-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscratch.py
538 lines (447 loc) · 21.7 KB
/
scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# %%
# Figure 10: Anatomical Locations of Spectral Features
# plot the anatomical locations of each of the time-frequency modulations
# of interest
ignore_keywords = ('unknown', '-vent', 'choroid-plexus', 'vessel',
'hypointensities', 'cc_', 'cerebellum')
aseg_img = nib.load(op.join(subjects_dir, template, 'mri', aseg + '.mgz'))
aseg_data = np.array(aseg_img.dataobj)
label_dict = dict()
label_colors = dict()
label_pos = dict()
name_freqs = dict()
raw_labels = set()
# then, go through each area and direction of interest
for name, directions in area_directions.items():
for direction in directions:
d_name = u'\u2B06 ' + name if direction == 1 else u'\u2B07 ' + name
if d_name not in name_freqs:
name_freqs[d_name] = areas[name][1]
# finally, go through the area proportions for each electrode and
# match them up
for ch_name, prop in area_contacts[name].items():
if (direction == 1 and prop > prop_thresh) or \
(direction == -1 and prop < -prop_thresh):
these_labels = [label for label in ch_labels[asegs[1]][ch_name]
if not any([kw in label.lower() for
kw in ignore_keywords])]
for label in these_labels:
f_label = format_label_dk(label, combine_hemi=True,
cortex=False)
if f_label not in label_colors:
label_colors[f_label] = colors[label][:3] / 255
if f_label not in label_pos:
label_pos[f_label] = mne.transforms.apply_trans(
aseg_img.header.get_vox2ras_tkr(),
np.array(np.where(
aseg_data == lut[label])).mean(axis=1))
raw_labels.add(label)
if d_name in label_dict:
label_dict[d_name].add(f_label)
else:
label_dict[d_name] = set([f_label])
# sort by polar coordinates to wrap frontal to temporal
label_pos_array = np.array(list(label_pos.values()))
# first, rotate axes so left is up so theta can run from -pi to pi
label_pos_rot = mne.transforms.apply_trans(
mne.transforms.rotation(y=np.pi / 2), label_pos_array)
# then get theta which is really elevation but from -pi to pi
label_pos_theta = mne.transforms._cart_to_sph(label_pos_rot)[:, 1]
# shift from -pi to pi by +pi to 0 to 2 * pi and then shift to the
# phase we want to start with
roi_phase = label_pos_theta[list(label_pos.keys()).index('Putamen')] + np.pi
label_pos_theta = np.mod((label_pos_theta + np.pi - roi_phase), 2 * np.pi)
# get the order
label_pos_order = dict(zip(label_pos.keys(), label_pos_theta))
labels = sorted(label_pos, key=lambda label: label_pos_order.get(label))
names = sorted(label_dict.keys(), key=lambda name: name_freqs[name])
n_names = len(names)
cmap = plt.get_cmap('Set1')
name_colors = [cmap(i) for i in range(n_names)]
label_cmap = LinearSegmentedColormap.from_list(
'label_cmap', name_colors, N=n_names)
brain = mne.viz.Brain(template, hemi=None,
**dict(brain_kwargs, background='black'))
brain.add_volume_labels(
aseg, labels=list(raw_labels),
colors=[label_colors[format_label_dk(label, combine_hemi=True,
cortex=False)]
for label in raw_labels], fill_hole_size=1)
fig, axes = plt.subplots(5, 3, figsize=(8, 12), facecolor='black',
subplot_kw=dict(projection='polar'))
