forked from ericwhyne/darpa_open_catalog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRATS-software.json
2021 lines (2021 loc) · 60.4 KB
/
RATS-software.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
[
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"MbCombF0",
"Internal Link":"",
"External Link":"http://www.ee.ucla.edu/~spapl/paper/Speechcom_Tan.pdf",
"Public Code Repo":"http://www.ee.ucla.edu/~spapl/code/MBSC_matlab.zip",
"Instructional Material":"",
"Description":"MbCombF0 performs pitch detection using a multi-band summary correlogram (MBSC). Comb-channel selection and weighting are used to enhance the peak in each subband summary correlogram. A subband reliability weighting scheme is used to combine the subband summary correlograms to obtain the MBSC, from which pitch and degree-of-voicing are determined. For more information, please refer to L. N. Tan, and A. Alwan, Multi-Band Summary Correlogram-based Pitch Detection for Noisy Speech, Speech Communication, Volume 55, Issue 78, September 2013, pp. 841-856. A reduced-complexity version is used by the SRI-SCENIC team, which uses a constant frame length, instead of multiple frame lengths, when computing comb-filtered outputs. (Matlab/Python)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab",
"Python"
],
"Categories":[
"Speech",
"Features",
"Pitch",
"Degree-of-voicing"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"LSEN-PNCC",
"Internal Link":"",
"External Link":"http://www.ee.ucla.edu/~spapl/paper/ICASSP_revised.pdf",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"LSEN-PNCC performs enhancement on the gammatone filterbank spectra using an SNR-based soft-decision mask. This enhanced spectra is subsequently used in the computation of CMU's Power-Normalized Cepstral Coefficients (PNCC). For more information on the computation of the soft mask, please refer to J. van Hout and A. Alwan, A Novel Approach to Soft-Mask Estimation and Log-Spectral Enhancement For Robust Speech Recognition, ICASSP 2012, pp. 4105-4108. (Matlab/Python)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab",
"Python"
],
"Categories":[
"Speech",
"Features",
"Soft-mask-based spectral enhancement"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"SAcC",
"Internal Link":"",
"External Link":"http://labrosa.ee.columbia.edu/projects/SAcC/",
"Public Code Repo":"https://github.com/dpwe/calc_sbpca.git",
"Instructional Material":"",
"Description":"SAcC performs noise-robust pitch tracking by classifying the autocorrelations of a set of subbands using an MLP neural network. It has good resistance to noise, and is highly resistant to octave errors. You can read about it in our paper, B.-S. Lee and D. Ellis (2012) Noise Robust Pitch Tracking by Subband Autocorrelation Classification, Proc. Interspeech-12, Portland, September 2012, paper P3b.05. (Matlab/Python)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab",
"Python"
],
"Categories":[
"Speech",
"Features",
"Pitch"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"skewview",
"Internal Link":"",
"External Link":"http://labrosa.ee.columbia.edu/projects/skewview/",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Skewview is a Matlab script that can be used to visualize the timing skew between two sound files. It breaks up both files into a set of short pieces (by default 4 seconds long), performs a normalized cross-correlation between corresponding pieces, then plots the time of the peak of this correlation as a function of time within the file. If the files contain versions of the same signal, the peak of the correlation will usually indicate the relative timing skew (delay) between the two files. This can be used to check for such a skew/delay. (Matlab)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech",
"Visualization",
"Analysis"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"findNTs",
"Internal Link":"",
"External Link":"http://labrosa.ee.columbia.edu/projects/findNTs/",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"FindNTs is a Matlab script that automatically locates regions consisting of no-transmission (NT) background noise in radio recordings. The basic principle is that NT noise will be high energy noise with stationary characteristics (and low periodicity, to help distinguish from strong voiced segments). These regions are identified without supervision: instead, cepstral and voicing features from short frames are clustered, and the program looks for a popular, narrow cluster with high energy. This is then considered the NT cluster, and used to produce NT region labels. (Matlab)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech",
"Visualization",
"Analysis",
"Annotation"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"renoiser",
"Internal Link":"",
"External Link":"http://labrosa.ee.columbia.edu/projects/renoiser/",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Renoiser is a Matlab script that can be used to separate out the linear component of a clean file in a filtered, noisy mixture. It can then be used to recompose the mixture with the target at a modified relative level, or to introduce a new target, filtered to resemble the original, at a specified SNR. (Matlab)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech",
"Visualization",
"Analysis",
"Simulation"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"snreval",
"Internal Link":"",
