-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathasteroids.py
623 lines (474 loc) · 19.5 KB
/
asteroids.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
# -*- coding: utf-8 -*-
# Authors: Yücel Kılıç, Murat Kaplan, Nurdan Karapınar, Tolga Atay.
# This is an open-source software licensed under GPLv3.
try:
from astropy.io import fits
except ImportError:
print('Python cannot import astropy. Make sure astropy is installed.')
raise SystemExit
try:
import numpy as np
except ImportError:
print('Python cannot import numpy. Make sure numpy is installed.')
raise SystemExit
try:
import pandas as pd
except ImportError:
print('Python cannot import pandas. Make sure pandas is installed.')
raise SystemExit
import ast
import re
import math
import glob
import os
import time
import itertools as it
import pickle as pk
from multiprocessing import Pool, cpu_count
from configparser import ConfigParser
config = ConfigParser()
if os.path.exists('./atrack.config'):
config.read('./atrack.config')
else:
print('Python cannot open the configuration file. Make sure atrack.config',
'is in the same folder as atrack.py.')
raise SystemExit
def distance(p1, p2):
'''
Returns the distance between two points.
@param p1: x and y coordinates of the first point.
@type p1: list, tuple
@param p2: x and y coordinates of the second point.
@type p2: list, tuple
@return: float
'''
return math.sqrt((p2[0] - p1[0])**2 + (p2[1] - p1[1])**2)
def isClose(p1, p2, dmax):
'''
Checks if the distance between two points is less than a given value.
@param p1: x and y coordinates of the first point.
@type p1: list, tuple
@param p2: x and y coordinates of the second point.
@type p2: list, tuple
@param dmax: Distance to compare.
@type dmax: float, integer
@return: boolean
'''
d12 = distance(p1, p2)
return d12 <= dmax
def ordered(p1, p2, p3):
'''
Reorders the vertices p1,p2,p3 of a triangle such that first two points
define the longest edge.
@param p1: x and y coordinates of the first point.
@type p1: list, tuple
@param p2: x and y coordinates of the second point.
@type p2: list, tuple
@param p3: x and y coordinates of the third point.
@type p3: list
@return: tuple
'''
d12 = distance(p1, p2)
d13 = distance(p1, p3)
d23 = distance(p2, p3)
long = max(d12, d23, d13)
if long == d12:
return (p1, p2, p3)
elif long == d13:
return (p1, p3, p2)
elif long == d23:
return (p2, p3, p1)
def height(p1, p2, p3):
'''
Returns the shortest distance between a line and a point.
@param p1: x and y coordinates of the first point on the line.
@type p1: list, tuple
@param p2: x and y coordinates of the second point on the line.
@type p2: list, tuple
@param p3: x and y coordinates of the third point.
@type p3: list
@return: float
'''
x1 = p1[0]
y1 = p1[1]
x2 = p2[0]
y2 = p2[1]
x3 = p3[0]
y3 = p3[1]
try:
h = math.fabs((x2 - x1)*y3 - (y2 - y1)*x3 + x1*y2 - x2*y1) \
/ math.sqrt(math.pow(x2 - x1, 2) + math.pow(y2 - y1, 2))
except ZeroDivisionError:
h = 0
return h
def partitions(workload):
'''
Distributes the workload (3-combinations of all images) among available
CPUs as evenly as possible.
@param workload: List of 3-combinations of all images.
@type workload: list
@return: list
'''
nCPU = cpu_count()
partition = []
n = nCPU
while len(partition) != nCPU and len(workload) != 0:
size = math.ceil(len(workload) / n)
partition.append(workload[:size])
del workload[:size]
n = n - 1
return(partition)
def detect_candidates(CMO,
FWHM_MIN=float(config.get('asteroids', 'FWHM_MIN')),
FWHM_COEFFICIENT=float(config.get('asteroids',
'FWHM_COEFFICIENT')),
FLUX_MAX=float(config.get('asteroids', 'FLUX_MAX')),
FLAG_MAX=int(config.get('asteroids', 'FLAG_MAX')),
ELONGATION_MAX=float(config.get('asteroids',
'ELONGATION_MAX')),
SNR_MIN=float(config.get('asteroids', 'SNR_MIN')),
TRAVEL_MIN=float(config.get('asteroids', 'TRAVEL_MIN'))):
'''
Eliminates the sources, that do not satisfy the given criteria, from given
SExtractor catalog files.
