-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathatrack.py
484 lines (397 loc) · 18.3 KB
/
atrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# -*- coding: utf-8 -*-A
# Authors: Yücel Kılıç, Murat Kaplan, Nurdan Karapınar, Tolga Atay.
# This is an open-source software licensed under GPLv3.
try:
import pandas as pd
except ImportError:
print('Python cannot import pandas. Make sure pandas is installed.')
raise SystemExit
try:
import sources
except ImportError:
print('Python cannot import sources.py. Make sure sources.py is in',
'the same folder as atrack.py.')
raise SystemExit
try:
import asteroids
except ImportError:
print('Python cannot import asteroids.py. Make sure asteroids.py is in',
'the same folder as atrack.py.')
raise SystemExit
try:
import visuals
except ImportError:
print('Python cannot import visuals.py. Make sure visuals.py is in',
'the same folder as atrack.py.')
raise SystemExit
try:
from astropy.io import fits
from astropy.table import Table, vstack
from astropy.table import QTable
from astropy.coordinates import SkyCoord
import astropy.units as u
from astropy.io import ascii
except ImportError:
print('Python cannot import astropy. Make sure astropy is installed.')
raise SystemExit
import time
import os
import glob
import argparse
from mpcreporter import astronomy
from mpcreporter import io
from configparser import ConfigParser
config = ConfigParser()
if os.path.exists('./atrack.config'):
config.read('./atrack.config')
else:
print('Python cannot open the configuration file. Make sure atrack.config',
'is in the same folder as atrack.py.')
raise SystemExit
if __name__ == '__main__':
start = time.time()
parser = argparse.ArgumentParser(prog='python3 atrack.py',
description='A-Track.')
parser.add_argument('fits_dir',
help='FITS image directory')
parser.add_argument('-r', '--ref',
type=str,
metavar='ref_image',
help='reference FITS image for alignment (with path)')
parser.add_argument('-a', '--skip-align',
action='store_true',
help='skip alignment if alignment is already done')
parser.add_argument('-c', '--skip-cats',
action='store_true',
help='skip creating catalog files ' +
'if they are already created')
parser.add_argument('-m', '--skip-mpcreport',
action='store_true',
help='skip creating MPC file')
parser.add_argument('-i', '--skip-pngs',
action='store_true',
help='skip creating PNGs')
parser.add_argument('-g', '--skip-gif',
action='store_true',
help='skip creating animation file')
parser.add_argument('-p', '--plot-objects',
type=str,
metavar='catalog_file',
help='plot all objects in the catalog file on FITS file.')
parser.add_argument('-v', '--version',
action='version',
help='show version',
version='A-Track version 1.0')
arguments = parser.parse_args()
"""
This section will be applied if there is a catalog file in atrack directory.
"""
if arguments.plot_objects:
print(arguments.plot_objects)
catalog_file = arguments.plot_objects
cathead, catextension = os.path.splitext(catalog_file)
visuals.object_plot("{0}.fits".format(cathead),
catalog_file)
raise SystemExit
"""
This section will be applied if there is a catalog file in atrack directory.
"""
fitsdir, reference = arguments.fits_dir, arguments.ref
types = (fitsdir + '/*.fits', fitsdir + '/*.fit',
fitsdir + '/*.fts') # the tuple of file types
fits_grabbed = []
for fits_files in types:
fits_grabbed.extend(glob.glob(fits_files))
if len(sorted(fits_grabbed)) < 3:
print(
'Please provide at least 3 FITS images to the {0}'.format(fitsdir))
raise SystemExit
outdir = fitsdir + '/atrack'
if not os.path.isdir(outdir):
os.makedirs(outdir)
if not arguments.skip_align:
print('\nAligning images...', end=' ')
sources.align(fitsdir, reference, outdir)
count_aligned = len(glob.glob("{0}/*affineremap.fits".format(outdir)))
if count_aligned < 3:
print('Could not aligned at least 3 FITS images!')
print('A-Track can not proceed!')
raise SystemExit
elapsed = int(time.time() - start)
print('Complete!')
print('Aligned images are saved as *affineremap.fits.')
print('Elapsed time: {0} min {1} sec.'
