diff --git a/.github/workflows/docs.yaml b/.github/workflows/docs.yaml
new file mode 100644
index 00000000..b120f35c
--- /dev/null
+++ b/.github/workflows/docs.yaml
@@ -0,0 +1,51 @@
+name: Check Sphinx Docs
+
+on:
+ push:
+ branches: [main]
+ pull_request:
+ branches: [main]
+
+jobs:
+ docs:
+ name: Build Sphinx Documentation
+ runs-on: ubuntu-latest
+ defaults:
+ run:
+ shell: bash -eo pipefail {0} # Fail on error and enable pipefail
+
+ steps:
+ - uses: actions/checkout@v3
+
+ - name: Set up Python
+ uses: actions/setup-python@v4
+ with:
+ python-version: 3.11
+ cache: "pip"
+ cache-dependency-path: "**/pyproject.toml"
+
+ - name: Install dependencies
+ run: |
+ python -m pip install --upgrade pip wheel
+ pip install ".[doc]"
+
+ - name: Build Documentation and Check for Issues
+ working-directory: docs
+ run: |
+ make clean
+ # Build the docs and capture output, treat warnings as errors (-W)
+ sphinx-build -b html -W . _build/html 2>&1 | tee sphinx-output.log
+
+ - name: Upload Documentation Artifacts (HTML Pages)
+ if: always()
+ uses: actions/upload-artifact@v3
+ with:
+ name: sphinx-docs
+ path: docs/_build/html
+
+ - name: Upload Log if Build Failed
+ if: failure()
+ uses: actions/upload-artifact@v3
+ with:
+ name: sphinx-output-log
+ path: docs/sphinx-output.log
diff --git a/.github/workflows/ruff.yaml b/.github/workflows/ruff.yaml
new file mode 100644
index 00000000..e7ec16d9
--- /dev/null
+++ b/.github/workflows/ruff.yaml
@@ -0,0 +1,16 @@
+name: Ruff
+
+on:
+ push:
+ branches: [main]
+ pull_request:
+ branches: [main]
+ schedule:
+ - cron: "0 5 1,15 * *"
+
+jobs:
+ ruff:
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v4
+ - uses: chartboost/ruff-action@v1
diff --git a/README.md b/README.md
index e5f7dddf..960c3022 100644
--- a/README.md
+++ b/README.md
@@ -46,7 +46,7 @@ pip install torch
pip install crested
```
-3. If you plan on doing motif analysis using the tf-modisco (lite) and tangermeme functionality inside CREsted, you will need to run the following additional install:
+3. If you plan on doing motif analysis using the tf-modisco (lite) and tangermeme's tomtom functionality inside CREsted, you will need to run the following additional install:
```bash
pip install crested[tfmodisco]
diff --git a/docs/_static/img/examples/hist_locus_scoring.png b/docs/_static/img/examples/hist_locus_scoring.png
new file mode 100644
index 00000000..c4156370
Binary files /dev/null and b/docs/_static/img/examples/hist_locus_scoring.png differ
diff --git a/docs/_static/img/examples/pattern_class_instances.png b/docs/_static/img/examples/pattern_class_instances.png
new file mode 100644
index 00000000..45bd6014
Binary files /dev/null and b/docs/_static/img/examples/pattern_class_instances.png differ
diff --git a/docs/_static/img/examples/pattern_clustermap.png b/docs/_static/img/examples/pattern_clustermap.png
new file mode 100644
index 00000000..da0d1796
Binary files /dev/null and b/docs/_static/img/examples/pattern_clustermap.png differ
diff --git a/docs/_static/img/examples/pattern_selected_instances.png b/docs/_static/img/examples/pattern_selected_instances.png
new file mode 100644
index 00000000..2530a266
Binary files /dev/null and b/docs/_static/img/examples/pattern_selected_instances.png differ
diff --git a/docs/_static/img/examples/pattern_similarity_heatmap.png b/docs/_static/img/examples/pattern_similarity_heatmap.png
new file mode 100644
index 00000000..3e0d1cd4
Binary files /dev/null and b/docs/_static/img/examples/pattern_similarity_heatmap.png differ
diff --git a/docs/_static/img/examples/pattern_tf_motif_clustermap.png b/docs/_static/img/examples/pattern_tf_motif_clustermap.png
new file mode 100644
index 00000000..b32f7754
Binary files /dev/null and b/docs/_static/img/examples/pattern_tf_motif_clustermap.png differ
diff --git a/docs/api/index.md b/docs/api/index.md
index 5c89b079..cb4ca5c2 100644
--- a/docs/api/index.md
+++ b/docs/api/index.md
@@ -12,5 +12,5 @@ io
preprocessing
tools/index.md
plotting/index.md
-logging
+utils
```
diff --git a/docs/api/logging.md b/docs/api/logging.md
deleted file mode 100644
index 6173784f..00000000
--- a/docs/api/logging.md
+++ /dev/null
@@ -1,14 +0,0 @@
-# Logging
-
-Helper functions for logging during use of package.
-
-```{eval-rst}
-.. currentmodule:: crested
-```
-
-```{eval-rst}
-.. autosummary::
- :toctree: _autosummary
-
- setup_logging
-```
\ No newline at end of file
diff --git a/docs/api/plotting/hist.md b/docs/api/plotting/hist.md
index eca43fff..9d823b71 100644
--- a/docs/api/plotting/hist.md
+++ b/docs/api/plotting/hist.md
@@ -11,4 +11,5 @@ Plots for inspecting distributions of ground truth and predictions?
:toctree: _autosummary
distribution
+ locus_scoring
```
diff --git a/docs/api/plotting/patterns.md b/docs/api/plotting/patterns.md
index 51ed776d..34d6492e 100644
--- a/docs/api/plotting/patterns.md
+++ b/docs/api/plotting/patterns.md
@@ -12,4 +12,10 @@ Plot contribution scores and analyze them using tfmodisco.
contribution_scores
modisco_results
+ selected_instances
+ class_instances
+ clustermap
+ clustermap_tf_motif
+ tf_expression_per_cell_type
+ similarity_heatmap
```
diff --git a/docs/api/tools/index.md b/docs/api/tools/index.md
index fedad79e..5695fd1d 100644
--- a/docs/api/tools/index.md
+++ b/docs/api/tools/index.md
@@ -10,11 +10,9 @@
Crested
TaskConfig
- tfmodisco
default_configs
```
-
```{toctree}
:maxdepth: 2
:hidden:
@@ -23,6 +21,7 @@ data
zoo
losses
metrics
+modisco
```
## Data
@@ -59,4 +58,24 @@ metrics
metrics.PearsonCorrelation
metrics.PearsonCorrelationLog
metrics.ZeroPenaltyMetric
-```
\ No newline at end of file
+```
+
+## Modisco
+
+```{eval-rst}
+.. autosummary::
+ modisco.tfmodisco
+ modisco.match_h5_files_to_classes
+ modisco.process_patterns
+ modisco.create_pattern_matrix
+ modisco.generate_nucleotide_sequences
+ modisco.pattern_similarity
+ modisco.find_pattern
+ modisco.find_pattern_matches
+ modisco.calculate_similarity_matrix
+ modisco.calculate_mean_expression_per_cell_type
+ modisco.generate_html_paths
+ modisco.read_motif_to_tf_file
+ modisco.create_pattern_tf_dict
+ modisco.create_tf_ct_matrix
+```
diff --git a/docs/api/tools/modisco.md b/docs/api/tools/modisco.md
new file mode 100644
index 00000000..737f7c9d
--- /dev/null
+++ b/docs/api/tools/modisco.md
@@ -0,0 +1,27 @@
+# Modisco `tl.modisco`
+
+Tfmodisco (utility) functions. Requires the `modisco-lite` package to be installed.
+
+```{eval-rst}
+.. currentmodule:: crested.tl.modisco
+```
+
+```{eval-rst}
+.. autosummary::
+ :toctree: _autosummary
+
+ tfmodisco
+ match_h5_files_to_classes
+ process_patterns
+ create_pattern_matrix
+ generate_nucleotide_sequences
+ pattern_similarity
+ find_pattern
+ find_pattern_matches
+ calculate_similarity_matrix
+ calculate_mean_expression_per_cell_type
+ generate_html_paths
+ read_motif_to_tf_file
+ create_pattern_tf_dict
+ create_tf_ct_matrix
+```
diff --git a/docs/api/utils.md b/docs/api/utils.md
new file mode 100644
index 00000000..080ab052
--- /dev/null
+++ b/docs/api/utils.md
@@ -0,0 +1,18 @@
+# Utils
+
+CREsted provides a few utility function to help with sequence encoding, function optimization, ...
+
+```{eval-rst}
+.. currentmodule:: crested.utils
+```
+
+```{eval-rst}
+.. autosummary::
+ :toctree: _autosummary
+
+ EnhancerOptimizer
+ extract_bigwig_values_per_bp
+ hot_encoding_to_sequence
+ one_hot_encode_sequence
+ setup_logging
+```
diff --git a/docs/conf.py b/docs/conf.py
index 430314cc..c9cfc210 100644
--- a/docs/conf.py
+++ b/docs/conf.py
@@ -96,6 +96,8 @@
"anndata": ("https://anndata.readthedocs.io/en/stable/", None),
"numpy": ("https://numpy.org/doc/stable/", None),
"matplotlib": ("https://matplotlib.org/stable/", None),
+ "pandas": ("http://pandas.pydata.org/pandas-docs/stable/", None),
+ "seaborn": ("https://seaborn.pydata.org/", None),
}
# List of patterns, relative to source directory, that match files and
@@ -137,7 +139,9 @@
("py:class", "keras.metrics.Metric"),
("py:class", "keras.src.losses.loss.Loss"),
("py:class", "keras.src.metrics.metric.Metric"),
+ ("py:class", "seaborn.matrix.ClusterGrid"),
]
+
suppress_warnings = [
"autosummary.import_cycle",
]
diff --git a/docs/tutorials/enhancer_code_analysis.ipynb b/docs/tutorials/enhancer_code_analysis.ipynb
index c343d636..f6bc93a6 100644
--- a/docs/tutorials/enhancer_code_analysis.ipynb
+++ b/docs/tutorials/enhancer_code_analysis.ipynb
@@ -35,26 +35,15 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
- "outputs": [],
- "source": [
- "# Optional \n",
- "#import os\n",
- "#os.environ['PATH'] += ':/home/VIB.LOCAL/niklas.kempynck/.conda/envs/crested/bin/'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "2024-10-01 10:01:03.016169: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
- "2024-10-01 10:01:03.050541: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
+ "2024-10-09 14:43:18.087285: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
+ "2024-10-09 14:43:18.121350: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 AVX512_FP16 AVX_VNNI AMX_TILE AMX_INT8 AMX_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
- "2024-10-01 10:01:07.122491: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
+ "2024-10-09 14:43:20.612062: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
]
}
],
@@ -64,7 +53,7 @@
"\n",
"adata = anndata.read_h5ad(\"mouse_biccn_data_filtered.h5ad\")\n",
"\n",
- "genome_file=\"/home/VIB.LOCAL/niklas.kempynck/nkemp/software/dev_DeepPeak/DeepPeak/data/raw_mm/genome.fa\"\n",
+ "genome_file = \"/home/VIB.LOCAL/niklas.kempynck/nkemp/software/dev_DeepPeak/DeepPeak/data/raw_mm/genome.fa\"\n",
"datamodule = crested.tl.data.AnnDataModule(\n",
" adata,\n",
" genome_file=genome_file,\n",
@@ -73,14 +62,14 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "2024-10-01 10:01:19.392315: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1928] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 78790 MB memory: -> device: 0, name: NVIDIA H100 80GB HBM3, pci bus id: 0000:55:00.0, compute capability: 9.0\n"
+ "2024-10-09 14:43:28.368411: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1928] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 78790 MB memory: -> device: 0, name: NVIDIA H100 80GB HBM3, pci bus id: 0000:68:00.0, compute capability: 9.0\n"
]
}
],
@@ -96,7 +85,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
@@ -104,10 +93,10 @@
"output_type": "stream",
"text": [
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
- "I0000 00:00:1727769681.140101 3714656 service.cc:145] XLA service 0x7fb5440046b0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
- "I0000 00:00:1727769681.140133 3714656 service.cc:153] StreamExecutor device (0): NVIDIA H100 80GB HBM3, Compute Capability 9.0\n",
- "2024-10-01 10:01:21.156098: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
- "2024-10-01 10:01:21.247142: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:465] Loaded cuDNN version 8907\n"
+ "I0000 00:00:1728477809.701115 668861 service.cc:145] XLA service 0x7f834c014b10 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
+ "I0000 00:00:1728477809.701148 668861 service.cc:153] StreamExecutor device (0): NVIDIA H100 80GB HBM3, Compute Capability 9.0\n",
+ "2024-10-09 14:43:29.717493: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
+ "2024-10-09 14:43:29.801547: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:465] Loaded cuDNN version 8907\n"
]
},
{
@@ -121,7 +110,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "I0000 00:00:1727769689.865180 3714656 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n"
+ "I0000 00:00:1728477818.482204 668861 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n"
]
},
{
@@ -129,7 +118,7 @@
"output_type": "stream",
"text": [
"\u001b[1m348/348\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m29s\u001b[0m 58ms/step\n",
- "2024-10-01T10:01:50.106485+0200 INFO Adding predictions to anndata.layers[biccn_model].\n"
+ "2024-10-09T14:43:58.718361+0200 INFO Adding predictions to anndata.layers[biccn_model].\n"
]
}
],
@@ -153,24 +142,26 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
- "adata_combined = adata.copy() # Copy the peak heights\n",
- "adata_combined.X = (adata_combined.X+adata_combined.layers['biccn_model'])/2 # Take the average with the predictions"
+ "adata_combined = adata.copy() # Copy the peak heights\n",
+ "adata_combined.X = (\n",
+ " adata_combined.X + adata_combined.layers[\"biccn_model\"]\n",
+ ") / 2 # Take the average with the predictions"
]
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-10-01T10:02:01.874716+0200 INFO After sorting and filtering, kept 19000 regions.\n"
+ "2024-10-09T14:44:09.855244+0200 INFO After sorting and filtering, kept 19000 regions.\n"
]
},
{
@@ -191,7 +182,7 @@
" layers: 'biccn_model'"
]
},
- "execution_count": 7,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -199,8 +190,10 @@
"source": [
"# most informative regions per class\n",
"adata_filtered = adata_combined.copy()\n",
- "top_k=1000\n",
- "crested.pp.sort_and_filter_regions_on_specificity(adata_filtered, top_k=top_k, method='proportion')\n",
+ "top_k = 1000\n",
+ "crested.pp.sort_and_filter_regions_on_specificity(\n",
+ " adata_filtered, top_k=top_k, method=\"proportion\"\n",
+ ")\n",
"adata_filtered"
]
},
@@ -235,7 +228,9 @@
],
"source": [
"# calculate contribution scores for all regions and save them to output_dir\n",
- "evaluator.tfmodisco_calculate_and_save_contribution_scores(adata=adata_filtered,output_dir=\"modisco_results4\")"
+ "evaluator.tfmodisco_calculate_and_save_contribution_scores(\n",
+ " adata=adata_filtered, output_dir=\"modisco_results4\"\n",
+ ")"
]
},
{
@@ -251,7 +246,7 @@
"source": [
"When this is done, you can run TFModisco Lite on the saved contribution scores to find motifs that are important for the classification/regression task. \n",
"\n",
- "You could use the tfmodisco package directly to do this, or you could use the {func}`crested.tl.tfmodisco` function which is essentially a wrapper around the tfmodisco package.\n",
+ "You could use the tfmodisco package directly to do this, or you could use the {func}`crested.tl.modisco.tfmodisco` function which is essentially a wrapper around the tfmodisco package.\n",
"\n",
"**Note that from here on, you can use contribution scores from any model trained in any framework, as this analysis just requires a set of one hot encoded sequences and contribution scores per cell type stored in the same directory.**"
]
@@ -263,23 +258,16 @@
"outputs": [],
"source": [
"# run tfmodisco on the contribution scores\n",
- "crested.tl.tfmodisco(\n",
+ "crested.tl.modisco.tfmodisco(\n",
" window=1000,\n",
- " output_dir = 'modisco_results4',\n",
- " contrib_dir='modisco_results4',\n",
- " report=True, # Optional, will match patterns to motif MEME database\n",
- " meme_db='/home/VIB.LOCAL/niklas.kempynck/nkemp/tools/motifs.meme', # File to MEME database\n",
- " max_seqlets=20000\n",
+ " output_dir=\"modisco_results4\",\n",
+ " contrib_dir=\"modisco_results4\",\n",
+ " report=True, # Optional, will match patterns to motif MEME database\n",
+ " meme_db=\"/home/VIB.LOCAL/niklas.kempynck/nkemp/tools/motifs.meme\", # File to MEME database\n",
+ " max_seqlets=20000,\n",
")"
]
},
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- },
{
"cell_type": "markdown",
"metadata": {},
@@ -296,14 +284,14 @@
},
{
"cell_type": "code",
- "execution_count": 76,
+ "execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-10-01T11:44:37.633495+0200 INFO Starting genomic contributions plot for classes: ['Astro', 'L5ET', 'Vip', 'Oligo']\n"
+ "2024-10-09T14:44:14.663438+0200 INFO Starting genomic contributions plot for classes: ['Astro', 'L5ET', 'Vip', 'Oligo']\n"
]
},
{
@@ -327,7 +315,14 @@
],
"source": [
"%matplotlib inline\n",
- "crested.pl.patterns.modisco_results(classes=['Astro','L5ET','Vip','Oligo'], contribution='positive', contribution_dir='modisco_results4', num_seq=top_k, y_max=0.15, viz='pwm') # You can also visualize in 'pwm' format"
+ "crested.pl.patterns.modisco_results(\n",
+ " classes=[\"Astro\", \"L5ET\", \"Vip\", \"Oligo\"],\n",
+ " contribution=\"positive\",\n",
+ " contribution_dir=\"modisco_results4\",\n",
+ " num_seq=top_k,\n",
+ " y_max=0.15,\n",
+ " viz=\"pwm\",\n",
+ ") # You can also visualize in 'pwm' format"
]
},
{
@@ -343,22 +338,27 @@
"source": [
"Since we have calculated per cell type the patterns independently of each other, we do not know quantitavely how and if they overlap.\n",
"It can be interesting to get an overview of which patterns are found across multiple cell types, how important they are, and if there are unique patterns only found in a small selection of classes.\n",
- "Therefore, we have made a pattern clustering algorithm, which start from the results of tfmodisco-lite, and return a pattern matrix, which contains the importance of the clustered patterns per cell type, and a pattern dictionary, describing all clustered patterns."
+ "Therefore, we have made a pattern clustering algorithm, which starts from the results of tfmodisco-lite, and return a pattern matrix, which contains the importance of the clustered patterns per cell type, and a pattern dictionary, describing all clustered patterns.\n",
+ "\n",
+ "First, we'll obtain the modisco files per class by using {func}`crested.tl.modisco.match_h5_files_to_classes` using our selected classes.\n",
+ "Then, we'll cluster these patterns using {func}`crested.tl.modisco.process_patterns` and create a pattern matrix with {func}`crested.tl.modisco.create_pattern_matrix`"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# First we obtain the resulting modisco files per class\n",
- "matched_files = crested.tl.match_h5_files_to_classes(contribution_dir='modisco_results4', classes=list(adata.obs_names))"
+ "matched_files = crested.tl.modisco.match_h5_files_to_classes(\n",
+ " contribution_dir=\"modisco_results4\", classes=list(adata.obs_names)\n",
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 209,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
@@ -366,260 +366,260 @@
"output_type": "stream",
"text": [
"Reading file modisco_results4/Astro_modisco_results.h5\n",
- "Match between Astro_pos_patterns_9 and Astro_pos_patterns_8 with similarity score 4.786168838167354\n",
+ "Match between Astro_pos_patterns_9 and Astro_pos_patterns_8 with similarity score 4.79\n",
"Reading file modisco_results4/Endo_modisco_results.h5\n",
- "Match between Endo_neg_patterns_4 and Astro_neg_patterns_1 with similarity score 5.137184669031875\n",
- "Match between Endo_neg_patterns_20 and Endo_neg_patterns_15 with similarity score 4.017644243881689\n",
- "Match between Endo_neg_patterns_26 and Endo_neg_patterns_3 with similarity score 4.200937019944412\n",
- "Match between Endo_neg_patterns_27 and Endo_neg_patterns_20 with similarity score 4.721001880903637\n",
- "Match between Endo_pos_patterns_0 and Endo_neg_patterns_28 with similarity score 4.873348370010543\n",
- "Match between Endo_pos_patterns_1 and Astro_pos_patterns_0 with similarity score 5.270968075152102\n",
- "Match between Endo_pos_patterns_6 and Astro_pos_patterns_8 with similarity score 4.1948062832792905\n",
- "Match between Endo_pos_patterns_7 and Endo_pos_patterns_1 with similarity score 4.530609643392677\n",
- "Match between Endo_pos_patterns_10 and Endo_pos_patterns_8 with similarity score 3.7413860695640873\n",
- "Match between Endo_pos_patterns_13 and Endo_pos_patterns_0 with similarity score 4.776119871722337\n",
- "Match between Endo_pos_patterns_15 and Endo_pos_patterns_3 with similarity score 3.85418418524511\n",
- "Match between Endo_pos_patterns_17 and Endo_pos_patterns_3 with similarity score 3.6682014374496883\n",
- "Match between Endo_pos_patterns_21 and Endo_pos_patterns_0 with similarity score 4.191796227153649\n",
+ "Match between Endo_neg_patterns_4 and Astro_neg_patterns_1 with similarity score 5.14\n",
+ "Match between Endo_neg_patterns_20 and Endo_neg_patterns_15 with similarity score 4.02\n",
+ "Match between Endo_neg_patterns_26 and Endo_neg_patterns_3 with similarity score 4.20\n",
+ "Match between Endo_neg_patterns_27 and Endo_neg_patterns_20 with similarity score 4.72\n",
+ "Match between Endo_pos_patterns_0 and Endo_neg_patterns_28 with similarity score 4.87\n",
+ "Match between Endo_pos_patterns_1 and Astro_pos_patterns_0 with similarity score 5.27\n",
+ "Match between Endo_pos_patterns_6 and Astro_pos_patterns_8 with similarity score 4.19\n",
+ "Match between Endo_pos_patterns_7 and Endo_pos_patterns_1 with similarity score 4.53\n",
+ "Match between Endo_pos_patterns_10 and Endo_pos_patterns_8 with similarity score 3.74\n",
+ "Match between Endo_pos_patterns_13 and Endo_pos_patterns_0 with similarity score 4.78\n",
+ "Match between Endo_pos_patterns_15 and Endo_pos_patterns_3 with similarity score 3.85\n",
+ "Match between Endo_pos_patterns_17 and Endo_pos_patterns_3 with similarity score 3.67\n",
+ "Match between Endo_pos_patterns_21 and Endo_pos_patterns_0 with similarity score 4.19\n",
"Reading file modisco_results4/L2_3IT_modisco_results.h5\n",
- "Match between L2_3IT_pos_patterns_0 and L2_3IT_neg_patterns_3 with similarity score 5.5033611073888205\n",
- "Match between L2_3IT_pos_patterns_1 and Endo_pos_patterns_8 with similarity score 8.226714901473475\n",
- "Match between L2_3IT_pos_patterns_2 and L2_3IT_neg_patterns_1 with similarity score 3.6694912071028427\n",
- "Match between L2_3IT_pos_patterns_5 and Endo_pos_patterns_1 with similarity score 3.803013971712323\n",
- "Match between L2_3IT_pos_patterns_10 and Astro_pos_patterns_7 with similarity score 6.702169488028179\n",
- "Match between L2_3IT_pos_patterns_11 and Endo_neg_patterns_4 with similarity score 3.855185015905188\n",
- "Match between L2_3IT_pos_patterns_13 and Endo_pos_patterns_8 with similarity score 5.100074733380917\n",
+ "Match between L2_3IT_pos_patterns_0 and L2_3IT_neg_patterns_3 with similarity score 5.50\n",
+ "Match between L2_3IT_pos_patterns_1 and Endo_pos_patterns_8 with similarity score 8.23\n",
+ "Match between L2_3IT_pos_patterns_2 and L2_3IT_neg_patterns_1 with similarity score 3.67\n",
+ "Match between L2_3IT_pos_patterns_5 and Endo_pos_patterns_1 with similarity score 3.80\n",
+ "Match between L2_3IT_pos_patterns_10 and Astro_pos_patterns_7 with similarity score 6.70\n",
+ "Match between L2_3IT_pos_patterns_11 and Endo_neg_patterns_4 with similarity score 3.86\n",
+ "Match between L2_3IT_pos_patterns_13 and Endo_pos_patterns_8 with similarity score 5.10\n",
"Reading file modisco_results4/L5ET_modisco_results.h5\n",
- "Match between L5ET_pos_patterns_0 and Endo_pos_patterns_1 with similarity score 4.182841946662512\n",
- "Match between L5ET_pos_patterns_1 and L2_3IT_pos_patterns_6 with similarity score 6.060890581052783\n",
- "Match between L5ET_pos_patterns_2 and Endo_neg_patterns_21 with similarity score 6.607606826495387\n",
- "Match between L5ET_pos_patterns_3 and L2_3IT_pos_patterns_14 with similarity score 4.536417385557874\n",
- "Match between L5ET_pos_patterns_4 and L2_3IT_pos_patterns_4 with similarity score 6.1184181793403365\n",
- "Match between L5ET_pos_patterns_5 and Endo_pos_patterns_8 with similarity score 4.303104366604146\n",
- "Match between L5ET_pos_patterns_7 and L2_3IT_pos_patterns_3 with similarity score 3.754135248582907\n",
- "Match between L5ET_pos_patterns_9 and L2_3IT_pos_patterns_0 with similarity score 8.29399177856999\n",
- "Match between L5ET_pos_patterns_10 and L2_3IT_pos_patterns_9 with similarity score 7.012259648185789\n",
- "Match between L5ET_pos_patterns_11 and L2_3IT_pos_patterns_2 with similarity score 3.6277212193862236\n",
+ "Match between L5ET_pos_patterns_0 and Endo_pos_patterns_1 with similarity score 4.18\n",
+ "Match between L5ET_pos_patterns_1 and L2_3IT_pos_patterns_6 with similarity score 6.06\n",
+ "Match between L5ET_pos_patterns_2 and Endo_neg_patterns_21 with similarity score 6.61\n",
+ "Match between L5ET_pos_patterns_3 and L2_3IT_pos_patterns_14 with similarity score 4.54\n",
+ "Match between L5ET_pos_patterns_4 and L2_3IT_pos_patterns_4 with similarity score 6.12\n",
+ "Match between L5ET_pos_patterns_5 and Endo_pos_patterns_8 with similarity score 4.30\n",
+ "Match between L5ET_pos_patterns_7 and L2_3IT_pos_patterns_3 with similarity score 3.75\n",
+ "Match between L5ET_pos_patterns_9 and L2_3IT_pos_patterns_0 with similarity score 8.29\n",
+ "Match between L5ET_pos_patterns_10 and L2_3IT_pos_patterns_9 with similarity score 7.01\n",
+ "Match between L5ET_pos_patterns_11 and L2_3IT_pos_patterns_2 with similarity score 3.63\n",
"Reading file modisco_results4/L5IT_modisco_results.h5\n",
- "Match between L5IT_neg_patterns_0 and Astro_pos_patterns_1 with similarity score 4.753487131926378\n",
- "Match between L5IT_neg_patterns_1 and Endo_neg_patterns_25 with similarity score 4.631111803044842\n",
- "Match between L5IT_neg_patterns_5 and Endo_neg_patterns_24 with similarity score 3.822256705054802\n",
- "Match between L5IT_neg_patterns_8 and L5IT_neg_patterns_3 with similarity score 4.197392821775915\n",
- "Match between L5IT_pos_patterns_0 and L5ET_pos_patterns_6 with similarity score 8.147002751661207\n",
- "Match between L5IT_pos_patterns_1 and L5ET_pos_patterns_2 with similarity score 4.672669032371982\n",
- "Match between L5IT_pos_patterns_2 and L2_3IT_pos_patterns_0 with similarity score 10.042133884852815\n",
- "Match between L5IT_pos_patterns_3 and L2_3IT_pos_patterns_2 with similarity score 8.134279520752608\n",
- "Match between L5IT_pos_patterns_4 and Astro_pos_patterns_2 with similarity score 7.343489507720666\n",
- "Match between L5IT_pos_patterns_5 and L5ET_pos_patterns_5 with similarity score 4.589527615804052\n",
- "Match between L5IT_pos_patterns_6 and Endo_pos_patterns_1 with similarity score 4.395912736409217\n",
- "Match between L5IT_pos_patterns_7 and Endo_neg_patterns_13 with similarity score 6.138038673349215\n",
- "Match between L5IT_pos_patterns_8 and L2_3IT_pos_patterns_3 with similarity score 3.930056423518166\n",
- "Match between L5IT_pos_patterns_9 and L5ET_pos_patterns_4 with similarity score 6.15954178760573\n",
- "Match between L5IT_pos_patterns_10 and L5IT_neg_patterns_1 with similarity score 5.351894095246008\n",
- "Match between L5IT_pos_patterns_11 and L5IT_pos_patterns_4 with similarity score 5.007630023389534\n",
- "Match between L5IT_pos_patterns_12 and L5IT_neg_patterns_1 with similarity score 7.209981904721086\n",
- "Match between L5IT_pos_patterns_13 and L2_3IT_pos_patterns_8 with similarity score 4.980019234602362\n",
- "Match between L5IT_pos_patterns_15 and L2_3IT_pos_patterns_0 with similarity score 7.08144502696325\n",
+ "Match between L5IT_neg_patterns_0 and Astro_pos_patterns_1 with similarity score 4.75\n",
+ "Match between L5IT_neg_patterns_1 and Endo_neg_patterns_25 with similarity score 4.63\n",
+ "Match between L5IT_neg_patterns_5 and Endo_neg_patterns_24 with similarity score 3.82\n",
+ "Match between L5IT_neg_patterns_8 and L5IT_neg_patterns_3 with similarity score 4.20\n",
+ "Match between L5IT_pos_patterns_0 and L5ET_pos_patterns_6 with similarity score 8.15\n",
+ "Match between L5IT_pos_patterns_1 and L5ET_pos_patterns_2 with similarity score 4.67\n",
+ "Match between L5IT_pos_patterns_2 and L2_3IT_pos_patterns_0 with similarity score 10.04\n",
+ "Match between L5IT_pos_patterns_3 and L2_3IT_pos_patterns_2 with similarity score 8.13\n",
+ "Match between L5IT_pos_patterns_4 and Astro_pos_patterns_2 with similarity score 7.34\n",
+ "Match between L5IT_pos_patterns_5 and L5ET_pos_patterns_5 with similarity score 4.59\n",
+ "Match between L5IT_pos_patterns_6 and Endo_pos_patterns_1 with similarity score 4.40\n",
+ "Match between L5IT_pos_patterns_7 and Endo_neg_patterns_13 with similarity score 6.14\n",
+ "Match between L5IT_pos_patterns_8 and L2_3IT_pos_patterns_3 with similarity score 3.93\n",
+ "Match between L5IT_pos_patterns_9 and L5ET_pos_patterns_4 with similarity score 6.16\n",
+ "Match between L5IT_pos_patterns_10 and L5IT_neg_patterns_1 with similarity score 5.35\n",
+ "Match between L5IT_pos_patterns_11 and L5IT_pos_patterns_4 with similarity score 5.01\n",
+ "Match between L5IT_pos_patterns_12 and L5IT_neg_patterns_1 with similarity score 7.21\n",
+ "Match between L5IT_pos_patterns_13 and L2_3IT_pos_patterns_8 with similarity score 4.98\n",
+ "Match between L5IT_pos_patterns_15 and L2_3IT_pos_patterns_0 with similarity score 7.08\n",
"Reading file modisco_results4/L5_6NP_modisco_results.h5\n",
- "Match between L5_6NP_neg_patterns_1 and L2_3IT_neg_patterns_4 with similarity score 5.834904406996271\n",
- "Match between L5_6NP_neg_patterns_3 and L2_3IT_neg_patterns_2 with similarity score 4.226205691997605\n",
- "Match between L5_6NP_neg_patterns_5 and L5IT_neg_patterns_1 with similarity score 8.207760462759747\n",
- "Match between L5_6NP_neg_patterns_8 and L5IT_neg_patterns_7 with similarity score 4.5885345514774265\n",
- "Match between L5_6NP_pos_patterns_0 and L5IT_pos_patterns_0 with similarity score 7.107681562809481\n",
- "Match between L5_6NP_pos_patterns_1 and L5_6NP_neg_patterns_5 with similarity score 7.871597767935951\n",
- "Match between L5_6NP_pos_patterns_2 and Endo_pos_patterns_1 with similarity score 4.187296327036998\n",
- "Match between L5_6NP_pos_patterns_3 and L2_3IT_pos_patterns_3 with similarity score 7.7826391234612275\n",
- "Match between L5_6NP_pos_patterns_5 and Endo_pos_patterns_2 with similarity score 8.030899880273823\n",
- "Match between L5_6NP_pos_patterns_7 and L2_3IT_pos_patterns_7 with similarity score 8.42677103738297\n",
+ "Match between L5_6NP_neg_patterns_1 and L2_3IT_neg_patterns_4 with similarity score 5.83\n",
+ "Match between L5_6NP_neg_patterns_3 and L2_3IT_neg_patterns_2 with similarity score 4.23\n",
+ "Match between L5_6NP_neg_patterns_5 and L5IT_neg_patterns_1 with similarity score 8.21\n",
+ "Match between L5_6NP_neg_patterns_8 and L5IT_neg_patterns_7 with similarity score 4.59\n",
+ "Match between L5_6NP_pos_patterns_0 and L5IT_pos_patterns_0 with similarity score 7.11\n",
+ "Match between L5_6NP_pos_patterns_1 and L5_6NP_neg_patterns_5 with similarity score 7.87\n",
+ "Match between L5_6NP_pos_patterns_2 and Endo_pos_patterns_1 with similarity score 4.19\n",
+ "Match between L5_6NP_pos_patterns_3 and L2_3IT_pos_patterns_3 with similarity score 7.78\n",
+ "Match between L5_6NP_pos_patterns_5 and Endo_pos_patterns_2 with similarity score 8.03\n",
+ "Match between L5_6NP_pos_patterns_7 and L2_3IT_pos_patterns_7 with similarity score 8.43\n",
"Reading file modisco_results4/L6CT_modisco_results.h5\n",
- "Match between L6CT_neg_patterns_0 and L5IT_pos_patterns_4 with similarity score 3.538455126742857\n",
- "Match between L6CT_neg_patterns_1 and L5IT_neg_patterns_0 with similarity score 4.812331317200568\n",
- "Match between L6CT_neg_patterns_4 and L5ET_neg_patterns_0 with similarity score 5.870608050649052\n",
- "Match between L6CT_neg_patterns_5 and L5IT_neg_patterns_5 with similarity score 3.6739286654838668\n",
- "Match between L6CT_pos_patterns_0 and Endo_pos_patterns_1 with similarity score 4.17843273230711\n",
- "Match between L6CT_pos_patterns_1 and L5IT_pos_patterns_7 with similarity score 7.095851130767715\n",
- "Match between L6CT_pos_patterns_2 and L5IT_pos_patterns_0 with similarity score 7.806651350283674\n",
- "Match between L6CT_pos_patterns_3 and L2_3IT_pos_patterns_0 with similarity score 8.66196767196959\n",
- "Match between L6CT_pos_patterns_4 and L5_6NP_pos_patterns_1 with similarity score 8.722546036774917\n",
- "Match between L6CT_pos_patterns_5 and L2_3IT_pos_patterns_3 with similarity score 3.6737695333291107\n",
- "Match between L6CT_pos_patterns_8 and L5ET_pos_patterns_5 with similarity score 3.537603231453024\n",
- "Match between L6CT_pos_patterns_9 and L5IT_pos_patterns_14 with similarity score 6.704232263938709\n",
- "Match between L6CT_pos_patterns_10 and L6CT_pos_patterns_3 with similarity score 5.454213728217549\n",
- "Match between L6CT_pos_patterns_11 and L5IT_pos_patterns_9 with similarity score 5.686606087721874\n",
+ "Match between L6CT_neg_patterns_0 and L5IT_pos_patterns_4 with similarity score 3.54\n",
+ "Match between L6CT_neg_patterns_1 and L5IT_neg_patterns_0 with similarity score 4.81\n",
+ "Match between L6CT_neg_patterns_4 and L5ET_neg_patterns_0 with similarity score 5.87\n",
+ "Match between L6CT_neg_patterns_5 and L5IT_neg_patterns_5 with similarity score 3.67\n",
+ "Match between L6CT_pos_patterns_0 and Endo_pos_patterns_1 with similarity score 4.18\n",
+ "Match between L6CT_pos_patterns_1 and L5IT_pos_patterns_7 with similarity score 7.10\n",
+ "Match between L6CT_pos_patterns_2 and L5IT_pos_patterns_0 with similarity score 7.81\n",
+ "Match between L6CT_pos_patterns_3 and L2_3IT_pos_patterns_0 with similarity score 8.66\n",
+ "Match between L6CT_pos_patterns_4 and L5_6NP_pos_patterns_1 with similarity score 8.72\n",
+ "Match between L6CT_pos_patterns_5 and L2_3IT_pos_patterns_3 with similarity score 3.67\n",
+ "Match between L6CT_pos_patterns_8 and L5ET_pos_patterns_5 with similarity score 3.54\n",
+ "Match between L6CT_pos_patterns_9 and L5IT_pos_patterns_14 with similarity score 6.70\n",
+ "Match between L6CT_pos_patterns_10 and L6CT_pos_patterns_3 with similarity score 5.45\n",
+ "Match between L6CT_pos_patterns_11 and L5IT_pos_patterns_9 with similarity score 5.69\n",
"Reading file modisco_results4/L6IT_modisco_results.h5\n",
- "Match between L6IT_neg_patterns_0 and L5ET_neg_patterns_1 with similarity score 4.029172524319456\n",
- "Match between L6IT_neg_patterns_1 and L6CT_neg_patterns_9 with similarity score 3.538594268390316\n",
- "Match between L6IT_neg_patterns_2 and L6CT_neg_patterns_7 with similarity score 5.341655643265147\n",
- "Match between L6IT_pos_patterns_0 and L6CT_pos_patterns_3 with similarity score 8.72986951185205\n",
- "Match between L6IT_pos_patterns_1 and Endo_pos_patterns_1 with similarity score 4.182841666175201\n",
- "Match between L6IT_pos_patterns_2 and L5IT_pos_patterns_0 with similarity score 8.67835744441799\n",
- "Match between L6IT_pos_patterns_3 and L5IT_pos_patterns_9 with similarity score 4.676102473557681\n",
- "Match between L6IT_pos_patterns_4 and Endo_neg_patterns_17 with similarity score 3.587530644384946\n",
- "Match between L6IT_pos_patterns_5 and L5IT_pos_patterns_1 with similarity score 6.904811656075893\n",
- "Match between L6IT_pos_patterns_6 and Endo_pos_patterns_1 with similarity score 3.938549926894804\n",
- "Match between L6IT_pos_patterns_7 and L5IT_pos_patterns_7 with similarity score 10.08920978337451\n",
- "Match between L6IT_pos_patterns_8 and L5ET_pos_patterns_5 with similarity score 4.825161345365527\n",
- "Match between L6IT_pos_patterns_9 and L5_6NP_pos_patterns_1 with similarity score 4.510344352837777\n",
- "Match between L6IT_pos_patterns_10 and L2_3IT_pos_patterns_7 with similarity score 12.0\n",
- "Match between L6IT_pos_patterns_11 and L2_3IT_pos_patterns_3 with similarity score 6.780732133017951\n",
- "Match between L6IT_pos_patterns_13 and L6IT_pos_patterns_4 with similarity score 3.881862318453569\n",
- "Match between L6IT_pos_patterns_14 and L5IT_pos_patterns_1 with similarity score 5.075058243011537\n",
+ "Match between L6IT_neg_patterns_0 and L5ET_neg_patterns_1 with similarity score 4.03\n",
+ "Match between L6IT_neg_patterns_1 and L6CT_neg_patterns_9 with similarity score 3.54\n",
+ "Match between L6IT_neg_patterns_2 and L6CT_neg_patterns_7 with similarity score 5.34\n",
+ "Match between L6IT_pos_patterns_0 and L6CT_pos_patterns_3 with similarity score 8.73\n",
+ "Match between L6IT_pos_patterns_1 and Endo_pos_patterns_1 with similarity score 4.18\n",
+ "Match between L6IT_pos_patterns_2 and L5IT_pos_patterns_0 with similarity score 8.68\n",
+ "Match between L6IT_pos_patterns_3 and L5IT_pos_patterns_9 with similarity score 4.68\n",
+ "Match between L6IT_pos_patterns_4 and Endo_neg_patterns_17 with similarity score 3.59\n",
+ "Match between L6IT_pos_patterns_5 and L5IT_pos_patterns_1 with similarity score 6.90\n",
+ "Match between L6IT_pos_patterns_6 and Endo_pos_patterns_1 with similarity score 3.94\n",
+ "Match between L6IT_pos_patterns_7 and L5IT_pos_patterns_7 with similarity score 10.09\n",
+ "Match between L6IT_pos_patterns_8 and L5ET_pos_patterns_5 with similarity score 4.83\n",
+ "Match between L6IT_pos_patterns_9 and L5_6NP_pos_patterns_1 with similarity score 4.51\n",
+ "Match between L6IT_pos_patterns_10 and L2_3IT_pos_patterns_7 with similarity score 12.00\n",
+ "Match between L6IT_pos_patterns_11 and L2_3IT_pos_patterns_3 with similarity score 6.78\n",
+ "Match between L6IT_pos_patterns_13 and L6IT_pos_patterns_4 with similarity score 3.88\n",
+ "Match between L6IT_pos_patterns_14 and L5IT_pos_patterns_1 with similarity score 5.08\n",
"Reading file modisco_results4/L6b_modisco_results.h5\n",
- "Match between L6b_neg_patterns_1 and L5IT_neg_patterns_2 with similarity score 4.8597371241487695\n",
- "Match between L6b_pos_patterns_0 and Endo_pos_patterns_1 with similarity score 4.229584169788626\n",
- "Match between L6b_pos_patterns_1 and L6CT_pos_patterns_9 with similarity score 7.120964462409043\n",
- "Match between L6b_pos_patterns_2 and L5ET_pos_patterns_5 with similarity score 3.906209717258604\n",
- "Match between L6b_pos_patterns_3 and L2_3IT_pos_patterns_2 with similarity score 7.542786817155169\n",
- "Match between L6b_pos_patterns_5 and L6IT_pos_patterns_15 with similarity score 4.111479834017894\n",
- "Match between L6b_pos_patterns_6 and L2_3IT_pos_patterns_7 with similarity score 5.365398533092353\n",
- "Match between L6b_pos_patterns_7 and L6IT_pos_patterns_3 with similarity score 5.361397540613931\n",
- "Match between L6b_pos_patterns_8 and L6b_pos_patterns_4 with similarity score 4.248159285700335\n",
- "Match between L6b_pos_patterns_9 and L2_3IT_pos_patterns_3 with similarity score 6.086658106035049\n",
- "Match between L6b_pos_patterns_10 and L6CT_pos_patterns_3 with similarity score 4.859980824324897\n",
+ "Match between L6b_neg_patterns_1 and L5IT_neg_patterns_2 with similarity score 4.86\n",
+ "Match between L6b_pos_patterns_0 and Endo_pos_patterns_1 with similarity score 4.23\n",
+ "Match between L6b_pos_patterns_1 and L6CT_pos_patterns_9 with similarity score 7.12\n",
+ "Match between L6b_pos_patterns_2 and L5ET_pos_patterns_5 with similarity score 3.91\n",
+ "Match between L6b_pos_patterns_3 and L2_3IT_pos_patterns_2 with similarity score 7.54\n",
+ "Match between L6b_pos_patterns_5 and L6IT_pos_patterns_15 with similarity score 4.11\n",
+ "Match between L6b_pos_patterns_6 and L2_3IT_pos_patterns_7 with similarity score 5.37\n",
+ "Match between L6b_pos_patterns_7 and L6IT_pos_patterns_3 with similarity score 5.36\n",
+ "Match between L6b_pos_patterns_8 and L6b_pos_patterns_4 with similarity score 4.25\n",
+ "Match between L6b_pos_patterns_9 and L2_3IT_pos_patterns_3 with similarity score 6.09\n",
+ "Match between L6b_pos_patterns_10 and L6CT_pos_patterns_3 with similarity score 4.86\n",
"Reading file modisco_results4/Lamp5_modisco_results.h5\n",
- "Match between Lamp5_neg_patterns_2 and Endo_pos_patterns_3 with similarity score 3.5705699796199273\n",
- "Match between Lamp5_neg_patterns_5 and L5_6NP_neg_patterns_4 with similarity score 3.51221248314615\n",
- "Match between Lamp5_neg_patterns_7 and L5IT_neg_patterns_11 with similarity score 4.52126266241515\n",
- "Match between Lamp5_neg_patterns_9 and Lamp5_neg_patterns_7 with similarity score 3.744420594713821\n",
- "Match between Lamp5_pos_patterns_0 and Endo_pos_patterns_1 with similarity score 4.501964655936938\n",
- "Match between Lamp5_pos_patterns_1 and Lamp5_neg_patterns_1 with similarity score 3.753598863167038\n",
- "Match between Lamp5_pos_patterns_2 and L5IT_pos_patterns_1 with similarity score 6.337856349476206\n",
- "Match between Lamp5_pos_patterns_3 and L6IT_pos_patterns_9 with similarity score 8.569049521521386\n",
- "Match between Lamp5_pos_patterns_4 and L5ET_pos_patterns_5 with similarity score 5.600020828090589\n",
- "Match between Lamp5_pos_patterns_5 and L6CT_neg_patterns_1 with similarity score 4.6177575977608845\n",
- "Match between Lamp5_pos_patterns_8 and L2_3IT_pos_patterns_3 with similarity score 3.852368770186881\n",
- "Match between Lamp5_pos_patterns_12 and L2_3IT_pos_patterns_3 with similarity score 4.508754330527462\n",
+ "Match between Lamp5_neg_patterns_2 and Endo_pos_patterns_3 with similarity score 3.57\n",
+ "Match between Lamp5_neg_patterns_5 and L5_6NP_neg_patterns_4 with similarity score 3.51\n",
+ "Match between Lamp5_neg_patterns_7 and L5IT_neg_patterns_11 with similarity score 4.52\n",
+ "Match between Lamp5_neg_patterns_9 and Lamp5_neg_patterns_7 with similarity score 3.74\n",
+ "Match between Lamp5_pos_patterns_0 and Endo_pos_patterns_1 with similarity score 4.50\n",
+ "Match between Lamp5_pos_patterns_1 and Lamp5_neg_patterns_1 with similarity score 3.75\n",
+ "Match between Lamp5_pos_patterns_2 and L5IT_pos_patterns_1 with similarity score 6.34\n",
+ "Match between Lamp5_pos_patterns_3 and L6IT_pos_patterns_9 with similarity score 8.57\n",
+ "Match between Lamp5_pos_patterns_4 and L5ET_pos_patterns_5 with similarity score 5.60\n",
+ "Match between Lamp5_pos_patterns_5 and L6CT_neg_patterns_1 with similarity score 4.62\n",
+ "Match between Lamp5_pos_patterns_8 and L2_3IT_pos_patterns_3 with similarity score 3.85\n",
+ "Match between Lamp5_pos_patterns_12 and L2_3IT_pos_patterns_3 with similarity score 4.51\n",
"Reading file modisco_results4/Micro_PVM_modisco_results.h5\n",
- "Match between Micro_PVM_neg_patterns_0 and Endo_neg_patterns_1 with similarity score 5.371618927595235\n",
- "Match between Micro_PVM_neg_patterns_1 and Endo_neg_patterns_4 with similarity score 5.454694905798706\n",
- "Match between Micro_PVM_neg_patterns_2 and Lamp5_neg_patterns_9 with similarity score 4.575772913534419\n",
- "Match between Micro_PVM_neg_patterns_3 and Endo_pos_patterns_1 with similarity score 4.205584610733869\n",
- "Match between Micro_PVM_neg_patterns_6 and Endo_pos_patterns_3 with similarity score 5.395531038174372\n",
- "Match between Micro_PVM_pos_patterns_0 and Endo_pos_patterns_2 with similarity score 5.2254679197201215\n",
- "Match between Micro_PVM_pos_patterns_3 and L6CT_neg_patterns_0 with similarity score 4.511302994099949\n",
- "Match between Micro_PVM_pos_patterns_6 and Lamp5_pos_patterns_2 with similarity score 8.936806417581902\n",
- "Match between Micro_PVM_pos_patterns_8 and Lamp5_neg_patterns_6 with similarity score 3.687897918886299\n",
- "Match between Micro_PVM_pos_patterns_9 and Lamp5_neg_patterns_3 with similarity score 4.859299799966342\n",
- "Match between Micro_PVM_pos_patterns_10 and Lamp5_pos_patterns_3 with similarity score 6.334904480121293\n",
- "Match between Micro_PVM_pos_patterns_12 and Micro_PVM_pos_patterns_2 with similarity score 3.8292122704771208\n",
- "Match between Micro_PVM_pos_patterns_14 and Micro_PVM_pos_patterns_9 with similarity score 4.11086460105565\n",
- "Match between Micro_PVM_pos_patterns_17 and Endo_neg_patterns_10 with similarity score 4.137612514291694\n",
+ "Match between Micro_PVM_neg_patterns_0 and Endo_neg_patterns_1 with similarity score 5.37\n",
+ "Match between Micro_PVM_neg_patterns_1 and Endo_neg_patterns_4 with similarity score 5.45\n",
+ "Match between Micro_PVM_neg_patterns_2 and Lamp5_neg_patterns_9 with similarity score 4.58\n",
+ "Match between Micro_PVM_neg_patterns_3 and Endo_pos_patterns_1 with similarity score 4.21\n",
+ "Match between Micro_PVM_neg_patterns_6 and Endo_pos_patterns_3 with similarity score 5.40\n",
+ "Match between Micro_PVM_pos_patterns_0 and Endo_pos_patterns_2 with similarity score 5.23\n",
+ "Match between Micro_PVM_pos_patterns_3 and L6CT_neg_patterns_0 with similarity score 4.51\n",
+ "Match between Micro_PVM_pos_patterns_6 and Lamp5_pos_patterns_2 with similarity score 8.94\n",
+ "Match between Micro_PVM_pos_patterns_8 and Lamp5_neg_patterns_6 with similarity score 3.69\n",
+ "Match between Micro_PVM_pos_patterns_9 and Lamp5_neg_patterns_3 with similarity score 4.86\n",
+ "Match between Micro_PVM_pos_patterns_10 and Lamp5_pos_patterns_3 with similarity score 6.33\n",
+ "Match between Micro_PVM_pos_patterns_12 and Micro_PVM_pos_patterns_2 with similarity score 3.83\n",
+ "Match between Micro_PVM_pos_patterns_14 and Micro_PVM_pos_patterns_9 with similarity score 4.11\n",
+ "Match between Micro_PVM_pos_patterns_17 and Endo_neg_patterns_10 with similarity score 4.14\n",
"Reading file modisco_results4/OPC_modisco_results.h5\n",
- "Match between OPC_neg_patterns_0 and L6CT_neg_patterns_4 with similarity score 3.7407117060084953\n",
- "Match between OPC_neg_patterns_3 and OPC_neg_patterns_0 with similarity score 3.8238333879615425\n",
- "Match between OPC_pos_patterns_0 and Astro_pos_patterns_4 with similarity score 6.018484605442814\n",
- "Match between OPC_pos_patterns_2 and Astro_pos_patterns_3 with similarity score 4.487354230284243\n",
- "Match between OPC_pos_patterns_4 and Endo_neg_patterns_4 with similarity score 3.9545782570205734\n",
- "Match between OPC_pos_patterns_5 and L6CT_neg_patterns_1 with similarity score 4.293249415252733\n",
- "Match between OPC_pos_patterns_6 and Micro_PVM_pos_patterns_17 with similarity score 3.890910273576981\n",
- "Match between OPC_pos_patterns_7 and Astro_pos_patterns_5 with similarity score 4.086357637578603\n",
- "Match between OPC_pos_patterns_9 and OPC_pos_patterns_3 with similarity score 4.265391733529058\n",
+ "Match between OPC_neg_patterns_0 and L6CT_neg_patterns_4 with similarity score 3.74\n",
+ "Match between OPC_neg_patterns_3 and OPC_neg_patterns_0 with similarity score 3.82\n",
+ "Match between OPC_pos_patterns_0 and Astro_pos_patterns_4 with similarity score 6.02\n",
+ "Match between OPC_pos_patterns_2 and Astro_pos_patterns_3 with similarity score 4.49\n",
+ "Match between OPC_pos_patterns_4 and Endo_neg_patterns_4 with similarity score 3.95\n",
+ "Match between OPC_pos_patterns_5 and L6CT_neg_patterns_1 with similarity score 4.29\n",
+ "Match between OPC_pos_patterns_6 and Micro_PVM_pos_patterns_17 with similarity score 3.89\n",
+ "Match between OPC_pos_patterns_7 and Astro_pos_patterns_5 with similarity score 4.09\n",
+ "Match between OPC_pos_patterns_9 and OPC_pos_patterns_3 with similarity score 4.27\n",
"Reading file modisco_results4/Oligo_modisco_results.h5\n",
- "Match between Oligo_neg_patterns_0 and OPC_neg_patterns_0 with similarity score 3.8907771959450654\n",
- "Match between Oligo_neg_patterns_1 and Oligo_neg_patterns_0 with similarity score 3.795897389488977\n",
- "Match between Oligo_neg_patterns_2 and Oligo_neg_patterns_0 with similarity score 3.74474703863082\n",
- "Match between Oligo_neg_patterns_3 and Oligo_neg_patterns_0 with similarity score 3.6989917196465543\n",
- "Match between Oligo_neg_patterns_4 and L5_6NP_neg_patterns_1 with similarity score 5.086383830167129\n",
- "Match between Oligo_neg_patterns_5 and Micro_PVM_neg_patterns_0 with similarity score 4.037353647463917\n",
- "Match between Oligo_neg_patterns_6 and Astro_neg_patterns_0 with similarity score 4.572000398143344\n",
- "Match between Oligo_pos_patterns_0 and L6IT_neg_patterns_2 with similarity score 4.585237862250889\n",
- "Match between Oligo_pos_patterns_1 and OPC_pos_patterns_3 with similarity score 12.0\n",
- "Match between Oligo_pos_patterns_2 and OPC_pos_patterns_1 with similarity score 5.395906666305187\n",
- "Match between Oligo_pos_patterns_4 and OPC_pos_patterns_4 with similarity score 5.09042336626844\n",
- "Match between Oligo_pos_patterns_5 and Oligo_pos_patterns_3 with similarity score 4.253522659363072\n",
- "Match between Oligo_pos_patterns_6 and Endo_pos_patterns_12 with similarity score 3.8375782303196027\n",
- "Match between Oligo_pos_patterns_7 and OPC_pos_patterns_6 with similarity score 6.010745068202029\n",
- "Match between Oligo_pos_patterns_9 and Oligo_pos_patterns_1 with similarity score 5.427733279443906\n",
- "Match between Oligo_pos_patterns_10 and Astro_pos_patterns_10 with similarity score 4.360525489159412\n",
- "Match between Oligo_pos_patterns_11 and Astro_pos_patterns_4 with similarity score 5.072647944722572\n",
- "Match between Oligo_pos_patterns_12 and Lamp5_pos_patterns_11 with similarity score 5.252506251459947\n",
- "Match between Oligo_pos_patterns_13 and Oligo_pos_patterns_5 with similarity score 4.205585680411334\n",
- "Match between Oligo_pos_patterns_14 and Micro_PVM_pos_patterns_8 with similarity score 4.63061950260944\n",
+ "Match between Oligo_neg_patterns_0 and OPC_neg_patterns_0 with similarity score 3.89\n",
+ "Match between Oligo_neg_patterns_1 and Oligo_neg_patterns_0 with similarity score 3.80\n",
+ "Match between Oligo_neg_patterns_2 and Oligo_neg_patterns_0 with similarity score 3.74\n",
+ "Match between Oligo_neg_patterns_3 and Oligo_neg_patterns_0 with similarity score 3.70\n",
+ "Match between Oligo_neg_patterns_4 and L5_6NP_neg_patterns_1 with similarity score 5.09\n",
+ "Match between Oligo_neg_patterns_5 and Micro_PVM_neg_patterns_0 with similarity score 4.04\n",
+ "Match between Oligo_neg_patterns_6 and Astro_neg_patterns_0 with similarity score 4.57\n",
+ "Match between Oligo_pos_patterns_0 and L6IT_neg_patterns_2 with similarity score 4.59\n",
+ "Match between Oligo_pos_patterns_1 and OPC_pos_patterns_3 with similarity score 12.00\n",
+ "Match between Oligo_pos_patterns_2 and OPC_pos_patterns_1 with similarity score 5.40\n",
+ "Match between Oligo_pos_patterns_4 and OPC_pos_patterns_4 with similarity score 5.09\n",
+ "Match between Oligo_pos_patterns_5 and Oligo_pos_patterns_3 with similarity score 4.25\n",
+ "Match between Oligo_pos_patterns_6 and Endo_pos_patterns_12 with similarity score 3.84\n",
+ "Match between Oligo_pos_patterns_7 and OPC_pos_patterns_6 with similarity score 6.01\n",
+ "Match between Oligo_pos_patterns_9 and Oligo_pos_patterns_1 with similarity score 5.43\n",
+ "Match between Oligo_pos_patterns_10 and Astro_pos_patterns_10 with similarity score 4.36\n",
+ "Match between Oligo_pos_patterns_11 and Astro_pos_patterns_4 with similarity score 5.07\n",
+ "Match between Oligo_pos_patterns_12 and Lamp5_pos_patterns_11 with similarity score 5.25\n",
+ "Match between Oligo_pos_patterns_13 and Oligo_pos_patterns_5 with similarity score 4.21\n",
+ "Match between Oligo_pos_patterns_14 and Micro_PVM_pos_patterns_8 with similarity score 4.63\n",
"Reading file modisco_results4/Pvalb_modisco_results.h5\n",
- "Match between Pvalb_neg_patterns_0 and L6b_neg_patterns_3 with similarity score 4.397944351759039\n",
- "Match between Pvalb_neg_patterns_1 and Micro_PVM_neg_patterns_0 with similarity score 4.742695679912346\n",
- "Match between Pvalb_pos_patterns_0 and Lamp5_pos_patterns_2 with similarity score 6.124778496430855\n",
- "Match between Pvalb_pos_patterns_2 and Micro_PVM_pos_patterns_2 with similarity score 4.003648891366183\n",
- "Match between Pvalb_pos_patterns_3 and OPC_pos_patterns_4 with similarity score 5.0033656422492685\n",
- "Match between Pvalb_pos_patterns_5 and Micro_PVM_pos_patterns_9 with similarity score 4.84968372705209\n",
- "Match between Pvalb_pos_patterns_6 and Lamp5_pos_patterns_13 with similarity score 7.528957863984156\n",
- "Match between Pvalb_pos_patterns_7 and Micro_PVM_pos_patterns_16 with similarity score 4.01624042345759\n",
- "Match between Pvalb_pos_patterns_8 and Pvalb_pos_patterns_6 with similarity score 5.278418309512277\n",
- "Match between Pvalb_pos_patterns_9 and L6IT_pos_patterns_3 with similarity score 5.134512663843641\n",
- "Match between Pvalb_pos_patterns_11 and Oligo_pos_patterns_14 with similarity score 6.231918992754008\n",
+ "Match between Pvalb_neg_patterns_0 and L6b_neg_patterns_3 with similarity score 4.40\n",
+ "Match between Pvalb_neg_patterns_1 and Micro_PVM_neg_patterns_0 with similarity score 4.74\n",
+ "Match between Pvalb_pos_patterns_0 and Lamp5_pos_patterns_2 with similarity score 6.12\n",
+ "Match between Pvalb_pos_patterns_2 and Micro_PVM_pos_patterns_2 with similarity score 4.00\n",
+ "Match between Pvalb_pos_patterns_3 and OPC_pos_patterns_4 with similarity score 5.00\n",
+ "Match between Pvalb_pos_patterns_5 and Micro_PVM_pos_patterns_9 with similarity score 4.85\n",
+ "Match between Pvalb_pos_patterns_6 and Lamp5_pos_patterns_13 with similarity score 7.53\n",
+ "Match between Pvalb_pos_patterns_7 and Micro_PVM_pos_patterns_16 with similarity score 4.02\n",
+ "Match between Pvalb_pos_patterns_8 and Pvalb_pos_patterns_6 with similarity score 5.28\n",
+ "Match between Pvalb_pos_patterns_9 and L6IT_pos_patterns_3 with similarity score 5.13\n",
+ "Match between Pvalb_pos_patterns_11 and Oligo_pos_patterns_14 with similarity score 6.23\n",
"Reading file modisco_results4/Sncg_modisco_results.h5\n",
- "Match between Sncg_neg_patterns_0 and Micro_PVM_neg_patterns_0 with similarity score 4.191796719566743\n",
- "Match between Sncg_neg_patterns_2 and L5IT_pos_patterns_0 with similarity score 5.767560698241968\n",
- "Match between Sncg_neg_patterns_4 and L6CT_pos_patterns_3 with similarity score 5.187232032510671\n",
- "Match between Sncg_neg_patterns_6 and Sncg_neg_patterns_3 with similarity score 3.7646546985356335\n",
- "Match between Sncg_pos_patterns_0 and Lamp5_pos_patterns_1 with similarity score 4.44166764776981\n",
- "Match between Sncg_pos_patterns_1 and Astro_pos_patterns_6 with similarity score 8.271735684453544\n",
- "Match between Sncg_pos_patterns_2 and L5ET_pos_patterns_1 with similarity score 3.8999419646142215\n",
- "Match between Sncg_pos_patterns_3 and Oligo_pos_patterns_0 with similarity score 4.631259353032871\n",
- "Match between Sncg_pos_patterns_4 and OPC_pos_patterns_1 with similarity score 4.425874624623736\n",
- "Match between Sncg_pos_patterns_5 and OPC_pos_patterns_1 with similarity score 5.270968365564769\n",
- "Match between Sncg_pos_patterns_6 and Lamp5_pos_patterns_2 with similarity score 10.26223291987266\n",
- "Match between Sncg_pos_patterns_7 and Pvalb_pos_patterns_2 with similarity score 3.7964248687712745\n",
- "Match between Sncg_pos_patterns_9 and Pvalb_pos_patterns_5 with similarity score 5.808519215050711\n",
- "Match between Sncg_pos_patterns_10 and Lamp5_pos_patterns_3 with similarity score 6.089269252192284\n",
- "Match between Sncg_pos_patterns_11 and L2_3IT_pos_patterns_12 with similarity score 4.0742056034302925\n",
- "Match between Sncg_pos_patterns_12 and Oligo_pos_patterns_8 with similarity score 4.582995709684456\n",
- "Match between Sncg_pos_patterns_13 and OPC_pos_patterns_1 with similarity score 3.851864124044568\n",
+ "Match between Sncg_neg_patterns_0 and Micro_PVM_neg_patterns_0 with similarity score 4.19\n",
+ "Match between Sncg_neg_patterns_2 and L5IT_pos_patterns_0 with similarity score 5.77\n",
+ "Match between Sncg_neg_patterns_4 and L6CT_pos_patterns_3 with similarity score 5.19\n",
+ "Match between Sncg_neg_patterns_6 and Sncg_neg_patterns_3 with similarity score 3.76\n",
+ "Match between Sncg_pos_patterns_0 and Lamp5_pos_patterns_1 with similarity score 4.44\n",
+ "Match between Sncg_pos_patterns_1 and Astro_pos_patterns_6 with similarity score 8.27\n",
+ "Match between Sncg_pos_patterns_2 and L5ET_pos_patterns_1 with similarity score 3.90\n",
+ "Match between Sncg_pos_patterns_3 and Oligo_pos_patterns_0 with similarity score 4.63\n",
+ "Match between Sncg_pos_patterns_4 and OPC_pos_patterns_1 with similarity score 4.43\n",
+ "Match between Sncg_pos_patterns_5 and OPC_pos_patterns_1 with similarity score 5.27\n",
+ "Match between Sncg_pos_patterns_6 and Lamp5_pos_patterns_2 with similarity score 10.26\n",
+ "Match between Sncg_pos_patterns_7 and Pvalb_pos_patterns_2 with similarity score 3.80\n",
+ "Match between Sncg_pos_patterns_9 and Pvalb_pos_patterns_5 with similarity score 5.81\n",
+ "Match between Sncg_pos_patterns_10 and Lamp5_pos_patterns_3 with similarity score 6.09\n",
+ "Match between Sncg_pos_patterns_11 and L2_3IT_pos_patterns_12 with similarity score 4.07\n",
+ "Match between Sncg_pos_patterns_12 and Oligo_pos_patterns_8 with similarity score 4.58\n",
+ "Match between Sncg_pos_patterns_13 and OPC_pos_patterns_1 with similarity score 3.85\n",
"Reading file modisco_results4/Sst_modisco_results.h5\n",
- "Match between Sst_neg_patterns_1 and Endo_pos_patterns_3 with similarity score 4.338415052543058\n",
- "Match between Sst_neg_patterns_4 and L5IT_neg_patterns_5 with similarity score 3.50236638507162\n",
- "Match between Sst_neg_patterns_5 and L6CT_neg_patterns_6 with similarity score 5.208394443687165\n",
- "Match between Sst_neg_patterns_13 and Sst_neg_patterns_10 with similarity score 4.079358041816989\n",
- "Match between Sst_pos_patterns_0 and OPC_pos_patterns_4 with similarity score 4.287462647477037\n",
- "Match between Sst_pos_patterns_1 and Pvalb_pos_patterns_1 with similarity score 4.943609795425469\n",
- "Match between Sst_pos_patterns_2 and L2_3IT_pos_patterns_8 with similarity score 3.655153966913179\n",
- "Match between Sst_pos_patterns_3 and Pvalb_pos_patterns_2 with similarity score 4.226884955315703\n",
- "Match between Sst_pos_patterns_4 and L5ET_pos_patterns_3 with similarity score 4.680407419781811\n",
- "Match between Sst_pos_patterns_5 and Sncg_pos_patterns_8 with similarity score 6.1064180459638395\n",
- "Match between Sst_pos_patterns_6 and L5ET_pos_patterns_1 with similarity score 3.900608206109665\n",
- "Match between Sst_pos_patterns_7 and Oligo_pos_patterns_6 with similarity score 3.600895992586014\n",
- "Match between Sst_pos_patterns_8 and Sncg_pos_patterns_6 with similarity score 5.924828732304704\n",
- "Match between Sst_pos_patterns_9 and Pvalb_pos_patterns_7 with similarity score 4.396527131718086\n",
- "Match between Sst_pos_patterns_10 and L2_3IT_pos_patterns_3 with similarity score 6.582050971030263\n",
- "Match between Sst_pos_patterns_11 and L6IT_pos_patterns_3 with similarity score 4.405624362136759\n",
- "Match between Sst_pos_patterns_12 and Astro_pos_patterns_10 with similarity score 4.3953350955746995\n",
+ "Match between Sst_neg_patterns_1 and Endo_pos_patterns_3 with similarity score 4.34\n",
+ "Match between Sst_neg_patterns_4 and L5IT_neg_patterns_5 with similarity score 3.50\n",
+ "Match between Sst_neg_patterns_5 and L6CT_neg_patterns_6 with similarity score 5.21\n",
+ "Match between Sst_neg_patterns_13 and Sst_neg_patterns_10 with similarity score 4.08\n",
+ "Match between Sst_pos_patterns_0 and OPC_pos_patterns_4 with similarity score 4.29\n",
+ "Match between Sst_pos_patterns_1 and Pvalb_pos_patterns_1 with similarity score 4.94\n",
+ "Match between Sst_pos_patterns_2 and L2_3IT_pos_patterns_8 with similarity score 3.66\n",
+ "Match between Sst_pos_patterns_3 and Pvalb_pos_patterns_2 with similarity score 4.23\n",
+ "Match between Sst_pos_patterns_4 and L5ET_pos_patterns_3 with similarity score 4.68\n",
+ "Match between Sst_pos_patterns_5 and Sncg_pos_patterns_8 with similarity score 6.11\n",
+ "Match between Sst_pos_patterns_6 and L5ET_pos_patterns_1 with similarity score 3.90\n",
+ "Match between Sst_pos_patterns_7 and Oligo_pos_patterns_6 with similarity score 3.60\n",
+ "Match between Sst_pos_patterns_8 and Sncg_pos_patterns_6 with similarity score 5.92\n",
+ "Match between Sst_pos_patterns_9 and Pvalb_pos_patterns_7 with similarity score 4.40\n",
+ "Match between Sst_pos_patterns_10 and L2_3IT_pos_patterns_3 with similarity score 6.58\n",
+ "Match between Sst_pos_patterns_11 and L6IT_pos_patterns_3 with similarity score 4.41\n",
+ "Match between Sst_pos_patterns_12 and Astro_pos_patterns_10 with similarity score 4.40\n",
"Reading file modisco_results4/SstChodl_modisco_results.h5\n",
- "Match between SstChodl_neg_patterns_0 and L5_6NP_neg_patterns_1 with similarity score 4.778373546711901\n",
- "Match between SstChodl_neg_patterns_2 and Sst_neg_patterns_2 with similarity score 4.509149845917192\n",
- "Match between SstChodl_neg_patterns_3 and Lamp5_neg_patterns_5 with similarity score 3.5076029701121887\n",
- "Match between SstChodl_neg_patterns_5 and Sst_neg_patterns_11 with similarity score 3.5436584328397296\n",
- "Match between SstChodl_neg_patterns_6 and Endo_neg_patterns_22 with similarity score 3.7205485760343353\n",
- "Match between SstChodl_neg_patterns_9 and Lamp5_pos_patterns_6 with similarity score 4.2460948804997685\n",
- "Match between SstChodl_pos_patterns_0 and L5IT_neg_patterns_5 with similarity score 3.619678502661291\n",
- "Match between SstChodl_pos_patterns_2 and Astro_pos_patterns_4 with similarity score 5.633133912802437\n",
- "Match between SstChodl_pos_patterns_3 and L6IT_pos_patterns_3 with similarity score 5.0182957813379785\n",
- "Match between SstChodl_pos_patterns_4 and Oligo_pos_patterns_5 with similarity score 4.6425810361185915\n",
- "Match between SstChodl_pos_patterns_6 and Endo_pos_patterns_4 with similarity score 5.2952041139208275\n",
- "Match between SstChodl_pos_patterns_7 and L5ET_pos_patterns_8 with similarity score 5.8122900188970315\n",
- "Match between SstChodl_pos_patterns_8 and Astro_pos_patterns_4 with similarity score 7.06947879056414\n",
- "Match between SstChodl_pos_patterns_9 and OPC_pos_patterns_10 with similarity score 5.070245192151081\n",
- "Match between SstChodl_pos_patterns_10 and L2_3IT_pos_patterns_7 with similarity score 11.14910250518686\n",
+ "Match between SstChodl_neg_patterns_0 and L5_6NP_neg_patterns_1 with similarity score 4.78\n",
+ "Match between SstChodl_neg_patterns_2 and Sst_neg_patterns_2 with similarity score 4.51\n",
+ "Match between SstChodl_neg_patterns_3 and Lamp5_neg_patterns_5 with similarity score 3.51\n",
+ "Match between SstChodl_neg_patterns_5 and Sst_neg_patterns_11 with similarity score 3.54\n",
+ "Match between SstChodl_neg_patterns_6 and Endo_neg_patterns_22 with similarity score 3.72\n",
+ "Match between SstChodl_neg_patterns_9 and Lamp5_pos_patterns_6 with similarity score 4.25\n",
+ "Match between SstChodl_pos_patterns_0 and L5IT_neg_patterns_5 with similarity score 3.62\n",
+ "Match between SstChodl_pos_patterns_2 and Astro_pos_patterns_4 with similarity score 5.63\n",
+ "Match between SstChodl_pos_patterns_3 and L6IT_pos_patterns_3 with similarity score 5.02\n",
+ "Match between SstChodl_pos_patterns_4 and Oligo_pos_patterns_5 with similarity score 4.64\n",
+ "Match between SstChodl_pos_patterns_6 and Endo_pos_patterns_4 with similarity score 5.30\n",
+ "Match between SstChodl_pos_patterns_7 and L5ET_pos_patterns_8 with similarity score 5.81\n",
+ "Match between SstChodl_pos_patterns_8 and Astro_pos_patterns_4 with similarity score 7.07\n",
+ "Match between SstChodl_pos_patterns_9 and OPC_pos_patterns_10 with similarity score 5.07\n",
+ "Match between SstChodl_pos_patterns_10 and L2_3IT_pos_patterns_7 with similarity score 11.15\n",
"Reading file modisco_results4/VLMC_modisco_results.h5\n",
- "Match between VLMC_pos_patterns_1 and Endo_pos_patterns_1 with similarity score 5.5719977798097196\n",
- "Match between VLMC_pos_patterns_2 and Endo_pos_patterns_3 with similarity score 4.4975961228153025\n",
- "Match between VLMC_pos_patterns_3 and Sncg_pos_patterns_6 with similarity score 3.6008651299397316\n",
- "Match between VLMC_pos_patterns_6 and Endo_pos_patterns_11 with similarity score 5.469387586803207\n",
- "Match between VLMC_pos_patterns_7 and OPC_pos_patterns_4 with similarity score 4.919094290938067\n",
- "Match between VLMC_pos_patterns_8 and Endo_pos_patterns_9 with similarity score 7.323020904841309\n",
- "Match between VLMC_pos_patterns_9 and Endo_pos_patterns_6 with similarity score 6.081859470750559\n",
- "Match between VLMC_pos_patterns_11 and L2_3IT_pos_patterns_3 with similarity score 4.883769204480631\n",
- "Match between VLMC_pos_patterns_13 and VLMC_pos_patterns_12 with similarity score 3.9543223119688453\n",
- "Match between VLMC_pos_patterns_14 and VLMC_pos_patterns_1 with similarity score 5.132665912562707\n",
- "Match between VLMC_pos_patterns_15 and L6CT_neg_patterns_0 with similarity score 4.511305172523018\n",
+ "Match between VLMC_pos_patterns_1 and Endo_pos_patterns_1 with similarity score 5.57\n",
+ "Match between VLMC_pos_patterns_2 and Endo_pos_patterns_3 with similarity score 4.50\n",
+ "Match between VLMC_pos_patterns_3 and Sncg_pos_patterns_6 with similarity score 3.60\n",
+ "Match between VLMC_pos_patterns_6 and Endo_pos_patterns_11 with similarity score 5.47\n",
+ "Match between VLMC_pos_patterns_7 and OPC_pos_patterns_4 with similarity score 4.92\n",
+ "Match between VLMC_pos_patterns_8 and Endo_pos_patterns_9 with similarity score 7.32\n",
+ "Match between VLMC_pos_patterns_9 and Endo_pos_patterns_6 with similarity score 6.08\n",
+ "Match between VLMC_pos_patterns_11 and L2_3IT_pos_patterns_3 with similarity score 4.88\n",
+ "Match between VLMC_pos_patterns_13 and VLMC_pos_patterns_12 with similarity score 3.95\n",
+ "Match between VLMC_pos_patterns_14 and VLMC_pos_patterns_1 with similarity score 5.13\n",
+ "Match between VLMC_pos_patterns_15 and L6CT_neg_patterns_0 with similarity score 4.51\n",
"Reading file modisco_results4/Vip_modisco_results.h5\n",
- "Match between Vip_neg_patterns_2 and L5_6NP_neg_patterns_7 with similarity score 3.701037249777491\n",
- "Match between Vip_pos_patterns_0 and L6IT_neg_patterns_0 with similarity score 3.5528723703433496\n",
- "Match between Vip_pos_patterns_1 and OPC_pos_patterns_1 with similarity score 5.571997780025679\n",
- "Match between Vip_pos_patterns_2 and OPC_pos_patterns_4 with similarity score 5.203352993609433\n",
- "Match between Vip_pos_patterns_3 and Oligo_pos_patterns_1 with similarity score 5.440966201479892\n",
- "Match between Vip_pos_patterns_5 and Sncg_pos_patterns_1 with similarity score 4.5614773190891755\n",
- "Match between Vip_pos_patterns_7 and L6IT_pos_patterns_3 with similarity score 5.106957623793277\n",
- "Match between Vip_pos_patterns_9 and Lamp5_pos_patterns_14 with similarity score 4.209494269460239\n",
+ "Match between Vip_neg_patterns_2 and L5_6NP_neg_patterns_7 with similarity score 3.70\n",
+ "Match between Vip_pos_patterns_0 and L6IT_neg_patterns_0 with similarity score 3.55\n",
+ "Match between Vip_pos_patterns_1 and OPC_pos_patterns_1 with similarity score 5.57\n",
+ "Match between Vip_pos_patterns_2 and OPC_pos_patterns_4 with similarity score 5.20\n",
+ "Match between Vip_pos_patterns_3 and Oligo_pos_patterns_1 with similarity score 5.44\n",
+ "Match between Vip_pos_patterns_5 and Sncg_pos_patterns_1 with similarity score 4.56\n",
+ "Match between Vip_pos_patterns_7 and L6IT_pos_patterns_3 with similarity score 5.11\n",
+ "Match between Vip_pos_patterns_9 and Lamp5_pos_patterns_14 with similarity score 4.21\n",
"Merged patterns Astro_neg_patterns_0 and Oligo_neg_patterns_0 with similarity 3.5897681444438128\n",
"Merged patterns Astro_neg_patterns_0 and OPC_neg_patterns_1 with similarity 3.58637465998967\n",
"Merged patterns Astro_neg_patterns_0 and Sncg_neg_patterns_6 with similarity 5.2674311332894\n",
@@ -675,21 +675,23 @@
"(19, 119)"
]
},
- "execution_count": 209,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Then we cluster matching patterns, and define a pattern matrix [#classes, #patterns] describing their importance\n",
- "all_patterns = crested.tl.process_patterns(\n",
+ "all_patterns = crested.tl.modisco.process_patterns(\n",
" matched_files,\n",
- " sim_threshold=3.5, # The similarity threshold used for matching patterns. We take the -log10(pval), pval obtained through TOMTOM matching from tangermeme\n",
- " trim_ic_threshold=0.1, # Information content (IC) threshold on which to trim patterns\n",
- " discard_ic_threshold=0.2, # IC threshold used for discarding single instance patterns\n",
- " verbose=True # Useful for doing sanity checks on matching patterns\n",
- ") \n",
- "pattern_matrix = crested.tl.create_pattern_matrix(classes=list(adata.obs_names), all_patterns=all_patterns, normalize=True)\n",
+ " sim_threshold=3.5, # The similarity threshold used for matching patterns. We take the -log10(pval), pval obtained through TOMTOM matching from tangermeme\n",
+ " trim_ic_threshold=0.1, # Information content (IC) threshold on which to trim patterns\n",
+ " discard_ic_threshold=0.2, # IC threshold used for discarding single instance patterns\n",
+ " verbose=True, # Useful for doing sanity checks on matching patterns\n",
+ ")\n",
+ "pattern_matrix = crested.tl.modisco.create_pattern_matrix(\n",
+ " classes=list(adata.obs_names), all_patterns=all_patterns, normalize=True\n",
+ ")\n",
"pattern_matrix.shape"
]
},
@@ -697,12 +699,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Now we can plot a clustermap of cell types/classes and patterns, where the classes are clustered purely on pattern importance."
