-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
368 lines (293 loc) · 18.2 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from copy import deepcopy
import os,sys
import joblib
import numpy as np
from trajectories import load_trajectories, remove_short_trajectories, input_trajectories_missing_steps, extract_global_features, scale_trajectories, change_coordinate_system
from utils import memory
def aggregate_autoencoder_data(trajectories):
"""Put all trajectories into a single big numpy array."""
X = []
for trajectory in trajectories.values():
X.append(trajectory.coordinates)
return np.vstack(X)
def split_into_train_and_test(trajectories, train_ratio=0.8, seed=42):
np.random.seed(seed)
trajectories_ids = []
trajectories_lengths = []
for trajectory_id, trajectory in sorted(trajectories.items()):
trajectories_ids.append(trajectory_id)
trajectories_lengths.append(len(trajectory))
sorting_indices = np.argsort(trajectories_lengths)
q1_idx = round(len(sorting_indices) * 0.25)
q2_idx = round(len(sorting_indices) * 0.50)
q3_idx = round(len(sorting_indices) * 0.75)
sorted_ids = np.array(trajectories_ids)[sorting_indices]
train_ids = []
val_ids = []
quantiles_indices = [0, q1_idx, q2_idx, q3_idx, len(sorting_indices)]
for idx, q_idx in enumerate(quantiles_indices[1:], 1):
q_ids = sorted_ids[quantiles_indices[idx - 1]:q_idx]
q_ids = np.random.permutation(q_ids)
train_idx = round(len(q_ids) * train_ratio)
train_ids.extend(q_ids[:train_idx])
val_ids.extend(q_ids[train_idx:])
trajectories_train = {}
for train_id in train_ids:
trajectories_train[train_id] = trajectories[train_id]
trajectories_val = {}
for val_id in val_ids:
trajectories_val[val_id] = trajectories[val_id]
return trajectories_train, trajectories_val
def aggregate_rnn_autoencoder_data(trajectories, input_length, input_gap=0, pred_length=0):
"""
Split each skeleton trajectory into smaller (overlapping) fixed size segments and put them all in a single large
numpy array.
"""
Xs, Xs_pred = [], []
for trajectory in trajectories.values():
X, X_pred = _aggregate_rnn_autoencoder_data(trajectory.coordinates, input_length, input_gap, pred_length)
Xs.append(X)
if X_pred is not None:
Xs_pred.append(X_pred)
Xs = np.vstack(Xs)
if not Xs_pred:
Xs_pred = None
else:
Xs_pred = np.vstack(Xs_pred)
return Xs, Xs_pred
def _aggregate_rnn_autoencoder_data(coordinates, input_length, input_gap=0, pred_length=0):
"""
Split a skeleton trajectory into an array smaller (overlapping) fixed size segments.
"""
input_trajectories, future_trajectories = [], None
total_input_seq_len = input_length + input_gap * (input_length - 1)
step = input_gap + 1
if pred_length > 0:
future_trajectories = []
stop = len(coordinates) - pred_length - total_input_seq_len + 1
for start_index in range(0, stop):
stop_index = start_index + total_input_seq_len
input_trajectories.append(coordinates[start_index:stop_index:step, :])
future_trajectories.append(coordinates[stop_index:(stop_index + pred_length), :])
input_trajectories = np.stack(input_trajectories, axis=0)
future_trajectories = np.stack(future_trajectories, axis=0)
else:
stop = len(coordinates) - total_input_seq_len + 1
for start_index in range(0, stop):
stop_index = start_index + total_input_seq_len
input_trajectories.append(coordinates[start_index:stop_index:step, :])
input_trajectories = np.stack(input_trajectories, axis=0)
return input_trajectories, future_trajectories
@memory.cache
def create_train_val_v2(trajectories_path, video_resolution, input_length, pred_length, reconstruct_original_data=True,
input_missing_steps=False, global_normalisation_strategy='zero_one',
local_normalisation_strategy='zero_one', out_normalisation_strategy='zero_one'):
video_resolution = [float(measurement) for measurement in video_resolution.split('x')]
video_resolution = np.array(video_resolution, dtype=np.float32)
trajectories = load_trajectories(trajectories_path)
#print('\nLoaded %d trajectories.' % len(trajectories))
trajectories = remove_short_trajectories(trajectories, input_length=input_length,
input_gap=0, pred_length=pred_length)
#print('\nRemoved short trajectories. Number of trajectories left: %d.' % len(trajectories))
trajectories_train, trajectories_val = split_into_train_and_test(trajectories, train_ratio=0.98, seed=42)
if input_missing_steps:
trajectories_train = input_trajectories_missing_steps(trajectories_train)
