-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathant_data_collect.py
41 lines (38 loc) · 1.55 KB
/
ant_data_collect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tensorflow as tf
import gym
from inverse_rl.algos.trpo import TRPO
from inverse_rl.models.tf_util import get_session_config
from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy
from sandbox.rocky.tf.envs.base import TfEnv
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
from inverse_rl.envs.env_utils import CustomGymEnv
from inverse_rl.utils.log_utils import rllab_logdir
from inverse_rl.utils.hyper_sweep import run_sweep_parallel, run_sweep_serial
from rllab.envs.gym_env import GymEnv
def main(exp_name=None, ent_wt=1.0):
tf.reset_default_graph()
env = TfEnv(CustomGymEnv('CustomAnt-v0', record_video=False, record_log=False, force_reset=False))
policy = GaussianMLPPolicy(name='policy', env_spec=env.spec, hidden_sizes=(32, 32))
with tf.Session(config=get_session_config()) as sess:
algo = TRPO(
env=env,
sess=sess,
policy=policy,
n_itr=2000,
batch_size=20000,
max_path_length=500,
discount=0.99,
store_paths=True,
entropy_weight=ent_wt,
baseline=LinearFeatureBaseline(env_spec=env.spec),
exp_name=exp_name,
)
#with rllab_logdir(algo=algo, dirname='data/ant_data_collect'):#/%s'%exp_name):
with rllab_logdir(algo=algo, dirname='data/ant_data_collect/%s'%exp_name):
algo.train()
if __name__ == "__main__":
params_dict = {
'ent_wt': [0.1]
}
#main(ent_wt=0.1)
run_sweep_parallel(main, params_dict, repeat=4)