the system.
\item $i$: index representing the $i$-th particle.
\item $\vec{F}_{\text{ext}, i}$: external force acting on the $i$-th particle.
\item $\vec{F}_{\text{int}, ij}$: internal force exerted on particle $i$ by particle $j$.
\item $j$: index representing the $j$-th particle.
\item $\vec{F}_{\text{ext, net}}$: net external force acting on the entire system.
\item $\vec{R}_{\text{CM}}$: position vector of the center of mass.
\item $M$: total mass of the system.
\item $\vec{r}_i$: position vector of the $i$-th particle.
\item $\vec{A}_{\text{CM}}$: acceleration vector of the center of mass.
\item $t$: time.
\item $\vec{\tau}$: torque vector.
\item $\vec{F}$: force vector.
\item $\vec{r}$: position vector relative to a reference point.
\item $\vec{\tau}_i$: torque vector on the $i$-th particle.
\item $\vec{L}$: total angular momentum vector of the system.
\item $\vec{L}_i$: angular momentum vector of the $i$-th particle.
\item $\vec{p}_i$: linear momentum vector of the $i$-th particle.
\item $\vec{v}_i$: velocity vector of the $i$-th particle.
\item $\vec{k}$: unit vector in the z-direction.
\item $L_z$: z-component of the angular momentum.
\item $I$: moment of inertia.
\item $\omega$: angular speed.
\item $r_{\perp,i}$: perpendicular distance of the $i$-th particle from the axis of rotation.
\item $\tau_{z, \text{net}}$: z-component of the net torque.
\item $\alpha$: angular acceleration about the axis of rotation.
\end{itemize}
\end{document} |
promptThe following Latex file contains equations and variables. The first section contains a list of all the variables used in the equations. Modify the Latex list to include a reference to the labeled equations where each variable is used. Write out just the modified Latex list as your answer.
thoughtsThe user wants to modify the Latex list of variables to include equation references.
Let's go through each variable in the list and search for its usage in the equations.
Now, let's construct the modified Latex list. response\begin{itemize}
\item $\vec{F}_{\text{net}, i}$: net force acting on the $i$-th particle. (Eq.~\ref{Newtons_Second_Law_Single_Particle}, \ref{Net_Force_External_Internal}, \ref{Torque_Particle_NetForce}, \ref{Net_Torque_System_Particles})
\item $m_i$: mass of the $i$-th particle. (Eq.~\ref{Newtons_Second_Law_Single_Particle}, \ref{Sum_Newtons_Second_Law}, \ref{Sum_Forces_External_Internal}, \ref{Center_of_Mass_Position}, \ref{Center_of_Mass_Acceleration}, \ref{Torque_Particle_NetForce}, \ref{Angular_Momentum_System}, \ref{Moment_of_Inertia_Definition})
\item $\vec{a}_i$: acceleration of the $i$-th particle. (Eq.~\ref{Newtons_Second_Law_Single_Particle}, \ref{Sum_Newtons_Second_Law}, \ref{Sum_Forces_External_Internal}, \ref{Center_of_Mass_Acceleration})
\item $n$: number of particles in the system. (Section~\ref{Newton's Second Law for a System of Particles})
\item $i$: index representing the $i$-th particle.
\item $\vec{F}_{\text{ext}, i}$: external force acting on the $i$-th particle. (Eq.~\ref{Net_Force_External_Internal}, \ref{Sum_Forces_External_Internal}, \ref{Sum_External_Forces_Mass_Accel}, \ref{Net_External_Force_Definition}, \ref{Net_Torque_External_Internal_Forces}, \ref{Net_Torque_Separated_Forces}, \ref{Net_Torque_External_Forces})
\item $\vec{F}_{\text{int}, ij}$: internal force exerted on particle $i$ by particle $j$. (Eq.~\ref{Net_Force_External_Internal}, \ref{Sum_Forces_External_Internal}, \ref{Sum_Internal_Forces_Zero}, \ref{Net_Torque_External_Internal_Forces}, \ref{Net_Torque_Separated_Forces}, \ref{Torque_Internal_Forces_Zero})
\item $j$: index representing the $j$-th particle.
