-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolynomial.h
319 lines (249 loc) · 9.01 KB
/
Polynomial.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#ifndef POLYNOMIAL_H
#define POLYNOMIAL_H
#include "Utility.h"
#include "Monomial.h"
using namespace std;
class Polynomial
{
private:
map <Monomial, ZZ_p> coef;
friend class PolynomialFraction;
friend class PolynomialIdeal;
void removeNullCoefficients();
public:
// Begin constructors
Polynomial(){
coef = map <Monomial, ZZ_p>();
}
Polynomial (ZZ_p c) {
coef = map <Monomial, ZZ_p>();
if ( c != to_ZZ_p(0) ) coef[Monomial()] = c;
}
Polynomial (Monomial M, ZZ_p c) {
coef = map <Monomial, ZZ_p>();
coef[M] = c;
}
Polynomial (Monomial M) {
coef = map <Monomial, ZZ_p>();
coef[M] = 1;
}
Polynomial (long long int c){
Polynomial (to_ZZ_p(c));
}
Polynomial (string S) {
coef = map <Monomial, ZZ_p>();
stringstream Sstream(S);
assert( readStream(Sstream) );
}
/*Polynomial (const char * inPolynomial) {
Polynomial(string(inPolynomial));
}*/
Polynomial (const Polynomial &P) { // copy constructor
for ( map <Monomial, ZZ_p>::const_iterator mon = P.coef.begin(); mon!=P.coef.end(); mon++) {
coef[Monomial(mon->first)] = mon->second;
}
}
// End constructors
bool empty() const{
return coef.empty();
}
long int degree(){
if(empty()) return -1;
else{
long int maxDegree = 0;
for ( map <Monomial, ZZ_p>::const_iterator mon = coef.begin(); mon!=coef.end(); mon++) {
Monomial currentMonomial(mon->first);
if(currentMonomial.degree()> maxDegree){
maxDegree = currentMonomial.degree();
}
}
return maxDegree;
//leadingMonomial().degree();//wrong!! we need explore all monomials and select the biggest degree!!
}
}
bool containsVariable(Variable X) const{
for (map <Monomial, ZZ_p>::const_iterator mon = coef.begin();mon!=coef.end(); mon++) {
if ( mon->first.containsVariable(X) ) return true;
}
return false;
}
bool containsMonomial(Monomial M) const{
for (map <Monomial, ZZ_p>::const_iterator mon = coef.begin();mon!=coef.end(); mon++) {
if ( mon->first == M ) return true;
}
return false;
}
ZZ_p getCoefficientOfTermWithMonomial(Monomial M){
for (map <Monomial, ZZ_p>::const_iterator mon = coef.begin();mon!=coef.end(); mon++) {
if ( mon->first == M ) return mon->second;
}
return to_ZZ_p(0);
}
bool isDivisibleBy(Polynomial const &A);
Polynomial extractPartDivisibleBy(Monomial M){
Polynomial res;
for (map <Monomial, ZZ_p>::iterator mon = coef.begin();mon!=coef.end(); mon++) {
Monomial currentMon(mon->first);
Polynomial currentMonomial(currentMon);
/* if(currentMonomial.isDivisibleBy(divisor)){
//add to result
res+=currentMonomial;
}*/
}
return res;
}
Polynomial extractPartDivisibleBy(Variable V){
Polynomial res;
Monomial divisor(V);
for (map <Monomial, ZZ_p>::iterator mon = coef.begin();mon!=coef.end(); mon++) {
Monomial currentMon(mon->first);
if(currentMon.containsVariable(V)){
//add to result
currentMon = currentMon / divisor;
Polynomial currentMonomial(currentMon,mon->second);
res+=currentMonomial;
}
}
return res;
}
// TODO: Potrebbe restituire un polinomio (valutando solo alcune
// delle variabili e non tutte)
ZZ_p evaluate(map <Variable, ZZ_p> &val) const{
ZZ_p res = to_ZZ_p(0);
for(map <Monomial, ZZ_p>::const_iterator mon = coef.begin();mon!=coef.end(); mon++) {
res += mon->second * mon->first.evaluate(val);
}
return res;
}
// Begin operators
Polynomial operator + (Polynomial const &A) const{
Polynomial res = *this;
for (map <Monomial, ZZ_p>::const_iterator mon = A.coef.begin();mon!=A.coef.end(); mon++ )
res.coef[mon->first] += mon->second;
res.removeNullCoefficients();
return res;
}
Polynomial operator - (Polynomial const &A) const{
Polynomial res = *this;
for (map <Monomial, ZZ_p>::const_iterator mon = A.coef.begin();mon!=A.coef.end(); mon++ )
