forked from sunset1995/PanoPlane360
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
75 lines (64 loc) · 2.82 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import glob
import argparse
import numpy as np
from tqdm import tqdm
from imageio import imread, imwrite
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
import models
if __name__ == '__main__':
# Arguments
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--glob', help='Input mode 1: path to input images')
parser.add_argument('--txt', help='Input mode 2: path to image name txt file')
parser.add_argument('--root', help='Input mode 2: path to input images root')
parser.add_argument('--pth', help='path to dumped .pth file', required=True)
parser.add_argument('--outdir', required=True)
parser.add_argument('--device', default='cuda')
parser.add_argument('--rgb_mean', default=[123.675, 116.28, 103.53], type=float, nargs=3)
parser.add_argument('--rgb_std', default=[58.395, 57.12, 57.375], type=float, nargs=3)
parser.add_argument('--base_height', default=512, type=int)
parser.add_argument('--crop_black', default=80/512, type=float)
args = parser.parse_args()
os.makedirs(args.outdir, exist_ok=True)
# Prepare all input rgb paths
if args.glob is not None:
assert args.txt is None and args.root is None
rgb_paths = sorted(glob.glob(args.glob))
else:
with open(args.txt) as f:
rgb_paths = [os.path.join(args.root, line.strip().split()[0]) for line in f]
for path in rgb_paths:
assert os.path.isfile(path) or os.path.islink(path)
print('%d images in total.' % len(rgb_paths))
# Load trained checkpoint
print('Loading checkpoint...', end='', flush=True)
net, args_model = utils.load_trained_model(args.pth)
net = net.eval().to(args.device)
print('done')
# Inference on all images
for path in tqdm(rgb_paths):
k = os.path.split(path)[1][:-4]
rgb_np = imread(path)[..., :3]
with torch.no_grad():
# Prepare 1,3,H,W input tensor
input_dict = {
'rgb': torch.from_numpy(rgb_np.transpose(2, 0, 1)[None].astype(np.float32)),
}
input_dict = utils.preprocess(input_dict, args) # Normalize and cropping
input_dict['filename'] = k
# Call network interface for estimated HV map
infer_dict = net.infer_HVmap(input_dict, args)
# Dump results
for name, v in infer_dict.items():
if name == 'h_planes':
imwrite(os.path.join(args.outdir, k + '.h_planes.exr'), v)
elif name == 'v_planes':
imwrite(os.path.join(args.outdir, k + '.v_planes.exr'), v)
elif v.dtype == np.uint8:
imwrite(os.path.join(args.outdir, k + name + '.png'), v)
else:
imwrite(os.path.join(args.outdir, k + name + '.exr'), v)