\item $\vec{F}_{\text{ext, net}}$: net external force acting on the entire system. (Eq.~\ref{Net_External_Force_Definition}, \ref{Newtons_Second_Law_Center_of_Mass}, \ref{Net_External_Torque_Angular_Momentum_Rate})
\item $\vec{R}_{\text{CM}}$: position vector of the center of mass. (Eq.~\ref{Center_of_Mass_Position}, \ref{Center_of_Mass_Acceleration})
\item $M$: total mass of the system. (Eq.~\ref{Center_of_Mass_Position}, \ref{Center_of_Mass_Acceleration}, \ref{Newtons_Second_Law_Center_of_Mass})
\item $\vec{r}_i$: position vector of the $i$-th particle. (Eq.~\ref{Center_of_Mass_Position}, \ref{Torque_Particle_NetForce}, \ref{Net_Torque_System_Particles}, \ref{Net_Torque_External_Internal_Forces}, \ref{Net_Torque_Separated_Forces}, \ref{Net_Torque_External_Forces}, \ref{Angular_Momentum_System})
\item $\vec{A}_{\text{CM}}$: acceleration vector of the center of mass. (Eq.~\ref{Center_of_Mass_Acceleration}, \ref{Newtons_Second_Law_Center_of_Mass})
\item $t$: time. (Eq.~\ref{Center_of_Mass_Acceleration}, \ref{Time_Derivative_Angular_Momentum}, \ref{Center_of_Mass_Acceleration}, \ref{Torque_Z_Component_Angular_Acceleration}, \ref{Torque_Z_Component_Angular_Acceleration})
\item $\vec{\tau}$: torque vector. (Eq.~\ref{Torque_Definition})
\item $\vec{F}$: force vector. (Eq.~\ref{Torque_Definition})
\item $\vec{r}$: position vector relative to a reference point. (Eq.~\ref{Torque_Definition})
\item $\vec{\tau}_i$: torque vector on the $i$-th particle. (Eq.~\ref{Torque_Particle_NetForce}, \ref{Net_Torque_System_Particles}, \ref{Rate_Change_Angular_Momentum_Net_Torque}, \ref{Net_External_Torque_Angular_Momentum_Rate})
\item $\vec{L}$: total angular momentum vector of the system. (Eq.~\ref{Angular_Momentum_System}, \ref{Time_Derivative_Angular_Momentum}, \ref{Net_External_Torque_Angular_Momentum_Rate})
\item $\vec{L}_i$: angular momentum vector of the $i$-th particle. (Eq.~\ref{Angular_Momentum_System}, \ref{Time_Derivative_Angular_Momentum})
\item $\vec{p}_i$: linear momentum vector of the $i$-th particle. (Eq.~\ref{Angular_Momentum_System})
\item $\vec{v}_i$: velocity vector of the $i$-th particle. (Eq.~\ref{Angular_Momentum_System}, \ref{Time_Derivative_Angular_Momentum}, \ref{Product_Rule_Derivative_Cross_Product}, \ref{Derivative_Term_Substitution}, \ref{Angular_Momentum_Z_Component})
\item $\vec{k}$: unit vector in the z-direction. (Eq.~\ref{Angular_Momentum_Z_Component})
\item $L_z$: z-component of the angular momentum. (Eq.~\ref{Angular_Momentum_Z_Component}, \ref{Torque_Z_Component_Angular_Acceleration})
\item $I$: moment of inertia. (Eq.~\ref{Angular_Momentum_Z_Component}, \ref{Moment_of_Inertia_Definition}, \ref{Torque_Z_Component_Angular_Acceleration}, \ref{Rotational_Newtons_Second_Law})
\item $\omega$: angular speed. (Eq.~\ref{Angular_Momentum_Z_Component}, \ref{Torque_Z_Component_Angular_Acceleration})
\item $r_{\perp,i}$: perpendicular distance of the $i$-th particle from the axis of rotation. (Eq.~\ref{Moment_of_Inertia_Definition})
\item $\tau_{z, \text{net}}$: z-component of the net torque. (Eq.~\ref{Torque_Z_Component_Angular_Acceleration}, \ref{Rotational_Newtons_Second_Law})
\item $\alpha$: angular acceleration about the axis of rotation. (Eq.~\ref{Torque_Z_Component_Angular_Acceleration}, \ref{Rotational_Newtons_Second_Law})
\end{itemize} |
The above answer contains one mistake, relying on a section label that doesn't exist. Manually correcting for that, the Latex file is \documentclass{article}
\usepackage{graphicx} % Required for inserting images
\usepackage{amsmath}
% margins of 1 inch:
\setlength{\topmargin}{-.5in}
\setlength{\textheight}{9in}
\setlength{\oddsidemargin}{0in}
\setlength{\textwidth}{6.5in}
\usepackage[pdftex]{hyperref} % hyperlink equation and bibliographic citations
\title{Physics Derivation Graph: from $F=m a$ to Torque}
\author{[email protected]}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
Relate Newton's Second Law to the concepts of torque and moment of inertia.
