-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
82 lines (66 loc) · 2.74 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import argparse
import os
import torch
from exp.exp_main import Exp_Main
import random
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("--model_id", type=str, default="ECL_96_96", help="model id")
parser.add_argument(
"--model",
type=str,
default="test",
help="model name, options: [WaveForM]",
)
parser.add_argument("--data", type=str, default="custom", help="dataset type")
parser.add_argument(
"--root_path",
type=str,
default="./dataset/electricity/",
help="root path of the data file",
)
parser.add_argument(
"--data_path", type=str, default="electricity.csv", help="data file"
)
parser.add_argument(
"--checkpoints",
type=str,
default="./checkpoints/",
help="location of model checkpoints",
)
parser.add_argument("--seq_len", type=int, default=96, help="input sequence length")
parser.add_argument(
"--pred_len", type=int, default=96, help="prediction sequence length"
)
parser.add_argument("--n_points", type=int, default=321, help="the number of variables")
parser.add_argument("--dropout", type=float, default=0.05, help="dropout")
parser.add_argument("--itr", type=int, default=1, help="experiments times")
parser.add_argument("--train_epochs", type=int, default=100, help="train epochs")
parser.add_argument(
"--batch_size", type=int, default=32, help="batch size of train input data"
)
parser.add_argument("--patience", type=int, default=3, help="early stopping patience")
parser.add_argument(
"--learning_rate", type=float, default=0.0001, help="optimizer learning rate"
)
parser.add_argument("--des", type=str, default="Exp", help="exp description")
parser.add_argument("--loss", type=str, default="mse", help="loss function")
parser.add_argument("--lradj", type=str, default="type1", help="adjust learning rate")
parser.add_argument("--node_dim", type=int, default=40, help="node_dim in graph")
parser.add_argument("--subgraph_size", type=int, default=6, help="the subgraph size, i.e. topk")
parser.add_argument("--n_gnn_layer", type=int, default=3, help="number of layers in GNN.")
parser.add_argument("--wavelet_j", type=int, default=2, help="the number of wavelet layer")
parser.add_argument("--wavelet", type=str, default='haar', help='the wavelet function')
args = parser.parse_args()
print("Args in experiment:")
import json
print(json.dumps(vars(args), indent=4, ensure_ascii=False))
Exp = Exp_Main
from utils import color
for ii in range(args.itr):
setting = f"{args.model_id}_{args.model}_{args.data}_sl{args.seq_len}_pl{args.pred_len}_{args.des}_{ii}"
exp = Exp(args)
color.cprint(f'start training:\n{setting}', color.OKGREEN, end='\n')
exp.train(setting)
color.cprint(f'end of training. begin testing', color.OKGREEN, '\n')
exp.test(setting)