-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
208 lines (166 loc) · 7.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: aithlab
"""
import os
import torch
import numpy as np
import matplotlib.pyplot as plt
from differential_game import DifferentialGame
from replay_buffer import ReplayBuffer
from networks import Agent
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def random_actions(env, agents, replay_buffers):
obs = env.reset()
for _step in range(env.max_step):
action_n = [agent.get_action(obs[i]) for i,agent in enumerate(agents)]
action_n = np.asarray(action_n)
next_observation_n, reward_n, done_n, info = env.step(action_n)
replay_buffers.add(obs, action_n, reward_n, next_observation_n, done_n)
obs = next_observation_n
buffer_size = 1e6
n_agents = 2
n_episodes = 200
batch_size = 512
max_step = 25
render = True
savedir = './figures'
os.makedirs(savedir, exist_ok=True)
env = DifferentialGame(n_agents, max_step=max_step, render=render)
replay_buffers = ReplayBuffer(buffer_size, n_agents, device)
obs_dims = [env.observation_space[i].n for i in range(n_agents)]
action_dims = [env.action_space[i].shape[0] for i in range(n_agents)]
agents = [Agent(obs_dims[i], action_dims[i], i, device=device) for i in range(n_agents)]
episode_actions, episode_mus, episode_opponent_mus, episode_rewards = [],[],[],[]
losses = {'Q':[], 'policy':[], 'opponent':[], 'prior':[]}
vals = {'log_prior':[], 'q_val':[], 'log_policy':[], 'log_opponent':[]}
while len(replay_buffers) <= batch_size:
random_actions(env, agents, replay_buffers)
for episode in range(n_episodes):
annealing = .1 + np.exp(-0.1 * max(episode, 0)) * 500.
_losses = {'Q':[], 'policy':[], 'opponent':[], 'prior':[]}
_vals = {'log_prior':[], 'q_val':[], 'log_policy':[], 'log_opponent':[]}
rewards, _actions, _mus, _opponent_mus = [],[],[],[]
obs = env.reset()
for _step in range(env.max_step):
mus = [agent.get_mu(obs[i]) for i, agent in enumerate(agents)]
_mus.append(np.array(mus)[:,0])
_opponent_mus.append(np.array(mus)[:,1])
action_n = [agent.get_action(obs[i]) for i,agent in enumerate(agents)]
action_n = np.asarray(action_n)
_actions.append(action_n)
next_observation_n, reward_n, done_n, info = env.step(action_n)
replay_buffers.add(obs, action_n, reward_n, next_observation_n, done_n)
obs = next_observation_n
rewards.append(reward_n)
agent_losses = {'Q':[], 'policy':[], 'opponent':[], 'prior':[]}
agent_vals = {'log_prior':[], 'q_val':[], 'log_policy':[], 'log_opponent':[]}
batch_n = replay_buffers.sample(batch_size)
receent_indices = list(range(max(0, len(replay_buffers)-batch_size), len(replay_buffers)))
recent_batch_n = replay_buffers.sample_by_indices(receent_indices)
for i, agent in enumerate(agents):
s, a, r, next_s, dones = batch_n[i]
a_ = batch_n[1-i][1]
recent_s, recent_oppo_a, _, _, _ = recent_batch_n[1-i]
## Prior update
loss_prior, log_prior = agent.prior_update(recent_s, recent_oppo_a)
## Opponent update
loss_opponent, log_oppo = agent.opponent_model_update(s, annealing)
## Q update
loss_q, q_val = agent.joint_q_update(s, a, a_, r)
## Policy Gradient
loss_pg, log_policy = agent.policy_update(s, annealing)
loss_policy = loss_opponent + loss_pg
agent.optimizer_prior.zero_grad()
loss_prior.backward()
agent.optimizer_prior.step()
#Policy networks should be updated before than Q function.