gs = axes[0, 0].get_gridspec() # for adjustments later
node_angles = mne.viz.circular_layout(
['pattern'] + labels, ['pattern'] + labels,
start_pos=90 - (360 / (len(labels) + 3)),
group_boundaries=[0, 1])
for ax, name in zip(axes.flatten(), names):
node_names = [name] + labels
con = np.zeros((len(node_names), len(node_names))) * np.nan
for label in label_dict[name]:
node_idx = node_names.index(label)
label_color = names.index(name) / n_names
con[0, node_idx] = con[node_idx, 0] = label_color # symmetric
node_colors = [name_colors[names.index(name)]] + \
[label_colors[label] for label in labels]
mne.viz.circle._plot_connectivity_circle(
con, [''] * len(node_names), node_angles=node_angles, title=name,
node_colors=node_colors, node_height=4,
vmin=0, vmax=1, colormap=label_cmap,
textcolor=name_colors[names.index(name)], colorbar=False, linewidth=1,
ax=ax, show=False)
brain.show_view(azimuth=120, elevation=100, distance=0.325)
axes[3, 2].remove() # switch these two out to cartesian
axes[3, 2] = fig.add_subplot(gs[3, 2])
axes[3, 2].imshow(brain.screenshot())
brain.show_view(azimuth=80, elevation=180, distance=0.36)
axes[4, 2].remove()
axes[4, 2] = fig.add_subplot(gs[4, 2])
axes[4, 2].imshow(brain.screenshot())
axes[3, 2].set_title('Left front', color='w')
axes[4, 2].set_title('Bottom up', color='w')
# add plot to bottom left 4 plots
for ax in axes[3:, :2].flatten():
ax.remove() # remove small axes
ax = fig.add_subplot(gs[3:, :2], polar=True) # add back a big axis
pos = ax.get_position()
mne.viz.circle._plot_connectivity_circle(
np.zeros(con.shape) * np.nan, [''] + labels, node_angles=node_angles,
node_colors=node_colors, node_height=4, vmin=0, vmax=1, fontsize_names=8,
colormap=label_cmap, textcolor='white', colorbar=False, linewidth=1,
ax=ax, show=False)
fig.subplots_adjust(hspace=0.1, wspace=0, top=0.95, bottom=0, left=0, right=1)
# adjust big axis, bring in
ax.set_position((pos.x0 + 0.05, pos.y0 + 0.02,
pos.width - 0.1, pos.height - 0.1))
fig.text(0.02, 0.98, 'a', color='w', fontsize=12)
fig.text(0.02, 0.38, 'b', color='w', fontsize=12)
for ext in exts:
fig.savefig(op.join(fig_dir, f'feature_labels.{ext}'),
facecolor=fig.get_facecolor(), dpi=300)
'''
The average magnitude of significant coefficients was also plotted (Figure 8c) to determine the relative strength of significant correlations. In Figure 8a, coefficients that were much larger than the significance threshold were counted the same as those that were closer to the threshold, whereas in Figure 8c large magnitudes brought up the average. The patterns were similar between Figure 8a and Figure 8c; coefficients for time-frequency points that were more abundant were also larger on average. In addition, the primary movement-related oscillatory patterns (pre-movement beta desynchronization, beta rebound, post-movement gamma power increase and alpha power modulation pre-movement) had larger magnitude coefficients. Finally, the average accuracy of each significant coefficient is plotted (Figure 8d). Interestingly, there is not a strong pattern where specific time-frequency points, when they are large enough to be significant, predict higher classification accuracies.
