-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolynomialIdeal.h
226 lines (172 loc) · 6.9 KB
/
PolynomialIdeal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#ifndef POLYNOMIALIDEAL_H
#define POLYNOMIALIDEAL_H
#include <set>
#include "Utility.h"
#include "Polynomial.h"
using namespace std;
class PolynomialIdeal
{
private:
bool IsGrobnerBasis, IsMinimized, IsReduced;
vector <Polynomial> generators;
public:
// Begin constructors
PolynomialIdeal(){
IsGrobnerBasis = IsMinimized = IsReduced = true;
generators = vector <Polynomial>();
}
PolynomialIdeal (vector <Polynomial> gen) {
IsGrobnerBasis = IsMinimized = IsReduced = false;
generators = gen;
}
PolynomialIdeal (vector <string> gen) {
IsGrobnerBasis = IsMinimized = IsReduced = false;
for (unsigned int i=0;i<gen.size(); i++)
generators.push_back(Polynomial(gen[i]));
}
// End Constructors
// Begin getters
bool empty() const{
return generators.empty();
}
vector <Polynomial> getIdealGenerators() {
return generators;
}
unsigned int getNumberOfVariables(){
std::set<Variable> variablesOfIdeal;
for (unsigned int i=0;i<generators.size(); i++){
//variablesOfIdeal.insert()
for ( map <Monomial, ZZ_p>::const_iterator mon = generators[i].coef.begin(); mon!=generators[i].coef.end(); mon++) {
Monomial currentMonomial(mon->first);
for(map <Variable, int>::const_iterator variable = currentMonomial.exponent.begin(); variable!=currentMonomial.exponent.end(); variable++){
variablesOfIdeal.insert(variable->first);
}
}
}
return variablesOfIdeal.size();
}
unsigned int getNumberOfVariousMonomials(){
std::set<Monomial> monomialsOfIdeal;
for (unsigned int i=0;i<generators.size(); i++){
for ( map <Monomial, ZZ_p>::const_iterator mon = generators[i].coef.begin(); mon!=generators[i].coef.end(); mon++) {
monomialsOfIdeal.insert(mon->first);
}
}
return monomialsOfIdeal.size();
}
// End getters
// Begin basis modificators
void removeNullPolynomials() {
generators.erase(
remove( generators.begin(), generators.end(), Polynomial(0) ),
generators.end() );
}
void normalizeBasis() {
for (unsigned int i = 0; i < generators.size(); i++) {
generators[i] /= generators[i].leadingCoefficient();
}
sort(generators.begin(), generators.end());
}
// End basis modificators
//Begin linearization
void GaussianAlgorithm(){
//firstly we sort generators according to leading monomials
// first polynomial has leading monomial
for (unsigned int i=0;i<generators.size(); i++){
if(generators[i].degree()!=-1){
//find coefficient for leading monomial in generators[i]
ZZ_p leading = generators[i].leadingCoefficient();
Monomial currentLeadingMonomial = generators[i].leadingMonomial();
//multiply polynomial
generators[i] = generators[i]*inv(leading);
//then search this monmial in other generators and sub them after multiplication
for(unsigned int j=i+1;j<generators.size();j++){
if(generators[j].containsMonomial(currentLeadingMonomial)){
//multiply geneators[j] and sub them to eliminate monomial
ZZ_p currentLeading = generators[j].getCoefficientOfTermWithMonomial(currentLeadingMonomial);
generators[j] = generators[j]*(inv(currentLeading)) - generators[i];
}
}
}
//reverse motion the Gauss algorithm..
//for(unsigned int j=0;j<i; j++)
}
}
void XLAlgorithm(){
for (unsigned int i=0;i<generators.size(); i++){
//multiply all generators and add them to generators
//do GaussAlgorithm
}
}
void triangularDecomposition(){
//int k;
}
// End linearization
// Begin Grobner
// Multivariate division for the generators
Polynomial divisionRemainder(Polynomial &P) const;
void BuchbergerAlgorithm(unsigned int i0);
void involutiveAlgorithm();
void calculateGrobnerBasis();
void minimizeGrobnerBasis();
void reduceGrobnerBasis();
// End Grobner
// Begin operators
bool contains(Polynomial &P) {
//bool contains(Polynomial const &P) {
if ( !IsGrobnerBasis ) calculateGrobnerBasis();
return divisionRemainder(P).empty();
}
bool operator == (PolynomialIdeal &I ) {
if ( !IsReduced ) reduceGrobnerBasis();
if ( !I.IsReduced ) I.reduceGrobnerBasis();
normalizeBasis();
I.normalizeBasis();
return generators == I.generators;
}
PolynomialIdeal operator + (PolynomialIdeal const &I) const{
vector <Polynomial> res( generators.size() + I.generators.size() );
res.insert(res.end(), generators.begin(), generators.end());
res.insert(res.end(), I.generators.begin(), I.generators.end());
return PolynomialIdeal(res);
}
PolynomialIdeal operator * (PolynomialIdeal const &I) const{
vector <Polynomial> res;
for (unsigned int i = 0; i < generators.size(); i++) {
for (unsigned int j = 0; j < generators.size(); j++) {
res.push_back(generators[i] * generators[j]);
}
}
return res;
}
friend PolynomialIdeal IdealIntersection (PolynomialIdeal &I, PolynomialIdeal &J) {
Polynomial t = Polynomial(Monomial(Variable(Variable::EliminationVariable)));
Polynomial t1 = Polynomial(to_ZZ_p(1)) - t;
vector <Polynomial> NewGenerators;
for (unsigned int i = 0; i < I.generators.size() ; i++)
NewGenerators.push_back( t * Polynomial(I.generators[i]) );
for (unsigned int i = 0; i < J.generators.size() ; i++)
NewGenerators.push_back( t1 * Polynomial(J.generators[i]) );
PolynomialIdeal NewIdeal = PolynomialIdeal(NewGenerators);
NewIdeal.reduceGrobnerBasis();
vector <Polynomial> IntersectionGenerators;
// Come riesce ad accedere a generators? Visto che la specializzazione
// è diversa (e generators è private)
for (unsigned int i = 0; i < NewIdeal.generators.size();i++ ) {
if ( !NewIdeal.generators[i].containsVariable(Variable(Variable::EliminationVariable)) ) {
IntersectionGenerators.push_back(Polynomial(NewIdeal.generators[i]));
}
}
return PolynomialIdeal(IntersectionGenerators);
}
// End operators
// Begin input output
friend ostream & operator << (ostream &out, PolynomialIdeal const &A) {
for (unsigned int i = 0; i < A.generators.size(); i++ )
cout << A.generators[i] << "\n";
return out;
}
// End input output
};
vector <Polynomial> stringToPol(vector<string> S);
#endif // POLYNOMIALIDEAL_H