@param CMO: Tuple (list of SExtractor catalog files, master catalog file,
output directory for the new catalog file).
@type CMO: tuple
@param FWHM_MIN: Minimum FWHM for the candidate objects.
@type FWHM_MIN: float
@param FWHM_COEFFICIENT: FWHM coefficient.
@type FWHM_COEFFICIENT: float
@param FLUX_MAX: Maximum flux for the candidate objects.
@type FLUX_MAX: float
@param ELONGATION_MAX: Maximum ellipticity for the candidate objects.
@param FLAG_MAX: Maximum number of sum of FLAG values.
@type FLAG_MAX: int
@type ELONGATION_MAX: float
@param SNR_MIN: Minimum SNR_MIN for the candidate objects.
@type SNR_MIN: float
@param TRAVEL_MIN: Minimum travel distance between two images for a
moving object.
@type TRAVEL_MIN: float
'''
catalogs, master, outdir = CMO[0], CMO[1], CMO[2]
masterF = np.genfromtxt(master, delimiter=None, comments='#')
COLUMNS = ['flags', 'x', 'y', 'alpha_J2000', 'delta_J2000',
'flux', 'fluxerr', 'background', 'mag_auto', 'magerr_auto', 'fwhm', 'elongation']
FWHM_MAX = np.mean(masterF[:, 5]) * FWHM_COEFFICIENT
masterF = pd.DataFrame.from_records(masterF, columns=COLUMNS)
masterF = masterF[
(masterF.flags <= FLAG_MAX) &
(masterF.fwhm <= FWHM_MAX) &
(masterF.fwhm >= FWHM_MIN) &
(masterF.flux <= FLUX_MAX) &
(masterF.flux > masterF.background) &
(masterF.flux / masterF.fluxerr > SNR_MIN) &
(masterF.elongation <= ELONGATION_MAX)]
reject_area = config.get('sources', 'reject_area')
if reject_area != "False":
for bad_area in reject_area.split(";"):
bad_area = re.findall(r'"\s*([^"]*?)\s*"', bad_area)
x_range, y_range = bad_area[0], bad_area[1]
x_min, x_max = x_range.split(":")
x_min, x_max = float(x_min), float(x_max)
y_min, y_max = y_range.split(":")
y_min, y_max = float(y_min), float(y_max)
masterF = masterF[(masterF.x < x_min) |
(masterF.x > x_max) |
(masterF.y < y_min) |
(masterF.y > y_max)]
# masterF = masterF[COLUMNS[:5]].reset_index(drop=True)
masterF = masterF[COLUMNS].reset_index(drop=True)
for catalog in catalogs:
catalogF = np.genfromtxt(catalog, delimiter=None, comments='#')
catalogF = pd.DataFrame.from_records(catalogF, columns=COLUMNS)
catalogF = catalogF[
(catalogF.flags <= FLAG_MAX) &
(catalogF.fwhm <= FWHM_MAX) &
(catalogF.fwhm >= FWHM_MIN) &
(catalogF.flux <= FLUX_MAX) &
(catalogF.flux > catalogF.background) &
(catalogF.flux / catalogF.fluxerr > SNR_MIN) &
(catalogF.elongation <= ELONGATION_MAX)]
if reject_area != "False":
for bad_area in reject_area.split(";"):
bad_area = re.findall(r'"\s*([^"]*?)\s*"', bad_area)
x_range, y_range = bad_area[0], bad_area[1]
x_min, x_max = x_range.split(":")
x_min, x_max = float(x_min), float(x_max)
y_min, y_max = y_range.split(":")
y_min, y_max = float(y_min), float(y_max)
catalogF = catalogF[(catalogF.x < x_min) |
(catalogF.x > x_max) |
(catalogF.y < y_min) |
(catalogF.y > y_max)]
# catalogF = catalogF[COLUMNS[:5]].reset_index(drop=True)
catalogF = catalogF[COLUMNS].reset_index(drop=True)
# candidates = pd.DataFrame(columns=COLUMNS[:5])
candidates = pd.DataFrame(columns=COLUMNS)
for i in range(len(catalogF.x)):
if len(masterF[(masterF.x - catalogF.x[i])**2 +
(masterF.y - catalogF.y[i])**2 <=
TRAVEL_MIN ** 2]) < 2:
candidates = candidates.append(catalogF.iloc[i],
ignore_index=True)
catalog_head = os.path.splitext(os.path.basename(catalog))[0]
candidates.to_csv('{0}/{1}.cnd'.format(outdir, catalog_head),
index=False)
def all_candidates(catdir, outdir):
'''
Eliminates the sources, that do not satisfy the given criteria, from all
SExtractor catalog files.
