forked from shjo-april/PuzzleCAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_classification_with_puzzle.py
475 lines (369 loc) · 18.5 KB
/
train_classification_with_puzzle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# Copyright (C) 2020 * Ltd. All rights reserved.
# author : Sanghyeon Jo <[email protected]>
import os
import sys
import copy
import math
import shutil
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from core.puzzle_utils import *
from core.networks import *
from core.datasets import *
from tools.general.io_utils import *
from tools.general.time_utils import *
from tools.general.json_utils import *
from tools.ai.log_utils import *
from tools.ai.demo_utils import *
from tools.ai.optim_utils import *
from tools.ai.torch_utils import *
from tools.ai.evaluate_utils import *
from tools.ai.augment_utils import *
from tools.ai.randaugment import *
parser = argparse.ArgumentParser()
###############################################################################
# Dataset
###############################################################################
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--data_dir', default='../VOCtrainval_11-May-2012/', type=str)
###############################################################################
# Network
###############################################################################
parser.add_argument('--architecture', default='resnet50', type=str)
parser.add_argument('--mode', default='normal', type=str) # fix
###############################################################################
# Hyperparameter
###############################################################################
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--max_epoch', default=15, type=int)
parser.add_argument('--lr', default=0.1, type=float)
parser.add_argument('--wd', default=1e-4, type=float)
parser.add_argument('--nesterov', default=True, type=str2bool)
parser.add_argument('--image_size', default=512, type=int)
parser.add_argument('--min_image_size', default=320, type=int)
parser.add_argument('--max_image_size', default=640, type=int)
parser.add_argument('--print_ratio', default=0.1, type=float)
parser.add_argument('--tag', default='', type=str)
parser.add_argument('--augment', default='', type=str)
# For Puzzle-CAM
parser.add_argument('--num_pieces', default=4, type=int)
# 'cl_pcl'
# 'cl_re'
# 'cl_conf'
# 'cl_pcl_re'
# 'cl_pcl_re_conf'
parser.add_argument('--loss_option', default='cl_pcl_re', type=str)
parser.add_argument('--level', default='feature', type=str)
parser.add_argument('--re_loss', default='L1_Loss', type=str) # 'L1_Loss', 'L2_Loss'
parser.add_argument('--re_loss_option', default='masking', type=str) # 'none', 'masking', 'selection'
# parser.add_argument('--branches', default='0,0,0,0,0,1', type=str)
parser.add_argument('--alpha', default=1.0, type=float)
parser.add_argument('--alpha_schedule', default=0.50, type=float)
if __name__ == '__main__':
###################################################################################
# Arguments
###################################################################################
args = parser.parse_args()
log_dir = create_directory(f'./experiments/logs/')
data_dir = create_directory(f'./experiments/data/')
model_dir = create_directory('./experiments/models/')
tensorboard_dir = create_directory(f'./experiments/tensorboards/{args.tag}/')
log_path = log_dir + f'{args.tag}.txt'
data_path = data_dir + f'{args.tag}.json'
model_path = model_dir + f'{args.tag}.pth'
set_seed(args.seed)
log_func = lambda string='': log_print(string, log_path)
log_func('[i] {}'.format(args.tag))
log_func()
###################################################################################
# Transform, Dataset, DataLoader
###################################################################################
imagenet_mean = [0.485, 0.456, 0.406]
imagenet_std = [0.229, 0.224, 0.225]
