-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
144 lines (121 loc) · 5.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
from dataset import FacadesDataset
import sys
from utils import save_checkpoint, load_checkpoint
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
import config
from tqdm import tqdm
from torchvision.utils import save_image
from discriminator_model import Discriminator
from generator_model import Generator
def train_fn(disc_H, disc_Z, gen_Z, gen_H, loader, opt_disc, opt_gen, l1, mse, d_scaler, g_scaler):
loop = tqdm(loader, leave=True)
for idx, (zebra, horse) in enumerate(loop):
zebra = zebra.to(config.DEVICE)
horse = horse.to(config.DEVICE)
# Train Discriminator H and Z
with torch.cuda.amp.autocast():
fake_horse = gen_H(zebra)
D_H_real = disc_H(horse)
D_H_fake = disc_H(fake_horse.detach())
D_H_real_loss = mse(D_H_real, torch.ones_like(D_H_real))
D_H_fake_loss = mse(D_H_fake, torch.zeros_like(D_H_fake))
D_H_loss = D_H_real_loss + D_H_fake_loss
fake_zebra = gen_Z(horse)
D_Z_real = disc_Z(zebra)
D_Z_fake = disc_Z(fake_zebra.detach())
D_Z_real_loss = mse(D_Z_real, torch.ones_like(D_Z_real))
D_Z_fake_loss = mse(D_Z_fake, torch.zeros_like(D_Z_fake))
D_Z_loss = D_Z_real_loss + D_Z_fake_loss
# put it togethor
D_loss = (D_H_loss + D_Z_loss) / 2
opt_disc.zero_grad()
d_scaler.scale(D_loss).backward()
d_scaler.step(opt_disc)
d_scaler.update()
# Train Generators H and Z
with torch.cuda.amp.autocast():
# adversarial loss for both generators
D_H_fake = disc_H(fake_horse)
D_Z_fake = disc_Z(fake_zebra)
loss_G_H = mse(D_H_fake, torch.ones_like(D_H_fake))
loss_G_Z = mse(D_Z_fake, torch.ones_like(D_Z_fake))
# cycle loss
cycle_zebra = gen_Z(fake_horse)
cycle_horse = gen_H(fake_zebra)
cycle_zebra_loss = l1(zebra, cycle_zebra)
cycle_horse_loss = l1(horse, cycle_horse)
# identity loss
identity_zebra = gen_Z(zebra)
identity_horse = gen_H(horse)
identity_zebra_loss = l1(zebra, identity_zebra)
identuty_horse_loss = l1(horse, identity_horse)
# add all togethor
G_loss = (
loss_G_Z
+ loss_G_H
+ cycle_zebra_loss * config.LAMBDA_CYCLE
+ cycle_horse_loss * config.LAMBDA_CYCLE
+ identuty_horse_loss * config.LAMBDA_IDENTITY
+ identity_zebra_loss * config.LAMBDA_IDENTITY
)
opt_gen.zero_grad()
g_scaler.scale(G_loss).backward()
g_scaler.step(opt_gen)
g_scaler.update()
if idx % 200 == 0:
save_image(fake_horse*0.5+0.5, f"saved_images/horse_{idx}.png")
save_image(fake_zebra*0.5+0.5, f"saved_images/zebra_{idx}.png")
def main():
disc_H = Discriminator(in_channels=3).to(config.DEVICE) # 对马的图像进行分辨
disc_Z = Discriminator(in_channels=3).to(config.DEVICE) # 对斑马的图像进行分辨
gen_Z = Generator(img_channels=3, num_residuals=9).to(config.DEVICE) # 产生假马
gen_H = Generator(img_channels=3, num_residuals=9).to(config.DEVICE) # 产生假斑马
opt_disc = optim.Adam(
list(disc_H.parameters()) + list(disc_Z.parameters()),
lr=config.LESRNING_RATE,
betas=(0.5, 0.999),
)
opt_gen = optim.Adam(
list(gen_Z.parameters()) + list(gen_H.parameters()),
lr=config.LESRNING_RATE,
betas=(0.5, 0.999),
)
L1 = nn.L1Loss()
mse = nn.MSELoss()
if config.LOAD_MODEL:
load_checkpoint(
config.CHECKPOINT_CRITIC_H, gen_H, opt_gen, config.LEARNING_RATE,
)
load_checkpoint(
config.CHECKPOINT_CRITIC_Z, gen_Z, opt_gen, config.LEARNING_RATE,
)
load_checkpoint(
config.CHECKPOINT_CRITIC_H, disc_H, opt_disc, config.LEARNING_RATE,
)
load_checkpoint(
config.CHECKPOINT_CRITIC_Z, disc_Z, opt_disc, config.LEARNING_RATE,
)
dataset = FacadesDataset(
root_horse=config.TRAIN_DIR + "/trainA", root_zebra=config.TRAIN_DIR + "/trainB", transform=config.transforms
)
loader = DataLoader(
dataset,
batch_size=config.BATCH_SIZE,
shuffle=True,
num_workers=config.NUM_WORKERS,
pin_memory=True
)
g_scaler = torch.cuda.amp.GradScaler()
d_scaler = torch.cuda.amp.GradScaler()
for epoch in range(config.NUM_EPOCHS):
train_fn(disc_H, disc_Z, gen_Z, gen_H, loader, opt_disc, opt_gen, L1, mse, d_scaler, g_scaler)
if config.SAVE_MODEL:
save_checkpoint(gen_H, opt_gen, filename=config.CHECKPOINT_GEN_H)
save_checkpoint(gen_Z, opt_gen, filename=config.CHECKPOINT_GEN_Z)
save_checkpoint(disc_H, opt_disc, filename=config.CHECKPOINT_CRITIC_H)
save_checkpoint(disc_Z, opt_disc, filename=config.CHECKPOINT_CRITIC_Z)
if __name__ == "__main__":
main()