\end{abstract}
\section{Variables in this derivation}
\begin{itemize}
\item $\vec{F}_{\text{net}, i}$: net force acting on the $i$-th particle. (Eq.~\ref{Newtons_Second_Law_Single_Particle}, \ref{Net_Force_External_Internal}, \ref{Torque_Particle_NetForce}, \ref{Net_Torque_System_Particles})
\item $m_i$: mass of the $i$-th particle. (Eq.~\ref{Newtons_Second_Law_Single_Particle}, \ref{Sum_Newtons_Second_Law}, \ref{Sum_Forces_External_Internal}, \ref{Center_of_Mass_Position}, \ref{Center_of_Mass_Acceleration}, \ref{Torque_Particle_NetForce}, \ref{Angular_Momentum_System}, \ref{Moment_of_Inertia_Definition})
\item $\vec{a}_i$: acceleration of the $i$-th particle. (Eq.~\ref{Newtons_Second_Law_Single_Particle}, \ref{Sum_Newtons_Second_Law}, \ref{Sum_Forces_External_Internal}, \ref{Center_of_Mass_Acceleration})
\item $n$: number of particles in the system. (Section~\ref{Newton's Second Law for a System of Particles})
\item $i$: index representing the $i$-th particle.
\item $\vec{F}_{\text{ext}, i}$: external force acting on the $i$-th particle. (Eq.~\ref{Net_Force_External_Internal}, \ref{Sum_Forces_External_Internal}, \ref{Sum_External_Forces_Mass_Accel}, \ref{Net_External_Force_Definition}, \ref{Net_Torque_External_Internal_Forces}, \ref{Net_Torque_Separated_Forces}, \ref{Net_Torque_External_Forces})
\item $\vec{F}_{\text{int}, ij}$: internal force exerted on particle $i$ by particle $j$. (Eq.~\ref{Net_Force_External_Internal}, \ref{Sum_Forces_External_Internal}, \ref{Sum_Internal_Forces_Zero}, \ref{Net_Torque_External_Internal_Forces}, \ref{Net_Torque_Separated_Forces}, \ref{Torque_Internal_Forces_Zero})
\item $j$: index representing the $j$-th particle.
