-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppgn_opt.py
362 lines (285 loc) · 10.4 KB
/
ppgn_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
import PPGN.models
import torch
import torch.nn.functional as F
from PPGN.models.base_model import BaseModel
import torch
import torch.nn as nn
import PPGN.layers.layers as layers
import PPGN.layers.modules as modules
import wandb
import os.path as osp
import torch
# from torch_geometric.loader import DataLoader
import torch.optim as optim
import torch.nn.functional as F
# from gnn import GNN
from torch import Tensor
from tqdm import tqdm
import argparse
import time
import numpy as np
# import geotorch
import geoopt
import scipy.io
### importing OGB
# from ogb.graphproppred import PygGraphPropPredDataset, Evaluator
from torch_geometric.utils import to_networkx, to_dense_adj
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from torch_geometric.datasets import Planetoid
from ogb.nodeproppred import Evaluator
import torch_geometric
import torch_geometric.nn as geom_nn
import torch_geometric.data as geom_data
from torch_geometric.loader import DataLoader
import torch
import argparse
from timeit import default_timer as timer
import torch
import torch.nn.functional as F
import torch.nn as nn
from numba import jit
from typing import Any, Optional
from torch_geometric.data import Data
import networkx as nx
def get_orthonormal_eigvec(eigval, eigvec):
#We transform our eigenvectors into an orthonormalbasis (next 4 cells) such that it is in the Stiefel manifold
eps = 2.220446049250313e-6
i = 0
k= 0
liste = []
for j in range(eigval.size):
if not liste:
liste.append(i)
elif round(eigval[j-1],4)==round(eigval[j],4):
#liste.append(i)
k = k+1
else:
i = i+1
k =k+1
liste.append(k)
liste.append(eigvec.shape[1])
ll = []
siz = 0
for i in range(1,len(liste)):
#print(i, liste[i-1], liste[i], eigvec[:,liste[i-1]: liste[i]].shape)
siz = siz + eigvec[:,liste[i-1]: liste[i]].shape[1]
ll.append(eigvec[:,liste[i-1]: liste[i]])
lll = []
for i in ll:
if np.linalg.norm(np.matmul(np.transpose(i), i)) > eps:
lll.append(scipy.linalg.orth(i))
else: lll.append(i)
hi = lll[0]
for i in range(0,len(lll)-1):
hi = np.concatenate((hi, lll[i+1]), axis=1)
return hi
def my_loss(F, XX, pp):
"""
X: (N x N)-tensor with adjacency matrix
F: (N x F)-tensor with eigenvectors
"""
#mat = F.squeeze()
#matt = torch.diagonal(mat, dim1=-2, dim2=-1)
#mattt = matt.transpose(-1,-2)
#mattt,_ = torch.qr(mattt)
#f = mattt
f = F
n = f.shape[0]
FF = f.repeat(1,n)
FF = FF.reshape(n,n,f.shape[1])
FFF = torch.norm(f, pp,dim=0)
FFF = torch.pow(FFF,pp)
FF = FF.transpose(2,0)
GG = FF.transpose(1,2)
A = XX.unsqueeze(dim=1)
KK = FF - GG
KKK = KK.unsqueeze(dim=-1)
KKK = torch.pow(torch.abs(KKK),pp)
KKK = KKK.type(torch.float64)
A = A.type(torch.float64)
LL = torch.matmul(A, KKK)
FFF = torch.pow(FFF,-1)
FFF.unsqueeze_(-1)
FFF.unsqueeze_(-1)
FFF.unsqueeze_(-1)
FFF = FFF.repeat(1,n,1,1)
b = torch.matmul(LL.float(),FFF)
b = torch.sum(b)
return b
def make_2d_graph(m, n, periodic=False, return_pos=False):
network = nx.grid_2d_graph(m, n, periodic=False, create_using=None)
matrix = nx.linalg.graphmatrix.adjacency_matrix(network).todense()
matrix = np.array(matrix).astype(float)
return matrix
def get_graph_props(A, normalize_L='none', shift_to_zero_diag=False):
ran = range(A.shape[0])
D = np.zeros_like(A)
D[ran, ran] = np.abs(np.sum(A, axis=1) - A[ran, ran])
L = D - A
if (normalize_L is None) or (normalize_L=='none') or (normalize_L == False):
pass
elif (normalize_L == 'inv'):
Dinv = np.linalg.inv(D)
L = np.matmul(Dinv, L) # Normalized laplacian
elif (normalize_L == 'sym'):
Dinv = np.sqrt(np.linalg.inv(D))
L = np.matmul(np.matmul(Dinv, L), Dinv)
elif (normalize_L == 'abs'):
L = np.abs(L)
else:
raise ValueError('unsupported normalization option')
eigval, eigvec = np.linalg.eigh(L)
eigval = np.real(eigval)
# eigidx = np.argsort(eigval)[::-1]
eigidx = np.argsort(eigval)
eigval = eigval[eigidx]
eigvec = eigvec[:, eigidx]
L_inv = np.linalg.pinv(L)
if shift_to_zero_diag:
L_inv_diag = L_inv[np.eye(L.shape[0])>0]
L_inv = (L_inv - L_inv_diag[:, np.newaxis])
return D, L, L_inv, eigval, eigvec
class BaseModel(nn.Module):
def __init__(self, K, depth,hidden_dim):
"""
Build the model computation graph, until scores/values are returned at the end
"""
super().__init__()
self.use_new_suffix = True
block_features = []
# List of number of features in each regular block
for i in range(depth):
block_features.append(hidden_dim)
block_features.append(K)