"External Link":"http://labrosa.ee.columbia.edu/projects/snreval/",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Snreval calculates a set of objective speech quality measures, mostly focused around some version of SNR (i.e. speech energy to nonspeech energy ratio). The measures are: NIST STNR - see http://labrosa.ee.columbia.edu/~dpwe/tmp/nist/doc/stnr.txt; WADA SNR -see http://www.cs.cmu.edu/~robust/Papers/KimSternIS08.pdf; BSS_EVAL - see http://bass-db.gforge.inria.fr/bss_eval/; PESQ - see http://www.utdallas.edu/~loizou/speech/software.htm; and SNR_VAD - the extra energy in regions designated as speech by some kind of voice activity detection (VAD) when compared to the energy of the gaps in-between. (Matlab)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech",
"Visualization",
"Analysis"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"chimefind",
"Internal Link":"",
"External Link":"http://labrosa.ee.columbia.edu/projects/chimefind/",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Chimefind is a Matlab script that uses a custom-designed filter to identify the start-of-utterance chimes within the clean rebroadcast files created by LDC for the RATS program. It then writes a label file corresponding to the audio file, either based on the found chimes alone, or by taking an existing label file and adjusting the start times to correspond to each chime (while preserving the durations of each segment, and any label contents). (Matlab)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech",
"Visualization",
"Analysis"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"sadcheck",
"Internal Link":"",
"External Link":"http://labrosa.ee.columbia.edu/projects/sadcheck/",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Sadcheck is a Matlab script that checks a set of SAD annotations against a corresponding waveform by segmenting the waveform according to the label file, plotting the concatenated spectrogram segments for each label type, and reporting the mean and variance of energy within these segregated categories. If the labels fail to separate truly distinct regions of the original file, this should quickly become obvious from this visualization and these statistics. (Matlab)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech",
"Visualization",
"Analysis"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"dedtmf",
"Internal Link":"",
"External Link":"http://labrosa.ee.columbia.edu/projects/dedtmf/",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Dedtmf is a Matlab script that attempts to suppress stationary tones in an audio file, while leaving more dynamic components unchanged. This could be useful, for instance, to suppress DTMF tones mixed in with speech. (Matlab)",
"Internal Code Repo":"",
"License":[
"BSDv2"
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech",
"Visualization",
"Analysis",
"Annotation"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"PNCC",
"Internal Link":"",
"External Link":"http://www.cs.cmu.edu/~mharvill/RATS/software_releases/PNCC/PNCC2_deployed_v5.tar.gz",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Noise-robust speech feature extractor. (Matlab)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech",
"Features"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"PMCES",
"Internal Link":"",
"External Link":"http://www.cs.cmu.edu/~mharvill/RATS/software_releases/131008_SSB/pmces_batch_package_131231.tar.gz",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Blind compensation software for mismatched SSB demodulation. (Matlab)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Matlab"
],
"Categories":[
"Speech Enhancement"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"gbfb",
"Internal Link":"",
"External Link":"J Acoust Soc Am. 2012 May;131(5):4134-51. doi: 10.1121/1.3699200. ... Sch??dler M, Meyer BT, Kollmeier B.",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Low level Gabor filterbank code. Inspired by physiological measurements in the primary auditory cortex of mammals, Gabor filterbank features extract spectro-temporal information from an acoustic signal, resulting in a large number of features that are then used in downstream processes. (Matlab/Python)",
"Internal Code Repo":"",
"License":[
"GPLv3"
],
"Languages":[
"Matlab",
"Python"
],
"Categories":[
"Mathematics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"mlp_gbfb",
"Internal Link":"",
"External Link":"J Acoust Soc Am. 2012 May;131(5):4134-51. doi: 10.1121/1.3699200. ... Sch??dler M, Meyer BT, Kollmeier B.",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Multilayer perceptron processing of Gabor features. This script calls the low level Gabor filterbank code, and then processes the resulting features through a multilayer perceptron (using QuickNet), which targets either phones (for KWS) or Speech/Nonspeech (for SAD). It optionally reduces dimensionality using a KLT transformation. The script can call an external program to generate features to append to the result. It handles short segments, PEM region markers, padding, and format conversions. We provided trained models for SAD and KWS. (Perl)",
"Internal Code Repo":"",
"License":[
"GPLv3"
],
"Languages":[
"Perl"
],
"Categories":[
"Mathematics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"MHEC",
"Internal Link":"",