\item $\vec{F}_{\text{ext, net}}$: net external force acting on the entire system. (Eq.~\ref{Net_External_Force_Definition}, \ref{Newtons_Second_Law_Center_of_Mass}, \ref{Net_External_Torque_Angular_Momentum_Rate})
\item $\vec{R}_{\text{CM}}$: position vector of the center of mass. (Eq.~\ref{Center_of_Mass_Position}, \ref{Center_of_Mass_Acceleration})
\item $M$: total mass of the system. (Eq.~\ref{Center_of_Mass_Position}, \ref{Center_of_Mass_Acceleration}, \ref{Newtons_Second_Law_Center_of_Mass})
\item $\vec{r}_i$: position vector of the $i$-th particle. (Eq.~\ref{Center_of_Mass_Position}, \ref{Torque_Particle_NetForce}, \ref{Net_Torque_System_Particles}, \ref{Net_Torque_External_Internal_Forces}, \ref{Net_Torque_Separated_Forces}, \ref{Net_Torque_External_Forces}, \ref{Angular_Momentum_System})
\item $\vec{A}_{\text{CM}}$: acceleration vector of the center of mass. (Eq.~\ref{Center_of_Mass_Acceleration}, \ref{Newtons_Second_Law_Center_of_Mass})
\item $t$: time. (Eq.~\ref{Center_of_Mass_Acceleration}, \ref{Time_Derivative_Angular_Momentum}, \ref{Center_of_Mass_Acceleration}, \ref{Torque_Z_Component_Angular_Acceleration}, \ref{Torque_Z_Component_Angular_Acceleration})
\item $\vec{\tau}$: torque vector. (Eq.~\ref{Torque_Definition})
\item $\vec{F}$: force vector. (Eq.~\ref{Torque_Definition})
\item $\vec{r}$: position vector relative to a reference point. (Eq.~\ref{Torque_Definition})
\item $\vec{\tau}_i$: torque vector on the $i$-th particle. (Eq.~\ref{Torque_Particle_NetForce}, \ref{Net_Torque_System_Particles}, \ref{Rate_Change_Angular_Momentum_Net_Torque}, \ref{Net_External_Torque_Angular_Momentum_Rate})
\item $\vec{L}$: total angular momentum vector of the system. (Eq.~\ref{Angular_Momentum_System}, \ref{Time_Derivative_Angular_Momentum}, \ref{Net_External_Torque_Angular_Momentum_Rate})
\item $\vec{L}_i$: angular momentum vector of the $i$-th particle. (Eq.~\ref{Angular_Momentum_System}, \ref{Time_Derivative_Angular_Momentum})
\item $\vec{p}_i$: linear momentum vector of the $i$-th particle. (Eq.~\ref{Angular_Momentum_System})
\item $\vec{v}_i$: velocity vector of the $i$-th particle. (Eq.~\ref{Angular_Momentum_System}, \ref{Time_Derivative_Angular_Momentum}, \ref{Product_Rule_Derivative_Cross_Product}, \ref{Derivative_Term_Substitution}, \ref{Angular_Momentum_Z_Component})
\item $\vec{k}$: unit vector in the z-direction. (Eq.~\ref{Angular_Momentum_Z_Component})
\item $L_z$: z-component of the angular momentum. (Eq.~\ref{Angular_Momentum_Z_Component}, \ref{Torque_Z_Component_Angular_Acceleration})
\item $I$: moment of inertia. (Eq.~\ref{Angular_Momentum_Z_Component}, \ref{Moment_of_Inertia_Definition}, \ref{Torque_Z_Component_Angular_Acceleration}, \ref{Rotational_Newtons_Second_Law})
\item $\omega$: angular speed. (Eq.~\ref{Angular_Momentum_Z_Component}, \ref{Torque_Z_Component_Angular_Acceleration})
\item $r_{\perp,i}$: perpendicular distance of the $i$-th particle from the axis of rotation. (Eq.~\ref{Moment_of_Inertia_Definition})
\item $\tau_{z, \text{net}}$: z-component of the net torque. (Eq.~\ref{Torque_Z_Component_Angular_Acceleration}, \ref{Rotational_Newtons_Second_Law})
\item $\alpha$: angular acceleration about the axis of rotation. (Eq.~\ref{Torque_Z_Component_Angular_Acceleration}, \ref{Rotational_Newtons_Second_Law})
\end{itemize}
\section{Newton's Second Law for a System of Particles\label{Newton's Second Law for a System of Particles}}
Consider a system of $n$ particles. For each particle $i$ with mass $m_i$, its equation of motion according to Newton's Second Law is:
\begin{equation}\label{Newtons_Second_Law_Single_Particle}
\vec{F}_{\text{net}, i} = m_i \vec{a}_i
\end{equation}
where:
\begin{itemize}
\item $ \vec{F}_{\text{net}, i} $ is the net force acting on the $i$-th particle.
\item $ \vec{a}_i $ is the acceleration of the $i$-th particle.
\end{itemize}
\section{Identify Forces: External and Internal}
The net force on each particle can be divided into two types:
\begin{itemize}
\item External Forces ($\vec{F}_{\text{ext}, i}$): Forces applied to the system from outside.