+ "Now we can plot a clustermap of cell types/classes and patterns, where the classes are clustered \n",
+ "purely on pattern importance with {func}`crested.tl.modisco.generate_nucleotide_sequences` and {func}`crested.pl.patterns.clustermap`"
]
},
{
"cell_type": "code",
- "execution_count": 229,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
@@ -717,8 +720,10 @@
}
],
"source": [
- "pat_seqs = crested.tl.generate_nucleotide_sequences(all_patterns)\n",
- "crested.pl.patterns.create_clustermap(pattern_matrix, list(adata.obs_names), figsize=(25,8), pat_seqs=pat_seqs, grid=True)"
+ "pat_seqs = crested.tl.modisco.generate_nucleotide_sequences(all_patterns)\n",
+ "crested.pl.patterns.clustermap(\n",
+ " pattern_matrix, list(adata.obs_names), figsize=(25, 8), pat_seqs=pat_seqs, grid=True\n",
+ ")"
]
},
{
@@ -730,7 +735,7 @@
},
{
"cell_type": "code",
- "execution_count": 231,
+ "execution_count": 13,
"metadata": {},
"outputs": [
{
@@ -746,8 +751,16 @@
],
"source": [
"%matplotlib inline\n",
- "pat_seqs = crested.tl.generate_nucleotide_sequences(all_patterns)\n",
- "crested.pl.patterns.create_clustermap(pattern_matrix, classes=list(adata.obs_names), subset=['Astro','OPC', 'Oligo'], figsize=(10,3), pat_seqs=pat_seqs, grid=True, dy=0.0025)"
+ "pat_seqs = crested.tl.modisco.generate_nucleotide_sequences(all_patterns)\n",
+ "crested.pl.patterns.clustermap(\n",
+ " pattern_matrix,\n",
+ " classes=list(adata.obs_names),\n",
+ " subset=[\"Astro\", \"OPC\", \"Oligo\"],\n",
+ " figsize=(10, 3),\n",
+ " pat_seqs=pat_seqs,\n",
+ " grid=True,\n",
+ " dy=0.0025,\n",
+ ")"
]
},
{
@@ -761,12 +774,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "It is always interesting to investigate specific patterns show in the clustermap above. Here there are some example function on how to do that."
+ "It is always interesting to investigate specific patterns show in the clustermap above. Here there are some example function on how to do that.\n",
+ "\n",
+ "Plotting patterns based on their indices can be done with {func}`crested.pl.patterns.selected_instances`"
]
},
{
"cell_type": "code",
- "execution_count": 232,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
@@ -781,10 +796,10 @@
}
],
"source": [
- "from crested.pl.patterns import plot_patterns, plot_pattern_instances\n",
- "\n",
- "pattern_indices = [0,1,2,3]\n",
- "plot_patterns(all_patterns, pattern_indices) # The pattern that is show is the most representative pattern of the cluster with the highest average IC"
+ "pattern_indices = [0, 1, 2, 3]\n",
+ "crested.pl.patterns.selected_instances(\n",
+ " all_patterns, pattern_indices\n",
+ ") # The pattern that is shown is the most representative pattern of the cluster with the highest average IC"
]
},
{
@@ -796,7 +811,7 @@
},
{
"cell_type": "code",
- "execution_count": 233,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
@@ -818,24 +833,23 @@
}
],
"source": [
- "from crested.tl import pattern_similarity\n",
- "idx1=1\n",
- "idx2=49\n",
- "sim = pattern_similarity(all_patterns,idx1,idx2)\n",
- "print('Pattern similarity is ' + str(sim))\n",
- "plot_patterns(all_patterns, [idx1, idx2])"
+ "idx1 = 1\n",
+ "idx2 = 49\n",
+ "sim = crested.tl.modisco.pattern_similarity(all_patterns, idx1, idx2)\n",
+ "print(\"Pattern similarity is \" + str(sim))\n",
+ "crested.pl.patterns.selected_instances(all_patterns, [idx1, idx2])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "And plot all the instances of patterns in the same cluster."
+ "We can plot all the instances of patterns in the same cluster with {func}`crested.pl.patterns.class_instances`"
]
},
{
"cell_type": "code",
- "execution_count": 243,
+ "execution_count": 16,
"metadata": {},
"outputs": [
{
@@ -850,39 +864,38 @@
}
],
"source": [
- "plot_pattern_instances(all_patterns,33)"
+ "crested.pl.patterns.class_instances(all_patterns, 33)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "If you want to find out in which pattern cluster a certain pattern is from your modisco results, you can call the find_pattern function."
+ "If you want to find out in which pattern cluster a certain pattern is from your modisco results, you can call the {func}`crested.tl.modisco.find_pattern` function."
]
},
{
"cell_type": "code",
- "execution_count": 235,
+ "execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
- "from crested.tl._tfmodisco import find_pattern\n",
- "idx = find_pattern('L6CT_pos_patterns_4', all_patterns)\n",
+ "idx = crested.tl.modisco.find_pattern(\"L6CT_pos_patterns_4\", all_patterns)\n",
"if idx is not None:\n",
- " print('Pattern index is '+str(idx))\n",
- " plot_pattern_instances(all_patterns,idx, class_representative=True)"
+ " print(\"Pattern index is \" + str(idx))\n",
+ " crested.pl.patterns.class_instances(all_patterns, idx, class_representative=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "Finally we can also plot the similarity between all patterns."
+ "Finally we can also plot the similarity between all patterns with {func}`crested.tl.modisco.calculate_similarity_matrix` and {func}`crested.pl.patterns.similarity_heatmap`"
]
},
{
"cell_type": "code",
- "execution_count": 236,
+ "execution_count": 18,
"metadata": {},
"outputs": [
{
@@ -897,10 +910,8 @@
}
],
"source": [
- "from crested.tl import calculate_similarity_matrix\n",
- "from crested.pl.patterns import plot_similarity_heatmap\n",
- "sim_matrix, indices = calculate_similarity_matrix(all_patterns)\n",
- "plot_similarity_heatmap(sim_matrix, indices, fig_size=(42,17))"
+ "sim_matrix, indices = crested.tl.modisco.calculate_similarity_matrix(all_patterns)\n",
+ "crested.pl.patterns.similarity_heatmap(sim_matrix, indices, fig_size=(42, 17))"
]
},
{
@@ -924,32 +935,36 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "#### Load scRNA-seq data"
+ "#### Load scRNA-seq data\n",
+ "\n",
+ "Load scRNA seq data and calculate mean expression per cell type using {func}`crested.tl.modisco.calculate_mean_expression_per_cell_type`"
]
},
{
"cell_type": "code",
- "execution_count": 237,
+ "execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "/data/projects/c04/cbd-saerts/nkemp/software/CREsted/src/crested/tl/_tfmodisco.py:1122: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n",
- " \n"
+ "/data/projects/c04/cbd-saerts/nkemp/software/CREsted/src/crested/tl/modisco/_tfmodisco.py:1167: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n",
+ " mean_expression_per_cell_type: pd.DataFrame = gene_expression_df.groupby(\n"
]
}
],
"source": [
- "file_path='/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/Mouse_rna.h5ad' #Locate h5 file containing scRNAseq data\n",
- "cell_type_column= 'subclass_Bakken_2022'\n",
- "mean_expression_df = crested.tl.calculate_mean_expression_per_cell_type(file_path, cell_type_column)"
+ "file_path = \"/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/Mouse_rna.h5ad\" # Locate h5 file containing scRNAseq data\n",
+ "cell_type_column = \"subclass_Bakken_2022\"\n",
+ "mean_expression_df = crested.tl.modisco.calculate_mean_expression_per_cell_type(\n",
+ " file_path, cell_type_column\n",
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 238,
+ "execution_count": 20,
"metadata": {},
"outputs": [
{
@@ -1574,7 +1589,7 @@
"[19 rows x 24275 columns]"
]
},
- "execution_count": 238,
+ "execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
@@ -1592,7 +1607,7 @@
},
{
"cell_type": "code",
- "execution_count": 239,
+ "execution_count": 21,
"metadata": {},
"outputs": [
{
@@ -1604,12 +1619,15 @@
}
],
"source": [
- "import numpy as np\n",
- "classes=np.array(adata.obs_names)\n",
- "contribution_dir='modisco_results4'\n",
- "html_paths = crested.tl.generate_html_paths(all_patterns, classes, contribution_dir)\n",
+ "classes = list(adata.obs_names)\n",
+ "contribution_dir = \"modisco_results4\"\n",
+ "html_paths = crested.tl.modisco.generate_html_paths(\n",
+ " all_patterns, classes, contribution_dir\n",
+ ")\n",
"\n",
- "pattern_match_dict = crested.tl.find_pattern_matches(all_patterns, html_paths, q_val_thr=0.1) #q_val threshold to only select significant matches\n",
+ "pattern_match_dict = crested.tl.modisco.find_pattern_matches(\n",
+ " all_patterns, html_paths, q_val_thr=0.1\n",
+ ") # q_val threshold to only select significant matches\n",
"print(pattern_match_dict)"
]
},
@@ -1622,7 +1640,7 @@
},
{
"cell_type": "code",
- "execution_count": 240,
+ "execution_count": 22,
"metadata": {},
"outputs": [
{
@@ -1962,13 +1980,15 @@
"[22476 rows x 15 columns]"
]
},
- "execution_count": 240,
+ "execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "motif_to_tf_df = crested.tl.read_motif_to_tf_file('/data/projects/c04/cbd-saerts/nkemp/tools/Motif_collection.tsv')\n",
+ "motif_to_tf_df = crested.tl.modisco.read_motif_to_tf_file(\n",
+ " \"/data/projects/c04/cbd-saerts/nkemp/tools/Motif_collection.tsv\"\n",
+ ")\n",
"motif_to_tf_df"
]
},
@@ -1983,12 +2003,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "We calculate a pattern-tf by cell type matrix which contains the imporatance of each pattern linked to a TF per cell type."
+ "We calculate a pattern-tf by cell type matrix which contains the imporatance of each pattern linked to a TF per cell type using {func}`crested.tl.modisco.create_pattern_tf_dict` and {func}`crested.tl.modisco.create_tf_ct_matrix`"
]
},
{
"cell_type": "code",
- "execution_count": 241,
+ "execution_count": 23,
"metadata": {},
"outputs": [
{
@@ -2002,21 +2022,36 @@
}
],
"source": [
- "cols = ['Mouse_Direct_annot', 'Mouse_Orthology_annot', 'Cluster_Mouse_Direct_annot', 'Cluster_Mouse_Orthology_annot']\n",
- "pattern_tf_dict, all_tfs = crested.tl.create_pattern_tf_dict(pattern_match_dict, motif_to_tf_df, all_patterns, cols)\n",
- "tf_ct_matrix, tf_pattern_annots = crested.tl.create_tf_ct_matrix(pattern_tf_dict, all_patterns, mean_expression_df, classes, log_transform=True, normalize=True, min_tf_gex=0.3)"
+ "cols = [\n",
+ " \"Mouse_Direct_annot\",\n",
+ " \"Mouse_Orthology_annot\",\n",
+ " \"Cluster_Mouse_Direct_annot\",\n",
+ " \"Cluster_Mouse_Orthology_annot\",\n",
+ "]\n",
+ "pattern_tf_dict, all_tfs = crested.tl.modisco.create_pattern_tf_dict(\n",
+ " pattern_match_dict, motif_to_tf_df, all_patterns, cols\n",
+ ")\n",
+ "tf_ct_matrix, tf_pattern_annots = crested.tl.modisco.create_tf_ct_matrix(\n",
+ " pattern_tf_dict,\n",
+ " all_patterns,\n",
+ " mean_expression_df,\n",
+ " classes,\n",
+ " log_transform=True,\n",
+ " normalize=True,\n",
+ " min_tf_gex=0.3,\n",
+ ")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "Finally, we can plot a clustermap of potential pattern-TF matches, and their importance per cell type."
+ "Finally, we can plot a clustermap of potential pattern-TF matches and their importance per cell type with {func}`crested.pl.patterns.clustermap_tf_motif`"
]
},
{
"cell_type": "code",
- "execution_count": 242,
+ "execution_count": 24,
"metadata": {},
"outputs": [
{
@@ -2031,7 +2066,14 @@
}
],
"source": [
- "crested.pl.patterns.plot_clustermap_tf_motif(tf_ct_matrix, cluster_on_dim='gex', class_labels=classes, pattern_labels=tf_pattern_annots, color_idx='gex', size_idx='contrib')"
+ "crested.pl.patterns.clustermap_tf_motif(\n",
+ " tf_ct_matrix,\n",
+ " cluster_on_dim=\"gex\",\n",
+ " class_labels=classes,\n",
+ " pattern_labels=tf_pattern_annots,\n",
+ " color_idx=\"gex\",\n",
+ " size_idx=\"contrib\",\n",
+ ")"
]
},
{
diff --git a/docs/tutorials/index.md b/docs/tutorials/index.md
index 461d4be3..4edeeecf 100644
--- a/docs/tutorials/index.md
+++ b/docs/tutorials/index.md
@@ -3,7 +3,8 @@
```{toctree}
:maxdepth: 1
-introduction
+model_training_and_eval
topic_classification
+enhancer_code_analysis
multi_gpu
```
diff --git a/docs/tutorials/introduction.ipynb b/docs/tutorials/introduction.ipynb
deleted file mode 100644
index 4d744af5..00000000
--- a/docs/tutorials/introduction.ipynb
+++ /dev/null
@@ -1,1853 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Introduction to CREsted with Peak Regression\n",
- "\n",
- "In this introductory notebook, we will train a peak regression model on the mouse BICCN data and inspect the results to get a feel for the capabilities of the CREsted package. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Import Data\n",
- "\n",
- "For this tutorial, we will use the mouse BICCN dataset which is available in the {func}`~crested.get_dataset` function. \n",
- "To train a CREsted peak regression model on your data, you need: \n",
- "1. A consensus regions BED file containing all the regions of interest accross cell types.\n",
- "2. A folder containing the bigwig files per cell type. Each file should be named according to the cell type: {cell type name}.bw.\n",
- "3. A genome fasta file and optionally a chromosome sizes file.\n",
- "\n",
- "You could use a tool like SnapATAC2 to generate the consensus regions and bigwig files from your own data."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "import crested"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Download the tutorial data\n",
- "import os\n",
- "\n",
- "os.environ[\n",
- " \"CRESTED_DATA_DIR\"\n",
- "] = \"../../../Crested_testing/data/tmp\" # Change this to your desired directory\n",
- "bigwigs_folder, regions_file = crested.get_dataset(\"mouse_cortex_bigwig\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We can use the {func}`~crested.import_bigwigs` function to import bigwigs per cell type and a consensus regions BED file into an {class}`anndata.AnnData` object,\n",
- "with the imported cell types as the `AnnData.obs` and the consensus peak regions as the `AnnData.var`. \n",
- "\n",
- "Optionally, provide a chromsizes file to filter out regions that are not within the chromsizes. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T15:13:51.224593+0200 WARNING Chromsizes file not provided. Will not check if regions are within chromosomes\n",
- "2024-08-13T15:13:56.211715+0200 INFO Extracting values from 19 bigWig files...\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "AnnData object with n_obs × n_vars = 19 × 546993\n",
- " obs: 'file_path'\n",
- " var: 'chr', 'start', 'end'"
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "adata = crested.import_bigwigs(\n",
- " bigwigs_folder=bigwigs_folder,\n",
- " regions_file=regions_file,\n",
- " target_region_width=1000, # optionally, use a different width than the consensus regions file (500bp) for the .X values calculation\n",
- " target=\"mean\", # or \"max\", \"count\", \"logcount\" --> what we will be predicting\n",
- ")\n",
- "adata"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "To train a model, we always need to add a *split* column to our dataset, which we can do using {func}`crested.pp.train_val_test_split`. \n",
- "This will add a column to the `AnnData.obs` with the split type for each region (train, val, or test)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "split\n",
- "train 440993\n",
- "val 56064\n",
- "test 49936\n",
- "Name: count, dtype: int64\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " chr \n",
- " start \n",
- " end \n",
- " split \n",
- " \n",
- " \n",
- " region \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " chr1:3094805-3095305 \n",
- " chr1 \n",
- " 3094805 \n",
- " 3095305 \n",
- " train \n",
- " \n",
- " \n",
- " chr1:3095470-3095970 \n",
- " chr1 \n",
- " 3095470 \n",
- " 3095970 \n",
- " train \n",
- " \n",
- " \n",
- " chr1:3112174-3112674 \n",
- " chr1 \n",
- " 3112174 \n",
- " 3112674 \n",
- " train \n",
- " \n",
- " \n",
- " chr1:3113534-3114034 \n",
- " chr1 \n",
- " 3113534 \n",
- " 3114034 \n",
- " train \n",
- " \n",
- " \n",
- " chr1:3119746-3120246 \n",
- " chr1 \n",
- " 3119746 \n",
- " 3120246 \n",
- " train \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " chrX:169879313-169879813 \n",
- " chrX \n",
- " 169879313 \n",
- " 169879813 \n",
- " train \n",
- " \n",
- " \n",
- " chrX:169880181-169880681 \n",
- " chrX \n",
- " 169880181 \n",
- " 169880681 \n",
- " train \n",
- " \n",
- " \n",
- " chrX:169925477-169925977 \n",
- " chrX \n",
- " 169925477 \n",
- " 169925977 \n",
- " train \n",
- " \n",
- " \n",
- " chrX:169948550-169949050 \n",
- " chrX \n",
- " 169948550 \n",
- " 169949050 \n",
- " train \n",
- " \n",
- " \n",
- " chrX:169950978-169951478 \n",
- " chrX \n",
- " 169950978 \n",
- " 169951478 \n",
- " train \n",
- " \n",
- " \n",
- "
\n",
- "
546993 rows × 4 columns
\n",
- "
"
- ],
- "text/plain": [
- " chr start end split\n",
- "region \n",
- "chr1:3094805-3095305 chr1 3094805 3095305 train\n",
- "chr1:3095470-3095970 chr1 3095470 3095970 train\n",
- "chr1:3112174-3112674 chr1 3112174 3112674 train\n",
- "chr1:3113534-3114034 chr1 3113534 3114034 train\n",
- "chr1:3119746-3120246 chr1 3119746 3120246 train\n",
- "... ... ... ... ...\n",
- "chrX:169879313-169879813 chrX 169879313 169879813 train\n",
- "chrX:169880181-169880681 chrX 169880181 169880681 train\n",
- "chrX:169925477-169925977 chrX 169925477 169925977 train\n",
- "chrX:169948550-169949050 chrX 169948550 169949050 train\n",
- "chrX:169950978-169951478 chrX 169950978 169951478 train\n",
- "\n",
- "[546993 rows x 4 columns]"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# Choose the chromosomes for the validation and test sets\n",
- "crested.pp.train_val_test_split(\n",
- " adata, strategy=\"chr\", val_chroms=[\"chr8\", \"chr10\"], test_chroms=[\"chr9\", \"chr18\"]\n",
- ")\n",
- "\n",
- "# Alternatively, We can split randomly on the regions\n",
- "# crested.pp.train_val_test_split(\n",
- "# adata, strategy=\"region\", val_size=0.1, test_size=0.1, random_state=42\n",
- "# )\n",
- "\n",
- "print(adata.var[\"split\"].value_counts())\n",
- "adata.var"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Preprocessing"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Region Width\n",
- "\n",
- "For this example we're interested in training on wider regions than our consensus regions file (500bp) to also include some sequence information from the tails of our peaks. \n",
- "\n",
- "We change it to 2114 bp regions since that is what chrombpnet was originally trained on and that's the model architecture we'll be using. \n",
- "This is an arbitrary choice and can be changed to any width you prefer. \n",
- "Wider regions will mean that you don't only include sequence information from the center of the peaks and could effectively increase your dataset size if the tails of the peak include meaningful information, but could also introduce noise if the tails are not informative. \n",
- "Wider regions will also increase the computational cost of training the model. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T15:36:55.806853+0200 WARNING Chromsizes file not provided. Will not check if regions are within chromosomes\n"
- ]
- }
- ],
- "source": [
- "crested.pp.change_regions_width(\n",
- " adata, 2114\n",
- ") # change the adata width of the regions to 2114bp"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Peak Normalization\n",
- "\n",
- "Additionally, we can normalize our peak values based on the variability of the top values per cell type using the {func}`crested.pp.normalize_peaks` function. \n",
- "\n",
- "This function applies a normalization factor to each cell type, focusing on regions with the most significant peaks above a defined threshold and considering the variability within those peaks."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T15:14:38.285265+0200 INFO Filtering on top k Gini scores...\n",
- "2024-08-13T15:14:40.374536+0200 INFO Added normalization weights to adata.obsm['weights']...\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " chr \n",
- " start \n",
- " end \n",
- " split \n",
- " \n",
- " \n",
- " region \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " chr9:65604601-65606715 \n",
- " chr9 \n",
- " 65604601 \n",
- " 65606715 \n",
- " test \n",
- " \n",
- " \n",
- " chr19:18669675-18671789 \n",
- " chr19 \n",
- " 18669675 \n",
- " 18671789 \n",
- " train \n",
- " \n",
- " \n",
- " chr9:65674756-65676870 \n",
- " chr9 \n",
- " 65674756 \n",
- " 65676870 \n",
- " test \n",
- " \n",
- " \n",
- " chr19:18686717-18688831 \n",
- " chr19 \n",
- " 18686717 \n",
- " 18688831 \n",
- " train \n",
- " \n",
- " \n",
- " chr19:18712057-18714171 \n",
- " chr19 \n",
- " 18712057 \n",
- " 18714171 \n",
- " train \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " chr5:76528212-76530326 \n",
- " chr5 \n",
- " 76528212 \n",
- " 76530326 \n",
- " train \n",
- " \n",
- " \n",
- " chr9:65434711-65436825 \n",
- " chr9 \n",
- " 65434711 \n",
- " 65436825 \n",
- " test \n",
- " \n",
- " \n",
- " chr9:65460550-65462664 \n",
- " chr9 \n",
- " 65460550 \n",
- " 65462664 \n",
- " test \n",
- " \n",
- " \n",
- " chr9:65461589-65463703 \n",
- " chr9 \n",
- " 65461589 \n",
- " 65463703 \n",
- " test \n",
- " \n",
- " \n",
- " chr13:30711675-30713789 \n",
- " chr13 \n",
- " 30711675 \n",
- " 30713789 \n",
- " train \n",
- " \n",
- " \n",
- "
\n",
- "
20894 rows × 4 columns
\n",
- "
"
- ],
- "text/plain": [
- " chr start end split\n",
- "region \n",
- "chr9:65604601-65606715 chr9 65604601 65606715 test\n",
- "chr19:18669675-18671789 chr19 18669675 18671789 train\n",
- "chr9:65674756-65676870 chr9 65674756 65676870 test\n",
- "chr19:18686717-18688831 chr19 18686717 18688831 train\n",
- "chr19:18712057-18714171 chr19 18712057 18714171 train\n",
- "... ... ... ... ...\n",
- "chr5:76528212-76530326 chr5 76528212 76530326 train\n",
- "chr9:65434711-65436825 chr9 65434711 65436825 test\n",
- "chr9:65460550-65462664 chr9 65460550 65462664 test\n",
- "chr9:65461589-65463703 chr9 65461589 65463703 test\n",
- "chr13:30711675-30713789 chr13 30711675 30713789 train\n",
- "\n",
- "[20894 rows x 4 columns]"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "crested.pp.normalize_peaks(adata)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We can visualize the normalization factor for each cell type using the {func}`crested.pl.bar.normalization_weights` function to inspect which cell type peaks were up/down weighted."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7YAAAErCAYAAABaRGyuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf1ElEQVR4nO3deZxO9f//8ec1g5kxzGAMZiwzyL6WEMkuy0T2ITtZIlva1Kcs1QeJEgkpSwwisocK5SslkRIRRkR2MxpjbO/fH37X9XG5Zrmu2a6Ledxvt7mV93mfc97ndc51neuc1znvt8UYYwQAAAAAAAAAAAAAgIfycncDAAAAAAAAAAAAAABIDoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAEkKDw+XxWKRxWLRsmXLkqzXuHFjWSwWzZ07N/Ma50F69uyZ6PbPnTtXFotFPXv2dEu7nGHdv57o8OHDslgs8vLy0tmzZxOts2DBAts2LFiwINE6Z8+elZeXlywWiw4fPpzq9owePVoWi0WjR49O9TLutGXLFlksFtWvXz9dlgdH58+f17hx41S/fn0VKlRIOXLkUEBAgCpWrKi+ffvqm2++SZf1JLcvXfmM1a9f31bflT8AAAAAyAqyubsBAAAAAO4Nr776qlq3bq1s2biMuFfUr19fW7du1ebNm+/J5GnJkiVVtGhRHT9+XFu3blX79u0d6mzevNn2/1u2bFHXrl0d6mzZskXGGBUtWlQlS5bM0DZnFmsy0xjj5pZ4rk8//VQDBw7Uv//+Kx8fH9WoUUOFCxdWfHy8Dhw4oNmzZ2v27Nnq0KGDPvvsM3c3V5LUrFkzhYeHO5TPmzdPktS0aVMVKlQok1sFAAAAAJ6BO1IAAAAAUpQzZ04dPHhQs2fP1oABA9zdnHtGmzZt9MgjjygwMNDdTUnS/v373d2EZDVo0EDz58/X5s2bE01sb9myRcHBwfLx8dGWLVsSXYa1vEGDBmlqy7PPPqtOnTopf/78aVoOMt6MGTP0zDPPyGKx6KWXXtIrr7yigIAAuzq///67Ro8erUOHDrmplY5efvnlRMutie2XX375nnxIBQAAAADSA12RAwAAAEjR0KFDJUljx47VlStX3Nyae0dgYKDKli2rkJAQdzclSWXLllXZsmXd3YwkWZPRd76ZbXX8+HEdOXJE9erVU7169XT48GEdP37coZ513rQmtvPnz6+yZcuS2PZwBw4c0JAhQyRJkyZN0vjx4x2S2pJUvnx5ffbZZ5oyZUpmNxEAAAAAkAoktgEAAACkqEWLFqpXr55OnTqld9991+X5Fy9erEaNGilfvnzy8fFRWFiYevfurYMHDyZa3zq2d3R0tFauXKmGDRsqX758slgstrdv7xxbdsGCBapRo4Zy5cql4OBgde7cWX/99Zek2101T5s2TVWrVpW/v7/y58+vnj176syZMw7rvX79uhYsWKAuXbqobNmyCggIkJ+fn8qUKaMhQ4bo5MmTLm13UmNsOzNm7p3jOF++fFkfffSR2rZtq1KlSsnf31/+/v6qVKmSXn31VV26dMlu+dbxfrdu3SrpdkL3zmXfORZ4cmP0XrhwQa+88ooqVKignDlzKnfu3KpWrZrefvttxcfHO9S/c5zh69eva8KECapQoYL8/PwUFBSktm3buvyGuDUZvX//fp0+fdphfdLtLtfr1atnV2Z1+vRp2zrvTmyfPHlSzz33nMqVK2fbvurVq2vatGm6ceOGQ1uSG2PbGKNPPvlEDz/8sHLmzKmgoCA1b95c27dvd2osbWfjZW2D1d3HTXR0tG3a0qVL1bhxYwUFBSl79uwKCgpS+fLl1bdvX+3duzfJttztzjHkf/nlF7Vt21bBwcHy8/NT5cqVNWXKFN28eTPJ+Xft2qUuXbqoWLFi8vHxUb58+dS0aVOtW7cu0frOfP6TM2HCBF2/fl1VqlTRsGHDUqxft25dh7L4+HhNmjRJjzzyiPLkySNfX1+VKVNGL774os6fP5/iMjNDjx49ZLFYNG7cuCTrfPbZZ7JYLKpRo4at7M7vpfPnz2vQoEG2fRMWFqbhw4fr4sWLSS7T1c8NAAAAAKQXEtsAAAAAnDJhwgRJ0ttvv+10YscYox49eqhz58769ttv9eCDD6pt27by9fXVnDlz9OCDD+rLL79Mcv5JkyapdevWunz5spo1a6Z69erJ29vbrs7IkSPVq1cv5c6dW82bN1fOnDm1ePFi1alTRxcvXlSnTp30wgsvKCQkRE2bNpW3t7fmzZunJk2a6Nq1a3bLOn36tLp166a1a9cqb968atasmRo2bKh///1XU6dOVdWqVfXnn3+6GDlHPXr0SPLPz89Pkuy285dfflG/fv20bds2FSpUSC1btlSdOnV06tQp/fe//1X16tXt9kmhQoXUo0cPFSxYUNLtcXnvXMcDDzyQYhuPHDmihx56SOPGjdPZs2fVokULNWzYUIcOHdJLL71ki29irl+/rhYtWmjs2LEqVqyYIiIi5O/vrxUrVqh27dp2ydeUhIWFqXjx4pIck9bWf1vf2JYc3+y21ilevLjCwsJs5d9++60qVqyod999V1evXlWTJk306KOP6vDhwxo8eLAiIiJ0/fp1p9s5aNAg9enTR7t371aNGjX0+OOP6/jx46pbt67WrFmT7LyuxKtq1arq0aOH7d93Hz+5cuWSdLt3hY4dO2rr1q2qWLGiOnTooEceeUTe3t76+OOP9c033zi9bVY//vijHnnkEe3evVuNGjVS3bp19ccff2jYsGHq1KlTouN9T5kyRTVq1FBUVJSCgoLUqlUrVahQQVu2bFFERITGjh2b5Pqc+fzfzRij1atXS5K6d++e5EMbyTl58qRq1qyp559/XocOHVL16tXVokULJSQkaOLEiXr44Yd17Ngxl5eb3qw9acyYMSPJBws++OADSbe70b/bxYsXVbNmTUVFRalatWqKiIjQ5cuX9d5776lWrVo6e/aswzzp/bkBAAAAAJcYAAAAAEhCWFiYkWS+++47Y4wxbdu2NZLM8OHD7eo1atTISDJz5syxK//www+NJJM/f36ze/duW/mtW7fMqFGjjCSTJ08ec+bMmUTX6+3tbVauXJlo2yQZSSYoKMjs2bPHVn7lyhVTp04dI8lUqlTJlCxZ0kRHR9umnz171jzwwANGklmwYIHdMmNjY83KlStNQkKCXfm1a9fMyJEjjSTTokULh7b06NEj0e2fM2eOkWR69OiR6Dbc7ZVXXjGSTJkyZcz58+dt5cePHzdfffWVuXnzpl39uLg40717dyPJDBw40GF59erVM5LM5s2bk1ynNY53q1mzppFkWrVqZf79919b+ZkzZ8xDDz1kJJmnnnrKbp7Nmzfblvfggw+aU6dO2abFx8ebpk2bGkmmX79+KcbiTr179zaSTP/+/e3KS5QoYYKDg82tW7eMMcYUKlTIFC9e3K7OgAEDjCTTu3dvW9mpU6dMUFCQsVgsZvr06XZxPXfunGnYsKGRZMaMGWO3LOsxO2rUKLvylStXGkkmV65c5v/+7//spk2aNMkWk3r16tlNS0u8ktpvxhhz9epV4+fnZ3LlymUOHDjgMD06Otrs378/0XkTYz2+rcfZ9evXbdN+++03ExwcbCSZGTNm2M335ZdfGovFYvLnz2+2bt1qN23v3r2mSJEiRpLZsmWL3TRnPv9JOXz4sK2t3377rUvzGnP7u+nRRx81kkyfPn1MbGysbdr169fNiBEjjCTToEEDu/ms+/LufWxM8vvKWdZl3P1ZtrZ1+fLlDvP8+uuvRpIJDg42V69etZVbv5ckmUceecTuu+bixYumdu3aRpLp1KmT3fJS+7kBAAAAgPRCYhsAAABAku5ObB84cMBky5bN+Pj42CWLk0pslyxZ0kgy77//vsOyb926ZSpXrmwkmbfeeivR9d6ZjLybNTHzwQcfOExbvny5bfratWsdpluTjb169Up2++8WGhpqvLy87JJdxqRPYnvmzJlGkilYsKA5cuSI022Ki4sz2bJlM8HBwQ7TUpvY/u6774wkkzNnTvPPP/84zPPTTz8ZScbLy8scP37cVm5N7lksFruHDax27NhhJJkSJUo4vX3GGPPpp58aSaZ06dK2smPHjhlJpl27drayyMhII8nu2CxTpoyRZD799FNb2UsvvWQkmWeffTbR9Z04ccJkz57dLmluTNKJbWtCb+TIkYkur3r16skmtlMTr+SSpWfOnDGSTOXKlROd7irr8R0SEmLi4+Mdpk+dOtVIMqVKlbIrtz4csWzZskSX+9lnnznsQ2Oc+/wnxRozSYkm9VOyfv16I8lUrVrVLoFvdfPmTVOxYkUjyfz666+2cncltq0xbNSokcM8/fv3T/S4vDOxfecDR1Z79+41FovF4fOd2s8NAAAAAKQXuiIHAAAA4LQyZcqod+/eSkhI0GuvvZZs3RMnTujw4cOSZNd1spXFYlGvXr0kOXYfbdW+ffsU29SiRQuHslKlSkmSsmXLpscffzzJ6UmNmf3LL79o8uTJGjx4sHr37q2ePXuqZ8+eunHjhm7dupUu3ZHfae3atRo4cKD8/f21Zs0aW9fbd9u+fbsmTJigQYMGqVevXurZs6cGDhyoHDly6OzZs8mOi+sKa/fdzZo1s3Vnfqdq1aqpSpUqunXrlm0c7zsVK1ZMVapUcSgvV66cJOnvv/92qT3WsbEPHjyoU6dO2bXR2gX5nf9vnfbPP//ojz/+sFuGdDvekhQZGZno+goXLqxSpUrp7NmzOnToULJtu3HjhrZv3y5J6tKlS6J1nnrqqWSXkd7xCg4OVnh4uPbu3asRI0bo999/d2n+pHTs2FG+vr4O5dbP96FDh2yfqXPnzunHH3+Un5+fWrZsmejyrGOOW+N3N2c+/+nNemy0a9dO2bJlc5ju5eVlG5M7qXZnpjZt2qho0aL6+uuvdeDAAVt5TEyMFixYIG9vbz3zzDOJzlulShVVrVrVobxSpUp68MEHdevWLX377be28vT83AAAAABAajhepQEAAABAMkaPHq0FCxZo4cKFev7551W5cuVE61mTcUFBQQoICEi0TsmSJe3q3i08PDzF9hQrVsyhzDrOcEhISKLJqdy5c0uSrl69alceFxenbt26acWKFcmuMzY2NsV2OWvXrl22RNGSJUv08MMPO9Q5c+aM2rVrp23btqXYrrx586a5Tdb9kVSCXbq973755ZdE911i+0SS7ThISEhwqT3WhNmhQ4e0efNmPfXUU7bktTU5Ktkntnv06GGrU6pUKRUuXNhW78iRI5Kkxx57LMV1nz17VqVLl05y+rlz52zHUVLHa0rHcXrHS5Lmz5+v9u3ba/LkyZo8ebLy5cunmjVrqkmTJurWrZvy58/v8jKTOh5y586toKAgnT9/XidOnFBoaKiOHj0qY4zi4+Pl4+OT7HITG8tZcu7zf7fg4GDb/585c0ZlypRxaX7rsfHaa6+l+PBOUu3OTNmyZdPAgQM1cuRITZs2TdOmTZMkzZs3T3FxcbbEd2KS+3wXL15cP//8s06cOGErS8/PDQAAAACkBoltAAAAAC4JCQnR0KFDNW7cOI0cOdL2Fl9G8PPzS7GOl1fSHVElNy0xI0eO1IoVK1S2bFmNHz9e1atXV/78+ZUjRw5JUu3atfX999/LGOPScpMSHR2tiIgIxcXFadasWYqIiEi03tNPP61t27apVq1aGjNmjKpUqaK8efMqe/bskqTQ0FCdOnUq3dqVVq7G3RkNGjRwSGwHBQWpYsWKtjrly5dXcHCwrQcA63/vfFtbkm7duiXp9hvB/v7+ya43KCgozW23WCzJTs+IeD322GOKjo7W2rVrtXXrVm3fvl0bNmzQ+vXrNWrUKK1YsUKNGjVK9/Vaj0FrjHPlyqV27dqlalnOfP7vFh4ernz58unChQvauXOnU0nYO1nbXadOHduDN0mpUKGCy+3LCH379tXYsWM1f/58jRs3Trly5dL06dMlSc8++2yaln3nd0pmf24AAAAA4G4ktgEAAAC47KWXXtKsWbO0bt06u65q72R9Q/b8+fOKjY1N9K1t6xuAd75N606fffaZpNtvTif2Jnp6dq974cIFNW/eXKdPn9arr76qvn37JlovLi5O69atk5eXl9atW6c8efI4TP/nn3/SrV3S//aHdf8kJrP3XYMGDTRr1ixt3rxZf/31l44ePao2bdo4JI3r1q2rzz//XNHR0bY3tu9ObBctWlSHDh3SSy+9lOgb8q4ICgqSj4+PEhISdOzYMZUvX96hTnR0dJrWkVp+fn5q3769rUvvs2fP6j//+Y9mzZql3r1769ixYy4t7+jRo4mWX758WefPn5ckFSlSRJJsbwlbLBZ98sknGZK8T4yXl5datmypefPmaf78+Xruuedcmt/a7ieffFLPP/98RjQx3QUFBalLly6aPXu25s+fr9KlS+uPP/5Q+fLl1bBhwyTnS2p/Sv87Zq37U0rfzw0AAAAApAZjbAMAAABwWWBgoF555RVJ0osvvphonSJFitjeeJw7d67DdGOMrfzuxKO7XLhwQZIUFhbmMG3Dhg06d+5cuqwnISFBTz75pA4cOKDu3bvrzTffTLJuTEyMbt68qYCAAIektiQtWLAgyTe1rW+a37hxw6X2Wbv3/vLLL3X69GmH6bt379aePXvsxhvOaNY2HT58WAsWLLAru5O1O/KFCxfq4MGDidZr3ry5pP89yJAW2bNnV61atSRJUVFRidZZtGhRmteT2Hol1/ZtcHCw3n77bUnSX3/95fKY7EuXLk20W/RPP/1UkvTAAw/YHnQIDQ1V5cqVdfnyZX355ZcurSetXnrpJWXPnl2//PKL3nvvvRTrf/fdd7b/tx4bS5cu9ZgeEJwxZMgQSdIHH3xg64580KBByc6zd+9e7d2716F83759+vnnnx0+3+n5uQEAAACA1CCxDQAAACBVBg0apGLFiumHH37Q999/n2gd6xuPb7zxhn755RdbuTFGb775pvbs2aM8efIk+bZyZitXrpwkaerUqXblf/zxhwYMGJAu6zDGqFu3btq2bZsaN26s2bNnJ1u/YMGCyps3ry5dumRLIFrt2LFDI0eOTHJe69uW+/btc6mNderUUc2aNRUfH6/+/fvrypUrtmnnzp1T//79JUmdOnVKcvze9FaoUCHb/pk0aZKk5BPbkydPlnR7nxYqVMiuzgsvvKA8efJo8uTJmjRpkq5du+awnKNHj9oS6CmxJhXff/997dixw27alClT9MMPPzi1HFckt2+PHTum2bNnJzoW/OrVqyVJefPmTbQXheScPHlSzz//vG7evGkr279/v8aOHStJGj58uF196wMbvXr1sq33TsYY/fDDD9q4caNL7UhJuXLlbPv/ueee0yuvvKLLly871Dt48KA6d+5s23/S7Te1q1evrh9//FG9evVKdBztixcvasaMGS4/MJKRKlWqpIYNG2r//v1atWqVAgIC1L1792TnMcbomWeesXvAISYmRs8884yMMWrXrp3d5zu9PzcAAAAA4Cq6IgcAAACQKj4+Pho7dqx69uxpl/i8U//+/bV9+3Z9+umnevjhh1WvXj0VKFBAP//8s/744w/5+fkpKipKwcHBmdz6xI0aNUrt27fXa6+9ps8++0wVKlTQmTNn9N133+mxxx5TaGiotm/fnqZ1bNu2TUuXLpUk5c6dO8mkfuvWrdW6dWt5e3vr9ddf1/Dhw9W9e3d98MEHKlGihP766y9t375dXbt21bfffptot9Lt2rXTnDlz9OKLL+qrr75SgQIFZLFY1Lt3b9WuXTvZdkZFRalhw4ZauXKlihcvrrp16+r69evavHmzYmNj9dBDD9neDM0sDRo00P79+3XhwgXly5dPlSpVcqhTqVIl2xjL1nnuVqRIEa1cuVLt2rXT888/r7ffflsVK1ZUSEiIYmJitH//fh0+fFg1a9ZU165dU2xXmzZt1K9fP82aNUt16tTRY489ppCQEP3666/av3+/hg8frnfffdf2Bn16aNeund555x01btxYDRs2VO7cuSVJEyZM0MWLF9W3b18NHDhQVatWVfHixSXd7kp/9+7dslgsmjhxory9vV1a54ABAzR79mytXbtWNWvW1MWLF7V582Zdu3ZNbdq00TPPPGNXv2XLlpoyZYpGjBihVq1a6YEHHlCZMmUUGBios2fP6pdfftGZM2f00ksv6fHHH0+fwPx/zz77rPz9/TV48GCNGzdO7777rmrUqKHChQvr6tWrOnDggPbv3y/p9gMaVl5eXvriiy8UERGhefPmadmyZapSpYqKFSuma9eu6ciRI/r111918+ZN9ezZU9myec5tlSFDhuibb76RJPXo0UO5cuVKtn6rVq3022+/qUSJEmrQoIEsFou2bNmiCxcuqFSpUg6f7/T+3AAAAACAqzznCgwAAADAPadbt26aNGmSfv3110SnWywWzZ8/X82bN9esWbO0a9cuxcXFqVChQurZs6defvlllSlTJpNbnbS2bdtq69atGjNmjH755RcdPnxYJUqU0OjRo/X888+nS/LtzrddV6xYkWS98PBwtW7dWpI0bNgwFS9eXG+//bZ+//137du3T2XLltUHH3ygAQMG2BKXd4uIiNBHH32kDz/8UN98843tAYQ6deqkmNguUaKEfv75Z73zzjv64osvtGbNGnl5ealMmTKKjIzUkCFD5Ofn5+LWp02DBg00ffp0SbfH0r57fG3p9jH32GOPaeXKlbZ5ElO3bl3t27dP06ZN09q1a7Vz504lJCSoQIECKlasmLp27ap27do53bYZM2aoevXq+vDDD7Vjxw75+vqqRo0amj59um284vz587u4xUl744035OXlpeXLl+uLL76wvT37n//8RyVLltR7772nrVu36rffftO6detkjFHhwoXVvXt3DRkyRNWqVXN5nTVr1lS/fv00atQobdq0Sf/++69KlSqlPn36aPDgwYnujyFDhqhhw4aaOnWqNm/erK+//lpeXl4qVKiQHnzwQUVERLgUZ1f06tVLLVu21MyZM7Vhwwbt379f27dvl6+vr8LDw9WvXz916dLFoTv90NBQ7dixQ3PnztWSJUu0d+9e/fjjj8qXL59CQ0M1YMAAtWrVSr6+vhnS7tRq1KiRvL29devWrRS7IZduv7W/Y8cOvfbaa1q7dq3OnDmjggULqmvXrho1apTy5cvnME96f24AAAAAwBUWcy8NGgUAAAAAwD2md+/emjNnjiZNmqTnnnvO3c1xWc+ePTVv3jzNmTNHPXv2dHdzkITZs2erb9++evzxx7Vhw4Yk682dO1e9evVSjx49NHfu3MxrIAAAAACkEWNsAwAAAACQRvv27VNcXJxd2a1bt/TRRx9p7ty58vX1VefOnd3UOtzv4uLiNG7cOEnSiBEj3NwaAAAAAMgYdEUOAAAAAEAaTZw4UZ999pkefPBBFS5cWHFxcfr9998VHR0tb29vTZ8+XSEhIe5uJu4zEydO1G+//aZt27bpyJEjatasWbqPVw4AAAAAnoLENgAAAAAAaRQZGanY2Fjt2rVLe/bs0Y0bN1SgQAFFRkZq2LBheuSRR9zdRNyH1q5dq61btyp//vzq2bOnJk+e7O4mAQAAAECGYYxtAAAAAAAAAAAAAIBHY4xtAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj5bNHSu9deuWTp48qdy5c8tisbijCQAAAAAAAAAAAAAANzLG6PLlywoNDZWXV/LvZLslsX3y5EkVLVrUHasGAAAAAAAAAAAAAHiQ48ePq0iRIsnWcUtiO3fu3JJuNzAgIMAdTQAAAAAAAAAAAAAAuFFsbKyKFi1qyx8nxy2JbWv34wEBASS2AQAAAAAAAAAAACALc2b46uQ7KgcAAAAAAAAAAAAAwM1IbAMAAAAAAAAAAAAAPBqJbQAAAAAAAAAAAACARyOxDQAAAAAAAAAAAADwaCS2AQAAAAAAAAAAAAAejcQ2AAAAAAAAAAAAAMCjkdgGAAAAAAAAAAAAAHi0bO5uAADg3hP+8lp3N+GeET0+wt1NAAAAAAAAAADgnscb2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKO5lNjet2+fOnTooBIlSihnzpzKnz+/6tatq9WrV2dU+wAAAAAAAAAAAAAAWVw2VyofO3ZMly9fVo8ePRQaGqorV67o888/V6tWrTRz5kz169cvo9oJAAAAAAAAAAAAAMiiLMYYk5YF3Lx5U9WqVdPVq1d14MABp+aJjY1VYGCgYmJiFBAQkJbVAwDcIPzlte5uwj0jenyEu5sAAAAAAAAAAIBHciVvnOYxtr29vVW0aFFdunQprYsCAAAAAAAAAAAAAMCBS12RW8XFxSk+Pl4xMTFatWqV1q9fr8jIyPRuGwAAAAAAAAAAAAAAqUtsjxgxQjNnzpQkeXl5qW3btpo2bVqS9RMSEpSQkGD7d2xsbGpWCwAAAAAAAAAAAADIglLVFfmwYcO0adMmzZs3T82bN9fNmzd17dq1JOuPGzdOgYGBtr+iRYumusEAAAAAAAAAAAAAgKzFYowxaV3I448/rkuXLumHH36QxWJxmJ7YG9tFixZ1ahBwAIDnCX95rbubcM+IHh/h7iYAAAAAAAAAAOCRYmNjFRgY6FTeOFVvbN+tffv22rlzpw4ePJjodB8fHwUEBNj9AQAAAAAAAAAAAADgjHRJbMfHx0uSYmJi0mNxAAAAAAAAAAAAAADYuJTYPnPmjEPZ9evXNX/+fPn5+al8+fLp1jAAAAAAAAAAAAAAACQpmyuV+/fvr9jYWNWtW1eFCxfWP//8o4ULF+rAgQOaNGmScuXKlVHtBAAAAAAAAAAAAABkUS4ltiMjI/Xxxx/rww8/1Pnz55U7d25Vq1ZNEyZMUKtWrTKqjQAAAAAAAAAAAACALMylxHanTp3UqVOnjGoLAAAAAAAAAAAAAAAOXBpjGwAAAAAAAAAAAACAzEZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBo2dzdAAAAAADIasJfXuvuJtwzosdHuLsJAAAAAADAA/DGNgAAAAAAAAAAAADAo/HGNoB7Gm87OY+3ne5tHOvO41gHXMd3jPP4jgEAAAAAAHAP3tgGAAAAAAAAAAAAAHg03tgGAACAx+DNYefx5jAAAAAAAACyEt7YBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRSGwDAAAAAAAAAAAAADwaiW0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GgktgEAAAAAAAAAAAAAHo3ENgAAAAAAAAAAAADAo5HYBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRsrm7AQAAAAAAAAAAzxf+8lp3N+GeET0+wt1NAADgvkNiGwAAIAnctHEeN20AAAAAAAAAZCQS2wAAAAAAAADuOTyI6jweRL23caw7j2MdAO5vjLENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8WjZ3NwAAAAAAgMwQ/vJadzfhnhE9PsLdTQAAAAAAwA5vbAMAAAAAAAAAAAAAPBqJbQAAAAAAAAAAAACARyOxDQAAAAAAAAAAAADwaCS2AQAAAAAAAAAAAAAejcQ2AAAAAAAAAAAAAMCjkdgGAAAAAAAAAAAAAHg0EtsAAAAAAAAAAAAAAI+Wzd0NAAAAAAAAAAAAAJD5wl9e6+4m3BOix0e4uwkQb2wDAAAAAAAAAAAAADycS4ntnTt36tlnn1WFChXk7++vYsWKqWPHjjp48GBGtQ8AAAAAAAAAAAAAkMW51BX5hAkT9H//93/q0KGDKleurH/++UfTpk3TQw89pB07dqhixYoZ1U4AAAAAAAAAAIBMQffMzqF7ZgCZyaXE9nPPPaeoqCjlyJHDVhYZGalKlSpp/PjxWrBgQbo3EAAAAAAAAAAAAACQtbmU2K5du7ZDWalSpVShQgXt378/3RoFAAAAAAAAAAAAAICVS2NsJ8YYo9OnTyt//vzp0R4AAAAAAAAAAAAAAOykObG9cOFC/f3334qMjEyyTkJCgmJjY+3+AAAAAAAAAAAAAABwRpoS2wcOHNCgQYNUq1Yt9ejRI8l648aNU2BgoO2vaNGiaVktAAAAAAAAAAAAACALSXVi+59//lFERIQCAwO1bNkyeXt7J1l35MiRiomJsf0dP348tasFAAAAAAAAAAAAAGQx2VIzU0xMjJo3b65Lly7pu+++U2hoaLL1fXx85OPjk6oGAgAAAAAAAAAAAACyNpcT21evXlXLli118OBBffXVVypfvnxGtAsAAAAAAAAAAAAAAEkuJrZv3rypyMhIff/991q5cqVq1aqVUe0CAAAAAAAAAAAAAECSi4ntESNGaNWqVWrZsqUuXLigBQsW2E3v2rVrujYOAAAAAAAAAAAAAACXEtt79uyRJK1evVqrV692mE5iGwAAAAAAAAAAAACQ3lxKbG/ZsiWDmgEAAAAAAAAAAAAAQOK83N0AAAAAAAAAAAAAAACSQ2IbAAAAAAAAAAAAAODRSGwDAAAAAAAAAAAAADwaiW0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GgktgEAAAAAAAAAAAAAHo3ENgAAAAAAAAAAAADAo5HYBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRSGwDAAAAAAAAAAAAADwaiW0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GgktgEAAAAAAAAAAAAAHo3ENgAAAAAAAAAAAADAo5HYBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRsrm7AQAAAAAAAEg/4S+vdXcT7hnR4yPc3QQAAAAATuKNbQAAAAAAAAAAAACARyOxDQAAAAAAAAAAAADwaCS2AQAAAAAAAAAAAAAejcQ2AAAAAAAAAAAAAMCjkdgGAAAAAAAAAAAAAHg0EtsAAAAAAAAAAAAAAI9GYhsAAAAAAAAAAAAA4NFIbAMAAAAAAAAAAAAAPBqJbQAAAAAAAAAAAACAR8vm7gYgY4S/vNbdTbhnRI+PcHcTAAAAAAAAAAAAACSDN7YBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB6NxDYAAAAAAAAAAAAAwKOR2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj5bN3Q0AAAAAAAAAAABA1hb+8lp3N+GeET0+wt1NANzC5Te2//33X40aNUrNmjVTvnz5ZLFYNHfu3AxoGgAAAAAAAAAAAAAAqUhsnzt3TmPHjtX+/ftVpUqVjGgTAAAAAAAAAAAAAAA2LndFHhISolOnTqlQoUL66aefVL169YxoFwAAAAAAAAAAAAAAklKR2Pbx8VGhQoUyoi0AAAAAAADAPYcxQZ3HmKAAAABILZcT2wCSxoWs87iQBQAAAAAAAAAAgLMyJbGdkJCghIQE279jY2MzY7UAAAAAAAAAAAAAgPtApiS2x40bpzFjxmTGqgAAAAAAgIegVyvn0asVAAAAACTPKzNWMnLkSMXExNj+jh8/nhmrBQAAAAAAAAAAAADcBzLljW0fHx/5+PhkxqoAAAAAAAAAAAAAAPeZTHljGwAAAAAAAAAAAACA1CKxDQAAAAAAAAAAAADwaKnqinzatGm6dOmSTp48KUlavXq1Tpw4IUkaPHiwAgMD06+FAAAAAAAAAAAAAIAsLVWJ7XfeeUfHjh2z/Xv58uVavny5JKlr164ktgEAAAAAAAAAAAAA6SZVie3o6Oh0bgYAAAAAAAAAAAAAAIljjG0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GgktgEAAAAAAAAAAAAAHo3ENgAAAAAAAAAAAADAo5HYBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRSGwDAAAAAAAAAAAAADwaiW0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GgktgEAAAAAAAAAAAAAHo3ENgAAAAAAAAAAAADAo5HYBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRSGwDAAAAAAAAAAAAADwaiW0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GgktgEAAAAAAAAAAAAAHo3ENgAAAAAAAAAAAADAo5HYBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRSGwDAAAAAAAAAAAAADwaiW0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GgktgEAAAAAAAAAAAAAHo3ENgAAAAAAAAAAAADAo5HYBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRSGwDAAAAAAAAAAAAADwaiW0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GgktgEAAAAAAAAAAAAAHo3ENgAAAAAAAAAAAADAo5HYBgAAAAAAAAAAAAB4NBLbAAAAAAAAAAAAAACPRmIbAAAAAAAAAAAAAODRSGwDAAAAAAAAAAAAADwaiW0AAAAAAAAAAAAAgEcjsQ0AAAAAAAAAAAAA8GguJ7YTEhL00ksvKTQ0VH5+fqpZs6Y2bdqUEW0DAAAAAAAAAAAAAMD1xHbPnj01efJkdenSRVOmTJG3t7datGihbdu2ZUT7AAAAAAAAAAAAAABZXDZXKv/4449avHixJk6cqOeff16S1L17d1WsWFEvvviitm/fniGNBAAAAAAAAAAAAABkXS69sb1s2TJ5e3urX79+tjJfX1/16dNH33//vY4fP57uDQQAAAAAAAAAAAAAZG0uJbZ3796t0qVLKyAgwK68Ro0akqQ9e/akW8MAAAAAAAAAAAAAAJBc7Ir81KlTCgkJcSi3lp08eTLR+RISEpSQkGD7d0xMjCQpNjbWldXDBbcSrri7CfeM9DwOibvz0ivuxNx5HOvuwbGe+TjW3YNjPfNxrLsHx3rm41h3D471zMex7h4c65mPY909ONYzH8e6exD3zEfM3YO4Zz5ymhnHGltjTIp1LcaZWv9fyZIlVaZMGa1bt86u/MiRIypZsqTeffddDRs2zGG+0aNHa8yYMc6uBgAAAAAAAAAAAACQRRw/flxFihRJto5Lb2z7+fnZvXltdfXqVdv0xIwcOVLPPfec7d+3bt3ShQsXFBQUJIvF4koTcA+LjY1V0aJFdfz4cYfu7JExiLl7EPfMR8zdg7hnPmLuHsQ98xFz9yDumY+Yuwdxz3zE3D2Ie+Yj5u5B3DMfMXcP4p75iLl7EPesxxijy5cvKzQ0NMW6LiW2Q0JC9PfffzuUnzp1SpKSXKGPj498fHzsyvLkyePKqnEfCQgI4MsokxFz9yDumY+Yuwdxz3zE3D2Ie+Yj5u5B3DMfMXcP4p75iLl7EPfMR8zdg7hnPmLuHsQ98xFz9yDuWUtgYKBT9bxcWWjVqlV18OBBh37kf/jhB9t0AAAAAAAAAAAAAADSk0uJ7fbt2+vmzZuaNWuWrSwhIUFz5sxRzZo1VbRo0XRvIAAAAAAAAAAAAAAga3OpK/KaNWuqQ4cOGjlypM6cOaMHHnhA8+bNU3R0tD7++OOMaiPuEz4+Pho1apRDt/TIOMTcPYh75iPm7kHcMx8xdw/invmIuXsQ98xHzN2DuGc+Yu4exD3zEXP3IO6Zj5i7B3HPfMTcPYg7kmMxxhhXZrh69apee+01LViwQBcvXlTlypX1xhtvqGnTphnVRgAAAAAAAAAAAABAFuZyYhsAAAAAAAAAAAAAgMzk0hjbAAAAAAAAAAAAAABkNhLbAAAAAAAAAAAAAACPRmIbyMJ69uyp8PBwdzcDAAAAHqx+/fqqWLGiu5uB+5jFYtHo0aPd3QzgnjR37lxZLBZFR0fbyurXr6/69eu7rU1I3pYtW2SxWLRlyxZbGedaAK6wfo8sW7Ysw9eV2P1jfrshIyX22wa4E4ltOGX69OmyWCyqWbNmqub//fffNXr0aL6MnGT98k7qb8eOHe5u4j3LGtuffvop0enHjx/XmDFjVKNGDeXNm1f58+dX/fr19dVXX7m8rvj4ePXp00cVK1ZUYGCgcuXKpSpVqmjKlCm6fv26Xd3Ro0fLYrHo3Llzth+nzvzdD1LaJ5KS3P7x48fb1evZs2eSdX19fSVJ4eHhTsV27ty5GbnZHiO9458rVy675ab0d68/XJOe8XPW4cOH9dRTT6lAgQLy8/NTqVKl9Oqrr9rVqV+/viwWi1q2bOkwf3R0tCwWi9555x1b2d3fO9mzZ1eJEiXUvXt3HTlyJFXt9ATO7B9JOn36tPr376/ChQvL19dX4eHh6tOnT6J1t2zZorZt26pQoULKkSOHChQooJYtW2r58uWS/hf7lP6ywk2A9Ix/Vvx+SauMOP6zGmdj6Ems3/GJ/S1evDjD13/n53Pbtm0O040xKlq0qCwWi5544okMb09aOXN+nDx5siwWS7LXCx999JEsFotWrVol6X/nilKlSiVaf9OmTbZ1ZsYN69TYt2+funbtqsKFC8vHx0ehoaHq0qWL9u3bZ1fv7u9sX19flS5dWs8++6xOnz7tsNzTp0/r+eefV9myZZUzZ075+/urWrVqevPNN3Xp0qVM2jrP4GyMkTauHqNIf7/++qvat2+vsLAw+fr6qnDhwmrSpImmTp3q7qZlWemxT06ePKnRo0drz549GdfQTJZZcUnpmhOJa9WqlXLmzKnLly8nWadLly7KkSOHzp8/L4vFomeffTbZZab1N9vhw4fVv39/lShRQr6+vgoICNCjjz6qKVOmKD4+3rUNvMe5un+A5GRzdwNwb1i4cKHCw8P1448/6s8//9QDDzzg0vy///67xowZo/r162f5m4yuGDt2rIoXL+5Q7mr84byVK1dqwoQJat26tXr06KEbN25o/vz5atKkiT755BP16tXL6WXFx8dr3759atGihcLDw+Xl5aXt27dr+PDh+uGHHxQVFZXofOXKldOnn35qVzZy5EjlypXLIXmVlTRp0kTdu3e3K3vwwQcd6vn4+Gj27NkO5d7e3pKk9957T//++6+tfN26dVq0aJHeffdd5c+f31Zeu3bt9Gr6fcHZ+FvVrVvX4Th++umnVaNGDfXr189WZk1U3e9cjV9S9uzZo/r166tw4cIaMWKEgoKC9Ndff+n48eOJ1l+zZo127dqlatWqObX8IUOGqHr16rp+/bp+/vlnzZo1S2vXrtWvv/6q0NBQl9t7Lzh+/LgeffRRSdKAAQNUuHBhnTx5Uj/++KND3VGjRmns2LEqVaqU+vfvr7CwMJ0/f17r1q1Tu3bttHDhQr366qt6+umnbfPs3LlT77//vl555RWVK1fOVl65cuWM37h7gCvxt+L7Jf2kJv64N3Tu3FktWrSwK6tVq1amrd/X11dRUVGqU6eOXfnWrVt14sQJ+fj42JXHx8crWzbPvT2R3PmxU6dOeuGFFxQVFaXGjRsnOn9UVJSCgoLUvHlzW5mvr6/+/PNP/fjjj6pRo4Zd/YULF8rX11dXr17N0O1KreXLl6tz587Kly+f+vTpo+LFiys6Oloff/yxli1bpsWLF6tNmzZ281ivba9evapt27bpww8/1Lp16/Tbb78pZ86ckm6fM1u0aKF///1XXbt2tf1++emnnzR+/Hh9++232rhxY6ZvrzukJsZ3yipxSk/OHKNIf9u3b1eDBg1UrFgx9e3bV4UKFdLx48e1Y8cOTZkyRYMHD3Z3E7Oc9NonJ0+e1JgxYxQeHq6qVatmbKMzQWbFxZlrzqeeeiqdt+7+0KVLF61evVorVqxwuP8iSVeuXNHKlSvVrFkzBQUFOb3c1P5mW7t2rTp06CAfHx91795dFStW1LVr17Rt2za98MIL2rdvn2bNmuX6ht6jXNk/w4YN06BBgxyuGQArz71yhMc4evSotm/fruXLl6t///5auHChRo0alWHrM8bo6tWr8vPzy7B13CuaN2+uhx9+2N3NyFIaNGigv/76yy7BOWDAAFWtWlWvv/66S4ntfPnyObxdP2DAAAUGBmratGmaPHmyChUq5DBfwYIF1bVrV7uy8ePHK3/+/A7lWUnp0qWd2v5s2bIlW69169Z2//7nn3+0aNEitW7dmgdvkuFs/K1KlCihEiVK2JUNGDBAJUqUyJLHsavxS8ytW7fUrVs3lS1bVps3b07xPFmsWDFdvnxZY8aMsb0hlpLHHntM7du3lyT16tVLpUuX1pAhQzRv3jyNHDkyTe33VP3791e2bNm0c+fOZC9uly1bprFjx6p9+/aKiopS9uzZbdNeeOEFbdiwQdevX1eTJk3s5vP19dX777+vJk2aqD5dgjpwNv534vsl/aQm/rg3PPTQQ279PLRo0UJLly7V+++/b5ewjoqKUrVq1XTu3Dm7+taeddIqLi5O/v7+6bKsO6V0fmzQoIGWL1+uDz/80OEG3N9//61vv/1W/fr1szt3lCxZUjdu3NCiRYvsbpJevXpVK1asUEREhD7//PN035a0Onz4sLp166YSJUro22+/VXBwsG3a0KFD9dhjj6lbt27au3ev3Xf1nde2Tz/9tIKCgjR58mStXLlSnTt31qVLl9SmTRt5e3tr9+7dKlu2rN1633rrLX300UeZs5FultoY3ylHjhyZ1dz7RkrHKDLGW2+9pcDAQO3cuVN58uSxm3bmzBn3NCqLY58kLjPi4uw1JxLXqlUr5c6dW1FRUYkmTleuXKm4uDh16dLFpeWm5jfb0aNH1alTJ4WFhembb75RSEiIbdqgQYP0559/au3atS5u4b3Nlf3j7e1te0EJSAxdkSNFCxcuVN68eRUREaH27dtr4cKFDnUWL16satWqKXfu3AoICFClSpU0ZcoUSbe7derQoYOk20lDa/cc1rGEwsPD9cQTT2jDhg16+OGH5efnp5kzZ0qSjhw5og4dOihfvnzKmTOnHnnkkSz3pZ+UO7uSnTVrlkqWLCkfHx9Vr15dO3fudKj/xRdfqGLFivL19VXFihW1YsWKRJcbFxenESNGqGjRovLx8VGZMmX0zjvvyBiT0ZvkESpUqGCX1JZuvwHcokULnThxItnuUpxlTZ5mta700kN8fLzHvrmSFRD/tElr/DZu3KjffvtNo0aNkp+fn65cuaKbN28mWT937twaPny4Vq9erZ9//jlV62zYsKGk2xdl96MDBw5o/fr1euGFFxQUFKSrV68meaPgtddeU758+fTJJ5/Y3WCwatq06T3Rra4ncSX+SH+pif+uXbtUu3Zt+fn5qXjx4poxY0YmtdYzXbt2Ta+//rqqVaumwMBA+fv767HHHtPmzZvt6t35u/2DDz5QiRIllDNnTj3++OM6fvy4jDF64403VKRIEfn5+enJJ5/UhQsX7JZhvWbauHGjqlatKl9fX5UvXz7ZLinj4uJ07dq1DNn2lHTu3Fnnz5/Xpk2bbGXXrl3TsmXLEn3LKLEhGv7++2/16dNHoaGh8vHxUfHixfXMM8/YtsnaffDWrVs1cOBAFShQQEWKFLHNP336dFWoUMHWhfOgQYPS7ff33efHrl27KiYmJtFr1cWLF+vWrVuJ3kTt3LmzlixZolu3btnKVq9erStXrqhjx47p0tb0NnHiRF25ckWzZs2yS7hKUv78+TVz5kzFxcXp7bffTnY5d8dw5syZ+vvvvzV58mSHpLZ0++Hf//znP+m0FZ4tPWJcP5Exto8dO6ZWrVrJ399fBQoU0PDhw7Vhwwa7+zNWS5cuVbVq1eTn52d7wPrvv/9Or028J1iP0UOHDslisWjevHkOdazxW7NmjaTbMR44cKDKlCkjPz8/BQUFqUOHDi4Ny5fVzrWHDx9WhQoVHBKFklSgQAHb/1u7DLbe2/Lx8VGFChX05ZdfOsyX0vlDkvbu3at69erJz89PRYoU0Ztvvqk5c+bIYmFMV2f3yaZNm1SnTh3lyZNHuXLlUpkyZfTKK69Iut2VdvXq1SXdfiDsfhjyLTPikpprzlu3bumtt95SkSJF5Ovrq0aNGunPP/90mNfZ73Vn7x97Ij8/P7Vt21Zff/11og8bREVFKXfu3GrVqpXLy3b1N9vbb7+tf//9Vx9//LFdUtvqgQce0NChQ11ux73Mlf2T2Bjbqbkewv2LxDZStHDhQrVt21Y5cuRQ586ddejQIbvE6aZNm9S5c2flzZtXEyZM0Pjx41W/fn393//9n6Tb3UUOGTJEkvTKK6/o008/1aeffmrXHecff/yhzp07q0mTJpoyZYqqVq2q06dPq3bt2tqwYYMGDhyot956S1evXlWrVq3uqZNqWsTExOjcuXN2f3ePMREVFaWJEyeqf//+evPNNxUdHa22bdva3ZjcuHGj2rVrJ4vFonHjxql169bq1auXw3iBxhi1atVK7777rpo1a6bJkyerTJkyeuGFF/Tcc89lyjZ7qn/++Uc5c+ZMVRdk165d07lz53T8+HGtWLFC77zzjsLCwuhS3kVz586Vv7+//Pz8VL58+SS7cpfk8Lk5d+6cYmNjM7G19x9X4g9H6RE/69idPj4+evjhh+Xv76+cOXOqU6dODgkQq6FDhypv3rypHs/58OHDknTfvslpjWnBggXVqFEj+fn5yc/PT82bN7e7gDp06JAOHDig1q1bK3fu3G5q7f3H2fgjY7ga/4sXL6pFixaqVq2a3n77bRUpUkTPPPOMPvnkk0xuueeIjY3V7NmzVb9+fU2YMEGjR4/W2bNn1bRp00THTVy4cKGmT5+uwYMHa8SIEdq6das6duyo//znP/ryyy/10ksvqV+/flq9erWef/55h/kPHTqkyMhINW/eXOPGjVO2bNnUoUMHu+Sx1ZgxY5QrVy75+vqqevXqmd4tcXh4uGrVqqVFixbZytavX6+YmBh16tQpxflPnjypGjVqaPHixYqMjNT777+vbt26aevWrbpy5Ypd3YEDB+r333/X66+/rpdfflmSNHr0aA0aNEihoaGaNGmS2rVrp5kzZ+rxxx9Plwdo7j4/tm3b1tb9+t2ioqIUFhZm6/b/Tk899ZROnTpll1SMiopSo0aN7G6Se5LVq1crPDxcjz32WKLT69atq/Dw8BQfSL87hqtWrZKfn5/tzfisLL1ifKe4uDg1bNhQX331lYYMGaJXX31V27dv10svveRQd+7cuerYsaO8vb01btw49e3bV8uXL1edOnWy1MPZ1mO0YMGCKlGihD777DOHOkuWLFHevHnVtGlTSbe709++fbs6deqk999/XwMGDNDXX3+t+vXrO3x3JSYrnmvDwsK0a9cu/fbbbynW3bZtmwYOHKhOnTrp7bff1tWrV9WuXTu7+2TOnD/+/vtvNWjQQPv27dPIkSM1fPhwLVy40PaCTlbnzD7Zt2+fnnjiCSUkJGjs2LGaNGmSWrVqZbsXXK5cOY0dO1aS1K9fP9u94Lp162bKNmSEjI5Laq85x48frxUrVuj555/XyJEjtWPHDoeH6Zz9Xnf2/rEn69Kli27cuOHwnX3hwgVt2LBBbdq0SVUvsa7+Zlu9erVKlCjBMId3Sev+ceV6CPc5AyTjp59+MpLMpk2bjDHG3Lp1yxQpUsQMHTrUVmfo0KEmICDA3LhxI8nlLF261EgymzdvdpgWFhZmJJkvv/zSrnzYsGFGkvnuu+9sZZcvXzbFixc34eHh5ubNm2nbOA82Z84cIynRPx8fH2OMMUePHjWSTFBQkLlw4YJt3pUrVxpJZvXq1bayqlWrmpCQEHPp0iVb2caNG40kExYWZiv74osvjCTz5ptv2rWnffv2xmKxmD///DODtjjzWGO7c+dOp+c5dOiQ8fX1Nd26dUvVOhctWmS3Dx9++GGzd+9euzqjRo0ykszZs2cTXUaFChVMvXr1UrV+T+fMPqldu7Z57733zMqVK82HH35oKlasaCSZ6dOn29Xr0aNHkp+dpk2bJrrsiRMnGknm6NGj6blZ94z0jr+/v3+Sy/H39zc9evRIr6Z7hPSMX0patWpl+97v0qWLWbZsmXnttddMtmzZTO3atc2tW7dsdevVq2cqVKhgjDFmzJgxRpLZtWuXMeZ/54+JEyfa6m/evNlIMp988ok5e/asOXnypFm7dq0JDw83FovFpe9MT5LS/hkyZIgtps2aNTNLliwxEydONLly5TIlS5Y0cXFxxpj/nVvfffddl9uQ3G+g+116xd+YrPn9klbpGf969eoZSWbSpEm2soSEBFO1alVToEABc+3atQzfHndIKYY3btwwCQkJdmUXL140BQsWNL1797aVWb93g4OD7X6Pjxw50kgyVapUMdevX7eVd+7c2eTIkcNcvXrVVma9Zvr8889tZTExMSYkJMQ8+OCDtrJjx46Zxx9/3Hz44Ydm1apV5r333jPFihUzXl5eZs2aNakPhpPujNm0adNM7ty5zZUrV4wxxnTo0ME0aNDAtj0RERG2+SSZUaNG2f7dvXt34+XllWjsrec767rq1Kljdy165swZkyNHDvP444/bXTNOmzbNdq5zlivnxw4dOhhfX18TExNjKztw4ICRZEaOHGm33DvP0w8//LDp06ePMeb28ZMjRw4zb94827qXLl3qdHsz2qVLl4wk8+STTyZbz/qbJTY21rafvvrqK3P27Flz/Phxs3jxYhMUFGT8/PzMiRMnjDHG5M2b11SpUiXjN8LDpSXGd17P1KtXz+76cdKkSUaS+eKLL2xl8fHxpmzZsna/U65du2YKFChgKlasaOLj421116xZYySZ119/PT0206M4c4yOHDnSZM+e3e7eS0JCgsmTJ4/d9731++5O33//vZFk5s+fbyuzfr7v/H2YVc+1GzduNN7e3sbb29vUqlXLvPjii2bDhg0O2yvJ5MiRw+6+1C+//GIkmalTp9rKnDl/DB482FgsFrN7927btPPnz5t8+fJl6XsDVs7sk3fffTfZe1jGGLNz504jycyZMycTWp3xMjourl5zWr9HypUrZ/d7dMqUKUaS+fXXX40xrn2vO3v/2BjH326e4saNGyYkJMTUqlXLrnzGjBlGktmwYYOtTJIZNGhQsstLzW+2mJgYp87lWZGz+yex3zbOXg8ha+CNbSRr4cKFKliwoBo0aCDpdtc/kZGRWrx4sa370zx58iguLi5NT8YUL17c9oSr1bp161SjRg3VqVPHVpYrVy7169dP0dHR+v3331O9vnvFBx98oE2bNtn9rV+/3q5OZGSk8ubNa/u39anuI0eOSJJOnTqlPXv2qEePHgoMDLTVa9KkicqXL2+3rHXr1snb29v2hr3ViBEjZIxxWHdWcOXKFXXo0EF+fn4aP358qpbRoEEDbdq0SUuXLtWAAQOUPXt2xcXFpXNL72//93//p6FDh6pVq1YaMGCAdu3apYoVK+qVV15RfHy8XV1fX1+Hz82mTZtSvf/gWvzhKL3i9++//0qSqlevrgULFqhdu3YaO3as3njjDW3fvl1ff/11ovNZ39oeM2ZMiuvo3bu3goODFRoaqoiICMXFxWnevHm28QbvN9aYFipUSGvXrlXHjh31/PPP66OPPtLhw4dtb95Ze3zgbe305Wz8kTFcjX+2bNnUv39/279z5Mih/v3768yZM9q1a1emtt1TeHt728axvXXrli5cuKAbN27o4YcfTnQIiA4dOtj9Hq9Zs6ak291Y3zkOdc2aNXXt2jWH7iFDQ0PVpk0b278DAgLUvXt37d69W//8848kqVixYtqwYYMGDBigli1baujQodq9e7eCg4M1YsSI9Nt4J3Ts2FHx8fFas2aNLl++rDVr1iTaDfndbt26pS+++EItW7ZM9PxjsVjs/t23b1+7Mfi++uorXbt2TcOGDZOXl5ddvYCAgFQNbeXM+bFr1666evWqXXeI1s9RcmM5PvXUU1q+fLmtq3Zvb2+7/exJrMMypXQ+tE6/s8ekxo0bKzg4WEWLFlWnTp2UK1curVixQoULF7bV5Tybthgn58svv1ThwoXtul/19fVV37597er99NNPOnPmjAYOHChfX19beUREhMqWLXtfDw2X3DEaGRmp69ev232+N27cqEuXLikyMtJWdudbZtevX9f58+f1wAMPKE+ePE4NDZQVz7VNmjTR999/r1atWumXX37R22+/raZNm6pw4cJatWqVXd3GjRurZMmStn9XrlxZAQEBtvtfzp4/vvzyS9WqVUtVq1a1TcuXL5/L4+7er5zZJ9buuFeuXGnXNfP9LKPjktprzl69etl+j0qO94Wd/V535f6xJ/P29lanTp30/fff2/VCFRUVZeupKrWc/c3G/YOkpXX/OHM9hKyBxDaSdPPmTS1evFgNGjTQ0aNH9eeff+rPP/9UzZo1dfr0adsN9IEDB6p06dJq3ry5ihQpot69eyc6xk1yihcv7lB27NgxlSlTxqHc2oX5sWPHUrFV95YaNWqocePGdn/WhwysihUrZvdva5L74sWLkv4Xp1KlSjks/+74Hjt2TKGhoQ4n3qwU8zvdvHlTnTp10u+//65ly5YpNDQ0VcspWLCgGjdurPbt2+vDDz/UE088oSZNmnDCTYMcOXLo2Wef1aVLlxwu8L29vR0+N40bN7a7aEXaJBd/pCy18bPeKOvcubNduTVJsH379kTnCwwM1LBhw7Rq1Srt3r072XW8/vrr2rRpk7755hvt3btXJ0+eVLdu3Zxu473GGtOOHTvaJT86dOigbNmy2WIaEBAg6X83m5E+nI0/Moar8Q8NDZW/v79dWenSpSUpS3cdP2/ePFWuXFm+vr4KCgpScHCw1q5dq5iYGIe6d/9ut940LFq0aKLl1t/zVg888IBDUteZfZAvXz716tVLf/zxh06cOOHchqWD4OBgNW7cWFFRUVq+fLlu3rzpVDfTZ8+eVWxsrCpWrOjUeu6+lrRes9x9rZMjRw6VKFEiVdc0zpwfmzdvrnz58tk9FLJo0SJVqVJFFSpUSHLZnTp1UkxMjNavX6+FCxfqiSee8NgbodZ2pXQ+TCw5a31oe/Pmzfr999915MgRu4fbAwICOM8qbTFOzrFjx1SyZEmH75C7h8dK6vMjSWXLlr2v7wkkd4xWqVJFZcuW1ZIlS2z1lyxZovz589vG4pak+Ph4vf766ypatKh8fHyUP39+BQcH69KlS4meF+6WVc+11atX1/Lly3Xx4kX9+OOPGjlypC5fvqz27dvbvdRy93lUun0PzHq+dPb8cezYsUSHhmO4uP9JaZ9ERkbq0Ucf1dNPP62CBQuqU6dO+uyzz+77JHdGxiW115zO3hdO6XvdlfvHns76kIr1N9mJEyf03XffqVOnTnYPQ7rK2d9s3D9IXlr2T2qvh3D/IbGNJH3zzTc6deqUFi9erFKlStn+OnbsKOn229ySVKBAAe3Zs0erVq1Sq1attHnzZjVv3lw9evRwel2pGdsCtyX1hW+MyeSW3H/69u2rNWvWaO7cuXYXq2nVvn17/fvvv1q5cmW6LTMrst4ETmpsYWQs4p82qYmf9eGaggUL2pVbx3O6OwFyp6FDhypPnjwpvrVdqVIl20NUlSpVsnuD8H6UVEy9vb0VFBRki2nZsmUlSb/++mvmNvA+52z8kTGIf9otWLBAPXv2VMmSJfXxxx/ryy+/1KZNm9SwYcNEb2Am9bs9M37Pu+u8/dRTT2n9+vWaMWOGmjdvbnuTKT1lxrWkM+fH7Nmzq2PHjvrmm290+vRp7dy5U4cOHUrxDcCQkBDVr19fkyZN0rfffuvUW+3uEhgYqJCQEO3duzfZenv37lXhwoVtN3al/z20Xb9+fZUrV87ugRrp9rn24MGDunbtWoa0/V6RlhgjbVI6RiMjI7V582adO3dOCQkJWrVqldq1a2f3fTB48GC99dZb6tixoz777DNt3LhRmzZtUlBQ0H2f8EsPOXLkUPXq1fXf//5XH374oa5fv66lS5fapnP/K/MltU/8/Pz07bff6quvvlK3bt20d+9eRUZGqkmTJrYePu9nGRGX1F5z8rlwVK1aNZUtW1aLFi2SdPtBQ2NMmntlcPY3W0BAgEJDQ5Mdjz0ry6j9g6yFxDaStHDhQhUoUEBLly51+OvcubNWrFhh60I1R44catmypaZPn67Dhw+rf//+mj9/vv78809Jjt3FOSMsLEx//PGHQ/mBAwds05Eya5wOHTrkMO3u+IaFhenkyZMOT5RlxZi/8MILmjNnjt59912HtyPTyvq5ceaJbSTN2q1ScHCwm1uSNRH/tElN/KpVqyZJDl3Tnjx5MsVlWd/aXrlyZYpvbWclScX02rVrOnfunC2mpUuXVpkyZbRy5Upb981IO2fjj4zhavxPnjzpMJTKwYMHJUnh4eEZ11APtmzZMpUoUULLly9Xt27d1LRpUzVu3FhXr17NkPX9+eefDjcpnd0H7jpvt2nTRl5eXtqxY4fTCdvg4GAFBASk+mag9Zrl7muda9eu6ejRoxl6TdOlSxfdvHlTS5YsUVRUlCwWi1PXEk899ZS+++47BQQEqEWLFhnWvvTwxBNP6OjRo9q2bVui07/77jtFR0friSeecGm5LVu2VHx8vD7//PP0aOY9LSNiHBYWpsOHDzt8h1jv2dxZT3L8/FjLstI9gbtFRkbqxo0b+vzzz7V+/XrFxsaqU6dOdnWWLVumHj16aNKkSWrfvr2aNGmiOnXq6NKlS06tg3Pt/1i7Ej916pTT8zh7/ggLC3M49iXHzwPs3b1PvLy81KhRI02ePFm///673nrrLX3zzTfavHmzpNTdC74XpVdcMuqa09nvdVfuH98LunTpot9++0179+5VVFSUSpUqperVq6d5uc7+ZnviiSd0+PBhff/992le5/0otfsnLddDuL+Q2Eai4uPjtXz5cj3xxBNq3769w9+zzz6ry5cva9WqVTp//rzdvF5eXqpcubIkKSEhQZJsXSk5+2Neklq0aKEff/zR7gQQFxenWbNmKTw8/J4a38OdQkJCVLVqVc2bN88ukbpp0yaHccpbtGihmzdvatq0aXbl7777riwWi5o3b54pbXa3iRMn6p133tErr7yioUOHpno5586dS/QJydmzZ0vSfTtmbXo7e/asQ9nly5f13nvvKX/+/LYb88gYxD9t0jN+Tz75pHx8fDRnzhy7Nz6s3ylNmjRJdv5hw4YpT548Gjt2rNPrvN/Vr19fBQoU0MKFC+0SUXPnztXNmzftYjpmzBidP39eTz/9tG7cuOGwrI0bN2rNmjWZ0u77hSvxR/pzNf43btzQzJkzbf++du2aZs6cqeDg4Cx7LrC+IXPn770ffvghw25gnTx5UitWrLD9OzY2VvPnz1fVqlVVqFAhSYmfd/7++2998sknqly5skJCQjKkbUnJlSuXPvzwQ40ePVotW7Z0ah4vLy+1bt1aq1ev1k8//eQwPaU3kBo3bqwcOXLo/ffft6v78ccfKyYmRhEREa5thAseffRRhYeHa8GCBVqyZInq1aunIkWKpDhf+/btNWrUKE2fPt1unExP9MILL8jPz0/9+/d3uBdw4cIFDRgwQDlz5tQLL7zg0nIHDBigkJAQjRgxwnaD8k5nzpzRm2++maa23ysyIsZNmzbV33//bTdm8dWrV/XRRx/Z1Xv44YdVoEABzZgxw3Y/R5LWr1+v/fv3Z+jnx9OVK1dOlSpV0pIlS7RkyRKFhISobt26dnW8vb0dvqOmTp3q9BusWfFcu3nz5kS/19etWyfJtS6QnT1/NG3aVN9//7327Nljm3bhwgVbz5RZnTP7JLEeYKzDv6XlXrAny4y4ZMQ1p7Pf667cP74XWN/+ff3117Vnz550exvY2d9sL774ovz9/fX000/r9OnTDtMPHz6sKVOmpEub7kWp3T/OXA8ha7i/+5dEqq1atUqXL19Wq1atEp3+yCOPKDg4WAsXLtTixYt14cIFNWzYUEWKFNGxY8c0depUVa1a1TY2c9WqVeXt7a0JEyYoJiZGPj4+atiwoa371MS8/PLLWrRokZo3b64hQ4YoX758mjdvno4eParPP//coVuo+9H69ettb0vfqXbt2i5t/7hx4xQREaE6deqod+/eunDhgqZOnaoKFSrYPQXYsmVLNWjQQK+++qqio6NVpUoVbdy4UStXrtSwYcNUsmTJdNkuT/DJJ58kOhZ8WFiYXnzxRZUqVUrlypXTggUL7KY3adLEocvOpCxYsEAzZsxQ69atVaJECV2+fFkbNmzQpk2b1LJly3Tt3vx+kNQ+uXjxor7++mu1bNlSxYoV06lTp/TJJ5/or7/+0qeffurwQ/LGjRsO+82qTZs2DmOW4bb0in9WlRnxK1SokF599VW9/vrratasmVq3bq1ffvlFH330kTp37pzi062BgYEaOnRoit2R34+S2j9Dhw7VxIkT1aNHD9WtW1fdunXTX3/9pSlTpuixxx5T27ZtbXUjIyP166+/6q233tLu3bvVuXNnhYWF6fz58/ryyy/19ddf242riv9Jj/gj9dIr/qGhoZowYYKio6NVunRpLVmyRHv27NGsWbOUPXv2zNoct0gqhvXr19fy5cvVpk0bRURE6OjRo5oxY4bKly+fIb07lC5dWn369NHOnTtVsGBBffLJJzp9+rTmzJljq/Piiy/q8OHDatSokUJDQxUdHa2ZM2cqLi7ObTfPXBmiyuq///2vNm7cqHr16qlfv34qV66cTp06paVLl2rbtm3JdmkeHByskSNHasyYMWrWrJlatWqlP/74Q9OnT1f16tXVtWvXNGxN8iwWi5566in997//lSSnHyYLDAzU6NGjM6xd6alUqVKaN2+eunTpokqVKqlPnz4qXry4oqOj9fHHH+vcuXNatGiRy9eOefPm1YoVK9SiRQtVrVpVXbt2tSXyfv75Zy1atEi1atXKiE3yOBkR4/79+2vatGnq3Lmzhg4dqpCQEC1cuFC+vr6S/vcGYfbs2TVhwgT16tVL9erVU+fOnXX69GlNmTJF4eHhGj58eIZs870iMjJSr7/+unx9fdWnTx+H+zJPPPGEPv30UwUGBqp8+fL6/vvv9dVXXykoKMip5WfFc+3gwYN15coVtWnTRmXLltW1a9e0fft2LVmyROHh4erVq5dLy3Pm/PHiiy9qwYIFatKkiQYPHix/f3/Nnj1bxYoV04ULF7LMm8ZJcWafjB49Wt9++60iIiIUFhamM2fOaPr06SpSpIjq1KkjSSpZsqTy5MmjGTNmKHfu3PL391fNmjVVvHhxN29h6mRGXDLimtOV73Vn7x/fC4oXL67atWvbhoFMKnH6008/JfrgXP369W377E7O/mYrWbKkoqKiFBkZqXLlyql79+6qWLGi7bhZunSpevbs6dI23U+c3T93c+Z6CFmEARLRsmVL4+vra+Li4pKs07NnT5M9e3azbNky8/jjj5sCBQqYHDlymGLFipn+/fubU6dO2dX/6KOPTIkSJYy3t7eRZDZv3myMMSYsLMxEREQkuo7Dhw+b9u3bmzx58hhfX19To0YNs2bNmnTbTk81Z84cIynJvzlz5pijR48aSWbixIkO80syo0aNsiv7/PPPTbly5YyPj48pX768Wb58uenRo4cJCwuzq3f58mUzfPhwExoaarJnz25KlSplJk6caG7dupWBW5x5Uoptnz59kp1uPW6dsXPnTtOhQwdTrFgx4+PjY/z9/c1DDz1kJk+ebK5fv25Xd9SoUUaSOXv2bKLLqlChgqlXr14attxzpbRP5s+fb5o0aWIKFSpksmfPbvLkyWMef/xx8/XXXzssq0ePHsku6+jRow7zTJw4MclpWUF6x9/f3z/Jdfn7+5sePXpk4NZkvvSMnzNu3bplpk6dakqXLm2yZ89uihYtav7zn/+Ya9eu2dWrV6+eqVChgsP8Fy9eNIGBgQ7nj82bNxtJZunSpalql6dKaf8cP37cGGPMokWLTJUqVYyPj48pWLCgefbZZ01sbGyiy/z666/Nk08+aQoUKGCyZctmgoODTcuWLc3KlSsTrb906VKXzx/3i/SMf1b8fkmr9Iy/9Tvlp59+MrVq1TK+vr4mLCzMTJs2zR2blmlSiuFff/1l/vvf/5qwsDDj4+NjHnzwQbNmzRqH39hJ/W5P6rvXut6dO3fayqzXTBs2bDCVK1c2Pj4+pmzZsg7zRkVFmbp165rg4GCTLVs2kz9/ftOmTRuza9eu9A9QIhJre2LuvgZM7Prl2LFjpnv37iY4ONj4+PiYEiVKmEGDBpmEhASn1jVt2jRTtmxZkz17dlOwYEHzzDPPmIsXL7q0Pak5P+7bt89IMj4+PkmuL6nzdFrXnZn27t1rOnfubEJCQkz27NlNoUKFTOfOnc2vv/5qV8/ZY8Lq5MmTZvjw4aZ06dLG19fX5MyZ01SrVs289dZbJiYmJiM2xWO5GuM7r2fq1avncP145MgRExERYfz8/ExwcLAZMWKE+fzzz40ks2PHDru6S5YsMQ8++KDx8fEx+fLlM126dDEnTpzIqE11K1eO0UOHDtnOAdu2bXOYfvHiRdOrVy+TP39+kytXLtO0aVNz4MABExYWZvc7xfr5vvP3YVY9165fv9707t3blC1b1uTKlcvkyJHDPPDAA2bw4MHm9OnTtnqSzKBBgxzmvzu2xqR8/jDGmN27d5vHHnvM+Pj4mCJFiphx48aZ999/30gy//zzT4Zt773AmX1ivSYKDQ01OXLkMKGhoaZz587m4MGDdstauXKlKV++vMmWLZvtfua9KjPj4sw1Z1K/E6y/O+9eprPf687eP07st5un+eCDD4wkU6NGjUSnJ/c7/4033jDGpP0328GDB03fvn1NeHi4yZEjh8mdO7d59NFHzdSpU83Vq1fTvpH3sOT2T2K/bZy9HkLWYDEmhX68AAAAAACA24SHh6tixYoMeQAgXb333nsaPny4Tpw4ocKFC7u7OYBbDRs2TDNnztS///5rG24EAOAZuB7Cne7/vpwBAAAAAACALCw+Pt7u31evXtXMmTNVqlQpktrIcu7+PJw/f16ffvqp6tSpQ1IbAAAPxxjbAOCia9eu6cKFC8nWCQwMlJ+fXya1CMC9LD4+XjExMcnWyZcvH+OZAwCQTjj3Iitq27atihUrpqpVqyomJkYLFizQgQMHtHDhQnc3Dch0tWrVUv369VWuXDmdPn1aH3/8sWJjY/Xaa6+5u2kAACAFJLYBwEXbt29XgwYNkq0zZ84c9ezZM3MaBOCetmTJEvXq1SvZOps3b1b9+vUzp0EAANznOPciK2ratKlmz56thQsX6ubNmypfvrwWL16syMhIdzcNyHQtWrTQsmXLNGvWLFksFj300EP6+OOPVbduXXc3DQAApIAxtgHARRcvXtSuXbuSrVOhQgWFhIRkUosA3MtOnTqlffv2JVunWrVqyps3bya1CACA+xvnXgAAAAC4N5HYBgAAAAAAAAAAAAB4NC93NwAAAAAAAAAAAAAAgOSQ2AYAAAAAAAAAAAAAeDQS2wAAAAAAAAAAAAAAj0ZiGwAAAAAAAAAAAADg0UhsAwAAAAAAAAAAAAA8GoltAAAAAAAAAAAAAIBHI7ENAAAAAAAAAAAAAPBoJLYBAAAAAAAAAAAAAB7t/wEs1STvPyhcuwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "crested.pl.bar.normalization_weights(adata, title=\"Normalization Weights per Cell Type\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Specificity Filtering \n",
- "\n",
- "Optionally we can filter the regions to only include those that are specific to a cell type. \n",
- "This will reduce our training dataset size (meaning faster training times) and could improve the model's performance if the filtered out regions are not specific enough to be informative. \n",
- "\n",
- "A common training approach we've found to be succesful is to first train on all the regions and then filter out the non-specific regions to fine-tune the model with a lower learning rate.\n",
- "\n",
- "Read the documentation of the {func}`crested.pp.filter_regions_on_specificity` function for more information on how the filtering is done. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T15:14:50.559572+0200 INFO After specificity filtering, kept 89009 out of 546993 regions.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "AnnData object with n_obs × n_vars = 19 × 89009\n",
- " obs: 'file_path'\n",
- " var: 'chr', 'start', 'end', 'split'\n",
- " obsm: 'weights'"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "crested.pp.filter_regions_on_specificity(adata, gini_std_threshold=1.0)\n",
- "adata"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "There is no single best way to preprocess your data, so we recommend experimenting with different preprocessing steps to see what works best for your data. \n",
- "Likewise there is no single best training approach, so we recommend experimenting with different training strategies."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Save the final preprocessing results\n",
- "adata.write_h5ad(\"../../../Crested_testing/data/tmp/preprocessed_data.h5ad\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Model Training\n",
- "\n",
- "The entire CREsted workflow is built around the {func}`crested.tl.Crested` class.\n",
- "Everything that requires a model (training, evaluation, prediction) is done through this class. \n",
- "This class has a couple of required arguments:\n",
- "- `data`: the {class}`crested.tl.data.AnnDataModule` object containing all the data (anndata, genome) and dataloaders that specify how to load the data.\n",
- "- `model`: the {class}`keras.Model` object containing the model architecture.\n",
- "- `config`: the {class}`crested.tl.TaskConfig` object containing the optimizer, loss function, and metrics to use in training. \n",
- "\n",
- "Generally you wouldn't run these steps in a notebook, but rather in a script or a python file so you could run it on a cluster or in the background.\n",
- "\n",
- "### Data\n",
- "\n",
- "We'll start by initializing the {class}`crested.tl.data.AnnDataModule` object with our data. \n",
- "This will tell our model how to load the data and what data to load during fitting/evaluation.\n",
- "The main arguments to supply are the `adata` object, the `genome` file path, and the `batch_size`. \n",
- "Other optional arguments are related to the training data loading (e.g. shuffling, whether to load the sequences into memory, ...).\n",
- "\n",
- "The genome file you need to provide yourself as this is not included in the crested package."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import crested"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "# read in your preprocessed data\n",
- "import anndata\n",
- "\n",
- "adata = anndata.read_h5ad(\"../../../Crested_testing/data/tmp/preprocessed_data.h5ad\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T15:22:51.519020+0200 WARNING Chromsizes file not provided when shifting. Will not check if shifted regions are within chromosomes\n"
- ]
- }
- ],
- "source": [
- "datamodule = crested.tl.data.AnnDataModule(\n",
- " adata,\n",
- " genome_file=\"../../../Crested_testing/data/tmp/mm10.fa\",\n",
- " batch_size=128, # lower this if you encounter OOM errors\n",
- " max_stochastic_shift=3, # optional augmentation\n",
- " always_reverse_complement=True, # default True. Will double the effective size of the training dataset.\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Model definition \n",
- "\n",
- "Next, we'll define the model architecture. This is a standard Keras model definition, so you can provide your own model definition if you like. \n",
- "Alternatively, there are a couple of ready-to-use models available in the `crested.tl.zoo` module. \n",
- "Each of them require the width of the input sequences and the number of output classes (your `Anndata.obs`) as arguments."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Load chrombpnet architecture for a dataset with 2114bp regions and 19 cell types\n",
- "model_architecture = crested.tl.zoo.chrombpnet(seq_len=2114, num_classes=19)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### TaskConfig\n",
- "\n",
- "The TaskConfig object specifies the optimizer, loss function, and metrics to use in training (we call this our 'task'). \n",
- "Some default configurations are available for some common tasks such as 'topic_classification' and 'peak_regression',\n",
- "which you can load using the {func}`crested.tl.default_configs` function. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "TaskConfig(optimizer=, loss=, metrics=[, , , , , , ])\n"
- ]
- }
- ],
- "source": [
- "# Load the default configuration for training a topic classication model\n",
- "from crested.tl import default_configs, TaskConfig\n",
- "\n",
- "config = default_configs(\"peak_regression\")\n",
- "print(config)\n",
- "\n",
- "# If you want to change some small parameters to an existing config, you can do it like this\n",
- "# For example, the default learning rate is 0.001, but you can change it to 0.0001\n",
- "# config.optimizer.learning_rate = 0.0001"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Alternatively, you can create your own TaskConfig object and specify the optimizer, loss function, and metrics yourself if you want to do something completely custom."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "TaskConfig(optimizer=, loss=, metrics=[])\n"
- ]
- }
- ],
- "source": [
- "# Create your own configuration\n",
- "# for example if doing classification instead of regression you could something like this:\n",
- "import keras\n",
- "\n",
- "optimizer = keras.optimizers.Adam(learning_rate=1e-3)\n",
- "loss = keras.losses.BinaryCrossentropy(from_logits=False)\n",
- "metrics = [\n",
- " keras.metrics.AUC(\n",
- " num_thresholds=200,\n",
- " curve=\"ROC\",\n",
- " )\n",
- "]\n",
- "alternative_config = TaskConfig(optimizer, loss, metrics)\n",
- "print(alternative_config)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Training\n",
- "\n",
- "Now we're ready to train our model.\n",
- "We'll create a {class}`~crested.tl.Crested` object with the data, model, and config objects we just created. \n",
- "Then, we can call the {meth}`~crested.tl.Crested.fit` method to train the model. \n",
- "Read the documentation for more information on all available arguments to customize your training (e.g. augmentations, early stopping, checkpointing, ...). \n",
- "\n",
- "By default: \n",
- "1. The model will continue training until the validation loss stops decreasing for 10 epochs with a maximum of 100 epochs. \n",
- "2. Every best model is saved based on the validation loss.\n",
- "3. The learning rate reduces by a factor of 0.25 if the validation loss stops decreasing for 5 epochs."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "# setup the trainer\n",
- "trainer = crested.tl.Crested(\n",
- " data=datamodule,\n",
- " model=model_architecture,\n",
- " config=config,\n",
- " project_name=\"mouse_biccn\", # change to your liking\n",
- " run_name=\"chrombpnet_filtered_2114bp\", # change to your liking\n",
- " logger=None, # or 'wandb', 'tensorboard'\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "Model: \"functional\" \n",
- " \n"
- ],
- "text/plain": [
- "\u001b[1mModel: \"functional\"\u001b[0m\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
- "┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
- "│ sequence │ (None , 2114 , 4 ) │ 0 │ - │\n",
- "│ (InputLayer ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ conv1d (Conv1D ) │ (None , 2114 , 512 ) │ 10,240 │ sequence[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ batch_normalization │ (None , 2114 , 512 ) │ 2,048 │ conv1d[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ activation │ (None , 2114 , 512 ) │ 0 │ batch_normalizat… │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ dropout (Dropout ) │ (None , 2114 , 512 ) │ 0 │ activation[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1conv │ (None , 2110 , 512 ) │ 786,432 │ dropout[0 ][0 ] │\n",
- "│ (Conv1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1bn │ (None , 2110 , 512 ) │ 2,048 │ bpnet_1conv[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1activation │ (None , 2110 , 512 ) │ 0 │ bpnet_1bn[0 ][0 ] │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1crop │ (None , 2110 , 512 ) │ 0 │ dropout[0 ][0 ] │\n",
- "│ (Cropping1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add (Add ) │ (None , 2110 , 512 ) │ 0 │ bpnet_1activatio… │\n",
- "│ │ │ │ bpnet_1crop[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1dropout │ (None , 2110 , 512 ) │ 0 │ add[0 ][0 ] │\n",
- "│ (Dropout ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2conv │ (None , 2102 , 512 ) │ 786,432 │ bpnet_1dropout[0 … │\n",
- "│ (Conv1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2bn │ (None , 2102 , 512 ) │ 2,048 │ bpnet_2conv[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2activation │ (None , 2102 , 512 ) │ 0 │ bpnet_2bn[0 ][0 ] │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2crop │ (None , 2102 , 512 ) │ 0 │ bpnet_1dropout[0 … │\n",
- "│ (Cropping1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_1 (Add ) │ (None , 2102 , 512 ) │ 0 │ bpnet_2activatio… │\n",
- "│ │ │ │ bpnet_2crop[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2dropout │ (None , 2102 , 512 ) │ 0 │ add_1[0 ][0 ] │\n",
- "│ (Dropout ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3conv │ (None , 2086 , 512 ) │ 786,432 │ bpnet_2dropout[0 … │\n",
- "│ (Conv1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3bn │ (None , 2086 , 512 ) │ 2,048 │ bpnet_3conv[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3activation │ (None , 2086 , 512 ) │ 0 │ bpnet_3bn[0 ][0 ] │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3crop │ (None , 2086 , 512 ) │ 0 │ bpnet_2dropout[0 … │\n",
- "│ (Cropping1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_2 (Add ) │ (None , 2086 , 512 ) │ 0 │ bpnet_3activatio… │\n",
- "│ │ │ │ bpnet_3crop[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3dropout │ (None , 2086 , 512 ) │ 0 │ add_2[0 ][0 ] │\n",
- "│ (Dropout ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4conv │ (None , 2054 , 512 ) │ 786,432 │ bpnet_3dropout[0 … │\n",
- "│ (Conv1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4bn │ (None , 2054 , 512 ) │ 2,048 │ bpnet_4conv[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4activation │ (None , 2054 , 512 ) │ 0 │ bpnet_4bn[0 ][0 ] │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4crop │ (None , 2054 , 512 ) │ 0 │ bpnet_3dropout[0 … │\n",
- "│ (Cropping1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_3 (Add ) │ (None , 2054 , 512 ) │ 0 │ bpnet_4activatio… │\n",
- "│ │ │ │ bpnet_4crop[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4dropout │ (None , 2054 , 512 ) │ 0 │ add_3[0 ][0 ] │\n",
- "│ (Dropout ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5conv │ (None , 1990 , 512 ) │ 786,432 │ bpnet_4dropout[0 … │\n",
- "│ (Conv1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5bn │ (None , 1990 , 512 ) │ 2,048 │ bpnet_5conv[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5activation │ (None , 1990 , 512 ) │ 0 │ bpnet_5bn[0 ][0 ] │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5crop │ (None , 1990 , 512 ) │ 0 │ bpnet_4dropout[0 … │\n",
- "│ (Cropping1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_4 (Add ) │ (None , 1990 , 512 ) │ 0 │ bpnet_5activatio… │\n",
- "│ │ │ │ bpnet_5crop[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5dropout │ (None , 1990 , 512 ) │ 0 │ add_4[0 ][0 ] │\n",
- "│ (Dropout ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6conv │ (None , 1862 , 512 ) │ 786,432 │ bpnet_5dropout[0 … │\n",
- "│ (Conv1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6bn │ (None , 1862 , 512 ) │ 2,048 │ bpnet_6conv[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6activation │ (None , 1862 , 512 ) │ 0 │ bpnet_6bn[0 ][0 ] │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6crop │ (None , 1862 , 512 ) │ 0 │ bpnet_5dropout[0 … │\n",
- "│ (Cropping1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_5 (Add ) │ (None , 1862 , 512 ) │ 0 │ bpnet_6activatio… │\n",
- "│ │ │ │ bpnet_6crop[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6dropout │ (None , 1862 , 512 ) │ 0 │ add_5[0 ][0 ] │\n",
- "│ (Dropout ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7conv │ (None , 1606 , 512 ) │ 786,432 │ bpnet_6dropout[0 … │\n",
- "│ (Conv1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7bn │ (None , 1606 , 512 ) │ 2,048 │ bpnet_7conv[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7activation │ (None , 1606 , 512 ) │ 0 │ bpnet_7bn[0 ][0 ] │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7crop │ (None , 1606 , 512 ) │ 0 │ bpnet_6dropout[0 … │\n",
- "│ (Cropping1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_6 (Add ) │ (None , 1606 , 512 ) │ 0 │ bpnet_7activatio… │\n",
- "│ │ │ │ bpnet_7crop[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7dropout │ (None , 1606 , 512 ) │ 0 │ add_6[0 ][0 ] │\n",
- "│ (Dropout ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8conv │ (None , 1094 , 512 ) │ 786,432 │ bpnet_7dropout[0 … │\n",
- "│ (Conv1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8bn │ (None , 1094 , 512 ) │ 2,048 │ bpnet_8conv[0 ][0 ] │\n",
- "│ (BatchNormalizatio… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8activation │ (None , 1094 , 512 ) │ 0 │ bpnet_8bn[0 ][0 ] │\n",
- "│ (Activation ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8crop │ (None , 1094 , 512 ) │ 0 │ bpnet_7dropout[0 … │\n",
- "│ (Cropping1D ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_7 (Add ) │ (None , 1094 , 512 ) │ 0 │ bpnet_8activatio… │\n",
- "│ │ │ │ bpnet_8crop[0 ][0 ] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8dropout │ (None , 1094 , 512 ) │ 0 │ add_7[0 ][0 ] │\n",
- "│ (Dropout ) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ global_average_poo… │ (None , 512 ) │ 0 │ bpnet_8dropout[0 … │\n",
- "│ (GlobalAveragePool… │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ dense_out (Dense ) │ (None , 19 ) │ 9,747 │ global_average_p… │\n",
- "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n",
- " \n"
- ],
- "text/plain": [
- "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
- "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n",
- "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
- "│ sequence │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2114\u001b[0m, \u001b[38;5;34m4\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n",
- "│ (\u001b[38;5;33mInputLayer\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ conv1d (\u001b[38;5;33mConv1D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2114\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m10,240\u001b[0m │ sequence[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2114\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ conv1d[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2114\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2114\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ activation[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2110\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m786,432\u001b[0m │ dropout[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mConv1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2110\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ bpnet_1conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2110\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_1bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1crop │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2110\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dropout[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mCropping1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2110\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_1activatio… │\n",
- "│ │ │ │ bpnet_1crop[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_1dropout │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2110\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2102\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m786,432\u001b[0m │ bpnet_1dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mConv1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2102\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ bpnet_2conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2102\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_2bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2crop │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2102\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_1dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mCropping1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_1 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2102\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_2activatio… │\n",
- "│ │ │ │ bpnet_2crop[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_2dropout │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2102\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2086\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m786,432\u001b[0m │ bpnet_2dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mConv1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2086\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ bpnet_3conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2086\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_3bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3crop │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2086\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_2dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mCropping1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_2 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2086\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_3activatio… │\n",
- "│ │ │ │ bpnet_3crop[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_3dropout │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2086\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2054\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m786,432\u001b[0m │ bpnet_3dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mConv1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2054\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ bpnet_4conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2054\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_4bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4crop │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2054\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_3dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mCropping1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_3 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2054\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_4activatio… │\n",
- "│ │ │ │ bpnet_4crop[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_4dropout │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2054\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1990\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m786,432\u001b[0m │ bpnet_4dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mConv1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1990\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ bpnet_5conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1990\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_5bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5crop │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1990\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_4dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mCropping1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_4 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1990\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_5activatio… │\n",
- "│ │ │ │ bpnet_5crop[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_5dropout │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1990\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_4[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1862\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m786,432\u001b[0m │ bpnet_5dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mConv1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1862\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ bpnet_6conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1862\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_6bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6crop │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1862\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_5dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mCropping1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_5 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1862\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_6activatio… │\n",