# print('\nInputted missing steps of trajectories.')
# TODO: General function to extract features
# X_..._train, X_..._val, y_..._train, y_..._val, ..._scaler = general_function()
# Global
global_trajectories_train = extract_global_features(deepcopy(trajectories_train), video_resolution=video_resolution)
global_trajectories_val = extract_global_features(deepcopy(trajectories_val), video_resolution=video_resolution)
global_trajectories_train = change_coordinate_system(global_trajectories_train, video_resolution=video_resolution,
coordinate_system='global', invert=False)
global_trajectories_val = change_coordinate_system(global_trajectories_val, video_resolution=video_resolution,
coordinate_system='global', invert=False)
#print('\nChanged global trajectories\'s coordinate system to global.')
_, global_scaler = scale_trajectories(aggregate_autoencoder_data(global_trajectories_train),
strategy=global_normalisation_strategy)
X_global_train, y_global_train = aggregate_rnn_autoencoder_data(global_trajectories_train,
input_length=input_length,
input_gap=0, pred_length=pred_length)
X_global_val, y_global_val = aggregate_rnn_autoencoder_data(global_trajectories_val, input_length=input_length,
input_gap=0, pred_length=pred_length)
X_global_train, _ = scale_trajectories(X_global_train, scaler=global_scaler, strategy=global_normalisation_strategy)
X_global_val, _ = scale_trajectories(X_global_val, scaler=global_scaler, strategy=global_normalisation_strategy)
if y_global_train is not None and y_global_val is not None:
y_global_train, _ = scale_trajectories(y_global_train, scaler=global_scaler,
strategy=global_normalisation_strategy)
y_global_val, _ = scale_trajectories(y_global_val, scaler=global_scaler, strategy=global_normalisation_strategy)
#print('\nNormalised global trajectories using the %s normalisation strategy.' % global_normalisation_strategy)
# Local
local_trajectories_train = deepcopy(trajectories_train) if reconstruct_original_data else trajectories_train
local_trajectories_val = deepcopy(trajectories_val) if reconstruct_original_data else trajectories_val
local_trajectories_train = change_coordinate_system(local_trajectories_train, video_resolution=video_resolution,
coordinate_system='bounding_box_centre', invert=False)
local_trajectories_val = change_coordinate_system(local_trajectories_val, video_resolution=video_resolution,
coordinate_system='bounding_box_centre', invert=False)
#print('\nChanged local trajectories\'s coordinate system to bounding_box_centre.')
_, local_scaler = scale_trajectories(aggregate_autoencoder_data(local_trajectories_train),
strategy=local_normalisation_strategy)
X_local_train, y_local_train = aggregate_rnn_autoencoder_data(local_trajectories_train, input_length=input_length,
input_gap=0, pred_length=pred_length)
X_local_val, y_local_val = aggregate_rnn_autoencoder_data(local_trajectories_val, input_length=input_length,
input_gap=0, pred_length=pred_length)
X_local_train, _ = scale_trajectories(X_local_train, scaler=local_scaler, strategy=local_normalisation_strategy)
X_local_val, _ = scale_trajectories(X_local_val, scaler=local_scaler, strategy=local_normalisation_strategy)
if y_local_train is not None and y_local_val is not None:
y_local_train, _ = scale_trajectories(y_local_train, scaler=local_scaler, strategy=local_normalisation_strategy)
y_local_val, _ = scale_trajectories(y_local_val, scaler=local_scaler, strategy=local_normalisation_strategy)
#print('\nNormalised local trajectories using the %s normalisation strategy.' % local_normalisation_strategy)
# (Optional) Reconstruct the original data
if reconstruct_original_data:
#print('\nReconstruction/Prediction target is the original data.')
out_trajectories_train = trajectories_train
out_trajectories_val = trajectories_val
out_trajectories_train = change_coordinate_system(out_trajectories_train, video_resolution=video_resolution,
coordinate_system='global', invert=False)
out_trajectories_val = change_coordinate_system(out_trajectories_val, video_resolution=video_resolution,
coordinate_system='global', invert=False)
#print('\nChanged target trajectories\'s coordinate system to global.')