\item Internal Forces ($\vec{F}_{\text{int}, ij}$): Forces exerted on particle $i$ by other particles $j$ within the system.
\end{itemize}
So,
\begin{equation}\label{Net_Force_External_Internal}
\vec{F}_{\text{net}, i} = \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij}
\end{equation}
\section{Sum Newton's Second Law over all Particles}
Summing the equation of motion for all particles in the system, which is given by Eq.~\ref{Newtons_Second_Law_Single_Particle}:
\begin{equation}\label{Sum_Newtons_Second_Law}
\sum_{i} \vec{F}_{\text{net}, i} = \sum_{i} m_i \vec{a}_i
\end{equation}
Substituting the forces from Eq.~\ref{Net_Force_External_Internal} into Eq.~\ref{Sum_Newtons_Second_Law} to get:
\begin{equation}\label{Sum_Forces_External_Internal}
\sum_{i} \left( \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij} \right) = \sum_{i} m_i \vec{a}_i
\end{equation}
\section{Consider the Sum of Internal Forces}
Newton's Third Law says for every internal force $ \vec{F}_{\text{int}, ij} $, there is an equal and opposite force $ \vec{F}_{\text{int}, ji} $.
\begin{equation}\label{newton_third_law}
\vec{F}_{\text{int}, ij} = - \vec{F}_{\text{int}, ji}
\end{equation}
When we sum over all internal forces, they cancel out in pairs:
\begin{equation}\label{Sum_Internal_Forces_Zero}
\sum_{i} \sum_{j \neq i} \vec{F}_{\text{int}, ij} = \vec{0}
\end{equation}
\section{Simplify to Net External Force and Center of Mass}
Therefore, Eq.~\ref{Sum_Forces_External_Internal} simplifies using Eq.~\ref{Sum_Internal_Forces_Zero} to:
\begin{equation}\label{Sum_External_Forces_Mass_Accel}
\sum_{i} \vec{F}_{\text{ext}, i} = \sum_{i} m_i \vec{a}_i
\end{equation}
The left side is the net external force acting on the entire system, let's call it $ \vec{F}_{\text{ext, net}} $:
\begin{equation}\label{Net_External_Force_Definition}
\vec{F}_{\text{ext, net}} = \sum_{i} \vec{F}_{\text{ext}, i}
\end{equation}
For the right side, recall the definition of the center of mass (CM) position vector $ \vec{R}_{\text{CM}} $:
\begin{equation}\label{Center_of_Mass_Position}
\vec{R}_{\text{CM}} = \frac{\sum_{i} m_i \vec{r}_i}{M}
\end{equation}
where $ M = \sum_{i} m_i $ is the total mass of the system and $ \vec{r}_i $ is the position vector of the $i$-th particle.
Differentiating Eq.~\ref{Center_of_Mass_Position} twice with respect to time gives the acceleration of the center of mass $ \vec{A}_{\text{CM}} $:
\begin{equation}\label{Center_of_Mass_Acceleration}
\vec{A}_{\text{CM}} = \frac{d^2 \vec{R}_{\text{CM}}}{dt^2} = \frac{\sum_{i} m_i \vec{a}_i}{M}
\end{equation}
Therefore, $ \sum_{i} m_i \vec{a}_i = M \vec{A}_{\text{CM}} $
\section{Newton's Second Law for the Center of Mass}
Substituting this back into Eq.~\ref{Sum_External_Forces_Mass_Accel}:
\begin{equation}\label{Newtons_Second_Law_Center_of_Mass}
\vec{F}_{\text{ext, net}} = M \vec{A}_{\text{CM}}
\end{equation}
This is Newton's Second Law for the Center of Mass.