"External Link":"http://crss.utdallas.edu/Publications/Sadjadi2012.pdf",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"MHEC FE is a speech parameterizer that transforms raw audio waveforms into a cepstral feature representation, called the Mean Hilbert Envelope Coeffcients (MHEC). The MHEC acoustic feature is extracted based on a Hilbert transform demodulation (HTD) of speech signal in narrow frequency bands (as represented at the output of the auditory inspired Gammatone filterbank). It is relatively more robust (compared to the traditional speech parameterization techniques) against various signal distortions due to background noise, room reverberation, and transmission channel. (Matlab/Python)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"MATLAB",
"Python"
],
"Categories":[
"Signal Processing",
"Speech Processing",
"Acoustic Features"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"COMBO",
"Internal Link":"",
"External Link":"http://crss.utdallas.edu/Publications/sadjadi2013combo.pdf",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"COMBO FE is a speech parameterizer that transforms raw audio waveforms into a single dimensional voicing measure, called the combo feature. The combo feature is computed based on a linear combination of multiple voicing measures and a perceptual spectral flux feature. It has a good correlation with speech active regions, in particular under adverse noisy conditions. It has been primarily applied for speech activity detection (SAD). For more details regarding the theory and application of the combo feature see: S.O. Sadjadi and J.H.L. Hansen. (Matlab/Python)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"MATLAB",
"Python"
],
"Categories":[
"Signal Processing",
"Speech Processing",
"Acoustic Features"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Team SCENIC"
],
"Software":"QCN-RASTALP",
"Internal Link":"",
"External Link":"http://crss.utdallas.edu/Toolbox/QCN_RASTALP/",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"QCN-RASTALP is designed to compensate for the cepstral variance introduced by channel variations, additive noise, and Lombard effect. Quantile-based cepstral dynamics normalization (QCN) normalizes sample histograms with respect to their low and high quantiles. RASTALP is a temporal filter that approximates the low-pass portion of the popular RASTA filter while reducing its adverse transient effects. (C)",
"Internal Code Repo":"",
"License":[
"ALv2"
],
"Languages":[
"C"
],
"Categories":[
"Front-End Feature Normalization"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"",
"External Link":"https://github.com/Linguistic-Data-Consortium/pymdc1200",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python bindings to Matthew Kaufman's mdc-encode-decode library, to encode/decode MDC1200. (Python/C)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python",
"C"
],
"Categories":[
"signal processing"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"/RATS/bin/pipe/*",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Scripts for conditioning, QC checks, and database tracking of phase 1.2 data collection. (Perl/Shell)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Perl",
"Shell"
],
"Categories":[
"data collection"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"/RATS/bin/novchan*",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Scripts for conditioning, QC checks, and database tracking of novel channel collection. (Ruby)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Ruby"
],
"Categories":[
"data collection"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"alinco_rcvr_control",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python module and client applications implementing the Alinco Receiver Control API. (Python/C)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python",
"C"
],
"Categories":[
"systems integration: transceiver control"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"aor_rcvr_control",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python module and client applications implementing the AOR AR8200 and AR5001D Receiver Control APIs. (Python/C)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python",
"C"
],
"Categories":[
"systems integration: transceiver control"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"tentec_rcvr_control",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python module and client applications implementing the Ten-Tec RX400, RX340, and RX331 Receiver Control APIs. (Python/C)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python",
"C"
],
"Categories":[
"systems integration: transceiver control"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"icom_rcvr_control",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python module and client applications implementing the Icom IC-R8500 and IC-R75 Receiver Control APIs. (Python/C)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python",
"C"
],
"Categories":[
"systems integration: transceiver control"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"lectrosonics_relaybank_ctrl",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python module and client applications implementing the Lectrosonics DM812 Control API. (Python/C)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python",
"C"
],
"Categories":[
"systems integration: signal detection and routing",
"transmission automation"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"localrec_net, remoterec_net, ecarec_net",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Server applications allowing for Remote Audio Capture controlled via TCP/IP. (Perl/Bash)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Perl",