@param catdir: Directory for the catalog files.
@type catdir: string
@param outdir: Output directory for the new catalog files.
@type outdir: string
'''
nCPU = cpu_count()
workload = sorted(glob.glob(catdir + '/*affineremap.pysexcat'))
cmds = []
for catalogs in partitions(workload):
cmds.append(tuple([catalogs, catdir + '/master.pysexcat', outdir]))
with Pool(nCPU) as pool:
pool.map(detect_candidates, cmds)
def detect_segments(CFP,
TRAVEL_MIN=float(config.get('asteroids', 'TRAVEL_MIN')),
HEIGHT_MAX=float(config.get('asteroids', 'HEIGHT_MAX')),
SCALE=float(config.get('asteroids', 'SCALE')),
V_MAX=float(config.get('asteroids', 'V_MAX')),
TOLERANCE=float(config.get('asteroids', 'TOLERANCE'))):
'''
Detects line segments inside a given list of 3-combinations.
@param catdir: Tuple (directory for the catalog files, directory for the
aligned FITS images, processor number).
@type CFP: tuple
@param TRAVEL_MIN: Minimum travel distance between two images for a
moving object.
@type TRAVEL_MIN: float
@param HEIGHT_MAX: Maximum height of the triangle for the 3 points to
be considered as collinear.
@type HEIGHT_MAX: float
@param SCALE: Pixel scale subtended by the telescope/CCD system
(arcsec).
@type SCALE: float
@param V_MAX: Theoretical maximum angular velocity of NEOs ("/sec).
@type V_MAX: float
@param TOLERANCE: Tolerance for the position of third point (pixel).
@type TOLERANCE: float
'''
catdir, fitsdir, processor = CFP[0], CFP[1], CFP[2]
types = (fitsdir + '/*.fits', fitsdir + '/*.fit', fitsdir + '/*.fts') # the tuple of file types
fits_grabbed = []
for fits_files in types:
fits_grabbed.extend(glob.glob(fits_files))
images = sorted(fits_grabbed)
files = sorted(glob.glob(catdir + '/*affineremap.cnd'))
fileids = list(range(len(files)))
workload = list(it.combinations(fileids, 3))
catalogs = []
for file in files:
catalog = pd.read_csv(file, sep=',',
names=['flags', 'x', 'y', 'alpha_J2000', 'delta_J2000',
'flux', 'fluxerr', 'background', 'mag_auto', 'magerr_auto', 'fwhm', 'elongation'],
header=0)
catalogs.append(catalog.values)
segments = []
partition = partitions(workload)[int(processor)]
for i, j, k in partition:
hdu1 = fits.open(images[i])
hdu2 = fits.open(images[j])
hdu3 = fits.open(images[k])
try:
xbin = hdu1[0].header['xbinning']
except:
xbin = 1
exp_time1 = hdu1[0].header['exptime']
exp_time2 = hdu2[0].header['exptime']
exp_time3 = hdu3[0].header['exptime']
obs_date1 = hdu1[0].header['date-obs']
obs_date2 = hdu2[0].header['date-obs']
obs_date3 = hdu3[0].header['date-obs']
if "T" not in obs_date1:
time_obs1 = hdu1[0].header['time-obs']
obs_date1 = "{0}T{1}".format(obs_date1.strip(),