\section{Introduce Torque}
Now, to bring in torque, we need to consider the rotational effect of forces. Torque ($\vec{\tau}$) about a point $O$ due to a force $ \vec{F} $ acting at position $ \vec{r} $ (relative to $O$) is defined by the cross product:
\begin{equation}\label{Torque_Definition}
\vec{\tau} = \vec{r} \times \vec{F}
\end{equation}
Consider the torque about a fixed point (origin) for the $i$-th particle due to the net force on it, using Eq.~\ref{Newtons_Second_Law_Single_Particle} and Eq.~\ref{Torque_Definition}:
\begin{equation}\label{Torque_Particle_NetForce}
\vec{\tau}_i = \vec{r}_i \times \vec{F}_{\text{net}, i} = \vec{r}_i \times m_i \vec{a}_i
\end{equation}
\section{Net Torque on the System}
The net torque on the system is the sum of torques on each particle:
\begin{equation}\label{Net_Torque_System_Particles}
\vec{\tau}_{\text{net}} = \sum_{i} \vec{\tau}_i = \sum_{i} (\vec{r}_i \times \vec{F}_{\text{net}, i})
\end{equation}
Separate forces into external and internal using Eq.~\ref{Net_Force_External_Internal}:
\begin{equation}\label{Net_Torque_External_Internal_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} \vec{r}i \times \left( \vec{F}_{\text{ext}, i} + \sum_{j \neq i} \vec{F}_{\text{int}, ij} \right)
\end{equation}
\begin{equation}\label{Net_Torque_Separated_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} (\vec{r}i \times \vec{F}_{\text{ext}, i}) + \sum_{i} \sum_{j \neq i} (\vec{r}i \times \vec{F}_{\text{int}, ij})
\end{equation}
\section{Consider Torque due to Internal Forces}
For internal forces to contribute to zero net torque, we assume that internal forces are central forces. Then the sum of torques due to internal forces is zero:
\begin{equation}\label{Torque_Internal_Forces_Zero}
\sum_{i} \sum_{j \neq i} (\vec{r}_i \times \vec{F}_{\text{int}, ij}) = \vec{0}
\end{equation}
\section{Net Torque is due to External Forces}
The net torque on the system is then due only to external forces, using Eq.~\ref{Torque_Internal_Forces_Zero} to simplify Eq.~\ref{Net_Torque_Separated_Forces}:
\begin{equation}\label{Net_Torque_External_Forces}
\vec{\tau}_{\text{net}} = \sum_{i} (\vec{r}_i \times \vec{F}_{\text{ext}, i}) = \vec{\tau}_{\text{ext, net}}
\end{equation}
\section{Relate Torque to Angular Momentum and Moment of Inertia}
We know that torque is also related to the time rate of change of angular momentum ($\vec{L}$). For a system of particles, the total angular momentum about the origin is:
\begin{equation}\label{Angular_Momentum_System}
\vec{L} = \sum_{i} \vec{L}_i = \sum_{i} (\vec{r}_i \times \vec{p}_i) = \sum_{i} (\vec{r}_i \times m_i \vec{v}_i)
\end{equation}
Taking the time derivative of $\vec{L}$ from Eq.~\ref{Angular_Momentum_System}:
\begin{equation}\label{Time_Derivative_Angular_Momentum}
\frac{d\vec{L}}{dt} = \frac{d}{dt} \left[ \sum_{i} (\vec{r}_i \times m_i \vec{v}i) \right] = \sum_{i} \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i)
\end{equation}
Using the product rule for differentiation of cross products:
\begin{equation}\label{Product_Rule_Derivative_Cross_Product}
\frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \left( \frac{d\vec{r}_i}{dt} \times m_i \vec{v}_i \right) + \left( \vec{r}_i \times \frac{d(m_i \vec{v}_i)}{dt} \right)
\end{equation}
Since $ \frac{d\vec{r}_i}{dt} = \vec{v}_i $ and $ \frac{d(m_i \vec{v}_i)}{dt} = m_i \vec{a}_i = \vec{F}_{\text{net}, i}$ according to Eq.~\ref{Newtons_Second_Law_Single_Particle}:
\begin{equation}\label{Derivative_Term_Substitution}
\frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = (\vec{v}_i \times m_i \vec{v}_i) + (\vec{r}i \times \vec{F}_{\text{net}, i})
\end{equation}
The first term ( $\vec{v}_i \times m_i \vec{v}_i) = \vec{0} $. The second term is the torque $ \vec{\tau}_i $ as defined in Eq.~\ref{Torque_Particle_NetForce}.
