forked from anandaswarup/waveRNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
79 lines (58 loc) · 2.33 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""WaveRNN generation"""
import argparse
import os
import numpy as np
import soundfile as sf
import torch
from config import Config as cfg
from model import WaveRNN
def generate(checkpoint_path, eval_data_dir, out_dir):
"""Generate waveforms from mel-spectrograms using WaveRNN
"""
os.makedirs(out_dir, exist_ok=True)
# Specify the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Instantiate the model
model = WaveRNN(n_mels=cfg.num_mels,
hop_length=cfg.hop_length,
num_bits=cfg.num_bits,
audio_embedding_dim=cfg.audio_embedding_dim,
conditioning_rnn_size=cfg.conditioning_rnn_size,
rnn_size=cfg.rnn_size,
fc_size=cfg.fc_size)
model = model.to(device)
model.eval()
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint["model"])
model_step = checkpoint["step"]
for filename in open(os.path.join(eval_data_dir, "eval.txt"), "r"):
filename = filename.strip("\n")
print("Generating {filename}")
mel = np.load(os.path.join(eval_data_dir, "mel", filename + ".npy"))
mel = torch.FLoatTensor(mel.T).unsqueeze(0).to(device)
with torch.no_grad():
wav_hat = model.generate(mel)
out_path = os.path.join(out_dir,
f"model_step{model_step:09d}_{filename}.wav")
sf.write(out_path, wav_hat, cfg.sampling_rate)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generate waveforms from mel-spectrograms using WaveRNN")
parser.add_argument(
"--checkpoint_path",
help="Path to the checkpoint to use to instantiate the model",
required=True)
parser.add_argument(
"--eval_data_dir",
help="Path to the dir containing the spectrograms to be synthesized",
required=True)
parser.add_argument(
"--out_dir",
help="Path to the dir where generated waveforms will be saved",
required=True)
args = parser.parse_args()
checkpoint_path = args.checkpoint_path
eval_data_dir = args.eval_data_dir
out_dir = args.out_dir
generate(checkpoint_path, eval_data_dir, out_dir)