-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_all.py
134 lines (113 loc) · 4.76 KB
/
eval_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import pandas as pd
import numpy as np
import torch
import os
from PIL import Image
import torchvision
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
from tqdm import tqdm
from CityscapesDataloader import CityscapesDataset
from UNet import UNet
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
torch.manual_seed(1612)
# create models folder if it doesn't exist
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
# Hyperparameters
masked_aux = False
num_classes = 8
batch_size = 1
img_size = (256, 256)
ttt = False
learning_rate = 0.00001
checkpoint_num = "27500-segonly-rotaug"
foggy = True
for fog_level in range(4):
if fog_level == 3:
foggy = False
fog_level = 0
# Load Data
train_dataset = CityscapesDataset(split='train', img_size=img_size, rotate=False)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = CityscapesDataset(split='val', img_size=img_size, foggy=foggy, rotate=False, fog_level=fog_level)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Model
model = UNet(num_class=num_classes, out_sz=img_size, masked_aux=masked_aux).to(device)
# print number of parameters
print(f'Number of parameters: {sum(p.numel() for p in model.parameters())}')
if os.path.exists(f'checkpoints/model-{checkpoint_num}.ckpt'):
model.load_state_dict(torch.load(f'checkpoints/model-{checkpoint_num}.ckpt'))
print(f'Model loaded from checkpoints/model-{checkpoint_num}.ckpt')
else:
exit()
# Loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
criterion_mse = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0)
total_accuracy = 0
total_loss = 0
for i, (images, labels, rot_label) in enumerate(tqdm(test_loader)):
images_orig = images.to(device)
labels_orig = labels.to(device)
rot_label_orig = rot_label.to(device)
# perform test time training
if ttt:
for _ in range(1):
if masked_aux:
mask = test_dataset.sample_mask().to(device)
images = images_orig
# images = images_orig * (1 - mask)
outputs = model(images)
out_pred = outputs[0]
rot_pred = outputs[1]
rot_label = images_orig
rot_loss = criterion_mse(rot_pred, rot_label)
# rot_loss = criterion(out_pred, labels_orig)
# print(rot_loss)
else:
# sample random rotation
img, label, rot_label = test_dataset.sample_rotation(images_orig, labels_orig)
outputs = model(images_orig)
out_pred = outputs[0]
rot_pred = outputs[1]
# get rotation loss
rot_label = torch.Tensor([rot_label]).to(device).long()
rot_loss = criterion(rot_pred, rot_label)
# plt.imshow(test_dataset.unnormalize(img[0].cpu()))
# take step
optimizer.zero_grad()
rot_loss.backward()
optimizer.step()
# Forward pass
outputs = model(images_orig)
out_pred = outputs[0]
rot_pred = outputs[1]
class_loss = criterion(out_pred, labels_orig)
if masked_aux:
rot_loss = criterion_mse(rot_pred, images_orig)
else:
rot_loss = criterion(rot_pred, rot_label_orig)
loss = class_loss + rot_loss
# calculate accuracy
outputs = torch.nn.functional.softmax(out_pred, dim=1)
class_labels = torch.Tensor(np.argmax(labels_orig.cpu().numpy(), 1)).to(device)
_, predicted = torch.max(outputs.data, 1)
img_accuracy = (predicted == class_labels).sum().item() / (img_size[0] * img_size[1])
total_accuracy += img_accuracy
total_loss += loss.item()
# uncomment for TTT Standard
# if os.path.exists(f'checkpoints/model-{checkpoint_num}.ckpt'):
# model.load_state_dict(torch.load(f'checkpoints/model-{checkpoint_num}.ckpt'))
# optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
if fog_level == 0:
string = "600m"
elif fog_level == 1:
string = "300m"
elif fog_level == 2:
string = "150m"
else:
string = "clear"
print(f'Accuracy {string}: {total_accuracy / len(test_loader)}')