forked from sanketpurandare/mem-run-estimator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_utils.py
486 lines (402 loc) · 20.6 KB
/
exp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
from contextlib import nullcontext
from enum import StrEnum
import csv
import copy
import fcntl
from typing import Any, Callable, Dict, Iterator, List, Set, ContextManager, Tuple, Type, Union
import timm
import timm.optim
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForSeq2SeqLM, CLIPModel
from diffusers import StableDiffusion3Pipeline
from diffusers import FluxTransformer2DModel, FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import UNet2DConditionModel, AutoencoderKL, DDPMScheduler
from torchmultimodal.modules.losses.contrastive_loss_with_temperature import (
ContrastiveLossWithTemperature,
)
import torch
from torch import nn, optim
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.distributed.fsdp._wrap_utils import _post_order_apply
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import checkpoint_wrapper
DEVICE = "cuda:0"
BASE_DIR = "/n/netscratch/idreos_lab/Lab/spurandare/auto-sac"
# BASE_DIR = "/n/holylabs/LABS/acc_lab/Users/golden/CS2881r/mem-run-estimator-fork"
OUT_DIR = f"{BASE_DIR}/outputs"
gpu_types: Set[str] = {"H100", "A100"}
runtime_est_modes: Set[str] = {"operator-level-cost-model", "operator-level-benchmark", "operator-level-learned-model"}
model_names: Set[str] = {
"hf_T5",
"timm_vit",
"hf_clip",
"llama_v3_1b",
"gemma_2b",
"timm_convnext_v2",
"stable_diffusion",
"flux",
"stable_diffusion_mmdit"
}
class ExpType(StrEnum):
runtime_est = "runtime_estimation"
memory_est = "memory_estimation"
real_execution = "real_execution"
test = "test"
class Precision(StrEnum):
FP = "FP"
MP = "MP"
HP = "HP"
class AC(StrEnum):
AUTO = "auto"
FULL = "full"
NONE = "none"
model_cards: Dict[str, str] = {
"hf_T5": "t5-large",
"llama_v3_1b": "meta-llama/Llama-3.2-1B-Instruct",
"gemma_2b": "google/gemma-2b",
"timm_convnext_v2": "convnextv2_huge.fcmae_ft_in22k_in1k_512",
"timm_vit": "vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k",
"hf_clip": "openai/clip-vit-large-patch14-336",
"stable_diffusion": "stable-diffusion-v1-5/stable-diffusion-v1-5",
"flux": "black-forest-labs/FLUX.1-schnell",
"stable_diffusion_mmdit": ["stabilityai/stable-diffusion-3-medium-diffusers"]
}
precision_to_dtype: Dict[Precision, torch.dtype] = {
Precision.FP : torch.float32,
Precision.HP: torch.float16,
Precision.MP: torch.float32
}
model_class: Dict[str, Type] = {
"hf_T5": AutoModelForSeq2SeqLM,
"llama_v3_1b": AutoModelForCausalLM,
"gemma_2b": AutoModelForCausalLM,
"hf_clip": CLIPModel,
"stable_diffusion": [UNet2DConditionModel, AutoencoderKL, CLIPTextModel, DDPMScheduler],
"flux": FluxTransformer2DModel,
"stable_diffusion_mmdit": [StableDiffusion3Pipeline]
}
model_ac_classes: Dict[str, List[str]] = {
"hf_T5": ["T5LayerFF", "T5LayerNorm"],
"llama_v3_1b": ["LlamaDecoderLayer"],
"gemma_2b": ["GemmaDecoderLayer"],
"timm_convnext_v2": ["GlobalResponseNormMlp",],
"timm_vit": ["Block",],
"hf_clip": ["CLIPEncoderLayer",],
"stable_diffusion": ["BasicTransformerBlock", "ResnetBlock2D"],
"flux": ["FluxTransformer2DModel"], ### ???
"stable_diffusion_mmdit": ["JointTransformerBlock"] ### ???
}
def generate_inputs_and_labels(
bsz: int, vocab_size: int, seq_len: int, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
input_ids = torch.randint(0, vocab_size, (bsz, seq_len), dtype=torch.int64, device=dev)
labels = torch.randint(0, vocab_size, (bsz, seq_len), dtype=torch.int64, device=dev)
return (input_ids, labels)
def generate_inputs_and_targets(
bsz: int, im_sz:int, n_classes: int, dtype: torch.dtype, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
input = torch.randn((bsz, 3, im_sz, im_sz), dtype=dtype, device=dev)
target = torch.randint(0, n_classes, (bsz, ), dtype=torch.int64, device=dev)
return(input, target)
def generate_multimodal_inputs(
bsz: int, vocab_size: int, seq_len: int, im_sz:int, dtype: torch.dtype, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
input_img = torch.randn((bsz, 3, im_sz, im_sz), dtype=dtype, device=dev)
input_ids = torch.randint(0, vocab_size, (bsz, seq_len), dtype=torch.int64, device=dev)
attention_mask = torch.ones((bsz, seq_len), dtype=torch.int64, device=dev)
return (input_img, input_ids, attention_mask)
def generate_noise_and_timesteps(
bsz: int, im_sz:int, num_denoise:int, dtype: torch.dtype, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
pixel_img = torch.randn(bsz, 3, im_sz, im_sz, dtype=dtype, device=dev)
timesteps = torch.randint(0, num_denoise, (bsz,), dtype=torch.int64, device=dev)
return (pixel_img, timesteps)
def generate_flux_inputs(
bsz: int, im_sz:int, dtype: torch.dtype, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
img_ids = torch.randn(im_sz, 3, dtype=dtype, device=dev)
return (img_ids)
# def generate_flux_inputs(
# batch_size: int, image_size:int, seq_len:int, in_channels:int, joint_attention_dim:int, pooled_projection_dim:int, dtype: torch.dtype, dev: torch.device
# ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# hidden_states = torch.randn((batch_size, int((image_size/8)*2), in_channels), dtype=dtype, device=dev)
# encoder_hidden_states = torch.randn((batch_size, seq_len, joint_attention_dim), dtype=dtype, device=dev)
# pooled_projections = torch.randn((batch_size, pooled_projection_dim), dtype=dtype, device=dev)
# timestep = torch.tensor([0], dtype=dtype, device=dev)
# img_ids = torch.randn((int((image_size/8)*2), 3), dtype=dtype, device=dev)
# txt_ids = torch.randn((seq_len, 3), dtype=dtype, device=dev)
# target = torch.randn_like(hidden_states)
# return (hidden_states, encoder_hidden_states, pooled_projections, timestep, img_ids, txt_ids, target)
def generate_sd3_inputs(
batch_size: int, image_size:int, seq_len:int, in_channels:int, joint_attention_dim:int, pooled_projection_dim:int, embed_dim:int, dtype: torch.dtype, dev: torch.device
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
hidden_states = torch.randn((batch_size, in_channels, image_size, image_size), dtype=dtype, requires_grad=True).to(dev)
encoder_hidden_states = torch.randn((batch_size, seq_len, embed_dim), dtype=dtype, requires_grad=True).to(dev)
pooled_projections = torch.randn((batch_size, pooled_projection_dim), dtype=dtype, requires_grad=True).to(dev)
timestep = torch.tensor([0], dtype=dtype, requires_grad=True).to(dev)
target = torch.randn_like(hidden_states, requires_grad=True).to(dev)
return (hidden_states, encoder_hidden_states, pooled_projections, timestep, target)
def create_optimizer(param_iter: Iterator) -> optim.Optimizer:
optimizer = optim.Adam(
param_iter,
lr=1e-4,
weight_decay=1.0e-4,
eps=1.0e-6,
)
return optimizer
def apply_ac(model: nn.Module, ac_classes: List[str]):
def ac_wrapper(module: nn.Module) -> Union[nn.Module, None]:
module_class = module.__class__.__name__
if module_class in ac_classes:
print("Applied AC")
return checkpoint_wrapper(
module,
preserve_rng_state=False,
)
else:
return None
_post_order_apply(model, fn=ac_wrapper)
def create_training_setup(
model_name: str,
batch_size: int = 2,
seq_len: int = 128,
precision: Precision = Precision.HP,
ac: AC = AC.NONE,
image_size: int = 224,
dev: torch.device = torch.device(DEVICE),
init_mode: ContextManager = nullcontext(),
num_denoising_steps: int=50,
) -> Tuple[Callable, List[nn.Module], List[optim.Optimizer], Any]:
dtype = precision_to_dtype[precision]
amp_context = nullcontext()
if precision == Precision.MP:
amp_context = torch.autocast(device_type=DEVICE)
if model_name in [
"hf_T5", "llama_v3_1b", "gemma_2b"
]:
model_card = model_cards[model_name]
model_cls = model_class[model_name]
config = AutoConfig.from_pretrained(model_card)
if hasattr(config, "use_cache"):
setattr(config, "use_cache", False)
with init_mode:
with torch.device(dev):
model = model_cls.from_config(config=config).to(dtype=dtype)
optimizer = create_optimizer(model.parameters())
if ac == AC.FULL:
ac_classes = model_ac_classes[model_name]
apply_ac(model, ac_classes)
input_ids, labels = generate_inputs_and_labels(batch_size, config.vocab_size, seq_len, dev)
inputs = {"input_ids": input_ids, "labels": labels}
def hf_train_step(
models: List[nn.Module], optimizers: List[optim.Optimizer], inputs
):
model = models[0]
optimizer = optimizers[0]
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with amp_context:
loss = model(**inputs).loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
return (hf_train_step, [model], [optimizer], inputs)
elif model_name in ["timm_vit", "timm_convnext_v2"]:
model_card = model_cards[model_name]
with init_mode:
with torch.device(dev):
model = timm.create_model(model_card, pretrained=False).to(dtype=dtype)
optimizer = timm.optim.create_optimizer_v2(model, opt="adam")
loss_fn = nn.functional.cross_entropy
if ac == AC.FULL:
ac_classes = model_ac_classes[model_name]
apply_ac(model, ac_classes)
n_classes = model.default_cfg['num_classes']
inputs = generate_inputs_and_targets(batch_size, image_size, n_classes, dtype, dev)
def timm_train_step(
models: List[nn.Module], optimizers: List[optim.Optimizer], inputs
):
model = models[0]
optimizer = optimizers[0]
inp, target = inputs
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with amp_context:
output = model(inp)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return (timm_train_step, [model], [optimizer], inputs)
elif model_name == "hf_clip":
model_card = model_cards[model_name]
model_cls = model_class[model_name]
config = AutoConfig.from_pretrained(model_card)
with init_mode:
with torch.device(dev):
model = model_cls._from_config(config=config).to(dtype=dtype)
loss_fn = ContrastiveLossWithTemperature()
class CLIP(nn.Module):
def __init__(self, clip_model, loss_mod):
super().__init__()
self.add_module('clip_model', clip_model)
self.add_module('contrastive_loss_with_temp', loss_mod)
def forward(self, **kwargs):
outputs = self.clip_model(**kwargs)
loss = self.contrastive_loss_with_temp(outputs.image_embeds, outputs.text_embeds)
return loss
model_with_loss = CLIP(model, loss_fn)
if ac == AC.FULL:
ac_classes = model_ac_classes[model_name]
apply_ac(model_with_loss, ac_classes)
optimizer = create_optimizer(model_with_loss.parameters())
inputs = generate_multimodal_inputs(
batch_size,
model.clip_model.config.text_config.vocab_size,
model.clip_model.config.text_config.max_length,
image_size,
dtype,
dev
)
def clip_train_step(
models: List[nn.Module], optimizers: List[optim.Optimizer], inputs
):
model = models[0]
optimizer = optimizers[0]
img, ids, attn_mask = inputs
inputs = {'input_ids': ids, 'attention_mask': attn_mask, 'pixel_values': img}
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with amp_context:
loss = model(**inputs)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return (clip_train_step, [model_with_loss], [optimizer], inputs)
elif model_name == "stable_diffusion":
model_card = model_cards[model_name]
model_cls = model_class[model_name]
unet_config = model_cls[0].load_config(model_card, subfolder="unet")
vae_config = model_cls[1].load_config(model_card, subfolder="vae")
text_encoder_config = AutoConfig.from_pretrained(model_card, subfolder="text_encoder")
scheduler_config = model_cls[3].load_config(model_card, subfolder="scheduler")
with init_mode:
with torch.device(dev):
unet = model_cls[0].from_config(unet_config).to(dtype=dtype)
vae = model_cls[1].from_config(vae_config).to(dtype=dtype)
text_encoder = model_cls[2]._from_config(text_encoder_config).to(dtype=dtype)
scheduler = model_cls[3].from_config(scheduler_config)
del vae.decoder
optimizer = create_optimizer(unet.parameters())
if ac == AC.FULL:
ac_classes = model_ac_classes[model_name]
apply_ac(unet, ac_classes)
# Generate timesteps and pixel_image
pixel_img, timesteps = generate_noise_and_timesteps(batch_size, image_size, num_denoising_steps, dtype, dev)
input_ids, labels = generate_inputs_and_labels(batch_size, text_encoder.config.vocab_size, seq_len, dev)
inputs = (input_ids, labels, pixel_img, timesteps)
def sd_train_step(
models: List[nn.Module], optimizers: List[optim.Optimizer], inputs
):
unet, text_encoder, vae_encoder = models[0], models[1], models[2]
optimizer = optimizers[0]
input_ids, _, pixel_img, timesteps = inputs
# Generate text embeddings and noisy latents
with torch.no_grad():
text_embeddings = text_encoder(input_ids).last_hidden_state
latents = vae.encode(pixel_img).latent_dist.sample() * 0.18215
noise = torch.randn_like(latents)
noisy_latents = scheduler.add_noise(latents, noise, timesteps)
# Prepare inputs for UNet
unet_inputs = {
"encoder_hidden_states": text_embeddings,
"timestep": timesteps,
"sample": noisy_latents
}
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with amp_context:
noise_pred = unet(**unet_inputs).sample
loss = torch.nn.functional.mse_loss(noise_pred, latents)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return (sd_train_step, [unet, text_encoder, vae.encoder], [optimizer], inputs)
elif model_name == "flux":
model_card = model_cards[model_name]
model_cls = model_class[model_name]
transformer_config = model_cls[0].load_config(model_card, subfolder="transformer")
vae_config = model_cls[5].load_config(model_card, subfolder="vae")
scheduler_config = model_cls[6].load_config(model_card, subfolder="scheduler")
with init_mode:
with torch.device(dev):
transformer = model_cls[0].from_config(transformer_config).to(dtype=dtype)
tokenizer = model_cls[1].from_pretrained(model_card, subfolder="tokenizer", torch_dtype=dtype)
tokenizer_2 = model_cls[2].from_pretrained(model_card, subfolder="tokenizer_2", torch_dtype=dtype)
text_encoder = model_cls[3].from_pretrained(model_card, subfolder="text_encoder", torch_dtype=dtype)
text_encoder_2 = model_cls[4].from_pretrained(model_card, subfolder="text_encoder_2", torch_dtype=dtype)
vae = model_cls[5].from_config(vae_config).to(dtype=dtype)
scheduler = model_cls[6].from_config(scheduler_config)
del vae.decoder
optimizer = create_optimizer(transformer.parameters())
if ac:
ac_classes = model_ac_classes[model_name]
apply_ac(transformer, ac_classes)
pixel_img, timesteps = generate_noise_and_timesteps(batch_size, image_size, num_denoising_steps, dtype, dev)
input_ids, labels = generate_inputs_and_labels(batch_size, text_encoder.config.vocab_size, seq_len, dev)
img_ids = generate_flux_inputs(batch_size, vae.config.latent_channels, dtype, dev) ## img_ids are generated randomly here, tried to generate them from latents instead but wasn't able to
flux_inputs = (input_ids, labels, pixel_img, timesteps, img_ids)
# Training loop
def flux_train_step(
models: List[nn.Module], optimizers: List[optim.Optimizer], flux_inputs
):
transformer = models[0]
optimizer = optimizers[0]
input_ids, _, pixel_img, timesteps, img_ids = flux_inputs
with torch.no_grad():
### Text Encoder 2
text_input_ids = torch.randint(0, tokenizer_2.vocab_size, (batch_size, seq_len))
prompt_embeds = models[2](text_input_ids.to(dev), output_hidden_states=False)[0]
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=dev, dtype=dtype)
### Text Encoder 1
text_input_ids = torch.randint(0, tokenizer.vocab_size, (batch_size, 77)) # hardcode to 77 for now, later can add two sequence lengths for flux in parameters
pooled_prompt_embeds = models[1](text_input_ids.to(dev), output_hidden_states=False)
pooled_prompt_embeds = pooled_prompt_embeds.pooler_output
pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=models[1].dtype, device=dev)
# VAE
latents = models[3].encode(pixel_img).latent_dist.sample()
noise = torch.randn_like(latents)
noisy_latents = scheduler.step(latents, timesteps, noise).prev_sample
# Reshape
bs, c, h, w = noisy_latents.size()
noisy_latents = noisy_latents.view(bs, c, -1)
latents = latents.view(bs, c, -1)
# Prepare inputs for FluxTransformer
inputs = {
"hidden_states": noisy_latents,
"encoder_hidden_states": prompt_embeds,
"pooled_projections": pooled_prompt_embeds,
"timestep": timesteps,
"img_ids": img_ids,
"txt_ids": text_ids,
}
with sdpa_kernel([SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]):
with amp_context:
output = transformer(**inputs).sample
loss = nn.functional.mse_loss(output, latents)
loss.backward()
optimizer.step()
optimizer.zero_grad()
return (flux_train_step, [transformer, text_encoder, text_encoder_2, vae], [optimizer], flux_inputs)
else:
raise ValueError(f"No setup is available for {model_name}. Please choose from {model_names}")
def write_to_logfile(file_name: str, log_record: str):
with open(file_name, 'a', newline='') as csvfile:
fcntl.lockf(csvfile, fcntl.LOCK_EX)
writer = csv.writer(csvfile)
writer.writerow(log_record)
fcntl.lockf(csvfile, fcntl.LOCK_UN)
def override_args_with_configs(args, config: Dict[str, Any]):
b_args = copy.deepcopy(args)
b_args.batch_size = config["batch_size"]
b_args.seq_len = config["seq_len"]
b_args.precision = config["precision"].value
b_args.ac_mode = config["ac"].value
b_args.image_size = config["image_size"]
b_args.num_denoising_steps = config["num_denoising_steps"]
return b_args