Based on: https://github.com/Zhehui-Huang/quad-swarm-rl
Paper: https://arxiv.org/pdf/2109.07735
If you use this repository in your work or otherwise wish to cite it, please make reference to our following papers.
QuadSwarm: A Modular Multi-Quadrotor Simulator for Deep Reinforcement Learning with Direct Thrust Control
ICRA Workshop: The Role of Robotics Simulators for Unmanned Aerial Vehicles, 2023
Drone Simulator for Reinforcement Learning.
@article{huang2023quadswarm,
title={Quadswarm: A modular multi-quadrotor simulator for deep reinforcement learning with direct thrust control},
author={Huang, Zhehui and Batra, Sumeet and Chen, Tao and Krupani, Rahul and Kumar, Tushar and Molchanov, Artem and Petrenko, Aleksei and Preiss, James A and Yang, Zhaojing and Sukhatme, Gaurav S},
journal={arXiv preprint arXiv:2306.09537},
year={2023}
}
IROS 2019
Single drone: a unified control policy adaptable to various types of physical quadrotors.
@inproceedings{molchanov2019sim,
title={Sim-to-(multi)-real: Transfer of low-level robust control policies to multiple quadrotors},
author={Molchanov, Artem and Chen, Tao and H{\"o}nig, Wolfgang and Preiss, James A and Ayanian, Nora and Sukhatme, Gaurav S},
booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages={59--66},
year={2019},
organization={IEEE}
}
CoRL 2021
Multiple drones: a decentralized control policy for multiple drones in obstacle free environments.
@inproceedings{batra21corl,
author = {Sumeet Batra and
Zhehui Huang and
Aleksei Petrenko and
Tushar Kumar and
Artem Molchanov and
Gaurav S. Sukhatme},
title = {Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning},
booktitle = {5th Conference on Robot Learning, CoRL 2021, 8-11 November 2021, London, England, {UK}},
series = {Proceedings of Machine Learning Research},
publisher = {{PMLR}},
year = {2021},
url = {https://arxiv.org/abs/2109.07735}
}
Collision Avoidance and Navigation for a Quadrotor Swarm Using End-to-end Deep Reinforcement Learning
ICRA 2024
Multiple drones: a decentralized control policy for multiple drones in obstacle dense environments.
@inproceedings{huang2024collision,
title={Collision avoidance and navigation for a quadrotor swarm using end-to-end deep reinforcement learning},
author={Huang, Zhehui and Yang, Zhaojing and Krupani, Rahul and {\c{S}}enba{\c{s}}lar, Bask{\i}n and Batra, Sumeet and Sukhatme, Gaurav S},
booktitle={2024 IEEE International Conference on Robotics and Automation (ICRA)},
pages={300--306},
year={2024},
organization={IEEE}
}
ICRA 2024
A method to find the smallest control policy for deployment: train once, get tons of models with different size by using HyperNetworks.
We only need four neurons to control a quadrotor! That is super amazing!
Please check following videos for more details:
@inproceedings{hegde2024hyperppo,
title={Hyperppo: A scalable method for finding small policies for robotic control},
author={Hegde, Shashank and Huang, Zhehui and Sukhatme, Gaurav S},
booktitle={2024 IEEE International Conference on Robotics and Automation (ICRA)},
pages={10821--10828},
year={2024},
organization={IEEE}
}