time_obs1.strip())
if "T" not in obs_date2:
time_obs2 = hdu2[0].header['time-obs']
obs_date2 = "{0}T{1}".format(obs_date2.strip(),
time_obs2.strip())
if "T" not in obs_date3:
time_obs3 = hdu3[0].header['time-obs']
obs_date3 = "{0}T{1}".format(obs_date3.strip(),
time_obs3.strip())
try:
obs_time1 = time.strptime(obs_date1, '%Y-%m-%dT%H:%M:%S.%f')
except:
obs_time1 = time.strptime(obs_date1, '%Y-%m-%dT%H:%M:%S')
try:
obs_time2 = time.strptime(obs_date2, '%Y-%m-%dT%H:%M:%S.%f')
except:
obs_time2 = time.strptime(obs_date2, '%Y-%m-%dT%H:%M:%S')
try:
obs_time3 = time.strptime(obs_date3, '%Y-%m-%dT%H:%M:%S.%f')
except:
obs_time3 = time.strptime(obs_date3, '%Y-%m-%dT%H:%M:%S')
dmax = (time.mktime(obs_time2) - time.mktime(obs_time1) +
(exp_time2 - exp_time1) / 2) * V_MAX / (SCALE * xbin)
for p1, p2 in it.product(range(len(catalogs[i])),
range(len(catalogs[j]))):
if not isClose(catalogs[i][p1, [1, 2]], catalogs[j][p2, [1, 2]],
dmax):
continue
d12 = distance(catalogs[i][p1][1:3], catalogs[j][p2][1:3])
t12 = (time.mktime(obs_time2) - time.mktime(obs_time1) +
(exp_time2 - exp_time1) / 2)
for p3 in range(len(catalogs[k])):
d23 = distance(catalogs[j][p2][1:3],
catalogs[k][p3][1:3])
t23 = (time.mktime(obs_time3) - time.mktime(obs_time2) +
(exp_time3 - exp_time2) / 2)
if not (t23 * d12 / t12 - TOLERANCE <= d23 <=
t23 * d12 / t12 + TOLERANCE):
continue
points = ordered(catalogs[i][p1, [1, 2]],
catalogs[j][p2, [1, 2]],
catalogs[k][p3, [1, 2]])
HEIGHT = height(points[0], points[1], points[2])
LENGTH = distance(points[0], points[1])
if LENGTH > TRAVEL_MIN * 2 and HEIGHT < HEIGHT_MAX:
segments.append([np.insert(catalogs[i][p1], 0, i).tolist(),
np.insert(catalogs[j][p2], 0, j).tolist(),
np.insert(catalogs[k][p3], 0, k).tolist()])
with open(catdir + '/Processor{0}.sgm'.format(processor), 'wb') as result:
pk.dump(segments, result)
def merge_segments(segments):
'''
Merges 3-point segments that belong to the same line.
@param segments: List of 3-point segments.
@type segments: list
@return: list
'''
lines = []
for segment in segments:
p1 = segment[0][2:4]
p2 = segment[1][2:4]
p3 = segment[2][2:4]
if lines:
for line in lines:
points = [point[2:4] for point in line]
check1 = p1 in points
check2 = p2 in points
check3 = p3 in points
checks = (check1, check2, check3)
if True in checks and False in checks:
for i in range(3):
if checks[i] is False:
line.append(segment[i])
break
elif False not in checks:
break
if True not in checks:
lines.append([segment[0], segment[1], segment[2]])
else:
lines.append([segment[0], segment[1], segment[2]])
return lines
def detect_lines(catdir, fitsdir):
'''
Detects all line segments in a project.
@param catdir: Directory for the catalog files.
@type catdir: string
@param fitsdir: Directory for the aligned FITS images.
@type fitsdir: string
@return: list
'''
nCPU = cpu_count()
cmds = []
for i in range(nCPU):
cmds.append(tuple([catdir, fitsdir, str(i)]))
try:
with Pool(nCPU) as pool:
pool.map(detect_segments, cmds, 1)
except IndexError:
detect_segments((catdir, fitsdir, 0))
results = sorted(glob.glob(catdir + '/*.sgm'))
segments = []
for result in results:
with open(result, 'rb') as res:
segments += pk.load(res)
os.remove(result)
return merge_segments(segments)
def results(fitsdir, lines,
SPEED_MIN=float(config.get('asteroids', 'SPEED_MIN'))):
'''
Reports detected moving objects and uncertain objects.
@param fitsdir: Directory for the aligned FITS images.
@type fitsdir: string
@param lines: List of detected lines.
@type lines: list
@param SPEED_MIN: Minimum speed of a moving object.
@type SPEED_MIN: float
@return: numpy.ndarray
'''
moving_objects = []
uncertain_objects = []
types = (fitsdir + '/*.fits', fitsdir + '/*.fit', fitsdir + '/*.fts') # the tuple of file types
fits_grabbed = []
for fits_files in types:
fits_grabbed.extend(glob.glob(fits_files))
images = sorted(fits_grabbed)
for i in range(len(lines)):
line = sorted(lines[i])
nmin = int(line[0][0])
nmax = int(line[-1][0])
hdu1 = fits.open(images[nmin])
hdu2 = fits.open(images[nmax])
obs_date1 = hdu1[0].header['date-obs']
if "T" not in obs_date1:
time_obs1 = hdu1[0].header['time-obs']
obs_date1 = "{0}T{1}".format(obs_date1.strip(),
time_obs1.strip())
exp_time1 = hdu1[0].header['exptime']
# Second image
obs_date2 = hdu2[0].header['date-obs']
if "T" not in obs_date2:
time_obs2 = hdu2[0].header['time-obs']
obs_date2 = "{0}T{1}".format(obs_date2.strip(),
time_obs2.strip())
exp_time2 = hdu2[0].header['exptime']
try:
obs_time1 = time.strptime(obs_date1, '%Y-%m-%dT%H:%M:%S.%f')
except:
obs_time1 = time.strptime(obs_date1, '%Y-%m-%dT%H:%M:%S')
try:
obs_time2 = time.strptime(obs_date2, '%Y-%m-%dT%H:%M:%S.%f')
except:
obs_time2 = time.strptime(obs_date2, '%Y-%m-%dT%H:%M:%S')
length = distance(line[0][2:4], line[-1][2:4])
try:
speed = 60 * length / (time.mktime(obs_time2) + exp_time2 / 2 -
time.mktime(obs_time1) - exp_time1 / 2)
except:
speed = 0
pixel_scale = float(config.get('sources', 'PIXEL_SCALE'))
speed_in_min = speed * pixel_scale
info = np.concatenate((np.asarray(line),
np.asarray([[int(i) + 1] * len(line)]).T,
np.asarray([[speed_in_min] * len(line)]).T),
axis=1)
if speed_in_min >= SPEED_MIN:
moving_objects.append(info)
else:
uncertain_objects.append(info)
if len(moving_objects) == 1:
moving_objects = moving_objects[0]
elif len(moving_objects) > 1:
moving_objects = np.concatenate(tuple(moving_objects), axis=0)
elif len(moving_objects) == 0:
moving_objects = np.array([])
if len(uncertain_objects) == 1:
uncertain_objects = uncertain_objects[0]
elif len(uncertain_objects) > 1:
uncertain_objects = np.concatenate(tuple(uncertain_objects), axis=0)
elif len(uncertain_objects) == 0:
uncertain_objects = np.array([])
return moving_objects, uncertain_objects