'''
for i in ch_pos.index:
sub = ch_pos['sub'][i]
info = mne.io.read_info(op.join(
subjects_dir, f'sub-{sub}', 'ieeg',
f'sub-{sub}_template-{template}_task-{task}_info.fif'))
if ch_pos['elec_name'][i] == 'Event':
continue
ch_names = [ch_name.replace(' ', '') for ch_name in info.ch_names]
ch_idx = ch_names.index(str(ch_pos['elec_name'][i]) + str(int(ch_pos['number'][i])))
x, y, z = mne.transforms.apply_trans(template_trans, info['chs'][ch_idx]['loc'][:3])
ch_pos['x'][i], ch_pos['y'][i], ch_pos['z'][i] = x, y, z
ignore_keywords = ('unknown', '-vent', 'choroid-plexus', 'vessel')
fig, axes = plt.subplots(len(areas), 2, figsize=(6, 12), facecolor='black')
hashes = [ax.__hash__() for ax in axes.flatten()]
for (ax, ax2), area in zip(axes, area_contacts):
pos_labels, neg_labels = dict(), dict()
for (sub, elec_name, number), prop in area_contacts[area].items():
pos = ch_pos[(ch_pos['sub'] == sub) &
(ch_pos['elec_name'] == elec_name) &
(ch_pos['number'] == number)].reset_index().loc[0]
labels = pos['label'].split(',')
labels = [label for label in labels if not
any(kw in label.lower() for kw in ignore_keywords)]
if prop > prop_thresh:
pos_labels[f'Subject {sub} {elec_name}{number}'] = labels
if prop < -prop_thresh:
neg_labels[f'Subject {sub} {elec_name}{number}'] = labels
subplot = hashes.index(ax.__hash__()) + 1
label_names = set([label for labels in pos_labels.values()
for label in labels])
if label_names:
mne.viz.plot_channel_labels_circle(
labels=pos_labels,
colors={name: colors[name][:3] / 255 for name in label_names},
fig=fig, subplot=f'{len(areas)}2{subplot}', show=False)
subplot = hashes.index(ax2.__hash__()) + 1
label_names = set([label for labels in neg_labels.values()
for label in labels])
if label_names:
mne.viz.plot_channel_labels_circle(
labels=neg_labels,
colors={name: colors[name][:3] / 255 for name in label_names},
fig=fig, subplot=f'{len(areas)}2{subplot}', show=False)
dark_cmap = plt.get_cmap('Purples')
# proportion of area histogram
ax = axes[idx][1]
rects = ax.hist(area_contacts[area].values(), bins=bins)[2]
for rect, center in zip(rects, (bins[:-1] + bins[1:]) / 2):
if ((sign == 1 and center >= prop_thresh) or
(sign == -1 and center <= -prop_thresh)):
rect.set_color('red')
ax.set_ylim([0, 50])
dict(azimuth=230, elevation=40, distance=0.2)
name_str = '\n'.join([' '.join([r'$\bf{' + word + '}$'
for word in phrase.split(' ')])
for phrase in name.split(',')])
with np.load(op.join(source_dir, 'n_epochs.npz')) as n_epochs:
n_epochs = {k: v for k, v in n_epochs.items()}
# compute fdr correction
null_images = images['null']
masks = dict()
for sub in subjects:
null_dist = list()
for name, null_image in null_images.items():
sub2, ch = [phrase.split('-')[1] for phrase in
name.split('_')[0:2]]
if sub == int(sub2):
null_dist.append(abs(null_image))
null_dist = np.array(null_dist)
for name, image in images.items():
sub2, ch = [phrase.split('-')[1] for phrase in
name.split('_')[0:2]]
if sub == int(sub2):
pvals = np.sum(abs(image) > null_dist, axis=0) / null_dist.shape[0]
masks[name] = mne.stats.fdr_correction(pvals, alpha=alpha)[0]
np.savez_compressed(op.join(out_dir, 'event_image_masks.npz'),
**images['mask'])
feature_maps[0] += abs(image) > image_threshs[sub] # count
feature_maps[1] += image > image_threshs[sub]
feature_maps[2] += abs(image)
feature_maps[3] += (abs(image) > image_threshs[sub]) * score