_, out_scaler = scale_trajectories(aggregate_autoencoder_data(out_trajectories_train),
strategy=out_normalisation_strategy)
X_out_train, y_out_train = aggregate_rnn_autoencoder_data(out_trajectories_train, input_length=input_length,
input_gap=0, pred_length=pred_length)
X_out_val, y_out_val = aggregate_rnn_autoencoder_data(out_trajectories_val, input_length=input_length,
input_gap=0, pred_length=pred_length)
X_out_train, _ = scale_trajectories(X_out_train, scaler=out_scaler, strategy=out_normalisation_strategy)
X_out_val, _ = scale_trajectories(X_out_val, scaler=out_scaler, strategy=out_normalisation_strategy)
if y_out_train is not None and y_out_val is not None:
y_out_train, _ = scale_trajectories(y_out_train, scaler=out_scaler, strategy=out_normalisation_strategy)
y_out_val, _ = scale_trajectories(y_out_val, scaler=out_scaler, strategy=out_normalisation_strategy)
#print('\nNormalised target trajectories using the %s normalisation strategy.' % out_normalisation_strategy)
else:
out_scaler = None
if y_global_train is not None:
if reconstruct_original_data:
# X_global_train, X_local_train, X_out_train, y_global_train, y_local_train, y_out_train = \
# shuffle(X_global_train, X_local_train, X_out_train,
# y_global_train, y_local_train, y_out_train, random_state=42)
X_train = [X_global_train, X_local_train, X_out_train]
y_train = [y_global_train, y_local_train, y_out_train]
val_data = ([X_global_val, X_local_val, X_out_val], [y_global_val, y_local_val, y_out_val])
else:
# X_global_train, X_local_train, y_global_train, y_local_train = \
# shuffle(X_global_train, X_local_train, y_global_train, y_local_train, random_state=42)
X_train = [X_global_train, X_local_train]
y_train = [y_global_train, y_local_train]
val_data = ([X_global_val, X_local_val], [y_global_val, y_local_val])
else:
if reconstruct_original_data:
# X_global_train, X_local_train, X_out_train = \
# shuffle(X_global_train, X_local_train, X_out_train, random_state=42)
X_train = [X_global_train, X_local_train, X_out_train]
y_train = None
val_data = ([X_global_val, X_local_val, X_out_val],)
else:
# X_global_train, X_local_train = shuffle(X_global_train, X_local_train, random_state=42)
X_train = [X_global_train, X_local_train]
y_train = None
val_data = ([X_global_val, X_local_val],)
return X_train, y_train, val_data, trajectories_train, trajectories_val, global_scaler, local_scaler, out_scaler
def _construct_output_data_alt(multiple_outputs, reconstruction_length, reconstruct_reverse, prediction_length, X_out,
y_out=None, X_global=None, y_global=None, X_local=None, y_local=None):
"""
Put (some of) X_global, X_local, ..., y_out into a list, optionally reversing the X arrays in time (for the RNN
reconstruction).