- "│ │ │ │ bpnet_6crop[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_6dropout │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1862\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1606\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m786,432\u001b[0m │ bpnet_6dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mConv1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1606\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ bpnet_7conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1606\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_7bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7crop │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1606\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_6dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mCropping1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_6 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1606\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_7activatio… │\n",
- "│ │ │ │ bpnet_7crop[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_7dropout │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1606\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1094\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m786,432\u001b[0m │ bpnet_7dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mConv1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1094\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m2,048\u001b[0m │ bpnet_8conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8activation │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1094\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_8bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8crop │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1094\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_7dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mCropping1D\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ add_7 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1094\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_8activatio… │\n",
- "│ │ │ │ bpnet_8crop[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ bpnet_8dropout │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1094\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n",
- "│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ global_average_poo… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bpnet_8dropout[\u001b[38;5;34m0\u001b[0m… │\n",
- "│ (\u001b[38;5;33mGlobalAveragePool…\u001b[0m │ │ │ │\n",
- "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
- "│ dense_out (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m19\u001b[0m) │ \u001b[38;5;34m9,747\u001b[0m │ global_average_p… │\n",
- "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- " Total params: 6,329,875 (24.15 MB)\n",
- " \n"
- ],
- "text/plain": [
- "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m6,329,875\u001b[0m (24.15 MB)\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- " Trainable params: 6,320,659 (24.11 MB)\n",
- " \n"
- ],
- "text/plain": [
- "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m6,320,659\u001b[0m (24.11 MB)\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- " Non-trainable params: 9,216 (36.00 KB)\n",
- " \n"
- ],
- "text/plain": [
- "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m9,216\u001b[0m (36.00 KB)\n"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "None\n",
- "2024-08-13T15:23:14.799927+0200 INFO Loading sequences into memory...\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "100%|██████████| 71403/71403 [00:07<00:00, 9337.03it/s] "
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T15:23:22.525200+0200 INFO Loading sequences into memory...\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\n",
- "100%|██████████| 9645/9645 [00:00<00:00, 9717.39it/s] \n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 1/60\n",
- "\u001b[1m 57/1116\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m6:03\u001b[0m 343ms/step - concordance_correlation_coefficient: 0.0547 - cosine_similarity: 0.5142 - loss: 2.5419 - mean_absolute_error: 0.6500 - mean_squared_error: 2.9634 - pearson_correlation: 0.0715 - pearson_correlation_log: 0.2853 - zero_penalty_metric: 776.53042024-08-13T15:24:23.706543+0200 WARNING Training interrupted by user.\n"
- ]
- }
- ],
- "source": [
- "# train the model\n",
- "trainer.fit(epochs=60)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Evaluate the model\n",
- "\n",
- "After training, we can evaluate the model on the test set using the {meth}`~crested.tl.Crested.test` method. \n",
- "If we're still in the same session, we can simply continue using the same object. \n",
- "If not, we can load the model from disk using the {func}`~crested.tl.Crested.load_model` method.\n",
- "This means that we have to create a new {class}`~crested.tl.Crested` object first. \n",
- "However, this time, since the taskconfig and architecture are saved in the .keras file, we only have to provide our datamodule."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "import anndata\n",
- "import crested\n",
- "\n",
- "adata = anndata.read_h5ad(\"../../../Crested_testing/data/tmp/preprocessed_data.h5ad\")\n",
- "\n",
- "datamodule = crested.tl.data.AnnDataModule(\n",
- " adata,\n",
- " genome_file=\"../../../Crested_testing/data/tmp/mm10.fa\",\n",
- ")\n",
- "\n",
- "evaluator = crested.tl.Crested(data=datamodule)\n",
- "\n",
- "# load an existing model\n",
- "evaluator.load_model(\n",
- " \"../../../Crested_testing/mouse_biccn/chrombpnet_filtered_2114bp/15.keras\",\n",
- " compile=True,\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "If you experimented with many different hyperparameters for your model, chances are that you will start overfitting on your validation dataset. \n",
- "It's therefore always a good idea to evaluate your model on the test set after getting good results on your validation data to see how well it generalizes to unseen data."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[1m32/32\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 135ms/step - loss: 0.0239\n",
- "2024-08-13T15:53:51.932398+0200 INFO Test loss: 0.0239\n"
- ]
- }
- ],
- "source": [
- "# evaluate the model on the test set\n",
- "evaluator.test()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Predict\n",
- "\n",
- "After training, we can also use the {meth}`~crested.tl.Crested.predict` method to predict the labels for new data and add them as a layer to the `AnnData` object. \n",
- "A common use case is to compare the predicted labels to the true labels for multiple trained models to see how well they compare. \n",
- "\n",
- "We can initiate a new Crested object (if you have different data) or use the existing one. \n",
- "Here we continue with the existing one since we'll use the same data as we trained on."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\u001b[1m348/348\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 119ms/step\n",
- "2024-08-13T15:54:40.788075+0200 INFO Adding predictions to anndata.layers[checkpoint_15].\n"
- ]
- }
- ],
- "source": [
- "# add predictions for model checkpoint to the adata\n",
- "evaluator.predict(\n",
- " adata, model_name=\"checkpoint_15\"\n",
- ") # adds the predictions to the adata.layers[\"checkpoint_15\"]"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "If you don't want to predict on the entire dataset, you can also predict on a given sequence or region using the {meth}`~crested.tl.Crested.predict_sequence` or {meth}`~crested.tl.Crested.predict_regions` methods."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Many of the plotting functions in the `crested.pl` module can be used to visualize these model predictions. "
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Contribution Scores\n",
- "\n",
- "We can calculate the contribution scores for a **sequence** of interest using the {meth}`~crested.tl.Crested.calculate_contribution_scores_sequence` method. \n",
- "You always need to ensure that the sequence or region you provide is the same length as the model input (2114bp in our case). "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T15:55:10.951464+0200 INFO Calculating contribution scores for 2 class(es) and 1 region(s).\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Region: 100%|██████████| 1/1 [00:03<00:00, 3.66s/it]\n"
- ]
- }
- ],
- "source": [
- "# random sequence of length 2114bp as an example\n",
- "sequence = \"A\" * 2114\n",
- "\n",
- "scores, one_hot_encoded_sequences = evaluator.calculate_contribution_scores_sequence(\n",
- " sequence, class_names=[\"Astro\", \"Endo\"]\n",
- ") # focus on two cell types of interest"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Alternatively, you can calculate contribution scores for **regions** of interest using the {meth}`~crested.tl.Crested.calculate_contribution_scores_regions` method. \n",
- "These regions don't have to be in your original dataset, as long as they exist in the genome file that you provided to the `AnnDataModule` and they are the same length as the model input. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T15:57:15.341186+0200 INFO Calculating contribution scores for 2 class(es) and 1 region(s).\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Region: 100%|██████████| 1/1 [00:02<00:00, 2.63s/it]\n"
- ]
- }
- ],
- "source": [
- "# focus on two cell types of interest\n",
- "regions_of_interest = [\n",
- " \"chr18:61107770-61109884\"\n",
- "] # FIRE enhancer region, should only have motifs in Micro_PVM\n",
- "classes_of_interest = [\"Astro\", \"Micro_PVM\"]\n",
- "scores, one_hot_encoded_sequences = evaluator.calculate_contribution_scores_regions(\n",
- " region_idx=regions_of_interest, class_names=classes_of_interest\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Contribution scores for regions can be plotted using the {func}`crested.pl.patterns.contribution_scores` function. \n",
- "This will generate a plot per class per region."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAF2YAAAGNCAYAAABk5tXfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd7RU1d0G4PfSexGRJkhV7A01CirEYG+xxZIo9pgvdmPUxBJNYmIvMTEq1lixx4aiiAjGFiwEUZQqiCDlUqTf+f6YcPFKERBFyfOsNYsze++zz++cmTtMfU9JoVAoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgDVZpdRcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBNE8wOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKzxBLMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGs8wewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBpPMDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsMYTzA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAArPEEswMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAazzB7AAAAAAAAAAAAAAAAAAAAAAAAAAAAADAGk8wOwAAAAAAAAAAAAAAAAAAAAAAAAAAAACwxhPMDgAAAAAAAAAAAAB8J7Vu3TolJSXLvFxzzTXl40eOHFnePnLkyApz9ejRY7F1q1SpkrXXXjs777xzbrjhhsybN2+Jdbz44otfWcfCy/L6Yq1fdfnyvqyMhdtr3br1156LoiXdP6tXr5511103++23X5544onVXWKSpGvXrikpKcmLL764uksBAAAAAAAAAAAAAFjtqqzuAgAAAAAAAAAAAAAAlqVz585p3779Evs22mijFZqrXbt26dKlS5Jk9uzZGTp0aF566aW89NJLuffee/Pcc8+lZs2aS13/qKOOWqHtLY8DDzwwderUWWr/svpY/b54/ywtLc2gQYPy+OOP5/HHH8/pp5+eq666ajVXCAAAAAAAAAAAAADAQoLZAQAAAAAAAAAAAIDvtOOOOy49evRYJXN16dIlt99+e4W2++67L4cddlgGDBiQv/zlL/nVr3611PW/vO6qcMUVV6R169arfF6+HV++f86fPz+nn356/vKXv+Tqq6/OYYcdlm222Wa11XfnnXfm888/T6tWrVZbDQAAAAAAAAAAAAAA3xWVVncBAAAAAAAAAAAAAACr06GHHpru3bsnSf75z3+u5mr4vqtSpUouv/zy1KtXL8nqv0+1atUqHTt2TK1atVZrHQAAAAAAAAAAAAAA3wWC2QEAAAAAAAAAAACA/3mbbbZZkuTTTz9dzZUs24svvpiSkpJ07do18+bNy5///OdsvPHGqVmzZho1apQDDjgg77333jLnKBQKuemmm7L11lundu3aqV+/fnbddde88sorSxz/2muv5eyzz862226bpk2bplq1amnSpEn22Wef9OnTZ4nr3H777SkpKUmPHj0yc+bMnHvuuWnfvn2qV6+epk2b5qijjsrYsWOXWuPYsWPzq1/9Kptuumnq1q2b2rVrZ/3110+PHj0ycODAxcbPmjUrV155ZX7wgx+kQYMGqVGjRjbYYIOcffbZmTRp0jLrmzx5ck477bS0a9cu1atXT9euXZd5/JZHjRo10qFDhyRLv089//zzOeCAA9KsWbNUq1Yt66yzTn784x8v9XZIksGDB+fAAw/M2muvnVq1amXTTTfNNddck7KysrRu3TolJSUZOXJkhXW6du2akpKSvPjii4vNN3/+/Nx4443ZYYcdUr9+/fK6TznllKXePiUlJSkpKUmSPPTQQ+nSpUvq1auX2rVrp3PnznnqqaeW4wgBAAAAAAAAAAAAAKwegtkBAAAAAAAAAAAAgP9506ZNS5I0adJkNVeyfObNm5c999wzF198cVq1apW99tortWvXziOPPJIddthhsXDuLzr66KPzy1/+Mg0aNMjee++dpk2b5rnnnku3bt3y6quvLjb+vPPOy5VXXpnZs2dn6623zv7775911103TzzxRLp3755rr712qdsqLS3NDjvskBtvvDEbbbRR9thjjxQKhdx5553p3LlzSktLF1vn+eefzyabbJIrrrgiEyZMyC677JK99torDRo0yD333JObbrqpwvhx48Zlu+22y1lnnZVhw4Zlm222yZ577pk5c+bk8ssvT6dOnTJq1Kgl1vfZZ5+lU6dOufPOO7PJJptkv/32y7rrrrvU/VkRy7pPnXXWWfnRj36Uxx57LK1atcr++++ftm3b5rHHHsuOO+6Y2267bbF1+vXrl2233TYPP/xwGjRokP322y/NmjXLr3/96xx++OErXN+cOXOyxx575KSTTsqgQYPSuXPn7L///pkzZ06uv/76bLHFFvn3v/+91PUvvPDCHHzwwUmSPffcMx06dMjAgQOz995755FHHlnhegAAAAAAAAAAAAAAvg1VVncBAAAAAAAAAAAAAACr05w5c9KnT58kyb777ruaq1k+AwcOzJZbbpmPPvooTZs2TZLMnj07+++/f3r37p1LL700f//73xdbb9SoUXnxxRczePDgrL/++kmSBQsW5IQTTsitt96aCy64IL17966wzplnnpm77rorzZo1q9D+yiuvZPfdd8+vfvWrHHTQQWnRosVi23v00Uez2267pX///qlXr16SZMqUKfnhD3+Yt956K3/9619z7rnnlo8fM2ZMDjzwwJSWluacc87J7373u1SrVq28f8KECfnggw/KrxcKhRxyyCF59913c+yxx+bqq69O3bp1kyTz58/POeeckyuvvDJHH310XnjhhcXqe/LJJ7PLLrvk4YcfLq9vVXjvvfcyfPjwJIvfp26++eZceeWVad++fR566KFsttlm5X0vvfRS9t577/z85z9Ply5d0qFDhyTJrFmzcsQRR2TWrFk588wzc9lll6VSpUpJkiFDhuSHP/xhPv300xWq8cILL0yfPn3Srl279OnTJ61bt05SDP0/6aST0rNnzxx00EEZOnRohdtgoeuuuy6vvPJKtttuu/K2iy66KL/73e9yzjnn5Mc//vEK1QMAAAAAAAAAAAAA8G2otLoLAAAAAAAAAAAAAABYlqOPPjolJSWLXbp27fq15p0zZ07eeuutHHjggRkxYkS6d++eX/7yl8tcZ0l1LLzsv//+K1VHmzZtljrnFltssdQ6brvttvJQ9iSpUaNGfve73yVJedD8klx//fXloexJUrly5fzhD39IkvTr1y/z5s2rMH6PPfZYLJQ9Sbbffvv83//9X+bNm5fHHntsiduqXbt2brvttgqh5w0bNsw555yzxDqvuuqqlJaWZp999smll166WCD4Ouusky5dupRf7927dwYMGJAtttgiN954Y3koe5JUqVIll112WTbZZJP07ds3gwcPXqy+qlWr5qabblploeylpaV59tlnc8ABB2TBggX57W9/m06dOpX3l5WV5aKLLkqS3HfffRVC2ZNkp512yvnnn5+5c+dWCNZ/8MEHM3bs2Ky33nq59NJLy0PZk2SjjTbK+eefv0J1zp49OzfccEOS5Oqrry4PZU+Kx+S6665LkyZNMmLEiDz44INLnOPiiy+uEMqeJOeee27q16+fDz74IGPGjFmhmgAAAAAAAAAAAAAAvg1VVncBAAAAAAAAAAAAAADL0rlz57Rv336x9o4dO67wXHfccUfuuOOOxdp//vOf54YbbqgQeL0kRx111FL7ttpqqxWuJ0kOPPDA1KlTZ4l9rVq1Wmr75ptvvlj7hhtumCQZO3bsEterUqVKdt9998XamzZtmoYNG2bKlCmZNGlShcD3JJk0aVKefPLJDB48OFOmTCkPbx82bFiS5P3331/i9jp16rTEUPel1fnMM88kSU444YQlzvdlTz75ZJLiMaxSZfGvx1eqVCk77bRTBg8enIEDB2aTTTap0L/lllumbdu2y7WtpTn66KNz9NFHV2irXLly/vGPf+SII46o0D5o0KCMGzcu7dq1y9Zbb73E+RaecGDgwIHlbf369UuSHHzwwalatepi6xxxxBFfeVKBL3rjjTcyY8aMrLXWWtlnn30W669Vq1YOPfTQXHvttenbt28OP/zwxcYsab3q1aunbdu2GTRoUMaOHZuWLVsud00AAAAAAAAAAAAAAN8GwewAAAAAAAAAAAAAwHfacccdlx49eqySudq1a5cuXbokSaZNm5Y33ngjY8aMyY033phNN900v/jFL5a5/u23375K6viiK664Iq1bt16hdZYW2F6vXr0kyZw5c5bY36xZsyUGey9cd8qUKZk9e3aF9ptvvjmnn356Zs6cudR6pk2btlJ1fnlbo0aNSrL8ofvDhw9Pkpx//vk5//zzlzl24sSJi7Wt6HFfki+eOGDixInp379/pk+fnpNOOikdOnTItttuu1i9H330UUpKSpa73o8//niZ9TZo0CD169dPaWnpctW8MBC/TZs2Sx3Trl27CmO/bEVvWwAAAAAAAAAAAACA7wLB7AAAAAAAAAAAAADA/4wuXbpUCFdfsGBBzj333Fx++eU57bTT0rlz52y++earr8DlVKlSpW9lvTfffDMnnnhiKleunD//+c/ZZ5990qpVq9SqVSslJSW56aabcuKJJ6ZQKKzSOpdXWVlZkuLtujBIfGk23njjxdpq1qz5tWv48okDSktL8+Mf/zh9+/bNIYcckiFDhqRWrVoV6m3atGl22223Zc679tprL9a2rDD3rwp6X9W+6dsWAAAAAAAAAAAAAOCbIJgdAAAAAAAAAAAAAPiftTBw/NVXX81LL72UM888M3369FndZX1n9OrVK4VCISeffHLOPvvsxfqHDRu2SrfXqlWrvP/++xk6dGjat2//leNbtmyZJNlvv/1y1llnrdJaVlb9+vVz//33p2PHjhk1alSuuuqq/Pa3v02yqN5GjRpVOEHAV2nRokWSZOTIkUvsLy0tzdSpU1d4vhEjRix1zPDhwyuMBQAAAAAAAAAAAABYE1Ra3QUAAAAAAAAAAAAAAKxOJSUlufrqq1NSUpLnn38+ffv2Xd0lfWdMnjw5SbLeeust1jd79uw89NBDq3R7u+++e5Lk5ptvXq7xe+yxR5JFAfLfFY0bNy4PY7/iiivKQ9O32WabrL322hkyZEj+85//LPd8O+20U5Lifs6fP3+x/nvuuWeF6uvUqVPq1KmTyZMn5/HHH1+sf9asWbnvvvuSJN26dVuhuQEAAAAAAAAAAAAAvssEswMAAAAAAAAAAAAA//O22mqrHHzwwUmSCy+8cDVX892x4YYbJknuuOOOTJ8+vbx99uzZ+cUvfpERI0as0u2dccYZqVu3bh5//PH89re/zbx58yr0T5gwIS+//HL59f322y/bbLNNXnvttRx99NGZOHHiYnNOmTIlN9544xIDzb9Jv/jFL9KqVauUlpbmyiuvTJJUrVo1F154YQqFQn784x9X2JeFFixYkBdeeCH/+te/ytsOPvjgNGvWLCNHjsxvfvOblJWVlfcNHTo0F1988QrVVqNGjfzf//1fkuTMM8/MqFGjyvvmzZuXU089NePHj0+bNm1y0EEHrdDcAAAAAAAAAAAAAADfZVVWdwEAAAAAAAAAAAAAAN8Fv//97/Pwww+nf//+ee6559K9e/fFxvTo0WOZc1x88cVp1arVCm33rLPOSp06dZbaf8opp2SrrbZaoTlXlaOPPjrXXnttBg0alDZt2mTHHXdM5cqV079//8yaNSunnnpqrr322lW2vVatWuXBBx/MQQcdlD/84Q+55ZZbsv3226dq1aoZNWpUBg0alMMPPzxdunRJklSqVCmPPvpo9tprr9xxxx158MEHs/nmm6dVq1aZO3duhg8fnnfffTcLFixIjx49UqXKt/cV+urVq+eiiy7KMccck2uvvTann3561lprrfzyl7/M6NGjc/nll2fHHXfMxhtvnPbt26dmzZoZP3583nrrrUydOjV/+9vf8oMf/CBJUqtWrfzjH//IXnvtlcsuuywPP/xwOnXqlMmTJ+fFF1/Mfvvtl1dffTWjR49OtWrVlqu+3/3ud3njjTfy/PPPZ8MNN0y3bt1St27dvPLKKxk9enQaNWqUXr16Lfd8AAAAAAAAAAAAAADfB4LZAQAAAAAAAAAAAACSdOjQIccee2z+/ve/58ILL1xiMPsdd9yxzDlOO+20FQ5mf+ihh5bZv//++6+2YPYGDRrkjTfeyIUXXpjevXvn6aefTqNGjbLrrrvmwgsvzMsvv7zKt7nrrrtm8ODBueqqq/LMM8/kmWeeSZUqVdK8efP87Gc/y/HHH19hfPPmzfOvf/0rt99+e+6///688847ee2117LWWmulefPm+fnPf5599903NWrUWOW1fpUjjzwyV1xxRYYMGZLLL788l156aZLksssuy/7775+//vWvefnll/PMM8+kWrVqadasWbp27Zq99947BxxwQIW5fvjDH+bVV1/NRRddlH79+uXRRx9N27Zt84c//CGnnHJK6tatm0qVKmWttdZartqqV6+eZ555JjfffHPuvPPO9O/fP3PmzEnLli1z8skn59e//nVatGixyo8JAAAAAAAAAAAAAMDqVFIoFAqruwgAAAAAAAAAAAAAAGDlvPTSS9l5552z6aab5p133lnd5QAAAAAAAAAAAAAAfGdVWt0FAAAAAAAAAAAAAAAAyzZx4sSMGDFisfbBgwfn+OOPT5IcffTR33ZZAAAAAAAAAAAAAADfKyWFQqGwuosAAAAAAAAAAAAAAACW7sUXX0y3bt2y0UYbpW3btqlZs2ZGjBiRf//73ykrK0v37t3z1FNPpUqVKqu7VAAAAAAAAAAAAACA7yzB7AAAAAAAAAAAAAAA8B03bty4/PGPf0y/fv0yduzYTJ8+PXXr1s3GG2+cww8/PMcff7xQdgAAAAAAAAAAAACAryCYHQAAAAAAAAAAAAAAAAAAAAAAAAAAAABY41Va3QUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzTBLMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGs8wewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBpPMDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsMYTzA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAArPEEswMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAazzB7AAAAAAAAAAAAAAAAAAAAAAAAAAAAADAGk8wOwAAAAAAAAAAAAAAAAAAAAAAAAAAAACwxhPMDgAAAAAAAAAAAAAAAAAAAAAAAAAAAACs8QSzAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABrPMHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAaTzA7AAAAAAAAAAAAAAAAAAAAAAAAAAAAALDGE8wOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKzxBLMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGs8wewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBpPMDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsMYTzA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAArPEEswMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAazzB7AAAAAAAAAAAAAAAAAAAAAAAAAAAAADAGk8wOwAAAAAAAAAAAAAAAAAAAAAAAAAAAACwxhPMDgAAAAAAAAAAAAAAAAAAAAAAAAAAAACs8QSzAwAAAAAAAAAAAAAkueiii1JSUpIXX3xxdZcCAAAAAAAAAAAAAAB8AwSzAwAAAAAAAAAAAAB8Q/75z3/m5JNPTufOnVO7du2UlJTkoosuWuY648aNy6mnnpqNNtootWvXTpMmTdKlS5fcddddWbBgwQrXMGLEiBx//PFZb731Ur169TRp0iTdunVLr169Koz7/PPPc+WVV+bwww9Px44dU6lSpZSUlGTkyJGrdP/mzJmTiy++OB06dEiNGjXSvHnznHDCCZkwYcJiY3v06JGSkpJlXi655JLy8S+++OJXjm/Xrl2FbbRu3for1+nfv/9itfXu3Ts777xz6tatm3r16qVbt255/vnnl7nvy/L222/n8MMPT4sWLVK9evU0b948e+yxR/r27Vth3IQJE3LppZfmoIMOSps2bcprXJZ//OMfOfHEE9OpU6dUr149JSUluf3225e5zrRp03LGGWeU329at26dX/3qV5kxY8YSx3/88cc58cQT06pVq1SrVi3NmzfP0UcfnTFjxixxfKFQyMMPP5xu3bqlWbNmqVWrVjbYYIOceOKJGT58+BLXGTZsWI4++uh06NAhNWvWTIsWLdK9e/c8/vjjy9yXhfbcc8+UlJSkRo0ayzUeAAAAAAAAAAAAAFjzVFndBQAAAAAAAAAAAAAArKmuvPLK9OvXL/Xq1Uvz5s3z4YcfLnP88OHDs91222XSpEnZbbfdss8++2TatGl59NFHc+SRR+aFF17Ibbfdttzbf+6557L//vsnSfbZZ5+0bds2U6ZMyTvvvJM+ffrk4IMPLh87YcKEnHXWWUmS9dZbLw0bNszkyZNX6f6VlZVlv/32S+/evfODH/wgBx54YIYNG5Zbbrklzz//fP71r3+lcePG5eP333//tG7deolzXXHFFZk5c2Z222238rbWrVvnwgsvXOL4Pn36ZMCAARXGJ8lpp52WqVOnLjb+s88+yw033JCGDRtmm222qdD3j3/8Iz/72c/SuHHj9OjRI0ly//33p3v37nnggQdy0EEHLfM4fNmdd96ZY445JvXr18/ee++dFi1a5LPPPssbb7yRgQMHplu3buVjhwwZkvPOOy8lJSXp0KFDatWqlc8//3yZ8//2t7/NqFGjsvbaa6dZs2YZNWrUMsfPnDkzO++8c956663suuuuOeywwzJo0KBcccUV6devX1566aUK4eYfffRRdthhh0yYMCG77rprfvKTn2TYsGG544478tRTT2XgwIGLBeKfddZZueqqq9KsWbPsv//+qVevXt5+++3cfPPNuffeezNw4MBssskm5eNfffXVdOvWLfPmzcu+++6bAw88MBMmTMjDDz+c/fbbLxdddNFSb/skufnmm9O7d+/UqFEjhUJhmfsPAAAAAAAAAAAAAKy5Sgq+UQwAAAAAAAAAAAAAkIsuuii/+93v0rdv33Tt2nWVzNm/f/80bdo07du3z/3335/DDjssF154YS666KIljv/FL36Rv/3tb7nmmmty6qmnlrdPnTo1m2++eUaPHp2RI0dmvfXW+8ptjx49OptuummaNGmSPn36pFWrVhX658+fnypVqpRfnzFjRl555ZVsvfXWWWuttbL77rund+/eGTFixFLD0Vd0/2677bYcc8wxOeyww3L33XenpKQkSXLjjTfmpJNOygknnJC///3vX7lvb775Zjp16pRNN90077zzzleOT5JNN900gwcPzptvvpmtttrqK8dfeeWVOeuss3LyySfnuuuuK2+fMmVK2rZtmypVqmTQoEFZd911kyQff/xxttxyyyTFgP26desuV11vvvlmfvCDH6RTp0556qmn0rBhwwr9X76dPv3007z//vvZcsstU7du3XTs2DHvv//+MsPG+/Tpkw4dOmS99dbLn/70p5x77rm57bbbykPlv+zCCy/MxRdfnF//+tf505/+VN5+zjnn5M9//nP++Mc/5txzzy1v33vvvfPkk0/m2muvzSmnnFLe3qtXrxxyyCHZbbfd8swzz5S3jx8/Pi1atEjLli3z9ttvp379+uV9V199dc4444wcffTRufXWW8vb99xzzzz99NN59NFHs99++5W3jxo1Kptuumnmz5+fKVOmpHr16ovtz8iRI7PZZpvlxBNPTK9evTJ+/PjMnj17qccLAAAAAAAAAAAAAFhzVVrdBQAAAAAAAAAAAAAAfBteeuml7L///mnSpEmqV6+eli1b5oADDsjLL7+82Nh77rknW2yxRWrWrJlmzZrl1FNPzaxZsyqMefHFF1NSUpKLLrooAwcOzK677poGDRqUh40nyY477pgOHTpUaFuW4cOHJymGUH9RgwYN0qVLlyTJZ599tlxz/fGPf8y0adNy4403LhbKnqRC2HeS1KlTJ927d89aa621XPMnK75/N998c5Lk0ksvrbDOiSeemLZt2+buu+9e7DgvSc+ePZMkxx577HJt97XXXsvgwYOzxRZbLFco+7K20atXr0ydOjUnn3xyeSh7kqy77rr55S9/mc8++yyPPPLIcm0jSX7zm99kwYIFueuuuxYLZU8Wv52aNGmSnXbaabmD35PkRz/60XKF+SdJoVDILbfckjp16uT888+v0Hf++eenTp06ueWWW8rbZs+end69e6dJkyY5+eSTK4w/+OCDs8UWW6R3797l9+2kGJReVlaWzp07VwhlT4oh70kyceLECu3Dhw9PSUlJ9thjjwrt6623XjbddNPMmjUrM2bMWOL+HHPMMWnWrFkuvvji5ToGAAAAAAAAAAAAAMCaSzA7AAAAAAAAAAAAALDGu/baa9O1a9c899xz6d69e84888z88Ic/zNtvv50HH3ywwti//OUvOeGEE7LxxhvnpJNOSsOGDXPdddfluOOOW+LcAwcOTNeuXVNSUpITTjghP/nJT1a6zk022SRJ8tRTT1Vonzp1agYMGJCmTZtmo402qtDXunXrlJSUZOTIkeVthUIhvXr1SqNGjfLDH/4wb775Zq666qpcccUV6dOnT8rKyla6xpU1e/bsvPrqq9lggw0WCwkvKSlJ9+7dM3PmzLzxxhvLnGfWrFm55557Ur169fzsZz9brm0vDBJf2m34ZQMHDsx7772XTp06ZfPNN6/Q9+KLLyZJdt1118XW22233ZIk/fr1W67tTJ06Nc8++2y23HLLtG/fPv369cvll1+eq6++OgMHDlyuOVa1YcOGZdy4cencuXNq165doa927drp3Llzhg8fnjFjxiRJJk2alPnz52e99dZbYkB/mzZtkiR9+/Ytb+vQoUOqVauWAQMGZNq0aRXGP/HEE0mSXXbZpUL7JptskkKhkKeffrpC++jRo/Puu+9m8803T6NGjRbb/vXXX59+/frl1ltvTc2aNZf3MAAAAAAAAAAAAAAAa6gqq7sAAAAAAAAAAAAAAIBv0ttvv50zzjgjzZo1y4ABA9K6devyvkKhkE8++aTC+D59+uTNN9/MBhtskCT5wx/+kC222CL33XdfLr/88jRv3rzC+Oeeey633nprjj766K9d669+9av885//zOmnn55nnnkmm222WaZNm5ZHH300tWrVyiOPPLJc4dIjRozI5MmT06lTp5x44om56aabKvRvueWWefzxx7Puuut+7ZqX10cffZSysrJ06NBhif0L24cNG5Ydd9xxqfM8+OCDKS0tzaGHHpq11lrrK7c7c+bM3HfffalZs2aOOOKI5aq1Z8+eSZYc5D5s2LAK9S5tH5bHv//97xQKhbRs2TL77LNPeSj5Qt27d0+vXr1Sv3795ZpvVVjW/i1s7927d4YNG5aWLVumYcOGqVy5ckaNGpVCobBYOPuIESOSJB988EF5W6NGjfKnP/0pZ555Zjp27Jj99tsv9erVy9tvv50XXnghv/jFL/LLX/6ywjy///3vM2DAgBx00EHZd999s/7662fChAl5+OGH065du9x///1L3Jdzzz03p5xySjp37vy1jgsAAAAAAAAAAAAAsGaotLoLAAAAAAAAAAAAAAD4Jv39739PWVlZfv/731cIZU+SkpKSxYLWTz311PJQ9iSpWbNmDjvssJSVleXNN99cbP6tttpqlYSyJ0mTJk3yyiuvZPfdd88zzzyTyy67LDfeeGNKS0tz5JFHZvPNN19sneeffz7vvfdeWrRoUd42YcKEJMmgQYNyzz335LbbbsvkyZMzYsSIHH/88Rk0aFAOOuigVVLz8iotLU2SpYaM16tXr8K4pVlWaPqS9OrVK9OnT8+BBx6YBg0afOX4GTNm5IEHHkitWrVy2GGHLda/rP1Y3n1YaOHt9MQTT+T111/Po48+mtLS0rz33nvZd99989xzz+WEE05YrrlWlRW9nWrVqpWddtopn376af76179WGPvwww/nrbfeSpJMnTq1Qt/pp5+e++67LzNmzMiNN96Yyy67LL179852222Xww8/PFWqVKkwvmPHjvnXv/6VLbfcMg8//HD+9Kc/5dZbb03lypVz9NFHp127dhXGl5WV5aijjkqzZs3yhz/8YaWOBQAAAAAAAAAAAACw5hHMDgAAAAAAAAAAAACs0V577bUkya677rpc47feeuvF2tZdd90ki4dLJ8k222yz8sV9yYcffpjOnTtn4sSJ6d+/f6ZPn54xY8bkggsuyCWXXJJddtklCxYsqLBOu3bt0rFjx1StWrW8raysLEmyYMGCXHLJJenRo0caNmyY1q1b56abbsp2222XV199NS+//PIqq/3b8OGHH+all15KmzZt8sMf/nC51lkY5H7ssccu1/j7778/M2bMyMEHH1weQv51XHPNNbnooosqXEaOHJmk4u104403Zr/99ku9evXSsWPHPPDAA2nVqlV69eqVMWPGfO06vklXX3116tSpk1/+8pfZfffdc/bZZ+eAAw7IwQcfnM022yxJUqlSxZ8vXHzxxfnpT3+a8847L2PGjMn06dPTv3//zJ49O127ds3jjz9eYfxrr72W7bffPg0bNsybb76ZmTNn5qOPPsqRRx6ZU089dbEQ/csvvzz/+te/0rNnz9SqVeubPQAAAAAAAAAAAAAAwPdGldVdAAAAAAAAAAAAAADAN6m0tDQlJSVp1qzZco1fUhh3lSrFr15/ORQ9SZo0afL1CvyCHj16ZNSoURk+fHiaNm2aJKlTp07OOeecfPrpp7nmmmty33335YgjjljmPPXr1y9f3nfffRfr32efffLqq6/mjTfeSJcuXVZZ/ctTU2lp6RL7p02bVmHcktx6660pFAo55phjUlJS8pXbfP/99/Pyyy+nffv26dq163LVuTDI/bjjjlti/xf3o1GjRhX6lrQP11xzTUaNGlVhXNeuXdO6devycZUrV85ee+1VYUz16tWz66675pZbbsmbb76Zli1bLlf9X9fK3E6bb755Xn/99Vx44YXp27dv+vbtm/bt2+fvf/97pk6dml/96ldZZ511ysf36dMnF154YU4//fScc8455e1dunTJP//5z7Rt2zZnnnlm+X133rx5OfTQQ1OpUqU88sgj5UHrbdu2zVVXXZURI0akV69eGTBgQDp37pwPPvggF154YX7xi19k5513XrUHCAAAAAAAAAAAAAD4Xqu0ugsAAAAAAAAAAAAAAPgmNWjQIIVCIZ988sk3Mv/yBIQvj+nTp2fAgAHZcMMNy0PZv6hbt25JkkGDBn3lXO3atUvlypWTFPf/yxa2zZo1a+ULXkFt27ZNpUqVMmzYsCX2L2zv0KHDEvsXLFiQO+64I5UrV87RRx+9XNtcGLJ+7LHHLtf4IUOG5JVXXknHjh2XGli/sL4l7ceS9mHkyJEpFAoVLgtD4jfYYIMkSa1atVK1atXF5lsdt9Oy9u+L7V++nTp27Jj7778/EyZMyJw5c/Kf//wnxx13XAYPHpwk6dSpU/nYp59+Osmi+/QXNW3aNB07dsyHH36YGTNmJEmGDh2aESNGZLvttisPZf+iL/9tDBkyJHPmzMkNN9yQkpKSCpdRo0Zlzpw55denTp263McGAAAAAAAAAAAAAPj+E8wOAAAAAAAAAAAAAKzRtt122yTJs88+u5orWba5c+cmST777LMl9k+cODFJUr169a+cq0aNGtlhhx2SFEOqv2xhW+vWrVem1JVSs2bNbLvttnn//fczatSoCn2FQiHPPfdcateuXSHA+4ueeuqpjBs3LrvvvntatGjxldubP39+7rzzzlSpUiU9evRYrhqXJ8h95513TrLk+1Pv3r0rjPkq7dq1S6tWrTJ9+vR8/PHHi/WvjtupQ4cOad68eQYMGJCZM2dW6Js5c2YGDBiQNm3apGXLll851/Tp0/PPf/4zjRo1Svfu3cvbF97XF96nv2zixImpVKlSeVj98oxPFv1ttG7dOscee+wSL3Xq1EnlypXLry/P3xMAAAAAAAAAAAAAsOYQzA4AAAAAAAAAAAAArNF+/vOfp3Llyvntb3+7xEDwcePGrabKKmrUqFE22GCDjB49OrfcckuFvqlTp+aKK65IknTr1q1C30cffZShQ4dm3rx5FdpPOumkJMlFF12UOXPmlLcPHTo0t99+e+rWrZvdd9/9m9iVpTrhhBOSJOeee24KhUJ5+9///vcMHz48RxxxRGrWrLnEdZcnNP2LnnjiiXz66afZc88907Rp068cP2/evNx1112pWrVqjjzyyKWOO+SQQ1K/fv1cf/31FcLUP/744/zlL3/J2muvnR//+MfLVWNJSUl+/vOfJ0nOO++8lJWVlff169cvTz/9dFq3bp1tttlmueZbFUpKSnLcccdlxowZueSSSyr0XXLJJZkxY0aOP/74Cu2zZs3K/PnzK7TNmTMnxx57bCZPnpwLLrggNWrUKO/r3LlzkuSqq65KaWlphfVuvPHGfPzxx9l+++3LQ9M32WST1KtXLwMGDFgsEH/MmDH5+9//npKSkvJA/C222CK33HLLEi+NGjVKlSpVyq8v7f4GAAAAAAAAAAAAAKyZqqzuAgAAAAAAAAAAAAAAvkmbbrpprrnmmpxyyinZeOONs//++2e99dbL+PHj89JLL2WvvfbKNddc841s+9FHH82jjz6aJBkxYkR528iRI5MkHTt2zDnnnFM+/uqrr86+++6b448/Pvfdd1+23HLLTJkyJY8//ngmTpyYAw88MD/60Y8qbGOXXXbJqFGjMmLEiLRu3bq8/dBDD83DDz+cBx98MJtvvnl22223lJaW5qGHHsrs2bNz5513pmHDhhXmOuuss/LZZ58lSd59993ytjp16iRJjjvuuHTp0mWl9++oo47K/fffn3vvvTcjRozIzjvvnA8//DAPP/xw2rRpk9///vdLPI6ffvppnnzyyTRp0iT77LPPMo/5QguD3I877rjlGr/wGB9wwAFZZ511ljquYcOG+ctf/pKf/exn2WqrrfKTn/wkSXL//fdn0qRJuf/++1O3bt3l2maSnHHGGXniiSdy1113ZciQIdlpp53yySef5KGHHkr16tVz6623pkqVil/979GjR/nyJ598sljbOeeck44dO5Zfv+WWW/Lyyy8nWXS73nLLLXnxxReTJF26dKlwnM4+++w89thj+fOf/5xBgwZlq622yr///e88++yz2WabbXLaaadVqOfNN9/MAQcckO7du6dly5aZNm1annzyyYwePTrHH398Tj755ArjDz744Pztb3/LSy+9lPXXXz/77rtvGjRokH//+9954YUXUrNmzVx11VXl46tXr57LL788J554YvbYY4/svffe6dixY8aPH5+HH344M2bMyJlnnpn1119/uY87AAAAAAAAAAAAAPC/STA7AAAAAAAAAAAAALDG++Uvf5lNNtkkV155ZZ5++unMmDEj66yzTrbbbrsccsgh39h233rrrdxxxx0V2t5+++28/fbbSZKdd965QnD5HnvskYEDB+byyy/Pyy+/nH79+qVGjRrZcMMNc8EFF+Skk05a7m2XlJTk3nvvzQ477JCePXvm73//e6pXr54ddtgh5513XnbeeefF1nnwwQczatSoCm0PPfRQ+XLXrl0rBLOv6P5VqlQpjz32WP70pz/lrrvuytVXX5211lorxx57bH7/+9+ncePGS9yXO+64I/Pnz89RRx21WEj5kowbNy5PP/10mjdvnj333PMrxycrFuT+05/+NGuvvXb++Mc/5rbbbktJSUm23nrr/Pa3v10sOP+rVK9ePc8991z+9Kc/5d57780NN9yQOnXqZO+9986FF16YzTfffLF1vnzMv9zWo0ePCsHsL7/88mLrDBgwIAMGDCi//sX9rl27dvr165eLLrooDz30UPr27ZtmzZrlzDPPzIUXXpiaNWtWmKtVq1bp2rVr+vfvn08//TS1atXKVlttlauuuioHHnjgYrVWrlw5zz77bK6++uo88MADueeeezJ37tw0adIkP/3pT3Peeedlww03rLDOCSeckDZt2uTaa6/NwIED8+STT6ZOnTrZaqutcsIJJ+SII45Y2iEGAAAAAAAAAAAAAChXUigUCqu7CAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAb1Kl1V0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA3TTA7AAAAAAAAAAAAAAAAAAAAAAAAAAAAALDGE8wOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKzxBLMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGs8wewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwBpPMDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsMarsroL+K4qKyvLuHHjUrdu3ZSUlKzucgAAAAAAAAAAAAAAAAAAAAAAAAAAAACALykUCpk+fXqaN2+eSpUqLXOsYPalGDduXFq2bLm6ywAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvsKYMWOy7rrrLnOMYPalqFu3bpLiQaxXr95qrgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+LJp06alZcuW5dniyyKYfSlKSkqSJPXq1RPMDgAAAAAAAAAAAAAAAAAAAAAAAAAAAADfYQuzxZel0rdQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAADAaiWYHQAAAAAAAAAAAAAAAAAAAAAAAAAAAABY4wlmBwAAAAAAAAAAAAAAAAAAAAAAAAAAAADWeILZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIA1nmB2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCNJ5gdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFjjCWYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAANZ4gtkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDWeYHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYI0nmB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAWOMJZqfc5ptvnpKSklSvXj2TJk1a3eUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCojmJ0kyeuvv5533nknSTJ37tz84x//WGVzl5SUpKSkZJXNBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAArSjA7SZKePXsmSVq0aFHhOgAAAAAAAAAAAAAAAAAAAAAAAAAAAACsCQSzk88//zz33ntvkuSuu+5KnTp18u677+b1119fzZUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKohmJ306tUr06ZNyyabbJJu3brlJz/5SZKkZ8+eSxxfWlqa3/72t9l0001Tu3btVK9ePc2bN0/nzp1zwQUXZN68eUmSiy66KCUlJeXrlZSUVLiMHDkySXL77benpKQkPXr0yOTJk3PaaaelXbt2qV69erp27Vq+/vz583PjjTdmhx12SP369VOjRo106NAhp5xySsaOHfvNHBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1ghVVncBrH4LA9iPOeaY8n979uyZ++67L1dffXVq1qxZPvbzzz9Ply5dMnjw4DRu3Di77LJLateunfHjx2fo0KEZOHBgzjjjjDRo0CBbbLFFjjrqqNxxxx1JkqOOOqrCduvUqVPh+meffZZOnTpl6tSp2XHHHbP11lunWrVqSZI5c+Zk7733Tp8+fVKjRo1069Yt9erVy8CBA3P99dfn3nvvTe/evbPVVlt9Y8cJAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO+vkkKhUFjVk86ZMyeVKlVK1apVV/XU35pp06alfv36KS0tTb169VZ3Od+YDz74IBtssEGqVq2asWPHpnHjxkmSDTfcMEOHDs2dd96Zn/3sZ+Xj77zzzhx11FHZY4898thjj1W4jcvKytK/f/9sv/325YHqSVJSUpIkWdpd7fbbb8/RRx+dJNlll13y8MMPL3bMzznnnPz5z39Ou3bt0qdPn7Ru3TpJMm/evJx00knp2bNn2rRpk6FDh1bYNgAAAAAAAAAAAAAAAAAAAAAAAAAAAABrrhXJFK+0sht56aWXcsEFF2Tq1KnlbZMmTcoee+yROnXqpH79+jnnnHNWdnq+JbfeemuSZN999y0PZU+SY445JknSs2fPCuM//fTTJEn37t0XC96vVKlSdt5555UORq9atWpuuummxe60s2fPzg033JAkufrqq8tD2Reuc91116VJkyYZMWJEHnzwwZXaNgAAAAAAAAAAAAAAAAAAAAAAAAAAAABrtpUOZr/iiityzz33pEGDBuVtZ555Znr37p02bdqkQYMGufzyy/PAAw+sijr5BsyfPz933HFHkkVB7AsdeeSRqVKlSl566aV89NFH5e3bbLNNkuSyyy7LnXfemcmTJ6+yerbccsu0bdt2sfY33ngjM2bMyFprrZV99tlnsf5atWrl0EMPTZL07dt3ldUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJpjpYPZBw0alC5dupRfnz17dh544IHsuuuu+eCDD/L++++nVatW+dvf/rZKCmXVe/LJJzN+/Pi0aNEiu+22W4W+Jk2aZM8990yhUMitt95a3t61a9f8+te/zoQJE3LUUUdl7bXXzgYbbJBjjjkmjz32WMrKyla6ntatWy+xfezYsUmSNm3aLHXddu3aVRgLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF+00sHskyZNSosWLcqvv/LKK5k9e3aOPvroJEndunWz99575/333//6VfKN6NmzZ5JiqP7OO++cLl26VLi88847SZLbb789CxYsKF/vT3/6Uz766KNcd911OfjggzNz5szcdttt2X///fODH/wgM2fOXKl6atas+fV3CgAAAAAAAAAAAAAAAAAAAAAAAAAAAACWYKWD2WvWrJnp06eXX+/bt29KSkqy8847l7fVqVMnU6ZMWeG558yZk1//+tdp3rx5atasme222y7PPffcV6738MMP5yc/+Unatm2bWrVqZYMNNsiZZ56ZqVOnrnANa7pPPvkkTz31VJJiyP6AAQMWu4wcOTJJMm7cuDzzzDMV1m/dunVOPvnk3H///fn444/z2muvZf3118/rr7+eyy67bJXWuvAEACNGjFjqmOHDh1cYCwAAAAAAAAAAAAAAAAAAAAAAAAAAAABftNLB7O3bt88zzzyTOXPmZO7cubnvvvuy0UYbpWnTpuVjRo8enXXWWWeF5+7Ro0euuuqqHHHEEbn22mtTuXLl7Lnnnnn55ZeXud4JJ5yQ9957Lz/96U9z3XXXZffdd89f/vKXbL/99pk1a9YK17Emu/3227NgwYJst912KRQKS72cffbZSZKePXsuc75tttkmv/jFL5Ikb731VoW+qlWrJknmz5+/UrV26tQpderUyeTJk/P4448v1j9r1qzcd999SZJu3bqt1DYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWLOtdDD78ccfnw8//DDt27fPhhtumI8++ihHH310hTFvvvlmNtpooxWa97XXXst9992XSy+9NJdffnlOOOGEvPDCC1lvvfXKQ8KX5sEHH8w777yTiy++OMcdd1yuvfba3HzzzRk6dGjuvvvuFd7HNdmtt96aJDnqqKOWOe7II49MkjzxxBOZOHFiHnnkkbz00kspKyurMG7evHl55plnkiTrrbdehb511103SfKf//xnpWqtUaNG/u///i9JcuaZZ2bUqFEVtnvqqadm/PjxadOmTQ466KCV2gYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa7aVDmY/9thj86tf/SqzZs1KaWlpTjrppJx22mnl/a+88ko++OCD7LLLLis074MPPpjKlSvnhBNOKG+rUaNGjj322LzyyisZM2bMUtft2rXrYm0//vGPkyTvvffeCtWxJuvXr18+/PDDVK9ePYceeugyx2688cbZaqutMm/evNx5553p169fdt555zRp0iS77rprfvrTn2a//fbLuuuum2eeeSYtWrRYLED/wAMPTJL86Ec/yk9+8pMcd9xxOe644zJp0qTlrvl3v/tddtlll3z44YfZcMMNs9dee+XQQw9N+/btc/PNN6dRo0bp1atXqlWrtuIHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA1XpWVXbGkpCR//vOf8+c//3mJ/VtvvXWmTJmS2rVrr9C8gwYNyvrrr5969epVaN92222TJG+99VZatmy53PONHz8+SbL22muvUB1rsp49eyZJ9tlnnzRs2PArxx955JH597//nZ49e+aee+5JzZo18/LLL2fIkCHp169f6tevn1atWuW0007LCSeckEaNGlVY/5JLLkmlSpXy8MMP59FHH83cuXOTJL/97W8XG7s01atXzzPPPJObb745d955Z/r37585c+akZcuWOfnkk/PrX/86LVq0WMEjAQAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/ipJCoVBY3UV80SabbJImTZrk+eefr9A+ZMiQbLzxxrnxxhtz4oknLvd8xx13XG6//fa899576dChw1LHzZkzJ3PmzCm/Pm3atLRs2TKlpaWLhcQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvftGnTUr9+/eXKFK/0dTf2yCOP5JBDDslmm22W9u3bl7cPHTo0l112WcaOHbtC882aNSvVq1dfrL1GjRrl/cvrnnvuSc+ePXPmmWcuM5Q9SS699NLUr1+//NKyZcsVqhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+O6qsrIrlpWV5bDDDsuDDz6YJKlZs2aF0PSGDRvmN7/5TRYsWJBzzz13ueetWbNm5syZs1j77Nmzy/uXR//+/XPsscdmt912yx/+8IevHH/uuefmjDPOKL8+bdo04ewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsIaotLIrXn311enVq1dOPPHETJkyJWeddVaF/iZNmmTHHXfMk08+uULzNmvWLJ988sli7Qvbmjdv/pVzvP3229l3332zySab5MEHH0yVKl+dP1+9evXUq1evwgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWDOsdDD77bffnm222SZ//etfU69evZSUlCw2pn379hkxYsQKzbvFFlvkgw8+yLRp0yq0v/rqq+X9y/LRRx9l9913zzrrrJOnnnoqderUWaHtAwAAAAAAAAAAAAAAAAAAAAAAAAAAAABrnpUOZv/www+z4447LnNMo0aNMmnSpBWa96CDDsqCBQty0003lbfNmTMnt912W7bbbru0bNkySTJ69OgMHTq0wrrjx4/PrrvumkqVKqV3795p3LjxCm0bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgzVVnZFWvWrJnS0tJljhk1alQaNGiwQvNut912Ofjgg3PuuedmwoQJad++fe64446MHDkyPXv2LB935JFHpl+/fikUCuVtu+++e4YPH56zzz47L7/8cl5++eXyviZNmqR79+4rVAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsGZY6WD2LbfcMr17987s2bNTo0aNxfonT56cZ555JjvttNMKz33nnXfm/PPPz1133ZUpU6Zks802yxNPPPGVc7399ttJkssuu2yxvp133lkwOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8j6q0siuecsop+fjjj3PggQfm448/rtD30Ucf5cc//nFKS0tzyimnrPDcNWrUyOWXX55PPvkks2fPzmuvvZbddtutwpgXX3wxhUKhQluhUFjq5cUXX1zhOgAAAAAAAAAAAAAAAAAAAAAAAAAAAACANUOVlV1xv/32y69//ev8+c9/znrrrZfatWsnSdZZZ51MmjQphUIh559/fn74wx+usmIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFZGpa+z8qWXXprevXtn7733Tq1atVK5cuWUlZVl9913z9NPP53f/e53q6pOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICVVmVlVxw9enSqVauW7t27p3v37quyJgAAAAAAAAAAAAAAAAAAAAAAAAAAAACAVarSyq7Ypk2bnHfeeauyFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACAb8RKB7M3bNgwjRo1WpW1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8I1Y6mH3HHXfMq6++uiprAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4Rqx0MPull16ad955JxdffHHmz5+/KmsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFilSgqFQmFlVjzmmGMybNiwDBw4ME2bNs3mm2+eJk2apKSkpOIGSkrSs2fPVVLst2natGmpX79+SktLU69evdVdDgAAAAAAAAAAAAAAAAAAAAAAAAAAAADwJSuSKb7SweyVKlVarnElJSVZsGDBymxitRLMDgAAAAAAAAAAAAAAAAAAAAAAAAAAAADfbSuSKV5lZTcyYsSIlV0VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBbtdLB7Outt96qrAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Buz0sHsAHyz3n8/ueWWZOLEZLvtkh49kpo1V3dVAAAAAAAAAAAAAAAAAAAAAAAAAAAA8P1U6etOcPfdd6d79+5p3LhxqlevnsaNG2fXXXfNPffcsyrqA/if9OijyTbbJFdckdxxR/KLXyRbb52MGrW6KwMAAAAAAAAAAAAAAAAAAAAAAAAAAIDvp5JCoVBYmRUXLFiQQw45JI8++mgKhUJq1KiRJk2a5NNPP83s2bNTUlKS/fffP7169UqlSl87//1bN23atNSvXz+lpaWpV6/e6i4H+B9y333JYYctue+II5J//OPbrQcAAAAAAAAAAAAAAAAAAAAAAAAAAAC+q1YkU3ylE9Ovu+66PPLII+ncuXMGDBiQzz//PCNGjMjnn3+egQMHpkuXLnn00Udz/fXXr+wmAP7nzJyZnHHG0vsXLPj2agEAAAAAAAAAAAAAAAAAAAAAAAAAAIA1SUmhUCiszIpbbLFFZs+enXfffTdVq1ZdrH/evHnZbLPNUr169bz11ltft85v3Yqk2wOsiLKy5O23k/Hjk/btkw4dFvXdcUfSo0fF8VWqJPPnF5cPPTS5995vrVQAAAAAAAAAAAAAAAAAAAAAAAAAAAD4TluRTPFKK7uRDz74IPvuu+8SQ9mTpGrVqtlnn33ywQcfrOwmANY4w4cnP/pRstVWyZ57Juuvn/zwh8mIEcX+u+5aNLZateT++5O5c5M330w222zx+f72+t9y0AMH5aAHDsp/Jvzn29kJAAAAAAAAAAAAAAAAAAAAAAAAAAAA+B5a6WD2atWqZebMmcscM3PmzFSrVm1lNwGwRnn55WTTTZO+fSu29+2bHH54Uigkr766qP3qq5NDDklKSopB7i++mLRrV3HdXkN65aH3HspD7z2UV8e+GgAAAAAAAAAAAAAAAAAAAAAAAAAAAGDJVjqYfcstt8wDDzyQcePGLbH/k08+yQMPPJCtttpqpYsDWFPMnp387GfJ558vuX/u3GT06GTGjOL1unWTY46pOKZhw+T88yu2vffZe4uWJ74XAAAAAAAAAAAAAAAAAAAAAAAAAAAAYMlWOpj9jDPOyKRJk9KpU6dceeWVeeONNzJmzJi88cYbueKKK7L11ltn8uTJOeOMM1ZlvQDfS3ffnYwcueh669bJmWcmBx6YVKlSbBs8eFF/165JjRqLz1O9+qLlKbOmZPyM8eXXh3w2ZFWWDAAAAAAAAAAAAAAAAAAAAAAAAAAAAGuUKiu74j777JMrrrgi55xzTs4+++wKfYVCIVWqVMkVV1yRvffe+2sXCfB9d889i5Z32CF54omkYcPi9TffTM4/v2Iw+wYbfPWc7332XsXrE99byshkzvw5KSuUJUlqVKmRkpKS5a4dAAAAAAAAAAAAAAAAAAAAAAAAAAAA1gQrHcyeJGeccUb233//3H333Xnrrbcybdq01KtXL1tuuWUOP/zwtG3bdlXVCfDdNv3D5N0Lkk9fSMrmJfU6JusdmrQ7PmUlNfLGG4uG3nDDolD2JNl66+T225PzzlvU1qHDV29yYRB787rNM276uIycOjKz5s1Kzao1Fxu73S3b5e1P3y6u93/vpePaHVdmLwEAAAAAAAAAAAAAAAAAAAAAAAAAAOB762sFsydJ27Ztc/7556+KWgC+nz66NXn9xKQwf1HbZwOLl+nDMqzOdZk2rdi8wQbJFlssPsU66yQzZy663qrVV2/2vc+Kwey7tNklD/zngcxZMCfvT3o/WzStuIHP532ewRMGl19/bexrgtkBAAAAAAAAAAAAAAAAAAAAAAAAAAD4n1NpdRcA8L02bWjFUPaSykm1tRb1l83N668vurqkUPaFZs9etFyr1ldvemEw+4Zrb5gOjToU2ya+t9i4QZ8MyoLCgvLrr499fbExAAAAAAAAAAAAAAAAAAAAAAAAAAAAsKZb6WD2K6+8MmuvvXbGjRu3xP5x48alcePGue6661a6OIDvvCF/XhTKvu4Byb6jkwMnJfuNSTY4PUmljBq1aPjGGy99qrKyRcslJV+96YUh7Os3Wj/rN1q/WM7EIYuNe31cMYi9cknlCtcBAICVVCgkEwckb/8mefOUZPDvk/EvJGXzV3dlwHfMjBnJ8OHJxx9XfN0PAAAAAAAAAAAAAAAAAAAAAACsHisdzN6rV69svvnmad68+RL7mzdvni222CL33XffShcH8J1WKCSfPl9crtM22eHepNZ/HxNrrZtsdVWy2SWZOXPRKo0bL326GjUWLc+evexNfz7v84ycOjLJf4PZ1yoGs7/32XuLjV0YxL73+nsnSd4a/1bmLpi77A0AAABLVvpe0nvrpE+XZMgfkw+uT949P+m7S/L8Tqu7OuA7oFBIHn882XffpEGDpF27pGXLZO21kxNOSKZOXd0VwhqupGT5LgCr04K5yeQ3kwn9ktIhSdm81V0RAAAAAAAAAAAAAAAAAAAA/M9Y6WD2YcOGZeONN17mmI033jjDhg1b2U0AfLfNHJF8Pqa4vO6BSeVqi4+p3ihzv5CBXqXK0qerVWvR8iefLHvT73/2fgoppCQlab9W+2yw9gZJlhLMPrYYzH7oJoemRpUambNgTgZPGLzsDQAAAIubMynp+6NkyqDi9ZotknX3T9bunFSqmsz6iify8HWULUgmvJR8dGvxMr5PMm/66q6KLykUktNPT/bbL/nnP5MFCxb1TZmS3HxzMmbM6qsP+Po+/jjp3z/p1y8ZMaL4dw+w3OZMSt48JXm0edK7U/J81+SpjZOHGiWDzlrd1QEAAAAAAAAAAAAAAAAAAMD/hGVEBC/brFmzUrt27WWOqVGjRmbMmLGymwD4blsYxpgkjbZd6rAvPlTOmrX06Vq1WrT8Vee0WBjA3qp+q9SsWjPrN1q/uN6kYZlfNj9VKhUf3qfOnpphk4uTbdti22zWZLO8Nva1vD729WzVbKtlbwQAAKjow5uSWeOKyxv+OtnskmIge5LMnpAMv/0b3XyhkAwdmgwalHz+edKwYbLZZkn79klJyTe6aVanQlky9Mrk/asXD/+vVDXZ9takzU/LmwZPGJzXxr6WJNmuxXbZeJ1ln1iRVeuxx5Jrry0u162bXHppcthhxRO1vf56cs01q7U8+N/w5aT0hf9JfkWC+pw5xZMlzpuXrLNOUr/+or7585O//CW5887i/8Nf1KpVcuutyS67rILage+0efOSiRMXPU7UrLmCE8wtTfp0SaYNLV6v2iCpv1Ey57Nk+gfJ2MeTLa9Y1WUDAAAAAAAAAAAAAAAAAAAAX7LSweytWrXKwIEDlznmlVdeybrrrruymwD4bptbumi5VotFy4+tlxTmF5cr10q9eotS1ocPX/p0m2yyaPkrg9knFoPZN1h7gyQpD2afVzYvH03+qLz9jXFvJEnqV6+fNg3aZMumWxaD2ce9nhNz4rI3AgAAVPTxw8V/a7VMNvtDUqnyor4a6yQbnf2NbHbBgmLQ83XXJaNGLd6/337Jo49+I5vm21C2IJn8RjLjw6SwIKneOKm/SVK7ZbH/3QuS//yhuFy7ddLqkKTaWsXxY59IZn1cYbrfvPCbPP7+40mS/Tvun0d+8si3uDPcckvF5UMOWXR9l12KlwULvv26gCUrFJL770/+8Y+kb9/iiU8WatcuueSS4t/xAQck//xnsb1OnWSvvZJGjZIRI4rrDR0qmB3WBIXC4ic8KitL7r03ue++4t/7zJmL+jbdNPnjH5O9917U9pfX/pKx08YmSU7f/vSsU3udRZ0fXLsolH3j3yYbnZdU+W+6+8zRyegHvoG9KioUkiFDkj59ksGDk9mziyeg2GSTZPfdk9atv7FNA3zr5swpPj+bPj2pVStp2zZp0GB1VwUAAAAAAAAAAAAAAAAAwHfJSgez77XXXrnmmmty66235phjjlms/5ZbbsnLL7+cU0899WsVCPC9sGDOouVZ4xYFs1epnU03XdQ1ePDSp/hiMHv//sXAl0qVKo5ZGAzz3mfFYPahnw3NgQ8cmEKhUD5myMQh5cHsr419LUmyZbMtU1JSkq2abVWhHQD4Dimbn0x9O5n1SZJCMZi33oZJtforNd2+9+6b54Y/lyS5vPvl+eW2v1yFxcL/oHkziuHZSdJ010Wh7GXzkkLZonGVqiYllRZf/2s45ZTkr38tLrdunfzyl0mHDsVQyFdeST78cJVu7n9ToZBMfDkZ/1wy6bVk/vSkcs1iEHqj7ZK2PYq37aq0YG7y7vnJRzcnc6cs3r/BGckmFyRDrypeX2fnpGvvpHL1inPMGld+ddLnk/LUsKfKrz/5wZOZPGty1qq51qqt/fukUCgGoH72SjJ3clJSJanVPGmwRVK3w+Lpq1/h3/8uBpq+8koyYUKxrVmzZOutk4MOSp55pthWr16y//5LnqNy5SW3A9+uQiHp0SO5887i9caNk5/+NGnRIpk4MXnhheRf/0qqVVsUyr7ttsW/84YNF80zefKixwO+BbM+TcY+nkzoWwyyTllSfe2k3sbJeocmDTdf3RXyPdK3b9KrV9KvX/E59dy5xeDejTdOTjwxOeKI5NBDi2OSpEmT5LDDkqZNk/Hjk+efT159dVEw+5jSMTn1mVNT9t/XB2vVXCu/6vyrYmehkIz8R3G5/sbJphdXfB5Su1Wy4VnfyH5++GHx8e3VVxe1NW5cfD3x+edJly7FzyQAvu8efTS5/vpk4MDiCSi+aPvti+0LzZ+fvPtu8v77xbF16iTt2xc/r62y0t+iAQAAAAAAAAAAAAAAAAC+U2Z9mnzydDKh339zekqSGk2SBpslrQ5Jardc3RWyGq30T0rPOeec3HvvvTn++OPzj3/8I927d0+LFi0yduzYPPvss3nppZfSvHnznHvuuauyXoBvx/IEs41+aNHy7PGLltfZOZk5MpnxUZKkU6dFXa+/Xvxxf40ai0/Xvn0x6Gnu3GTcuOTpp5O99lrUP39+0rNnMRBmYTD76NLRGV06usI87332Xn6cHxe3N+71JMmWTbes8O9/Jv4nM+fOTO1qtb96PwGAb9bn45K3zkrG/jOZP+NLnSVJp78kHX6xQlN+OPnD/PODf5Zfv/616/OLbX6RSqs4LBr+p8ybumi5VotFy/0PSMY9sej6j15OGndedH3OZ8XQ0MKCpGrdpFarpEqt5d7sBx8kf/tbcbldu+Stt4phYQsddljxtQJfw/zPkwE/WXQ7NtyyeGKMJJny72T4rUmrg5JqDZc+x5dMmZI88EAx0Pftt5Np05KqVZPmzZMtt0wuuCCpN+TnyYjbkpQkG5yWtPpJ8U3bOROTiQOK95mPH04WzCpO2vGsiqHsSVK5WlKndfnVXkN6ZX7Z/HRu2TmFFDJwzMA8OOTBnLD1CYvVeGbvM/Pq2GI655nbn5kfb/jj5d6/742xTyRvnlx8jZ4Ug3sr1yieBKWwIOnWJ2m6S7FvzqRk0qvJ1HeK/x9XqpbUaFZ8E32tTpk5q3KOOip56L9vBbRokfzgB8UA9rFjk0svTWrXThYsKPZvtFHxNf5XKSuU5ZPpnyRJqlWulsa1G6/aYwAs1fPPLwpl/8EPioHr9b9wTqRCoRi4fthhi9r++MeKoexJstZaxQvfgo8fTV75WfFxulrDpPFOxcf22Z8mw29JyuYkDa9a3VXyXTJ3SvH5eJJUW6t4+e97/yedlNx4Y7FrvfWKJ0Nq0aL4vO2115Jnny0+714Yyt6tW/LYY0nduoumLytLPv100fXb3rotZYWyrFtv3Xw87ePcMuiWnLXDWSkpKSk+x5s+rDiw2e6LPoOY9NqiGpNk7R2Sag2Ky4VCMnPEf19PzE+q1E3qtElqrLP8h2BusuuuyYgRxRPB/uEPyf/9X3E/CoXkP/8pfm4B8H136aXJeecVlzt0SE49NenYsfhYPXjwopNojR+fnHNO8uCDxRNUJMXXcnPnJvPmJTvskAwYsHr24buiUEjmzCm+pv3yScQBAGCNVSgkn49JJr9e/LFFoVB8j6ZOu6ThVkmVmqu7QgAAAAAAAAAAAABgRY24M3n9pGTB58XfmjfaNqnaIJk5PBnzQFJSKel4+uquktVopYPZGzdunL59++anP/1pXnzxxbz44ospKSlJoVBIkmyzzTa5++6707jxiocJzZkzJxdccEHuuuuuTJkyJZtttll+//vfp3v37l+57tixY3P66afn2WefTVlZWbp165arr746bdu2XeE6gP9h/30sS1IxpP2L7TNHLVqe/Eay3qHF5R/2SYZekwwq/ge71lrFAMWPPkpKS4uBTyd8KRPv/vuTn/wk2XTT5M03i20nnpj07p1svHEyffqidY45bl6GTRq21NIXhrYnyetji4kq1756bW54/Ybyx+iyQlkGjR+ULq26fPWxAFheZfOL4aGj7k9K/1MMRlvweVK1flK7ddLu2KT9iat8s7NmFU9m8eSTyfDhycSJyeefFwP12rRJjj8+2WOPVb5ZWDUWzEme3zmZ8WFSq2Wy/V3JOt2SqvWKf0OT/lUMXltBf339r0mSIzc/Mi+MeCEfTPogzw9/Pt3bffVrqjVaoawYzDd3alKpSlKtUVK1zleuBkmSyl/4sf0XgxOXZG5p8p/fJ2MeLAZCV6qWVG+UzJteDBJtfWSy/R2Lhs8tvl6YPLn4mqFq1aRJk2KQ2L33LnoZcuyxFUPZF6qy0u/u/A/5/ONk1vhk7uTiG6LV1ioGKVSrn7x/7X9D2UuSzvcnrQ7+0rrjkirL/1jx/PPJgQcWb8u11kp+9rNFId2jRiV9+ybTP/ko9Ub+9z6w/snJVlcvmqBOm+KbuEnyzgWL2htuVfx31qdJ3y88ntdtn+z4cJLk7nfvTpIcvNHB5cHsd79792LB7EMmDsnV/7o6lStVzvyy+fns88+y7wb7pnKlysu9n995Uwcn/fcrPvY33zvpdENSu1Wxb8GcZOLLSZ22yYLZyb9PSz66pRjW3mCL4jFNSTLziWTqW8neH+WSS1qWh7L/3/8lV11VMXh91qxisOlCc+cuX5l3v3N3jnz0yCRJraq18uHJH6ZZ3WZfc+dZaMGCYtjssGHFx9gZM4qhiy1bJttsk7T6711i/PhiAO+oUclnnxVvz/r1i0G9u+1WfDxe6D8T/pNpc6YlSbZstmVqVFnC2ff4Xlh44pMkOffciqHsSfEtwSZNKv5t77jjt1MbSzB3avKvo4vPpRrvlOz8RPGkNwuVLah48kz+d80YWXwu/unzxefiJZWSyrWT+dOLH5J3uiG93z+8PJS9a9fi+/BfPqHK3LkVT5x6wQUVQ9mTYlhts//+t72gbEF6DuqZJLl+j+tzwj9PyAeTPkj/0f2z03o7JfNnLlrxi6/z3zk/Gf/souu7vlp8H+2d3yRjHi4+f6221n9fT0wrvlew3hHJDv9YrsNx113FUPYk6dGjGEa8UElJsskmxcv/nLJ5yfjniifJmzmqGJyfQvF9gjrtkg1OSep1XN1VAsvp44+T3/2uuNysWfGz1i8+Znfvnpx+evHk2TvvXDwJXqVKyeWXJ8ccU3ztXlZWbP/3vxetN2JE8XOHDz5IJk0qvp6oU6f4OmKPPZKddvp293NlFQrFEPqF7ztVq5Y0bbro+e/06cnddyePPpq8+27xNdHcuUnlysm66yaHHpr86U+rdReALyqbl0zol0wZVHyfev6MpHKtpGaLZO3tkrW3X755vvg9mGUpFIrvpX3yTDL28eJJg7743Kluh+KXTz13AuD7oFAofhZUUrni/4UTByZvnFQ8eW/lmkmDzYsnhpw7OSkdnLQ9Jtn6utVXNwAAwNfx+bji99HnfJbMK00qVU9qNk3qbZQ0WMqHxYXC8r+HCAAAALAqTB1czKmY9n4ye0JSNmdRRkWrg5N1vidf2gQWmfpuMuq+ZPLrxb/redOSKrWTWusmTX6UbHjm6q4QAID/BTNHJ68dn5TNTVrsl2z/j4p5Y/M/L35n+Bs0f34ydWoyZUoyb17SoEHx932VKn2jm2UFfK3org022CCvv/56Xn/99bz22mspLS1NgwYNsu2226ZTp04rPW+PHj3y4IMP5rTTTkuHDh1y++23Z88990zfvn3TpcvSQ4RnzJiRbt26pbS0NOedd16qVq2aq6++OjvvvHPeeuutNGrUaKVrAlhM7fWKl5mjkpF3J5v9Pqm85DCunXYqBi0mxR/+16hRDOcbNy658MJk0KBiMPuhhy4KZh87Ntluu2SLLYoBUFOnFvs/mvJR5pXNW2pZ700sBrN/Mv2TjJ0+NkkxiH3ugoqpcK+Pfb1iMHuhUPyS3dypxSDlStWT6msXg2F9oQ74KoVC0n//ZNyTxbCozf9YDEqr1rD4Bvm0IcXg9oXmTkkmDiiGpM6dkhTmF0OpajVP1t6h+Gb6chg1qvgYO3p00rBhcvbZyQ47FF94TJuWDBlSDByB76xR9xRD2ZNkm5uS5rsXAwVnjSu2rbVNUrJiL9tmzp2Z2966LUny861/ntb1W+fily7ODa/f8L8ZzF42vxi2O/q+4uNO9bWLIfglJcmsT4ohJru9WXz8+R649l/X5vEPHk+SbL/u9vn9D3+/mitawxQKydxJxf+b5s34b4B/w6RG0+L/b7VaJp+PSSZ/IaWr8/1J6ZDk2W3+O0dZ8tK+ycSXkprNk259kibdioGQhUIya2wyo5iM+OqryR//WAzynjs32X77YoBYWVkxVGzs2OTgL2SEr7POt3gs1gRlC5L3/pSMuCOZPqwYuF2ndVJStRjcWjo46do7GX5LcfxanRaFsk95uxi+sFCjbZYrXGjGjOTII4tBZ3XqJG+8UTxRzBddeGGSka8W7ytJ0my3RZ0vH5KUzS4ul1RZFNCeJHMm/Pexquy/99OpxdduKc4zcurIvDz65STJgRsdmCQ5vffpeWnUSxk1dVTWa7Be+VSXvHRJCinkrO3PyhPDnsjgCYPzwH8eyGGbHvaV+/i9MfTK4jEuqZzscE8xvHduaTLzv8mk1RsV+4Zcmnz49+Lx7to7abZrxXnmTU+hpHquv754tXLl5LLLFg9vrVmzeLK1+vWLt//bbxffFG/YcOklzpo3K7954TdJkp3W2ykvjXopF/S9IDfve/Pig+fPLAaxzp363+fOtRc9NnnNvpiysmKA7t/+Vgwf3HzzYgDjWmsVQ9j790/69CmGCx5+ePLUU8Xb9oADkm23Ld6O06YV369JFgWzv/vpu9n6pq3L35f5dedf508/klD4ffXpp4uW27Vb+rgaX3i7b9q0ZO21v7malmT69OLJBUpLi8tVqiSNGiWtWxeD4/9nfPxIMm9qcXnj3xQf1wtlycgvhFNXrpG0OmS1lMd3xOyJybPbFoMi1+6cdHmw+BywUuVk/qz/hmvVyJ13LlrltNMW/389KbaN/0LWf/v2y950n+F9Mrp0dBrXapy9OuyVwzY5LNe9dl1u/vfNxWD26msXn3sUFix6PpIk6+5f7Bt1T/F62fyk357J5DeT2m2Srs8Un6cu/P9+zuRkxvDlPiRvv71ouVu35V5tzTa3NOmzY1L6bvEYb3BaUn/j4mPI7AnFE/PMnihcFL4FI0Ykzz1XfH/ks8+Kn4WWlRXf32/dOvnVrxadTGlZnn8+mTOnuHzggYufSGOhW28thqwnxRNunXXWor5KlZKOHYuXWbOK78c8+WTx4feww4on8lhrreJJYd9/Pxk48LsfzP7ee8k11xRPQjVyZLL++sUvbC1YUHzfqUGD5MUXiyet+vDDpFat5NJLk733Lr4HNXt28XiNGVNx3rFji5fS0uKYWrWK87ZtW3xtDHyDPn40efW44nuDjbskTXct/vBw/ufJ9PeLz3eXN5h94dlAF1r4fPPL7XOnJM/tkEwbWgxh3+D0pP5GSaUaxfeqpgwqjvmCjyZ/lAkzJyRJ1m+0fhrVWvL39WbNKr5/Vlpa/JJpnTrFxxOPJcB32ucfJ6N7JZ++UPxMf+6U/54Urlbx5LAb/zZZ+weru0oWmjul+F2BcU8l094rvp9YpdZ/w9mrFN9L7Hhm8tLexbHNdk92uDep1mDRHGXzi//nLfT5uGRi/+J3DeZNLc5VpW7xc+Em3ZJaLb7tvQQAAFiyaR8krx1XfA1Ts1nSdPfiv4X5yWcDk2l/SPZ4u/i9tOG3F38HUvpusmBuUrlakpLia6dmuyfb/HV17w0AACl+nDt7dvH7zLNmJdWrF79TvKTvQALA90ahkLx6TDLi9uJn7x3+L2l5YDHnZu7UYkbF9A8Es8P3zZDLkrd/naQkWf+UZMOzk+qNkwWzkukfJrM+Xt0VAsD307wZyZiHkvHPFn9nOndy8fO/yjWL32NsfWTS5qff3PbnTi1uc9704vdnq9YvfgZZqeo3t034ukbcWQxlT5LN/1AMZZ83o/gZ+ULVGizKPFwwu/hbmdkTF2UbVK1f7F/4W+TlMHductNNySOPJC+/XPwNXocOxX8nTy7+vu+OO5J99llle/q/qVBW/J74jBHFx6iy2Unl2kmNJknJcvw49b++VjD7Qttss0222WabzJ8/P++++26SZN68ealadcUfJF977bXcd999ufzyy3PWf38Je+SRR2aTTTbJ2WefnYEDBy513b/+9a8ZNmxYXnvttWyzTTEQbY899sgmm2ySK6+8Mn/84x9XYu+KIcd3vH1HkqR21do5u/PZqV6l+krNtVwKZcmMj4rBbvNKi19wSUlSpU7xBm68QzF8CVj9mu6afHRzMdSv/wFJp78ktdYrXv+Ck09Obivmo+bzz5OjjkqOO6541pIk2Wqr4r8/+1kxpO/zz4vXZ85MBgyouMmFwes1qtTIuye9m5IUfyD73PDnctKTJ+W9z95LWaEsr497vXydKpUWPdwvKFuQQgqL+if/Oxnyp2RCv6Ra/WStbYtPEMrmFn9AVLlm0uWBr3+sgFXi00+LIYJvv51MmFAM/0yKIYINGyZ77pnsttuy5/hGjH920QuNLa9K2h5VXB51XzH0eKEFs5NXjkzGPFj8MWLb45J6GxQ/KJs3rfij/krVljuY/eSTi6HsSXL33ckee1TsX8Y5feC74fMvfGhU57/JvXMmJo994W+gXsdkr/eWe8p73r0nU2dPzUaNN8p2626XpnWa5pKXLsk/P/hnRk4dmdYNWhdDOkb+I5nwYlL6XlKjcfGkLJWqFP9mCwuSnR5fM974euf8YjBz5RrJzk8mTbtXDLCdM3mFX1+NGlU8mc777xe/zLbwsbhu3WJoyM9+Vvxy27PPFscNG1b84lvVqsXH67KypHHjYjDSirxsfmXMKznz2TPTpE6TrFVzrfyh/x+ydbOt8+MNf7xC9f+venrY0/l4WvFvboeWO2TjdTZe1DljZPLuBcmnfYo/JFln5+IHvIWyYhj2jOHJj/oXQxM/uD6Z9K9kfJ+k6Y+KP97/4n2odEgxlD1JNjonabpLcfmD64v3t/9679Ots8sutTJzZrLhhskLLxTvP180b17Sq9ei6336JMceu+qOySq3YG6yYGayYE7x//OqdVf4cWTo0OT++4uB5qNHF49J9erFgLR584p/O7ffvpyT/ef3yeCLim/o/6h/Mazoiwplxce7hc9VKn3h26if9E6GXlF8TE6Sra5drmDG998vnoArKQZBfzmUvVy1L6R1z/ls0XKlKsn00cnUt4vHbqPzkpxb7Bv7eNJwi+IHE/uPTd48Lfng2vJV73m3GObZoEaD3PDaDeXLU2dPzb2D7805Xc5JkgyZOCT3D74/1StXz6k/ODUbNd4oRz56ZC556ZIcsvEhqVyp8lfu57IszG76Olnh88vmZ/Ks4t9L9crVU79G/RWfZO6k4r9VahffU0uKr3v777doTJujks9eKS433GJRKPvHj1UI+i20PCzz5x+QpPg4Xnkph6h69WJ43y23FIPurroqueSSimOmTi0em/r1k2tfvTZjpo3Jj9r+KHcfcHfaXNsmt751a077wWnFx6hCIf/P3lmHuVWmbfwXzySTcddOp+4utKWUtri76yILiy0fLLIsugvsAsuixd2KU6RQirWlVKh7pzMdd8vE5ZzvjyeZTNqZdlqK7ebm6kUmOTk55z3v+7yP3g/bH4fSFySJLH16SHeOg0AHOHdCztHQ/4p9H5//cvz73/D3v8vra66Rv7ubk+eeK6TsILLlnD3EGYNKkIs/uhi/4ufBwx7kH4v+wQPfP8CpQ05lbM7YA34PMfSA3giXXUnkesCwYRG/2+LFMHRo98cddRTMmSOv33wT/vSnXp1+j/D7heSypETI1sO+wLA+OWUKvPGG6Ivr1sGIETBzpuyDqir+gO3bYd68n34tvxuowcjrsH6hKrD6BtE/Ak7R32LE7P/bKHkqor9NeAYSBwsJd8mcyDHmDAyGkZ1/hu257jB0KGzYIK+XLJHmqj3hmVXSWOWg/INYXbeaIelDAHhn0zs8csQjJMclQ+YsqPtcGg14H5RGMf3/KCTyYWL2trVCyg4w5GZpEASSlNqV8DJpWK+C97lduMA278W14HZLU5J16yJ+R69XGlSkpsK0adJM6nePTfcJoQDAoQvFH+Nrg+blojumTYnFYX+vsG+FyvegeZmsF0NCyM5Txe7rczYUnvFrX2UMIfz973DbbaLbnH++kKT37St2VXOzNF3tLRK7mIwNDT0fV10ded2nT8/H3X67kLID/OtfcP31vb+W3wq2bhWZ3d4uhOzbtkUaToXR0iKNx0pCfUPvvBOuvjryeXx8pCmRwwF/+Qt89JE0LjnqKNFRbTbRZSsqhNT+xht/mfuLIYb/SXgaYOk5Yvv0OQcmvSw2srNC4q9hdJImhb7mkXXqcolPy2YDq3UffHcb7pH4LcCMhWDNFz938zKxzVInRPlVtzRtYeKzEwkqQZx+J+NzxvPdhd9h1ovu2tAge8BXX8GOHWL/9usnOmdHhzSSuPJKODEW9oghhhh+i2hZDQuniSwuugBG/RNs/UQehvNdTL9wV8f/RvjtUsxg3yqvgy6J3xoSJEaWd6IUOpQ+C42LZS+05Ml+pNHIXmhOh3FPhhqzbYSUsXDoV9JcpPN3OqShdvVHEZ/L4BslbzJc+B+G3goj/g6LT5F4sq0/FF8isSWtWYouHDtkDsSI2WOIIYYYYoghhhhiiCGG3wJUFRafJDZR0giY/b3YNn675HeG4euAb4+EpiVgGwhT34tuHO537FPj8DBaW2H9eikkdzrFP2kwSEynb9//krhzDDHEEEMMMcQQwwGE3w+NjaI7eTyg14vulJEhcd5nn4X33oPlyyWXY9QoSEiQ/L66Oqld+de/fu27iCGGGGKIIYb9RM3HQsoOMP4pIZFUVakDNKVB+sFScxlDDDH8fuCuhXW3yOv+V8LYh+V1wyIhcjXYwDBY/JWGBMnbaF0j3wt0CN+V1gymFCG+7EVtdwwxREFVpAmA3wGoUpNtsAnfQAwxxBDD7xm+VvhiMnRshdRJMPoBSB4tnDcBl+Qxdo0FHih4m4W7qe5zyb3MnAHmLJGr3iaJJx70OlgLD/xvxxDDgUCYlB1EzwTho1n5R8kLV3yyllLGS/Pzmk8lZzn/FJnXWgO4qoWHpt+lkDapVz/7hz/AK6/I64cfhiuuiOYZ8/nEHxzDfkJVYfP9sOVBkU2FZ0l+hCFeuAZaf4RA8t7PE8I+eR7Kysr4+uuvmTp1KgMGDIj67OOPP+biiy+mqUnIpJKTk3niiSc47bR9I8F455130Ol0XHrppZ3vmc1mLr74Ym655RYqKyvJz8/v8bthkvgwBg0axMyZM5k7d+5+EbPvaNnBUe8ehcvv4twR53L/kvtZVbeKuafMxaDbB3Kx3la0VX4AKy6TgrpB1wvJmykN0ApJu6tCHnyMECCGGH4bGPyXUCcUL9R+BvOKAQ0QTQA1ejRccEE0gWCYlL0rMjPhppvgb3/r+Sc3Nwl7Sv+U/vRL6df5vjvgBsDld1HZXsmKaiFen5Q3iaUXL+087tFlj3L1/KuFmN3bDAsPEcdU4dkw+WVRduu+BHcXcnlvs5DExBBDDBEEfdC6SgxSb7MQhGlCDI1aAyQOg4xpB/QnX3gBLr0UAgEhDLz5ZiHSMBiE+LG+XgiUfhV0JYIKdrmIxsVSMNn0PaARhbUyxDA77QMpfvR3wIa7It+xb0NVhfBqxQopytfphIBOpxO1KhDYnej0p5B//upwVgjJb8cOMdT0FplPqipzK/sISB5xQH9y0yZ46ikh2/L5JCHHZpMxVlXZp848M9I8JIafCdlHChk0CAnb8DuFTPCEWiETLnlqt684fA7sXjsANqMNm8nW+Zmqqjy24jFAiHd1d+miPpuzcg73zboPvjsW6r+SguFDv5JCZUcZuENswkGvyLa4LizRXRdZL8ku9wtBL2x/UoitvU1i8OptEjhXFVkjucf1XsbWhNgqbQMihLulL8Lmf0qBtKqKTjfo2r2eyuuFs8+Gd98FoxEeeABOOEHIM3U6IWnfuVNIno47DsrKoKAAXn1Vigj0IQtcUYSsqCdi3+5g99o5+72zCapBnj7mabJt2Ux4ZgJ/mPcHJuROIDchVuC9Jzyy7BGumX8NhxYdyubGzXgCHhacuyBCpPvNEeJ8ThkHs5YIcU3zcilKCcNRBn0vlvmpBmQdFV0o32lbFznOmCQ6tapEN19Q/NC+QZqTACtc1+F0ykdTp+5Oyg6yx596Ktx6q8ytuXNh4kQhpgk722pq4Jtv4KyzDtRo7SN2vg6lz4OjBFInS4Bbb5Ux8rZI86eht/bqVF9/DUccIfvSzJlCzpO6ixni9dL7Tf+r2fJ/Y6qQKwJUfQSrrxN5p/iF0LrwLHG2NS+Dxu+lId6QG+XfXEu0brMXDBggz7KuTvbYnTt7IHvLmiUOWGe5EENmHwHmDAk4bH8CVl4px6WMFQdu62rYdK807Cs8S5raBDo6T6eqKq+uEyLxNk8b9y25L+rnXl33Kn+Z8hc0Gg33fHcPKioZ1gzuW3wf/qAYp5ubNvP2prc5Y1jviQqXLBEddcMGkYsjRwqxU7gJhdcrBMZ9+/b6lNi9dk6eezJflX1F3+S+VNmreOPkNzhh0Anhm5XEquYfJEhjTJU517lP+GU8c4+H6nmSnFH1HuSfLCTmp7rgq0Pl+wAJg6FjW6T7pTFJnk3WLFj9fxBwoE0ezcUXw5NPyvy8/34hEOw6FRVFCsj+9Cd4+WU57p57pKHSmWfKml2+XMbrq68gq28j9y6+F4DxOeNZXLGYyXmTWVi2kBu/vJFPzvpEdIMfr5IfOPgjyD1W7JCdL8t7yaMjpPMxRKErieP48T2LjXCTJxASsD3hP8v+w4qaFRyUfxDXTrqWRFMif5j3By7+6GJWXLJi33zFMew/uuqhP1E/vf56eOYZWb933CFEktOnRz6vqIDSUiGnfOYZsbtvuknW85lnSkFDXR288w7k5MBJJyFyyF0njV2CHpFJGp0k75hS8eoL+POf4fnn5Xf//Gc4+GAYOFBkZ1ub7B2treJLBDjmGCHA3NP25/FIMWtrq7z2+UT3tFjE31jQ+2a+v13kHge6a4SIadujkD5NZP9J9bDxH7AupG+oqiTjNX0vPhu9Rboa77pPpI7rPLXbHSGgDgTkGVut8oy1Wnm/vBwqK6OPMxrlmGHDZA7E8BtAV/Izd60Qs6OIbVn3JbStgaSR/PGPF/KS9GPmvvukyWFaWvSpGhuFXPatt+Tvm24SvW7ixMgxpaVQWwv9RzXw4dYPAfhw64edrwE8AQ+vrX+NP034ExRfHEo+scPXh8HQv0LScLmuzntIj9gTzrLI+zqTzOmwX23ITahaM3V1IjeammT9e70iTywWKcq65BL4xz/EXn38cdG3p3UxpwMBWLNG5veFFwqB7zHHiIzs31/Wgtcr9/lzugIAOryi32o0GuKNu+g4dQulKWTHNrAUSLxCEzKyVT8kDIE+vTSKuiZRhH2annrxwTQvlbmTcxRMfFF089ZVIjsSh8jxGp3464JeGHC1kJPugmBQ5Lxe/zv3Wf6e0LgEvpop8bqht8HQW4SUr3Vt6AAlmrQ2hl8V7e3w17/K67Q0sZO6rpW0NNGPQEjav/1WmtLU1kJKiuzBYbvT74c//hGKiyWW8N57sHCh+BW6YudOOPlkkfuKAi+9JDLSZos+LhiU3wwjM/OA3/4+QVHk/9pucsA9HrnWsP6n0QixcWKijEF7uxx35JG7k7KDjGVXUvvW1t2PCePyy6U5LsjeuI9pQDH8hrF0qfh3duyQv7OzI/tXMCjr8fLLf91rjCEEf7skfALEF0cE58Z7pPFgu3QUCh65jSde6c9770mThrFjJV8lKUkOb28X2fHYY738XTUQeR0mYPfUi0+4cTF46sReO/hD2j3tnPDmCdi9dj464yMWlC7g0eWPcvnHl/PC8S+g0WiYPVv8piD/Hz78J43KrwpVFdnZ0SE6s98v6yc+Xvza5r33Ufp54KqWpur2rfL8jClddOeAzJ/CPXSdiiGGGHrGjmcisnjMvyWeYN8qCfhhJI+NFJMeIOzcKU0cN20S/+GAASJrwjqxzyfNjsI69O8aG+6SvU1nhRH3QOah0uxYVaQw11kmBZMLJknz2syZcNgPUjjZtl5yHEDs+MZFkVhv34sjpOzfHScxoXAjyJH3R36/faMUDIGQrtcvlFiTMVmed/2X8tkhn0ujN0+DxO/CaFsfadodQwwxxBBDDDHEEEMM+4uAG5yl4KyU+HjQI/FDrQkMiZA2MVZTGMPeoQagY7u8ThgSmTObH5BcurC9NPZRIWUHaXIcbhy+9DzJvSAUqDj4I4jfexJgebnYqN9+K7kqN94YIQ1VFIlrV1bGiNljiCGGGGKIIYYYQGK3d94J8+dLXfBJJ8HQoaI7BYPQ0iIxgHCeM8j///a3WE5aDDHEEEMMvz7q6+HjjyU/qa4O8vIkf12rlZwanw8uuggKe8PLGHBFXhu6JHVufQg6SsC+WWK2J7dInnfzCqkpDLpDDbx1iA9DA9mHQ+IQVFX8EBUVkkfv8Uhuj9Eo8fY+feSaY4ghhv2AswLK3wj5GFWpxdUYQnUwQXmvX5fE065E2PULJe8/nH8xawls+ofUiqSMhQHXQtIoqQULeiRX0VkRI2aPoXfwtcL626X+HCBjhhCqag2S8+VthvyTIOPgX/c6Y4jhvxxr18LTT0sD32BQ8tjD+Y5hPfG882DEgaXQ+n0hXOes0e17A6LqT4QXB2DYbZAe4lD5aqacE6T+ccYXB+56AZaeA7XzIS4Xji2Rxirtm4WfBSSX09vy8xCzK37h7fG1gRKq29caJM80Lks4WmKIYW8oOE3yk1Fh2yMw5mGZrye3wIoroORJOW71/0HV+zLHjlgjfEkdO6DiTfncVix2aQh+v9jEu3IU2GxSk/jee3KcTgeXXRZNyg5ioxqNP/fN/xej7ktYe7O8nvgC9L1AXm/+l9gThkTwunr8+q7YJ4n8zDPPcP/991NaGt3pvqSkhNNOOw2Px0NhYSFWq5XNmzdz9tln079/f0aPHt3r31i9ejUDBgwgISEh6v0JEyYAsGbNmm6J2RVFYd26dVx00UW7fTZhwgS++OILOjo6sO1aWbsXHPPGMdT56rhg1AWMzR7LkPQhfLDlA855/xxeO+k19Fq9JPq7q0Voq/6IsYgqmoC1YHe2gnDEY9f3vz9bjEJjshCzx2WJU6j8dSFb8LVKJ7BR0QRbMcQQw68EWzFMehGWXdiF0KHLug6T/wGPPCIO2zff3P00B3ex2W+5RY7btZeE1SpFz8+GiNkHpkVXUxUnF6NBg4rK5qbNQrwOjM0eG3XcmGxh2C1pKaHF7yElvliIXxzbhRQwvkjIoryNsPrP8qXDVoApFbffzSvrXuGHqh8oTi6mtLWUU4acwhH9jkATi+TG8L8ERxl8Pk6K/vr/SQxVU7o4kP3tQq5U9wWkThRi1wOErVtF+QYYMiRC3Aby/5ycSNOHoBLkjQ1v8MSKJxiTPYbNTZvJT8jntoNvozil+IBdUyfSD4ai86HsJVjzf0J4lT4Viv8AO18NEbMDmbOEYDnQIWRHw+8U0qw+Z8OWh2DnK2AbyJ1zb+TOO+Urd90lJC3diZkpU2D1aiGgO/tsSd496CBITpZA2caN8vqUUw78LR8wlL0KP5wrr6d9ADnHQMAh8yncUatpiZAK7XxFSLjSp4El5IwI2EME7gHIms2a0oF88YUECzMzpSjXao2Mn6II6eRhhwl5tFYrCc4xErlfCanjhBR88/1SZNy0VJ6vISGU0B5BQAkwZ+Uc/vrVX5neZzo6jY6FZQu565C7uHLClei1ehZXLGZd/TqMOiN3z7gbbShYtbNtJ4+veJxnVz3L7dNvJ05rkpMqgYgO46kTcumVV8jfE54V0rgDjHZPO8+seoYtTVvIS8ijpqOG80aex5T8KaJPbP0PrP2LHHz4j5AyRhxwJU9JsYmnEao/6j0x+7Db4fsz5N7W3gJF5wk5b96J8HE/kVcBR69O5XDADyEe36QkOOooIX0KIyEBcnNhy5YI8ZHVCvn5EVJ2kHWXnb1viXBXfnolZW1l6DQ6bvlKukQbdUZa3C2c98F5LDh3Qefz/l9Co7ORl9a+hMsvjhCLwcJ5I88jwxpxnj78w8Nc9/l1JJuTuWDkBZS1lXH7N7cz65VZfHHOF4zPHS+F9R1bxbZvWyNdDPVWISxZdIKcaMJzUHwRjJ8DKy6VtRN2roWh0UHCQJl3628XZ03ACVmHiV7gb4dKOfT0U7y89LoQNL/4osyTE06QuaEosretXy9FKu+/L2T/lZVw3XWyLxYVgdMpDQAmTvyViNnddWILKT7odxmMe1ImdukLsuaal8txBaeDbRfGY1VFbCdN52IwGmWt+HzidOyu4YzHA6be+lgalwjpgrdRrrP/lZA2GQ5bBl9OA/sWCVwM+YsE8lt+hIUHC/m1baDsvcouHWH9DvHNBJ0iQ9Wg3IPWAHorNlsBL78suofdDuPGCbHukCHiJC0vFwL65583UDjhOVh0oiQHzSuWYK4pHVpWRt/b5Nfgm8MkYLDicvm3S0OwNXVrOpt4LTxvIUnmJEBI2me+PJONjRs794c3N7yJBg3jc8dTZZfmAVMLprK4YjF3f3c3pw09rVfyxG4XfcLlEplYWSmBsZ+COkcdR712FKvrVnPdpOs4st+RXPDhBZw892SeOOoJLht3mZBj/vgn+cLs7+WZeltETwrL9KalMOBPUkRW8yksOU2I2pNHCQmRqzzyo6MfkKCPpw4WTIbiy6SIzBQdhLnnHlmTixfD7beLE3zKFCGxq6qSBgn//rcQ/b35pjRScrlg3jz5tyvu+vYu7F472fHZLChdwILSBQDE6eP4dPunLCxdyMzEgULCH3RB/deic+stYM4WcvaKueLwL+w9mf7vHu568ZHat4rf1NY/0pWWUFOjxCHcddcgvvpKCGuuvlpIsqZPF+JBtxtKSkSGPvYYzJghhGSnny7ydeJEea52uxDdJCZC/wk7+OtXwhy5tm4tifcloqoqBq2BtfVr+df3/+KWabf8asMSw/6hf38hAb38cgl6HXKIJH3m5kJDg8yTq6+G//wHXn9dkkKdTjn+j3+Ufcsb2iYefywIS84WPTVhkOgC1j5CDuSqEhvY30Gt9VZeeSUVj0d+//rrdyeDBpm7+fkiW9evh0WLROaEfQDBoBAn1tXBVVcJmd3MmXK+ggKIi5NjOjpERv1XELObM2DsI9LYtup9+GQwZM0GUwrUdkkSKJkTsWlmLRLfhLdZYiy+Vilib1nBu9+M4+GHZZ3PnCl6WEaGPNdAQPT59HT48EMhs3a74cEHhdg0PT3y/Ftbf36y6hj2AcUXiz+l8TuxAwf9nzQyyT9JdK4QAfrEiXDvvSL3N2wQ3fqII2T9t7dLM5Vhw4R49rHHpInCzp0waZI0nMnOlvW3Y4ec43teIqAE6J/SnzsOuaPzchaWLuT5Nc/zzKpnuHL8lWjyT4GBf5Yk8dZVsPik3e8hvq+QSm+4U3wF/naZ68mjowL2P67ScupZYg9MnSqNY/r2lYR2VRX7tblZ9r7XXhPdpL1dYhEjRkTsiVWrRFedNClixx58sPzrSgKcmSlyJQp7aJCxYYOMY5hEOS8PTKbIV4JBKcDPypJYxXWfX8fiisWcP/J8XljzArP6zuLBwx6kT1If0eu/niVfHPsIDAg1rtn2mJBOuqsktlF4RnTSbk8YerPoic6d0qRr8F+kWc+Iu2DFHyPjvPwSqP5QYrbHV4M+TgjWaj6R/wc9UP8lT395Ie+9J0T9xxwDgwdL4oTBIL5avx8mTPgvIcj7TSNsYyKNDDQ6sfcav4Paz6W5sjkTTqzb41n+J9FbB1UvN7yqqsj61+tFtprNkWIbRZH1cPnlMGeOFL7cdhtcfLHoLDqdyLBws6WZM+Xv/v2FQHrXBm7hy3rtNdnP6+pg1iyR9YMGyecbNsC2baIb/etfcMMNoj/17y8E4wUF4m9Yv14ac7zxBnz3neiDV14pfvRDDpHfdjrlXH7/gfXF+HwSG/72WxmTU0+V6zKZoknox42TvWfxYtH5br5Z/P3hGEBtrXz/jDOEfH75cmkyVFgIRx8tcjcYlOe0ebP4mT7/XHwV994rRb1HHy1y3+MRQvzmZhnT11+X8fzwQyFM6Zq243TKd5OSZBzr6sQmTk+X5981PtG373+JfvpfgCefhCtCqvOVV8Kjj/7E4m1Xlezb7mrxcZnSQ4nCGpHJKKEGS0bZu71N4jvVmUN7eNjfpYq/J4Zo2PrDwGth68PSeFZvlbjr0L9Cwzfww/kALF4axzXXyHqdOVN8y13jE/uMoX8VnchZLj7KwX+J2L0rLhWfGqCoCue8fw5bm7eSGpfKO5vfwRsQo/mltS8xNnssV028ivHjI8TsCxZIkWPXVL6ODpGJu8r73xLeeQf++U/ZX449VvaSzEyR2YGA6OgJCRKz/sVh3wafDpY1N+xvMOzeiM/e0ygN01tXS4zsAOYxxBBDa6vs/21tkULmrqGb9PTomOrvFv0uFd98wAmrroPBN4odf8gX8P2ZIi/DcfgDBL9fmmy0tIicqa7+bcvIn4zK96VoJqEPFJ0reRNVH0jT+e2PyzHj5kQIBYNueR4Gm/gIWpZLjBbg0G+E2L3+K9jygDR6S5sEU9+X+MrSkEKfNgmKLxHi/dXXC3Fh+lTxFYRjnQA5x8KWB8UfsO0RGHyTkLX3vUh+s+p9iQf3oiH8bx7eFonFtG8W/2vCIMknDetrahDi+0HSsF/7Sg8ImpvFr9PSIvaSzSY2bFc7durUX/sqY4ghhhhiiCGGMBRF7O9gUPZqrVZiMuFY+q7HBQJin+h04iPprgnmbwob7hYSGo0eDnpDiGi8zZILFXSJT02jhcxDfu0rjeFXhqqqfLj1Q55c+SSD0wZT0lJCQWIBN029iYLEAslnHPUvWHUNVM6Fdf0lbt7vcsg7XmphQMgT8k6S+GnJHEgcKnmME18QkqRvDpfjuja/3gNWrJAYC4h/7A9/EHs2+toP0CD82lBV8Ys7dkg+ij5eYsqEa4qDYM6ChAG/9pXGEEMMMcQQQwy/Ubz7rtQfAFxyieTRdGezvPWWvK8okZyM7OzI58Gg5D37fJL/UV4uuRr9+kUIcsPH9ekj+YIx/EbgbZFYvK9VbD2diYg+qUBcDsT3+ZUvMoYYYohhdzgckp/Z1iY5MqWle4hj9yYhLSj8CNQtkHoRd43U9456ALY9KnUAAGWvwLILREZOex9yjpZ4cfmbEjsOuqBxMc++PYS//U3yKS+7TGo7i4oiuT3t7ZKj9JtGuAamfZPU0iQMkZitGiASs+0PKb3nc+sN3G7Jka2vlzFKSpJxC8dOg0HJAY2R2v8PQ1Xg8/HgbZCcjBkLRI+p/Vx4Mewholh3DQy/G9bdAtsfk3yanKMg/xSw5EeI2V2VwssDUv/b52yRG+v+JjU3Dd/IZye3is/z9wzFD2UvS/24Ri9NMg2JUsOuKvLPmATZR/SuLua/CE6nyGanMxLbAYn/mM2Sd96r+M72J2XfADhiLSSPkLzJ7U9A+waZl4o3Rsz+c0NVofJd4XcIeiB1AphSI5wMqiL55XkngVa39/P9XhD0CfeEGgQlKLJMoxc7T2f57XdYU1XRp/wdwqGqhooINXrJ/TcmdxKI+4N+VtWuwhuUPPGCxAKp/0N8F7NnS12OXg81NZI/+rtD1YeSe+2qEG4iS76Mj6c+wu9VeJbEhlqWC+eKKVW4aTR6ed7h49Knw6a/i66rNULeCVLf5qkXf4Dikz1u8F/A0AuijtyjwTYAOrbBxr/LbyaNhIM/ljqDdbfInPO1yx7bUSLcFNZC4WPQdPE72AYIf2ZvkDRSiNl9rdC0TPQAnUl+f9lF4GuWmtjWVVJ7GXTLnmbKEF40vwNQRBYMuKp39+quhSWnC2dd7vES54zLFg42v13qbjV6GHrr719PiOHnR9IwqYHZcIfkADcuivC7hXVOgOzDoOwF0d12vipE36YUyDgEfrxa5njBGTz87ok88YTUHl57LRx+uMg7k0n8tGVlYl89/LDYpcGgcBDdcIPUH1utkrO6caP4bAf9j/QhUlWpAf36a8mJP/hgqXnsWnsYCAinRm5uL06YOFRyHtzVkvOQeajwfqcfLHndm++H3vOyo1HV3qczHHzwwTidTn788ceo96+66ioef/xxrrzySh59VJTTDz74gJNOOokLL7yQ5557rtcXNGzYMDIzM1m4cGHU+5s2bWLo0KHMmTOHyy67bLfvNTU1kZ6ezl133cVtt90W9dkTTzzBlVdeyZYtWxjYQ9W71+vFG2ZRAex2O/n5+eT+I5ebZt7E4LTBnZ+9vO5lvi77mvNGnsfdY89Gs/Fu6a6VNUseiEYnzg1XhZB/xeVIsVNX9EQaFvSJc6RxMThKIC5PkjI0emhbK0SmRRdAnzP3MpK7QFWFmCrgjHT70MeDIR6fD95+Wxan0wnjxwsZTDjpLJxYPm2aTNx9gdstTjW/X4SCRiPnsNl2T6zZI5SgkNcEPaJshMdNo5N7MSRQ5WxEURVS41KxGq1RX69sr0RFJc2SRpOrCYCs+CyMXYrM/EE/tQ4hW0iNS6XZ3QxAfkJ+FOG0J+ChwdmABg35idFNAjweGUO3WxL3EhJE+HWF1ysOKL9fFr9OFxmTcCcLv1+O8Xpl3BRFjgt3wWgL1OJX/CSbk7GZopsNVNurCapBUuJSiDeGlA9VEUUi6BbFRKsXp5shoVtj3OWKEHAkJ8v1uf1uGl2N3d63y++iydWEVqMlLyHag6aqQmTlcEjRVUrK7kmPvUXXcQkE5Hw2mwQGQTYjpzMybhDRUXU6cfrt6xzuPEnXG+oOriohSmlcAmggabg4fHKO2c0w+vBDIfGpq5PA5mWXCcnirvbT++9LULWhQUhR/vpXOf64N45jTd0arhh/BTdNvSnqO5Ofm0y1vZrbp9/OYyseo9nVzH2z7uOs4RFmAIfPwdAnhqKqKm+c/AZTskdKsVHD16JIa42yrtSg/LP2wTfsDt7YsYhHlz9KXkIeh/Q5hEFpg1hUvohFFYuwmWz83+T/45A+hyC3EU2wGDV++2ko2u2ytsKJtHq9yBGbDdasEZLU8JgWFkbLGEURZ3l+vrwOr9PwuSCSbJucvHtXmb3B55PrC69rjSbSLTWo66DV04peqyfHFs163O5pp93bjklnIjMuWeS0Gog8A5A1ixKayKZIYdne0L5Rim6DHikC1FtDMsArjiONBlInQ1xm784X9Ml80GhCXWPDhVa7kJ3sC5SgGDiKNzTfVDm3zgx6K60+Fx2+DuL0caRbo63sekc93qCXRFMiiebEn7RPqKpKlb0KFZV0SzrN7mYUVSHdkk6cIa7zuLD812q05MZno6mYK0avr0mIkQxJ8lsd22UfN6UJybY+dA5fe+j6/JFr05lBH0+H39PjPGl0NuIOuLEZbSSZk/nySyFwXbNG5nFmZqSY3u8XB8WII5dx+ze30+JuYXbf2YzNGUubp43vyr/rJDi6euLVuANuNjVuoqK9Ak/AQ1FSEdUd1SiqQnZ8NoPTB9MnqU/viX5VVYhuyt+UIJe7Tu7XkCRNH1LGwZCbwFkpBXwN34acl34ZCzUgBnX6VFxFt/Dyy7BypRDRDRokxodOJ9MwEJB1ffbZsm999pl0Vi4rEweNyyX7cN++kpgycmo3+2MIYT0h6pkHfWLYd879yPParUjd7+iyfk3i8NYa9rg/dni7yAazTZzoTd/LHEkaIWtWo5fxdNdA2kFCarvzZZHVmTOE5C/gEqLq+m9kjeefxIcltzJvnhCzT54syTJhfUSjETnYv78QTL76qpAf1NfLezabzCdVlf30jDMVMvoJYeuedKdccwK6suclYGJKDREaxwsxlq811HgoRQhxGxeLMWPOkMJXjV4cLP4O0VXNmXJ/vjYZe701Il8Uf2iNB0FrpNnvx+l3YjVYSbVER21rO0RfSjIn4Q14O9dRclxy5zGKqlBtr0ZFjb4/Ve2iO/lFd9LHR3faDsHtlvnmCXGbWywytj6lZ53R6XPS7G5Gp9GRmxCyApuWSpFx4yIZL41OxiJpGOQczY64Ifz5iz+ztWkrJw8+mQGpA9BoNGxr3sa7m9+lX0o/HjrsIR5f8TjvbX6Po/ofxZxj5kQ9r7FPiyx45MhHOKH/kVD5jjgH2jeKnRFO3vHUimNw0PXR5Cc96USKX4JA7lpZA5Y8OVd4DP0O0JlxJo3l+bWv8PSqpxmSPoRD+xxKfmI+C0sXsqhiEUXJRdxw0A2MyxotzonGRaJjJQyQToVagzgofG2QPo22QX/B7rVj1pujSLi7Pv9Ofdm+BSreDo1vI/jbZL81pYOtP2rfP7B46xTWrhXiosGDhaTIYIgOGA8cKH/PnQs//igE7Onpssb0ellfHo8QPBmNQs7x449CYJSSIrqoTicyTFHgxVc9tPlDe4stN8ruaHG34PA5sBgsrKpdxR8++gMpcSl8fs7nnTZAQAlw3BvHUdpayt0z7ub8EWeF9hol1Om9S8OwsPNba9x3so2ue7YSkPmpj5N1sZ8OSp9PbASXq2fbSW7SKXNJVcW5apAmbjUdNcxZOYf3t7zP2OyxHNX/KAA+3f4pP9b+yImDTuTycZezqHwRNyy4geKUYm446AY0IW21zdPGbV/fhsVg4b3T36NfUh8hUq1bIAR7qDKfNRqRtdYCWROp0jQOR6mQANZ9KQkbcTkSiCu6IEJA3rQUKt+Tgn13tTwXQ2JkTxz0ZxSNmYULYf582dtbWiQhxWCQOThmjDjaQMbro49kz1u1SsYuORmGD4czz4QJ01v4due3LKpYRJ2jjiHpQ/AFfexo3UGuLZfphdOZVjgNjS+hU3c1myOJEWGoqrzf7Ot+79xNdjq2w87XQz4Lq4yFxiDrrHW1OLdH3AdV74qsMGeIHmqwSdDc0yDyw5wOI++jvFLPe++JDlBaKnMjTNju90vSxpyIeBP05GMB8ddUvA0NX4lu4muReWtKE8KAPmdD9uEiyyrelgBDy0qZe/p4eV6pk6HPObIP1y2Ua+9ztvhsPHUit1tXye8N/gvY+tHcLAmwy5ZJZ9/2dnmuOTlCQHnXXXJvuKpFd6r9TIghQYpxkkdC9lESHAHRJSvmQsVbcpzWANYiyJgOfc7m/lWv8fiKxxmVNYqPzvwoagjCNuRVE66iwdnAWxvfYnbf2Tx3fMRf5/Q5Gf/MeBw+B88e9ywjMkfgC/pIMieRYEro8flXlRt54w3xKTU3S0MYiyUiE71eIfZKSZF1D2In7RoEV1VwqA2c9vZplLWVcd2k68iOj2QLv7LuFdbVr+P26bdz8YgzZM41LhLZlDhUAkRag+hT3kZxgo+6X05c84mQszctlXmpM8uzSx4t5J0pY2Rv2fmK6CltGyT4qYsTJ2zSSHGYJw1HUYSw7ssvhRCwoUGuLztb1ut114njG2Q83nxTfG5VVbLWhg0Tcr2Js2o45OVp+IN+PjrzI0Zljeq8138t+RePLn+U0dmj+eD0D9A4y0J72GJJWNEaRT4FXbJ/p05gm/lu5s4Vx31KipC0JCTIOIf1v5SUaDKosBzu2nk1Pn4Xcn0lEJL/vpD818rv6y3RtqkSDOnOnmi/k962e2A84BTdQPVH6c69RvtmaYph3yo6cuJQQBVy/bb1Ik+SR8PklzrthM8+k724pUX8SuGmKaedJkTbbW3wyScii8vLRRdwu2UM+/QRwsi5vgtZWLqQs4afxX2zIg0z19St4bg3jsOsN/PV+V+RF5cYaXqjM4cIQQNduldrwJAcNS5hH4XHI88sLm53fTIvIS9KT+jqTzDpTT3qRK3uVjp8Hd1+1msE3KLThwOkPzUBwNcWIcoxJOz18D2iNz67rsf1cEx1tfjhPv9c5orPJwTdY8dKgWi472xtrRz30UdiewaDktgzfbrYnTnqPAm4exvEJjJnyPrxtco6NibDmP9Q6RzN3Lmy91dUyHyMi4t0fHe74aGHZF2+/z4sWSKkmT6fvBe22QoKpBHkK68I4abDIUSdGRkR2zkYlLk867gmXH5Xt7ZTkyvymUWTissVkQtGY0QfDg+h0QiNnu71hK4+lgxrBmZ9xBnb0SHz3OeT85hMcm0Go0JNRw2Kquz2nSjfWXzIh2XfAuVvCaGSuwrQhGyn4bJ3Zs4I2RNLRJ4nDovsE42LRPfImM5m03289pqQvlqtEhfpKjvDCaMpKbKnb9ok1zxyZISYR6MR/WTiRPl+FHzt4ivQxcmz785PGmV3GkXf7c73p/hDSRZ+0U+Mid3OZYI+sa/Riq7TU3JS0CPFHDqzBIR7gKqK7PT5JGbUo8/U3yH30iknuvcjuVziQ1UUkXNd9X+vVz7vGhOBSFwkNXUfSBKUgARQ674UHc3bLPLYlCZkltlHiC6HrPkPPhAS3JIS+f3kZPGlnHuuBMNBSNnffx+++ELWv88n+vqECbL+r101m61NW/m/g/6Pqyde3XkpVfYqDnpONuD558xnSHqooql5Oex4TpJAgm5pupI6EfqcJeQKEPETNP8gvqFwkqW1CFLH4y68njfeMrB4segkw4eLrhmO7YV96JdeGjpdk9zDl19KcZbbLTGToUOlOckxx0SIedetk3vMzo72O06bJvtiJ3qQw6oq8un778VPd9ppEgQPyxQQOTNiZJCPqp/moR8eYkTmCKYXTiclLoUmVxPf7PyGzU2bufGgG7lw9IVoa+eLXtdRIs/RmCzr2lEqfkhzFu5Jr9Pobu7WF9fVxk6zpIk+UvWBkOa5KkWHDK8dW39Jcso8FHY8Kw2cAg5pwqU1yXyq/0p+v+gCFuw4nw8/lLkxaJD4FCxdcuaCQZER+0zM7u8Qe1T1y/PX6EK6mFX0sX2FqoYahTjkb701FCfUdC9vQ+jqY/MEPHgCnt18bBCJT3YXp+0NgkHZy5xO+dtqFVmhqApV9ipKWkpodDai0+rItGZSaa/EpDORY8uhX0o/0ixpaOyboOIdWTcBp9jgOnNIDmhEtx/z0L6PXS8R1rE9HpFjRqPcwz7FxLs5Z5iAMTk05HuK2e7ps17HbPeiO+0NzzwDCxeK7nTKKeLHDxOzgzzrQYPEvl+6VGTPsmUip+x2kTtxcRLru/9+safmzRM5nZQkcUCjMUJW7vPBNdfIPu5wSNHqN9+IT66jQ9Zjv35CTnx1SESXlEizraVLxb/ndsv+3q+fEOxedJE8x88/l7hDmJy8o0NspoICIWU/55z9GqJuoSii133zjYzd5MkyBl3vNRAQgvRPPxVi9sZG0Vnz8mTcuo7JBRfImH/+uexf69YJYWp7u5wzM1P2sQcekO8sWiT7xMaNct72dhm7ggKJY//xj0JA/MknEpOtqYkQHoH8/5xzZNrMny8x25NPFpnYNTkqrGP1hpg9KgZhy0XXRbfZ02e/FAKBiO4SHv9dVT6dDhrddXv1sWRaM2l0NXYbnwzfqwYNObYcdIpXfAJKUPYiTeje1YDoeRqt6McaLV5vdP5EOFSv00X08TfeEJujrCzSgKarPZGevsv+vyfsfE1sooBDEo3N6eKPc5ZCwyLxFxRdBK6dEtfSGaHvH2T/dVeLj61lpejQxZdC4uCQLa2VWBIaOuPmobi1V9VR7xIHza65PeE4nQYNKXEpu8dlQrB77bR52jDqjJj15h5t7K76RGpcKt6gF3/QT1ANotfqUVWVoBpEp9Fh0psw6oy7xyq6YL/2TlUVHbJirjTG9DRGfESWPIkxDrmZlesS+eADsWM8HiFDDsuTYFDmxGOP7XLuPcl/v0OSEqs/lLhNWHcyp0tCdt6JPFlbw72L72VI+hAeP+rxzmfR7GrmnPfPwR/08/7p7zMicyRffSXx7pUrRd6YTCJHVFXW0003KxSPlvhkpjUTkz6ymQaVINUd1QCkmrJYucxIZaXcU79+Mq91uggxQTAoPrmwvHK5ZF10zWMzGkXmGeN81Dvq0Wg0pFvSo2Lkze5mfEEfKXEp1FXE8+qrIheNRtH1EhOj7ck+feDgQwJ0eDtwB9wYdUYsBgsBJYDb70ZRFWwmG1aDtXOsgkHZC8P+uvB4xMVBvE2hxtGLmG18DrrakD/UVSG+M2NKSHfeIWvMlCHFqV3jr/4OsU1QRX8yJILWwM6dItd37pSxHTYsYhNDxL4rGCS+hXhjPClx0XZmnUPkYKIpEZff1albdpWJIPaToiqkWdKwGETfDRfD+nwROabXy94SHnOCHtH9gqG8E9SI3NAacWvMNLqbeh+z3cuYdI67P9q/qihyPeFcIZMp8nlYN+yqe4V9I3ERkd9rhJtxORxybptNnk8gIPZefX0knhIm2+iaA9q3709s2LALFiyAp5+W/X/8eGnyEm4aE/ZPJyWJDhgIRI9bZ2pPaH+y2SQ/pKJCdK+8PHnW4b1JDYU9s7JCMZa9IKAE2NiwkR+qfqC8vRyD1kBxSjHr69djNVoZkj6ESXmTSLek0+hq3GvMNs2SJnGdireFnM5TGyLK0MkcsRRAzlE0ZB3bo+3U4GzAE/CQYEoQO8sT8YmEc0TDUFUZu5oaaZKzaZPIiUGDIrEYVZU1cv75+9kQTFUkdqaEcntCOU7h/dGgNZBty476SpunDbvX3q0NCXKNYd05MbH7++6KqP1So4hvr2mpyDFLfsgW10rDvbgcicUlDZfmfA2LRL4ZEkSuKX7xU1kLYcTfZX+s/giqP5ZCJG+zxLz18XKuxKEw4h7RP+oXiu+heZnoMBoNGFPFT5AxXYj5HeGYzbehnKhQnhCKnC9zJgy8Zj8exAFG0BeJ7+viQjltMrnaPG10eCVuYNKb0KBBURXcATcBJUBKXAoWT60URrdvhtRxYk9r9KKH2DdL3petP0x7N/p3f6I92Xn5PeyJYR12f2RYWP64QgUWNpv8q6uThszhuPT554u9rNH8NonZXS5ZX4FA9BqLgqpKTDTgCjWjT9rtkF1z+0H0pXCMCuTzcI6tokTsibD+1F3T2QMJpzNyjRaLyEOttmc9etc4dpOriYAS2O248P7fXZ6mrJ22kC/eKrK9m7iY1xsZH71exiwuLhKX6y7ftet+oqpqt3lsEK07Of3OznW5a77jT/XF/VoIBkW/c7lkzJKTu/f9K4r4MTyeiK5zoOEL+qhzSKOpXX0LXX1smfGZ1DnqInZ5l+O6PleD1tCjj7Xr3NBqtDj9zohu0QVRedHBNvF/B1yyn+ktEncMeiXeqtFAwhAqfb7dc1+Jjtl12lVKoEuedTDidw4Vg7sx9qg778nv+JOh+OW+COW7dSUfIxQw2jWv3t8esQE68xiifed+v+wne7Qn9gX+UC3Wbjngts4C9DCczoiOp9fLHLZ0ceuHG2x7PBE527VWyKE09ignuq7/Nk8bK2pWsLlxMx2+DoamD6XSXokn4CEvIY/xOeMZmjEUvVYv4xxw7PL8I7aTX2el1lkP7L4muuZCp1nSesxjCOuJZr0Zk87U45rounZSzGk4nTIWwWA0wXrYBjAaxY/w7ruyZ48bJ7lXYR9AMCjfHzJE/MILFohNMXNmdB6T3y/HTZocRJcsvoXs+GwMuoitF5YNGjTkWpLR1i0AZ5noU7b+onN6m2QsfW3y/AvPQEXTmfvRdX8N6xRmM2gtbT36ncIx+3hjPCn+Rih9UQhCrH0kF1ETmmMVb8rzK7oAis6X6wjHmsMNElHFptVoo3R82D1mbzTKOO5XjRVyv+Hnp9OJfmKzRfvbsuKzor7TdZ50jkNYfwl6I7k1GkMoPymeemdDdN1IF/Tofwu4QvWTXhk/gw301ijf0q7PP6AEqOmoASDFnEKLpwWAvIS8KD/RHmWiEgjZWAHRw/YQ02trE1mRlBQtI6LOFQjl1mt0UXnsK2tWcte3d1HrqGVm0Uwm502mxd3CN+Xf8H3l91ww8gKumniV+F9a14o/sfkH8ScGOiSHIi5bGlINvFZyJGs+hep5YN8ktlPQJbnbcTniqx1ya2gvcsrzMdhkngV9IhsVn8xFSwErf9Qwb57EJtrbJSYQzscOBOSe//WAgtPnxOl3okFDnCEODRrcATdBJYjVaCXeGB8ZeyUY0tXCeWzR86TGUUtACXTri+22VoSIf8ftlmkYFxfRO3sFZ4XUETp2SIOvjBkyBq2rJAbtqhLf3PgnIt9RlUjNBGrPemfALWMd9ACaSA2otvcGUdda2rC/bW9j0tXvpKoR22lXhMfO5ZLxstl2yTvcR3g8kTir0Rip6+taS7U3H0sngp7InqcJ14B0f3F+v+idgYD8ZlxctL81x5Yj+2j4+J7iU0FfSM/ydta5yLONj64b2lNNYZf9MvwcXC6R2eG48z7J64AzlG+gyDrRaOXalICsb7TRcmo3HStcKxDSdcL5BgG3+EOiGu4iY21K61Vu4Z58Sz19pqrROpbJJOvV2E1JhMcT0QOtVjluX1Meu/rsuu7rYT9mWtr+1Ufvunf+lLUTzrEI6x9hv0l388Tvl33H5/v5bKzu4HbLGtPrJfdLp9uz3zG8JrrTIXqNcB6bRi+5RaF4Src19yF0Ky93rZ/ZU140EQI5rVbkickU8UF0l8fk8Dlocbd0G7vcK1RFdNHO2p7wnhiq7+mau9dVJ0IblSsUNWxd9kRFkXmUlAQabe90p13l5YHCrvHucCzGYJD1vV/rx28XWab4usi6BNDqetwfw7lLsEucbjfehugc0LA8D/vYIFrP0Ggkd+PrryUet2mTvF9YuLvudOedkkc8b57k2FRXy76l10diMUceKTbQ+++LTTRlCowYsWdi9kAgIjPDvtgI54VKnav7fOCuzz8cY4Hd7ck98XH0Cp06sVv+1seFdCctQSVIm6cNd8CNWW8mLmT7uPwuvEEvVoOVBFMCOo0m5GMAQvVknQZn5z6m7THvdU/YtaY0vHZ6vUd0bIf1d4KrXOILmTNkXratEz+8t0H08RF39+p0za7mvdbZ7qovh+8hHKcK+ya6tVH2hq5cNmGeBEPi7rwD4dqTgJtOf1DouN7sE7vpEEFvRP+DkO6c2K28DgQkBywYjNR5wp79rVGyAX/074RrRRR/KLYcyqMIuiPHheNcqCGbyiPHxWXJ+11rcaJ4FoyhvafL9aiK3Gs3OaBh3bm7mH2U32GXz3qNzrx4cygvXhtlY+8xjyEkG7rqucFgRM8K++wMVtkfu9Ode/I1hM/n90f2CZNJ9gidwU+LuwW/4sdisHRenzfgxeV3YTFYSI5LxulzUtFeQZ2jDk/AQ1Z8FnavHU/AQ6I5kYLEArLjs6P9Za7I2ulaF2EyqpH6dzTRenOn3NGIrzPoit5DOu3fkI2t0feeA+RnQDAYzccSzu3XauWZJSXB1q1SZ711ayQvtGtdjN8PF14oe1sn9lQDpASh7nPJA3Zsl1wyJSBzLr6v1Lr3vRjKXhI/hxKQuLEuTsY0zFmRPpWdyQ/w2muSQxEMSs1fVxkdDEqe0bBJtT3msdR01PToa9gbds1Pgki8s9e+h44d0rzcvhmSx0itqUYvsXT7ZvFLJAzAOeGlHmNf4bhTkjkJVVV7sEHVTm6RDGsGLz1n5vPPpT7hjDMkB7RrDUA4B1S1VXarJ0TpTpZ0jO6KULNJvchITWj+K37ZM7QGeY5aA34/Uf5iRYnOd0zZTxHWE/bkdwg//5S4FOIJhuQ8EY6uThs7lLMZzlnoArdb7IRw3ozFIjKoPuSL74nLrLvPeoTfLjqF3y5+KEMioIZyqUK1SuZ0ed+xQ2wmc5boraoS8qN0yHq05BMw5XfK1HBebFeE9UVtx2bhRmnfEKpx6SPPUvFB9SfymyPukXr81jWSW9q6StZ1wCm2lTUfkkbB4P+T+Vz5NrSskvE0pct4euqlBsySD5Nfi+zve8jtCudHBoMRmbXrUGo04FYie0umNbImFFWh1lGLqsr8bnI19WhP7nPMNuCCLQ9B64+Sj5JxiPhZ29ZKXLBlpcylqe/v+x4Q1sX8HfK33tpt7VkgEOFt8/tlfPbVP9HeLntwICByP2y/dE0ZiYsDvUHBH/QTUAKoqOi1egJKAA0adFodBq0Bt0vHXXdJw0+dTvLz+/aN1B74fHK9M2fu4gfqaT9RFanXb/hWxjS+KMKF0bpW5E/GITDirl7da5hHMDxWXeVh1zhWdz6qbuF3yLxVFZnjGh2iJ4Z8dhqdzH+tPsofFuZG02gi+4ne0rPfsTvdqWu+Y1cZG64r75bjY3+hKrKHhXPHs2bLfm7fJvlg9V/JXB/3eKSGrjfoVncOx4p3qXkP+0cVr/zdGU/uckzQI2tG8RPhYdGHjo3vPYfajuckxzrohYJTJb7vbZF4UetqGY8hN+KxFmP32gkqQUx6ExaDBbffjSfgQavRkmBKwKw3UxuKd6RZ0qL2WLvXjt1rJ04fh9Vo7ZHLquvzTzAl0ORqQqfRkWPLidpbovIT2n6Uun1XpfBaJQyUeemuFh7VQAfkHE1J/Gje2vAWC8sWkmPL4ej+R1PSUsIP1T9gMVg4bchpHD3gaFrqLZ26WEOD+Cus1kiuuNcL550HA4eIbu4L+tBqtJj1ZjwBD4qqdI6RQWvAHXDj9DnxK340aDDpTbj97s7vhPOze6oV6JqzEWeI69Hu6Ko7Jdg3QPlrki+YPkVyQ4Mu2ZtqPpXn2vcCQCP8NKoinBXGVKl5dlUJl5MuDvpfBd56OS7gEg4MU5rY/e46qP0UDIn4Rz9MrUHk/64+lrAO0RmnDziFL6r2c4lne5vlQL0VLCFujILT5bl2lMg6TBiM8DEsl3igpwGSR9E69J4e852iYjGmRLmH2s9kz1Z8IR4FvcyRuFwo/oPoJTWfynrNmCF19uE9vep9MCSgDL+LKssgYHd7MsrvaM1Av/NlkeuKT+pvDYnyLDr5/VLh4I8i69vviOibqKGcmDgw2Gj1tPfIufCT+Bh6y8cBXXL7nF1qz7X7F5/a4zX5Q9fkD9lMRkADiidkdwZkfzSnRx8f5tmDkEw0RfO+7QVer+zfYX0yrIuFcw/D+mRvckB9Pqn927xZ9sOxYyU+s2te/PhJPtY1L+ersq8obS0lwZRAUVIRK2tXkmxOZlzOOGb0mUFhUsg4bV4pDUQavpG5qdVLfXfySMg9AbIOhZbVMl+bloI/lCeuMUhc3JwN+Sezpv1c3npL6hITEyWPpWudRSAg740fL3WM8+ZJHXtdndSKBgLyvaIiuPVWlYx+u+R5hcehSx5Ldnwu9nYtPp+MZ5i3Z1fVqGt9wq68vWHfSTjnJuwXDue3dKc7l5RIHWNdndSY9esnvxGOnYVrzxJzuo/fRvN7ZvDOm2a++kr83NOni8/aZIqun5wyRSUYX8HGxo1U28VmLUwqpKy1DL1WT35iPkPTh4pM9LWEdMBvpAkmCmjN8rz0Cdg1hSQe+hzt7e0k7CVItk/E7Pn5+RxzzDE8+eSTUe/379+fyspKGhsbsXWJtk+fPp3a2lq2bdvW25+guLiYgQMH8umnn0a9X1paSnFxMf/+97+59tprd/teZWUlBQUF3H///dx4441Rnz3//PNcfPHFrF69mlGjRnX7u3fccQd33nnnbu8fccQRGPaVofc3hBMG7eDgwmoshgDf7syl1mEhweQjO97F0QN24gtque2rSWxuSt37yXbBR/Pmdb4+7thjO1+3tfVj7dorcTpzSUgoo3//t7FY6tFqA6iqhmDQRDBoJiVlc7fn63ougEFpLYzIbMKgVdjQkEqrx4RBq2Az+cm0utBrFdbVp7HY2MK6gnXYPDayWiMOVZfZRXVKNent6YzfMZ7ytHI25W/C5raR1pGGTtGhaBSabc20WdoYVDOIvvV9WTxoMXaLnX51/UhxRDw0O9N20pDUQEFjASPKR1Naegz19RNxOPJIStpOQkIZer0L0ODz2VBVHRkZP7J583k4nTmkpGyiqOhjjMZ2tNpg55hoNAqKoqeychYuVyYJCTtJTd2AwdCBVqugqhoUxYjRaMfRZxGrilZh8Vro09Sn89rcBjdlmWXY3DYO2noQl4/YzvicevyKlnlbi2h0xVGY2EFhUgfTC6tQVA33Lh7P0p3F7Nx5NI2No2hvL8ZsbiUurhGNJojPl0AgEMf4KTexYuw7uMwuBlYPJMmV1Pm7OzJ30JTQRFF9EcOqhtHW1o/y8sNobh6G252BzVaO0diBqmrxepMwmVqZPPn2Xj3/urqJlJUdRUdHIUlJ28jM/BGTqQ2Nxo+q6vH747FY6tDpfNjthQSDJmy2ciyWJjQaf+d5VFWPweDAYHDtaVrH8Cuhp+dfWzuZLVvOxunMIStrGXl5X2M2N6HT+VEUPT6fDb3eQ3Jy7/aZmprJtLYOJhCIIy1tHRZLPTqdD40miKLoUBQjVmstRmPHbte26/V5PEmsWvV/tLcXYzR2MGjQq9hs5eh0wjYYDBrweFJIzl7BiuIVNNuayW3OxRQQpUfVqFQnV6NqVCaUTCDFuX+e4J7G7qec6+c+X5+kds4buYV+KW0sr85iQ0Mqbr+OHJuT/EQH6RY3W5qSeXFjMaWZpZRllGHxWshvzkfRKFSlVuE2uimuK6aosYjhKe2MzGrCqFNYV59Kq9uMQacQb5T9Tq9VWFOXznKNg9VFqzEFTGS2ZaIP6lE1Km3WNpoSmujT0IehlUPx6X3UJdXRkNiAT+8jtSOVZlszhqCBjPYMstqyiPP3rjo21+bg6olr6J/axqLyHL4tz6XNY6Jvsp28BAcFiR20eUz8Z9lImuObqU2upTm+mXhPPHpFT5u1jSRnEtmt2aR3pKNV9z3AH4OgNqmWVUWrMPvNZLZFHNFuo5u65DqyWrMYWzaamw9aw/DMJhqcFl5eO4g2j4m8BAdZ8S5GZDYB8OyqIQzLaGF6YTVpFjerajOodVjxBbUUJdmZXVxJu8fIZZ8ezOLszVSnVpPRnkGiK1FiGfoAtUm1BLVBxpaOJb0jvafL/k2gIrWC9QXrsXgtZLZnYgwY8el9NCQ04DQ7GVY5jMKmwr2faJ+hotWoaDXR7wk0BBUNPl2AsowyytLLMPvNFDQV4NP7qE4R+VpcV0x+syTutMS30JjQiMPsINmZjMvoIqALkOpIJb09HavPyqlDtjG1oBaDLsjC0nzqHFbSrW6y450c2b8cf1DD7V8fxPvfX0Jd3STc7nQyM1eQmFiKXu9Co1EJBEz4fInk9/mUrf2WUpFWQZo9jSRnEho0BLQB6pLq8Ov9jCkbQ2b7rxcc/71DQaEpoYnapFpa41tJciahaBXsZjupjlSyW7NJdaR2EnH/VmGPs1OXVEeTrQmj34jFZ6ElvgWbx0ZmWyZp9jT06oFPUgyj5/1f5eqJaxmV1Uibx8Tcjf1pdZvJS+ggx+ZkQm49KvDEihFsaUrpxfmgomImNTXTsNsLiY+vITGxBINBkoH8fht+fzyjRj3C4cXlTC2ooSi5ndLWROodFgKKluGZTWRY3aytS+Pviyb8LOMRQwQOk4Pt2dupT6wn0ZVIQVMBjQmNNCY0YvaZGVA7gEx7TIb9t8Kr91KVUkV1SjVBbZDstmzaLG04zU7S29PJb84n2ZW89xOFEAzqUVUDqqpFowmi0Si7HRO2pWL4+SA+lqPp6CgkOXlzyMfSikYTQFV1+P3xxMU18qfp73Nk/52oqoYX1gymrDWRRLOPNIubMdkNWA1+Pt5WxMS8OkZnNdLhM/LR1r40ucz0SbKTn+BgSkENiqrhvsXjSLe4mV1cQV6Cgw0NqVTb4/EGdeQndDCjqAq718g1n02n1RMJEh9o+/S3BEXRs23b6TQ0jMHrTSEraykJCeUhfVIhEIjD50ugT9FHtCXWUZFWQbOtmSRnEonuRKqTq9GqWvKa88hvzqclvoUV/VagD+iZvX42eiWiN3w7+FvsFjsDqwcyoG5A1HXsyZ8wJruew4srGJHZhNUYwOHTo9WoGLQqVfZ4Xls/kOXVWbudq7vz6TQKhxVXcEifKopT2tFrFdx+PSZ9EE9AR1lrIg8uHUOL+3/j+f9a2JGxg035m7B6rBy68dDO91VUFg5biNvkZljFMIoai3p1vqb4JlYXrRaCk/YsrB4rAV2AhoQG2q3t9K/tT7/qwWzedBGNjaPw+RLo2/cj4uMrMRgkkV5RjPh88aSnr0Eb10ybtY02axuKRsHqtdJh7sDsN5PkTCLBnYBO/eXJNvcFem2Qo/qXMyW/hn4pbTh8Rtq9Rky6IKkWDzUdVh5bNoLxuQ1MzKtDA3xXnkuDM45Ui4eCxA4OLarCG9Byzfzp2Ix+jh5QxvCMJgKKlop2G+6AnrwEB7k2B7UOK9d8Nh2AWX0rmN6nmkFprRh1ssf6gxoq7TYWV+Twzqb+ABxcWMXMokqGZTRj0Il97fLr2dyYzGclfTrXdWtrfyoqDqO+fgJer+z3Gk2ApKTtDBjwFpkZPzKzbyUHF1YzOK0Fv6Kj1W1Cr1VIs7ipdVh5fvUQlu7sR1nZcTQ1jcBuL8JqrcZiaUCrDeD3W/F6Exk27Cm83lScTvntlJQtmExtaLUBQEVVdSiKHqu1Bq02+As+0Rh+j1ARX291cjVNCU2YfWbifHE025pJcCeQ3ZpNZntm1F75a6Gnvc6oC3DJmI2Mzm6k0RnHNztzaXbHkWl1kW510ze5HW9Ax0NLR+MO7D1+rdMonDKkhPG59SSbPaxvSKPFbcYf1DIxr478BAeratO5e9E4WuJbqEuqo83aRoI7ARWVjrgOkh3JZLVnkeJIwaf3UZJZQmVaJfGeePKb8nGZXdQmSXJP/7r+5DbnoiXix97Tvt7UNIydO4+mvb0vOp2X1NSNoRig6ERebyL9+8/Faq3f77HeG3obY9lTHKu8/HDs9kKSkraTnr42FAMOoCh6/H4bSUnbSUoq2e1ce/rdmpopVFXNoLFxNIoiz9pkaiEraxlFo57g21GfoGpUpm2eFhWz3Zi3kdLMUlI7Ujlo20G0tfWlouJwmpuH4XJlER9fgdFoR1V1eL1JxMU1MWnSHb0er96Myf8yehqTrs+8J/wvj2NPayKoCbJw+EK8Bi+jykaR3xIp0i1NL2VjwUasHiszNs6I8gH31p74qeu/t/DqvVSmVlKVKsVGOS05tFnbaLe0k9qRSmFTIamOVDrMHZRkldCQ0ECCO4H85vwo33e/un6kuZJJt7gx6oL4gjqcfj2KqsGsD6LVqGhQUVQNte2pVFcfgsuVhU7nCcnXdjSasI6lR1EMUbLp9woVlQ35G9iZsZM0exqJrkQ0qoagNkhDYgNuo5tRO0eR1ZbF2sK1VKdK7lCyMxmNqsFj8FCbXItW1TJuxzjMfjNLByzFZXJR2FiIThE7RNWolKeVo1N0TN4+mQR37xgrapNq+bHoR8x+M3ktkcR3j8FDZVolyY5kJm2fFKWfxGxiwfLi5dQn1ZPbnEtBU6SbQ0NiAzuydpDkTGLKlilRekdPcLtT2bDhUpqahmM0dlBc/AFWaw16vRtV1RAIxOH3J5Cb+x1+rR+H2YHD7EAf1KNTdHiMHixeCzaPrTPfY1+gohLsYs9oVE2Ujbtly9lUVMzC50uif/+5pKZu6NQngkEzXm8i8fFV1PVZxqa8UL6bPZTvplVosjVht9gZXDWY4obiXl1TktnDOSO2MjyjiUZXHCuqM2n3Gkm3uBmT3cjQjBYq2uP506czenU+l9HFmj5raLW2ktmeSWpHKopGoSGxgSZbE3kteQyrGIbT7GRV0Sp8eh/ZbdnY3DYC2gCNCY20xLfQt74vg2sGs33L2VRXT8ftTqdv3w9JStqK0ehAowkSDBrx+ZJIS9nIEYPXkGNz0uEzsqUpGafPQILJS7zRT5rFQ0DR8lVFFkv6rKIxsZGclhys3kiCe21SLQ6zg1E7RzHak8o5I7YyNL2Z6o54fqzJwOEzkGF1My6nnoFpbWxtSuKSty+gvPwInM4crNZq0tNXYzTaQz5vLcGgAYPBjcVSg8+XiKIYMBg60Os9aDThWLcUW2u1/ii/+J7Wv8ORQ2np8bS2DsLjSSY5eQtxcc1oNEH8fis+XwKDB79EQkJFr55ZVxzovbMntLf3pa2tH4FAHPHxlVit9eh0XsLjoSh69HonJlPH3k71s6A9rj0Ssw0YsXgttNhasLltZLZnkt6e3uuYbdgXF++O55BNh3TqKl69l4XDFhLUBTlo60EYasbgdOYQDBqJj6/GZGpBo1G6FCpq0Os96PXufb6fPT1Xm9HHMQPKmFJQQ67NSVDV4PLriTf6cfgMbG9O4rYlo/mh/w+0W9rJb87HEIzYoFUpVSgahQklE0h1puJ2p1BRcTh1dZJDqyhGtFpv6Jm66dPnM7LHPsryfstRNAq5LbnogzKWbpOb6pRqUjtSGbdjHMZgbysVfz/ozdrZ13XY3XHFyW2cMKiUIenNuAN6drQk4vIbSLO4GZfTQJPLzN++nkytw0pQE8Sn96FqVHSKjoA2gF7RYwwYf5H8ip7GZOfOI9m58ygcjjwKCr4gLW0NJpM9tCfq8fkSiI+vjpJ1exqT+voxVFQcTnt7XwwGJykpmzCZ2gGVQMCC15vEkCHP7ZfcOdA2cU/n8/mslJaeQFPTcDo6CrHZKkM5r178frmHfv3eoyDnB44dWMbkvFqKku3YvUbsXiNWg58Ek49Ku437vjuIhcuvoKlpBKqqJz9/IVZrTUgWi88+ELCQnr6SlpbheL1J6HQeEhN3YDA4QvuY+GxVVYfVWrdfY9LTcV5vIiUlJ9PcPBS3O52UlM3ExTWg0/k69/+srO+x9PuMDfkbcJqcpHWkkdGeQUdcB3VJdQS0AQZXDyavJY+gJki7tZ02Sxt+vZ94dzyOOAeGgEFibq5E9KqeIenNHN1/J8MymnH69ZS3JeAN6shLcNAnyU6dw8JVnx5CadnR1NVNxm4vJCGhnISEMgwGJ6qqxedLQKMJkDvxAZYMXIJW0TKmbEynnq+gsLpoNT6DjwnbJxDni2N5v+X49X7ymvMiMtEoMjHFkcL4HeMpyyhjW842khxJDKoZ1DlWDrODDQUbMPlMTN80HVMwoqMeCHnyU47r7pja2slUV0+jtXUQwaAxlGfnRlEMeDzJpKZuZNiwZ2lqGhbyh43C603BaGzDYHARCFgIBg0MGvQaffp81uM17CtUVMrSy9ict5l4TzwZ7RmY/CacZif1ifUoGoVR5aPIsGfgNDppSmiiJb4FfVBPnC+ONksb8d540jrSSHYk49P7+H7A97hNbvo09Ol8/ioq5enlqKhM3j6ZOF8cm3M3U51STbIjmdzWXIKaIDUpNbRb2ilqKGJA7YBe+7G3ZW9ja85WkhxJ5LRGioY74jqoTKskzZ7G5B3jOaZfBf1T2rB7jayuS6fDayQlzovN5CM73olf0fJOST4fD/wOv97P+JLxpNsjea3rC9ZTmVZJVmsW40vHR13DL6VPnj18C4f3KyeoaHhhzRB2tiWQZPZ22jFxhgDzthbx1ndXUVMzBY8nhYKCL7vIsWAoPmkjLW0dcXHNe72HdIuLG6f8SJ8kO8uqs/hseyGtHjMDUlvJjnfRJ8kOwF1fT2f79lNpahqB15tMevpq4uOr0Os9qKoWvz8erdZHaupGdu48io6OfGy2CjIywvZEALEnjBgMHVgz1lGaUUpFWgUWn4WCpgKcJie1SeLD6FfXj9yW3F7ZxBpUZhRVUZzcjsuvZ31DKnavkUSTj3ijn6x4J0FVy4Id+Wy3NrE5dzNoILM9k2RHclRe+9CqoSS6EmmOb6YirYKW+BYSXYkkuBOoSa5Bp+jIa84jryUPVaOyongFrdZWcltysfiE0c2n91GVUoXJb2LCjgmY7Dl4vUkoigG93onB4OqSUyS2gkbjR68/sDlFlSmVbMjf0FlTYPFZcJlc1CfW49P7GF4xnNzW3hFk+nw2GhpG4/Mlote7QzmRkftQVS2qqkWfWM6qolU025rJbMsk2Slx2HaL2CJJziTGlI3pdY2CzejFYggCKk6/gaCiQa9V0WkjOVl2j4l1Gy7tvL7+/d8OzU13aE0Y8PniSUnZgtnc2vm9Hn22QT2lpSdQXz8etzuD1NT12GzlnTVafr+VQMBC3+HPsKzfsk57IrzXAZ1+0onbJ3J0qpsLRm0mNc7NK+sGs64+FZ1GpSCxg4FpraTEednUmMLTlUks77ccnaLrzAkH8Ov9VKRVkORMYuL2iUzLauaYATvJsTlYW5/OzjYb/qCOOEOAC0ZtxhvQ8sDS0TxoLaU1vpXiumL6NPSJuratuVtJcCUwdfNU1hStoSalhsy2TGzuSK1sQ2IDdoudoRVD6dvYl7yEDo4dUMa4nHoSzT4anXF4gzrSLW5UYGNDKvcuFtnZ1taX8vIjaGwcg9sdKei3WmsoLJzP+GFvcPbwrQxOb8ET0LOhIZV2jxEVDccMKMNm9DFvW19eXju4V/Pk9wJFo6CGagQ0aKJqZmYWVXDW8K3YTH5eXTeIbc1J6DQq2TYnwzKaSTJ7+a48l3cb4lnVZxUBXYCstixsHvE7NSQ20GptpV9dPwbWDKShbhLl5YfT0VFIXFwDqakbQ7I42OmLKyycT3x8bec1/FSfrVEX5Ixh2xiT3UCcPsCaunRa3GYCioaD8mvpk2RnTV06723ux6lDt1OUZOf7ymy2tyQBkJfg4OBQ3crC0nweXT4q6vw97bEr+q6gLrmOgqYCRpaP7Hy/0dbIDwN+QBfUMXPDTHyt/UJ+p4H4fAkh26k1lNsRj9ebyNChz9LeXkxV1Qzs