# compute null distribution thresholds
score_threshs = dict()
image_threshs = dict()
for sub in subjects:
these_scores = scores[scores['sub'] == sub]
score_threshs[sub] = np.quantile(these_scores['null_scores'], 1 - alpha)
null_dist = list()
for name, null_image in null_images.items():
sub2, ch = [phrase.split('-')[1] for phrase in
name.split('_')[0:2]]
if sub == int(sub2):
null_dist.append(null_image)
image_threshs[sub] = np.quantile(
abs(np.array(null_dist)), 1 - alpha, axis=0)
ignore_keywords = ('unknown', '-vent', 'choroid-plexus', 'vessel')
best_contact_idx = np.argsort(scores['event_scores'])[-20:][::-1]
fig = plt.figure(figsize=(8, 8), facecolor='black')
labels = {f'Subject {sub}\n{elec_name} {int(number)}':
[label for label in labels.split(',') if not any(
kw in label.lower() for kw in ignore_keywords)]
for sub, elec_name, number, labels in zip(
ch_pos['sub'][best_contact_idx],
ch_pos['elec_name'][best_contact_idx],
ch_pos['number'][best_contact_idx],
ch_pos['label'][best_contact_idx])}
all_labels = [label for label_list in labels.values()
for label in label_list]
best_contact_colors = {k: v / 255 for k, v in colors.items()
if k in all_labels}
mne.viz.plot_channel_labels_circle(
labels, best_contact_colors, fig=fig, show=False,
title='Contacts with the Highest Classification Accuracies')
fig.tight_layout()
fig.savefig(op.join(fig_dir, 'best_contacts.png'), dpi=300)
BANDS = {'evoked': (0, 1), 'delta': (1, 4), 'theta': (4, 8),
'alpha': (8, 13), 'low_beta': (13, 21),
'high_beta': (21, 30), 'low_gamma': (30, 60),
'high_gamma': (60, 250)}
sig_cor = dict() # signficant correlations by subject
for sub in subjects:
n_epochs = int(scores[f'sub-{sub}_n_epochs'])
t = stats.t(n_epochs - 2).interval(1 - alpha)[1]
x = t**2 / (n_epochs - 2)
r = np.sqrt(x / (1 - x))
sig_cor[sub] = r
# Figure 5: best electrode
mean_scores = dict()
for elec_name in electrode_scores:
mean_scores[elec_name] = np.mean(electrode_scores[elec_name])
best_electrodes = sorted(mean_scores, key=mean_scores.get, reverse=True)[:3]
subs = [elec_name.split('_')[0] for elec_name in best_electrodes]
fig, axes = plt.subplots(1, 3, figsize=(12, 4))
contacts = [contact for contact in anat_labels if
best_electrodes[0] in contact]
labels = set([label for contact in contacts
for label in anat_labels[contact]
if label != 'Unknown' and 'White-Matter' not in label])
brain = mne.viz.Brain(subs[0], **brain_kwargs,
title=subs[0].replace('sub-', 'Subject '))
brain.add_volume_labels(aseg=aseg, labels=list(labels))
brain.add_sensors(info, picks=contacts) # you are here, need info
brain.show_view(azimuth=60, elevation=100, distance=.3)
axes[0].imshow(brain.screenshot())
for sub in [5, 9, 10]:
path.update(subject=str(sub))
raw = mne_bids.read_raw_bids(path)
raw.set_montage(None)
CT_aligned = nib.load(op.join(
subjects_dir, f'sub-{sub}', 'CT', 'CT_aligned.mgz'))
info = mne.io.read_info(op.join(
subjects_dir, f'sub-{sub}', 'ieeg',
f'sub-{sub}_task-{task}_info.fif'))
trans = mne.coreg.estimate_head_mri_t(f'sub-{sub}', subjects_dir)
raw.info = info
gui = mne.gui.locate_ieeg(raw.info, trans, CT_aligned,
subject=f'sub-{sub}', subjects_dir=subjects_dir)
while input('Finished, save to disk? (y/N)\t') != 'y':
mne.io.write_info(op.join(subjects_dir, f'sub-{sub}', 'ieeg',
f'sub-{sub}_task-{task}_info.fif'),
raw.info)
binsize = 0.005
bins = np.linspace(0, 1 - binsize, int(1 / binsize))
wm_keywords = ('white-matter', 'wm', 'cc_')
