forked from facebookresearch/mae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmitit_finetune.py
131 lines (101 loc) · 4.25 KB
/
submitit_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# A script to run multinode training with submitit.
# --------------------------------------------------------
import argparse
import os
import uuid
from pathlib import Path
import main_finetune as classification
import submitit
def parse_args():
classification_parser = classification.get_args_parser()
parser = argparse.ArgumentParser("Submitit for MAE finetune", parents=[classification_parser])
parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
parser.add_argument("--nodes", default=2, type=int, help="Number of nodes to request")
parser.add_argument("--timeout", default=4320, type=int, help="Duration of the job")
parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.")
parser.add_argument("--partition", default="learnfair", type=str, help="Partition where to submit")
parser.add_argument("--use_volta32", action='store_true', help="Request 32G V100 GPUs")
parser.add_argument('--comment', default="", type=str, help="Comment to pass to scheduler")
return parser.parse_args()
def get_shared_folder() -> Path:
user = os.getenv("USER")
if Path("/checkpoint/").is_dir():
p = Path(f"/checkpoint/{user}/experiments")
p.mkdir(exist_ok=True)
return p
raise RuntimeError("No shared folder available")
def get_init_file():
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder()), exist_ok=True)
init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
import main_finetune as classification
self._setup_gpu_args()
classification.main(self.args)
def checkpoint(self):
import os
import submitit
self.args.dist_url = get_init_file().as_uri()
checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth")
if os.path.exists(checkpoint_file):
self.args.resume = checkpoint_file
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
import submitit
from pathlib import Path
job_env = submitit.JobEnvironment()
self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id)))
self.args.log_dir = self.args.output_dir
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
def main():
args = parse_args()
if args.job_dir == "":
args.job_dir = get_shared_folder() / "%j"
# Note that the folder will depend on the job_id, to easily track experiments
executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)
num_gpus_per_node = args.ngpus
nodes = args.nodes
timeout_min = args.timeout
partition = args.partition
kwargs = {}
if args.use_volta32:
kwargs['slurm_constraint'] = 'volta32gb'
if args.comment:
kwargs['slurm_comment'] = args.comment
executor.update_parameters(
mem_gb=40 * num_gpus_per_node,
gpus_per_node=num_gpus_per_node,
tasks_per_node=num_gpus_per_node, # one task per GPU
cpus_per_task=10,
nodes=nodes,
timeout_min=timeout_min,
# Below are cluster dependent parameters
slurm_partition=partition,
slurm_signal_delay_s=120,
**kwargs
)
executor.update_parameters(name="mae")
args.dist_url = get_init_file().as_uri()
args.output_dir = args.job_dir
trainer = Trainer(args)
job = executor.submit(trainer)
# print("Submitted job_id:", job.job_id)
print(job.job_id)
if __name__ == "__main__":
main()