-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsegmentation.py
127 lines (117 loc) · 4.98 KB
/
segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import cv2
import numpy as np
import os
import scipy.ndimage
def getMeanArea(contours):
meanArea=0
for contour in contours:
meanArea+=cv2.contourArea(contour)
meanArea=(meanArea)/len(contours)
return meanArea
def getRatioArea(contours):
meanArea=0
for contour in contours:
meanArea+=cv2.contourArea(contour)
cnsSorted = sorted(contours, key=lambda x:cv2.contourArea(x), reverse = True)
ratioArea = cv2.contourArea(cnsSorted[0])/meanArea
return ratioArea
def purify(img):
img=cv2.copyMakeBorder(img,32,32,32,32,cv2.BORDER_CONSTANT)
#cv2.imshow('img',img)
#cv2.waitKey(0)
#img=cv2.bitwise_not(img)
#kernel=np.ones((3,3),np.uint8)
#cv2.dilate(img,kernel,iterations=5)
#cv2.erode(img,kernel,iterations=5)
#img=cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
meanArea=getMeanArea(contours)
nlabels,labels,stats,centroids=cv2.connectedComponentsWithStats(img,None,None,None,8,cv2.CV_32S)
areas=stats[1:,cv2.CC_STAT_AREA]
result=np.zeros((labels.shape),np.uint8)
for i in range(nlabels-1):
if areas[i]>=0.1*meanArea:
result[labels==i+1]=255
high=max(result.shape[0],result.shape[1])
if high==result.shape[0]:
dif=(high-result.shape[1])//2
result=cv2.copyMakeBorder(result,0,0,dif,dif,cv2.BORDER_CONSTANT,value=0)
else:
dif=(high-result.shape[1])//2
result=cv2.copyMakeBorder(result,dif,dif,0,0,cv2.BORDER_CONSTANT,value=0)
#cv2.imshow('result',result)
#print(result.shape)
#cv2.waitKey(0)
#cv2.destroyAllWindows()
return cv2.resize(result,(28,28),interpolation=cv2.INTER_AREA)
def extract_character(image, recursion = 0):
thresh = cv2.copyMakeBorder(image, 8, 8, 8, 8, cv2.BORDER_REPLICATE)
pad=5
thresh=cv2.GaussianBlur(thresh, (3,3), 0)
#thresh=cv2.medianBlur(image,3)
#thresh = cv2.adaptiveThreshold(thresh, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV, blockSize = 321, C = 28)
ret,thresh=cv2.threshold(thresh,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
#cv2.imshow('thresh2',thresh)
#cv2.waitKey(0)
#cv2.imshow('Thresh',thresh)
kernel1 = np.ones((3,3), np.uint8)
thresh = cv2.dilate(thresh, kernel1, iterations = 1)
#thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel3)
if(recursion<2):
thresh2 = cv2.erode(thresh, np.ones((2,2), np.uint8), iterations = 2)
thresh2 = scipy.ndimage.median_filter(thresh2, (5, 1)) # remove line noise
thresh2 = scipy.ndimage.median_filter(thresh2, (1, 5)) # weaken circle noise
thresh2 = scipy.ndimage.median_filter(thresh2, (5, 1)) # remove line noise
thresh2 = scipy.ndimage.median_filter(thresh2, (1, 5)) # weaken circle noise
contours1, hierarchy = cv2.findContours(thresh2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
else:
contours1, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
coords=[]
count=0
ratioArea = getRatioArea(contours1)
#print(ratioArea)
if(ratioArea<0.3 or recursion>1):
kernel2 = np.ones((2,2), np.uint8)
elif(ratioArea>0.85 and recursion<1):
kernel2 = np.ones((5,5), np.uint8)
else:
kernel2 = np.ones((3,3), np.uint8)
if(ratioArea > 0.3 and recursion<2):
thresh = cv2.erode(thresh, kernel2, iterations = 2)
thresh = scipy.ndimage.median_filter(thresh, (5, 1)) # remove line noise
thresh = scipy.ndimage.median_filter(thresh, (1, 5)) # weaken circle noise
thresh = scipy.ndimage.median_filter(thresh, (5, 1)) # remove line noise
thresh = scipy.ndimage.median_filter(thresh, (1, 5)) # weaken circle noise
thresh = cv2.dilate(thresh, kernel1, iterations = 1)
#cv2.imshow('thresh',thresh)
#cv2.waitKey(0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
coords=[]
count=0
meanArea=getMeanArea(contours)
for contour in contours:
(x,y,w,h)=cv2.boundingRect(contour)
if cv2.contourArea(contour)>0.05*meanArea:
if w / h > 1.25:
#Split it in half into two letter regions
half_width = int(w / 2)
coords.append((x, y, half_width, h))
coords.append((x + half_width, y, half_width, h))
count=count+2
else:
coords.append((x, y, w, h))
count=count+1
coords=sorted(coords,key=lambda x: x[0])
img_paths=[]
if(count >7 and recursion <3):
img_paths_array = extract_character(image, recursion + 1)
return img_paths_array
else:
for i in range(count):
result=purify(thresh[coords[i][1]:coords[i][1]+coords[i][3],coords[i][0]:coords[i][0]+coords[i][2]])
#cv2.imshow('result',result)
#cv2.waitKey(0)
filename='character'+str(i)+'.jpeg'
cv2.imwrite(filename,cv2.bitwise_not(result))
img_paths.append(filename)
return np.array(img_paths)