original_features_num = K + 1 # Number of features of the input
print(K)
# First part - sequential mlp blocks
last_layer_features = original_features_num
self.reg_blocks = nn.ModuleList()
for layer, next_layer_features in enumerate(block_features):
mlp_block = modules.RegularBlock(last_layer_features, next_layer_features)
self.reg_blocks.append(mlp_block)
last_layer_features = next_layer_features
# Second part
self.fc_layers = nn.ModuleList()
def forward(self, input):
x = input
scores = torch.tensor(0, device=input.device, dtype=x.dtype)
for i, block in enumerate(self.reg_blocks):
x = block(x)
mat = x.squeeze()
matt = torch.diagonal(mat, dim1=-2, dim2=-1)
mattt = matt.transpose(-1,-2)
mattt,_ = torch.linalg.qr(mattt)
return mattt
def get_optimizer(name, parameters, lr, weight_decay=0):
if name == 'sgd':
return torch.optim.SGD(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'rmsprop':
return torch.optim.RMSprop(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'adagrad':
return torch.optim.Adagrad(parameters, lr=lr, weight_decay=weight_decay)
elif name == 'adam':
return torch.optim.Adam(parameters, lr=lr)
elif name == 'adamax':
return torch.optim.Adamax(parameters, lr=lr, weight_decay=weight_decay)
else:
raise Exception("Unsupported optimizer: {}".format(name))
def training_loop1(model, optimizer, sched, W, epochs, X, p):
"Training loop for torch model."
wandb.watch(model, my_loss, log="all", log_freq=1)
losses = []
values = []
for i in range(epochs):
preds = model(W)
loss = my_loss(preds, X, p)
loss.backward()
optimizer.step()
optimizer.zero_grad()
losses.append(loss)
values.append(preds)
# Where the magic happens
wandb.log({"epoch": i, "loss": loss})
#print(f"Loss after " + str(i) + f": {loss:.3f}")
return losses, values
wandb.init(project='gpt3')
def main(cmd_opt):
opt = cmd_opt
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Ensure that all operations are deterministic on GPU (if used) for reproducibility
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
num_eigs = opt['num_eigs'] #gives the dimension of the embedding or/ the number of eigenvectors we calculate
p = opt['p_laplacian']
epochs = opt['epochs']
grid_sizes = [(16,4)]
A = make_2d_graph(grid_sizes[0][0],grid_sizes[0][1], periodic=False)
print(A.shape)
D, L, L_inv, eigval,eigvec = get_graph_props(A,normalize_L='none')
init_eigs = get_orthonormal_eigvec(eigval,eigvec)
#Preprocessing
A_ = torch.tensor(A)
F_ = torch.tensor(init_eigs)[:,:num_eigs]
F_ = F_.transpose(-1,0)
F=torch.diag(F_[0,:])
F=F.unsqueeze(dim=0)
for i in range(1,F_.shape[0]):
FF = torch.diag(F_[i,:])
FF=FF.unsqueeze(dim=0)
F=torch.cat((F, FF), 0)
AA = A_.unsqueeze(dim=0)
inp = torch.cat((AA,F),0)
inp = inp.unsqueeze(dim=0)
# instantiate input
X=torch.tensor(A).to(device)
# instantiate model
num_layers = opt['num_layers']
hidden_channels = opt['hidden_channels']
bm = BaseModel(num_eigs, num_layers, hidden_channels).to(device)
# instantiate optimizer
opt_name = opt['optimizer']
lr = opt['lr']
weight_decay = opt['decay']
optimizer = get_optimizer(opt_name, bm.parameters(), lr=lr, weight_decay=weight_decay)
#optimizer = torch.optim.SGD(bm.parameters(), lr=lr)
my_lr_scheduler = None #torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
# 1. Start a W&B run
wandb.init(project='ppgn_opt')
# 2. Save model inputs and hyperparameters
config = opt
config = wandb.config
# Model training here
#training
start = timer()
bm.train()
losses, values = training_loop1(bm, optimizer,my_lr_scheduler,inp.float().to(device), epochs, X, p)
end_loss=[losses[-1]]
end = timer()
print(end - start, " second")
print("Final Loss: ", end_loss)
# 3. Log metrics over time to visualize performance
wandb.log({"loss": end_loss})
if __name__ == '__main__':
parser = argparse.ArgumentParser()
#Setting args
parser.add_argument('--p_laplacian', type=float, default=1,
help='the value for p-Laplacian (default: 1)')
parser.add_argument('--num_eigs', type=int, default=5,
help='number of eigenvectors (default: 5)')
#PPGN args
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--hidden_channels', type=int, default=16)
#Optimizer args
parser.add_argument('--epochs', type=int, default=10,
help='number of epochs (default: 50)')
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--optimizer', type=str, default='adam', help='One from sgd, rmsprop, adam, adagrad, adamax.')
parser.add_argument('--decay', type=float, default=5e-4, help='Weight decay for optimization')
args = parser.parse_args()
opt = vars(args)
main(opt)