res.coef[mon->first] -= mon->second;
res.removeNullCoefficients();
return res;
}
Polynomial operator * (Polynomial const &A) const{
Polynomial res;
for (map <Monomial, ZZ_p>::const_iterator mon1 = coef.begin();mon1!=coef.end(); mon1++ ){
for (map <Monomial, ZZ_p>::const_iterator mon2 = A.coef.begin();mon2!=A.coef.end(); mon2++ )
res.coef[mon1->first * mon2->first] += mon1->second * mon2->second;
}
res.removeNullCoefficients();
return res;
}
void operator += (Polynomial const &A) {
(*this) = (*this) + A;
}
void operator -= (Polynomial const &A) {
(*this) = (*this) - A;
}
Polynomial operator - () const{
//create null polinomial
Polynomial zero(to_ZZ_p(0));
return zero - (*this);
}
void operator *= (Polynomial const &A) {
(*this) = (*this) * A;
}
Polynomial operator * (ZZ_p c) const{
if ( c == to_ZZ_p(0) ) return Polynomial();
Polynomial res = *this;
for (map <Monomial, ZZ_p>::iterator it = res.coef.begin(); it!=res.coef.end(); it++) {
(*it).second *= c;
}
return res;
}
Polynomial operator / (ZZ_p c) const{
assert( c != to_ZZ_p(0) );
Polynomial res = *this;
for (map <Monomial, ZZ_p>::iterator it = res.coef.begin(); it!=res.coef.end(); it++) {
(*it).second /= c;
}
return res;
}
void operator *= (ZZ_p c) {
(*this) = (*this) * c;
}
void operator /= (ZZ_p c) {
(*this) = (*this) / c;
}
bool operator == (Polynomial const &A) const{
return coef == A.coef;
}
bool operator != (Polynomial const &A) const{
return coef != A.coef;
}
bool operator < (Polynomial const &A) const{
return leadingMonomial() < A.leadingMonomial();
}
bool operator > (Polynomial const &A) const{
return leadingMonomial() > A.leadingMonomial();
}
Polynomial operator()(map <Variable, Polynomial> &val) const{
Polynomial res = Polynomial(to_ZZ_p(0));
for(map <Monomial, ZZ_p>::const_iterator mon = coef.begin();mon!=coef.end(); mon++) {
Polynomial evaluatedMonomial(to_ZZ_p(1));
for(map <Variable, int>::const_iterator variable = mon->first.exponent.begin(); variable != mon->first.exponent.end(); variable++){
//Polynomial v = val[variable->first];
//for(int i = 0; i < variable->second; i++) evaluatedMonomial *= v;
//search if variable is in map
if(val.find(variable->first)!=val.end()){ //found
Polynomial v = val[variable->first];//substitute if this variable is in substitution
for(int i = 0; i < variable->second; i++) evaluatedMonomial *= v;
}
else{ //not found
stringstream variableStream;
variableStream<<variable->first;
//cout<<variable->first;
string variableString = variableStream.str();
Polynomial v = Polynomial(variableString);
for(int i = 0; i < variable->second; i++) evaluatedMonomial *= v;
}
}
res += evaluatedMonomial * mon->second;
}
return res;
}
// End operators
// Begin leading...
ZZ_p leadingCoefficient() const{
if ( coef.empty() ) return to_ZZ_p(0);
return ( *coef.rbegin() ).second;
}
Monomial leadingMonomial() const{
if ( coef.empty() ) return Monomial();
return ( *coef.rbegin() ).first;
}
Polynomial leadingTerm() const{
return Polynomial(leadingMonomial()) * leadingCoefficient();
}
// End leading...
// Begin input output
bool readStream(istream &in);
void writeStream(ostream &out) const;
void writeStreamWithGruppedMonomials(ostream &out, const vector <Monomial> &gruppingCoefficients) const;
void writeStream(ZZ_p &val, ostream &out, bool ImplicitSign, bool ImplicitOne) const;
friend istream & operator >> (istream &in, Polynomial &A) {
A.readStream(in);
return in;
}
friend ostream & operator << (ostream &out, Polynomial const &A) {
A.writeStream(out);
return out;
}
// End input output
};
Polynomial pow(Polynomial &P, unsigned int e);
// S-polynomial
Polynomial SPolynomial(Polynomial const &P, Polynomial const &Q);
// A-polynomial
Polynomial APolynomial(Polynomial const &P, Polynomial const &Q);
#endif // POLYNOMIAL_H