forked from christsaizyt/US-Stock-Market-Prediction-by-LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStock_Prediction_General_Method.py
227 lines (192 loc) · 8.04 KB
/
Stock_Prediction_General_Method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
import pandas as pd
from datetime import timedelta
import pickle as pkl
import quandl
from quandl.errors.quandl_error import NotFoundError
import datetime
import time
import re
import os
from keras.models import load_model
ticker_files_format_dict = {'predictions':'_reg.csv',
'models':'_reg.h5',
'logs':'_reg_log.pkl',
'parameters':'_reg_par.pkl'
}
def save_lstm_parameters(filename, paras):
with open(filename + ticker_files_format_dict['parameters'], 'wb') as f:
pkl.dump(paras, f)
def load_lstm_parameters(filename: object) -> object:
with open(filename + ticker_files_format_dict['parameters'], 'rb') as f:
paras = pkl.load(f)
return paras
def save_lstm_logs(filename, paras):
with open(filename + ticker_files_format_dict['logs'], 'wb') as f:
pkl.dump(paras, f)
def load_lstm_logs(filename):
with open(filename + ticker_files_format_dict['logs'], 'rb') as f:
paras = pkl.load(f)
return paras
def save_lstm_models(filname, model):
model.save(filname + ticker_files_format_dict['models'])
def load_lstm_models(filename):
if check_files_exists(filename + ticker_files_format_dict['models']) == False:
return None
model = load_model(filename + ticker_files_format_dict['models'])
return model
def save_lstm_predictions(filnemae, df):
df.to_csv(filnemae + ticker_files_format_dict['predictions'], index_label='Date')
def load_lstm_predictions(filename):
if check_files_exists(filename + ticker_files_format_dict['predictions']) == False:
return None
df_load = pd.read_csv(filename + ticker_files_format_dict['predictions'], index_col='Date')
return df_load
def returnNumbers(str):
return re.search(r'\d+', str).group()
def append_date_serires(df, append_len):
append_date = []
append_last_date = df.index[-1]
i = append_len
while i >= 1:
append_last_date = append_last_date + timedelta(days=1)
if append_last_date.isoweekday() > 0 and append_last_date.isoweekday() < 6:
append_date.append(append_last_date)
i -= 1
append_df = pd.DataFrame(index=list(append_date))
df = pd.concat((df, append_df), axis=0)
return df
def returnNewDatesArr(lut,tar_date, shit_days):
start_idx = int(np.argwhere(lut == tar_date[0]))
end_idx = int(np.argwhere(lut == tar_date[-1])) + 1
new_sta_idx = start_idx + int(shit_days)
new_end_idx = end_idx + int(shit_days)
return lut[new_sta_idx:new_end_idx]
def shift_df_pred(df_tmp, df_pred, end_date, valid_mse, times):
# df_base: pandas.core.frame.DataFrame
# df_pred: pandas.core.series.Series, name: p_+10_d
# df_pred['p_+'+str(paras_cla.pred_len)+'_d']
df_base = df_tmp.copy()
lookupDate = df_base.index#.strftime('%Y-%m-%d')
colname = end_date
if valid_mse is not None:
colname = colname + '_' + '%.3f' % valid_mse
if times > 0:
colname = colname + '_' + str(times)
if df_pred.__class__.__name__ == "Series":
shift_days = returnNumbers(df_pred.name)
shift_dates_arr = returnNewDatesArr(lookupDate, df_pred.index, shift_days)
df_base.loc[shift_dates_arr, colname] = np.array(df_pred)
elif df_pred.__class__.__name__ == "DataFrame":
# FIXME
pass
return df_base
def get_data_from_quandl(ticker, start_date = '2010-01-01', end_date = 'today'):
if end_date == 'today':
end_date = str(datetime.date.today())
while True:
try:
df = quandl.get('WIKI/' + ticker,
authtoken = '2c24stWyXfdzLVFWxGe4',
start_date = start_date,
end_date = end_date)
break
except NotFoundError:
print(ticker, 'DatasetNotFound')
return None
except:
print (ticker, 'others error - wait 10 seconds to retry again')
pass
time.sleep(10) # delays for 10 seconds and try again
df = df[['Adj. Open', 'Adj. High', 'Adj. Low', 'Adj. Close', 'Adj. Volume']]
df = df.rename(columns={"Adj. Open": "open", "Adj. High": "high", "Adj. Low": "low",
"Adj. Close": "close", "Adj. Volume": "volume"})
if np.sum(len(df) - df.count()) != 0:
print(ticker, 'nan count\n',len(df) - df.count())
df = df.dropna()
return df
def get_save_folder(file_path = './'):
history_folder = file_path + 'history/'
predictions_folder = history_folder + 'predictions/'
models_folder = history_folder + 'models/'
parameters_folder = history_folder + 'parameters/'
log_folder = history_folder + 'logs/'
folders = {
'history':history_folder,
'predictions':predictions_folder,
'parameters':parameters_folder,
'models':models_folder,
'logs':log_folder
}
return folders
def check_and_create_folder(folders):
'''
file_path - history - predictions
- models
- parameters
- logs
'''
if os.path.exists(folders['history']) == False:
os.makedirs(folders['history'])
if os.path.exists(folders['predictions']) == False:
os.makedirs(folders['predictions'])
if os.path.exists(folders['parameters']) == False:
os.makedirs(folders['parameters'])
if os.path.exists(folders['models']) == False:
os.makedirs(folders['models'])
if os.path.exists(folders['logs']) == False:
os.makedirs(folders['logs'])
def check_files_exists(file_name):
return os.path.isfile(file_name)
def check_ticker_files_exist(folders, ticker):
if (check_files_exists(folders['predictions'] + ticker + ticker_files_format_dict['predictions']) == True and
check_files_exists(folders['parameters'] + ticker + ticker_files_format_dict['parameters']) == True and
check_files_exists(folders['models'] + ticker + ticker_files_format_dict['models']) == True and
check_files_exists(folders['logs'] + ticker + ticker_files_format_dict['logs']) == True):
return True
return False
def check_ticker_files_status(date_array, file_path, ticker, batch_size):
up_to_date_flag = False
can_predict_flag = False
can_retrain_flag = False
folders = get_save_folder(file_path)
check_and_create_folder(folders)
ticker_files_exist_flag = check_ticker_files_exist(folders, ticker)
if ticker_files_exist_flag == False:
return False, False, False
# if ticker files's are exist, check its log status
log_file_path = folders['logs'] + ticker
log_file = load_lstm_logs(log_file_path)
log_file_pred_last_date_idx = np.argwhere(date_array == log_file['pred_last_date'])[0, 0]
log_file_train_last_date_idx = np.argwhere(date_array == log_file['train_last_date'])[0, 0]
len_total = len(date_array)
if len_total > (log_file_pred_last_date_idx + 1):
can_predict_flag = True
else:
up_to_date_flag = True
if len_total > (log_file_train_last_date_idx + batch_size):
can_retrain_flag = True
return up_to_date_flag, can_predict_flag,can_retrain_flag
def go_thorugh_valid_tickers(tickers):
valid_tickers = []
for ticker in tickers:
df = get_data_from_quandl(ticker)
if df is not None:
print (ticker, float(df[-1:]['close']))
valid_tickers.append((ticker, float(df[-1:]['close'])))
valid_tickers = sorted(valid_tickers, key=lambda x: x[1], reverse=True)
return valid_tickers
def display_par_log(ticker, file_path = './'):
folder = get_save_folder(file_path)
paras = load_lstm_parameters(folder['parameters']+ticker)
log = load_lstm_logs(folder['logs']+ticker)
print (paras)
print (log['train_last_date'])
print(log['pred_last_date'])
for eval_score in log['eval_score']:
print (eval_score)
def load_all_tickers(file_path = ''):
with open(file_path + 'tickers.txt') as file:
tickers_file = file.read()
tickers = tickers_file.split('\n')
return tickers