-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path03_extract_features.py
88 lines (52 loc) · 1.75 KB
/
03_extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# coding: utf-8
from glob import glob
from time import time
import pandas as pd
import numpy as np
import feather
from tqdm import tqdm
import feature_extraction_utils as fu
# In[3]:
feather_files = sorted(glob('./data_frames/wdvc16_*.feather'))
dfs = []
for f in feather_files:
year_match = re.match('.+wdvc16_(\d{4})_.+', f)
year = int(year_match.group(1))
if year < 2015:
continue
df = feather.read_dataframe(f)
dfs.append(df)
df_all = pd.concat(dfs)
df_all.reset_index(drop=1, inplace=1)
del dfs, df
# train-validation-test split
TRAIN = 0
VAL = 1
TEST = 2
ts = df_all.revision_timestamp
jan16 = pd.to_datetime('2016-01-01')
march16 = pd.to_datetime('2016-03-01')
df_all['fold'] = TRAIN
df_all['fold'] = df_all['fold'].astype('uint8')
df_all.loc[(ts > jan16) & (ts <= march16), 'fold'] = VAL
df_all.loc[ts > march16, 'fold'] = TEST
# user features
df_all.anonimous_ip = df_all.anonimous_ip.apply(fu.ip_features)
df_all['user_info'] = 'user_id=' + df_all.user_id.astype('str') + ' ' + \
df_all.anonimous_ip + ' ' + df_all.anonimous_meta
# comment features
comments = df_all.revision_comment
struc = comments.apply(fu.extract_structured_comment)
links = comments.apply(fu.extract_links)
unstruc = comments.apply(fu.extract_unstructured_text)
# saving everything
df_features = pd.DataFrame()
df_features['revision_id'] = df_all.revision_id
df_features['user_info'] = df_all.user_info
df_features['page_title'] = df_all.page_title
df_features['reverted'] = df_all.reverted
df_features['comment_structured_text'] = struc
df_features['comment_links'] = links
df_features['comment_unstructured_text'] = unstruc
df_features['fold'] = df_all.fold
feather.write_dataframe(df_features, 'df_features.feather')