.format(elapsed // 60, elapsed % 60))
if not arguments.skip_cats:
print('\nCreating catalog files...', end=' ')
sources.make_catalog(outdir, outdir)
elapsed = int(time.time() - start)
print('Complete!')
print('Catalog files are saved as *affineremap.pysexcat.')
print('Elapsed time: {0} min {1} sec.'
.format(elapsed // 60, elapsed % 60))
print('\nBuilding master catalog file...', end=' ')
sources.make_master(outdir)
elapsed = int(time.time() - start)
print('Complete!')
print('Master catalog file is saved as master.pysexcat.')
print('Elapsed time: {0} min {1} sec.'
.format(elapsed // 60, elapsed % 60))
print('\nDetecting candidates...', end=' ')
asteroids.all_candidates(outdir, outdir)
elapsed = int(time.time() - start)
print('Complete!')
print('Candidates for each image are saved as *affineremap.cnd.')
print('Elapsed time: {0} min {1} sec.'.format(elapsed // 60, elapsed % 60))
print('\nDetecting moving objects...\n')
lines = asteroids.detect_lines(outdir, fitsdir)
if len(lines) == 0:
print('A-Track could not find any moving objects in the images.')
raise SystemExit
moving_objects, uncertain_objects = asteroids.results(fitsdir, lines)
pd.set_option('expand_frame_repr', False)
wcs_status = config.get('sources', 'solve_field')
COLUMNS = ['FileID', 'Flags', 'x', 'y', 'R.A. (J2000)', 'Decl.', 'Flux', 'FluxErr',
'Background', 'Mag', 'MagErr', 'FWHM', 'Elongation', 'ObjectID',
'Sky Motion']
NEWCOLS = ['ObjectID', 'FileID', 'Flags', 'x', 'y', 'R.A. (J2000)', 'Decl.', 'Flux', 'FluxErr',
'Background', 'Mag', 'MagErr', 'FWHM', 'Elongation', 'Sky Motion']
elapsed = int(time.time() - start)
print('\nMoving object detection completed.')
print('Elapsed time: {0} min {1} sec.'.format(elapsed // 60, elapsed % 60))
if moving_objects.size:
moving_objects = pd.DataFrame.from_records(moving_objects,
columns=COLUMNS)
moving_objects = moving_objects.reindex(NEWCOLS, axis=1)
moving_objects[['FileID',
'Flags',
'ObjectID']] = moving_objects[['FileID',
'Flags',
'ObjectID']].astype(int)
moving_objects = QTable.from_pandas(moving_objects)
p = SkyCoord(moving_objects['R.A. (J2000)'] *
u.degree, moving_objects['Decl.'] * u.degree)
moving_objects['R.A. (J2000)'].unit = "hourangle"
moving_objects['R.A. (J2000)'] = p.ra.to_string(u.hour, sep=":")
moving_objects['Decl.'].unit = "deg"
moving_objects['Decl.'] = p.dec.to_string(
u.deg, sep=":", alwayssign=True)
moving_objects['x'].unit = "pixel"
moving_objects['x'].info.format = '0.4f'
moving_objects['y'].unit = "pixel"
moving_objects['y'].info.format = '0.4f'
moving_objects['Background'].unit = "count"
moving_objects['Background'].info.format = '0.3f'
moving_objects['Mag'].unit = "mag"
moving_objects['Mag'].info.format = '0.4f'
moving_objects['MagErr'].unit = "mag"
moving_objects['MagErr'].info.format = '0.4f'
moving_objects['Flux'].unit = "count"
moving_objects['Flux'].info.format = '0.3f'
moving_objects['FluxErr'].unit = "count"
moving_objects['FluxErr'].info.format = '0.3f'
moving_objects['Elongation'].info.format = '0.3f'
moving_objects['FWHM'].unit = 'pixel'