9j7ExTWRnLwVg6EDjYZO/9Tw4XN65e9SVS1lZUdTXz8eu72I+PiqTnmiKHq83kTi4hpJnvQAK/qtwOQ3yT2E3GsBXYA1fdYAMG3LNMZbApwypIS+ye3saE1ke3MSLr8BjUbl/JFSv/zsqmHMLymiquoQamsn0dIylGDQSFxcM1qtD7/fhqrCmHH3sX7qHBxxDoZUDomqk9mRuYNtOdtIdCZyfPk4Lhu7kYGprWxrTmZJZTZ2r4mx2fX0S2lnaEYL/qCW4985nLWFa6lJqSGjPYNkRzIaNLiMLmqTazEEDeITaSlm27bTaW0diKIYychYgdUq9bKKosPns2E2t1BQsLBXz9+oC2DSBeX5BHUEVdBq6GL1q3gCOv48eQ3DMppocsXxzqb+tHpMFCRKrcDY7AZU4LHlw4k3Bkkw+XD4DFS2x+NXtNiMfsz6AFajn4CiZVNjCoq691yBusQ6VvRbgS6o47B1h0XpvksGLKHF1kJxXTHFpQexbdtptLQMweezkZGxOlRD7A3VlIrvPDf3W8rKjqWxcTRtbcVYLA3Ex1eh03kJBk14vUnk5n5LYeGCXsxNDY2NI3G7M1FVLYmJJZhMIiOkaZAGRTFgNjej0/n3er5g0MiOHSfS0DAWlyudtDTZO8Xfp8Hvj0dVtQwc+EavnmtbW19KSk6hvb0Yg8FBZubKUJ2trzM/wWqtJjNzJVVVM0JzfQigxWqtRq93d67XgQNfIz//m73ew67Y03GBQBzl5YdTXz+etrb+KIou5IsRnclqrWPCYRfz7ZBvCWgDjNo5CrM/kje6vmA9TrOT4eXDo2rm9zQmOo3CsQPLmJRXS99kO+VtNlrcZjQalZGZTbgDet7e2J/HWzWsL1yPzW0jvymiTzhNTsozyiXutH0SV4/dxMhMqZ/5eFsRLW4zRcnt5Cc4mJxfi6pquPu7Cayt6kdZ2TE0Nw/Hbu+D1VqD2dzSWY/v98cz4ZCrWTLqY3wGHyPKR0TpE5tzN9Nia6FfbT8G10Tv6z3d68TcWi4avYl0q5s31g9gU2MqKpBjczIorZU0i5sfazKod1o4bmApuTYHSypzKG9LQKdVSDZ7OX7QDkw6hZfWDubJr88J7Yn5JCSUk5KyMTTfAyFfTCKZWctYP/41WuNb6Vvfl4LGSMyuKrWKkuwSkpxJTN0ydb9i9j2hoyOXyspZOJ3ZWCwNpKWtw2BwhHIKpW5bp/PvFu/uaeyOHVDKzL6VWA1+PtleRE2HldQ4ydk8rLgcnVbl6R+H8XxDHGv6rMEQNJDZlonZb8av89OY0NiZiz2osYiLR29mdFYjTr+Br8vyQvnzHfRJsjOloBZ/UMulHx7O5spx+P02tNpAl7UPGo0aakSri7JNf0mUlh5LRcVsnM5cCgq+CMUnw75YAz5fAgkJ5XhzVrM+fz0BXYB0ezqpHam0W9qpTxLfydDKoWS3ZbM1Zyvbs7eT7Egm1ZGKVtF25hS7TC5GlI+IyvmAnudJktnDuSO2MCS9BbvXyKraDOxeIzqtwvTCavqltLG2Pp07vpkEiO8toAtEndsQNPwkX3fP+wTs2HESdXUTcbmyyMxcRmJiKQaDE41GIRg04fMlkJf3DSZT217P91Ovb9dz+bV+ytPLKcsowxgwktech0/voza5Fo2qobi+mLyWPHbuOJ7q6uk4HDnk539FSsrmkO8kgKoa8Put2GwV2GyVe70HDSrHDCjj4MJqksxelldnUReqASxI7ODoATtx+Azc9OVkju5fzsisJlrdJpZWZdHqNpNjczI4vYUx2Y04fAZOmHcw3w3+Dr/Oz7DKYRgDkbjRltwtuEwuRpeO5hBNPKcP3dY5HzY3JhNQtGRY3RzSp4rMeBff7szl3z+MIRAwsXPnUTQ0jKWtbQDBYHjvUbBY6hk48DUY8Tpr+qzB4rWQ3RohhHeZXNSk1HRy1Fh1KkadxP676lhdycV8QR0JJh9GXZCAosUT0KGiwaANdsYAFVWDUadw+tBtFKe0s6MlkTV1aTj9BvITHKTEeUi3umlyxfHmhgGcPlTsCasxwNq6NJrdZoKKhikFteQndLCyJpPzS21sz95OkjOJaVumRc2NL4d92W2twJ7mpkkX4JgBZUzKq6NvcjsNTktnXnxBYgd1DiuPLR/BZ3SwMX8j8Z540u3p6IN6ArpAZx330Kqh5NUOZseOE2htHYhGEyQ7eylxcY1otUKSp6p6AgEzKTlLWTZgKW3WNgqaCjD6I8+/KrUKn97H+B3j0e88mM2bz6e1dQDJyVspLPw8lJ8ujUh8vng0GkhPXwNAQBvAr/OjVbVie2rAEDDsU22CqsK2bWdQVzcRtzudwsIvSEjYiV7vQKtVCAYN+P02UlPXYbE07fV8eq1ChtWFURfE7Tfg9OtRVQ1xBn9Ib1cJqlqaXNF+ogOd79bTcY2NI2htHUQgYCE5eWunHi57mORFmM3Nv1ps/0CiJLOEzXmbSXAlMLxieOf7LpOL1X1Wow/qOWTTIVE+u57WjqJo2bHjRJqaRhAMmsnJWYzVWtsZi1NVPcGgmdTU9VGcRwdin+gwddBsa6bd0k6cLw6tqsVpdpLgSiDVkdqpizpNTlqtrTjiHFIDpA3gM/hIdCWS5EzqtW8SoCy9jA35G0hwJ5DaEeEr64jroCmhicLGQoZXDO/Vnuz3W6isnInDkYtO5yUtbV3INyH+Txk7IykpW6K+91PnutvgZnPeZmqTakntSCW3NRev3kt1SjVOk5P+tf3p29AXnapDr1XQdsZL5Z4ijBfgV3T4/VbKyo4K2af9Q7xdUj/j80n9/JiJd7Fi8gt4jV5Gl42O2nc2526mLLNMYjvbJ3d7D7253/9WpMR5OGfEFoZlNFPnsLCyRvTETKub0dkNDElvpaw1gWvmT+/1OV1GF/Y4Ow6zA4vPQlAbxKfzkeBOIMGdgClgYlPuJnZk7SClI4VhlcM6v9sR18HqotUYAgZmbJwRlVf4S/E2aVA5flApk/JqyY53sbkpmUZnHAFFy5jsRnITHKypS+fPH5xPScmJtLcXY7XWkp29FLO5Ba3WH6optmA02snM/LHb3/1fmHM93WsgEEcgYEZRdOh0XrTaQGfuRNjTptUGOu3Vrufa/XwqSWYvJp1CQNHgCUgOuEEXREOo6ZYKzY4ktm8/vVN3yslZQlxcfacvSlH0BAJxpOR/zZLBi3EZXfSv64/JH5mDOzJ34Da6GVs6lvgKqXdxOnOwWOpJT1/T6RMHDcGgAb3eS3Ly1v0et+7Gbn/Qs53o5fSh2+if2kZZawKr69Jx+AzkhXTnDKubNo+JH6qyuHDUJvITO5i3tS8bGlIJKFqGZTRLfNfmpKLdxvubizmyfzkZVhc/VGVT2R6PRqOSZvGQa3NgMYgff0llTrfX91PvVUEhqA2iQYOKik7VRcVFgpogHXEd2OPsKBqFOF8cTrMTk99EgjuBeE88ikZha85WdmTuINmZTEZ7BvqgHrtFeGtMfhNjysaQ6E7EYXJ08mqa/Wb0ip4Oc0fnHp7gTvhN8PGoof80of/25/t1SXWUZpTiMrnIaM/A5rFRmVqJX+ensKmQwsZCDEED9jg7TbYm2qxtWLwWtKoWh9lBoiuRtI5QPcKvMCYqKquLVlOdUk1mWyZJzqTOzxoTGmmxtdC/tn9UDtGBgF/rpyyjjNLMUuJ8ceQ356OiUpVahcfgobi+mD6NfQ54Peb2rO1syd1CkjOJZEeEs6Td0t6j77QnFCTauXbSGvISHCwszefb8lw8AT2D01rIT+wgL8GB3Wvk6q3prO2zFpPfxOx1s6Oe8+KBi2mNl5ji4Ore+WxPGbKd4waWogFeXDOYHa1JWA0+MuPdjMpqxGb08VlJHzY0pHL8wFIm5NZRkOigusOK3WvErA9SlNROvdPCQz+M5MmcVXiMHkbtHBUVFy9LL2NDwQYsHguHbjy0l75Y8WHoteKLDKoawntX2I8RUDT0S2nnhEE7yEtwsKQih51tCahAusVNXoIDm8nH2ro0FpRG88r9ljkvf69oim9iY/5GfHofafY0MuwZNNmaaEhswBA0MKRyCBkdGSGeVD2gBZRueHs0uFyZrFt3BR0d+VitdfTv/3bIxvIh+7+RYNBEevq6A3oPfp2fmuQaqlOq8Rg8ZLVl4TA76IjrIM2eRn5z/n7zrP6k6/L7mT9//oEnZjebzdxwww3cfffdne+1tLSQlpbGtGnT+Pbbb6OOv/baa3nmmWdwOp29vvhhw4aRmZnJwoXRQeJNmzYxdOhQ5syZw2WXXbbb95qamkhPT+euu+7itttui/rsiSee4Morr2TLli0MHDiw29/1er14vd7Ov+12O/n5+b0axN8slCAsPQeq3oOEITD8TrD1k05h3gbpTuFrgwFXd9vl6qfA64Xycuka6nBEOiGACOW0NBg5cs/n2B88ueJJrvj0CgalDeKD0z9gzso5PLzsYWb3nc1HZ37U2QVofsl8Tn/ndLLjs3nphJe47OPL2N6ynVdOfIWTBp8EwJamLYx9eiwuv4sTBp1Av+R+fFP+DStrVjI0fSgrLlnBh+/GceaZ8tvnnw8vvtj9damqdLXYtk26+Fgs0qki3B1CUeTvqVN7f6//+eE/XPv5tRQkFvDyCS+zpHIJt351KwWJBXx/0ffSuaf6Y6j5WDrapIyX7qmEfjTU4deZcS7jx0tXEJsNFiyAiROjf8vvl6+srl/BlOen4Ff8nDT4JHLic/im/Bs2NGxgVNYolv1hGSt+MDJzpsyBadPggw927zwY7kwfha6tz7rgk0/g8celA9KYMXDYYdIF2mSS62ptla5I06YRw38pVFU65rW2Sje5cGfQcOft9HTpJP+zYQ+dV4NBqKyEpibpDB7uphsOoJnNcNBB0nXq3PfP5e1Nb/O3g//GEf2O4MjXjiTJnMT8c+YzKG0fDJ7edLbs5lp/0vl6ryr0fO49nUNVpIsSSHegXboytbhbeHz549L5TQ2SYc3givFX7NZ5tjdYV7+O4944DqffyWsnvcb9S+7nu/LvePTIR7l83OX7fL5ew98hsjjcWZRw12qzdPYy/E51jd8Zvt35Lce/eTyJ5kQWnreQfy/9N0+sfIJLx1zKk8c8iVajle5ybevAUycdCcOda9FIRy+tEeKy4bMR8vew22H4HfID2x6X7wVCAbHhd4DBxn2L7+OWhbdw3MDjuHTspZz17llk27L56IyP6J/a/1cajX3DhoYNnPr2qTS7mrl9+u3cs+gebEYbb5/6NiOzfgalbh/h8Dl4bd1r2L12AkqAwqRCTht6WlQHuL1CVWHdX6Firsiv/n+SLtp+u+jN/g7wt9OUeSsnnmph8WLIyoI5c0SvDXepdjqlw1e4u/dDSx/ihgU3cES/I7jhoBs49e1TsRqszDtzHsMzh+/1smKI4WfHnvZrRxk0LpFupsYU6bzZVSZqdJB3XK/ON38+HHmkvD7+eLETukXJM7DiUnl96FeQOQN87fDjn6DlR+nmnjAEjt64P3cbw36gpKWE19e/jl6rx+13M61wGocVH/ZrX1YMvyCq7FX4glIsk2PLieqwHMPvC998A08/DRs2SOf4KVMgNTXiY/H5RIc5+GDA2wTuWvEdKiHHEKG2pbo4SBknnYTrvhQ/Y8Jg6cau0YWcXUHplJs0Aj4J+WOH3QHDQ436tj0KHTvkuwBjH5F9Joze2pO/QzQ1wcknS2fY/Hx48EEYNkw6y2q10nW2rk78c+F+oS3uFsrbygEw680MTo8E9VRVZcgTQ9jStIUBqQOIN8YDEFSCrK1fi9VgpeK6ClLidnHQ9eCLo/QlWHYBoIGR/4B+f4z4jt9NA18zjLwXhty0+7m6O9+SM6HiTdElJj4H2UeBzgiN38OXU+SYozZA4tDenS+G/UKzq5nch3LxBr2cNvQ0rAYhIevwdfDOpnewGCzU/LmGRHPv4wSt7lYu+/gy3t/yPjccdANvbXwLRVV49cRXmVIgz3buXPE3V1aKb7eoKLprsd8PxxwDGfvYQPw3ifBcN2fCtA8hbaLIUmcFfD5WjjnoTdj5KtTOh7TJMPgvYC0Exw7wtYY6insgcxYsnCqvB98Io+6X7297FBoWQeXb8vfpflhxOZQ+J3p64dmQNQsMSVAyR7rPx/eFY3fAj9fAtkfkewlDIGO6dFyveAtcVZB9BBzyGU88AVddJc8HxPeenw+1tRJDuPpqePiCv8Dmf0qn84PehJyjpYu83wEf5YPixz/ySYafdDlbt4qPdMUKkXUxxPBLQgnFwTRo0PTWr/5LYZ9950LyiNbQ+xgBwKb7YW1ozz5yHSQNB28LbLgTXJXgaYCEgbJH7wManY28uOZFfEEf3qCXQWmDOH3o6eh28e3vCS0tIv+DQfGxVVdHYsm/SfSgOz30EDz6KOzcCX/+s8Qx09Nlv/N6JVaeny969m7n6uZ8igJnnQVvvRV5LzlZxqY5VIu5ZQvctOZEPtjyAcMzhjMwLZL/8GXpl7R52nj71LfJbT+FQw+V2NqUKeKLSUuL+jncbvFh7hd60idjiGFfsYc1ce+ie7nlq1tIiUuhT1KfzvdLW0tp87Tx5NFP7h7f6+l8+xtjPUBzXVVVNjZuxBuQvKS+yX1Jjts9yF3eVs7H2z4GZC87tOhQhmYM3e24GKLx8A8Pc/0X1zO772z+MfMfnPjWibj8Lj44/YNO+wTgkWWP8H9f/B8z+87khIEncPX8q5mcN5m5p84lwyqGSZ2jjtmvzGZz42ZeOfEVsuKzOOaNY0g2J7PwvIVRcrc3eH/z+5z+zulkxmfy6Vmf8sGWD/jbN39jSv4UPjv7M2wm295P8j+IRmcjw58cTr2znrHZYxmaMZTytnK+Lf8Wi8HC6stWMyB1wN5PtAvcbsljC+edaDTif7FYJGfq14LPJz6jtjZ57feL2DEYxKYqKACrFb7Y8QWnv3M6GdYMnjrmKa745AqqO6p58+Q3ObL/kb3/weYVsORUcJaL3Vl4tvjmmhaLLeptBmMy9L2g16dUVZV///Bvbv3qVo7odwTV9mp2tu3kqWOe4sTBJ3Ye5/Q5uXb+tTy/5nmumXgNn+/4nDZPGy+d8BKz+s7a5ZziK/P75R+AXi9jYrX2XrR7Ah5OePMEPt/xOX+e9GcuH3c5x7xxDCUtJTx/3POcP+p8sbd/OFfGZOhfIe8kMCZB87LQmDRBXC70ObPXY7LP6GEP6+gQnbK9Xfy5O3ZInuHP/bs9HhfT//YKX9DHwMcGsrNtZ7efH9X/KD4565Of9yJ6eq5BD8wfIzHXpJFiD6aEfFfbn4SVV4BGD2f4sXvtHPvGsXxX/h2PHPEIB+UfxGGvHoZWo+WLc75gdPZodu6EsWPFxsvJgcceE7vIaoVAALZvF7/SoYeKnnP060dT1lbGO6e+wzc7v+Gf3/+T80aex7PHPotBt/cGZL9L9Gbt7Os63PU4dz18XAwBJxRfAhOelvc33SexnJrQfDtiLSSP2Lfr/zmwlzFRFJF9XfdEvV5sbZtN/Mu7nWuX85WUQP9QStbQoRIb+yXv4UCdb+xYWLVKPv7xRxg9upvvqip8czjULQBrEUz7QJ6ztwla18HXM+W4WUsg/aDdvq4ocv6f7D77iWMyeTL88IO8XrWqh3sl/BMqr6x7hf8s+w/DM4azrn4ds/vO5rbpt3XGyXqF1nXwxXhQfDDsb1JnAbDxXmheCtVS9PVsh59LLpMctCuvFFnXE27/+nbu+u4ujDojZw0/C4B3N71Lh6+Dy8dezpPHPAmI3XHcG8extn4tr5z4Cmvq1nDv4ns5Z8Q5PHfccxh1RoJKkGkvTGNp1VKKk4uZ1XcWrZ5W5m6ciwYNn539GYf3Ozz6An6qPPmpx+1yzCOPwDXXyOs//QkefniXNYzMwVdflToMkDjqww9DXqS3Fe3toisXRtf4HRBsbtzMOe+fQ2V7JeeNPI9Hlz/KcQOPY87Rc0i1pO79BF1QZa9ixkszKG0t5cXjX6QgsYBj3zgWrUbLgnMXMD43Qmi+vHo5Ny+8GYvBgtPnxGay8c9Z/9xnmxPgsnmX8fSqpxmXM45/zf4Xb298mydWPsGIzBEsunDRPuVaP7T0Ia7/4vpuPzNoDWy6chP9UvpFf/BL6pPuOslj8LdJ7hpdkvZ1ZkibFMpti/xUICD/QPYTQ3cqx57uQQmAqwI8jRIPU5VI/pxGB9YCXphbyEUXyeGXXAJPPrn7XN8ftHnaeG3da7gDbgJKgAGpAzhh0AmS6/wzwRf08djyx/is5DP6p/SnrK2MS8dcGmXXhdHuaafKLiTbZr2Z4pToZmHegJdL5l3CK+te4aYpNzEgdQCXfnwpU/Kn8O5p7+7zGjvQqGiv4IIPLmBFzQouG3sZc1bOYWrBVJ4//nlybDl7P8F+QFVV7l18L3/7+m+cMuQUbEYbz61+jpum3sRdM+7at5znXuK77+DLL6GiQuRoUREYjTJHw2tk5kzIzu7ypR7WxLffwuzZoqPNmgUffig+le4QticWlS/isaMeY1zOOA5/9XAsBgtfnPNFxOfpa5OYla8lVGMRWluqAlq95B0Zk1hauZSjXj8KnUbHgnMX8G35t1z3+XVMK5jGx2d9LLJu/hhoXS05TdM/BXM6NHwndQEgdQG5x7La6WT8M+MJqkESTYmY9WZ8QR+tHiGnX3ThIqYWTCWoBDn/g/N5bf1rnD/yfO6ecTfHv3k8a+rW8NhRj3HF+Cskx3b+GJFLhWfDuMfEn9BRIjbW1ofAlAEn1fP883DppZFaqCOOgOJi8VV9/73El76793TJY9dZ4OQW0JmgfSOUvQreRlC8kHEIFF98YCbI7wWKX+SwvxWCPlADgEbmiC5O9GCdEYfPwdWfXc1La1/imonXMG/bPHxBH6+c+AoHFx6MxyN+tsZGsS22b5f6xG5xIOusuovZ+lrFZvO1SK2CtS+kT4ENd8gzH3QDpI4XG91dLfUp3ibIPlyO6+5ad7meDQ0bGDlnJKqqEmeIBAT9QT9+xc9fp/2Va0feTWGh1D9kZ0vda3w3KvWKFTBhgryeOhUWLerdrfckT+68E+64Q17//e9wyy09n+KKT67gyZVPkmRO4vyR5xNQAjz141MElAD/OeI/XD3xalgwBZq+B9tAOGKV5MM0Lob6r0LxdhWyj+Dim6bw/PNy3vvuk/yYrnKsuVku+fumjzn2jZ6JH7674Dum5Y6D7U+I7aA1S56QIZFO6nM1CNY+kHkIIHGMGxfcyOzi2czoM4ObvryJI/sfySsnvkKSOYmHHoLrQ2rYDTfA3XfvXnvr84kM73aM91fHcuyEpqXgrhH5ZUqFzuYvquQo5By1f+fu4fkrqkK/R/pR1lbGQfkHkWZJCx2iMm/bPLQaLTuu3sG/bu3DE0/Id55+WvSs7nDyyfDee/L6/ffhhBP2/9r2Gz2c78MP4cQT5a1TToE33hCdtNfn2+Xa7rsPbrtN9u+bboLLLxfbKZyL19oqeQr/+IfUYwPcf7/Mra76qaqCyyU+vL3dQ2/v1eWSvIQ1a+S8Tz0l9xyex36/+DYmTYIXVr/ARR+JAn328LMx6UzM3zGfmo4aju5/NB+f9XGvx4QVV0DJk6C3yfq39YP2TeIn2fgPyVEedD2MfqDTZh+QOoBnj32Wz0o+497F99I/pT9LLlpCujUd6r6C+oUicxOHhupnwoOngtZIg+kkxoyRPJfsbMnNHrBLyCocg3pvyzuc+vapAMzqOwuLwcKaujVUtFcwLGMYP176I0bdLgt7T+taVSSG42sRf4YSCp5o9KCPA0s+bHlIcvs0ehjzMCSPlHo4RykEOiRXqOA0Zp08mIULJR/lgw9gxozoPaC1VeZruXsDY54ag1/xk5+QT6I5EbvXTkV7BTqNjpWXrmRU1qju76Gn+zhQ6K1Dq/oT2Pma5ElmTJdxgpBdqco49r0IDPFUtFdw+juns6FhA3cdchePLn8Uv+LnzZPflLhz0Atr/gJ1n0vNacGZYM0XvTbglH1dZ4aB14qu8juAyyV7TCAQ7YuNiyPU4MPPQ0sf4qkfn2JqwVQWVyzm1CGn8rfpf8NqjAiSNze8yUUfXsTQjKHcP+t+zv9A9u33T3+fSXmTdv/hnubJjudg+SWACgfPk/xUvx12vhw5xpAMRecc+MHYy7V5PJLX9cknokP8+9/ix0xKknFzOIRDZMSIXWJ5P9e+08O5fEEfH2z5gHZPO4qqUJhUyOHFh3fmUC5ZAu+8I/pwQQEMHy6yO5y7FwjA+PEwdFgv1pijAj4bLvnPxZfAuCdk7pe9KnXWILIr+0hY+UfR2QpOkzUXlyP2WtAl+rHOAgOu5POSzznq9aNQVIWbp95MalwqDy59kFpHLVeMu4LHj34cKt6B1X+WdT36QdGRNTqwbwnpzg2QOokO60wmTpT8Z50OzjsPjj5a7K+WFli6VPbSq66CuRvncvZ7Z1OYWMj8c+YzZ+UcHlz6IMcOOJa3T30bk37fm7gfEGy4C9aHanCO3goJA2Sf2nQfeOpF/iQMZH3O+YyYMwINGp477jksBlF06531XDP/GrQaLdV/riYrPity7j3NzW+PFY4aSwHM+ELyTDu2y79vj5ZjpsyFglP5oeoHTpl7ClqNln/O/id/+fIvBJUg75z2Tvfrfw+we+0c+dqRfF/5PffPup8j+h3B4a8eTrunnQ/P+JDZxbM7jw0EZL9yu6O5R4xGWYMHmiLqmWfgo48kV3TGDNn/4+LkN4NBuZ4jj5R19bOht/r/gT7uvxiKqjD1+aksrVpKji2HSXmT8AV9nfl7zx/3PBeOvjD6S7+QPfF7wOvrX+eCDy5gWMYwPjv7M6767Cre3vQ2t067lXsOvefnv4ADNNeXVCzhru/uIjUulXpnPUVJRdw9426ybdndHt8d/H6pA1y9WnSpBQt258BSFJEXL61/lkvmdW/kajVaVl26anfujt/xPDlgaFoGS88S22bwjVBwuvgxmn6I5HaZM6Do3AP6s26/mxFzRlDSUkJ2fDbFKcX4gj6WVy8H4MXjX5Tcs674peTEln+LTgRw2ApIHSd61dqbwb5N4lsJg/hO8zH/+pfE4QcOhFNPlRwfs1n2r/Z20WmP2tUFFNsn9g+/4Hrd2rSVg54/iBZ3C/fPup+h6UO59ONLqemo4V+z/8X/HfR/P+vv/+b2xKAH6r8W35DilZpNnVl8JKoifoCk4aLb7uv17Am/4hr5due3nPfBeZh0JmYWzeTpVU9z1YSruG/Wff/TXBCra1ezvWU7APHGeGb3nf27yU0MKAFOfftUPtjyAWcNP4vbDr6NS+ZdwuKKxVw78Vr+fcS/f7bfbve08/SPT9PqaUVVVTKsGVwy9pJ9y8XaRzy76lku//hyJuVN4r3T3+Pc989lwY4FPHjYg1w3+bp9O5m7FuxbxSegMUgMMZxboQbA2ge7OY+sB7JwB9xcP/n6zrwAf9DPzQtvRkVlwx837F6/s6c90dcW4uNoFZ8tauh3tRKvShoJX8+Chm/BNgBmfCn+xNZ10L4Blp4t55n2Ifft3MTNC8UXUpRc1PkTO1p20Opp5bEjH+PKCVd2f209Xd/PhZie8LNAURVeXPMir6x7hUGpg9jctJkzhp3BJWMu2ae6XRB/2MaNUF8vvszU1GjOY70+wgH2c6DF3dJZP5dqSd09FvILwm63k5iYeOCJ2W02G+eeey5PhCOawIIFCzj88MO57rrrePDBB6OOv/XWW3n44Yf3iZh99uzZVFdXs2nTpqj3Fy5cyKxZs/joo484tpuOBoqiYLFYuOiii6KuD+C2227jnnvuwW63Y+tlFdW+DOJvHkEfOEtFeAfdEvjR6kFnhbjMaNKb/wI8uuxRrp5/NSMyR7C+fj0zimbw8ZkfRyWRAGxq3MQ9392DoipoNBpuOOgGxmSPiTrmuVXP8Yd5f2B8znjmnjqXUXNGiYF8yXKGZQiLyNy5EnjctEkc8f36iaNEoxED1GSCBx74ee715i9v5r4l93H8wONZVLEIrUbL4gsX71NSbkWFJHMFAlKIEA4u9IRw8fPhxYcz55g5jHhyBEE1yMpLVjI4fTDPPw8Xh3K8Lr9cEku7xX4YH8GgBPm8XnFMGY2SDLVbUkkMMfxU/Axk5YqqcOOCG/ms5DOMOiMpcSm8euKr++SQ/V3g5yR6P0BodDZy57d34vILefa5I85lRtGMX/WaYvjlsLZuLWe9dxb+oB93wM1Foy7izhl37vuJmlcKeVnbeilKj8sOJVtpQPVLgu/AqzsPn7d1Hu9ufheARFMid824a58I734LcPqcvL/lfRRVQavRcvzA4/97ySKUgARggm5xump0ojsbkyVZDUm83b4dqqpEP3G7RQTGxYkxeuihEpAA+GTbJ7y6/lU0aLAYLPxj5j86CT5iiOFXxy8Y9Hj+eXjzTWm6NGiQJGolJclnra2S1PTcA2vgq5mSLNrvMhh4nchUrUHWpLNcmmTYogu5Yoghhhhi2D+Ei5ANhgNTGNwtqj6C0uclQJQwWAof9FZJZPfbJVlz6M3R3/kfSBjq6IDSUqipEX3S45HbDgc3Djqo98/k2VWSlGXQGrh64tVo0PDa+teoddRy1YSreOTIR3b/Uk9Br0+GCClPylg4fKW8t/0J2HiPJO+qSu+J2R2lMC+0Z3cltFhyuhS/uWvk712J2WP4WXDOe+fw2vrXMGgNnQSQLe4WAkqAi0ZdxHPH7xspbxjLq5d3+ljGZI/Zr0Z6v3soQZhrlPXR5xyY/Iq8v+UhIWEPY9gdQnwTjtl4GkJ2p0+C/XqrFBoEnBEymCG3wMi/y/ebloaC8yHoE+DzUEwj3DhOVWWtbvqHELnH94WDP4ZPh8hxfc6Dic9HGiMuOlma+2YfQUXfz+jbV/zwyclSrDh9euTnSkvFDj7clSW/kTkLDl0gH5Y8BaUvdB7r7/cXhh5xItu3i238448wZMgBG/EYYoiht/C2wMorofZTsa0LTgNLniQX+h1SxJ82WZo6/ApYsECIrFavlibPM2YIWbvBIAm+tbVShN+3769yedHYS8KQwyEx144O0euCwUiBT58+uxC97kHXfeIJIfgCKdx55plQ4yTk/E8+KaQdJcoCDntVmqYNSR+CUWekzlFHnaOOHFsO5deW88Jzei4N9b676iohwjqgiCVRxXCgsIc10eZpI//f+Th8Do4dcCwDUweytn4tC0oXkG5Jp+K6it2Thn/hgtYYfjv4aOtHPLHiCTQaDSadiQcOe2B3sjjg+8rvWVi6EICUuBQuG3fZbqRXza5mDn/1cNY3rCdOH0dKXAoLz1sYleC6LwiTs/dJ6sOO1h1MzpscI2XvBT7eJuQ3xcnFrLl8DYe/ejjfV37ffVLx/xC2Nm3lge8f6IzZ/nnyn6Oa+PUaqgrOnUIU5m+VAnVVkRiMMRESh0N8n30+bb2jvpPILDs+u8eY+Nq6tdi9dgCGZgzdvangAYY34OWEt05gfsl8BqQOoKSlhBeOf4HzRp4XOUhVhQyuoyTUPM0tY6IzCalS0nDJC/i50MMepqqiI86ZI3/ffjscd5wUyBmNojuXlkpDtP1qfhcjZv9Z8MraVzjvg/PIjs/mmwu+odHZyCEvHYKiKqy5bM3P38S9p+da8Y40ZgAhb847Xl5/VCQ5EgFHJzE7SIHpyXNPZn7JfBLNiVgNVhacu6BT7lxyCTz7rJzi1Vfh7LP3fFntnnau+uwq6hx1KKrCzKKZ3Dzt5j1/6feOX4KYPeiFrw+Dxu+kkGfcE+Lj1+gBRQgM3TVShPvfhj2M3dy5Qty2Zk2kMXFamsRe2tuloei99+7exOwXQS/zp88+S+X11+X1nDlCXG3uYgJ5POCz15OwMESkEiIaA2DNzUIQGMa4xw9sLOYAF6B+9ZU0Bt24UUjazzlHfCoWi8TRqqulSDzsJzkg6CiBz8eFSIMuhbGPSnPhju0h8kYg6MYXP4a//1185qWl0nB29Gjx+wSDkkPmdArZXUAJMOX5KSyvXs4zxz5DhjWD4988ngGpA1h92epOMhwQGXvDghuotFeiqipTC6Zy45Qboy6xrLWMkXNG4lf8rLlsDX9f9HdeWfcK10y8hoePeHj3e/qNEbPfdhvcE+Ld+Mc/4OYeRP748bAyFJZcv/6Xb/TqD/rZ1LgJFRWjzsiQ9P0PaITJ2Ws7akmOS6bD27EbKfuBRlAJcuJbJzJv2zwuG3sZL619iQxrBksvXrrP5NK+oI/Bjw+mtLWUOUfP4dShp3L+B+fz8baPD9y8+y3qkwfAn7RqlciyrVsllzQnR4oYwzVFaWlCsvq/iP/88B+WVS8DoE9SH+485M7fTOG7qqpsatzUaWP/Ug0SV9WuYlvzNkDGZF9Jyn5NlJXB559LE9mmJiEjNRikgDcYlGPuvVf+7/a7OePdM1hYupB4YzxJ5iQ+O/uz/faxra5d3RkbaXG3MLNoJh+c8UFkfw36hIS5fb00UDfYJO8UTYjIWwsj7gLgT5/+icdXPM7Zw8/m1ZNe7fz73BHn8vKJEcJHRVW48MMLeXntyxQlFbGzbSdPHv0kl427TA7YPkfIBQFmLRYyQCUA3x0XuXBjMk0DXqOwUPSa1FT4+mshP+yK7duhf0GLkOs1fS/khEmjwJQieewBl+S0D7q+96Qh/6NYV78Oh88BwND0oVH+qZYW0evWr4fycpHXVqvMY0URUtLLL480ejogCHph8/1Q+7nkiaQdBJZc0JpCBK6tkH+KkK6D5KB46sRGD7rlPZ1Z/FOmjEi+Rxh72GPPfu9sXl//OocXH87t029nadVSrv/iepLNyZRdU4bNmMhVVwmBMkhs9uijZW0bjZLbXVoqpOwLF8LLL8O6dUI0OHmyxHi1Wmmi09gosc6uNktPe2xZmdg3ixfLua65RtZEQoLUizY0yLM4/XRpujj+mfFsaNjA3FPmsrV5K7d9fRvHDDiGeWdKMyX8HVD+JrSuknwWS4H4OTU6IdtRfASG3I3RakNV5Zl3dOzZrJn9ymy+LP2SW6bewq0H38pNX97Eo8sf5aTBJ/Huae/u/bl3g2VVy1hSuQSAdEs654w4J6rJ/Nat0rBq27YIIZZOF9EnhgwRMtjfDfagYz3w/QPcsOAGdBodk/MnA1Lr3eJu4biBx/HhGR8SDMJrr8k82bJF1mtWVkTH8vuF+Hb7diEsB/Gd3nBDNOF4ICDPOzm5d9d2oO913TrZOzdvlryC/PzI3qkoUnt+564lbXtY121t0oBuxw557Q6JCa1W1tD48XDhhSLnQOZTjzJtf2pAe7jX99+Hk06S12edJc9uTzhl7im8u/ldbp56MycNPolJz04i1ZLK+j+ul1qr3vodlpwJ5W+AMQWO3iwkfK6qSGMWkPy5hEEAXDrvUp5Z9QxnDjuTj7d9jNVo5fuLvt8n/WTbNrFb/X6RXStX7rm+/Yx3zuCtjW9x/eTruXHKjQx6bBAdvg5+uPgHxuaM3f0LB8J2UoISA3JVhHQID6AR0mNjMqSMAa2B7duFF6GsTOZnmIxFVSXP5bjjxD8T5jE4YdAJvH/6+5339OdJf+bBwx+Mvu494bdoD3aDgBLgwy0f4gv60Gg0zO47u/vGUqoa2a8Vv+ieeqv8+x/FjzU/MmflHFRUDFoDtx58K3kJeXv/4q5o3wSNS6Bjq+zlemsXIr0A5J0AqRMO+PX3Fj6fEDOHa0o9HpkOFovsN2PG7KIT/VT81skAPQ1Q86k0GPK3gTEt0phACQjZWP8r5O+AW/Knfa3yWg2I3mawgaVQeG+AO7+5kzu+vYPjBx7PCYNO4MIPL2Ri7kS+u/C7aBIndx04yyQXclfdOXEIf/mrjX/+U97ek38yjHBuR7Ytm4r2Ck4afBJvnvzmr+vH8Dtg3V+h7gvJIc85ShqKa00ig9w1kHciZM9myOND2Ny0udvTzOgzg6/O/yr6zT3pRHMtMqb5J8PUd+S9irnQ+H3kmL4XSgMQoMHZwAurX+j0sVw4+sL9rp92+Bwc9dpRLKlcQq4tlxZ3C/POnPeb5IEID9tPbn7bW/yWfay/Y2xv3s6op0ahqiobrtjAK2tf4Y5v7+DYAcfy0Zkf7f6F/4F6t33Bp9s/5YIPLsCkN+HwOfjbwX/bdxLN/wK0tUFurugG6enid4qL6/7YoBJk5JyRbGzcyD9n/ZPzR53PtfOv5Y0Nb3D+yPN58YQXd/9SbN5F4KwER4mQoIYb6mqNodyuYVIrcYDxzc5vOPSlQ8mMz2TLlVt4fMXj3PrVrRxWfBifn/O5HPRz2kQ9PX9npeQANS+DrNlQdGGEiDrQIfZxfD9pKBiCzwd2e4S3zWAQP0piImi0v3G987eMX9EmXlS+iNmvzCYrPosZRTN4cc2LXDn+Sh47ag8d539L+C/yJ/xa6PB2UNJSAoDNZOs2dz6G3xd8QR/Hv3k880vmM71wOt+Wf8ulYy7lqWOf+rUv7WfB+5vf50+f/Qmz3ozb7+b+Wfdz7sgD22ilK05/53Tmbpzb7WcjM0ey5vI1u3/wU2wxJQjv2EI29qkwNfTbVR9BW5ffKjiDNmNGZ/3UUf2PYmDqQDY0bGBB6QJS41KpuK4iKvcs6tr29/r2FzH7NIbfEX42YvaxY8ficDjYunVr53s33HADDz30EHPnzuXkk0+OOv7CCy9k0aJFlJSU9Prib7jhBv7973/T0tISdfH/+Mc/uPXWW6moqCA/P7/b744fPx6NRsPy5cuj3j/ssMPYsWMHO3bs6PV1/FcRs/8PYnXt6s4kmrE5Y3ffTPYBZ757Jm9ueJM0SxpNribmHD0nkkTVA1T1l3Og/ueH/1DvrAfg5MEndx+M3QvefhuuvVaIoEaPhtNOk8QWvV6S5TZskOSavDxJLJv18iy+3vk1ubZcqjuqdxuTe+4RIoX6eiElPfRQSSYNBCQ5vrk5krQTQwwxxBBDDDHEEEMMMfzCONBBiv04n9cryZsulySNJyRAfLhZpq8d6r+E5uWSJBWwy/d1cWDOhMIzIO33U4wUQwwxxBDDLgh6pOBMZ5JEj+4QSxjaJ3gDXvr8pw91jjo+P+dzhqQPoeg/RaiqyvartndfNNJT0GvxKVD5LpjS4KiNUqgS9EWSlUGem860+7l2PZ+vHT4qFEKL/FNg6tuhC26SORCGOTOSgB3Dz4ZF5Ys4+MWDSTAlUHt9LUElSNaDWbj8Lpb9YRkTcn+9IoX/Cqy8CrY/Jsl8E56G3OMj68TXDm1rIWMfGGMaFsG2/0gndEMiJI0AvU0SB11VkD5V1ueaEEnLkeslidDbAu91KQKK7wv5p8HmUAXiceVgLQBHmRR01y2QooTsI/jLZ591FiDcdx/85S89XNuam6RoWGeBya9C7nGRwl9VBfsWsA2goUnHww8LCcW6dTB0KBQWSkFhayvU1UlR7qSYah9DDD8/VFXWurdJitLDBWumtEjy7a8Mj0f8BE6nXG58fKSQ/zeBA5kwtAddd+RIkZkghPWjRnV/ClVVGfT4ILY1b+OlE17ivJHnccSrR/D5js+5Y/od3H7I7aiqFJM9/riM7bHHSsw2PT0Ss21qgoce2o/r3hNi+nsMBxjXzb+Oh5c9zJnDzuT1k1/nyNeOZH7JfO485E7+Nv1vu3/hp9qTsbkeQwhBJYg3ZLsadcbdyNv3FWWtZZ0k1P1T+/+kPKb/JVw27zKeXvU0wzKGsaFhA0f0O4LPzv7s176sGH6n8Aa8bG2WvFerwUpxym+gCfA+xNhqa2HZMiGsbWsTMqEwOUp2Npx3nuh6P/u1xvbAXkFRFcY8NYa19Wt56YSXWF27moeXPcx5I8/jpRNe+vkvoCedqH0TzB8lJDGDboDRIWdQ0AuEj9NE+3/3gDvvhDvukNd33SUEvDEcYPRWTqgK1H8DTYtDDSbsYv9rdGBMgpRxMOBPP/fV/mbR2hrxO2g04ncIN4f7LUNVhbzt66+F8NfhEHIfgyGytG+7DaaqJ0LVB9L4c9IrkHkIaEJOlYBTfLYp+55b/mugrU3I45qb5X59Prnn9HTxmxxwIv2O7bDjOWhcBN5GiVlpQhND8ULWYTD89s7D/X7JjXc4hPxOr5ci9aysCAnbtuZtjH5qNAatAavRSoOzge8v+n6/iblfWvMSF3x4AUVJRZS1lTE8YzgrLlmBSR+S1QeQSG83/ETCbUWBBx+Et96SJgkjRsC4cTJmbrc0SCgqkvhBuMHgWWfBww9H6zUej8yJ3NyeL+G3hFZ3KxXtFQCkW9P3mRx9f+Dyu/jrV3/F6XMCcM2ka/abYP7tjW9z2junMShtEK+f9Dpjnx5LojmRHVfv6L6h0u81th8r8o8hht8lfEEfvqA0M7cYLGg1+xdIavO0MfCxgTQ6G3n5xJe58MMLsRqsbP3TVjLjM6OOVVSFnW07UVUVk94UTSzpaYTPx0qjt4wZMOYhie1rtFJk7ygBxcc/nx7eGX+/5Rb4+9/34WKDHvn/byCeF8MBguKXmC2K5F3o99FXvA9xjJKWEgY/PhidRkfZNWVc9NFFzC+Zzz8O/UdUo7TGRiEW3rRJCMHDfqeEBPE7nXmmkISH4fWKfeV0SjzXZpNj93it3eyr7e2wdq3ELcM55UajxImHDIk0MNjQsIHxz4zHYrDg8DlIjUtl3R/XkWbZNwPhL3+hMy/m2mvh//4vomMqipB/JyfLPa+vX8+op0YRb4xn0YWLmPjsRBRVYdMVm34bfsXfA/bw/FvdreQ+lIs74Gb1ZasZkj6E3IdyaXI18cU5XzC7ePY+/dQ330hj+BUrxAcQHx+x+RUF/vhH+H/27jvMrrJeG/Azk2QmvSeQkARCQpPQm4BCEClKUynSpAhyjvqJIByRo4iiiBSxexRFijQpAooICAKCdAlISQgtgfTeM5NkZn9/bDKFmSSTMJNJJvftta9517vetdZvj2Tevfbe61n1og/WYjD7B9rfGu7r5ZeL14ePHl0Mgv/CF4r/prp2Lf77Hju2GBp88MGrWc9KTJ5UyI47Fm+ssMkmxe+Lbbll/TGLF9cGE85cNDPb/3r7TFs4LUN6DMlbs9/Kn4/9cw7b6rDVeq5ZuiB56YJk4p+TyplJ/5HFm1+UtCvO0/PHJnvdWBPMXlVdlUsevySzF89Okpy0w0nZYeMdVu+YSe67r/iezPPPF89rDzmk+LzbtSv+Dl55JbnuuuINWWYumpltf7VtZi6emb0H751Hxz+ab330W/nex77X+M7XwffiFy9dnBH/NyJvzX4r397n27nonxdl0x6b5pUvvZIuZRtuCDnQcgqFQg656ZD87Y2/pX1p+/Ts2DOj/mvUagf977578fVBUvzb/KEmvF02feH0VCwrnocN7DYw7d5/Y6TWVFVZDKFdNj/Je9dZlvetOV9cHmi/cdeN89U9vpok+cFjP8j8JfMbz8dZ2WuYt65Lnj2jGJ6/xVeSTQ4rvn9eqCp+j33uy8mHVvRF8w+uclllJs2flCTpWtY1/bq05Afh6zDfY1trfvb0z/LV+76a3TfZPS9OeTFdyrrklS+9ko27btxw8Pr6njgt7uGHizefe+mlZNiw5Oiji9fPdOxY/L726NHJ175W/Fzs3tfvzSE3HZJNe2ya+0+8P9v933ZpX9o+Y78ytvH5zn93rW75jb6O2faY3DP2npSkJK986ZVs2nPT1i6tmMMw699J5bQ614p0Lt7ksc8eSeeW/6yS1vWn0X/KTS/dlCQZ3H1wrjjwinXrdSyw2hYvXZx7xt6TQgopa1eWw7c6fI0/F6W+e8bek8NuPizl7crzl+P+kval7XPan0/L23PezhUHXJFz9jqn4UYf9D3bd/+UPP35YtbCpickAz+RlPcrnnMvnpTMG1vzXd7l108dO+LY3HzkzTns5sNyz9h7csE+F+Si/S5acW0fpL41sQ6+jw0r0mLB7D/4wQ/yrW99K2eccUa+9KUvZezYsTnttNOSJJMmTUqXLvU/QNlyyy2z+eab57777mty8U8//XQ+/OEP5/LLL8+5556bJKmsrMyIESPSp0+fPPXUU0mSd955J4sWLcrWW29ds+2ll16ab3zjG3n22Wez6667Jklee+21bLvttjn33HPzw+W3vm4CwewsN69yXv748h9TSCFdy7rm+O3Wp1vLr57Ro4tfpJk1q/jllqT4hZKhQ5MDDigGpiTJxHkTc+0L1xbXd+qVL+32pUb3N2ZM8YP65ReDlZUVL2bYeutkq61a/vkAAAAAsJ5w4fMH8oPHfpBv/uObOXTLQ7PDRjvk4scuzme3/WxuOeqWxjdY0Ydei6ckjx+ZzHii+OXZwUclXd4Ldl/0bjLrmeQjdySdBjTcV2P7m3BX8tTJxRCY/vsmAw8thkkvW1S8ALVyVvLh33+g507TbfurbfPq9Ffzh0//IUurlubzf/58dtx4x4z6r1GtXdr6r1Ao3tTg3TuSmU8nS2a9F3xTmrTvlPTcIdn3njXb99IFydI5xS/Ut+9c/BJ9aYfkzd8lz3yhOOZj/0g22q94cffsf9duW9oxee3HydvXJilJPru0GKI+69/JI5+oHbfR/hn5zZvz6KPFxRdfLAakNP5cq5O3r0/e+WMxrCalSaeNi7+DymlJx42Tg18oPu865s8vfu6w/OLdHj3W7NcB0CrWQjD7O+8Uv4CfFD9HHTNm5bv5yVM/ydn3n519Nt0nf/j0HzL0p0NTWlKad856JwO61b5WW7aseDHwmDG1n9mWlxc/s91222SX9SOXjQ3YO3PfybCfDUtJSvLQSQ9l32v3TacOnfLOWe+kT+c+DTdwAQq0KQuXLMxZ952VyqrKlJSU5If7/7DePAe0IBd5f2B/e/1v+eRNn8xmPTfL1AVTU12oztivjM2QHkNa5oBNfY/9reuSUeckS2Ymffcq3gCwQ8/iRR/zRiddhyc7/6hJh1yyJDn88GJwdElJcuKJyYEHFsN0Fy2qPa85//yV7wf4gKqWJG9fk7x7Z/H94aqKYiD/8pvk9t+39ua5rBW3v3p77nujeP3MXoP3yud3+vwH2t+VT16ZyfMnJ0lO3enUNQvcbskA9yZYsKB4o5m5c4tzRKdOxfenBg8uhnn+7W/JH/6QPPBA8T2sTTctfo4wb14x1O7730/OPPMDlcBq2OvqvfLkhCczoOuATF4wueHFpz7bB9qAa1+4NqfefWpKUpJCCvnpwT/NmXuswWRTOaN4njX53mTBW8mS2cXP80vaFW+cs9VZ+cqVJ+UXvygOv/HG4o1IYG05/c+n5+pRV+fAYQfmgTcfyEZdNsqbZ77ZckG6LfQ64YE3H8hLU19Kkuy72b7ZdeCuq72PpPgexl13Jf/8Z/F15pIlxc9OC4Xia9OrrireTCipDdzq3al3Zi2elXP2PCdXHHjFGh2Xhpb/t/nl3b6cjw75aI6949hs3XfrvPqlV1PS1Pcm19S69nliC70XO3Zs8vjjyZQpxcD6JUuKN1IYPDg56KBks81Wv9SVefXV4k0c77+/eA64yy7JoEHFpzdhQjEwfuHC2vH/HP/P3PJy8futW/XZKl/98Fc/WAGVM4vz8tK5SUqL7410HtSiNzeZO7cYujh7drFdUlK8ucTQocXvfSz/v/Yvr/0lFz5SvPHbwG4Dc+dn70yHdu/dPWA9eS/+gTcfyEE3HFSzfM9x9+SQLQ9pxYqAtm7R0kWZMG9CkqRnx57p36X/au/jc59Lbrih2N4QzsVGTx+dD/3qQ2lf2j5Tz52amYtmZstfbJl2Je0y5dwpDW9stKrXRIunJpPvS2Y9W5xnl81LSsuL4XHdt0q2/lrLPiFYiwqFQk69+9S8OfvNJMlZe5yVIz90ZOOD17XzCdY5kycXbwwya1bxM69CoXjDu802S/bcsxjUniQfv/7jeejthzKo+6BMmDch//uR/83F+6/gjo7+u2t1cyvmZttfbZuJ8ycmSX5y0E8++HksALDWLatelgE/GpAZi2bk/hPvz1Z9tspmP90spSWlmXD2hMavU2iOawqrKovXYs96vnjt+bL5SWnZe+fYWyeDP5Ok/vVTj5zySD56zUdT1q4s488aX/veiO/swGppsWD2RYsWZc8998xLL71U8+FmoVDIlVdembPOOqve2Oeeey677757Lr/88pxzTiN3gFiJY445JnfeeWfOPvvsDB8+PNddd12eeeaZPPTQQ9lnn32SJCNHjsyjjz6auuXPnz8/O+20U+bPn59zzz03HTp0yJVXXpmqqqq88MIL6dev6XdCFMwOAAAAAMD6YPbi2RnykyFZtHRRupd3z5yKOXnuC89ll4HvJW2u7sUb88YkU/6eLJ78XsB0+2JQe/dtkk0OT9qV1W6zqi94LVuUTLonmflsUjGt+KXcdl2KF730+0iyyaFr9qRZbT996qc56/6zsv/Q/bO0emn+Of6f+b9D/i//vet/t3ZpbVOh0PR/e2ti6YLkz5sVQ7R675p89M7iv6vlKmcmFVOLYfEvfbvY98mXkx7bNrq7kSNTE8w+alSy445NrGPZomTJnOLF5WW9i8HvAG3NB/0SVRPmg/+8WMgOOxTbI0cmDz+88vFzKuZkkys3yaKli3Li9ifmhv/ckKM/dHRuPfrWNasR1mEn/OmE3PTSTenTqU9mLp6ZL+36pfzykF82PtgFKADAOuRj130sD48rvrj/2oe/lh8d1LTA8xZXvSyZ+nAxiL1yevH9nQ7dky6bFd+z7TZstXb34ovFULPRo5Pp04shut26FUN1P/Wp5IgjWuJJACtUqC7+u27XMSlt39rVsL5ZBy7eW7SoGFaxeHHxRq/9+7fsxy009OS7T+a0P5+WJOnbuW8ePOnBlNX9fBigDSgUCrnxpRuzpGpJ2pW0y4nbn5h2LfRZ95VXJssvrf3615NLL22Rw0Cj3pn7Trb4+RZZUrUkidCo9ysUio/S0obrpi6YmhP+dEKqClUpa1eWPx71x/Ts2HOt19hWvTDlhez0m53So7xHtttouzz+zuP52cE/y1f2+ErLH9zniS1q6dLiDRtnziwGlrdvn2y8cTGoXFTD+u31ma9nWfWytCttly37bNna5QCs0rhxyfbbJ/PnFwNxL700OfTQ4g2GZ81Knnqq+LLg8MNbu9Lms/3/bZ+Xpr2Ua4+4NlMXTs15D56XAzY/IA987oGGg70mgqZbBz47oe15YcoL+cwfP5NCCulW1i2Pf/7xdC+vc9LkvzsAgBbx/+79f/nls7/MaTudlm36bpNz/35uPr75x/P3z/298Q2aI5h9NRx/x/G5+eWb069zv0xfND1f2PkLueqwq9bKsaEtarFg9iRZsGBBfvzjH+epp55Knz59cvTRR+ewww5rMO6qq67K3/72t1x22WXZYostVusJVFRU5IILLsgNN9yQ2bNnZ/vtt8/3vve9HHRQ7d10GwtmT5IJEybk7LPPzgMPPJDq6uqMHDkyP/7xjzN8+PDVqkEwOwAAAAAA64uz7jsrP336p0mS/TbbL/84+R8tdzBf8FovzV48OwOvHJglVUtSKBTSpaxLJn1tUrqVd2vt0lhTU/6RPHlCUjGleIf0HtsWw9ErphSDtbb9VjLsjGKAe2FZ0n9k8pHbkvK+tfuY/2aS6nzr0i1y8cXFru9/P/nmN1vh+QCsK1b3pjbNYMqUZMCAYnvIkGT8+FVvOVIEpQABAABJREFU84U/fyG/G/W7muWHT344Izcb2Ww1wbpieTBDkpSWlGbs/xubYb1XEBbqokEAYB1TXahOUnwdAwAAwIZn9uzijauWhwHef3+y++71x7z0UrLddq1SHhuAUZNHZW7l3CTJnoP2THn78lauCIo+es1H8/g7jydJupV1y8SvTWy577H5viMAbJDGjEn+93+TBx5IFi5suP4HP0jOP3/t19VSLv7nxfnWw9/KEVsdkakLp+apCU/ld4f9LqftXLwJo9dEsIb82wEAgDbj6QlP58NXfzi9O/XO0J5D8+/J/851n7ouJ+1wUuMbrOVg9lGTR2Xnq3YuHjolGf3l0dmq71Zr5djQFrVoMPuGQjA7AAAAAADri4plFZm+cHqSpEfHHule7n1tGjrpzpPyh//8IUly+k6n57eH/7aVK+IDW7YwmfpwMvUfyaIJSQpJx/5Jj+2STQ5POg9Mxv48ef6spFCdtO+W9NopKeuRzH+jGOC+542Z2OH4DB2aLF2adOuW3Hxz8slP1n5v4OWXk7ffThq5VzMAzeQjH0n+9a9i+x//SPbbb+XjX5zyYo6747gkyeAeg3P/ife3cIXQeibMm5Cq6qq0L22fTbpvUn+lC58AAAAAAFiH3XRTcsopxc/jS0qSffZJhg9PFixInnyyGNz+z3+2dpUAa9d9b9yXnz39syTJx4Z+LOfudW4rVwQAtFXLliUvvpi8+25SVZX07p2MGJH069falTWvN2a9kS1+vkU6tu+YymWVaV/aPlPPnZpenXq1dmkAAACwztjy51vm9VmvJ0k6d+icqedOTdeyro0PXsvB7Enx/L6quiod2nXI5r02X2vHhbZIMHszEMwOAAAAAAC0JQuWLMisxbOSJH069UmXsi6tXBFrzaznk3E3JJP/liyelJS0SzoPTvrulWzz9aTr0Fx7bXLGGcWLwZNk0KDiY9Kk5J13kq9+NfnJT1rzSQC0bTffnBx/fLHdv39y2WXJpz6VlJYmo0Yl//d/yXe/m2y5ZauWCQAAAAAAwGoaPTr53e+Sv/2t2E6S9u2TD32o+Dn9l7/cuvUBAACw/tv5Nztn1JRRSZJPDP9E7j3h3lauCAAAANYt333ku/nOo99Jkhw34rjcdORNtSuXB7GvivhmWC8IZm8GgtkBAAAAAADYkLz0UnLNNclddyVvv13s69Il2Wuv5Pzzk/32a9XyANq8884rBrKvyJgxyVZbrb16AAAAAAAAaF5LliSLFiXduiXt2rV2NQAAALQVt71yW/489s9Jks9t/7kcOOzAVq4IAAAA1i3Lqpdl0dJFSZKO7TumrF1Z7UrB7NCmCGZvBoLZAQAAAAAA2FBVVhYvCO/atenfJwDgg3vmmeTGG5M//zmZPDkpL08+9KHkU59KvvrVpGPH1q4QAAAAAAAAAAAAAAAAAADWPYLZm4FgdgAAAAAAAAAAAAAAAAAAAAAAAAAAAABYt61OpnjpWqoJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDVCGYHAAAAAAAAAAAAAAAAAAAAAAAAAAAAANo8wewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJsnmB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAaPMEswMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbZ5gdgAAAAAAAAAAAAAAAAAAAAAAAAAAAACgzRPMDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0eYLZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAIA2r31rF7CuKhQKSZJ58+a1ciUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQGOWZ4kvzxZfGcHsKzB//vwkyeDBg1u5EgAAAAAAAAAAAAAAAAAAAAAAAAAAAABgZebPn58ePXqsdExJoSnx7Rug6urqTJo0Kd26dUtJSUnmzZuXwYMH591330337t1buzwAYAXM2QCw7jNfA8D6wZwNAOs+8zUArB/M2QCw7jNfA8D6wZwNAOs+8zUArB/M2QCw7jNfA8D6wZwNAOuWQqGQ+fPnZ+DAgSktLV3p2PZrqab1TmlpaQYNGtSgv3v37l7wAMB6wJwNAOs+8zUArB/M2QCw7jNfA8D6wZwNAOs+8zUArB/M2QCw7jNfA8D6wZwNAOs+8zUArB/M2QCw7ujRo0eTxq08th0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAoA0QzA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAtHmC2ZuovLw8F154YcrLy1u7FABgJczZALDuM18DwPrBnA0A6z7zNQCsH8zZALDuM18DwPrBnA0A6z7zNQCsH8zZALDuM18DwPrBnA0A66+SQqFQaO0iAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaUmlrFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0NIEswMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbZ5gdgAAAAAAAAAAAAAAAAAAAAAAAAAAAACgzRPMDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0eYLZV6GysjLnnXdeBg4cmE6dOmWPPfbI3//+99YuCwA2WI888khKSkoafTz11FP1xj7xxBP5yEc+ks6dO2fjjTfOmWeemQULFrRS5QDQNi1YsCAXXnhhDj744PTu3TslJSW59tprGx07evToHHzwwenatWt69+6dz33uc5k+fXqDcdXV1bnssssydOjQdOzYMdtvv31uvvnmFn4mANC2NXXOPuWUUxo95956660bjDVnA0DzevbZZ/P//t//y7bbbpsuXbpkyJAhOeaYYzJ27NgGY51jA0DraOp87fwaAFrXK6+8kqOPPjqbb755OnfunL59+2afffbJX/7ylwZjnWMDQOto6nztHBsA1i0XX3xxSkpKMmLEiAbrmnodl+u2AaDlrWjOHjlyZKPn2QcffHCDfZizAaB5tURWivkaAJpXU+dr59cA0Ha0b+0C1nWnnHJKbr/99px11lnZYostcu211+aTn/xkHn744XzkIx9p7fIAYIN15plnZrfddqvXN3z48Jr2Cy+8kP333z/bbLNNrrzyykyYMCFXXHFFXn/99fztb39b2+UCQJs1Y8aMXHTRRRkyZEh22GGHPPLII42OmzBhQvbZZ5/06NEjP/jBD7JgwYJcccUVeemll/LMM8+krKysZuw3v/nN/PCHP8wXvvCF7Lbbbrn77rtz/PHHp6SkJMcee+xaemYA0LY0dc5OkvLy8vzud7+r19ejR48G48zZANC8Lr300vzrX//K0Ucfne233z5TpkzJL37xi+y888556qmnai6Sc44NAK2nqfN14vwaAFrT+PHjM3/+/Jx88skZOHBgFi1alDvuuCOHH354fvOb3+SMM85I4hwbAFpTU+frxDk2AKwrJkyYkB/84Afp0qVLg3Wrcx2X67YBoGWtbM5OkkGDBuWSSy6p1zdw4MAG48zZANAymjMrxXwNAC1jVfN14vwaANqKkkKhUGjtItZVzzzzTPbYY49cfvnlOffcc5MkFRUVGTFiRPr3758nnniilSsEgA3PI488kv322y+33XZbjjrqqBWO++QnP5kXXnghY8aMSffu3ZMkv/vd7/KFL3wh999/fw488MC1VTIAtGmVlZWZPXt2Nt544zz33HPZbbfdcs011+SUU06pN+5LX/pSrr322owZMyZDhgxJkjz44IM54IAD6l1IN3HixAwdOjRnnHFGfvGLXyRJCoVC9t1337z99tsZN25c2rVrt1afIwC0BU2ds5d/wL9gwYKV7s+cDQDN74knnsiuu+5aL/Tt9ddfz3bbbZejjjoqN9xwQxLn2ADQmpo6Xzu/BoB1T1VVVXbZZZdUVFRkzJgxSZxjA8C6prH52jk2AKw7jj322EyfPj1VVVWZMWNGXn755Zp1Tb2Oy3XbANDyVjZnjxw5skFfY8zZAND8mjsrxXwNAM2vqfO182sAaDtKW7uAddntt9+edu3a1XypPkk6duyY0047LU8++WTefffdVqwOAJg/f36WLVvWoH/evHn5+9//nhNPPLHmg4YkOemkk9K1a9fceuuta7NMAGjTysvLs/HGG69y3B133JFDDz205mL2JPn4xz+eLbfcst7cfPfdd2fp0qX50pe+VNNXUlKSL37xi5kwYUKefPLJ5n0CALCBaOqcvVxVVVXmzZu3wvXmbABofnvttVe9kNck2WKLLbLttttm9OjRNX3OsQGg9TR1vl7O+TUArDvatWuXwYMHZ86cOTV9zrEBYN3S2Hy9nHNsAGhd//znP3P77bfnJz/5SYN1q3Mdl+u2AaBlrWzOrmvZsmUrvQmaORsAWlZzZKWYrwGgZa1ovq7L+TUArP8Es6/EqFGjsuWWW9Z7kyJJdt999yTJCy+80ApVAQBJcuqpp6Z79+7p2LFj9ttvvzz33HM161566aUsW7Ysu+66a71tysrKsuOOO2bUqFFru1wA2KBNnDgx06ZNazA3J8Vz7Lpz86hRo9KlS5dss802DcYtXw8AtKxFixale/fu6dGjR3r37p0vf/nLDb4YYM4GgLWjUChk6tSp6du3bxLn2ACwLnr/fL2c82sAaH0LFy7MjBkz8uabb+bHP/5x/va3v2X//fdP4hwbANYVK5uvl3OODQCtq6qqKl/5yldy+umnZ7vttmuwfnWu43LdNgC0nFXN2cuNHTs2Xbp0Sbdu3bLxxhvnggsuyNKlS+uNMWcDQMtprqwU8zUAtJyVzdfLOb8GgLahfWsXsC6bPHlyBgwY0KB/ed+kSZPWdkkAsMErKyvLkUcemU9+8pPp27dvXn311VxxxRX56Ec/mieeeCI77bRTJk+enCQrnMcfe+yxtV02AGzQVjU3z5o1K5WVlSkvL8/kyZOz0UYbpaSkpMG4xLk4ALS0AQMG5Otf/3p23nnnVFdX57777suvfvWrvPjii3nkkUfSvn3xYwVzNgCsHTfeeGMmTpyYiy66KIlzbABYF71/vk6cXwPAuuKcc87Jb37zmyRJaWlpPvOZz+QXv/hFEufYALCuWNl8nTjHBoB1wa9//euMHz8+Dz74YKPrV+c6LtdtA0DLWdWcnSTDhg3Lfvvtl+222y4LFy7M7bffnu9///sZO3Zs/vjHP9aMM2cDQPNr7qwU8zUANL+mzNeJ82sAaEsEs6/E4sWLU15e3qC/Y8eONesBgLVrr732yl577VWzfPjhh+eoo47K9ttvn/PPPz/33XdfzRy9onncHA4Aa9eq5ublY8rLy52LA0Aru+SSS+otH3vssdlyyy3zzW9+M7fffnuOPfbYJN4/B4C1YcyYMfnyl7+cPffcMyeffHIS59gAsK5pbL5OnF8DwLrirLPOylFHHZVJkybl1ltvTVVVVZYsWZLEOTYArCtWNl8nzrEBoLXNnDkz3/72t3PBBRekX79+jY5Zneu4zNkA0DKaMmcnydVXX11v+XOf+1zOOOOM/Pa3v83ZZ5+dD3/4w0nM2QDQEpo7K8V8DQDNrynzdeL8GgDaktLWLmBd1qlTp1RWVjbor6ioqFkPALS+4cOH54gjjsjDDz+cqqqqmjl6RfO4ORwA1q5Vzc11xzgXB4B1z9lnn53S0tI8+OCDNX3mbABoWVOmTMkhhxySHj165Pbbb0+7du2SOMcGgHXJiubrFXF+DQBr39Zbb52Pf/zjOemkk3LPPfdkwYIFOeyww1IoFJxjA8A6YmXz9Yo4xwaAtedb3/pWevfuna985SsrHLM613GZswGgZTRlzl6Rc845J0mcZwNAK/ggWSnmawBYO94/X6+I82sAWD8JZl+JAQMGZPLkyQ36l/cNHDhwbZcEAKzA4MGDs2TJkixcuDADBgxIkhXO4+ZwAFi7VjU39+7du+YurwMGDMiUKVMaXFjnXBwAWk+nTp3Sp0+fzJo1q6bPnA0ALWfu3Ln5xCc+kTlz5uS+++6rN686xwaAdcPK5usVcX4NAK3vqKOOyrPPPpuxY8c6xwaAdVTd+XpFnGMDwNrx+uuv56qrrsqZZ56ZSZMmZdy4cRk3blwqKiqydOnSjBs3LrNmzVqt67hctw0Aza+pc/aKDB48OEkanGebswFg7VjTrBTzNQCsPXXn65WNSZxfA8D6RjD7Suy4444ZO3Zs5s2bV6//6aefrlkPAKwb3nrrrXTs2DFdu3bNiBEj0r59+zz33HP1xixZsiQvvPCCORwA1rJNNtkk/fr1azA3J8kzzzxTb27ecccds2jRoowePbreOOfiANB65s+fnxkzZqRfv341feZsAGgZFRUVOeywwzJ27Njcc889+dCHPlRvvXNsAGh9q5qvV8T5NQC0vsWLFycp3mTFOTYArJvqztcr4hwbANaOiRMnprq6OmeeeWaGDh1a83j66aczduzYDB06NBdddNFqXcflum0AaH5NnbNX5K233kqSBufZ5mwAWDvWNCvFfA0Aa0/d+XplYxLn1wCwvhHMvhJHHXVUqqqqctVVV9X0VVZW5pprrskee+xRc2caAGDtmT59eoO+F198MX/+859z4IEHprS0ND169MjHP/7x3HDDDZk/f37NuD/84Q9ZsGBBjj766LVZMgCQ5Mgjj8w999yTd999t6bvoYceytixY+vNzUcccUQ6dOiQX/3qVzV9hUIhv/71r7PJJptkr732Wqt1A8CGpKKiot559HLf+973UigUcvDBB9f0mbMBoPlVVVXls5/9bJ588sncdttt2XPPPRsd5xwbAFpPU+Zr59cA0PqmTZvWoG/p0qW5/vrr06lTp5obqzjHBoDW05T52jk2ALSuESNG5M4772zw2HbbbTNkyJDceeedOe2001brOi7XbQNA82vqnD1v3rxUVlbW27ZQKOT73/9+kuSggw6q6TdnA0Dza+6sFPM1ADS/pszXzq8BoG1p39oFrMv22GOPHH300Tn//PMzbdq0DB8+PNddd13GjRuXq6++urXLA4AN0mc/+9l06tQpe+21V/r3759XX301V111VTp37pwf/vCHNeMuvvji7LXXXtl3331zxhlnZMKECfnRj36UAw88sN6X8AGAD+4Xv/hF5syZk0mTJiVJ/vKXv2TChAlJkq985Svp0aNH/vd//ze33XZb9ttvv3z1q1/NggULcvnll2e77bbLqaeeWrOvQYMG5ayzzsrll1+epUuXZrfddstdd92Vxx57LDfeeGPatWvXKs8RANqCVc3Zs2fPzk477ZTjjjsuW2+9dZLk/vvvz7333puDDz44RxxxRM2+zNkA0PzOOeec/PnPf85hhx2WWbNm5YYbbqi3/sQTT0wS59gA0IqaMl9PmTLF+TUAtLL/+q//yrx587LPPvtkk002yZQpU3LjjTdmzJgx+dGPfpSuXbsmcY4NAK2pKfP1uHHjnGMDQCvq27dvPvWpTzXo/8lPfpIk9dY19Tou120DQPNr6pz9yCOP5Ljjjstxxx2X4cOHZ/Hixbnzzjvzr3/9K2eccUZ23nnnmm3N2QDQ/Jo7K8V8DQDNrynz9fPPP+/8GgDakJJCoVBo7SLWZRUVFbngggtyww03ZPbs2dl+++3zve99r97daACAtednP/tZbrzxxrzxxhuZN29e+vXrl/333z8XXnhhhg8fXm/s448/nvPOOy/PP/98unXrlmOOOSaXXHJJunXr1krVA0DbtNlmm2X8+PGNrnv77bez2WabJUleeeWVfO1rX8vjjz+esrKyHHLIIfnRj36UjTbaqN421dXVufTSS/Ob3/wmkydPzhZbbJHzzz8/J5xwQks/FQBo01Y1Z/fs2TNf+cpX8tRTT2XSpEmpqqrK8OHDc8IJJ+Tcc89Nhw4d6m1jzgaA5jVy5Mg8+uijK1xf96N959gA0DqaMl/PmTPH+TUAtLJbbrklV199dV566aXMnDkz3bp1yy677JKvfOUrOfzww+uNdY4NAK2jKfO1c2wAWDeNHDkyM2bMyMsvv1yvv6nXcbluGwDWjvfP2W+//XbOO++8PPvss5kyZUpKS0uzzTbb5Atf+ELOOOOMlJSU1NvenA0AzaslslLM1wDQvJoyXzu/BoC2RTA7AAAAAAAAAAAAAAAAAAAAAAAAAAAAANDmlbZ2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALU0wOwAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ5glmBwAAAAAAAAAAAAAAAAAAAAAAAAAAAADaPMHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbJ5gdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjzBLMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2eYHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM0TzA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAtHmC2QEAAAAAAAAAAAAAAAAAAAAAAAAAAACANk8wOwAAAAAAAAAAAAAAbda4ceNSUlKSU045ZbW2KykpyciRI1ukJgAAAAAAAAAAAAAAWodgdgAAAAAAAAAAAAAAWszyYPS6j7KysgwePDjHH398/vOf/7RKXSNHjkxJSUmrHBsAAAAAAAAAAAAAgNbRvrULAAAAAAAAAAAAAACg7Rs2bFhOPPHEJMmCBQvy1FNP5eabb86f/vSnPPTQQ9l7771b5LibbLJJRo8enR49eqzWdqNHj07nzp1bpCYAAAAAAAAAAAAAAFqHYHYAAAAAAAAAAAAAAFrc8OHD853vfKde37e+9a1cfPHF+eY3v5lHHnmkRY7boUOHbL311qu93ZpsAwAAAAAAAAAAAADAuq20tQsAAAAAAAAAAAAAAGDD9JWvfCVJ8uyzzyZJli1bliuvvDI77LBDOnXqlB49emS//fbLX/7ylwbbVldX53e/+11233339O7dO506dcqgQYNy2GGH1Qt5HzduXEpKSnLKKafU9JWUlOTRRx+taS9/vH/MyJEjGxx3xowZOeusszJ06NCUl5enf//+OeaYY/Lyyy83GHvKKaekpKQkb7/9dn72s59l6623Tnl5eTbddNN897vfTXV19Rr81gAAAAAAAAAAAAAAWFPtW7sAAAAAAAAAAAAAAAA2bCUlJSkUCjnqqKNy9913Z8stt8yXv/zlLFy4MH/84x9z+OGH58orr8zZZ59ds83555+fyy67LMOGDcvxxx+fbt26ZeLEiXn88cfz4IMPNhqqvtyFF16Ya6+9NuPHj8+FF15Y07/jjjuutM7p06dnzz33zJtvvpmRI0fm2GOPzdtvv53bb789f/3rX3P//ffnIx/5SIPt/ud//iePPvpoDj300Bx00EG566678p3vfCdLlizJxRdfvNq/LwAAAAAAAAAAAAAA1oxgdgAAAAAAAAAAAAAAWsWvfvWrJMnuu++eP/zhD7n77ruz77775oEHHkhZWVmSYgD7Lrvskq9//es54ogjsvnmmydJfve732XgwIH5z3/+k86dO9fb76xZs1Z63O985zt55JFHMn78+HznO99pcr3nnXde3nzzzZx//vn5wQ9+UNN/77335pBDDsmpp56a1157LaWlpfW2e/755/Of//wnAwYMSJJccMEF2WKLLfLzn/88F154Yc1zBQAAAAAAAAAAAACgZZWueggAAAAAAAAAAAAAAHwwb7zxRr7zne/kO9/5Tv7nf/4n++yzTy666KJ07NgxF198ca677rokyWWXXVYvqHzIkCE5++yzs2zZstx444319llWVpZ27do1OFbv3r2bvf4lS5bk5ptvTp8+ffKtb32r3rpPfvKTOeCAA/LGG2/kX//6V4NtL7jggppQ9iTp27dvjjjiiMyfPz+vvfZas9cKAAAAAAAAAAAAAEDjBLMDAAAAAAAAAAAAANDi3nzzzXz3u9/Nd7/73fz0pz/N22+/neOPPz7PPPNM9txzz4waNSqdO3fO7rvv3mDb/fbbL0nywgsv1PQde+yxGTduXEaMGJELLrgg//jHP7J48eIWq3/MmDGpqKjI7rvvns6dOzepxuV22WWXBn2DBg1KksyZM6dZ6wQAAAAAAAAAAAAAYMUEswMAAAAAAAAAAAAA0OIOOuigFAqFFAqFLFmyJO+++25uvPHGbLfddkmSefPmpX///o1uO2DAgJoxy/30pz/N5ZdfnrKysnz/+9/P/vvvn969e+fkk0/OjBkzmr3+5cfeaKONmlzjct27d2/Q1759+yRJVVVVc5UIAAAAAAAAAAAAAMAqCGYHAAAAAAAAAAAAAKDVde/ePdOmTWt03ZQpU2rGLNe+ffuce+65eeWVVzJx4sTcdNNN+ehHP5rrr78+J5xwQovUlyRTp05tco0AAAAAAAAAAAAAAKxbBLMDAAAAAAAAAAAAANDqdtpppyxatCjPPPNMg3WPPPJIkmTHHXdsdNuBAwfmuOOOy3333Zfhw4fnwQcfzOLFi1d6vHbt2iVJqqqqmlTf1ltvnY4dO+bZZ5/NokWLVrtGAAAAAAAAAAAAAABan2B2AAAAAAAAAAAAAABa3cknn5wkOf/887N06dKa/nfffTdXXnll2rdvnxNOOCFJUllZmSeeeKLBPhYuXJgFCxakQ4cOKS1d+dfle/fuXbP/pigrK8txxx2XGTNm5JJLLqm37r777sv999+f4cOHZ++9927S/gAAAAAAAAAAAAAAWPvat3YBAAAAAAAAAAAAAADwuc99Ln/6059y9913Z/vtt8+hhx6ahQsX5o9//GNmzZqVH/3oR9l8882TJIsXL87ee++dLbfcMrvsskuGDBmSBQsW5J577smUKVNy7rnnpry8fKXH+9jHPpbbb789Rx55ZD7xiU+kY8eO2WGHHXLYYYetcJtLL700jz76aL7//e/niSeeyB577JFx48bltttuS+fOnXPNNdesMhAeAAAAAAAAAAAAAIDWI5gdAAAAAAAAAAAAAIBWV1JSkttvvz0//elPc9111+XnP/95ysrKsvPOO+drX/taDj/88JqxXbp0yaWXXpqHHnoojz32WKZNm5ZevXplq622yiWXXJJjjz12lcf7whe+kHHjxuWWW27JpZdemmXLluXkk09eaTB7v3798vTTT+d73/te7r777jz22GPp0aNHPvWpT+XCCy/MiBEjmuV3AQAAAAAAAAAAAABAyygpFAqF1i4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAllbZ2AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALU0wOwAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ5glmBwAAAAAAAAAAAAAAAAAAAAAAAAAAAADaPMHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbJ5gdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjzBLMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2eYHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM0TzA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAtHmC2QEAAAAAAAAAAAAAAAAAAAAAAAAAAACANk8wOwAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ5glmBwAAAAAAAAAAAAAAAAAAAAAAAAAAAADaPMHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbJ5gdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjzBLMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2eYHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM0TzA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAtHmC2QEAAAAAAAAAAAAAAAAAAAAAAAAAAACANq99axewrqqurs6kSZPSrVu3lJSUtHY5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD7FAqFzJ8/PwMHDkxpaelKxwpmX4FJkyZl8ODBrV0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAK7777bgYNGrTSMYLZV6Bbt25Jir/E7t27t3I1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD7zZs3L4MHD67JFl8ZwewrUFJSkiTp3r27YHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWIctzxZfmdK1UAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKsSzA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAtHmC2QEAAAAAAAAAAAAAAAAAAAAAAAAAAACANk8wOwAAAAAAAAAAAAAAAAAAAAAAAAAAAADQ5glmBwAAAAAAAAAAAAAAAAAAAAAAAAAAAADaPMHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECbJ5gdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjzBLMDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG2eYHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoM0TzL4B22yzzVJSUpKSkpJ89atfXenYyy+/vGZs+/bt660bOXJkSkpK8sgjj7RgtWtP3d/L8kd5eXmGDBmSz372s3nsscdqxv7jH/9ISUlJOnXqlDlz5qxy39OmTUtZWVlKSkryzDPPJEkeeeSRescaNWrUSvex7bbb1ow9/fTTP9BzBQAAAAAAAAAAAAAAAAAAAAAAAAAAANhQCGYnSXLjjTdmyZIlK1z/+9//fi1Ws27Ye++9c/LJJ+fkk0/OJz7xiVRXV+fWW2/NvvvumyuvvDJJst9++2Xo0KGpqKjITTfdtMp9/uEPf8jSpUszYsSI7L777o2OWdnv+qmnnsqrr766Zk8IAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAMmmJ3suuuumTlzZu6+++5G1z/xxBMZM2ZMdtttt0bXX3/99Rk9evQKg8bXV6effnquvfbaXHvttbnrrrvyxhtv5KSTTkqhUMjXv/71jB07NiUlJfn85z+fpGnh9ddcc02S5LTTTmuwbsiQIenfv39uuummVFZWNrr98mOs6P8LAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonmJ1VBotfffXV9ca935AhQ7L11lunc+fOLVPgOqJjx4755S9/mS5duqSqqip/+tOfkiSnnHJK2rVrl3//+9956aWXVrj9M888k1deeSVlZWU58cQTG6zv0KFDTjzxxMyaNSt33XVXg/