-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgnn.py
141 lines (112 loc) · 4.9 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, SAGEConv
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
from logger import Logger
class GCN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(GCN, self).__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(GCNConv(in_channels, hidden_channels, cached=True))
self.bns = torch.nn.ModuleList()
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(
GCNConv(hidden_channels, hidden_channels, cached=True))
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
self.convs.append(GCNConv(hidden_channels, out_channels, cached=True))
self.dropout = dropout
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, x, adj_t):
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, adj_t)
x = self.bns[i](x)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
return x.log_softmax(dim=-1)
class SAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(SAGE, self).__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
self.bns = torch.nn.ModuleList()
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
self.convs.append(SAGEConv(hidden_channels, out_channels))
self.dropout = dropout
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, x, adj_t):
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, adj_t)
x = self.bns[i](x)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
return x.log_softmax(dim=-1)
#todo for Ali to add the GAT, Conic, ...
def main():
parser = argparse.ArgumentParser(description='OGBN-Arxiv (GNN)')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--log_steps', type=int, default=1)
parser.add_argument('--use_sage', action='store_true')
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--hidden_channels', type=int, default=256)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--runs', type=int, default=10)
args = parser.parse_args()
print(args)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
dataset = PygNodePropPredDataset(name='ogbn-arxiv',
transform=T.ToSparseTensor())
data = dataset[0]
data.adj_t = data.adj_t.to_symmetric()
data = data.to(device)
split_idx = dataset.get_idx_split()
train_idx = split_idx['train'].to(device)
if args.use_sage:
model = SAGE(data.num_features, args.hidden_channels,
dataset.num_classes, args.num_layers,
args.dropout).to(device)
else:
model = GCN(data.num_features, args.hidden_channels,
dataset.num_classes, args.num_layers,
args.dropout).to(device)
evaluator = Evaluator(name='ogbn-arxiv')
logger = Logger(args.runs, args)
for run in range(args.runs):
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
for epoch in range(1, 1 + args.epochs):
loss = train(model, data, train_idx, optimizer)
result = test(model, data, split_idx, evaluator)
logger.add_result(run, result)
if epoch % args.log_steps == 0:
train_acc, valid_acc, test_acc = result
print(f'Run: {run + 1:02d}, '
f'Epoch: {epoch:02d}, '
f'Loss: {loss:.4f}, '
f'Train: {100 * train_acc:.2f}%, '
f'Valid: {100 * valid_acc:.2f}% '
f'Test: {100 * test_acc:.2f}%')
logger.print_statistics(run)
logger.print_statistics()
if __name__ == "__main__":
main()