moving_objects['FWHM'].info.format = '0.2f'
moving_objects['Sky Motion'].unit = u.arcsec/u.min
moving_objects['Sky Motion'].info.format = '0.2f'
with open('{0}/results.txt'.format(outdir), 'w') as f:
f.seek(0, os.SEEK_END)
print('========================================================\n')
print('MOVING OBJECTS:\n')
print(moving_objects)
f.write('# MOVING OBJECTS:\n')
ascii.write(moving_objects, f)
if uncertain_objects.size:
uncertain_objects = pd.DataFrame.from_records(uncertain_objects,
columns=COLUMNS)
uncertain_objects = uncertain_objects.reindex(NEWCOLS, axis=1)
uncertain_objects[['FileID',
'Flags',
'ObjectID']] = uncertain_objects[[
'FileID',
'Flags',
'ObjectID']].astype(int)
uncertain_objects = QTable.from_pandas(uncertain_objects)
p = SkyCoord(uncertain_objects['R.A. (J2000)'] *
u.degree, uncertain_objects['Decl.'] * u.degree)
uncertain_objects['R.A. (J2000)'].unit = "hourangle"
uncertain_objects['R.A. (J2000)'] = p.ra.to_string(u.hour, sep=":")
uncertain_objects['Decl.'].unit = "deg"
uncertain_objects['Decl.'] = p.dec.to_string(
u.deg, sep=":", alwayssign=True)
uncertain_objects['x'].unit = "pixel"
uncertain_objects['x'].info.format = '0.4f'
uncertain_objects['y'].unit = "pixel"
uncertain_objects['y'].info.format = '0.4f'
uncertain_objects['Background'].unit = "count"
uncertain_objects['Background'].info.format = '0.3f'
uncertain_objects['Mag'].unit = "mag"
uncertain_objects['Mag'].info.format = '0.4f'
uncertain_objects['MagErr'].unit = "mag"
uncertain_objects['MagErr'].info.format = '0.4f'
uncertain_objects['Flux'].unit = "count"
uncertain_objects['Flux'].info.format = '0.3f'
uncertain_objects['FluxErr'].unit = "count"
uncertain_objects['FluxErr'].info.format = '0.3f'
uncertain_objects['Elongation'].info.format = '0.3f'
uncertain_objects['FWHM'].unit = 'pixel'
uncertain_objects['FWHM'].info.format = '0.2f'
uncertain_objects['Sky Motion'].unit = u.arcsec/u.min
uncertain_objects['Sky Motion'].info.format = '0.2f'
with open('{0}/results.txt'.format(outdir), 'a') as f:
f.seek(0, os.SEEK_END)
print('========================================================\n')
print('UNCERTAIN OBJECTS:\n')
print(uncertain_objects)
f.write('# UNCERTAIN OBJECTS:\n')
ascii.write(uncertain_objects, f)
try:
n_moving = len(moving_objects.ObjectID.unique())
except AttributeError:
n_moving = 0
try:
n_uncertain = len(uncertain_objects.ObjectID.unique())
except AttributeError:
n_uncertain = 0
print('\nA-Track has detected',
n_moving, 'moving objects and',
n_uncertain,
'uncertain objects.')
if not arguments.skip_mpcreport:
fileops = io.FileOps()
timeops = astronomy.TimeOps()
fitsops = astronomy.FitsOps()
astcalc = astronomy.AstCalc()
images_dir = outdir
the_res_file = "{0}/results.txt".format(outdir)
magnitude = float(config.get('mpcreport', 'LIM_MAG'))
radius = float(config.get('mpcreport', 'RADIUS'))
output = "{0}/mpc_out.txt".format(outdir)
database = config.get('mpcreport', 'MPC_DATABASE_PATH')
observatory = config.get('mpcreport', 'OBSERVATORY')
print("Analysing A-Track result file...")