agent.optimizer_policy.zero_grad()
loss_policy.backward()
agent.optimizer_policy.step()
agent.optimizer_q.zero_grad()
loss_q.backward()
agent.optimizer_q.step()
agent_losses['prior'].append(loss_prior.item())
agent_losses['Q'].append(loss_q.item())
agent_losses['policy'].append(loss_pg.item())
agent_losses['opponent'].append(loss_opponent.item())
agent_vals['log_prior'].append(log_prior.item())
agent_vals['q_val'].append(q_val.item())
agent_vals['log_policy'].append(log_policy.item())
agent_vals['log_opponent'].append(log_oppo.item())
_losses['Q'].append(agent_losses['Q'])
_losses['policy'].append(agent_losses['policy'])
_losses['opponent'].append(agent_losses['opponent'])
_losses['prior'].append(agent_losses['prior'])
_vals['log_prior'].append(agent_vals['log_prior'])
_vals['q_val'].append(agent_vals['q_val'])
_vals['log_policy'].append(agent_vals['log_policy'])
_vals['log_opponent'].append(agent_vals['log_opponent'])
episode_actions.append(_actions)
episode_mus.append(np.mean(_mus,0))
episode_opponent_mus.append(np.mean(_opponent_mus,0))
episode_rewards.append([np.mean(rewards,0)[0], np.std(rewards,0)[0]])
if not episode % 1 and render:
env.render(np.array(episode_actions[-1])*10)
losses['Q'].append(np.mean(_losses['Q'],0))
losses['policy'].append(np.mean(_losses['policy'],0))
losses['opponent'].append(np.mean(_losses['opponent'],0))
losses['prior'].append(np.mean(_losses['prior'],0))
vals['log_prior'].append(np.mean(_vals['log_prior'],0))
vals['q_val'].append(np.mean(_vals['q_val'],0))
vals['log_policy'].append(np.mean(_vals['log_policy'],0))
vals['log_opponent'].append(np.mean(_vals['log_opponent'],0))
print("============="*5)
print("| Ep. %d/%d | Reward %6.2f| Action %5.2f %5.2f | alpha %7.3f |" \
%(episode, n_episodes, episode_rewards[-1][0], *episode_actions[-1][-1], annealing))
for i in range(n_agents):
print("| Agent #%d | Loss Q %6.3f PG %6.3f Opponent %6.3f Prior %6.3f |"\
%(i+1, losses['Q'][-1][i], losses['policy'][-1][i],
losses['opponent'][-1][i], losses['prior'][-1][i]))
print("| log P %6.3f | Q %6.3f | log pi %6.3f | log rho %6.3f |"\
%(vals['log_prior'][-1][i], vals['q_val'][-1][i],
vals['log_policy'][-1][i], vals['log_opponent'][-1][i]))
losses['Q'] = np.array(losses['Q'])
losses['policy'] = np.array(losses['policy'])
losses['opponent'] = np.array(losses['opponent'])
losses['prior'] = np.array(losses['prior'])
episode_mus = np.array(episode_mus)*10
episode_opponent_mus = np.array(episode_opponent_mus)*10
episode_rewards = np.array(episode_rewards)
# Learning curve
fig = plt.figure(figsize=(14,7))
for i, key in enumerate(losses.keys()):
ax = fig.add_subplot(1,4,i+1)
ax.set_title(key)
for j in range(n_agents):
ax.plot(losses[key][:,j], label='Agent %d'%(j+1))
plt.legend()
plt.savefig(os.path.join(savedir, 'learning_curve.png'))
# Return
episode_mean = episode_rewards[:,0]
episode_std = episode_rewards[:,1]
plt.figure(figsize=(8,5))
plt.plot(episode_mean)
plt.fill_between(np.arange(len(episode_mean)),
episode_mean-episode_std,
episode_mean+episode_std, alpha=0.5)
plt.ylabel('Return')
plt.xlabel('Episodes')
plt.xticks(np.arange(0,200+1,25))
plt.xlim(0,200)
plt.grid('on')
plt.savefig(os.path.join(savedir, 'Rewards.png'))
# Policies
plt.figure()
plt.plot(episode_mus[:,0], 'b', linestyle='dotted', label=r'$\mu_{\pi^1}$')
plt.plot(episode_mus[:,1], 'm', linestyle='dotted', label=r'$\mu_{\pi^2}$')
plt.plot(episode_opponent_mus[:,0], 'g', label=r'$\mu_{\rho^1}$')
plt.plot(episode_opponent_mus[:,1], 'r', label=r'$\mu_{\rho^2}$')
plt.xlim(0,200)
plt.legend(loc='lower right')
plt.ylabel('Mean of Policy')
plt.xlabel('Episodes')
plt.grid('on')
plt.savefig(os.path.join(savedir, 'policy.png'))