"""
y = []
if multiple_outputs:
if reconstruct_reverse:
y.append(X_global[:, (reconstruction_length - 1)::-1, :])
y.append(X_local[:, (reconstruction_length - 1)::-1, :])
y.append(X_out[:, (reconstruction_length - 1)::-1, :])
else:
y.append(X_global[:, :reconstruction_length, :])
y.append(X_local[:, :reconstruction_length, :])
y.append(X_out[:, :reconstruction_length, :])
if prediction_length > 0:
y.append(y_global)
y.append(y_local)
y.append(y_out)
else:
if reconstruct_reverse:
y.append(X_out[:, (reconstruction_length - 1)::-1, :])
else:
y.append(X_out[:, :reconstruction_length, :])
if prediction_length > 0:
y.append(y_out)
return y
def aggregate_rnn_ae_evaluation_data(trajectories, input_length):
trajectories_ids, frames, X = [], [], []
for trajectory in trajectories.values():
traj_ids, traj_frames, traj_X = _aggregate_rnn_ae_evaluation_data(trajectory, input_length)
trajectories_ids.append(traj_ids)
frames.append(traj_frames)
X.append(traj_X)
trajectories_ids, frames, X = np.vstack(trajectories_ids), np.vstack(frames), np.vstack(X)
return trajectories_ids, frames, X
def _aggregate_rnn_ae_evaluation_data(trajectory, input_length):
traj_frames, traj_X = [], []
coordinates = trajectory.coordinates
frames = trajectory.frames
total_input_seq_len = input_length
stop = len(coordinates) - total_input_seq_len + 1
for start_index in range(stop):
stop_index = start_index + total_input_seq_len
traj_X.append(coordinates[start_index:stop_index, :])
traj_frames.append(frames[start_index:stop_index])
traj_frames, traj_X = np.stack(traj_frames, axis=0), np.stack(traj_X, axis=0)
trajectory_id = trajectory.trajectory_id
traj_ids = np.full(traj_frames.shape, fill_value=trajectory_id)
return traj_ids, traj_frames, traj_X
def load_scalers(pretrained_model_path):
model_files = os.listdir(pretrained_model_path)
global_scaler_file = model_files[model_files.index('global_scaler.pkl')]
local_scaler_file = model_files[model_files.index('local_scaler.pkl')]
try:
out_scaler_file = model_files[model_files.index('out_scaler.pkl')]
except ValueError:
out_scaler_file = None
global_scaler = joblib.load(filename=os.path.join(pretrained_model_path, global_scaler_file))
local_scaler = joblib.load(filename=os.path.join(pretrained_model_path, local_scaler_file))
if out_scaler_file is not None:
out_scaler = joblib.load(filename=os.path.join(pretrained_model_path, out_scaler_file))
else:
out_scaler = None
return global_scaler, local_scaler, out_scaler
def load_evaluation_data(global_scaler,
local_scaler, out_scaler,
trajectories_path,
inp_len=12,
inp_gap=0,
pred_len=6,
res=[856,480],
bb_norm='zero_one',
joint_norm='zero_one',
out_norm='zero_one',
rec_data=True,
sort=False):
trajectories = load_trajectories(trajectories_path, sort)
trajectories = remove_short_trajectories(trajectories, input_length=inp_len,
input_gap=inp_gap, pred_length=pred_len)
global_trajectories = extract_global_features(deepcopy(trajectories), video_resolution=res)
global_trajectories = change_coordinate_system(global_trajectories, video_resolution=res,
coordinate_system='global', invert=False)
trajectories_ids, frames, X_global = aggregate_rnn_ae_evaluation_data(global_trajectories,
input_length=inp_len+pred_len)
X_global, _ = scale_trajectories(X_global, scaler=global_scaler, strategy=bb_norm)
local_trajectories = deepcopy(trajectories)
local_trajectories = change_coordinate_system(local_trajectories, video_resolution=res,
coordinate_system='bounding_box_centre', invert=False)
_, _, X_local = aggregate_rnn_ae_evaluation_data(local_trajectories, input_length=inp_len+pred_len)
X_local, _ = scale_trajectories(X_local, scaler=local_scaler, strategy=joint_norm)
original_trajectories = deepcopy(trajectories)
_, _, X_original = aggregate_rnn_ae_evaluation_data(original_trajectories, input_length=inp_len+pred_len)
if rec_data:
out_trajectories = trajectories
out_trajectories = change_coordinate_system(out_trajectories, video_resolution=res,
coordinate_system='global', invert=False)
_, _, X_out = aggregate_rnn_ae_evaluation_data(out_trajectories, input_length=inp_len+pred_len)
X_out, _ = scale_trajectories(X_out, scaler=out_scaler, strategy=out_norm)
else:
X_out = None
return trajectories_ids, frames, X_global, X_local, X_out, global_scaler, local_scaler, out_scaler