my_files = fileops.get_file_list(images_dir)
res_file = fileops.read_res(the_res_file)
# print(res_file)
try:
hdu1 = fits.open(my_files[0])
wsc_check = hdu1[0].header['ctype1']
wcs_file = my_files[0]
except:
solve_wcs = astcalc.solve_field(my_files[0],
ra_keyword=str(config.get('mpcreport',
'RA')),
dec_keyword=str(config.get('mpcreport',
'DEC')),
)
if not solve_wcs:
raise SystemExit
root, extension = os.path.splitext(my_files[0])
wcs_file = root + "_new.fits"
observer = config.get('mpcreport', 'OBSERVER')
if observer == 'OBSERVER':
observer = fitsops.get_header(my_files[0],
config.get('mpcreport',
'OBSERVER'))
telescope = fitsops.get_header(my_files[0],
config.get('mpcreport', 'TELESCOPE'))
contact = config.get('mpcreport', 'CONTACT')
catalog = config.get('mpcreport', 'CATALOG')
print("----------------MPC Report File-----------------------")
h = fitsops.return_out_file_header(observer=observer, tel=telescope,
code=observatory,
contact=contact,
catalog=catalog)
out_file = open(output, "w")
out_file.write("{0}\n".format(h))
print(h)
for i in res_file:
theid, frame, x, y, flux = i
coors = astcalc.xy2sky(wcs_file, x, y)
if not coors:
coors = astcalc.xy2skywcs(wcs_file, x, y)
coors2 = astcalc.xy2sky2(wcs_file, x, y)
if not coors2:
coors2 = astcalc.xy2sky2wcs(wcs_file, x, y)
coors2ra = coors2.ra.degree
coors2dec = coors2.dec.degree
fltr = fitsops.get_header(my_files[0],
config.get('mpcreport',
'FILTER'))
fltr = str(fltr).strip().replace(" ", "_")
tm = timeops.get_timestamp_exp(my_files[int(frame)])
tmm = timeops.convert_time_format(tm)
mag = astcalc.flux2mag(flux)
# ccoor = afits_op.center_finder(wcs_file)
namesky = astcalc.find_skybot_objects(tm,
coors2ra,
coors2dec)
# print(namesky)
for u in range(len(namesky)):
# justID = namesky[u][0]
justname = namesky[u][1]
if astcalc.is_object(astcalc.radec2wcs(namesky[u][2],
namesky[u][3]),
coors2):
mpcname = fileops.find_if_in_database_name(database,
justname)
if len(mpcname) == 5:
spc = " "
elif len(mpcname) > 5:
spc = " "
print("{0}{1}{2} {3} {4} {5} {6}".format(mpcname,
spc,
tmm,
coors,
mag,
fltr,
observatory))
out_file.write("{0}{1}{2} {3} {4} {5} {6}\n".format(
mpcname,
spc,
tmm,
coors,
mag,
fltr,
observatory))
break
else:
p = " NO{:03.0f}* {} {} {} {} {}".format(
theid,
tmm,
coors,
mag,
fltr,
observatory)
print(p)
out_file.write("{0}\n".format(p))
break
print("----- end -----")
out_file.write("----- end -----")
out_file.close()
if not arguments.skip_pngs:
print('\nCreating PNG files...\n')
if len(moving_objects) > 0 and len(uncertain_objects) > 0:
objects = vstack([moving_objects, uncertain_objects],
metadata_conflicts='silent')
elif not len(moving_objects) > 0 and len(uncertain_objects) > 0:
objects = uncertain_objects
elif not len(uncertain_objects) and len(moving_objects) > 0:
objects = moving_objects
images = sorted(glob.glob(outdir + '/*affineremap.fits'))
for i, image in enumerate(images):
asteroid = objects[objects['FileID'] == i]
visuals.fits2png(image, outdir, asteroid)
print('{0} converted to png.'.format(image))
elapsed = int(time.time() - start)
print('\nPNG conversion completed.')
print('Elapsed Time: {0} min {1} sec.'
.format(elapsed // 60, elapsed % 60))
if not arguments.skip_gif:
print('\nCreating GIF (animation) file...')
os.popen('convert -delay 20 -loop 0 ' +
'{0}/*.png {0}/animation.gif'.format(outdir))
print('{0}/animation.gif created.'.format(outdir))
print('Elapsed Time: {0} min {1} sec.'.format(elapsed // 60, elapsed % 60))
print()