"Bash"
],
"Categories":[
"systems integration: remote multichannel audio capture"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"sndspool_net, rttyspool_net",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Server applications allowing for Remote Audio Processing and Playback controlled via TCP/IP. (Perl/Bash)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Perl",
"Bash"
],
"Categories":[
"systems integration: remote multichannel audio playback"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"spectrum_interver",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python module and client application allowing for realtime audio spectrum, with remote control of inversion parameters via TCP/IP. (Perl/Bash)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Perl",
"Bash"
],
"Categories":[
"realtime audio processing"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"5tone_generator",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python application that can synthesize SelCall and 5Tone Control Signals, allowing for predetermined variation from the standard. Currently supports MODAT and CCIR signaling protocols. (Python)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python"
],
"Categories":[
"Comms Audio Control Signal synthesis"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"rtty_generator",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python application that can synthesize RTTY/AFSK Audio Clips, allowing for random variation of FSK encoding parameters (baud, mark, shift, gain). (Python)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python"
],
"Categories":[
"Comms Audio Control Signal synthesis"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"multipsk_ctrl",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Client application to control Multipsk Communications Signal Audio Generator. (Perl)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Perl"
],
"Categories":[
"Audio synthesis automation"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"ratscap_session_control",
"Internal Link":"/RATS/novchan/working/walkerk",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Python module and client applications to manage multichannel, multi-site, radio transmission data collection sessions. Controls and monitors multiple hosts, signal routers, transceivers, and receivers via TCP/IP. Uses MySQL database backend. (Python/SQL)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Python",
"SQL"
],
"Categories":[
"systems integration: Data Collection Automation"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"/RATS/(sad-",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
""
],
"Categories":[
"scripts for conditioning",
"QC checks and packaging of audio/annotation data for release"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"",
"External Link":"https://github.com/Linguistic-Data-Consortium/sanity",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Suite of tools for sanity checking. (Ruby)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Ruby"
],
"Categories":[
"data validity"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"",
"External Link":"https://github.com/Linguistic-Data-Consortium/sanity",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Suite of tools for sanity checking. (Ruby)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Ruby"
],
"Categories":[
"data validity"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"",
"External Link":"https://github.com/Linguistic-Data-Consortium/sanity",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Suite of tools for sanity checking. (Ruby)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Ruby"
],
"Categories":[
"data validity"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"",
"External Link":"https://github.com/Linguistic-Data-Consortium/sanity",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Suite of tools for sanity checking. (Ruby)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Ruby"
],
"Categories":[
"data validity"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"LDC"
],
"Software":"",
"Internal Link":"",
"External Link":"https://github.com/Linguistic-Data-Consortium/ldc_db",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"Collection database management library. (Ruby)",
"Internal Code Repo":"",
"License":[
""
],
"Languages":[
"Ruby"
],
"Categories":[
"data collection"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Patrol-BBN"
],
"Software":"GMM Trainer",
"Internal Link":"/d4m/ears/cvsroot/Byblos/Cube2",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"GMM Trainer is designed to train and adapt Gaussian Mixture Models (GMM), which are used in, but not limited to, speech activity detection (SAD), language identification (LID), and speaker identification (SID). (C++)",
"Internal Code Repo":"",
"License":[
"UGPR"
],
"Languages":[
"C++"
],
"Categories":[
"General statistical modeling"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"RATS",
"Program Teams":[
"Patrol-BBN"
],
"Software":"SAD-LID Modules",
"Internal Link":"/d4m/rats/software_deliveries/sad_lid_modules",
"External Link":"",
"Public Code Repo":"",
"Instructional Material":"",
"Description":"SAD-LID Modules consist of a set of training algorithms for building SAD and LID systems. (Perl)",
"Internal Code Repo":"",
"License":[
"UGPR"
],