ignore_keywords = ('unknown', '-vent', 'choroid-plexus', 'vessel')
wm_labels = [label for label in anat_scores
if any([kw in label.lower() for kw in wm_keywords])]
wm = [score for label in wm_labels for score in anat_scores[label]]
gm_labels = [label for label in anat_scores
if not any([kw in label.lower() for kw in wm_keywords]) and
not any([kw in label.lower() for kw in ignore_keywords])]
gm = [score for label in gm_labels for score in anat_scores[label]]
p = stats.ttest_ind(wm, gm)[1]
all_scores = {label: tuple(anat_scores[label]) for label in
wm_labels + gm_labels}
fig, ax = plt.subplots(figsize=(8, 12), facecolor='black')
fig.suptitle('Classification Accuracies by Label', color='w')
all_labels = sorted(
all_scores, key=lambda label: np.mean(all_scores[label]))
for idx, label in enumerate(all_labels):
ax.scatter(all_scores[label], [idx] * len(all_scores[label]),
color=colors[label])
ax.set_yticks(range(len(all_scores)))
ax.set_yticklabels(all_labels)
for tick, label in zip(ax.get_yticklabels(), all_labels):
tick.set_color(colors[label])
for tick in ax.get_xticklabels():
tick.set_color('w')
ax.set_xlabel('Linear SVM Accuracy', color='w')
ax.set_ylabel('Anatomical Label', color='w')
fig.tight_layout()
fig.savefig(op.join(fig_dir, 'label_accuracies.png'),
facecolor=fig.get_facecolor(), dpi=300)
fig, ax = plt.subplots()
fig.suptitle('White Matter-Grey Matter Classifications, p={:.3f}'.format(p))
vdict = ax.violinplot([wm, gm], [0, 1], showextrema=False)
x = swarm(wm, bins=bins) / 50
ax.scatter(x, wm, color='b', s=1)
ax.plot([-0.4, 0.4], [np.mean(wm), np.mean(wm)], color='b')
vdict['bodies'][0].set_facecolor('b')
x = swarm(gm, bins=bins) / 50
ax.scatter(1 + x, gm, color='r', s=1)
ax.plot([0.6, 1.4], [np.mean(gm), np.mean(gm)], color='r')
vdict['bodies'][1].set_facecolor('r')
ax.set_xticks([0, 1])
ax.set_xticklabels([f'White Matter (N={len(wm)})',
f'Grey Matter (N={len(gm)})'])
ax.set_ylabel('Linear SVM Accuracy')
fig.savefig(op.join(fig_dir, 'wm_vs_gm.png'), dpi=300)
# Figure 3: Plots of electrodes with high classification accuracies
# based on their time-frequency characteristics.
# Part 1: all electrodes over 0.75 classification, colored by score.
def plot_brain(rois):
renderer = mne.viz.backends.renderer.create_3d_figure(
size=(1200, 900), bgcolor='w', scene=False)
mne.viz.set_3d_view(figure=renderer.figure, distance=500,
azimuth=None, elevation=None)
for roi in rois:
renderer.mesh(*roi.vert.T, triangles=roi.tri, color=roi.color,
opacity=roi.opacity, representation=roi.representation)
return renderer
# plot electrodes with high accuracies
renderer = plot_brain(rois)
cmap = plt.get_cmap('jet')
for ch_data in imgs:
sub, ch = [phrase.split('-')[1] for phrase in
op.basename(ch_data).split('_')[0:2]]
score = scores[f'sub-{sub}_ch-{ch}']
if score > 0.75:
x, y, z = elec_pos[f'sub-{sub}_ch-{ch}']
renderer.sphere(center=(x, y, z), color=cmap(score)[:3],
scale=5)
# renderer.screenshot(op.join(fig_dir, 'high_accuracy.png'))
# save colorbar
fig, ax = plt.subplots(figsize=(1, 6))
gradient = np.linspace(0, 1, 256)
gradient = np.repeat(gradient[:, np.newaxis], 256, axis=1)
ax.imshow(gradient, aspect='auto', cmap=cmap)
ax.set_xticks([])
ax.invert_yaxis()
ax.yaxis.tick_right()
ax.set_yticks(np.array([0, 0.25, 0.5, 0.75, 1]) * 256)
ax.set_yticklabels([0, 0.25, 0.5, 0.75, 1])
fig.tight_layout()
fig.savefig(op.join(fig_dir, 'colorbar.png'))
