-
Notifications
You must be signed in to change notification settings - Fork 28
/
benchmark.py
139 lines (109 loc) · 4.5 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from matching import get_matcher, available_models
from pathlib import Path
from argparse import ArgumentParser
import cv2
import time
from tqdm.auto import tqdm
import torch
import numpy as np
def parse_args():
parser = ArgumentParser()
parser.add_argument("--task", type=str, default="benchmark", help="run benchmark or unit tests")
parser.add_argument(
"--models",
type=str,
nargs="+",
default="all",
help="which model or list of models to benchmark",
)
parser.add_argument(
"--img-size",
type=int,
default=512,
help="image size to run matching on (resized to square)",
)
parser.add_argument("--device", type=str, default="cuda", help="Device to run benchmark on")
parser.add_argument(
"--num-iters",
type=int,
default=5,
help="number of interations to run benchmark and average over",
)
args = parser.parse_args()
if args.device == "cuda":
assert torch.cuda.is_available(), "Chosen cuda as device but cuda unavailable! Try another device (cpu)"
if args.models == "all":
args.models = available_models
return args
def get_img_pairs():
asset_dir = Path("assets/example_pairs")
pairs = [list(pair.iterdir()) for pair in list(asset_dir.iterdir())]
return pairs
def test_H_est(matcher, img_size=512):
"""Given a matcher, compute a homography of two images with known ground
truth and its error. The error for sift-lg is 0.002 for img_size=500. So it
should roughly be below 0.01."""
img0_path = "assets/example_test/warped.jpg"
img1_path = "assets/example_test/original.jpg"
ground_truth = np.array([[0.1500, 0.3500], [0.9500, 0.1500], [0.9000, 0.7000], [0.2500, 0.7000]])
image0 = matcher.load_image(img0_path, resize=img_size)
image1 = matcher.load_image(img1_path, resize=img_size)
result = matcher(image0, image1)
pred_homog = np.array([[0, 0], [img_size, 0], [img_size, img_size], [0, img_size]], dtype=np.float32)
pred_homog = np.reshape(pred_homog, (4, 1, 2))
prediction = cv2.perspectiveTransform(pred_homog, result["H"])[:, 0] / img_size
max_error = np.abs(ground_truth - prediction).max()
return max_error
def test(matcher, img_sizes=[512, 256], error_thresh=0.05):
passing = True
for img_size in img_sizes:
error = test_H_est(matcher, img_size=img_size)
if error > error_thresh:
passing = False
raise RuntimeError(f"Large homography error in matcher (size={img_size} px): {error}")
return passing, error
def benchmark(matcher, num_iters=1, img_size=512):
runtime = []
for _ in range(num_iters):
for pair in get_img_pairs():
img0 = matcher.load_image(pair[0], resize=img_size)
img1 = matcher.load_image(pair[1], resize=img_size)
start = time.time()
_ = matcher(img0, img1)
duration = time.time() - start
runtime.append(duration)
return runtime, np.mean(runtime)
def main(args):
print(args)
if args.task == "benchmark":
with open("runtime_results.txt", "w") as f:
for model in tqdm(args.models):
try:
matcher = get_matcher(model, device=args.device)
runtimes, avg_runtime = benchmark(matcher, num_iters=args.num_iters, img_size=args.img_size)
runtime_str = f"{model: <15} OK {avg_runtime=:.3f}"
f.write(runtime_str + "\n")
tqdm.write(runtime_str)
except Exception as e:
tqdm.write(f"{model: <15} NOT OK - exception: {e}")
elif args.task == "test":
with open("test_results.txt", "w") as f:
test_str = "Matcher, Passing Tests, Error (px)"
f.write(test_str + "\n" + "-" * 40 + "\n")
tqdm.write(test_str)
for model in tqdm(args.models):
try:
matcher = get_matcher(model, device=args.device)
passing, error_val = test(matcher)
test_str = f"{model}, {passing}, {error_val}"
f.write(test_str + "\n")
tqdm.write(test_str)
except Exception as e:
f.write(f"Error with {model}: {e}")
tqdm.write(f"Error with {model}: {e}")
if __name__ == "__main__":
args = parse_args()
import warnings
warnings.filterwarnings("ignore")
print(f"Running with args: {args}")
main(args)