normalize_fn = Normalize(imagenet_mean, imagenet_std)
train_transforms = [
RandomResize(args.min_image_size, args.max_image_size),
RandomHorizontalFlip(),
]
if 'colorjitter' in args.augment:
train_transforms.append(transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1))
if 'randaugment' in args.augment:
train_transforms.append(RandAugmentMC(n=2, m=10))
train_transform = transforms.Compose(train_transforms + \
[
Normalize(imagenet_mean, imagenet_std),
RandomCrop(args.image_size),
Transpose()
]
)
test_transform = transforms.Compose([
Normalize_For_Segmentation(imagenet_mean, imagenet_std),
Top_Left_Crop_For_Segmentation(args.image_size),
Transpose_For_Segmentation()
])
meta_dic = read_json('./data/VOC_2012.json')
class_names = np.asarray(meta_dic['class_names'])
train_dataset = VOC_Dataset_For_Classification(args.data_dir, 'train_aug', train_transform)
train_dataset_for_seg = VOC_Dataset_For_Testing_CAM(args.data_dir, 'train', test_transform)
valid_dataset_for_seg = VOC_Dataset_For_Testing_CAM(args.data_dir, 'val', test_transform)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True, drop_last=True)
train_loader_for_seg = DataLoader(train_dataset_for_seg, batch_size=args.batch_size, num_workers=1, drop_last=True)
valid_loader_for_seg = DataLoader(valid_dataset_for_seg, batch_size=args.batch_size, num_workers=1, drop_last=True)
log_func('[i] mean values is {}'.format(imagenet_mean))
log_func('[i] std values is {}'.format(imagenet_std))
log_func('[i] The number of class is {}'.format(meta_dic['classes']))
log_func('[i] train_transform is {}'.format(train_transform))
log_func('[i] test_transform is {}'.format(test_transform))
log_func()
val_iteration = len(train_loader)
log_iteration = int(val_iteration * args.print_ratio)
max_iteration = args.max_epoch * val_iteration
log_func('[i] log_iteration : {:,}'.format(log_iteration))
log_func('[i] val_iteration : {:,}'.format(val_iteration))
log_func('[i] max_iteration : {:,}'.format(max_iteration))
###################################################################################
# Network
###################################################################################
model = Classifier(args.architecture, meta_dic['classes'], mode=args.mode)
param_groups = model.get_parameter_groups(print_fn=None)
gap_fn = model.global_average_pooling_2d
model = model.cuda()
model.train()
log_func('[i] Architecture is {}'.format(args.architecture))
log_func('[i] Total Params: %.2fM'%(calculate_parameters(model)))
log_func()
try:
use_gpu = os.environ['CUDA_VISIBLE_DEVICES']
except KeyError:
use_gpu = '0'
the_number_of_gpu = len(use_gpu.split(','))
if the_number_of_gpu > 1:
log_func('[i] the number of gpu : {}'.format(the_number_of_gpu))
model = nn.DataParallel(model)
# for sync bn
# patch_replication_callback(model)
load_model_fn = lambda: load_model(model, model_path, parallel=the_number_of_gpu > 1)
save_model_fn = lambda: save_model(model, model_path, parallel=the_number_of_gpu > 1)
###################################################################################
# Loss, Optimizer
###################################################################################
class_loss_fn = nn.MultiLabelSoftMarginLoss(reduction='none').cuda()
if args.re_loss == 'L1_Loss':
re_loss_fn = L1_Loss
else:
re_loss_fn = L2_Loss
log_func('[i] The number of pretrained weights : {}'.format(len(param_groups[0])))
log_func('[i] The number of pretrained bias : {}'.format(len(param_groups[1])))
log_func('[i] The number of scratched weights : {}'.format(len(param_groups[2])))
log_func('[i] The number of scratched bias : {}'.format(len(param_groups[3])))
optimizer = PolyOptimizer([
{'params': param_groups[0], 'lr': args.lr, 'weight_decay': args.wd},
{'params': param_groups[1], 'lr': 2*args.lr, 'weight_decay': 0},
{'params': param_groups[2], 'lr': 10*args.lr, 'weight_decay': args.wd},
{'params': param_groups[3], 'lr': 20*args.lr, 'weight_decay': 0},
], lr=args.lr, momentum=0.9, weight_decay=args.wd, max_step=max_iteration, nesterov=args.nesterov)
#################################################################################################
# Train
#################################################################################################
data_dic = {
'train' : [],
'validation' : []
}
train_timer = Timer()
eval_timer = Timer()
train_meter = Average_Meter(['loss', 'class_loss', 'p_class_loss', 're_loss', 'conf_loss', 'alpha'])
best_train_mIoU = -1
thresholds = list(np.arange(0.10, 0.50, 0.05))
def evaluate(loader):
model.eval()
eval_timer.tik()
meter_dic = {th : Calculator_For_mIoU('./data/VOC_2012.json') for th in thresholds}
with torch.no_grad():
length = len(loader)
for step, (images, labels, gt_masks) in enumerate(loader):
images = images.cuda()
labels = labels.cuda()
_, features = model(images, with_cam=True)
# features = resize_for_tensors(features, images.size()[-2:])
# gt_masks = resize_for_tensors(gt_masks, features.size()[-2:], mode='nearest')
mask = labels.unsqueeze(2).unsqueeze(3)
cams = (make_cam(features) * mask)
# for visualization
if step == 0:
obj_cams = cams.max(dim=1)[0]
for b in range(8):
image = get_numpy_from_tensor(images[b])
cam = get_numpy_from_tensor(obj_cams[b])
image = denormalize(image, imagenet_mean, imagenet_std)[..., ::-1]
h, w, c = image.shape
cam = (cam * 255).astype(np.uint8)
cam = cv2.resize(cam, (w, h), interpolation=cv2.INTER_LINEAR)
cam = colormap(cam)
image = cv2.addWeighted(image, 0.5, cam, 0.5, 0)[..., ::-1]
image = image.astype(np.float32) / 255.
writer.add_image('CAM/{}'.format(b + 1), image, iteration, dataformats='HWC')
for batch_index in range(images.size()[0]):
# c, h, w -> h, w, c
cam = get_numpy_from_tensor(cams[batch_index]).transpose((1, 2, 0))
gt_mask = get_numpy_from_tensor(gt_masks[batch_index])
h, w, c = cam.shape
gt_mask = cv2.resize(gt_mask, (w, h), interpolation=cv2.INTER_NEAREST)
for th in thresholds:
bg = np.ones_like(cam[:, :, 0]) * th
pred_mask = np.argmax(np.concatenate([bg[..., np.newaxis], cam], axis=-1), axis=-1)
meter_dic[th].add(pred_mask, gt_mask)
# break
sys.stdout.write('\r# Evaluation [{}/{}] = {:.2f}%'.format(step + 1, length, (step + 1) / length * 100))
sys.stdout.flush()
print(' ')
model.train()
best_th = 0.0
best_mIoU = 0.0
for th in thresholds:
mIoU, mIoU_foreground = meter_dic[th].get(clear=True)
if best_mIoU < mIoU:
best_th = th
best_mIoU = mIoU
return best_th, best_mIoU
writer = SummaryWriter(tensorboard_dir)
train_iterator = Iterator(train_loader)
loss_option = args.loss_option.split('_')
for iteration in range(max_iteration):
images, labels = train_iterator.get()
images, labels = images.cuda(), labels.cuda()
###############################################################################
# Normal
###############################################################################
logits, features = model(images, with_cam=True)
###############################################################################
# Puzzle Module
###############################################################################
tiled_images = tile_features(images, args.num_pieces)
tiled_logits, tiled_features = model(tiled_images, with_cam=True)
re_features = merge_features(tiled_features, args.num_pieces, args.batch_size)
###############################################################################
# Losses
###############################################################################
if args.level == 'cam':
features = make_cam(features)
re_features = make_cam(re_features)
class_loss = class_loss_fn(logits, labels).mean()
if 'pcl' in loss_option:
p_class_loss = class_loss_fn(gap_fn(re_features), labels).mean()
else:
p_class_loss = torch.zeros(1).cuda()
if 're' in loss_option:
if args.re_loss_option == 'masking':
class_mask = labels.unsqueeze(2).unsqueeze(3)
re_loss = re_loss_fn(features, re_features) * class_mask
re_loss = re_loss.mean()
elif args.re_loss_option == 'selection':
re_loss = 0.
for b_index in range(labels.size()[0]):
class_indices = labels[b_index].nonzero(as_tuple=True)
selected_features = features[b_index][class_indices]
selected_re_features = re_features[b_index][class_indices]
re_loss_per_feature = re_loss_fn(selected_features, selected_re_features).mean()
re_loss += re_loss_per_feature
re_loss /= labels.size()[0]
else:
re_loss = re_loss_fn(features, re_features).mean()
else:
re_loss = torch.zeros(1).cuda()
if 'conf' in loss_option:
conf_loss = shannon_entropy_loss(tiled_logits)
else:
conf_loss = torch.zeros(1).cuda()
if args.alpha_schedule == 0.0:
alpha = args.alpha
else:
alpha = min(args.alpha * iteration / (max_iteration * args.alpha_schedule), args.alpha)
loss = class_loss + p_class_loss + alpha * re_loss + conf_loss
#################################################################################################
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_meter.add({
'loss' : loss.item(),
'class_loss' : class_loss.item(),
'p_class_loss' : p_class_loss.item(),
're_loss' : re_loss.item(),
'conf_loss' : conf_loss.item(),
'alpha' : alpha,
})
#################################################################################################
# For Log
#################################################################################################
if (iteration + 1) % log_iteration == 0:
loss, class_loss, p_class_loss, re_loss, conf_loss, alpha = train_meter.get(clear=True)
learning_rate = float(get_learning_rate_from_optimizer(optimizer))
data = {
'iteration' : iteration + 1,
'learning_rate' : learning_rate,
'alpha' : alpha,
'loss' : loss,
'class_loss' : class_loss,
'p_class_loss' : p_class_loss,
're_loss' : re_loss,
'conf_loss' : conf_loss,
'time' : train_timer.tok(clear=True),
}
data_dic['train'].append(data)
write_json(data_path, data_dic)
log_func('[i] \
iteration={iteration:,}, \
learning_rate={learning_rate:.4f}, \
alpha={alpha:.2f}, \
loss={loss:.4f}, \
class_loss={class_loss:.4f}, \
p_class_loss={p_class_loss:.4f}, \
re_loss={re_loss:.4f}, \
conf_loss={conf_loss:.4f}, \
time={time:.0f}sec'.format(**data)
)
writer.add_scalar('Train/loss', loss, iteration)
writer.add_scalar('Train/class_loss', class_loss, iteration)
writer.add_scalar('Train/p_class_loss', p_class_loss, iteration)
writer.add_scalar('Train/re_loss', re_loss, iteration)
writer.add_scalar('Train/conf_loss', conf_loss, iteration)
writer.add_scalar('Train/learning_rate', learning_rate, iteration)
writer.add_scalar('Train/alpha', alpha, iteration)
#################################################################################################
# Evaluation
#################################################################################################
if (iteration + 1) % val_iteration == 0:
threshold, mIoU = evaluate(train_loader_for_seg)
if best_train_mIoU == -1 or best_train_mIoU < mIoU:
best_train_mIoU = mIoU
save_model_fn()
log_func('[i] save model')
data = {
'iteration' : iteration + 1,
'threshold' : threshold,
'train_mIoU' : mIoU,
'best_train_mIoU' : best_train_mIoU,
'time' : eval_timer.tok(clear=True),
}
data_dic['validation'].append(data)
write_json(data_path, data_dic)
log_func('[i] \
iteration={iteration:,}, \
threshold={threshold:.2f}, \
train_mIoU={train_mIoU:.2f}%, \
best_train_mIoU={best_train_mIoU:.2f}%, \
time={time:.0f}sec'.format(**data)
)
writer.add_scalar('Evaluation/threshold', threshold, iteration)
writer.add_scalar('Evaluation/train_mIoU', mIoU, iteration)
writer.add_scalar('Evaluation/best_train_mIoU', best_train_mIoU, iteration)
write_json(data_path, data_dic)
writer.close()
print(args.tag)