# Part 2: all electrodes with pre-movement high-beta decreases.
renderer = plot_brain(rois)
freqs = np.concatenate(
[[0], np.linspace(1, 10, 10),
np.logspace(np.log(11), np.log(250), 40, base=np.e)])
times = np.linspace(-0.5, 4.999, 1000)
for ch_data in imgs:
sub, ch = [phrase.split('-')[1] for phrase in
op.basename(ch_data).split('_')[0:2]]
if scores[f'sub-{sub}_ch-{ch}'] > 0.75:
beta = imgs[ch_data][np.logical_and(freqs > 13, freqs < 40)]
beta = beta[:, np.logical_and(times > -0.25, times < 0)]
if beta.min() < -0.025:
print(f'sub-{sub}_ch-{ch}', elec_labels[f'sub-{sub}_ch-{ch}'])
x, y, z = elec_pos[f'sub-{sub}_ch-{ch}']
renderer.sphere(center=(x, y, z), color='b', scale=5)
# renderer.screenshot(op.join(fig_dir, 'beta_decrease.png'))
# Part 3: all electrodes with post-movement gamma increases.
renderer = plot_brain(rois)
# ax.plot([250, 500, 500, 250, 250], [13, 13, 40, 40, 13])
for ch_data in imgs:
sub, ch = [phrase.split('-')[1] for phrase in
op.basename(ch_data).split('_')[0:2]]
if scores[f'sub-{sub}_ch-{ch}'] > 0.75:
gamma = imgs[ch_data][np.logical_and(freqs > 50, freqs < 120)]
gamma = gamma[:, np.logical_and(times > 0, times < 0.25)]
if gamma.max() > 0.025:
print(f'sub-{sub}_ch-{ch}', elec_labels[f'sub-{sub}_ch-{ch}'])
x, y, z = elec_pos[f'sub-{sub}_ch-{ch}']
renderer.sphere(center=(x, y, z), color='r', scale=5)
# renderer.screenshot(op.join(fig_dir, 'gamma_increase.png'))
# Part 4: all electrodes with pre-movement delta increases.
renderer = plot_brain(rois)
for ch_data in imgs:
sub, ch = [phrase.split('-')[1] for phrase in
op.basename(ch_data).split('_')[0:2]]
if scores[f'sub-{sub}_ch-{ch}'] > 0.75:
delta = imgs[ch_data][np.logical_and(freqs > 1, freqs < 4)]
delta = delta[:, times < 0]
if delta.max() > 0.025:
print(f'sub-{sub}_ch-{ch}', elec_labels[f'sub-{sub}_ch-{ch}'])
x, y, z = elec_pos[f'sub-{sub}_ch-{ch}']
renderer.sphere(center=(x, y, z), color='r', scale=5)
# renderer.screenshot(op.join(fig_dir, 'delta_increase.png'))
# Figure 4: Make a wordcloud with areas that have better
# scores with exponentially greater representation,
# and compare white matter to gray matter.
wm = np.concatenate([anat_dict[label] for label in anat_dict
if 'White-Matter' in label])
gm = np.concatenate([
anat_dict[label] for label in anat_dict if
all([kw not in label for kw in ('White-Matter', 'WM', 'Unknown')])])
p = stats.ttest_ind(wm, gm)[1]
fig, ax = plt.subplots()
fig.suptitle('White Matter-Grey Matter Classifications, p={:.3f}'.format(p))
vdict = ax.violinplot([wm, gm], [0, 1], showextrema=False)
x = swarm(wm, bins=bins) / 50
ax.scatter(x, wm, color='b', s=1)
vdict['bodies'][0].set_facecolor('b')
x = swarm(gm, bins=bins) / 50
ax.scatter(1 + x, gm, color='r', s=1)
vdict['bodies'][1].set_facecolor('r')
ax.set_xticks([0, 1])
ax.set_xticklabels(['White Matter', 'Grey Matter'])
ax.set_ylabel('Linear SVM Accuracy')
fig.savefig(op.join(fig_dir, 'wm_vs_gm.png'), dpi=300)
N = 1000
text = ''
for label in anat_dict:
score = anat_dict[label].max()
if score > 0.75:
n = np.round(N * np.exp(score - 1)).astype(int)
label = label.replace('ctx-', '')
text += ' '.join([label] * n)
wordcloud = WordCloud().generate(text)
fig, ax = plt.subplots()
ax.imshow(wordcloud, interpolation='bilinear')
ax.axis('off')
fig.savefig(op.join(fig_dir, 'wordcloud.png'), dpi=300)