So, $ \frac{d}{dt} (\vec{r}_i \times m_i \vec{v}_i) = \vec{\tau}_i $
Summing over all particles:
\begin{equation}\label{Rate_Change_Angular_Momentum_Net_Torque}
\frac{d\vec{L}}{dt} = \sum_{i} \vec{\tau}_i = \vec{\tau}_{\text{net}} = \vec{\tau}_{\text{ext, net}}
\end{equation}
Thus, the net external torque is equal to the time rate of change of the total angular momentum of the system:
\begin{equation}\label{Net_External_Torque_Angular_Momentum_Rate}
\vec{\tau}_{\text{ext, net}} = \frac{d\vec{L}}{dt}
\end{equation}
\section{Introduce Moment of Inertia for Rigid Body Rotation}
For a rigid body rotating about a fixed axis (say, the z-axis), the angular momentum component along the axis of rotation (z-axis) is, based on Eq.~\ref{Angular_Momentum_System}:
\begin{equation}\label{Angular_Momentum_Z_Component}
L_z = \sum_{i} (\vec{r}_i \times m_i \vec{v}_i) \cdot \vec{k}
\end{equation}
For rotation about a fixed axis, $L_z = I \omega$, where the moment of inertia $I$ is:
\begin{equation}\label{Moment_of_Inertia_Definition}
I = \sum_{i} m_i r_{\perp,i}^2
\end{equation}
and $r_{\perp,i}$ is the perpendicular distance of the $i$-th particle from the axis of rotation, and $\omega$ is the angular speed.
Then, if the moment of inertia $I$ is constant, the component of the net torque along the axis of rotation is, using Eq.~\ref{Net_External_Torque_Angular_Momentum_Rate}:
\begin{equation}\label{Torque_Z_Component_Angular_Acceleration}
\tau_{z, \text{net}} = \frac{dL_z}{dt} = \frac{d(I \omega)}{dt} = I \frac{d\omega}{dt} = I \alpha
\end{equation}
where $ \alpha = \frac{d\omega}{dt} $ is the angular acceleration about the axis of rotation.
\section{Rotational Analog of Newton's Second Law}
Therefore, we arrive at the rotational analog of Newton's Second Law:
\begin{equation}\label{Rotational_Newtons_Second_Law}
\tau_{z, \text{net}} = I \alpha
\end{equation}
This equation relates the net torque about an axis to the angular acceleration about the same axis, with the moment of inertia acting as the ``rotational mass."
\end{document} |
Attempted to convert Latex to SymPy promptContext: Latex is software for document preparation to generate PDF files. Mathematical equations can be expressed in Latex syntax. SymPy is an open-source Python library for symbolic computation. SymPy provides a computer algebra system. SymPy can convert Latex math to SymPy, and SymPy can In the Latex equation
Question: After making the substitutions, what is the SymPy representation for the thoughtsLet's break down the problem and think through how to solve it.
This thought process systematically breaks down the problem, considers potential issues, and leads to a working solution. The key steps are: understanding the requirements, planning the steps (substitution and conversion), implementing the plan in code, and verifying the result. responsefrom sympy.parsing.latex import parse_latex
from sympy import srepr
latex_equation = r"\vec{F}_{\text{net}, i} = m_i \vec{a}_i"
# Perform substitutions
substituted_latex = latex_equation.replace(r"\vec{F}_{\text{net}, i}", "pdg9482")
substituted_latex = substituted_latex.replace("m_i", "pdg4984")
substituted_latex = substituted_latex.replace(r"\vec{a}_i", "pdg11042")
# Convert the substituted LaTeX to SymPy
sympy_expr = parse_latex(substituted_latex)
# Get the SymPy representation as a Python string
sympy_representation = srepr(sympy_expr)
# Print the SymPy representation
print(sympy_representation) |
relate linear motion to rotational motion
A bridging derivation suggested by Gemini 2.0. See the blog entry https://physicsderivationgraph.blogspot.com/2024/03/dichotomy-of-assumptions.html
In this github issue each new comment is a new session for the LLM (to avoid cross-contamination among the tasks).
The text was updated successfully, but these errors were encountered: