forked from ArnoKasper/ProcessSim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimsource.py
609 lines (553 loc) · 23.3 KB
/
simsource.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
"""
Project: ProcessSim
Made By: Arno Kasper
Version: 1.0.0
"""
from flowitem import Order
import numpy as np
import pandas as pd
import random
class Source(object):
def __init__(self, simulation, stationary=True):
"""
:param simulation:
:param stationary:
"""
self.sim = simulation
self.stationary = stationary
self.random_generator = random.Random()
self.random_generator.seed(999999)
self.mean_time_between_arrivals = self.sim.model_panel.MEAN_TIME_BETWEEN_ARRIVAL
if not self.stationary:
self.non_stationary = NonStationaryControl(simulation=self.sim, source=self)
# activate non-stationary manager
self.non_stationary_manager = self.non_stationary.non_stationary_manager()
def generate_random_arrival_exp(self):
i = 1
while True:
# count input
self.sim.data_exp.order_input_counter += 1
# create an order object and give it a name
order = Order(simulation=self.sim)
order.entry_time = self.sim.env.now
order.name = ('Order%07d' % i)
order.identifier = i
# release control
if self.sim.policy_panel.release_control:
self.sim.release_control.order_pool(order=order)
else:
self.sim.process.put_in_queue(order=order)
# next inter arrival time
if not self.stationary:
inter_arrival_time = \
self.sim.random_generator.expovariate(1 / self.non_stationary.current_mean_between_arrival)
else:
inter_arrival_time = self.random_generator.expovariate(1 / self.mean_time_between_arrivals)
yield self.sim.env.timeout(inter_arrival_time)
i += 1
if self.sim.env.now >= (self.sim.model_panel.WARM_UP_PERIOD + self.sim.model_panel.RUN_TIME) \
* self.sim.model_panel.NUMBER_OF_RUNS:
break
class NonStationaryControl(object):
def __init__(self, simulation, source):
"""
initialize non-stationary control variables
:param simulation:
:param source:
"""
# general params
self.sim = simulation
self.source = source
self.random_generator = random.Random()
self.random_generator.seed(999999)
self.plot_trajectory = False
self.print_info = False
self.force_run_time = True
self.save_non_stationary_database = False
# stationary params
self.current_utilization = self.sim.model_panel.AIMED_UTILIZATION
self.current_cv = 1
self.current_mean_between_arrival = self.source.mean_time_between_arrivals
self.current_pattern = "warm_up"
# trail patterns available
"""
- stationary (stationary period)
- systematic (increase of CV)
- stratification (decrease of CV)
- cyclic (longer periods of up and down shifts of CV)
- upward_trend (monotonic increase in utilization)
- downward_trend (monotonic decrease in utilization)
- upward_shift (sudden increase in utilization)
- downward_shift (sudden decrease in utilization)
"""
# initiate hard coded pattern
pattern_sequence, total_time = self.hard_code_pattern()
self.pattern_sequence = pattern_sequence
self.total_time = total_time
if self.force_run_time:
self.sim.model_panel.RUN_TIME = self.total_time
# print plot
if self.plot_trajectory:
self.plot_system(show_emperical_trajectory=False, save=True)
# save database
if self.save_non_stationary_database:
self.save_non_stationary_list()
# non stationary pattern -------------------------------------------------------------------------------------------
def hard_code_pattern(self):
pattern_sequence = list()
time = 1000
total_time = 0
# 1: stationary period
pattern_sequence.append(self.pattern_stationary(time=time, utilization=0.9, cv=1))
total_time += time
# 2: increase utilization period
pattern_sequence.append(self.pattern_upward_or_downward_trend(time=1500,
utilization_from=0.9,
utilization_till=0.95,
interval=100,
cv=1)
)
total_time += 1500
# 3: shift utilization down
pattern_sequence.append(self.pattern_upward_or_downward_shift(time=5000,
utilization_from=0.95,
utilization_till=0.85,
interval=5000 / 2,
cv=1)
)
total_time += 5000
# 2: decrease utilization period
pattern_sequence.append(self.pattern_upward_or_downward_trend(time=1500,
utilization_from=0.85,
utilization_till=0.9,
interval=100,
cv=1)
)
total_time += 1500
# 3: stationary period
pattern_sequence.append(self.pattern_stationary(time=time, utilization=0.9, cv=1))
total_time += time
return pattern_sequence, total_time
# non stationary control -------------------------------------------------------------------------------------------
def non_stationary_manager(self):
# import lists
time_list, utilization_list, cv_list, pattern_name_list = \
self.time_pattern_list(patterns_sequence=self.pattern_sequence)
# import params
number_of_patterns = len(time_list) - 1
index = 0
run_time = 0
previous_time = 0
run_number = 1
# loop to manage the run dynamics
while True:
# get step params
time = time_list[index] + run_time - previous_time
previous_time = time_list[index] + run_time
self.current_cv = cv_list[index]
self.current_pattern = pattern_name_list[index]
index += 1
# change mean time between arrival
if self.current_utilization != utilization_list[index]:
self.current_utilization = utilization_list[index]
self.current_mean_between_arrival = \
self.sim.general_functions.arrival_time_calculator(
wc_and_flow_config=self.sim.model_panel.WC_AND_FLOW_CONFIGURATION,
manufacturing_floor_layout=self.sim.model_panel.MANUFACTURING_FLOOR_LAYOUT,
aimed_utilization=self.current_utilization,
mean_process_time=self.sim.model_panel.MEAN_PROCESS_TIME,
number_of_machines=self.sim.model_panel.NUMBER_OF_MACHINES,
cv=self.current_cv)
if self.print_info:
print(f"\n\tMean time between arrival: {self.current_mean_between_arrival}\n"
f"\tAimed utilization {self.current_utilization}\n"
f"\tCurrent pattern {self.current_pattern}\n")
# yield until the next change
yield self.sim.env.timeout(time)
# break loop if all patterns are visited
if number_of_patterns == index:
index = 0
run_time += self.sim.model_panel.RUN_TIME
previous_time = int(self.sim.env.now) - self.sim.model_panel.WARM_UP_PERIOD * run_number
run_number += 1
if self.print_info:
print(f"reset experiment trajectory {self.sim.env.now}")
return
# pattern list translate -------------------------------------------------------------------------------------------
def time_pattern_list(self, patterns_sequence, cv=1):
"""
Method that makes a list with the pattern of the non-stationary system
:param patterns_sequence:
:param cv:
:return: time_list, utilization_list, cv_list, pattern_name_list
"""
# initialze lists
time_list = list()
utilization_list = list()
cv_list = list()
pattern_name_list = list()
# loop params
time = self.sim.model_panel.WARM_UP_PERIOD
utilization = self.current_utilization
cv = cv
# loop for each pattern
"""
- 0: pattern name <string>
- 1: time span: <float>
- 2: utilization [from, to] <list, int>
- 3: utilization change by <int>
- 4: cv [from, to] <list, int>
- 5: cv change by <float>
- 6: interval <int>
"""
for i, pattern_list in enumerate(patterns_sequence):
# check if utilization will change
if pattern_list[3] != 'na':
if pattern_list[0][-5:-1] == "shif":
time_shift = [time, time + pattern_list[6] - 0.000001,
time + pattern_list[6],
time + pattern_list[1]
]
time += pattern_list[1]
time_list.extend(time_shift)
utilization_shift = [utilization,
utilization,
(utilization - pattern_list[3]),
(utilization - pattern_list[3])
]
utilization_list.extend(utilization_shift)
utilization = utilization - pattern_list[3]
cv_list_shift = [pattern_list[4][0]] * 4
cv_list.extend(cv_list_shift)
utilization_shift = [pattern_list[0]] * 4
pattern_name_list.extend(utilization_shift)
elif pattern_list[0][-5:-1] == "tren":
number_of_changes = int(pattern_list[1] / pattern_list[6])
for j in range(0, number_of_changes):
time_list.append(time)
time += pattern_list[6]
utilization_list.append(utilization)
utilization += pattern_list[3]
cv_list.append(pattern_list[4][0])
pattern_name_list.append(pattern_list[0])
# check if cv will change
elif pattern_list[5] != 'na':
number_of_changes = int(pattern_list[1] / pattern_list[6])
for j in range(0, number_of_changes):
time_list.append(time)
time += pattern_list[6]
utilization_list.append(pattern_list[2][0])
cv_list.append(cv)
cv += pattern_list[5]
pattern_name_list.append(pattern_list[0])
# stationary period
else:
time_list.append(time)
time += pattern_list[1]
utilization_list.append(pattern_list[2][0])
cv_list.append(pattern_list[4][0])
pattern_name_list.append(pattern_list[0])
return time_list, utilization_list, cv_list, pattern_name_list
# pattern list -----------------------------------------------------------------------------------------------------
def pattern_stationary(self, time, utilization, cv):
"""
returns list with the pattern of the stationary events
:param time:
:param utilization:
:param cv:
:return: return_list
Key for the list
- 0: pattern name <string>
- 1: time span: <float>
- 2: utilization [from, to] <list, int>
- 3: utilization change by <int>
- 4: cv [from, to] <list, int>
- 5: cv change by <float>
- 6: interval <int>
"""
# setup params
return_list = list()
# pattern name
return_list.append("stationary")
# time span
return_list.append(time)
# utilization
util_list = [utilization, utilization]
return_list.append(util_list)
# utilization change by
return_list.append('na')
# cv list
cv_list = [cv, cv]
return_list.append(cv_list)
# cv change by
return_list.append('na')
# interval
return_list.append(time)
return return_list
def pattern_systematic_or_stratification(self, time, utilization, cv_from, cv_to, interval):
"""
method that makes an systematic or stratification pattern
:param time:
:param utilization:
:param cv_from:
:param cv_to:
:param interval:
:return:
"""
if time < interval:
print("interval is larger than time, default assumption interval = time / 10")
interval = time / 10
# setup params
return_list = list()
# pattern name
if cv_from > cv_to:
return_list.append("stratification")
else:
return_list.append("systematic")
# time span
return_list.append(time)
# utilization
util_list = [utilization, utilization]
return_list.append(util_list)
# utilization change by
return_list.append('na')
# cv list
cv_list = [cv_from, cv_from]
return_list.append(cv_list)
# cv change by
cv_delta = (cv_to - cv_from) / interval
return_list.append(cv_delta)
# interval
return_list.append(interval)
return return_list
def pattern_cyclic(self, time, utilization, cv_min, cv_max, interval):
"""
method that makes an cyclic pattern
:param time:
:param utilization:
:param cv_min:
:param cv_max:
:param interval:
:return:
"""
if time < interval:
print("interval is larger than time, default assumption interval = time / 10")
interval = time / 10
# setup params
return_list = list()
# pattern name
return_list.append("cyclic")
# time span
return_list.append(time)
# utilization
util_list = [utilization, utilization]
return_list.append(util_list)
# utilization change by
return_list.append('na')
# cv list
cv_list = [cv_min, cv_max]
return_list.append(cv_list)
# cv change by
return_list.append('na')
# interval
return_list.append(interval)
return return_list
def pattern_upward_or_downward_trend(self, time, utilization_from, utilization_till, cv, interval):
"""
method that makes an upward or downward trend pattern
:param time:
:param utilization_from:
:param utilization_till:
:param cv:
:param interval:
:return:
"""
if time < interval:
print("interval is larger than time, default assumption interval = time / 10")
interval = time / 10
# setup params
return_list = list()
if utilization_from > utilization_till:
return_list.append("downward_trend")
else:
return_list.append("upward_trend")
# time span
return_list.append(time)
# utilization
util_list = [utilization_from, utilization_till]
return_list.append(util_list)
# utilization change by
utilization_delta = (utilization_till - utilization_from) / (time / interval)
return_list.append(utilization_delta)
# cv list
cv_list = [cv, cv]
return_list.append(cv_list)
# cv change by
return_list.append('na')
# interval
return_list.append(interval)
return return_list
def pattern_upward_or_downward_shift(self, time, utilization_from, utilization_till, cv, interval):
"""
method that makes an upward or downward shift pattern
:param time:
:param utilization_from:
:param utilization_till:
:param cv:
:param interval:
:return:
"""
if time < interval:
print("interval is larger than time, default assumption interval = time / 10")
interval = time / 10
# setup params
return_list = list()
if utilization_from > utilization_till:
return_list.append("downward_shift")
else:
return_list.append("upward_shift")
# time span
return_list.append(time)
# utilization
util_list = [utilization_from, utilization_till]
return_list.append(util_list)
# utilization change by
utilization_delta = (utilization_from - utilization_till)
return_list.append(utilization_delta)
# cv list
cv_list = [cv, cv]
return_list.append(cv_list)
# cv change by
return_list.append('na')
# interval
interval = 0.5 * time
return_list.append(interval)
return return_list
# utilities --------------------------------------------------------------------------------------------------------
def plot_system(self, show_emperical_trajectory=True, save=False):
"""
method that plots the non-stationary patern
:param show_emperical_trajectory:
:param save:
:return:
"""
import matplotlib.pyplot as plt
# get data
time_list, utilization_list, cv_list, pattern_name_list = self.time_pattern_list(
patterns_sequence=self.pattern_sequence)
# put data in dataframe
if show_emperical_trajectory:
# get empirical values
empirical_list, new_time_list, new_utilization_list = \
self.pseudo_random_generator(time_list=time_list, utilization_list=utilization_list)
# moving average of utilization
empirical_list = self.moving_average(mva_list=empirical_list, n=500)
df = pd.DataFrame({'x': new_time_list,
'y_1': new_utilization_list,
"empirical": empirical_list})
else:
df = pd.DataFrame({'x': time_list, 'y_1': utilization_list})
if show_emperical_trajectory:
# add to the plot
plt.plot('x', 'empirical', data=df, linestyle='-', color="blue", linewidth=1, alpha=0.4)
# finnish the plot
# Make a plot to visualize the results
plt.plot('x', 'y_1', data=df, linestyle='-', color="black", linewidth=2)
plt.title("Non Stationary Trajectory")
plt.xlabel("time")
plt.ylabel("Utilization")
if save:
plt.savefig('non_stationary_trajectory.png', dpi=96)
# manipulate
plt.gca().set_yticklabels(['{:.0f}%'.format(x * 100) for x in plt.gca().get_yticks()])
plt.show()
return
def pseudo_random_generator(self, time_list, utilization_list, start_time=0):
"""
:param time_list:
:param utilization_list:
:param start_time:
:return:
"""
# setup params
index = 0
loop_time = start_time
current_mean_between_arrival = self.current_mean_between_arrival
# looping lists
emperical_list = list()
new_time_list = list()
new_utilization_list = list()
# loop
while True:
inter_arrival_time = self.random_generator.expovariate(1 / current_mean_between_arrival)
utilization = 1 - (inter_arrival_time / self.sim.model_panel.MEAN_PROCESS_TIME)
# utilization += 1
if loop_time >= time_list[index]:
# control if loop needs to be broken
if loop_time > time_list[len(time_list) - 1] + time_list[0]:
break
elif loop_time > time_list[len(time_list) - 1]:
current_utilization = utilization_list[index - 1]
else:
# correct index
index += 1
# change mean time between arrival
current_utilization = utilization_list[index]
current_mean_between_arrival = \
self.sim.general_functions.arrival_time_calculator(
wc_and_flow_config=self.sim.model_panel.WC_AND_FLOW_CONFIGURATION,
manufacturing_floor_layout=self.sim.model_panel.MANUFACTURING_FLOOR_LAYOUT,
aimed_utilization=current_utilization,
mean_process_time=self.sim.model_panel.MEAN_PROCESS_TIME,
number_of_machines=self.sim.model_panel.NUMBER_OF_MACHINES,
cv=self.current_cv)
# update the time
loop_time += inter_arrival_time
else:
# update the time
loop_time += inter_arrival_time
# update lists
emperical_list.append(utilization)
new_time_list.append(loop_time)
new_utilization_list.append(utilization_list[index])
return emperical_list, new_time_list, new_utilization_list
def moving_average(self, mva_list, n):
"""
:param mva_list:
:param n:
:return:
"""
cumsum, moving_aves = [0], []
for i, x in enumerate(mva_list, 1):
cumsum.append(cumsum[i - 1] + x)
if i >= n:
moving_ave = (cumsum[i] - cumsum[i - n]) / n
# can do stuff with moving_ave here
moving_aves.append(moving_ave)
else:
moving_aves.append(np.nan)
return moving_aves
def save_non_stationary_list(self, file_pattern=".csv"):
"""
save the pattern list of the non-stationary events
:param file_pattern:
:return:
"""
# import libraries
import exp_manager as exp_manager
# import lists
time_list, utilization_list, cv_list, pattern_name_list = self.time_pattern_list(
patterns_sequence=self.pattern_sequence)
# put into a dataframe
df = pd.DataFrame({'time': time_list,
'utilization': utilization_list,
"pattern name": pattern_name_list})
# get path
path = exp_manager.Experiment_Manager.get_directory("spam")
# make file name
path = path + "non_stationary_list" + file_pattern
# save database
exp_manager.Experiment_Manager.save_database_csv(self="spam", file=path, database=df)
# print info
print("#### non stationary control database saved ####")
return