WLFi3KLbfckk022SQHHXRQsz0vAAAAAAAAAFihkpKmPQAAAAAAAAAAAAAAAAAAYD0gmJ1st9122XXXXfPAAw9k4sSJ9dYtWLAgt956awYNGpQDDzyw0e1HjhyZkpKSPPLII42u/8c//pGjjz46gwYNSnl5efr165fddtstF154YWbOnFkz7tprr01JSUlOOeWUzJo1K2eddVaGDRuW8vLyjBw5smbcsmXL8utf/zp77bVXevTokY4dO2aLLbbImWee2aD+5ta1a9dstdVWSZJx48YlSQYNGlQTlL6icPu66w4//PD07du30TErC8m/7bbbMn/+/Jx00klp167dGj8HAAAAAAAAAAAAAAAAAAAAAAAAAAAAgA2RYHaSFAPBq6urc+2119brv/XWW7NgwYKcfPLJKS1d/f9czjzzzOy///65/fbb069fv3zmM5/JbrvtllmzZuWiiy7KSy+91GCbGTNmZNddd83111+fESNG5IgjjsigQYOSJJWVlfnEJz6RL37xixk1alT23nvvfOpTn0plZWV+/vOfZ8cdd8zzzz+/Rr+Dppo3b16SpLy8vKbvtNNOS5LccMMNWbp0aYNtFi9enFtuuaXe2MZsu+222X333fPggw/m3Xffrbfu6quvTpKceuqpH+wJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGyAWiSYvbKystFwatZdxx9/fDp16tQgmP33v/99SkpK8vnPf3619/nzn/88P//5z9OnT5/84x//yKhRo3LzzTfn3nvvzZtvvpmnn346w4YNa7DdX//612y++eYZN25c7r777tx666254YYbkiQXXnhhHnzwwQwbNiyjR4/Ovffem1tuuSVvvvlmTjvttMyYMSNHHXVUlixZska/h1X5z3/+k7feeitJsuOOO9b0H3bYYenXr19mzJiRv/zlLw22+9Of/pS5c+dm8ODBOfDAA1d6jNNOO61BSP7rr7+exx57LPvss0+22GKLZnkuAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuSNQ5m/+c//5lvf/vbmTNnTk3fzJkz84lPfCJdu3ZNjx498o1vfKM5amQt6NGjRz7zmc/kjTfeyKOPPpokee211/Kvf/0r++67bzbffPPV2t+yZcvyve99L0ly1VVXZb/99mswZvfdd8/gwYMb9Hfo0CFXXXVVunfvXq+/oqIiv/zlL5MkP/7xj7PZZpvV2+ZnP/tZNtpoo7z99tu5/fbbV6veVZk7d27uvffefOYzn0l1dXUGDhyYY445pt7xTzrppCTFMPv3W9538sknp7R05f/sjj322HTu3DnXXnttCoVCve3XJCAfAIC2Zeaimfn3pH/n35P+nRmLZrR2OQAAAAAAAAAAAAAAAAAAAAAAAACw3ljjYPYrrrgiN910U3r27FnTd8455+T+++/P0KFD07Nnz1x++eW59dZbm6NO1oLlod/LQ8A/SBj4v//970yfPj19+/bNpz/96dXadqeddmo0CP65557LggUL0rt37xx22GEN1nfu3DnHHntskuThhx9e7Zrf79RTT01JSUlKSkrSs2fPHHLIIXnzzTczbNiw3HvvvenSpUu98aeffnqS5L777svkyZNr+seNG5eHH344JSUlOfXUU1d53O7du+fII4/MW2+9lUceeSRVVVW5/vrr061btxx99NEf+HkBALAOK1Qn429JJv6l2G7Era/cml1/u2t2/e2uufmlm9dygQAAAAAAAAAAAAAAAAAAAAAAAACw/lrjYPZRo0blIx/5SM1yRUVFbr311hx44IEZO3ZsXnvttQwZMiT/93//1yyF0vL222+/DB06NLfffntmz56d66+/Pt27d89RRx212vsaP358kmSrrbZKSUnJam272WabNdo/ceLEJMnQoUNXuO2wYcPqjf0g9t5775x88sk5+eST84UvfCHf/OY385e//CVjxozJDjvs0GD81ltvnb322itVVVW57rrravqvueaaFAqF7Lfffo0Gzjembkj+fffdl0mTJuWzn/1sOnfu/IGfFwAA66hCIXn86OSJ45J/Hp489pmkuqrBsLmVcxttAwAAAAAAAAAAAAAAAAAAAAAAAAAr135NN5w5c2Y22WSTmuUnn3wyFRUVOfXUU5Mk3bp1y6GHHpo77rjjg1fJWlFSUpJTTjklF154YU4++eRMmTIlZ5xxRjp16rRW61jbx1uR008/PaeccspqbXPaaafliSeeyLXXXptvfOMbKRQKNSHtp512WpP3s++++2bYsGG54447MmXKlCS1Ye0AALRRUx5IJvypdnni3cmrP0hGXFBv2JyKOY22AQAAAAAAAAAAAAAAAAAAAAAAAICVK13TDTt16pT58+fXLD/88MMpKSnJvvvuW9PXtWvXzJ49e7X3XVlZmfPOOy8DBw5Mp06dsscee+Tvf//7Krf705/+lM9+9rPZfPPN07lz52y11VY555xzMmfOnNWuYUN1yimnpLS0NH/5y1+SrHkY+JAhQ5IkY8eOTaFQaJbalt8I4O23317hmLfeeqve2LXtmGOOSdeuXfPaa6/lX//6Vx566KGMHz8+PXv2zGc+85km72d5SP7ixYvz4IMPZptttsmee+7ZgpUDANDqXvlBw75Xf5hUTK/XNbdibqNtAAAAAAAAAAAAAAAAAAAAAAAAAGDl1jiYffjw4bnvvvtSWVmZJUuW5JZbbsmHPvShbLzxxjVj3nnnnfTv33+1933KKafkyiuvzAknnJCf/vSnadeuXT75yU/m8ccfX+l2Z5xxRkaPHp0TTzwxP/vZz3LwwQfnF7/4Rfbcc88sXrx4tevYEA0ZMiRHHHFE+vTpkw9/+MPZY4891mg/u+66a/r27Zvp06fnrrvuapbadt1113Tt2jWzZs3Kn//85wbrFy9enFtuuSVJst9++zXLMVdX165dc+yxxyZJfv/73+f3v/99kuT4449Px44dV2tfp5xySvr165c+ffrkv/7rv5q9VgAA1iEzn0mm/7Nhf9WiZNwN9brmVM5ptA0AAAAAAAAAAAAAAAAAAAAAAAAArFz7Nd3wC1/4Qs4444wMHz48ZWVlGTduXC6//PJ6Y/7973/nQx/60Grt95lnnsktt9ySyy+/POeee26S5KSTTsqIESPy9a9/PU888cQKt7399tszcuTIen277LJLTj755Nx44405/fTTV6uWDdWf/vSnD7yP9u3b55vf/GbOPvvsnHHGGenTp0/22WefemOeffbZDBgwIIMGDWrSPjt27Jgvf/nLufTSS3POOedkhx12yKabbpokWbp0ab761a9mypQpGTp0aI466qgP/BzW1GmnnZbf/e53ufXWW7Ns2bKavtU1aNCgTJs2rbnLAwBgXTTpryteV1X/JlNzK+Y22gYAAAAAAAAAAAAAAAAAAAAAAAAAVq50TTc87bTT8j//8z9ZvHhx5s6dmy9+8Ys566yzatY/+eSTGTt2bPbff//V2u/tt9+edu3a5Ywzzqjp69ixY0477bQ8+eSTeffdd1e47ftD2ZPk05/+dJJk9OjRq1UHH9xXv/rV/Pd//3dmzJiRfffdNzvvvHOOO+64HHLIIRk2bFh23333vPHGG6u1z+9+97vZf//988Ybb2SbbbbJIYcckmOPPTbDhw/Pb3/72/Tp0ye33XZbysrKWuhZrdqHP/zhfOhDH8qCBQtSUVGRHXfcMTvvvHOr1QMAwHpg6sNNHjqnYk6jbQAAAACAFlEo1H+sqh8AAAAAAAAAAAAAAAAAANZh7dd0w5KSklx66aW59NJLG12/yy67ZPbs2enSpctq7XfUqFHZcsst071793r9u+++e5LkhRdeyODBg5u8vylTpiRJ+vbtu1p18MGVlJTk//7v/3LEEUfk17/+dZ566qm8/PLL6dmzZ4YOHZqTTz4522+//Wrts7y8PPfdd19++9vf5vrrr89jjz2WysrKDB48OF/5yldy3nnnZZNNNmmhZ9R0p512Ws4555wkyec///lWrgYAgHXassXJzKeaPHxu5dxG2+/3z/H/zNMTnk6SHDvi2Azu0fTzKAAAAAAAAAAAAAAAAAAAAAAAAABoi0oKhUKhtYuoa8SIEdloo43y0EMP1et/9dVXs+222+bXv/51/uu//qvJ+zv99NNz7bXXZvTo0dliiy1WOK6ysjKVlZU1y/PmzcvgwYMzd+7cBiHxAAAAzWbW88n9u6x4/fYXJ9v+b83iJldukknzJyVJ+nfpn6nnTm10sy//9cv51XO/SpL85bi/5NAtD22+mgEAAACA9V9JSdPGvf9rJcu3W7e+bgIAAAAAAAAAAAAAAAAAwAZs3rx56dGjR5MyxUs/6MHuvPPOHHPMMdl+++0zfPjwmv4xY8bksssuy8SJE1drf4sXL055eXmD/o4dO9asb6qbbropV199dc4555yVhrInySWXXJIePXrUPAYPHrxadQMAAKyRua+u1vA5FXMabb/frIpZte3Fs1Y4DgAAAACgJRQKydNPJ88/L8MdAABgg1RS0rQHAAAAAAAAAAAAAMBatsbB7NXV1fnsZz+bo446KnfccUfeeuutvP322zXre/XqlW9+85u5/vrrV2u/nTp1SmVlZYP+ioqKmvVN8dhjj+W0007LQQcdlIsvvniV488///zMnTu35vHuu++uVt0AAABrZN7o+subHp/sdXPSueHNopZWLc2ipYtqlpdULUnFsopGd1s3jF0wOwAAAACwNlVUJIcdlnz4w8kuuyRHHpksWdLaVQEAAAAAAAAAAAAAAAAAQNJ+TTf88Y9/nNtuuy3//d//nR/+8Ie58sor873vfa9m/UYbbZSPfvSj+etf/5rzzz+/yfsdMGBAJk6c2KB/8uTJSZKBAweuch8vvvhiDj/88IwYMSK333572rdf9dMsLy9PeXl5k+tk3TdmzJj88Ic/bPL4b3zjG9l6661bsCIAAGjEvDG17Q49k11/mZT1THqMSO7bqd7QuZVzG2w+p2JONu66cYN+wewAAAAAQGv54Q+Tv/61dvnOO5Nzzkl+/vPWqwkAAAAAAAAAAAAAAAAAAJIPEMx+7bXXZrfddsuvfvWrJElJSUmDMcOHD89f615p2wQ77rhjHn744cybNy/du3ev6X/66adr1q/Mm2++mYMPPjj9+/fPvffem65du67W8Wk7pkyZkuuuu67J40855RTB7AAArH0VU2rbW59TDGVPkp4jkmFfqDd0bkVtMHtJSlJIIXMr5jYazD5z0cxG2wAAAAAALWnMmOSSSxr2//KXyWmnJav42gcAAAAbuGefrT2v/J//Sfbcs3XrAQAAAAAAAAAAAADantI13fCNN97IRz/60ZWO6dOnT2bOXL0AwKOOOipVVVW56qqravoqKytzzTXXZI899sjgwYOTJO+8807GjBlTb9spU6bkwAMPTGlpae6///7069dvtY5N2zJy5MgUCoUmP0aOHNnaJQMAsCGqrHPONOiI+uu2/lqS2ptgzamYkyTp3KFzupd3r9f3frMWz6ptV8xqdAwAAAAAQHP74Q+TJUsa9hcKydNPr/16AGhGhUJrVwAAtHHPPpt8+MPJnXcWH/vskzzwQGtXBQAAAAAAAAAAAAC0Ne3XdMNOnTpl7ty5Kx0zfvz49OzZc7X2u8cee+Too4/O+eefn2nTpmX48OG57rrrMm7cuFx99dU140466aQ8+uijKdS52Ovggw/OW2+9la9//et5/PHH8/jjj9es22ijjXLAAQesVi0AAAAtbsl7weztuyU9tq2/rtvwpP8+NYtzK4vnYN3Lu6dDaYfMrZxb01fXsupl9frrhrQDAAAAALSUJUuSu+5q7SoAaHbVy5L/fCsZ+/Ok08Bk++8nm362tasCANqYysrklFOS6uravmXLkhNPTF57LenVq9VKAwAAAAAAAAAAAADamDUOZt9pp51y//33p6KiIh07dmywftasWbnvvvuyzz77NLL1yl1//fW54IIL8oc//CGzZ8/O9ttvn3vuuWeV+3rxxReTJJdddlmDdfvuu69gdgAAYN1SqE6WvBea3mObpKS04Zi+e9U051TMKQ4t75EO7Trk3Xnv1vTV9f6+NQ5mLylZ9Zg6N8sCAAAAADZsDz2UzG14L0kA1nev/SQZfWmxveCN5Iljk6rFyeantGZVAEAb89OfJq++2rB/+vTklluSL35x7dcEAAAAAAAAAAAAALRNjaT+Nc2ZZ56ZCRMm5Mgjj8yECRPqrXvzzTfz6U9/OnPnzs2ZZ5652vvu2LFjLr/88kyePDkVFRV55plnctBBB9Ub88gjj6TwvgDAQqGwwscjjzyy2nUAAAC0qKVzi+HsSdJ1i8bH1AlHn1tRTDTqXt493cu71+ur6/1B7CsNZl+2KHn5+8k/Dkhe/GayZE7T6wcAAAAAqOPRR1u7AgCa3YK3kpe+3bD/uS8nC8bV67rq31fl49d/PB+//uN5fvLza6c+AKBNKBSS3/9+xeuXLVt7tQAAAAAAAAAAAAAAbV/7Nd3wiCOOyHnnnZdLL700m266abp06ZIk6d+/f2bOnJlCoZALLrggH/vYx5qtWAAAgDalcmZtu8uQVQ6fUzEnSdKjY490KO1Qr6+u1Qpmf/q05J1biu2pDyYT7kz2fyTp2H+V9QAAAAAA67FCof7y8ptEvr9/NTzzTP3lHj2SoUOTF15Y410C0NrG/CipWtywv2pRMuvZpOtmNV1PTXgqD739UJLk9ZmvZ+cBO6+lIgGA9d0LLySvvdbaVQAAAAAAAAAAAAAAG4rSD7LxJZdckvvvvz+HHnpoOnfunHbt2qW6ujoHH3xw/va3v+W73/1uc9UJAADQ9tQNZi/rtcrhcyvnJkm6l3dP9/Lu9frqWh7E3q6kXZJieHtVdVXDHb5ze20o+3LzRidPnfKBwpcAAAAAgA1PVVXy7LO1y+3aJY8+mowalVx9devVBcD7lJQ07ZEk1VXFz5OaaOrCqY22AYANVKFQ/7GS/vvvb6UaAQAAAAAAAAAAAIANUvs13fCdd95JWVlZDjjggBxwwAHNWRMAAMCGYUmdYPYOPVc5fE7FnCRJj/Ie6VDaoV5fXTMXFfc7pMeQvD3n7STJ7IrZ6du5b+2gQiF54euNH2jy35LqJausBwAAAABgucmTkwULapfPPjvZYYdi+/OfTx54oHXqAuADmPlkUjmtycOnLZzWaBsAYFX+9a/6y2VlyYAByfjxrVMPAAAAAAAAAAAAANC2la7phkOHDs3//u//NmctAAAAG5bKWbXtsp6rHL48hL17efd0L+9er6+uWYuL+92s52YN+mrMeCJZ+PbqVAsAAAAAsEKTJ9df/uIX6y9/97tJScnaqweAZjDjydUaLpgdAFgThULyxBO1yyUlycMPJ+PGJb/9bauVBQAAAAAAAAAAAAC0Ye3XdMNevXqlT58+zVkLAADAhmXp7Np2Wa9VDp9bOTdJ0qO8Rzq061Cvr67lIex9O/dN9/LumVc5r2Ew+7t3rGHRAACwDmtq0meh0LJ1AABsgOoGsw8blmy+ef31W22VlJev3ZoA+IBmPFV/ebuLki6bJf/532TRhHqrCoWCYHYAYI1Mn57MqvO1lrPOSvbaq9g+/fTkydW7V0zr8PkEAAAAAAAAAAAAAKxXStd0w49+9KN5+umnm7MWAACADUvVktp2h56rHD6nYk6SpHt593Qv716vr67lIey9OvZKr4696vXVmP7YapcLAAAAALAikybVtnfeufExm222VkoBaNuWLkhe/7/kpQuTqQ+3bLjnnBdq25udmIy4IBn6uWT/x5IOPeoNnb9kfiqWVdQsT104teXqAgDalIkT6y9/+cv1ly+6KCkrW3v1AAAAAAAAAAAAAABt3xoHs19yySX5z3/+k4suuijLli1rzpoAAAA2DIWq2naH7qscPrdibpL6wezL++qaVfFeMHunXunZsWexr24w+7KFyexRtcvdtkg++XLy0TuT8v516ivUPurVvYJ+AFrdi1NezBVPXJErnrgi/5n6n9YuBwAAgA3I5Mm17REjWq8OgDZt6bzkgd2T576UvHxR8o+PJU+eWP9mwM2lUEgW1UlJ3eHS2nbXzZKdrqg3fNrCaStdBgBYkbrB7MOHJ8OG1V+/ySbJpz+9dmuqUVLStAcAAAAAAAAAAAAAsF5pv6YbXnbZZdluu+3y3e9+N7/5zW+yww47ZKONNkrJ+75YXFJSkquvvvoDFwoAANDmFOrc5Kq0rPhz6fxkdJ1gi/J+yVZfTZLMqZiTJOnRsUc6lHao11fX8hD2Xh17pVenXvX6kiTzxtSGwpd2SPb6Y9Jj2+Kj0ybJg3t/8OcGQKu4Z+w9+dbD30qSLK1amu032r6VKwIAAGBDUTeYfZNNWq8OgDarUEie/Fwyb3T9/vE3JeV9k11+2rzHWzonqa4stnvvmnQeWH/90FOSOS/VLApmBwDW1KRJte1dd218TP/+a6cWAAAAAAAAAAAAAGDDsMbB7Ndee21Ne/LkyZlc9wrbOgSzAwAArEDdYPaSdsWfyxYmr1xc299965pg9rmVc4td5d1rgtmX99VVE8zeqVd6dWwkmH3RxNr2gE8kvXeqXe6zW7LVOWv6jABoZRPmTWi0DQAAAC2tbpBev36tVwdAmzXt0WTinxtfN/Pppu+nUKi/XFLSeP/cV2vbffZouJ/S9vU+Y5q6YGqSpFtZt8xfMj8LlizIoqWL0rlD56bXBgBskCbW+RrLttu2Xh0AAAAAAAAAAAAAwIZjjYPZ33777easAwAAYMNT3Ugw+woUCoXMrSiGsPco75EO7YrB7PMq56WquirtSmu3n7loZpKkV8faYPblfUmSxXUSkgZ+suHBPnTeKusBYN00cf7ERtsAAADQ0iZPrm0LZgdoAa//Yu0er+7nST1GrHL4tIXTkiTb9Nsmz0x8pqZvs56btUR1AEAbUjeYfcCA1qtjrVh+U5xVef9NcwAAAAAAAAAAAACAZrXGweybbrppc9YBAACw4SlU1bZLSlc6dOHShal6b3z38u41wexJMn/J/PTs2LNmedbiWUmSnh17plenYjD7rIpZtTtbXOeK1t67NTxYWc+GfQC0rkIhefmiZNz1xeVNjkhGfLvB3+wJ8yY02gYAAKBtmTBvQob8eEiSZJ9N98kjpzzSugUlmT27tr06weyLFiWvvpqUlycjRjQ9ow5gg1JVmUy6d+0ec3GdO250WnVC6vJg9kHdB+XV6a9mwZIFgtkBgCapG8zev3/r1fGBvD9IffnJ7Yr6AQAAAAAAAAAAAIBWtfLkPwAAAFpOaZ17ZdUNaW/EnIo5Ne0eHXukR3mPRtdVVVfVLPfq1KsmsH15WHuSZFGdK1q7bbG6VQOwtlUvS545PXn5O8mCt4qP136c3L9LsvDdekMnzp/YaBtgg1Eo1H+sqh8AYD01fs74FN7737g541q7nCTJ0qW17aYGsz/1VDJsWLLbbsn22yc77pi8+GKLlAewfpv+r6Rqce3yoE8lH3882f77SWlZyxyzbjB7x1UnpE5dODVJ0rdT3/TrXJwIpi6Y2iKlAQCtrKSkaY8mmlznZcdGG7VAvQAAAAAAAAAAAAAA7/OBg9lvvPHGHHDAAenXr1/Ky8vTr1+/HHjggbnpppuaoz4AAIC2q6TpwexzK+bWtLuXd0/38u6NrptbOTeFFIMme3XslV4deyV5XzD74veCett1Stp3XdPqAVhbRl+avPX7hv0L3krG31izWLmsMtMWTqtZnrpgapZULVkbFQIAALCW1Q1jnzBvQpZVL2u9Yt6zpM4paOfOqx5/883JvvsmU6bU9v3nP8W+t99u/voA1muznqtt994l2evmpN/eybbfTPb+Y5KGwaeLFiU/+EFy4onJN76RvP76ah6zos4f6PJV33Fj+XuT/br0S78u/er1AQCszKJFte3+q74fzNrlhrAAAAAAAAAAAAAA0Ca1X/WQxlVVVeWYY47JXXfdlUKhkI4dO2bgwIGZOnVqHnzwwTz00EO54447ctttt6W09APnvwMAALQ9qxHMPqdiTnGTlKRrWdeUpCQdSjtkafXSmnVJ/QD2Xp16pVenxoLZJxV/dtwoKWkY1AHAOmTpgmTMj5o0dNL8SfWWCylk8vzJ2bTnpi1RGQAAAK1o/NzxNe2qQlUmzpvY6ud/S5fWttuv4tsokyYlp59eP8x9ublzk/Hjk6FDm7c+gPXawnG17W2+nrTrWLs86FPJ0vn1ho8dmxx5ZPLyy7V9P/5x8pvfJKec0sRjVtVJSO246oTUmmD2zv3St3Pfen0AACtT93yyV6/WqwMAAAAAAAAAAAAA2HCscWL6z372s9x5553Ze++9869//SuLFi3K22+/nUWLFuWJJ57IRz7ykdx11135+c9/3pz1AgAAtB2lddKJqitXOnR5+Hq38m4pLSlNSUlJupd3r7cuqR/A3qO8R3p1bCSYfcns4s+OG6157QA0n+n/Sp75r+TJzyWv/ypZtrB23aS/1v7dXq6k8bf0Js6fmCTp06lPenfqXa8PgObx6qvJz3+eXHllMmpUa1cDAGzIxs8ZX3957vgVjCyaO7f4WmbevJaraXmQXrt2q74f5KWXJosWrXwMAHUsD2YvKU0GHNxw/WYn1jQnTEh2371+KHtSvBnGaaetxjGrlyekliTtu9X2LZld+1i6oGb41IVTkyT9uvRLv8796vU1+pQWJs8+mzz5ZFK58o/JAIA2ru5Nu8rKWq+OtaJQqP9YVT8AAAAAAAAAAAAA0CLWOJj9uuuuy5ZbbpmHHnooe+65Z711H/7wh/Pggw9myy23zDXXXPOBiwQAAFjrKqYns19oGIbbnEra1baXzF3p0LmVxfU9ynvU9PXo2KPeuqQ2gL1HeY+0K22XXp2KweyzF89OdaG6OKj6vStay/t9oPIB+IAKhWT0j5KH9k3evCoZd0Py3JeTv26TzHq+OGbi3bXjy/slBz2fHL0o2eP3SbtO9XY3Yd6EJMnAbgMzsNvAen3v9+2Hv53hPxue4T8bnkfHPdr8zw2gjamqSi67LNlxx+TMM5Nzzkl23jn53OeSxYtbuzoAYEP0/iD29we1L1dRkXzta0nPnsm22yZ9+xZDeefMafkaV2Tp0uSmm+r3HXVU8qUvFesDoBHLg9m7bZ106N5wfZ07Ypx3XvGGHI1ZrYzP5Z8nlXao3f+Mp5I7etc+njyhZvi0hdOSJP061wazL+97vwcfTLbaqhggv9deyYAByVVXySAFgA1V3WD2Dh1arw4AAAAAAAAAAAAAYMOxxsHsY8eOzeGHH54OK/j2c4cOHXLYYYdl7Nixa1wcAABAc5q9eHYmzZ+USfMnZVn1ssYHVVUmz5+d3Nk/uW+n5E99k8c+kyx8p/kLatextr10TvFnh27Jzj9N+o+sN3RORXF99/LasI3l7eXrkmTmoplJUhPI3rNjzyRJIYXacdVL3zt+ee0BRl+R3Dui9vHun9b0WQHQVG/8Jnnh3KRQVb9/0bvJ2F8U27NfqO3/6J+S3jsV/35vfmqyzz31bvIxcd7EJMmAbgMyoOuAen3v9+SEJ/Pm7Dfz5uw385+p/2m2pwTQVn3+88Vgu6VL6/ffcENy7bWtUhIAsIFbHszeqX2nest1TZmS7Lpr8uMf1/YtXZr8/vfJEUc0f03Lvz5SVbXyYN0nn0xmzKhdvvji5Lbbkl/+Mhk9Otlpp+avDWC9VijUBrN3HrzSoZMnJ3/8Y/2+IUOS3r3X4LjLP08qXXU66tKqpTU3D+7XpV/6di7eaaOxYPYf/jA54IBkYp23LmfPTv7rv5I77liDOgGAta9QqP9YVf8qVFfXtuvcbwYAAAAAAAAAAAAAoMWscTB7WVlZFi5cuNIxCxcuTFlZ2ZoeAgAAoFkd/6fjs8mVm2STKzfJ0xOebjhg2eLkwb2T135S21eoTibcmTw0svkLKquTgrFkTvFn+y7JVmcmvXauN3RuxdwkyVuz38quV+2aXa/aNWNnjq23LklN6EWvjr3q/ay7LtVLij9L6gRpVExN5r5S+1gy+4M+OwBWZtmi5D/fXPmY6qpkwZvFds/tk34fqb9+448lw06vWZwwb0KSZGC3gRnYbWC9vvdbPoe8vw2wIZo1KznjjKRfv6RTp2SvveoHwd1/f3L99Svevm5gDADA2lAoFDJ+TjGIffdNdk+SmuW6vvSl5JVXGt/H5MnNX1fdr4csW8F9MZPk5Zdr2yNGJN/4Ru1y377JXXclPXs2d3UA67HK6UnV4mK786CVDv3jH4s3yFju4ouTceOSqVOTK65ISlfr24JND1Odvmh6Tbtv577p16VfkmTqwqn1xj33XPLNlbwtOmfO6tQHALQVTT2fBAAAAAAAAAAAAABoLmsczL7TTjvl1ltvzaRJkxpdP3ny5Nx6663ZeeedG10PAACwto2ePrq2PWN0wwGvXpLM+nfjGy+d0/wFlfWps/+5Kx6XZE5F8fiLly3Ovyf/O/+e/O8sWrqo3rqkTjB7p171ftZdl7yXHFlSsua1A/DBTLgzWTKrdnnjA5PtLko22r+2b9E7tTfT2Ojjje+nrPbv/MT5E5MkA7vWBrMv76tr0dJFeWfuOzXLY2cJZgc2XP/4R7LNNslvf5vMmJFUVCRPPpkcdVTy4x8Xx1xxRf1tdtklOeGEZODAtV8vAECSzFg0I4uXFQN69xq8V5Jk/Nz6weyjRiV33ll/u002STp2bLm6OtS5D+TChSse9+qrte0TTmgYEjxkSLLjjs1aGsD6re5nSKsIZn/uudr2Mcck//u/xY+D2rdPzjknueyy1Tju8hv8FqpWPi7JtIXTatr9OvdLv879GvQnyQ9+UP8GZ336FG/S0a7datQFrLNefTW59NLi354bbkgWLGjtioD1Rd3zyaVLW68OAAAAAAAAAAAAAGDD0X5NN/za176WI444IrvuumvOOeec7Lvvvtloo40yderUPPLII7nyyisza9asfO1rX2vOegEAANbIgiUL6oUTvTr91foDli1OXv9F7XK7zsnGH08WvpPMeWGNj/vu3HdzxC1HJEl2HrBzfnf472pXltcJZl8yZ6X7mVu54uD2uutqgtk7FoN6y9qVpXOHzlm0dFFtMHtJhyQVTQrSAKCFTLq3tj38i8muv0hKSpNckLx1TTLjiWT+67Vjum2xyl1OmDchSTKg24AUCoV6fXW9MeuNesuvzXht9esHaAOmTCmG1M2c2fj6ceOSqVOTBx+s7fvyl5Of/KQYaFdRkZxxxtqoFACgvuXvc5a1K8vOA3au17fcb39b2+7UKbnmmuSzny0Gpv/gB8nttzd/XWVlte3p05OePRsf98orte0992z+OgDanKrK2naHnrXtCX9OKmfULg8+Mi+91KNm8YtfbLirs89ejeOWvveHvXrZKocuD2DvVtYt5e3L07dz3yTFm4lUVVelXWm7zJiR3H137TaHHJLceGPSo0fy1lvJccetRm1Ay2rqDb7f+yxi7tzk299OfvnLpKrOR9D9+iXXX58cfHAL1Ai0KXXPJxcuTLp2bb1aAAAAAAAAAAAAAIANwxoHsx922GG54oor8o1vfCNf//rX660rFApp3759rrjiihx66KEfuEgAAIAPasyMMfWWGwSzT30wWTK72O48OBl5X9LjQ8Xlifckz391jY47asqojJoyKknyztx38tvDfpuS5Reyl/WuHbhk1kr3M6diTpPWzaoo7ueuMXel2yXdkiSLli4qrlsezF4TpLG0ic9iNSwcXwwbXjo/6TY82fjApIMrZgEamPty8Wf7LsmOl74Xyv6ezU9N+u+XTP5bbV/Xoavc5fIQ9oHdBq40mH3szLFJkh7lPTK3cm7emftOFi9dnE4dOq3hkwFYP112Wf1Q9s02S3baKXnhheTtt4t9zz9fu37IkOTKK4uh7EnSsWMx4HT06LVVMQBA0bg545Ikg7oPypAeQ5Ik4+eMT3WhOqXvnV8+9VTt+O99rxjKniRduiQXX5zssEPz19W7dzFYN0mmTUu2WME9xl6t89bs8OHNXwdAm1O9pLbdrry2/cr3k1nP1iwu7fXRjB5dDGZv3z7Ze++Gu2pq1nKSpLRD8WdhWVJVkbTruMKhUxdMTZL069Kv3s/qQnVmLp6Z/l3657nnkurq4vj+/ZNbbqkNXd188+SBB5KXX16N+oB1wrJlyZFHJg891HDd9OnJTTcJZod1zaT5k7LLVbskSUb0H5G/f+7vrVxRwxt9bbRR69UCAAAAAAAAAAAAAGwY1jiYPUm+9rWv5VOf+lRuvPHGvPDCC5k3b166d++enXbaKccff3w233zz5qoTAABghR5+++E89s5jSZIjtzky2/bftsGY0dOLaYntStqlqlCV0TPel544e1Rte4dLa0PZk2STQ5Mum61RbS9OebGmPXPxzEyaPymbdN+k2FHep3bgwvEr3c/cyrlNWrc8fL2qUJUFSxbUG1cbzP5ekMbSeasqv+mqKpOXvpO89uOkurK2v0OPZOcfF0OG3zNh3oR895HvJkl22HiH/L/d/1/z1QGwPqhemsx774YhG3086dCt4Zium9X/O91l05Xusqq6KpMXTE6SDOg6IIUUg9knzZ9UL5gvSV6b8VqSZJ9N98l9b9yXpdVL8+bsNzOi/4g1f04A65mqquTqq2uXjzkm+f3vi0Gl1dXFAPYJE+oHsx9/fP1wmCRp1y4Z4c8nALCWjZ9TfC9xcPfBGdx9cJKksqoy0xZOy8ZdN05lZW2wbVlZctppDfdxzDHNX9fAgbXt6dMbH7NkSTG0PUk6dUoGDGj+OgDanMKy2nbdGzy+z2uvl2Xpe/fkHTYs6dDhAx63bhB7xfSky+CkY/9ksxOTqf9IFk+qWT1tYfGPe7/O/er9XL6uf5f+9c6xTzyxNpR9uR49Gg+TB9Zt111XP5S9Q4dk8ODie2tLlqx4O6D1PD/5+UxZMCVJ8XskS6qWpKxd2Sq2all96nx9ZupU77sDAAAAAAAAAAAAAC3vAwWzJ8nmm2+eCy64oDlqAQAAWCO/fPaXuWP0HTXLjQWzvzr91STJR4Z8JI+OfzTvzH0n8yvnp1v5e2G4s98LUC8tSwZ/uuFBeq7ZVZ8vTn2xwXJNMHv7rsWQ9OqlyYI3VrqfORVzmrRu5qKZKxxXs6595+LPimm1Kzf+eNKuU/LK91Zaxwo99+Xkrasb9i+dm4y/uV4w+2PjH8vvRv0uSTKs1zDB7MCGZ/4bSfV7aSQ9Gs5ZNaoqatvt35uvFk9NHt6/tr/r8GSfuzJt4bQsqy4GNA3sNrAmmH1p9dJMXzg9G3XdqGaTsbPGJkm27LNlXpv5WsbOHJvXZrwmmB1Y95WUrHpModCkXY0encx77/4XvXsXQ9q7dCkul5Ym555bDI8666zabXbeefXKBQBoKePnvhfM3mNw+nfpn/al7bOselnGzxmfjbtunFdeSU0w74gRSc+ea6euuiHrKwpmX7y4tt2/f/G1FwCrUFonKLV62QqHvTuh9quAW27ZDMft2L+2XTmtGMzefatkzz8kjx7WaDB73859kyTdy7unQ2mHLK1eWrOubjD7nns2Q33AOuGKK2rbu+2W3HRTMnx4Mndu8oMfJJMnt15tQOOen1w7KS+pWpJXp7+aHTfesfUKSrLJJrXtadNWPA4AAAAAAAAAAAAAoLm4xBUAAFjvPTPxmUbbdb06oxjM/rGhH0vnDsVg8jEzxtQOmPNegHq3LZN2HZt03EIheeaZ5I47kr/+tfGLypcHs3crKwbqvjilTlB7SUlS1rvYnvvqSsM05lbMbdK6WYtnrXBczbqO7yUkVUytXTngoGS7765w25Wa8XT9UPY+H062OjsZeEhS0q7B8GcnPVvTfnP2myutGaBNWvBmbbvbShKS6gazl3Yo/iwsS+a+Uvt478YeE+dPrBm6cdeNM6BrbRpe3XVJMnZmMZh9eO/hGdZrWL0+gA3F00/Xtj/96aRr14ZjBg1KXn21dvlDH2r5ugAAmqImmL374LQrbZdNum1Sr//FOm9Brs3XMHWD2SdMaHxM3WD2jk17GxaA0vLadt33DN9ncUXtDc3691/hsKbrWOcPe8UK7rjxnqkLi585PTvp2Xzsuo9l/+v3T3WhurhuQXHdSy/VjneODeu4QqH+YwX9U6YkY977yL28PLnzzmIoe5L06JFcemnyrW+t/fKh1ZSUNN+jBY2aMqr+8uRRKxi59tQNZp86dcXjWlKhkLz2WvLYY8XXLctveAYAAAAAAAAAAAAAtE1rHMz+ox/9KH379s2kSZMaXT9p0qT069cvP/vZz9a4OAAAgFWZPH9y3p33bs3yMxOfSaHuxeHvGT19dJJk675bZ8s+xRDcV6e/l7JYKCQL3y62u2+zymNWVye//nUxNGKPPZKjjkoOPbR4oegnP5nMfS8nfcGSBXlzVjF891NbfypJbVB7jbI+xZ9Vi5I5L2VF5lTMadK6lQazV7y3rtPA4s8lM5LqqhWOb7Jx19e2R1yYHPBEsvOVyb73JJ94Kem5Q73h7w/Pf3biswHYoFQtqm13qhNuNPpHyas/fO9xWW0Ye7LSm3ckyYR5xcS7Pp36pLx9ecrbl6d3p9711iVJoVDIazNeS5IM6zUsw3sXE1LGzhLMDmxYnnqqtr3zziseN39+bXuzzVqsHACA1TJ+Tm0we5IM7jG4Xv/s2bVjlwdjrg0DB9a2X1rBW50tnC8I0Da1qxPMXjmttl3WO+nQs2Zx8eLarwI2y80vOm3c+HEbMW3htJqfD497OA+PezhVhap66+bMqR0/bFgz1Ae0un/9q7a9/PPy99uyzv1pFy9Orr8+2Xvv4o0Sy8qKn7mff37rBTHDhmh5EPvmvTYvLk9Zt4LZ33577R572bLkN79Jdtgh2XrrZJ99ku23TzbaKPnGN9ZuLQAAAAAAAAAAAADA2tN+TTe87bbbssMOO2Rg3Str6xg4cGB23HHH3HLLLTnzzDPXuEAAAICVeXZSMdR7UPdBmTR/UqYvmp7xc8dns56b1YypWFaRN2cXA9K36rNVtuyzZV6Y8kJGzyiGtae6MilUF9t1QybG/jyZXudq8m3OS3rvlC9/uRjM/n6FQvK3vyXTpyc9eiQvTX0phRTSpUOXfHKLT+YP//lDw2D28j617fE3Jr13avR5riqYvVAopJBCZlfMXuG4mtD25cHsheqkYmrSufHzuiab9ljxZ+chybbfqp+u1GObZMfLahaXVS/L85OfT5Js2WfLjJ05Ns9MfCYHDT/og9UAG4DZs5Nbb00efbQYEtuvXzG44uijk+7dW7s6VsuyxbXtdnUSkl6+MFm2sNgu7ZCM+E7tuqo62zRiefh6/y79a+aM/l36Z9biWfWC2WcunlkzVwzvPTzDehUTkJaHtb/fhQ9fWBPafsUBV2ST7o2kqgCsLXVvwFT3NWcjN2ZalXdr7+2U7bZb8bhFde+l0amJO5/1fDL5vmTpvKS8b9Jnt6Tv3knpGn8kA/CBjR2bXHdd8s9/Fs8n+vdPPvrR5JRTksGDW7s6aOOakkS+mq9nxs99L5j9vUD25QHty/vrvobp1m21dv2BDKhz77F//7v4tN7/9MePr21XVKydulj7pkxJbrklGTOmGHI4dGhy8MHJLru0dmWwDmrKPLF0QW170cTa9n73JdMeTR4amSRp3752PqmubobaOtb5wz6v8fcPl1sevr6ydcvnp3btkvLyFQ4HWlozvj6tG8y+++4rHzthQnLAAcXXB3WNHl18dOmSfOtbTTos8AHMXDSz5tzxxO1OzEX/vKjmOxytqe7lCKNWkBNfXZ2Ulja+blUqK4uft5eXJ7161d/nccclt9/ecJvZs5Mrr0x++MM1OyYAAAAAAAAAAAAAsG5b4xSQ119/PSeccMJKx2y77ba58cYb1/QQAAAAq/TsxGIw+96D985L017Kq9NfzbMTn60XzD525thUvxe8vkWfLbJVn62SJK9Of7U4oKqydoelZbXtGU8l7/yxdnnoSfnb33aqCWVv1y4555zk1FOL7X/+M7n00trhy0PYt+2/bbbfaPuaWhYvXZxOHd5Ldew8qHaD13+VbPP1pGP/pLI2wGJJ1ZIsXrbiQN6l1UtTsawilVWVNc+zMQ2C2ZNkzosfLJh9yexk7svF9kb7NR42Wefi/lemvZLFyxanrF1ZTtzuxHz7kW/XhOvDemXx1GTGE8myBcUbLPTc8YPf5GAFCoXk4ouT73+/eMF4Xddck1x7bfLYYy1yaFpK3b+VK/m7nXada9uLJyXdhhWD3Dc5LJnzcrLw7ZrVE+cVA5lGzxidXpf2qreb5euS2gD2DqUdMrjH4AzvPfz/s3fecXLU5R9/z2zfvb3ekrtLJY30Su8QpENAVJoooBRBRH40RQUBKSIiHQSU3pQOCYQSEiCk95CeS673ve1lZn5/PFtuc7nkAgkBnHde98rs7uzs1G95yucBpH/alnA8zJ2f3UkkIUp5Rw08igsnXNi7YzQxMTH5lhMMZpYLC3tez2LJLO9U9MW3Cub+FNoWdP8sfxwc14OajImJickeJB6HSy+Ff/6z+2fvvw/vvWfOJ0xMvmt0RjvTBblSguzbCrN/hbo1u4WuwuxbtsCaNTB8eOa9xYthQZehUkPD1xPWM/n24ffDxReLKPu2otC//70UPP3lL/fOvpmYfKexeqTwV7RF7IQ94HJlOoBAoMfVeo+rS8PevmPB1sZg404/640W9PeRC16/gJmbZgLw6ImPmsWKTb5X1HapFbGj4oe6LoWGU6LshYXwi19A//5SSMwMMzb53rDtZCzV+e1okvY1i5DuKksalgBQ5Cri2H2O5eZPbmZJwxJ0Q0dV9t7krKJLbej586Wgi7uLqzSRgOnT4cQTe79NwxDB9aeflu/G45nfOu00EVx/+umMKLvTCVdeCdOmiQ/hvffg0Ue/9qGZmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYfEv5ysLs4XAYj8ezw3WcTieB3ZLlZWJiYmJiYmJiYmJisn3m1c0DYEKfCdgsNlY1r2Je7Tx+OPKH6XVWN68GoF9eP9w2d3dhdosjs0E9tsPfe+qpzPKdd8JVV2VeDxkCP/lJ5vXShqQwe8lIhhQOwabaiOtxVjStYHLFZFkpd0TmC1oY5pwO+WNh8zPpt30RX3r5nmPvYXDBYECEli5/93IAOiIdOxRvhy7C7O4uGa3Nc6DvcTv83g7xrweSycEF4zPvJ8KZ9wEsLlAU5tXK9RpTNoYpFVMAmFc7D8MwUP5XFTlMvlt0roFFV0LD+2Bo2Z9VnAyHvr7bf/Jvf4Mbb5RliwVOPRX22w9aW+GddzIJ5CbfISyuzHLC3/N6nv6Z5WA1cIgUAjj0DVh4Jay9N/1xjb+mx810/SwlwD4gfwBW1ZoWZm8Nt9IaaqXIXZRe95PqT9Ki7AAzNswwhdlNTEy+N2hduvEdCYF2FX7x+6GgoIcVI03w4ZEQSQrR5Y2GkgMh2gZNH0Gk/mvvs4mJiclX4fe/z4iy5+RIcblJk2Q+8eab5nzCxOQboauwXi8F98Jh+PxzaGoCux322QdGjZJxS3VHdXq9c189F4fVQb1fxhqpz7qGcnyTIRt9t6lZd8898MgjsmwYcP31In5XXi6i7NGoiHlWVX1z+2iy59B1ETCcKdrDeDwiwNqnD6xfD2+//c3ejyYm3zs8/UWYvUuxxm3J9WYqImzqebXe4ygBRZXikk2fiO/H6uq2mmEYNAWbtrMBIfWZ2y1za02DSETET7+NdEY72dyxGYBSTynlOeXd1tF1KTbyxhuwYoUcT2kpTJkCZ5whfR1ANBHlxZUvEoxLhbhXv3zVFGY3+V7RtW/Py+t5vS++gLlzZbmyUp6fsrLM5zffnBFtNzH5TqDFINYGKFI8RbXs9CvfFhbVS7GVMWVjGF0qFRWC8SDrWtcxrHjYXtuvrsLskYj4wc84I/PeCy9Ae3vvt6dpcM458r0UjmRoUG0t3H8//Pa38MQTmc+ffjr7Nw8/HC65ZJcOY48Ri8Gnn0oRNMOQefSUKeD17u09MzExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTEx+e7ylYXZ+/Xrx2effbbDdT7//HMqKyu/6k+YmJiYmJiYmJiYmJjsEMMw0kLfE/pMwKbaeGbZM2mx9hQpAfaUIPvQoqEAbOrYRDgexmV1AgpgZIQUAWy5YC9MJtRCNKry9tvykcUCF25Hm7arcOPSRhFmH1U6CpvFxrDiYaxoWsHSxqXbF2YHEUpvnpP1li+aEWY/YcgJDCkaAojQUkqY3Rf1EYhlMt+PHnQ0VlWmfA2BBpY0LMkIs7u6KCRtfQVG3wTqV5weJrpk29szYr5MHw/+NZnXpzWCs5T5dfMBmFA+gfF9RMi9MdhITWcNVXmmApPJt5zAZnj/IIi1yuvSI6BgnLQRTbOgY9lu/8lYDG67TZYtFhG2OvzwzOd/+YuIWZh8x7AXZpYDGzPL+z0Jde/Apn/Ja++QzGc7EFwCqO2s7dVnKWH2lCD7gPwBKCgYGKxtXcsB7gPS605fPx2A8eXjWdywmPc3vE9CT6T7lxT19fDee/DxxyIaqKowYAAccgicfPK3V2DJxMTkf5ucnMxyZ2fP6xUWQnVS+3TtWimOsl3WP5qZS4y/B4b9OiO8qsVg63++9j6bmJiY7CqBgIhMgYzJPv0UxozJfP6b35jCdyYm3zZWrxbx8vfeE3H2rpSXw/z5sDm4Of3e8qblWets7tiMYRjk52cE4Nev35N7nE1ZGeTnQ0eHvH70URHCO/hguOMOmDFDhNn33VeE2VP7Zwqzfz/4+OOMKPvgwTBnTkaYGKClJTO2NjEx6UJvC3h4BkDbQghuhlAduLephgGMGJYpPrx27W7YN9UCzjII14MWgvUPw/DfdFutM9pJTOu58HFKmD0/HxqTU+f166XoyLeRuz+7m5s/uRmAqYOnMuOcGVmfb94shScWLOj+3aefFvHpZ5L1l2dVzyIYD2JVrST0BG+tfcssVmyy9/kKhYN6wtrFXaBpPa/38suZ5d/8JluUHcRWN2lSZjdmzID//hfef18ElAH69ZNx5Y03yljD5NuJYUjxCst3R6d816h7FzY8BvUzpG8EUB1QNAXG3QHFB+z4+98CFjcsBkSY3evwMqhgEBvbN7K4YfFeF2a3WDJtydVXw7HHivB4Y6OIqP/+973f3sMPZ0TZBwyABx6Q7amqFFW57z6oq5N5NkjRiNNP776dvT1fbWiAa66BV1/tXujKbpe28oQT9s6+mZiYmJiYmJiYmOyMSETslMGgjO0HDwZX97qPJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiZ7ja8szH7CCSfw97//nSeeeIKf//zn3T7/5z//yZw5c/j1r3/9tXbQxMTE5H8VTYPWVhFizM/PFosyMTExMTExEda3racj0gGIaKxNtQGwoG5BlnDs6pbVADisDj7c9CGdUVFe1A2dta1rGVs+FnIGijhuZxcx8ckPwcgb4fUKADZtdeH3y0fjx0Nubs/7phs6yxpFpHlU6aj0/yuaVrC0YWlmxdzhOz3O1DEC5DnzMl915Gat44tkBNzfPfvd9PG/s+4dTnjuBNrCbeiGjuoZmNm4fy2svAVG/wli7Tvdl24oXTKq9chOV+8qpF/qKaXCW0Gtv5Z5tfO+sjB7vb+ems4aAAYWDKTYXfyVtmNislPW3JMUZVfgsLeh73GZzwyjW1GF3cE770BbsqbCCSdki7KD6GXsv/9u/1mT3UAgIAI88+dDezvYbCIasv/+MGboSNJSJ/51mS/1+yFEmzPC7DldlEVaPt/h76XawZ19tqZV+rmPNn9En7v7AGAgYitrW9dyQFVGMGLGBhEc+u0Bv+Wydy7DF/Uxr3YeB1YdKN8z4E9/kuIBiYR8x+WS+etbb4kI6KefwoEH7nDXTUxMTPYKJSWZ5dWrexZcHzcOFi/e+XpseUn+zxmcLcoOYLHDgJ983V02MTEx2WVeew1CSY2w007LFmVPMXznZgkTE5NviCVL4NBDSdsfTztNCl653bBqlYhZBoNQ7etZ2dof89MR6WDMmIL0e6tW7eEd74KqwpQpIiyf4sgjobg4I8QOMHIkfPihLH/2GRxxxNf/7fZ2eP55+OgjWLRIzqPbDfvsA0cfDddd9/V/47tMZ6fcPx6PiJ/sCT3gf/87s/y732WLsoPcB8XF9O7Hv4IwrInJ9x53/8xyzX9h6K+6rVJWqlFSAs3NUkCxsbG7+PEukzdKhNkBlt0AxfuDxQPti9KrpITXeyL1+dixsCbphlu16tspzG4YBs+teC79eubGmTQGGinLkROZSIioa0r4/qc/hUsuEVGppiYRkW5uzmzvrbVvAXDOmHN4eeXL1PprWdq4lHHl476pQzIx2aN4vZnl+vqe1/vkk8zyMcf0vF48DuedlxFT9njggAOkeOKmTTLeOP54GLzPro0n2sPt3PvFvQCUuEu4bMplO//+zrbtXwfRJkABZ7kU0FC/r2rkO+bTT2Us/uGH0j5qmtwbo0bBL38pbeX3glV3wtJrZdlRChUnSjHmwCZongVti75zwuyp/ze2b2Rx/WJ+POrHe22/HA6xxy9cKK+rq+FHP4KpU0VEvWnHw40sDAMeeSTz+uWXM8UfAEaPlkJir76aee+ww/bMPOnr0NoqftZNyfrdhx4Kp54KpaXy3muvZY87TExMTExMTExMTL4NGIaMVR98UAq4RrqEllutMG0avPjiXts9ExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTE5MsvrIw+3XXXcfzzz/PRRddxDPPPMMxxxxDRUUFtbW1vPfee3zyySf07duX66+/fnfur4mJicn3mmhUEj7eeEME/AKBzGcVFfCb38Bvf5t5LxwPE9NiAHjsnrT4qomJiYmJyf8KKZHv/nn9KXIXpUUMQvEQq5tXM7psNACrmkV96K21b6UFEFKsal4lwuz5Y0SY3b8GtChYHN1+LxDM9LX5+Tvet43tGwnGgwDMrZnLhrYNaYH1pY1dhdmHgdUDiWCP2+oquN5VjL3rsi/ioy0s6s1euzdrXFDgFCEm3dDpjHaS7+kPzjKINMoKK/8MbQvBt2LHB7U9bBmh+PT2AIqmgGrL2mYoHmJFk7ye0GdC+v9afy3z6+Zz+r6n7/rvA+e9dh4zN84E4KzRZ/HstGe/0nZMTHaInoDNyXur9LBsUXaQLO3SQzKvEyFomCli7cGN8n1bHngHQ/kxWUn5iYQIva5eDeEwOJ1QVSUiNfPnZzZ59NF78PhMdhvRKFx/PTzwgBTaAhEis9uhtlbEKDZuLGGgo1QEO1rn9rwxqwvcVRDaCo0fQLgRXN2VlAzDoNZf2+NmajprMAwDRVFY2yqKQZFEhIZAQ9Z6qc8Atvq2pgubHD3oaA4fcDivr3mdGetnpIXZH3kEbr5Z1p84ER56SEQNFAU6OiTBqtislWFiYvItZcoUeC6ps7Z0ac/rjR8PTz4py598Auefv52VEmHwLZflsqMy6i2tCyDSRZGqaH9wlnT/vomJickeYsmSzPLuED02MflOENwKrZ9DqA4wRCTPOwQKJ27X3rddeqvEtpuFo3//+4wo+5NPdh933Hmn/GT1Jz0Ls4MIt48aVYDVKjaHFStElHtHRSZ3J/vtly3Mnkhki7ID7LtvZvnpp2UeraqZ99atk32eOLF3v/nJJyJknypud8QRUnhC1+X4b7/9f0+Y3TCk4N9TT4n4fU2Xem6FhSJo+vTT8nrpUpnDf/45rF8vtg2vV0TtTz+990Kan3epKXfssTvZuRRdnzdTjN3EZMfkDMosr/gz9D0RcgaArmWtNnp0pvjFf/4Dl16avZmtW8X+3GuKpkDD+7KsReD97lUYG4MZ/9DLP3wZR7LP/aL2C26dfWv68wkT4KVkXbNPP4Uzz9yF/fiGWFC3gPVt68lz5DGmbAyzt8zmpZUvcfl+lwMi4JoSZT/lFOmzU01ZcXF2H2cYBm+ufROAk4aeREuohbfWvsWba940hdlNvjeMGJFZXry45+fal3F307dvz9t78smMKPvRR8Mzz2QXmNi8OVkodhfHE08sfoKbZt2Ufn3kwCMZUTJiu+vukHAjLP891LyRFGXvgtULB70AfY/f9e1+h7nhBvjLX2S5qAguuED6GZ8PvvhC4iC/F8LskSZYfqMslx4Gh74Bti6TrHgnRFv2zr7tAoFYgDUtUiWlMreSllALg/JljLGoYdH2vxRtgXAD6Tm2qw8o6vbX/ZoceGBGmB3g3Xflb1fZtAmWJ032Q4dmi7J3pWt8blHRrv/OnuaBBzKi7JdfDvfem93k/e53maKMJt8chiHF4SIRKVqen//tE/U3MTExMTExMdmb3HST/AH06ydFDYcMEd/DokXy15Uvar7g480fA3BA1QEc2v/Qb3aHTUxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTP6n+coKviUlJXz00Uecc845fPzxx3z88ccoioKRTGyYPHkyzz77LCUluy4yEo1G+cMf/sDTTz9Ne3s7Y8aM4ZZbbuGYY47Z6Xdra2v5zW9+w3vvvYeu6xxxxBHcc889DBo0aKffNTExMdlTaBr897+S/L54sSRLRKPgdkug2ckni9jCYYdJQhLAT34CZ5wBffqI8MDChSLSmN6mrjHx0YlpobybD7+ZGw+7cS8cnYmJiYmJyd4jJcyuGRpXTr8SAJfVRTgRZl7tPEaXjSahJ7KEZrcl1ZeSPxZqXhNRibq3oKq7SHhuTiK93NTU7eMsljZk1B3/+PEfsz5b1rgsLZCLaoPig6DhvW03kSYl6G632HFanen3LaoFj81DMB6kI9KRFmYvdBVmfb/AVZBebgu3ke/Mh+IDoeZVedPQ5Zi/CrnDQXWAHoX2JZn3D3hKEtJnn5J+a3H9YjRDBELum3cfTquTTR2SRZq6lrvKssZlzNw4k1xHLpFEhJdWvsTtR91OVd6uqIqYmPSCaAvEWmW55KDM+6vvgrYumSKj/yTrzjkDIg1gL4DyY8FTCXGftDPNn8ER06mrE1Gw//xHEqZzcqCyUkTDqqtFMO2cczKb9nq/iQM1+bpcfTXcf78s/+QncPfdMq8Duc7vvw95eUD+KGj8UApjtC+BgnHb32DuCBFm12Mw96dw6GtgcYIeSa/SEekgFJes+xOHnpjuB9rCbby19i2C8SCd0U5y7Dmsb1vf476vaV2TXp6xYQYAo0pHUZZTxpEDjxRh9g0zuOmIm9A0uO02WVdV5T7u3z+zrfz8HsSL/0doahJhwKYmaGmRZPySEhGpOeAAEeo3MTHZu+y3X2b59dfhr38FiyV7nXBYRONSvPyyiAx1FYNqbISl80JMTb1hzcl8uPpO2Ppy5vXh70Gfnfs5THrA0KHubah7F9qSoveGAfZ8ESgc/AuoOHFv76WJybeKaDSz7HLtvf341qHHoeZ1aJoF7Ysh1i6CYo4i8A6DYVdC3lcQ6DPZu7TOh/m/lGuqWMVmZc+HSDME1sGwq2D8Xb3b1rZijil1rT0oGt3QAG+/LctVVXDeed3XcSR15at9OxFm76hmXPk4Ro2SAg3RqAhc/vrX2ev9978wbdrX3/dtOfxw+POfd7zO6NGZ5TVrxE96661yqmtrxXf60EO9+71oVM5XW5vMtT78EA46KHud+vrtf/f7zDXXyBgXpCjRTTfBoEHit161KuOTvvZaEf0HEUb58Y+lYHgoJEKGb77ZeyHNroKAeXk9r7eraLrG62teRzd0bKqNk4edLLb1/1W0mIhkty+WYqmJgMxDPP2g5BAo3n9v76HJnqK0iyBRtAk+OhoqToHa17JWGzMmI8x+550Sd1JaKq87OuR1qg3oFUX77XSVpqA4zRwWB6ePOD39jOY787l19q2E4iGCsSATJnjS33nmGWmbuhZCbmmBZcvgyCN3Yf92M88tlypupww/hQMqD2D2ltk8t+K5LGH2FD/96Y5FOFc1r2Jzx2YsioWjBh5Fnb9Oikive8uM7zH53nDwwZnlWbN6Xs+Tefzx+XoWQL777szy/fdn2+EABgzY5V1E0zXuny+Om7FlY1nauJT7593PAyc80G3dtnAbC+tEFbosp4wxZWMyHybCMPNAKfbuLIfJj4rP0JoDoRpo/kT85t8zPqn+hKeWPgXAmLIxXLHfFenP5s3LiLKPGyf3wLYFoTo7v6Ed3dNsflZ8dQBjb88WZQd5ve1730KWNS7DQOa2xz6TXU1pcf3iTBxLpAlW3Ax170AwqQyuWMFIgMUN4/8KQy7Z7ft36KFw331ffzstXTTyd9Ru5HQx57d8C3X1n3gis3zttd3HHYqS3b6a7DmiUfjnP6Wo2aJFmcJwIPfRD34gPiQTE5OvgRaD1rkQroNoa9JmXyw2+7yRoFp2vg0TExOT/0E2tG1Ix46PKBlBjj1nJ9/Ys2zaJP4ekFjC5cuz417POkviY1Pohs5Fb17E8iaprDSoYBBfXvYlNovtG9xrExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTk/9lvrIwO8CwYcOYP38+8+fPZ968efh8PvLz85kyZQqTJk36yts9//zzeeWVV7jyyisZMmQI//rXvzj++OP56KOPOLhrJsc2BAIBjjjiCHw+HzfccAM2m4177rmHww47jCVLllDUUzaHiYmJyR4kkZCg+w8+kNcXXwx/+5sI80WjsHYtbN4syWSp5NcrroB7783ezrHZeTA8vexpVresZmjRUNa3reevn/+VSydfSpHbbOtMTExMTP53mFcnYt41nTXc+0V25zmvdh4XTLiADW0biOvxHrexqnmVLBSMz7y55Bp5nTMIyESAD+ofoqgIWlslWLy5WURWt8fSxqXb/wDwRX1U+6oZkD9A3ig9rGdhdmc5vqgPgDxHdzWbPGcewXgQX9SXDq7vKsQOUODMFmYfVDAIyqdmhNm/DhYHFE2G5jki7h7zgX37qjvz6+anl59e9nTWZwvqFqAbOqqi7tLP3zP3HgB+Pu7nNIWaeG75c9w/737uOOaOXTwQE5Mu6AkRNFKsYPVIRrPSJcEvHsgsN32SXdhg8EUw7+ciyl44GY78EGzbJLvEA0QicPTRsHq1iIY99ZQIX9mS+SSxGMyfD599lvna6tW92/27Pr2L2VtmA3DysJO5cMKFu3DwJl+H+vqMcFxFBfz735lrClKc65RUvYqCiSLMDjDndDjsbUkoDdVmb7TPcZk+omEGvDsOXH2h6eP0KjWdNenlB49/MF2cYqtvK2+tfSu9jtvmJqp1Uefchq6FTKavnw7A6NLRrG1dS7+8foD0r62hVqIdRWzdKusOH54tyv6tIrhFBDcjjUnBTQVs+eDpD+XHiFDjbuTLL+Gyy+Cjj8Bqled86FC5D9auhXvugVdeyRYhNDEx2TuMHy99cCwmiaG33w433JARNvnoI5g5U95zOiESgUAAjj9ehDeqqkR46Nxz4ddX5DG12CZCv6GtmR8pPgC0kIiJm3w9DAM+/bEI3Vs9MOw3UHKwtOmxNuhYJsVxTExMsqiszCyvWNG77yQSItjZ0SEFKtxuKC//Hok8JULwwWFS4MFZDkN/BfljwOKCcD20LxLhF1OY/btFtA1mHS99QcnBcOCL4O6b+TzeKXOCbzFdi0AOGiQFsHoiJcx+/rjzOXfMuen3f/76z6n2Vac/328/EWYH+N3vZPwybZo823feCc89t2eE2Q89VGymzc09r7PffiKy2Zi8LH/5iwiblZbKWMvv7/3vvf22FLgDOP307qLskCmY9n0lkZB7JnXfLFyYEWWfOBFmz84uEHbUUXD55fDeexlR9sMPl9e2bbROtq1HoOsirunzZfqJsjIpHNCnjwjrgwjudy1y9HV4fPHj/PKtX6Zfv3jGi5w58sxd28juFnLfg4UadsjWV2HehTIGLpwMfaZCzmCxZXYsA99KU5j9+0zeKBm/RBrkdWADrPlbt9WmToW//12Wq6vhwANFDKm9XWJV1vdct3H7lB4hhSK1SI+rpITZSzwlWYUTSjwlWetMnDgQq1XarbY2OPVUEbAsKYGlS+Hss+HKK7OF2Vc3r077+UaXjt6jhRk0XeOFlS8AcMaIM5hSMYVL376UuTVz2di+kUEFgwgGM+vvLBQxZZvdv3J/8px5HDtYAn/m1c6jMdBIWU7Zjr5uYvKdYPJkGT/E4/D551Kc9pgudQlDISkINHasPOcg4t2DBnXflq6LHR2kaMOwYbtnH99a+xabOzbTP68/T532FGMfHsu/l/6bW4+6VQqad+HK6Vem/dheu5c1v1pDH29yMLnhMRFlBzjweSg7PPNFTz8oOXD37PC3iLgW5+K3LmZ1y2rsFjsJPcGRA49kVOkoAB57LLPuVVd1F2WH7b/3nSS0JbPsHSr/d66F6V3iTIomw1Eff5N7tcssql/U42et4Va2dm6ln6cEZh4M/nXgHQKHz0gWIfBIPEj7YhHL3QMcd5zYoLr2t1+FroVfdlSoq2uqw8cfyzD/21QDKmUrsNvF92yyd0gkpG+bPVvuj2uvhXPOEdtrIiHj68WL9/Zemph8h9HjEqu58Umx45YcJLYOxSq2+vZFcOib0s+amJiYmGTREGhg4qMT0zHml066tHsRMl2TtrRtodiV450S9+0oBu9w6JOcxIdqof5d6Fgh6yUC4j91lkvsS78zerVPr74qYySQorpdRdlTdPWBvfblayxvWs7w4uF47V7m183n2eXPcv6483fxbJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYfDW+ljB7ismTJzN58mQSiQTLl0uF+ng8jm3bjM1eMG/ePF544QXuuusurr76agDOO+88Ro0axTXXXMNnXRXJtuHBBx9k3bp1zJs3j8mTJfDuuOOOY9SoUdx9993cdtttX+HoTExMTHaAfz1sfhqaZkvyqy1PgtQMA/QoDDiXxz64LC3K/qtfwX33ZW9i3Dj5//TTM+/94Ac7/tloIsofP/4jAH+b+jeeW/Eczy1/jtvn3M5dU+/a7vq6IaKyTqtzjyaqmpiYmJjsBnQN0CW5xGyzeySuxVlc33NmW0oEPCW87rA4uPrAq9OfL6pfxLvr380Is5cfI3153CcJ1dMnQtkRImSSxGo1OPVUePxx6e7vuisjXJOivl7EaFLC7A6LA5fNlf68I9IBwNKGpRlh9qppsOx32z+QoZfTUbMZgFxH96zlXEcudf46OiIdGWH2LkLskC3UnlqHqtNh4a/A0Lb/u8ouTBdLDhVhdi0Cc38K+z0OjiIwElmrzaud1+Mm/DE/a1rWMKKk98Jn9f56nl32LACXTL6E5mAzzy1/jkcWPsKNh91Ijj1nJ1sw+Sbx+STp4vPPRbg4HhfBJotFhBb69oVnntlLOxf3w9r7oH4G+JaDZ6Aknhg6xDtAj8HUeSLkHKyG1s8zWdn7PQEdy+Gjo2RbnatlHYDBF2RE2ZdcnyUC98qXD7B6tbQN55wjoq5dsdtFSKy8HK65Rt57+WW4+WY5b13pmiA+u3o21868lorcCgKxAO9teI8Dqw5k35J9d+MJ+x7SsUJE0juWyTVPBEWM35YH7ioY/ScRH9oJdXWgJZvVgQO7i5llMeAs+DI5fwtshLdHgDVHkpq6UjUNlvxW7kcA/xr560KtPyPmXp5Tvt3lWn8tRlI0TFVU5l4wF4sqBQdmV8/myhlXsq5tHbqhoxs6MzfOBOD5Fc/z/Irn09sxMJi5cSbH9/8RiiL3X3OzJFRZd4ulcTcRaYLZp0HLZyKQMeBcyB0Bqg2izSJsnzMYCneTShwiSHfSSZJ873SKYPP2BNj3lnabiYlJNg4HnHYavPiivP7976Vo4kEHiSjoK6+ILc/jgbPOgieekPUWLRLhqNxcEZEDMLBC2dGSpNrwHsQ6pPDD8N9IO/6GKcz+tal7W0TZASY9CAPPkwbVtwKsbnBXZhfSAekLoi0y1kMHiwecJeAs22PCQSYm3zamTYPrrpPll1+Gm27a/nzCMKTA0H/+I21hWZn4LnJzZYxTXQ1HHCHCyd95vrxbRNlBhMUKxkAiDOFa8AwQYQGLWz73rZJ5YvsiiLbK3FCxypjSXQEj/5At/m2y99j6cqZAx5hb5LroCVjdpXCfxQPDr9ztP71li4i3LVokc6POTpkXulwypz/3XNi/FxrJFRWkhWpXrpTiMV2FtLtS3SF2h4OrDubIgRnl2n0K9xFh9uTnF10EjzwinwWD4oscMED2MxiEIUO+xoHvAKtVfuvhh3e8zrnnZsTDAWbM2P66dXXSNq1eLec3EBA7SG6uiM13nYsWFu6eY+gVvbXd7+ZJYE2NjE1nz5Z7paREzoWqyn2jaXBmF83yo4/u+V56883M8tlnb9+OoShiu3v0URFVnTsXCgpEXDU3V8RWt24V//a0abAg2cQ+++zuEWZvDbVy/QfXo6Bw7w/u5YrpV3DVjKs4fsjxu2b/3fY6pK7fzq5Pb9f7Jgg3wNzzxHbU/yw44BnZPy2Wvd63TU3SZPehKND/J7Dmnh2uNnWqiETWJGs5btggRUG7bmaXsOVAnx9AzWvb/9zqpTEgtu8Sd3Y1466vG4ONDKwcyOmnZ+bis2ZJwcfCwkxhh668suoVfvjyD1EVFd3QuXvq3Vx1wFW7eAC95+PNH9MQaMCiWHBanaxtXcuw4mF82fIlzy9/nt8d+jv23RfeeEPWnzNHCpL0xFvrRJh9aeNSBv9jcNo+C/DOunf42fifpV8HAtLXdXTIsqaJTaKsTApjupND1AV1Czjz5TPTxY6fP/159qvcb3efChOTXuN2S9GX6VLrlVNOgT//WYq+rFol88hJk+BHP5IixQAPPihjj65jFMOAhgYp1NPUJOO+piZ5/XW5b54E61044ULGlI3hgMoD+Lzmc55c/CS/OeA36fU+qf6Ep5c9TV9vX84YcQb/mPcPrn7/ap6dJv5ofF0qnhUln7v2JfDh0Zn3Sw+FQ/779Xf6W8IjCx9hdctqDu53MCcPPZlrZl7DVTOuYsY5M1AUhWiXWsA533fXvDPjcyO0BRyFYMuFAWdLgWD/2h0WMfm2sKMYm9Tn/WzNIsoOMOlhKD9SRHO3vJxZMWU72c14PFK45dlnv952hgyBffYRn93y5VI4anvFHqqqZM4+d67MPZ97TtqnrmzYAIMHf739+aoMGpSxEaxaBfuaLv9dJqEnmLlxJoZhoCoqRw86Ou0j7y3PPitzcICf/7y7jbSoSArQmXwD9GYy822Yv5vsGitvgzV/F9/d0XO6F7sxjJ7jG79JDF18jgm/9IsWF9gLJG/ExMTEZC/xf+//H76oj4snXswrq1/hoQUP8bPxP2NS32QFovr3JKY70gB9joO+x4N3H/GhhWpg60sizL7iFlj+B/GBDvuN2CDthaBHJBY2VPOV9m9n3bJu6Nw862Y5lgP/D6/dy5mvnMmts2/lnDHnYFW/TcGIJiYmJiYmJiZ7FsOQ+ItAQOL1bDYpQOnxZK/X3Cx5i4EARCISC1hYCP36dV/XxMTExMTExMTExMTExMTExMTExMTExKR37FKEwqZNm/joo484+OCDGTp0aNZnb731FhdccAEtLZLwXFBQwIMPPsiZXTM+e8Err7yCxWLhF7/4Rfo9p9PJBRdcwA033MDWrVupqqrq8bspkfgUw4cP56ijjuKll14yhdlNTEx2L76V8N4BEmC7z8Vw2Jtg9UhCNEgQcLyTZLMISMJkT4wbJ8nsAJ99Bscd1/O6jyx8hC2+LQwvHs7EvhNx29w8t/w57p9/P1fufyUVuRXpdaevn86pL5yK2+amPdLOJZMu4f7j70c1xYdMTExMvh3oCVj3gIg8BTdD/mgJZlZtksChx6DfmdDn2L29p986ljctJ6pJpu9jJz2GyyoCx+va1nHTrJtY1riMcDycFl4fXjycW468Jf39t9e+zbvr32Vd2zriWhyb1Q37XAKrb5cV4h1Q82q3373gAhG+SQmzb9oEP/uZCN988okImc2fL8LrAHdPvZvLplyW/v7kxyazoG4BSxuXcsrwU+TN3OFQcRLUvpn9Y7n7QsUpdKy/CYA8Z163/clzyHsdkQ7aIklh9i5C7AB2ix23zU0oHsoIsztLoN+PoPq57ifX3U+E23vLPhfDl3+V+7X2dXjjQ8gZKMnHXUiJ5f9iwi84elAmQf3Sdy6lJdTC/Lr5GWF2wxDh3HinJDAbuiQy2fJEMFu18sD8B4jrcYpcRTy19CkMw8BpdeKL+nhy8ZNcvt/lvT8Gkz1KdTUccoiINPXvLwLsBxwgouwg4k6bNu36dgOxAGf95yyWNy1HQWFk6UieP/35XRfln30aNH4AOYPguOUisBduhFjyedHjoIVE2HnlLdA6D9bdD0Muk2fJ1SezLUdRZjm4pcv7hSKmnWxXctz3ANJudXb2vGuDB4t4xccfyzk6/XS44w4YOVJE1GbMgHfegX/+E4KxIOe/fj4GBg8e/yANgQZ+8dYvOP+18/nsgs+yElVCIdi8Gfx+CdzUNAnKzMuTa5TbvQ7E9tFi0DZP5kfhOjlXigVQ5P/cYdD/xzvdTIpFi+DddyWxPBCQZHi7PakxlRSiufXWXm+udyy7Ua6r1StCr32OzVzHaEuyLevd/Gn4cBHea2iQY6mulvO5XQrGQdmRIgifYltRdgBPv2R7/Xz3zwBUOzWdkvxU6inFZsmoqNksNkrcJTSHmqnprCEQk+33z+vP5IqM/cyRTBSNJCJs9W2l1l+LL+rr8ThnbJjBj0b9iB/9CF54QQJ8H30ULr00e71EQoQC3HtGm2HHLP6tiLJbnHDsfBHHCGyCuncARfrYWLusq8UgsEESybSgCHMqqgj92guhaH+w9KBi14XaWhF4AHl2tyfKDqY2monJt4nf/17scfG4vH7zzWxxyhTXXSeCLJGkrk4ikRFlT9P/xyLMHvfB5+fCxHtlbPEdEOP5TtClwA2uSvnf0GDOGSKWHGsFRwmcuFb6gLp3wOaFytNEtF21QzwA4RpJOO4zde8ch4lJ3C/jy3C9zDG0GKhWKdDjqoDC8dD8KVS/AB1LZVzq7CPrgMy7c0fAsF/z6aciCLlypbRjAwfKmD41dnY4RPD4kENEOGjjRhG2uv12GDNG5iFvvQUffCC+i9uT5pBbboEbbug+ZjEM9pjwzXPLn+OqGVfhsDqIaTEePP5BThtx2i5vp1d0FQ7IGSj/d66W9iTSAFpYRAn6ngALLpN5zeRHpD1xJBWfEyEZP1rNbLZvDbYuNrNYai5jQOcaKcDVsVQKc+xmYfa//Q2uvlpu+4suguuvF+E3p1Pm3dXVPQtib0tRkYjmPvMMtLTAbbfBH/4gNscU9fWgOsI0BqVf7JfXL2sbVXkSR1HtE2H2iRPhxBPlWU+xefNXPtxd4vrr4emnxXbRFatV7BwA//d/Ihzv929/G7GYCOI995y0aTfeKMLfZWVyXtraZA42ZowI4YfDUlzn1lvFvrHH+apC31+DrVth8mRobJSk2o8+6i4uGIlIYcQUc+eK7U3djmmja9jPsmU9/+7vfte7fqK2Fv74R+mX/v53EY2/5BK5Ho2NIsZaUAAXXtj7Y/7dh7+jLdzG+ePO5/L9LufDzR/y2pevcesnt/KXo78PFUOyee3L1zjv1fNwWB0EY0HuOPqOjJ07uCljOyo+IHMRZh4otrnU3OPUumx7pckewx/184u3fsHmjs0YhsGBVQdy1zF37bLQ4y4x5BJYe2+miGNXHMXgKMZikYI8F1ywO3/38u0Ls6s2GPV7mmaL6HGJJ1uYvcBVkBZVbwo2AdKmdJ2Lh8PbF2Xf0LaBC964AJfVxfvnvs/pL53OtTOv5cCqA9m/shdVT74Czy0Xn5lmaEx9Jnve+OzyZ7nhkBu4+GKFu+6SMfe990rRtxFdag5Ho9KmDhrZymdbPwPEl5GyzaZ4c+2b/Gz8z3j7bTkny5aJ3+S008Qu7nBAa6vYmXVdhK0bA42c9uJpNAQauPcH93Ll9CuZ9tI0Fly0gD7e785zH4qHuH3O7fgiMm47adhJWX7DFIYh44RgUPo3XZdx1vZEKEz2LjfdJP4qw5Bn+uqrsz+fNAmOOUbGL1u2SCGXww6Da68VH8ratTIuPPJIuPhiKVKs67Ldf/wj408EaTv8/t4X5FnZtJIPNn0AwNyaufzs9Z8RiocAuH/+/Vyx3xVYVAtxLc5l74hP/9Yjb2XaiGm8sPIFnlv+HBdNuIjDBxwufp0UrXOlyLunP0x5BL78m/gk4jtw+n3HaA+388eP/wjAX476CxP7TOTvX/yd9ze+zzvr3uGEoSdw+uky7gd47DER5t923PmdqBnTuQYa3pcxlR4T35Bikf7WiEuh+v4/gWU3yHsrb4EDXwBXOUx5FL64sFtsxB6h64n8ivOORQ2LALj+4Ou5fEomnuLkF05mQd0CFtUv4pSqLkXoUuMaPQbrH0n60zZLTElF9Vfah51x3XXw0kuZsUJXxo3r3TYUReYdqYKFP/oR/Otfme83NUmRiIsukvXmzpX3f/5zKQw2bZrM62fMgH//Wwqn7A0uuyzjf035KboWQQgGZW7cQ1rF/zy6oXPRmxfxryX/YmzZWJY2LuXC8Rfy6EmPouxCwxTp4ubZnX5v3dC5f979aV///pX7M23EtN33A99HurZ9O2oTTQH37xapmBlX34wo+5aXYMGvMusMvgjGbidYyNCR+KTMNd+4ER5/XOZSTU1S1CInR+ySui42xyuvlLirnWLosPZ+2PKi9IGlR4B3sBQo0ULivyycDPv8YufbSqLrYuPbuFHa8HBY+jybTWK1hg6V2KMUH276kOZgMwDj+4xnaNHQHrZsYmLyv8bHmz/mmWXPUOIu4Y5j7mBM2RgufedSLnn7EuZeMBcLBnz6Q5mnVpwMh74uX2z4ADq/FD9n/jho/AiW3yifjbgGxvxZljc8DqGtmR+Mtoj9cSekCofH4+ITuPrq7j6blM/ijTVvsLRxKS6ri6rcKqyqlXxnPuvb1vP88uc5d+y5u3xe2sJtXDfzOvwxcT79aOSPOHX4qbu8HRMTk2+G9nA7tX5xEBQ4C7LyYbeHrkvcntW6fd+niYmJyXeNREL8IG+8AStWwPjxMHasjJ80TXyFTidcc43E2Lz3ntgtzzorM9+NxSQeIy8Prrhibx+RiYnJ/yoNgQYeW/gYBgYKChdNvIjynPJu64VCkm8XDovtXVXF7l5UJH/fep+iiYmJicmuEQ+IH8i3XPJnLO5kXowCRgJyBu+Sj8XExMTE5NtBTWcN5716Hu2RdnRD5/QRp3PjoTd2i8UJBCRedHsxwP37yzKAYRg0BZvS84mynB0INJqYmJiYmOxBdkmY/bHHHuOOO+5g48aNWe+vX7+eM888k0gkQv/+/fF4PKxevZqzzz6bIUOGMH78+F7/xuLFixk6dCi52yiATZkyBYAlS5ZsV5hd13WWLVvGz3/+826fTZkyhffeew+/34/X6+31vpiYAKxuXs2cLXMAsKgWTh52MsXuTDBRKATr1kngZmenJNdbLGL41XUxBh9xxN7ae5M9SqhORNkBCidlBDhW3ATtSyQBy+rhsssCPPoo1NSIeOvgwZJI6XRKXHdDgzhNr7oKnn0W1qwRwYBQSEQX+/SRe2vRIplw/OyXAW75RERlv2z5kj53Z5IrI4kIN8+6mUdOegQQwdlpL02jf15/PvnZJ9z08U08tOAhEnqCh0982BRnN+kdekICy5s+lOWSgzMJaIoiIljOMqg8dW/vqcm3AcOQtjEREmFWdLlXVIcIolmce3sPv32svkuSNwF+sBQKxkjw8qo7AVXOX/tSKBgvot2dq+U8egaJSDUKYMjzWX6UCM79jzCvdh4AFd4KLpyQUXJpD7dz06yb0AyNxQ2LWd2yGoBhxdkKNanXCT3B+rb1Igg+6vdQ97Y4ebbF3Q/yRnHAAfCXv2QSOF95Rf664o/50gJIo8uyVVlHlY5iQd0CljVuo3Qz4ppthNkV2O+foFrSwgQpEfau5Dpk7uSL+NKi6wXOgm7rFTgLsoXZAcb/DeqnZ8SnQQQLD3gKbLsgbO2pgvF3w8Jk4m7CL6JXKSwu2qIB1reJWu15Y8/joH4HpT9+csmTvLv+XebVzuO8qlGw5Fpo/RyqzoDyqWDPh0gz6BERXSycSKj4EB5a8BAAbpub51eIYHGhq5A6fx1//+LvXDr50j0rgPJ9R09IAka4TgoVqM4u/b8u90ovBS2rq2U8DCJQtv/+2SIKqirj5Mxvx+VaaxFJdjcMcbiqThHCszhpC7dxwnMn8EXNF/zr1H+hKirnvXoeRz91NO+c/Q6FrowiQyAW4NllzxKIBdANnaFFQzlp2EmZ8XBEBGGw5so4B2Q83/QxrPm7vJ7yOAz7jSTb+dfBwivgy7shb6SIOadwV8HAn8GmJ+HLuyQZpfIUKfxgL0oLs598Yowjj4QPP5Q25Lrr4Be/EFEKw4ANG+DTT0U85/HHRUyxrg7eflv+3G6ZMwDst5/8f93M69jYvhGv3cs7695BN3Rsqo35dfO589M7ueGQG3j4YRGOW7dOEs1PPFGExO12EYzZulXmsmPHZg4pmoiiJ4V+nFZnxjESbYP39oPAehEtnHi/CFA0zZK+TI9KEmKsQ57jnfDKK/DDH8rymWfKa5ttx9/ZLaQEhXIGiaiuaoUtL8PW/0i7bGjSxg25RBItw3VyTIolI0JvaGDz4ik9lHvukWDXUEiu29VXS5K/3S6Cce+8I+L6VVXAxPvggyMg2tR9vwZ1UU4adye0Lewu6mD1wOSHqV3+LgB9vX3Zlr7evjSHmqntrE2L9+1TuE/2TxUMSi+vbV3L7C2zAZjUdxIfnPdB+rNnlj3DZe9cxowNMzAMg1tuUfj4Y5nXXnaZBAUfeih4vXKPvfGGCAQceGAvrsPuxptMRtWi4FsNxfvJ9bJ6YOWtct8O/Kncr1/eBRYPTLhHxlyJoCSWxdrBt0oSgL377Pj3kHbs1FPhtddEIPWvfxUBupRIkGHIPVBWtgvFD0xMTPYoo0aJYOTll0v/ty0uqaHCkCFw//3yTG9PDKa8HOh/Nmx+Fhreg7q35M9eJOMok69Pvx/Byj/LuGvpNeB4HPLHwIlrpF1f9ntZb/WdsPEJWT7mc8gZIAF8K28T8fZEEBo/ZGXbVJ54QoTvcnJkPFVQkBmjapqMW486aq8crcn3kUQQPv2RFA0omgwj/wD5Y2XMEW2FcK3YfBJB+OBQwIAxt8LIpM1o9V0y/rZIcdhX/xNj2hmi9nzGGfD669lzrK48+aSMS+vrYfp0+bPZMu3ZwQfL/Z/C6dx+coOi0Hvhm13g0YWPcvFbF3Ng1YG8cMYLnPbiafzw5R/yr1P/xTljzvnK2+2RYVfIfE2Pw/yLYdxdUDgBTt4oRbtS84P69+R/e4HME6weESZY96C09fFOGHaljCFNvhFqOmuYXytF/yyqhSMHHpkpzFZ1uvQLHctgYVKwp/RQ2P9f0kd0LN3+Rr+mkPaLL2a+evHFMrZI4XZni7T2hj//WQqz1dSICOVrr8FBB8mYZOVKsSG8NidTBC4lxJ5+nSuvN3dsTr/38MMicLl2OxqBpaW7tn+7Qr9+cjxXXZX9/vXXZ4TES0tFiP4nP8nYOFKUlIi96PlkjbIRI8R20rWtq6rK2C/+/GeZfzc2yhz8V78SASNdFz/su+/CrFkyV129WuaxFkum/08VtfB6RTR0t/I1xMAMI2kWS5qwfD5oT9YYKyyEyu24A5xOiU84+2zxPc+aJb7pX/0KBg2SxN7Vq6VQ+C23SBHSJUvgvvukfzj7bOjbV67JihVSKDAczmw/J6fnfqKyUu65iy6Sc3/99VIMye3OCPD/9a87Px0pFtQt4NGFjwIiQjX6odG0h+UE3P353Zw/7vxudv/vMs8vf55zXz2X0WWjeffsd/nZ6z/jiulXEIqHuPbga0Xoq2g/aP0C1twLxQdJUZdjF0Dt2/DJibv8m7ousS4tLRKLEI/LPWKxiCh0UZGMi0260xRs4oTnTmBx/WKenfYsa1rX8MeP/0i1r5pnpz2L07qHfKLeITD6loxvMYXqEIFYuwzszj9fivP861/dN7Hvvl/hd8uPhP5ndS/2O/ZOyB1OU0jsmyXubGF2VVEpchXRHGpOC7OPHg333AO//rW0vdtSWiqxLz98+Yd0Rjs5etDRrGhaweEDDufFlS9y5stnsuTiJeTZC3niCSlSUV8PU6ZI/2O3S7tpGHJP//SnvRPQjCQi/Gf1fwA4f9z59MuVAiiaoXHb7NtY3bKaZY3LGNt/LLfeKv1SU5P0/0ceKW1sU5MUcT7uOPjBNe+iGzpFriJmnDMjbVf/fOvn/OrdX/HehveIxKOcfbYDn0+eu3ff7dluGNNinP7S6dR01nDq8FMZkD+Ak4edzH9W/4dpL03j459+jMPqyBShjDRKMQdFJavwqKdK/Bq9wDCk7/zyS+ljrVYRdejadxYWisB2b6n313PKC6ewtHEpj5z4CM8se4YH5j/AvT+4l8umXIZhwN13yzhr3TrplyZNkt+xWqVPammR/jrLr2SyV5kyRYq4XHvt9j9XVXk2X3wRjj1W4uDmzpUxSleOPFJEMl99FZYvF9HkOXNg6lS5BzZvFh/Z3/4mfqTecN88KRxR6iml1l9Lrb8WRVFwWp1sbN/Iu+vf5cShJ3L/vPtZ0bQCgL/P/Tv3zbuPhJ4A4LJ3LmPJL5dgG/Rz6YP9a+Gzn8CoP0rfnDfqexkL8+dP/pyOLTjlBSk474/KoO637/2WqYOncvLJtnQxqHffFX/Q+efLuLCzUwSuIxER3k8R02Lpc+uwOPa+P7/+fZh1nPj6Jv5DCnOjyPw/RbRJCikPvRLW/E18iNPHSyyDLRea5+ytvd8lYlqMlU0rATiw6sCsoh4TyiewoG4BixsWwyHXwqrbRYB9wWVSsK5oChw5E5beAKv2bIGkUaOkUNmNN2a/f+GFYuPqLVdeKUJFH34IS5eKqFH//tKHpYqWnX++iLHPmiVFBmIxmRvdd19mO9+Iv7oHfvYzKZL9ySdSVHbYMDj6aBkvbd4sx3fvvXIc31p6q6Kym0WyDcPgN9N/w7+W/IsTh57IEyc/wfmvn88/F/8Tr8PL3VPvRsEQYdLWL8Qv7N1HnunU2MnQwF3JT396OPffL3Pkhx8W0eRzzpFEUcMQO87CheInBgjHwzy26DFqOmuwKBYKXAVcPOnidHwXSAzLOf89h9fXvM5tR97G8qblnP7S6fz+kN9z0xE3mbHdX5ddtGMvb1zOrOpZAFgUC6eNOG27okG9pSHQQGNAYjNyHbkMLBj4lbe120mEJa5Pj8s9rlgkBtXiAatrz/52T7bYwRdC8ydSVHXt/TD4F1B5OlScAtMnQOcqmdtsfRU2/Uv8KmVHSd+sWOU4DB30GJGqyxg71kUgIHEatbVfs4Bj7Ruw6NeyfNCL0C85CF18DSQ65Xy2fN5r0ZAXXpC5cFOTFA255BKZx7pcmcLg0aisG0lE+PW7v+bRRY9yxZQr+KL2C1Y0reCfJ/+TH4/68dc4KBMTk+8DMS3GpW9LBR8Dg2OfOTY9z0rZ1S+ZdLEIG7UvhsDGTAynxSFtZ6p9O+B5ifkMVkvBsURQ/KLefaSodSoWo/+PeyXMPmCAjOX/8AcR2xg5En75S4m7icUkL27xYvj4Y4ObZ90MQDgR7lYk8ZbZt3DW6LN2ac64oW0DJzx3AjWdNTx/+vM8MP8Bpr04jbun3s2V+1+Zts/puvhbOjpkn+LJEGWbTdrkPn16X3g5jRaTGHc9noyvtorN1uLa68qC1R3VPLX0KQwM4lqcg/sdzNTBU3epWJHJ/wB6XMZcelzyBxRV8gSsnmTO0u5nxvoZ/PS1n1LkLmJwwWCmr5/O7UffzpX7X4mqqCxZIvF6S5aIT/fQQ8Vv5XDI2CmRELv8cceJX7OuTmzHkYg82yC2bKdTbMnlX32Ib2JiYrLHePBB+O1vZfm3v+05nuKSS6SAJMA//9lzge7aWslVWbNGxjjDhkmMRyrWRtcllmby5N17HCYmJv/bLKxbyKkvnkpCT3Dn0XdyzcxreGThI7z249eY1HcS7e3is3n/fZl7XXmlxK14vTJdqquT+Jbzz5eYgN1NW7iNh+Y/hD/mJ67FGVQwiAsnXCjxFSYmJibfBwxdNCIizZl8fBAfisUF7oqkD/QbJtIM08dJLnbVGVL03l4g+TSRJsCQfIxYezrmcXcQCMAHH4hvt7VVbAfb5oqVlu6BWHGTbw+6JvoG0ebuGhUWl+jF2L+OA/F7yl6K7TD57rGmZQ1Tn5lKe7idd89+l6eWPsUfP/4jjYFG/nHcP1AVCzfeKMV7a2sln+SAA6C4OBMDvHKl2HkHDIDWUCu/fOuXvLHmDX406kc8v/x5fjTqRzxw/APkO/PTv5vQEzy28DE+3PwhJe4SfFEfl0+5nP0r998zB2oYEsMQqpY2BUX6VkWVvldRRH9vb/SxJiYmX51EGEJbZDyqhZPPswoYEgfuHQaupENJi8o4W4tKUSEMUGwynnAUgtq7wNLPPxfNnQ0bRGNm2DDJbUmNT+NxycUYMmSPHLHJLrJLpqk5c+Ywbtw4+vfvn/X+vffeSyQS4bLLLuO+ZDTya6+9xrRp07j//vt5/PHHe/0b9fX19OnTp9v7qffq6uq2+722tjai0ehOvzssleW7DdFolGgqig3o7Ozs9T6bfD9Z2rCUW2bfwrvr3mX/yv05dfipPPzFw1w14younHAhVx94Na3V5UybJons48dL0s+QITLwMwwZCLa17fy3TPYSvRUN6Wm9PsfAAc/AugckAWXzM5A7Aqw5yc4WsBdRWAjz58Ntt0kC0llnySYLCyV4NhAQMcRjjpFkpDvvlI70nnvknkrhcEhV67/P/TvNoWbGlo1l5nkzUZD9W9e2jgMeP4DHFz/O1QdezarmVfzw5R9SllPGIf0O4Q8f/QHDMDi0/6E8tugxmXCc8BCWdfeJ0JyjCCpOBlsehGvEgBXYKIE0+/xitxqzTLZD+1IR6Yy2Qp9jJbhRj4sgT6RJApwKxkFpLzNaNz+XSfqqmgaOUhGfirVB51oJphxwNuT0IuA/3gmN70s1ypJDJUnX1RfqZ0DbAhEaAzhlK7i698Mm/yOEauGzs0RIuc8PYJ+LwVUBHcshsE6ERC1u2P9JSYyIB8Rgac2R5A4tnGxjDRFw70XgLojTtbZWAumKisQwrqrSzqaKpHg833Lhy31+IcLHje/D5+dA1Wly7vJGwIbHoeVTKD5A2unlf4RIvYgD54+W4OeWz0U0NtIIHct4t/Fupk8XcZaDDoIJEyRIWFHkFOu6nKuKir194F+flDD7pL6Tst4vcBUwMH8gmzo2Ma92HquaVwEwrCh7LjAgfwA21UZcj7OqeZUIs1s9MHWuCC5vTM5jVIeITYy7HZyiVnTttTL+u/de6d9TQ4TcXBF4aLFmRMlHlY7K+t1RJfJ6aeM2glDFB8GIa2H1HWD1StJv8QEAdEQ7AMhzdjf0p97riHbQGmqVc7A9YXZXAbX+2vQ6ALjKYP9/w9yfSh/hqoD9nuh9f9OVob8SQZBFV8o9DTKOqDgFxtzCgmYRZVdQGFs+NuurE/pM4N317zK/bj7o52aC0y0u+UMVEYma10Q0v2gKTxX+jLZwG1W5VWz89Uasqkxvg7EgFX+rYGP7Rt5Y8wanDTosKRAdk6QC1Z68YEnlTcOQNseyq1H033MMHeacLv187r4w6UERrfavlTFi/XS5Ro4SKJqw080dahi88YYESM+dK/Omww4TkS3DgOZm2LgRZr+2AL44H3wrRci835kyDu1YJn+dX0LuMOr3+S1Tn5nKyqaV/HDkD9PCbGeOPJOXV73MYf86jPfOeY9cRy4PzH+Av372V9w2N5dNvowN7Ru4bc5t9M/rz02H38TJw05GOextWH6jHNdbg6HkMLkv9GRkdqrAiKMQjvkMVvxZBGiC1RlRdmc59Psh5A6HKY9A7jDY/DQsvkr+UqgOKNoP1ebk7belHXnxRREaueOOTHsN0s5ccIE4fxcuFOHYZ57J9H0gwgZnnw0fbfqI++ffT64jl0dPfBSbRQx5B1YdyEVvXsSfPv4TJw09CY9nNF6vJJEEAiKK5XbLfCMaFZGEkhJ5lv6z+j88ueRJVjSt4LThp/Hp1k9J6AnOG3Me5409jypvuVyjzc/I9al+TtqBWDv4VsDaZMZ62ZG9EmY/+mgRCXvnHUki/81vRKQnN1cc3u3tsr833LDTTe0ah74uIgKNH8A7I6HsCLn+noEiLg/Sdsw+LflMjIBJD4jwt3+dtE/1M2Q8Y8vjxz8eS79+Ehj7ySeSVNmVYcO6JO7k7Qs/WAizp0Gb3Me4K2HUn2BQl+KD7ko46hP4eGqm8EXxQRKQkLcvNZ2PAT0Lsy9tXEpNZw2bOjYB3YXZXTYXlbmV1HTWsLZ1LTM2zADgmEHHZCWIHz/keADq/HWsaFrB6MGjWbJECpa8/TbMmCF/KUaP3jWhP93Q2dS+iWWNy7Bb7JR6SlnXto4B+QMYXToar2MXCi7ue4P0IdXPwcwDoWCCOM0VizjVFas8t94hkoQW3CJi7VaPjLGC1bDqNrmukBFF3QGKIqKBDz4ohQWuuUYE6Coq5JrX18u9vHAhGHYf09dP5821bxLX44wrG8es6lmMLBnJycNO5qB+B6X7NpP/XaKJKIvqF/F5zec4rU4qvBUsa1zG8OLhHFh1IBW534NBfYqvIVb5dbn0UhGP+sUvJPkTZB552WXwpz9l1rvgAumbzzlHhCxBnu8775TiimCBQ9+AL/8K6x8V51wsOfZ294MB54h4jclXw5YDR82G5X+A+nclQM/iluCFaEtyjDVZ5lTRZhnXfXSMFBJ0VcgYbdOTYp9IBFnaIAHeK1eKvXbkSEnAczjEkenzScC3icluw+KS+7B9sdiAA+sBQ9oK38qM2NfRn8KoG6XQw7oHIO6TsYqzj4w71z8CioWpP7ieq6+28/rrMv665BIRJ87LE9tPW5v83XyzJJh2nU/U1WVE2fv3l/nERRdJgvl//ytBT08+KdvzesXXtWWLFNj6y27W3frrZ3/l/97/P0aWjGRkyUhun3M748vHE4gFOPfVc/FH/Vwy+ZLd+6N5I6U9WXmziKpUPycFuiwOCDeITSZvlBTQW1qSnCcOFbE1Zznk7APKB4BiBlB9Q6xqXsWdn97Jf1b/h3Hl4zhp6Ek8vvhx2sPtXDzpYi6fcjklnhI48kNY/ieofR1mn5K9EasHSnZBva2XvPEG/PGPIvJ26KEZgVC3G4JBKVR32mnynPWGAQNkPHLHHSLKvnSp/IHYvQ84APxqpjhcSoh929epgpEg45XFi8Weef/98p7FImLof//7VzzwXnL55bBqlSSFgrRVXcdXACefLEFGp5ySEcY7+GApUjd0qNhe//Y3mDdPErKOOkrmmRaLtHMbNoiw+G9/K/35ffdJotbVV2d+Q1Xl+nz0kYz5NmwQcc+bbpKgJodD2s5QKJOkv1vphRhYIiH7PGOG7Mcll2RsIhaL2Gx8PhEh/PBDsTnMmSP3zOGHyzhGUcTGtm6diAr++9+y/lNPyXbfeCN7N444Quaqs2eLXerVV+We6Oqftlgk6e3hh0Ws/dVXxV/9z39m9xPV1eKPuOUWETUcOlTut9dek31PibIfcEDvhRR1Q+dX7/wKA4MrplyRVazjkYWP8Pjix7li+hVMP3t6tnjIbioc8k3zxOInuPCNCxlcOJiJfSZy08c3UZVbxfjy8Vz3wXWE4iH+dPifxI656naofh5mTJA+zFGUCfjN21fGxkl0Xf62vQ1VVey0550nz8Qhh4gNI5WYrWnyjLW2/m8Ks+uGTlu4jbgWR1GUtLh4SgRoU/smpj4zleqOas4ceSZf1H4BwIlDT+S/q//LD575Aa//+PXt+nR2C/teC8GN4kfEkADQKY9BaeYBU1VpHw84QNrjWEzeO/PMbKHRXWL838Qe2jZf7rOxt8HwKwHSooPbCrMDlHhKaA41p9cBmXNPmiRz7PXiPqKyUtq3k0+Gy97+LYsbFnPEgCM4bfhpaIbGof0PRTM0Xln1Cj997ac8OfV13nlH5aOPZB5/zjnS/qSSd0MhaRd1XUTFQyG5t3NyJLh/26ZjVuO7+KI+cuw5PHj8g7hsGVHCWdWzmLNlDs8tf46x5WO59lppBx9+WGzZM2dmtlVeLs/UW2sljmLq4KlM7Dsx/fmQwiFcOeNKgvEgn2yZxQcfTOXmm6U/HDtW4ocqK6V/8vulmOo558BznVfw6dZPOWLAEexXsR/LGpcxqe8kfFEfMzfO5LJ3LuOxY25B+fAoES6snAYjfy+xHa1fZK6dFhFBwV6I6bz5ptw/W7aI0OgNN0g/bLfLuQwGt1/orieWNCzhpOdPojPayQ/3/SHr29Yzvnw8ndFOfvXur/iy5UvunnoPra1WWlszMQDFxRIHkErK0PU9k5Bt8vW45hoZD1xxhYisQaboy113yev994cFC2TM8fTTmTFCamxywglyrT/7TMYk//2vjIeXdakHPnw4DOyltml7uJ2nlz0NwL9P/Tc/2OcH6c+uePcK7pt3H//44h9M6DOBP378RwCeOvUphhYNTa934ZsXsqJpBf/44h/89sDfwjGfZuYdCy7N/kFXhfiYvgesbV3LffPuQ0Hh3bPfpX++xIwbhsGpL57KmtY1PLzgYS7f73JefRUefVQK9X7xhfyl8HhknJvQE8xYP4MnlzzJzI0zOWGoCOWtaVnDT0b9hJ+N/xljysaIPaTlM0CFytPEXxdtgXi7tGOGBgPOFSHWnZEIy3WKNEmiRN5o8fdF6iERkng4i0tstgPOg/p3pG9NhMQvp9qg7m2xHdiLYJ9fwvi/SizP+kelTfWtyPxe3igYeP5uvQ67m5VNK4nrYhQaW5YdszGmbAyACLNb3WKjWv4HOQczDwYUeT8RFLts0X57dF+vvVbmNk89Ja/PPhseeGDXtuFwSIHChx6SNmfBApm7pD474QSJ4VUUKWZzzDHi45s7N7ON8nKZn+0tnE6xY99/v8QUzJ+fOScgRcyGpposQxfxPHRZTqMkhZf3UkzMtvOyr1kkL6bF+HDTh7y6+lWWNS3jyAFHsqhhEXaLnWnDp3HSsJModBXyh4/+wD/m/YOJfSZKbMismxiYP5CJfSZyz9x7yHPk8cfJ50vBo/ZFUny38lRwlkDD+xLPm4y/dR63jNmz7dx5pxTI/PWvZYzk8ch8PhoVW8aJJyd4cvGT3DTrJjRD44LxF+Cyurh/3v3c9dld/O6Q33HJpEtoDDZy8vMns7J5JdNGTCMUDzEwfyCH9T+MW2bfwuqW1fz71H/jsXu++nn/jvHqq3JvNzbKmODww2VMkLpdwmGx4ezuBLSlDUu5+ZObmb5+OgdUHsDpI07noQUPcd0H1/GzcT/jmoOuoa+3L4FYgNnVs/l488e4bC765fVjYd1CRpeN5siBRzKkUHZsVvUs7p93P9PXT+cH+/yAYncxz694ngl9JvCryb/ilOGnpGMANF2jNdyKbugYhoHNYqPQVbhnRPm1KHx+rvR1ucPFl5YzWOK/gpugeba0G1Mel1jCb5oB50i/u/4Ridlcej24qwAF/GvEDu8ZKMU32xbId3KHyVw4sF5ilNf8HTBwWlz861+X8fe/i4DnKadI+15WJmNTv1+KKZx7rtgSd0rfE2Dk76D6BVj4a4nV9QyUOJOGGVKsxZYLPNmrQ62qkrY7FJI+aeVK2SeXS/w27e0yp83tt4kzXj6DFU0rOHnYyZTnlDN18FTiepyf/OcnfLb1M/469a/YVBvr29Yze8vs9PxqY/tGDAwO6XcIk/pOMgWmTEy+p9zz+T2sblnNmLIxPHTCQ+n3v2z5kgveuIDrP7ieaSOmUXbY27Ai6RN9rSKZj1As8yGQ3DFXGRwxU2Ji696GV8uhcJLE7YZrZT1nOai9L0h2441SRPehhyR+8g9/yHxmt0vh8bfWvsXihsXkOnLZcuWWtC01kojQ/+/9Wdu6lhdXvshZo89KVrFNJItxJPNNABnrqqDamFs7j5OePwlN1zh939P5dOun7FuyL23hNq567yo2dWzi7mPu4dJLLDz7rIzjbr9dbBkpMZBgUGyVTqf0HTslWA1zz5c4lPKjZU7o6iN9ln+9xHk6SiR/Ju4XuxyG9HuKRfY/dSwW524v+tYQaODWT27lySVPMqhgEJdPuZzpG6Zz7xf3Mr7PeG498lYO7ncwkUjGR6Yoco1S47BUPo7X+xXtcd9Rn833gg2PS6wDSB6MuyopSNUCHUvkeRp8Eay5R8Y0znKJuc0dKmIzwS3Q9JHE0Y+/B9rmQbhe7vGCCV1sLEEp/GBxQt8Ts+eePVz/aCLKDR/cwN/m/o0xZWM4Y8QZeOwegvEg17x/De9teI9/nfovNm0qZ8kSsQ+edJL4ivv0kWc0kZDiCh6P+DlvuknGVVdeKWO9qiq5l6NRKYoTCOz5U25iYvI/hBYRO7KRkD493a+DiPNYCES9zJ4t/na7XeI/UrmdKQxDYvbq6sTm9PDD0NAg/sJU/kxLi7Rlf/mLxG+8/760dbNmyfzS65U+vKFBcoCsVvHBbNkitvlRo2SsY7NJ25mKi62vzxSzKCqSfUsVZk412V6vvG9i8r9CNBFlfdt6av21VHgraAm1YLPYGFY0jCJ30d7evW8Ww5B8iPrpEhsy6HwZT0YaRWS3bT5gwL7X88Lmefzs9Z9R5injhGEnsL5tPacMO4UZG2ZwyJOH8MTJT3BsxU/QNGmHLBZpq1L/Q/aypmtsbN/IssZleOweCl2FrG9bz6CCQYwqHUWOPYcvvoA//1ninUaMkAKIXQtshULiBxo/JcS9c+/ljk/voMBVwKWTLqUp2MRNs27irs/u4uYjbubs0WejGzofbvqQF1a+wOzq2Rwz6BhWt6wmGA/y45E/5syRZ1KVV7W9M/X1z7OhJ+e7Otlz3aTo4/9STpmuJQV0Q4AqMb9K12JtRjK/N2dv7aGJybeTxo9g7nkyl9/3BomzsOWJXap1vvhZ8sck86yS4pPW3GTcmJLd/tjze2efMgyxIwY2iJ2r+CCJvYi1iQ0slhRZKztSivNuelr8K2vvg5whoAWhYwWsvVfWK9oPmmaJLTJnHyg5SPYjsEnsmJFGye0f9POMjtcOmDkTrrtOihWdeabYFMrKxJ6gaZlYJYCtvq18tPkj5tfOZ1TpKPwxP3X+Og7tfyiH9T+MApepsfV10HSNFU0r+KT6E+oD9YwvH8/ypuXkO/M5tP+hjCsf99Xzp3uyOzZ8KM9EuFZiJytPA3ux+P9b52WeiTF//noH9x1i6VKJmWlslDyXY47JxNhCUmbFAcO+SmxHT9fB0CUGzL9W9KTKjpK+PdoEMZ8UbFAs0O+M/yktu0giwsebP+bNNW+ypXMLh/Q7hM9rPqfEXcJJQ0/iqEFH4ba5994OGkbSD6ORGZumUEG1sqB+Ecc9exxxLc60EdN4edXLOKwODh9wOA8ueJCWcAv/PuUpXC4HLpfErYfD8hcMin0i9VrTYPr66fz89Z+jGzrnjjmXceXjsCgW3ln3DqMfGs2/T/03Rw48kvc2vMdVM66izl/HScNOYkrFFB5Z+AhH/FtizG8/+nb65fXDMAy2dm5lVfMqHBYH+c58tvi2MLBgIMOKhqV957qhU91RzdrWtRS4ClAVlZZQC0MKhzAgf4DkC3z5N4mdQxc9pqL9xRbeuUriimIdkoNYfoyMYw0NnGViO9djosNDcszv6b97C6AmwtIPxzslXsGeL/OHlP8PQ+L7PLt5HtO+FDpXy/EVTMjoccQ7ZJ/QpY01tQdN9gKarrG2dS2L6hdhVa308fbhy5YvGZg/kAl9Johtp+kT+PRHUpx85O8kXtDmlXFz+2J5vj0DoPhA0U0L1cCYW0V/TVGlX2v+VHQTK07kk/pL+fxz8VdNmCDx7V2LfxuGxKe++CK89JLYcP/6V7EVFxRImxiNSt6WI9lEBGIB1raupTXUSmVuJbX+WvKd+QwrGrZrOjvfcgxD7NqpQswgfUZXXK69ky+iGEbvvdpVVVWceOKJPPTQQ1nvDxkyhK1bt9Lc3Iy3i1LFYYcdRn19PWvXru31Dg0ePJhhw4bxzjvvZL2/ceNGBg8ezD333MOVV17Z7Xtbt26lX79+3HHHHVxzzTVZnz3xxBNccMEFLF68mHHjxm33d//0pz9x0003dXu/5JISXKqLgmABnqiH1pxWfG4fjoSDfi392AcHRw7cSl9vkK2+HGo6vWiGQv+8TipygxS6ItT7PTyycHTWdt94800ATj7ppKz3C10RDqqqo1+en0jCQkPAQ0JX0Q2Y2LcJgDlb+jJnS0W3bW1ve25bnAMq69mn0EehK0Jn1E5CV1EVg0JXhLawk/+u3of1DUNoappMINAXXbfjdjeiqnEURccwFAzDysCBb2CzhXf6u7pupalpAu3twwmHi3G5WnA42lEUPbk9Fas1SFXVx706J+PLmzi4Xx059jhza8ppCbmwWTTyHDGq8gJYVZ3Pt/ZhXsBGXUEdna5OcqI5lHSW4HP56HR3ohgKfdv7UtxZDAok1AS6omMoBhbdgq7qYoszVCy6BQUFn8sHgDfixapnns6ILULYFsZiWPCGvSgoaJqdaDSXRMKDrlswDAuKYqCqCazWIAANDfsRCpVjtYbJy9uI1RpCUSQgyDAUrNYwhmGhsXEK4XAxOTlbyc2txmKJdFlPxelsx1K4hqa8Jtpy2rBpNor8RYTtYTrdndgSNko7SynyF3HcoBqGFHaQ0FWWNBQTitsozwlR6IowvLiNSMLKiyuGMWflSXR07EM8nkNBwRocjnZUNVmhAwXDsFBYspim4o3UFNXgjrkpCBTgirvocHfQ7mnHptkY0DyAnM4++HyDiEZzURQdl6sZiyUGGF0CczQ8noZeXX+ASCSf5uYJtLcPJRIpJJFwo+s2LJYoDkcHFRWziMW8tLWNJBbLpbx8Lh5PfdYxALhczTgcvm7b3x3YLRr5zig59jiqYhCOW+iIOAnGu1c1icddhMNl6LoViyWKy9WC1RreznoewuFidN2G1RrE7W5CVTU6nZ1oqoYz7sQVz/Zs+lw+dEXHGXMStUUxFAN3zI0j0SX5Gh2fW85DTiQHh2ElzxHFbYvjsOrohoJhJG32GMR1lYaAm6gBmqqhK5K0oRpq+tmxGBYsmgWPVWdIUQf5zgiBmJ22sBNNV8ixx3FYEzitGv6onZXN2U6oHV3/zs4BtLSMobNzALGYF6s1gqJoABiGSlnZAhRFo6VlDNFoHmVlC/F46rLaMFBxuZoJBPrS2TmQWCyX3NzN2O0+VFVLrifb83q3YrcHuu3btvuXSDiprz+QQKASXbeQn78Bm60z2dalnh2VwtKFdHg6aM1pJWKP4Iw7scft+Nw+7JqdvGAeRYEiHAkHHlscryOG05pAN5T0tbBZdEChM2qjLdxbb7ZBriOGxxbHZdOS2wPDULBZNOKahdawk9B27tGeUDDId0bx2OPYLRoWxUAzVCIJC/6oHX/MRiaIoGfctjj98/zk2GN0Rh0EYjYMwJm8R2yqTkfEwcZODxG7tLmaRcOWsGFgkLAksOpWnDF5BvLtcQpdEewWHV/ETly3YFF0rKqB0yojr+aQiyYStHhb8Ll9GIpBQbCAgCNAzBrDE/VQ5C8iL5TH1uKtbC3aSl4oj7xQHoqhYCgGna5OOjwdVLZV0r+5PwoKw4ramFzRSIU3iNcRw6bqhBNWWkNOqn1e3lo7EN1Q6Z/XyaS+jQwt6iDPGcUwFPwxG3X+HJY3FvFuUGFN3zXYE3YmbZiExcg4ixYPWEzAGaB/c38qmgajaY5kP6OhqhppYeHkdVcUnZjTT3NuM+057Si6QmGgkLAjTNARxBF3UOIvoTBQSGtOK5tKN2HRLRQFinBFXcSsMTo8Hfhdfqpaqqhoq0AlM3Ld0bgDDHLscfIcMblHVAMFA91QiGkWIgkL7REHha4oDotGQlcJJyT4xKpquKwaNotGNGFlY0sFnZ0DiUZzsVojOJ0tWCxJw0PyjrRYwtjtfmKxfDTNDuhZbURmvQi1fVfLdQ3mUdGeGUeF7WE2lWzCGXcytnosOViY3LeR4cVtlOeESOgq8eTYyabqNIdcvPblYGKayv6VDexT2EGBM0owbiOuqTiS93BLyMk/Vw1kbr9laKrG8NrhuGMZI9im0k205bTRt70vgxsHp9/PdUTx2uO4bAkMA6Kahc6onc6oPf18uawJClwR7Bb5LQOFuKYSTljxRexENSvxuJt4PIdEwoVhqOlzoigynnA42ujsHERHx1Ci0TxyczfjdLYm+05pcwxDxZtbTWPFsu0/E+5OOtwdVLZW0r+lPw6LzuS+jexb0kapJ4TLlmnLOqN2GgJuPtpUybH7bKHUE2JlUxGbOnLRdIUB+Z0UuyPkO6O0hZ289uUgDu5Xz6ACH4piUNuZQ0xT0Q2FESXt5NhjrG4u5KnNZSTUBI6EI+v8Avid/vRnMUtsu30iQIerA0MxcMVcOBPZDqNCV4RcR4yGgJtIoufZWjSaRyRShMUSxe2uR1V1opYoIUcIBYX8UH7W+jFLjKBDxogFoe7G4j45AfwxO4FYZsYdcASIW+LYNTueaHbiXdAeJGaNYdNs6Ire4zghfU7iDtzx7PPltsUpckWo9XvQja+X4KUqOn1yQlhVnfqAm5gm5y5qjRKyb/+cbO8zmbOEcVk1HFa5h+OaSjBuxRdx0G4L93hO/A4/CYtc/zKseB0xLIpBMG4loatYVQObqpFjj2MAbWEX7WEnra2jaWsbRiDQj0TCgcUSSz4/CoqiM2jQazidbTQ27kdnZz8ikWKczjYslijy7KjoupXBg18jFCqlpWUswWA5NlsQl6s5a3yq6zZKhj/HskGiTDBx48Ssa7ayciVtOW30ae/D4MbBaIqGrsocRjGkPdAVHcVQZCymW5hQ3sz+lQ14HTFmba6gM2rHZUtQ5gkzIL8TVTFY3FDCZ1szws07btfBoujp/t+q6lgUAwOFmKYSjltpjzhJ6Lt2zxiGQjSaTyLhJpFwoSg6Nlsg2Q5pKBjk2GPkOmLYLXq6P9GS/UkwZqNW14lao1h1K95ItgGp6/NvYKSfj5xoJvDCwJAxAQaeqAe7Zk9/khrXO63SV3VGbXREnOhG9jjHouj09QaxWTR8EQetYSfbGwt57TGK3WFUxSAQs9MScqJt5znTNBuhUDma5kBVY7hcLdhsoe2cP5VgsIxEwo3d7sPlakFRIOgIErN0P9Ztz0mqvTQMNTm/cqJpdgzDgqrGsdlC2B1thD3t221j42qcgDOAgkJuOBc1eSwua5x8ZxSnVcOq6sR1uUc6Ig7iuoVcRwyHRUMzFKIJC7qhYEneU6oi44X2iCN9DhMJO9FoAZrmQNMcKIqGzRbG4WjHao1s/+baBlXRsao6qgIJXUlvW1XkngKI62qXds+gIHm/y/VXCMTk+qfuc6uafCZs8fT+p56JSMJKWzj7mTAMhVCojHjcg6pqOJ3N2O3B7eyrQZlH3m8Merrdb13X65MTJJKw0NplbrDDfqLLvbGjfqLrXDNqi2Jg4I66cWjZfWe7ux1gm2dHCIeLiEbz0vYAuz1IImFnw4bTCQQqUBSdvn3n4HS2oiipwA2xO+TkrifsztyrSpdzELfG0RQtvT8D832M79PMwPxOrMkxeEJX8NrjxHWV1c2FvLt+QPr7LmucPGeMHHscLXldW8POrD7PqmoUuyM4LBr2LveqP2bHH7UTCJYTiRSiac7kfRhOzv1k7AQKdrsPqzVT+FHT7MRiucRiIthpt/twOtswFI1OV2d6fGLVutid7JH09RpkhamDt1KeE2JNSwFbO71ousLgQh9lnhAFrghNQTePzJtEQ8N+dHYOIhbzkpNTg93uT59jw7DgdLbh9W6hoWH/9LXwequT9in5bcNQ8XjqKCtenR7rlnpC8hxrKgYKFd4AvqiDGev7sa6tgAl9mhhZ0ppsD3U0XTamGQrNQRdvrh1EU9BNmSfIwf3qGFjQmZ4vhBNWmoMuNnXkMnNjP2JaZh60s/4JDMaUtXDEgJr0uL0+4GZJQwnzasuznsNoNJctW6bS2joKTXPgdLZSWrqQiorZyb5ZCIXKqK4+lo6OfdB1Gx5PPWVlX1BePo/5+3xB1BZlcMNg+nZk+lFN0fh86OcYisHoLaPJD+Xjtcc4sKqeYcXtlOcEsSgG4YSVxoCbDe15fLK5gs21B9LePpxIpBCPpy7Zlqcc1vJMlFd8TMjTLnaeuBO16zHZomiqhivmImwPs6JqBVbdyoRNE9L3k4HBsv7LCDqDDGwaSGVbZdYZ3JEtxmOLs19lA6NKW9NtXlxX6Yg4qO3MYfaWvtR0ertta3vbG1PWzLjyFgqcEbZ2evFH7WiGQp4jytjyFgIxG08sHklbePcmF34VDEMlHC4hkXDh8dQlbZrd0XWVcLgUXbeSk1OXfNaykfY6gMOq0RFx0hbO9HE+3yCamiYQDPZBVRNZtnjZvo3KypnEYgXEYnKeHY4OVDXWLV7FZgvi9/cnFvOiqgmcztbk3BlS95OiJGitXMTm0s14oh4mbMouqrNg4ALCjjCDGgel58utrSNpbd2Xzs5BRKP5GIaKzRbA46mnsvJj3EWr8Dv9hO1hNFXDHXMTtUYxVAN73E5OJAd3zI2h22hqGk9HxxACgUoMw4LFEkVRtORcVWfI8KfYss+ntHpbKfWV4o5mxh3tnnZ8bh/9W/rTr7Wr2JJBsTtCniOKAekx1rZzGa89itcRx52cY0cSVnxRO4EuNixdV4lGC0kkXGiaLW1zsVojOBzt2GxhQqFiWlrG094+lGg0n3jckzyWCE5nG/36vU9R0SpURWdy3ybGlLXQP78Tm6oTiltpCHhY01rAFzXlWFSdAyobGLyNPcFu0XDbErSGnTy/fCj+mIOqXD8H9aujKjdAnjOKTdUJxGw0h1xsaMvj/Y39AIUyT5D9KhsZUdxGgSuCYSh0RBxs8XlZ3FDCly2FAFR4/en1ch0x4rpKW9jJxvY85tWWUeeXMWQ87qGpaTwtLeMIBsvRdRsORwd5eRuoqJiNx1MPkLaLDSnswGmVdr3e72FVcyHz68po9VXQ2DglaT+14vHUJ6+/+IkMw0KfPp9it/tpapqIzzeYQKAvqqqhqjFUNXOf7LvvE1lj4533E9DXG+CUYRupyvMT11SqfbnM2dKXta3Z8/BQqIytW4+kvX0YiYQTp7ON4uKlVFbOyhp3RiIFbN58PO3tw5LPfy19+35KSckS5g2et91+IqEmmDtkLoZiMKZ6DHlhSSZ322Ts7LDI2FlsZFY6o/Yse62MscVebFV1YpolOT51ZM0pNM2WvI8d6LrYyHoaO8t8opxEwoXD4cPpbOlWG0PTbMRiucTjHnTdjqrGcDrbsdn8vaqjATKe13UboKKqiS79HKQTzNUYnZ4OoLsvLjXvACgI55JjEzuYbijEdRXDUFAVGeun5hOdMSu6YqT9fwCKocjcGSXLB5giNQ732BNouoIv6shqs5NnjTyHjCVT9q5gzEZr2EFCt2AYalZbB9I+Z9p1K5WVH1JUtDq9xZ3dw0WuMIf0r2NQgS99rwTjNpqDLja05/HhpkoS+q6MnSDfGeGMfdczML+TuK6yrjWfDzZV0RDwsLZ8LY35jRT5i9i3dt+s762oWkG7p52+bX2JWWO05LZQ6itlWH2mAKKmaHyxzxdoFo0RNSMoDmSKbu5s3wKBPjQ3y/mLxXJJJNwYhoLdHsDtbmTQkBeJFohq2rb3SdgWJmKLZPlsu57DfKf0E51RO21hV4/zrN1FPO4iHs8lHndhGNakH7M9y+e0q4RCxcRieekxg9Ua2aFtsetn+aH8rHMCEI16iUSK0vO1b4pQqBRFSeBy9VzRXNdVQqE+qGoMt7u52+eGAdFoQdqeBAY2WxCHow2rNdZtW8FgHzTNlfTFNmato2lWotF8NM2FrtvQdfHtWyxRbLYAwWA59fUHE4kUkpe3gcLC1cmxmJHcFwWbLUBOTv3uOUFdSCScxGLe5LNgQU8+66n+0e1uwGJJpM9JLJZPPO4mkXADOnZ7AKezLWuukzrmUKgPmuZInpPm7dpXEgkXoVBp0hcfxu1u6jK+TG3LRiyWRzzu3mk/IdsrwTAsuN1N2Gy9v++05NwZwBv2YjUyz39CTeB3SnZEXigvy4/1TdHWNpyGhv0JBsvxerd2iQHRABVNs+FyteDv/xkbSzfijXgp7cxUr4tao9QU1uCNeNl3674EnXJutrW3JJQEfpcca244N+1DTNlQ850xHFaNYMxKa9hFTLOg61bC4SI0zYXcF35Utes8QfpSh6MTw5DrFIvlomnObeJd4ths/m7P7o7mkwAD831MqWhkREkbLmsiHfu0uqWAebXlWeOdSX0bmTq4Gq89TnPIxcK6UuZs6Zs11nHb4hw7uJpx5c3YLeKrW95YzJwtfWmwBVnWX9R691+7PzY9s+1mbzNfVnyJqquM3DqS5f2Xo+oqkzdMzjrHa/uspTGvkeLOYobVDSNqixKzxlANFVvChoJCzBpDUzTsmh1H3JFlv9nWFtvp6kRTxMbW4m1hc+lmvGEvFW0Z/2TMGmNT6SbsCTtjq8d28131lmJ3GJuq7dCeCNK2hEJlOBztOBydPa7XG1TFoDLXT1Mw23e2oziWHfmndN1CKFSKYajk5NTLfAGDDncHADnRHGxa5rp2bRu6PhPxuJtotCDZrst+qWoMmy2IzdZJLCbj5ZQ/QlG0ZJuViSlKeBqJ2rbvdwjZQz36JBIJO+FwGZpmz7LZd70XeortccVdOONiE5F2Xcbh0tep6fGExd5Jp3v7cWxZbWI4D9VQcVoTWfb6rj6WcNyKohicMmwjZTkh1rUWsLqlgEjCSpknRJE7QoEzgi/q4LUvxY8tcXH5JBJOdN2abCd0LJYYdrufeG4N68rXEbFHKOksISeSk46xaPG2UBAsYHDjYKLW6Hbvk67XvGs7qGlWIpEidN2OlrRTq2pcYqhcbYzr00CfpG2w1u8hmrAk/TsJvI44Mc3CR/UFzB2wGF3RGVs9ltxIprjSurJ1NBQ0ZI2DK7wBJlfI3DkV27HtHFvXLbS2jkr7AePxnGQfG0vaHhdQUSFCrqFQMc3NE2lrG5G81y3Y7Z14vdVUVs7C692a3p/ejOtB4qg2bTqBYLAvipIgP389/frNxO1uSI6XHICa7JcSXe51ACX5DOw5ISzDUAiHS4jH3Xg8jduNiYPMs6PrVtzuxu36xACi0XwiERn3ulwt2O3+7a63PeKWOAGHjMe3HR93HTun7KyKoZAfzs/aRnreoVuy7h8wKPWE8dpjaIZKa8iBPyb36Zd9v6Q5t7nb3Alg4cCFhBwhBjQNoKqtikTCTkvLWFpaxhIOFxOP56DrNmy2IG53I/36vY/T2Up9/f4EAlVEo/nJMVrKxgKGYaWiYhY5OXXp3+npfnJZE+xXWU+fnBCdUTu1/hyiCZVCl8QO5tjj+GN23tpaStgWRjXUtD0jRcgW6rG9lD6nFF23Y7MFcLmaUFU96zs5kZz0tdAVXfwlGOREcrDpVvIcsSxfnZHs42wWnbim0hISn+x+lfUMLeqgxB1O29isqo7HHqc15OI/q/chELOR54imt6UZKoYBVtXAYdWIa2pWjITXHiXXIe2IokBMUwnEbPi2scUAFDgjFLgiaLpKU9BFONH7GLw9SaErwjGDtjCytBWbqtMadrK6uZDZW/rSklB6nDP2PJ80KHaHyXPEMFCSc+zuvvM9RShUCui43S3b/by3bSdAOFxINJqPxRLH7a5Pz626ryf+ztRz2Ft72DeBzOuLAQWnsxmHww8YlLjDeOxxNF3Fl8wTsKniK3daNQygKegiFMmjsXESnZ2DCIXKsFrDyfmu2GxBYeTIx7BYYrS1jaS1dRR+f1U6Bk1RNOz2TnJzNzNs2AtZ+7azecLOSCScxONuDMOGqkaz4gQl3g0UNUbE7RO/eMKeNZ5IqAmCjiAKCjmhHPxu6S92OHZKzictik6BK4LblsBuSdr0DIVIQuJTfF3i9mRfHYRCYjvvGtsRsUYI26XtzA3nZj1jqTGxM+5EU7UeffvpcWLMRcQeYWPZRhJqgiJ/ETmRHBKWRNp30re9L1UtVVnz5d4+E3tqvW3XSSRcNDRMxufbh2g0j5ycuqT9IJMX4XY3UVa2IO1bTyTEXmMYmXZIVXUcjtbkPb970BW951yRLtfSE/EQcAbSvn21S38QsUXS19WiW9L3YF4oL339DQwCzkB6PXvCLvNOSwyLYcGesGNgELfG0RUde0LmnRU5YSpyAzgsGo1BN9GEBauqY7doeB1xDAM2deSxXg2xuXQzuqJTECggN5xLxB6hzdNGyBGiX0s/+rT3QUVNx02Iz0FidTRdbO7RhIXmkJM2p5/2nHaCjqAcf9RDp6sTq2bFG/ZSGCzsFqe5O7FbEuQ7Y8kxlozFOyLZNnuXNU6hK4rNkvEbRLXM85rq1w1DIRIpSPoAZfxgsUSx2zuS8RS7tm9um8RGu2xxVAWiCfHZ+KIONF1sQWAhFcfd3YdsJGO+U/O/vORcwo6uW1FVDas1hMPRTsTTmm7rPDFPly1k4t3cMTeaoqXHWI54xragqRoRWwTVUPGGvRxU2cjI0lYcFo31bfn4YzY8Npk3ji5rIRS38uTifWkMejC6JdlnUFAkFs8SI2aLoamaxC7qFuKWuNhSNBuOuIOoNcrKqpXErDEq2irS83cDg/qCenRFZ0TNCBJbD6KxcT8ikSLy8taTl7cJVY2m2wlQsdt92O0+4nFvOoco5XNO3RuGARZLlJqaI/D5JC+qb985OBwd6XmRZE6qeHK2UlexnJrCGgqC8tyk4qJ9bh8+t4+q1ir6tfSjyBVlSkUD+xT68NpjhBNWNF3BYdVQFYPmoIsnl+xLJFKU9HcOJBwuwWKJpmNFxTbaSL8xj7G6YjVRW5Ty9vK0HSuhJmjIb8CqWRlRO4IBFpWD+9VTmRugM2qnMeAioUvMzpSKBhTg0619+aS6L6NLWxld1kJVbgB7Mi7fQOw3rSEX72+sYkXtUBobJ+P3V6FpzqTPNpLuXw3DSt++c3C7m9LXekftf3v7UJqbxybt+fFucbGGoTJgyEu0edto9jYTt8bxhr3YNTttnjYUQ/IaSvwljMwNc9TArZR4wiysK6XO70FRZKxdniNx6KubC3m73cGavmuw6BbKfBm17ISaoL6gnpxIDiNqR1BmNTioqp4B+WI7ag650vmTI0ta6YzaeX3tQF7N2UKnu5PK1kpKfRmbbau3leqSajwRD6O3jGZl1Ur8Lj+VrZXkRDI2wObcZlq9rfRp78M+jfswtKid8eXNVOYGCMWtBOM2NF2hyB3BZU1QH/Dw1NIRAAQCfWlqmoDPNzgZd2LDYongdjdSWrqIPn0+p8QdYkpFI0OL2sl1xHAn/ZOBmI2WkIsvasv4xOfs0e7U4e5ItxMZu6P4OyVXSSOmqfgijm7jHFUx0rkMDqtGNGGhLSx5cXaLxqjSFordEcJxK01BN1FNJS+5TZctTiRhZW5NttiCrlsJBsvRNCdWaxiXqxGLJZGxt2lWvNHsuWXXWMhyw0aBK4JFMfBFHUQTFlTFSI51E6iK+AJrLZHtnpPt2Ro1zZr06XnSti7DUFAULZkLkO0b2Vn+jNceI9cRz8qf0QyFuGYhnLAQiNkpckWwWTQ6o3aiCQuKIvlTDouORdWJJqzEdYVD+klOcUfEkcwpVlAUGFfejMuaYFF9aVZcZNf967pvBgZ+p3+7trgs/0sol1ioD4mEE1CT+b8yV8oubBmnrW1U2r6Vk7M1acvRs2IP8/I2bjeOalt8vgHU1h5GJFKM211PYeHqpN/KSOe7WCxhnEVraMhroDm3GUfCQZG/CM2i0eZpQ1M1ynxllPpKqXDFObCqnqpcP4GYjaagGy2ZjzelopGoZuG9Df2Yt2UQDQ374/f3IxIpSsZZRZL7rKDrFioqP6Rl8BxqC2opDBbiDWfuz1Q/UdlayWh/OdOGb6TUE2ZTRy6rmwuJaSr98/0UOCMUuyNENQuPL9635xwApB9VdZXOjiFs3Xo0kUgBOTk1lJYuTMaipvpEBYslRk5O7U7Pb+ouyLHH8dpTdg4jPcZO2TxaQ07CCRsua4Lc5DgnNU7UDYWELvmCLSEnqmJQ4MzkOyZ0BQMFi6LjsOrdbCw7Ip03YijkhfOy5k6peOeu8yWJd89P5hPbk77d7Nguw1CIx3OIxXLTfoJUHpXYbdt65ac0DCUdQxSPeykuXpbs61I5qhY0zU5R0Urenf7CTrd3zNHns3XrkYRCfbBaQxQVrcRqTcWTpGL7dIqKVmV9r6c5VmdnP5qbxxMOFydjgrcmYxxTz53kiimKkZ7PO52tOBy+5Jgo5e9Wd4vPqCuxmIetW48mEKhMHtOK5PxPT4/FDEOlpHQxMWuMmDVGQk2kY3lS40l7wo49Yc/Kq9zROZlS0cB+FQ24bQk+2lxJa8iJJ5ln2i9PbMPLGouY0+6mrqCODk8HOZEcSjtL8Tv96RzTPu19KO0s5aCKBkaWtuGwaKxtLSAQs5Fjj5HnjDGmrIVw3MpTS4ezZOPBtLaOIhwuweVqTvqGMs+aYVjpW/UBvtwGmvKaiFqj5ERz8EQ8tHpb0VSN/GA+pZ2l3eZYPR2ryxqnIJmPGYjZiOsWFIz0XDHVJw4rlrGJy5Zgfm0Z/pidXEeUUk+YYUXt6IbCx5sreX3hSbS1jSQSKSQ/f12Xe91Ij529uRuoHvwZLbktlPhKsmJUfG4fjXkSazSidkTWs/x17Q6hUBl1dQcRCFRgtYbIz1+f9Hmknh0Vmy1IYeHq7W5v2988tH8tk/o2oioGs6sraA655Lo6YvTP70RV4POt5axrK9jpnEhVDEo9IRwWGVP5Y3Z0Q0n75BwWDd2AhoCHcNRLPO5F0+xJv1oqxyD1G2rWOFxiAAuS/jh70q8ZxOFozbJlSlxJXnI9G4qSwG4P4HC0oap6l22l4glTcbGJZI5uO7puIRbbdo7Vdd8ULJYQIW8LjXmN+F1+nDEnhYFCOjwdhOwh3FE3Zb4y8kJ5+F1+WrwtBJwBbJoNb9hLRyouMOyl2F/cza/e0/UfkN/JMYO2UOQOs6CujJrOHBSgMjdAqSeE25agzu/h9Q1VdLo68bv8xKwxXDEXhmIQsUawJ+zkhnPJDedS5EhQ6ApjU3U6ow5imopFNbAoOm6bnNfGoDsrh7Nn/RSVzZuPx+/vh6Y5KCubj8PRmZyfSk6hYSjJezay0+3lO6McPqCGCm+ApqCbLb4c4rpKsTuC1x7DY0/QGHAxY8OA7Z67brY4JUHIGSJkD0lOZdyBrujELXFsmg1P1IM75qa+5vCkHkMuZWULyM2tRlHiXXQRFFyuVhyODnaGVdU5edhGhhR20BFxsKi+BH9y/JvriNHHGyShq7zx5QBGlLRTlhMmELNR7/cQ1SzkO8U/5bYlCMZsfFhTypaSLTTkNVAQLKAgWIBFt9Dh7qAtpw13zM2gxkFMzIlz9KAt5DujfLq1LzWdOVhVnVJPmD45QRxWjU3tuby57DAaGycTCpXhcjXh9W5J3u8Z+6TH04Ajf4PkARsK9oRdxmxJPZqUjcYdc8tcySI290xenJGeo6R0A1K+Jt1QCMet6IaCzaKjKjo2VeYLrSEHHntCcpd0NZ07bVV1LKrEBSV0BbctweEDaunjDbLF56XO78EwFApd4qdyWjU2tufyZn0+qytXo6kafTr6YEnGnMXVOA0FDTjiDkbUjtgl257HFksfi6oY6T49pRfQFLLTlPQtiZ8v4yvrGgPcNbYrkXARieQnx3WyvsTs+bE52wg6A2iq1i2nLGZN5odH3dg1O4ahEot5k/Y1W3JeZ0mOPRLY7X6MvK3bjfMwMPC5fGmbb0JNpHNPu9rsNVVL+xNyw7nEQqXJ8aYdm60z615Kza1ttk68zkjSbgkJ3YJmkMydBEvyPokkLBS7wzitGpHkvFE3FOzJuHK7RUczFBoC2T6Enp7/ru3MjuitD6excRKtraOSNrt12+S7SFuXmytxveLftmKz+btpChkGybg1rcffSmFTNYqSOX2RhJVwQubqOfZ42hac0FVaQi4O7ifx1XFd3UZ7oI0CZ5T1bfk8s2R8On7OYolitQa67YfFEqO1eAPry9fjirno25bJAYhb42wp3oIj7mDMljFZsV09teuGoVBbewgdHUOIx7096jYVFS3L0u3qiVxHlP0rGyjPCdEcdFEfcJPQVQpdETy2BG5bnOaQmw+3ltGa00qbt42YNUZOOAeLYcHn8mHTbBQECigKFJGwJKgurqbD00FBsIBCfyGaqtHmbcPn9lHWUUZVaxX+prE0N08gHC7B46nvklulJ49TJTe3mqYBn1NTJDbWgkBmnBh0BGnMb6TQX8io+mFMHVibvl5rWwsIxSU+qdgdZnChj3Dcyt2zD2L1xuOT8wltO/MJ6Z9KS5dknaPe+id7Wk9XdJmfWGLoqo5Vs2IoBpqiYdHFh2PX7Bzar46Rpa1YFIMlDSUE4zZK3GGK3GFGlbYSTVj47+p9mL7odHy+IcRiXoqKVuB0tiVj1Iz0nCi/YDWBwhrq8+uJ2eR65Qfzac1tJWgPkhvOpbyjnNxIbq+e7ZNPOikdS5rnjKV9xACaoRJNqARiduK6Sr4zit0iOUkxTeymDouGxy73aGfUTlMgNa9WkzpMqecm0w+oqo7NIj4GV9LmENcs6dbQZYuT0FWag27CyfhCVzqWLdEl99xGe8ROTLNiVTUKnFFctkTSfyW27lTueUxTSegKJw/bTLE7zMrmQr5sKUTTFSpzAxS6IngdcToidt5YI/Fuum4lEtk2VlxP+op84GkhZA+hGiqumCsTx4JO2CHPaE4kh5g1RmNeI+057djjdor8RYScITpdSX03XynFgeIsH2JP7YSCQYErgssq+k8pn4P0/6J7oRsqzaHsvIeetmdR9C5xbjHq/R4iyTFK/3w/XnuMTR25PLNkHI2Nk+noGEw0mo/HU79N7nHGZ9ubZ2fLlqNpbx9GLJZL376f4nQ2p3W7AAzDgstdRyK3Pj2W6hoDmrAk0n20J+wlFs1PxgaqyZztVLuZQfJz6BU7fiYy/r3eIBoyBWiaE5stmNy/TEGDlF5gb9p1gBy75FVDajypJjUQDCyqgW6AL+IklsxHAZLx391trhZLDD2pAWcoBgpKVv6Uoov+SEoXsasvfls9Jqs10GNczldFTeqTuG2JdN6c2OEN7MkYsMagK61DsyOsqk5fbwCPLU5Uk7GTpis4rQlsFhk7RZN2zH0KfeQ5Y3REHPgiMsbyJG2kdotOe9jBhvY8bMnzriX7GPGvkdae0AwlK2drRzgssu1UeyjjP/G5qEnbczBuwecIpWOpu44tYtZYOi8qJ5yDruqijZm8dy26hYSaSNuTrZo13eYYGFk1YFPLSvKfgeTY6arEZqe+t+19kmNL+eD1pGaVBQWJ13NYxBfjj9moVWLbjQfvSbdF2uLCtFYIgKomsNkC2Byt+HMkR2Hb+UTXODZv2LvdXArIzinzRDyEkufYnrCjGmrGv52cT3iiHlRdJegMpuMzUnn7uirjAsVQ8EQ9WHUrqpLyAcWwWXQsiuh7JXSFaMJKR8SORRV9P2syjzihW5L5jkY63q45KD4aV9IOkZonpnRKbBaZP7SFHdTkNVJdUp3W93TGnASdQdo97SQsCQY2DaQsUEyBM5L0IUI4YUNPzjucVg2nNUFCV6npzMHriGNVRWdQ8jEldtKS1F+JJlQ6NIX2nHY6PB1ErBE8UQ+GYhC2h3HEHen5uRM13Z8rIHkrhtx+uY44ugHtYSfhhAWbKuO4lDaFgpHMAZX7OpSw0JTTRnVJNaquUhAswBvxEnAEaM9pJ26J07+5P+X+YgbkBch1xIhpajqn1pV8/h2WBHHdQkfYzsnDN1HsDrO6uZA1rQUkdJV+ef60bpgvYueJzaUs77cci25h35p903NngC8rviRsDzOkfgjlvvKs57xnu2MNY8tasKo6s6orCMbseB0xCl0RBhf40AyFT7f0odAVZd+SNlTFYFVzIYGYLRmvLzEb4biV51YMYaa9jbr8OgoDhVm2NL/TT7unncq2SgY0D+iVLdZrjzG6THy7rSFnWuMo1yFts8uq0RJy4os6mDq4mmJ3hIV1pWztzMEwoNgtPnuPPc76tnw+qc7kwuzonDQ2TqKpaSLhcDGFhavJyalJagEm0j4Wr7cGt7txp8cgvh83uu7AMJRkHEb2vM4wQLWFCCb9oo6EI0uPI2aNpTUQpO018NgkZzs11wRI6CoxzYI/ZqMz6kBVdHIdMbz2eNbzr+liE0lpAUr+nycZl6Rn5fJJfqw/7YsR/aTCZJyQXfKj1YTECjlbiTv9RGwRrLoVq2ZNx7EkLIl03Jkz7sTQrV18fim7BMnXyeOO5VBTcyR+fz8URaOwcDV2eyeqmkjHicjca3k6FkfGyhm/aSZ2U3JGUn510NJzteSRZvZF0dIatal+p2uet2qoqLqFSKQ4rdPgcHRgsaT8xF2uqyWKYkmgKVp6G6qhZunfqoaKBchN6qGm8mVSuecWVdqdSEzjxdc+wufzkZvbNRegO7skzO50Ovm///s//vznTNWftrY2iouLOeSQQ5g1a1bW+ldeeSWPPfYYwWDvkytHjRpFWVkZH3zwQdb7q1atYuTIkTz88MP88pe/7Pa9lpYWSkpKuPnmm7nxxhuzPnvwwQe57LLL+PLLLxk2bFi37wJEo1Gi0YxwUmdnJ1VVVTS3NfNR3Ucsb1pOeU45zcFmThx6IhP7TpQVI82w5SWpZOCuBO8wqVqihZGKJQmp2FU4vncnYOnvYPUdUnHk8OmQP0p+o+WzZBXJRqmS0mdq5js9VQ/SIvD2CAhuhvKpcPB/pALg5meheQ5seAyAzYPnMPyQ/YlGYcgQWLZMKn3tlB5+99VXpWpYIgHnnAMPPiiVkroSDm+nUu7OKiV1rSJsJBtHxSLn25aX/n57uJ1Pt36KYRhohsawomGMKBnRiwPa+2zZAh99BFu3gtst18PjyZwaXZeKnfsmNREMw2BN6xqiCbl3+3r7UuIpyWywfSm0LYC4DzwDpUpUqgKcIY1LvPBwHn8cFiyAzk444gj5DZstU904kYCjjoKcHAjGgjyz7BlWNK1gYMFANrVvYtqIaRwx8Iivd/A9XP///AfOOkuqW5xwAvzhD1Kl2e2WasybN0sFpCFDYNMmqdIcCMg9Z7dnNqtpMGAAlJZi8m2kh+t/++1w/fWyfM018LvfSbXvFLou963NBmvXQlOTtC+FhVIFJlUFRdOgXz/o25e9imEYxHUJ0LMoFqmQZbJXCMQCaLr0JV6HF3Wb6phf1HzBZe9cRkuohasOuIp/fPEPcuw5PHD8AxzU7yC5Vz/7sYwBnGUw+mapxmnLha2vwJJkkZgz/LDyVlh9u/RZVWdIVSRbLlS/AA0zwNUX45Qajvj3EcyqnkWZpyyrylpNZw1Di4ay5JdLcNl2vcx8nb+OmCaCIyXuEjz2bEdcOB7m8cWP88qqVzhiwBHM2TqHiX0m8pv9f0NZTtn2Nvmd5bqZ13HHp3fQP68/f536V2ZunMkjCx9hePFwZpwzg3455fDeftCxBIoPgANfAE8/qH8PWr9IVrMDDnoJFlwmVesGng+T7pdKbusfkzHW5qdkvVPr+aB+JSc8dwJRLcpZo8+i0lvJK6tfYWP7Ro4edDRvn/U2dou9p13+1tD1mfjN/r/h3i/uJd+Zz/3H38+BVQdCtBVmHgydX0rFygl/h7x9paJu7ZuZc3dGACJ1ENwCiQDYC2Uslx6faFL9rnkOzPuFVLc+8AUoO0Keu4YZEG2TMXHuMKm2bmKymzjuOJg+XcYPL7wAp5ySXY0uHJZqsBMmQHu7jJmXLYPi4u7bqq6GkSOlcufYsbLd8mzbG9GojFd+98HvuG3ObVhVK0OLhqKg0BRsojnUzMD8gSz+5WLynHndf2R7JELgWyHPCMgzpljkGTN0+csfLVX7UvQ0nzQxMTHZjei6VPH0+aRtVFX5ywRkSLtp6c0UadMzUrUcQ8ZlVadDrB3WPQS1r0HbQqk8PPXzPXxU3wBaBJo/g+BGac/dVd3HTu5+vPj2QH71K7GJ/PSn8NvfQkWF2PcSCZk3R6Mwezbcfz+sWQM/+hGceCKUlEh/F4+D3y/92sT2Q2Q8lrsvHDNH7EkNH0LTR7Dhn2KbG3MbbHkBGj+E3BFwwLNQMA7aF4k9at4Fso+Hz4D2JbD0OtnvIZfJeNGRrCy77AZZ7+TNUvU5xY76p1g7zDoJWj7d/nkrPhCOkc9uvRX+/Gc5/m055xyp9p5IwCWXwBNPyL26LTfdBKtH/oQXVrzA2aPP5plpz6Q/+2jTRxz51JFYVStt17Thbf8C5pwulaULJ8v96eoD/nWw8hYAWifO44JrJvP552If/dOfpNq82y2HHQ7/f3v3Hd9U1fhx/Jt0byil0LKhIHvvjcgW4ZGhOFEfUVEUFFQeQXAiIgoOVJSfGxeKCigIaJE9ZMseZZVVCrSlO8nvj0ObllIo2DalfN6vV169ubm5OWmbnHvuPed7zN+yR4/sxyKX8uSCJ/XWqrdktVjVuUpnSdLqI6sVlxKnbtW66dc7f83R7s31XGzMaimyu5mlOvxmqer95ry3wyZFdjPvrcEEqfazOfd14f7SE6U/b5JiVklh3aW6z5t9nVxmZrZPjTUzYdd9XvLM4/HONe70aalKFfN9WLmytGKFOa7Mym4/P2FiPoa9xKXEKeLtCJ1MPKlOlTvJ291cAEhKT1JkVKTC/MO0e9hupSf5qVcvaflyM5Nw//5S+/Zm9uUzZ6RNm8xszEOHXv41ExOlNm2kjRvNudo5c6R27bLPWpyYaL77PT0demvVW/rf4v+pTcU2GtlqpIb9Nkzn0s5pxi0z1LN6z/z7ZVyhjz4y3xE2mzRokDRqlJm52sfHlH/fPvNZrVHhqBTZQzqzyXxXh/Uw32spp6QDX5mdtfxM2jTa/P9XGCC1/MScT9g7w1wD2vd/Zrue/5h1O9+UrF5Sjcel0m3N7PWHZ0s7p5jtbkuT9rwvrX/SfDeXqC+Vbm8+T9G/mlm6/atKvfdKW16Q/nnRtAkCbpBKNZfcvKXouVLSUfMZ7fibZs+WHnjA/K9K5jxruXLSyZOmLn/iCWnK5FRTFx/81mzkV8W00W3J0olISZK98Xuq3nOo9u0zv6utW6WqVXP+fqOjpdatTRuqYkXzf1K/fvZtEhNN2ynbccLl2jEbn5V2TMq8DpJNlfuklv+ntDTzvzxjxsV3MWiQNHOmWR4zRpo0yVynuNAbb0ibq92rzzd9roF1Burb/t9mPjZ311z1/rq3fD18Fft0bOY5PxQvXbtKCxea5d9+k7p3z7lNWpq5jpHpUv/Du6dJfz9u6t5Kd5prwp6lpJNLzTVkSepzWPItl7f9SdL+z835zPQLAsItblLdcXoz3k9P/f6UIoIjtHvY7mybhE8O19GEo5p+83TdEHKDOnzaQT7uPhrRckTmNlFnozRzy0xVLlFZu4ftlrs1S+fIS5Rt9Ghp4kSz+pFHzLFs5crmd3XqlPTPP1LLljnPqQAFzWYz16CPHjXHbQEBpj7LeghdooS5Pg1Ipl2Znm7+d+x2c8zr7m6OYSTpl52/aPBPg+Xt7q3P+n6mTzd9qplbZmpww8F6r+d78vUouECzApFbe9LhkP4eJu1+z9z3CTPnDBx20w50pEt1x0v1xknp56Slt0rHfs+5/4AaUvs5UmANc1y7YpBpi17IK0Sn2y9S8HsNJUlL71uqthXbZj48PnK8XljygpqGN9XaB9eq6xddtXDfQtULrZftGuhfB/6SzW7Txoc3qm5o3X/xi7m4t1a+pZELRyrUL1TTek7TkgNLNHX1VNUuXVu/3vGrKpWodPmdAAXB4TDnf9LiJXuq+YxKkqymXesVbPo15JHdYdc3W7/R5JWT1bBMQ51MPKmE1AQ91+45da7auUDeQl5NWztNj/76qKwWq6oHV5eHm4diEmN0LOGYQnxDtPGhjSoXWE76Z4K0ZYz53irV0rTFPQKkQ7NNH4LAWjrScJs6dZJ27zZ90MaONec/goPNeb39+007tl8/adw46dVXTR0REGDOi4SGmmPd1aulwYPN8XCmyxzXJyaac5qzZ+d8jx4epu/fhW1quMb0v6frobkPqXxgeR0a4QzfP3HuhMq+UVYOObT2wbWyHG2qnj1Nf7cqVaQRI8y15cBAcy7un3+kGjWkO+8052a8vc05lDz1fyzO14DTz0m/NZAS9pp+0W2+MdcxDnxrzrHtettsd9MyqXQb15a1sO2eJv39RJbv9CzcfKQeW6SAaoVfroJUnP/X89m+feY8y8mT5hz3b7+Z8zBZpaaa+qx7d2nVKikoyFxr69bNXFN0OMw53R07pFtvveAFLjcGAFfFZrdp1rZZ+nzz52pctrG2x2xXhcAKGtFqhCoGVcz5hPz4TOTlAtWF+87l7//OO6Z+s9lMH/DRo805lQw2m+nzH3R9XCYsMHaHXfN2zdPsHbNVK6SWdsTsUKOwRhrccLD8Pf0vvwMUb/Y0aesL5tyMR6DpA+BZ0owxS4s31yLcfKSaT0ru+XuO6nTSaQ37bZhmbpmpUa1HqXKJynry9yfVsnxLfdLnE1UuUVkJCeZ6cnS0GRsUFmb6Tlitzq+U0qXzfi72+HFp2zZT31mtzj4xVqs5b2e3m3qwVClp6YGlevTXR5WYlqgRLUfojZVvqKR3SU3rNU0ty7eUzm6TFrY2Y7FqPGH6Sbj7SLveNf1dDn0vSYosk66bb3HTuXPSTTeZvicVKmQvV2zs+XZjWpImLJugSSsm6e76d8vf01/T1k7TY80f0/iO481ndttEadurpm3a6gvTdyf1lHRqjTlHlhIjle9rrv3s/9Scg2vzven3Hrfd9ONefpvksMnW6H1V7fawDh40v9edO6Xy5fPwi8ylPlm1yrSB7XbpxhulBQvMedBLiU+J15nkM5IkHw8fhfhepMOtPc0c59vTsowVPH9+wj1Asrpp/+n9GjJ3iFYfXq03ur6h1YdX64vNX+jZts/quXbPmeuwc2tK8TvNmI4uK8w+Tiwx/ZZOrTH7rT5Ux3yqqe3/tdXe03vVpkIbtavYTmui1+iP/X+oXEA5Lb9/uSqVqKSzyWfV//v+WrRvkfrV6qchTYZoxIIR2nZym0a2GqmJXSbKeuQXael/zL5bzZQqDzJ/u22vSXE7TX9er1JSp981fLj09tvmV9qypdS3r/mfT0oyx1cJCdJH436Slg043zfrZany3aafQEqM9Fdf6ewWqeoDUouP8/CHxDUnaqa09UXTV7DRW6YPiC1Zil1jximnnjZ9Ucrd7OqS/mspKaYP0qFD5n8/LMyMn83oU+RwmDGsGee67A671h9dr4TUBDkcDpX2K539fP6KO6UDM00/nQ6/musMZ7eZvozJJ6SUk7KX66cKjVoqOtrUDfv3X3qM4e97f9ejvz4qD6uHRrYeqVeXviovdy990OsDtavUzmyUGH2+Tj0jufubfjjK6BhrM/34AyLy/Hs5d87UZXFxpn2W0Xcwo59tUJA5h4TCY7M5b2YiGHMuNmv/t0tJSpIWL5b27DHHOjVqmDZR1v7Tbm5Su/Z57ChYhNvcKSnSr79K27ebc9l165rjHzc353u12Uwfm3yXdNRkMKQnnO9jneVFHTYpqI45jpM5Rl16cKnsDrvS7emKCI5Qw7INzX7sNmn766Z/jpuP6U/nVUpKPGz27bBLVk/Fhjymm/v6avVqc9w3bZr52/r7m79tYqLpA1y/vvNzHJcSp2MJxyRJHlYPVSlZgB/mcwelmJVS8jHJJ9z0ObK6SbLKZF7YpJBW+mWet5YuNcfizZtLlSo5j50l8/dq2FAqE5aukb+P1NTVU9WiXAtN7jpZzy5+VssOLtPQpkM1pfsUebhdMGnlvzw/sXOn9PXX5lpMSIjUooU5b57x2bHZTJ/WNldy+jf1rKlLM/6WWctp9ZQCqjv75yOHlPQU7Ty1U3aHCW6LCI7IMUZZMuPn41Pj5XA4ZLVYFeAVcJG9XYbDISUeNP1s0+LNtTqL+/lxceeDhnwrSD6u6VC2ebPpDxsTI5UpY9qdbm7mltHubNrUfCcUVQ6H6RN16pQZP2L6cWfPMilf/grzOOw2KT3eHL860s3nzGI1fzt3v+zjGPNg/+n9emfNOzqTfEZh/mGKOhulBxo9oBur3OjcKC3OHOtl9CexWJX5XSeH5F9VS1YE6pdfTD+w2rWd+SRZv0+qVjVjmYqDs8lnNeaPMZq+frqeaPGEziaf1WebPtPI1iP1XLvnriqfANenhQulJUukI0fM9evKlZ19+TOO6+rVy3kOrFBE/yqtGyqdOyA1miyVudEc/x393dl2DqojVbs/z7v8Zecvumf2PXK3uuuTPp/oj/1/aMrqKepQqYO+G/CdQv0u+ELM5VgnPd2MS1izxvQ77dTJtDsz2hAZuU2dOmXPy8lPKekpSkxLlCR5u3tf9HO//eR2fbH5C/l5+CkhNUFB3kG6r+F9mf3pvv/eHNsfOCB17GiOdX18sh8n1qtnxsF9vulzPfrroyoXUE4f3vyhXvrrJf0Z9afGtBuj5zs8LzeHTdo73Yz19AgwfXE8As0YG0eaqS88Syg5pJ/mzHPTzp2m7VSnjjmHm9GesNvN769Ll4L5vV3WqbXSyeWm/R9Y6/y4fTPpdWauXNmu+mWORevWmfPTjRs7c7sy/v42mzkvWPJ8jv2xhGPaGbNTkmS1WNUorBHXdS4nPdG0AdPOmraNxd18B8hh/p98wiWfgsnHsdlt2nZyW2ZuT4WgCjm/HwpKbm2sqK+llXeY5Q7zpPCe5lz7/i+klBPmO9EnXG8vHKUnnzT/g888Y67ZZr0+a7ebc3SBQXk7P5EQ79CuXeaYOCXF/E97eGSvJ6pVM8fKAIArF58Sr4/Xf6wVh1eoSVgTrY1eq5ur36w76t1R7Mam2uw2zdk1Rwv3LlSNUjW069QudajcQf+p+Z+c5xwvJ/W0OZebekayuptzfsqSx+FdRvKroBnrZ+jBOQ/KarFqeMvh8vXw1ZRVUxSfGq+nWz+tiV0m5tx3bv3i0hNN9nDyCUmO8zm4bnIeJ9qk4CZS9DzTZ8OWYsZ1e5Uy7RdbxgRIFqniAMnqodnbZ+vRXx9VWf+yGtN+jJ7/83nFpcTpw5s/VI/qPa7sd3Il0hLMuZ0c1+y9zPHvVWTjpaZmH2eVcY3Fq3j9G18z7Hbzt7BYLt/Po7iJi4tTUFBQ/gezBwQE6O6779a0adMy1y1cuFDdunXTiBEjNHny5GzbP/fcc5oyZcoVBbN36dJFR44c0bZt2Wd5Xrx4sW666Sb98ssv6n2R2crsdrt8fX11//33ZyufJI0dO1Yvv/yy4uLiFHBhQnguruSXmO9ST5sOOImHzBevPcX5BeURZIIp83IC2uGQNjxlOtt7hUh1npNKNDDPtaebzlkpMVKl27VzpzRvngk2TkoyJ5E9PZ0XAlJTpeHD89iIcjh0+rS0dq05UR0ba05SZ4RmZISL9x9w7V8wxr+Qx2ShLjc5tGiRWV66VGrb9tLb4xqVy8HntGnSsGHme+Ohh0wwe9aT9PHxpsNRuewT6gD5wu6wa/PxzZkdBuqXqe8M0z8eKf1xfkKK5jOcF2j+6Gzq8KQj5n6nRSaETpIaviHVesqc1D38swl1P/iNOcHb94j2nd6neu/XU6otVav/u1qlfUurwQcNdDblrP4a/JcJhMe/NnXVVI1YMEKtKrTSuuh1ahzWWHMHzVUp31KmwZo1mL3VTMm/spSwzzS8JRN2HFTHdKI+vV4K7SQ1eNWEkKcnSbZzZpu0ODOZjsWqH7b9oIGzBqpuaF0Naz5MQ+YMUbNyzbT4nsXX1AUSu8OuLce3yO6wy2qxqm5oXednImaVtLCVWW48VbrhcbO8e1r2sIyaI80JjLywJZ8/Jj5oGvC28zOFunmZjvalmrusEw2Kp5tvNm0iq1X66isTzJ51MqmEBHOo8ssv0qefmoHw9eubEMFSpcyJh/h4E1Y4YoRZt3q1tHev6STt5eW8iJoRzvPww5IsNnX8rKOWHVymqd2namCdgar3fj2dTT6r5fcvV7NyzQr2jTNQGcC15sRSaWlfE+hcc5RU5R5zTJCeaDpLJx42F0dKNnB1SQuVw2EGKh06ZAJbUlJMAKi7uzkvV7myVCvLvIXx8WYgT0qKuajh4WEGN5UoIbkd+lraOs78LiMeNsddniWdYU3nDpr1v9Y2bZ+yXU1gmpunOS5MPOh8Id8q0qJW5iJMrWelhhPM+i0vmI7/xxaY+1cSzL5sYOYAV1XoZwJ2PQLMpFjHfpeC6ko9t2j6dHMuIUOVKqZT4JEj0t9/S//5jzRrlgkZfvtt53ZNm5rOH7t3S+vXm84mVfp9pCFzh6iMX5lsIaTLDi3T3F1z1bJ8S6287y9pTjVzTrd0e+nGP8xghpPLTCesDU+aJ3VZYdobMr//jE4oqanmbXt7m052GR2t8sJmt6nbl920eP9iTe46WfVC66n7V91VpUQVrX1wrUr6XGRnuV0IXNDMTPQYWFPquc1sd+hHad8n5vdrT817MHuGtAQp8YA5F21LMRfmrO5mclKfsmZAw3UkOdkEsu/ZYzq2+/pmPxdvs0kPPpj/nfLfX/u+hv46VAGeAXqr21uyO+wavmC4EtMSNeOWGbq/0f36739NZ1BJmj7dlONqpaSYgVR//WXe4xdfmPsZ78vhMJ/HEiWc6/458Y9+3P6jHHLI081TDzZ+0LTXXah+fWnLFrO8a9clBv2vvFuK+tJcw+myUgo6/6WbEiP9eL43WZtvzQD56HnmWk39l805BoubafOmxJjrQ16lzCB/KXsbe8Mo8/k8H36unv+YECpHuhTxiNTs/LUxe7q0eYwJcPavas5vLGxpHqs5Smo40fm5XdpPOvyjFNZd+yr+phtuMPVCaKhp9/TIcq1+xw7p8GHpporvmsBNSWryjpl0I2N/33qaz3jT95RaaaiWLTMDpQ4fNn9nHx9TN9ntpp7q3t20i5YtM4Pxpk2TOnQwA6rc3EydFhVl6rBsEwpf6ntn/+fSqnud90s0NIPVT60xE8CVaCD12Jjt+9/bW7r9djPoIjrahNw1ayZ9+60JXh81yrk7f38TEn3okPk/HzNGqnPbNxr0wyAFeAaoazXnCMKdp3Zq64mt6lW9l+beMfdi/zkoBqZNM2GMsbEmWHHAAOckOYmJ5n+qShXnpMuScv8fTjxsjifsqVL1x6Sm75j1ez40HbqjvjD3rySYPXa9Oed5sVA2SSrZSH/VmqIOn3aQRRadefaMAr3MtfHjCcdVdrI5/7Z+yHo1Cmukdp+007KDyxTiG6IbSpkJ0ZcfMpPivNfzPQ1tdsHsHbmU7ehR50D3qlXN+RMAKM4Onj2osX+OVXJ6stLt6ep7Q1/d3eBuVxfr6uTWnjz4vbR8oFmuM8aEsGdcR/qpnBk4nRHMvuo+ExyVm9Zfm4FYv9U1A0Uk05Yu2Vg6+4/zmLjb36r8+a06cPZAjnro1m9v1ewds/Vg4wc1vfd0bT2xVQ0/aCibw6Y3uryh8oHl9fLSl7X1xFY90vQRTes1LWc58sns7bN15493qlKJStoTu0ftK7XXjwN/zPukrAD+tYHfD9T3277X062f1pj2Y9TggwaKOhOleXfMMx3VT2+SFjQ2/TkyzmM6HKadvnmMmRgtsJb+O3tb5rmTL780gdkX88sv5lqjZCa9+/nn7CGkdrs5Js7W3+ky59j69ZN+/NF5P2Pgc6IZU0u/uiLkcNxhVXjLdHC7qepNmZNXxSbFas2RNSrjV0ZHnzqq+vUt2rrVPGf3bikil5yujBCabdvMucXatc35Nnf38/+mqeZ/sUaNLE8qzteA7enSsv7SkZ/NoOdGk835HovFXCtKiTGhQ+G98t4/pTg48Ze0uKMkhxkIE/GQuV5yarUzrL77JqkkMzhcr+LipHvuMXVUUJCZ2DhjchGr1XkuNjr6fF8WmYn0puV2mJzX2WWL23dQUeeq7/9LBPOfPm0Cqw4cMEEkWSdxl8x5eY5hgOJt3q552nLCXHAtF1BOd9W/S5b8nKX8X0i3p2vjsY2ZoYGNwho5J70/d8iMFUjYK5X/j1TvBdO3IfWMubabfExKT9TaQ53Vo4cJtGvRQnrvPRNgmTF+LinJXCvNep35cNxhHYkzYw3K+JdR5RKVsxfMYTfn0pKinWMKJeeYwqDa0p9dTGhoYE0zKZFXKRPKHrfLuZ8S9XXOUlmLFpl2RXS0uQ7r4+MMSElNlW67LeeELbnZuVOKjDTXdZKSsodLZYQQPv30lf0drsT8PfMVmxQrSWpYtqFql85yAS4x2ozPiNsmE9ZY6XybwGr6LdlTpHrjJZmQvzb/10ZxKXH6+JaPNXTeUFktVv1131/Z9pluT9cjcx/Rxxs+1g2lbtDe03v1Xs/3NKTJELOBLdmE6R/73fRbK91W8iln/lb2ZNOHPqSNvll2iwYNMk+57Tbpm29yeYN/9TVtHY9A6dZYc3719EZzrTBDSBupyl358NtEkWVPM+NRsn3+z09U4B16fbV1r8S5g+Z7MOmI+WzKcv6g02K+O8v/Rxs2e2rGDDMGwM3N9CX088t+juWuu5z9LJPTk7Xi0IrMeqJtxbZXHgQCoNhKTjbHeSdOmD5kKee/sr29zbmX+vWdx4TFwacbP9Xzfz6vYJ9gnUo6pefbP68Hm/yLDqYAgAKzJ3ZP5oQgFQIrqFKJSpd5BnANSj1zPo8rwYxRctjNmDb3AMm/ijm3cgV2n9qth+Y+pFRbqhJSE9SlahdNuGlC5rV+5G7XqV16ffnrsjlscjgcGtxwsDpW7ujqYgHXj7PbpJgVJg/HzVty8zPnDx0OMwFC6fZSSAvFxpqJEg8eNNds3dyyTxxXt67Urp2r3wwAAIVjyqopGrFghLpHdFfVElU1bd20S48nuUS/qIJwJvmM5u2aJ4fM9aneNXpf3QSIACQVYDB7kyZNlJCQoJ07d2auGzVqlN58801999136tevX7bt77vvPi1dulR79uzJc+FHjRqlt956S7GxsdkK/+qrr+q5557TwYMHVSGXqfOaNWsmi8WiNWvWZFvftWtX7d27V3uvYES3S4PZ85stxQxMPBd1/sRSkmTxkDyDzKywpZq7uoRArqKipLvvlpYvN7MHP/CAadAHBJgAsQMHzGzcAwe6uqQoKAcPmllVN20yHRXS050zrvj6Sr16SReZrwMoWEnHpF/rmklOKgyQWn2Zc2YnW7K09yPp7/PhWV3XSKWamfDvyG7O7bxKS22/kyS9vfptPTH/CXWq3ElVS1bVjA0zNLzFcL3V/a1CemPXh92ndishNUGSVDOkZvYZf23J0pE5ZmBi/B7J6mFusprwIv9qUoNXzEW62L/NLfPiXbI5Ye1ZUgpuKpW7OXO3M9bP0Ltr35UklfIppW/7f+vycLl8t+8zacdkKX6HFNZDKlHfXMS0JUlJhyXvslL9l1xdSiBXDocJLFi50nS4TkgwAZmenmawiIeHCVyvn2WccnKyOSZNTDTP9/c3oQoZs3/n1eG4w2r4QUMlpiWqcVhjLT+0XJO7TtaTrZ7M1/cIAMVGepIUu8aE5aSektLiJTlMyLNXiAnbCKxx2d3gMtLipPi9ZoZbW5IkqwlA9w6V/KqY4NBdb5vg8ZQYMwA1Y0JIe7IZZNjoDWludXP8XHu0mdRIko7/6Zz8SJLCukvuWY7LcwsNSD4h/RRuBkyWv1Vq94Pzsb+fMOUJqitbty0KC5NOnjQPvf669OSTzkEO27dL8+ebwY7ly5uX8PQ0Qe1ZzzGsW2eCmFv22Kdqb1fL9Vf1XLvn9HLLodLP55OUaj0jNXzNLG8ea8KAMzSe4gxszkenEk+p6UdNdSTuiAK9ApWcnqxV/12luqF1L/6E3C4E/tnNDBj1KSf12iF5+EtJx50TkEnmMZ8yOfd1sf2hyLDZbar/QX1tO7lNM2+dqVRbqgb/PFgNyzbU30P+ltViVdOmZuICye66qHMAAD1jSURBVBwTZwsRvgoOh7RqlZnEdft2MymE5BzQGBIiPfWUM5i3KNq82YTVbNpkgpXvv1+64QYzMPPcOWnfPqlBfZu6n/U25w0q3SG1/so8+e/HTVh76mlzv91sqXxf6dwBE5R87sD579hkMwmZRwkTJuXmeT5ESVKzD6WI84O6D/14fvDoeUlHpI3nR7VnhCqlxEo/Zjnf4F/VfMfuPt8poN8Zc23o9EYTYJV8zARdhnXXI9/+pg8+MJt9+KE0ZEguv5R5dcxg9vMB56ZsP5jzKVFfmO/8pu9J1YfmsoOctmyRNmwwIWRxceZ3a7GY6wDh4SYAyM8vyxMu9b0zt4YUv1ty85Ha/iiFdzfr1z0m7X5PKtFAp5pvVFiYCYf38zPtwHr1nLuw2aQ1a8y60FATKiCZ/9dx45zXJz780Ayqe2h4rEInhcqWMRv8Bd7t8a4ebf5onn8fuPbY7SaAYvt201H13Dnz/+Xra77rWrY017gy5fY/HLvBhEFKJliu5vnzArvfN4PvM9R8Kvsk3pf6TPx1i/l8SuacXf1XzPnLdUOlo79JJRsp4ca/FPRakOwOu2qG1JS3u5kJISktSTtP7ZSXm5fiR8fLw81Dv+7+Vb1m9lJZ/7I6MPyAIqMi1e3LbirrX1b7n9if+dzLlc3hMN+pn35qNnnhBfN9W6GCOa8SH29CByMizOR3AIAiJLf25OJOJjDdJ9xMImKxSMf+kA59J+3/wkySU3e8VOl2aV4tmXM5PlLdcVKFW80x3JJeZl+tvzbHrNsnmvtNp0nVHzHLseulBU3Mcre/9Z+FL+mnHT+pVkgtNSzbMLM48/fM1+nk05rWc5oeaWaeO3TeUL2/7n090OgBDWs+TI0+bKQg7yDtHrZbIb4hBfDLcopPiVeKzSQylPQu6Zz8GEChOJt8Vo2nN1bUmSi1r9RekVGRGtV6lF7v8rrZYOvL0paxZrnXTnN+OemY9FOYcyeBtTQraZsGDjRfgX37Sp9/btqIWSUkmFD2P/4w95ctM8G3l3WJ4/rISKlTJ7Ps5ia99po0bJgJZ8+YXHLsWEJNi5IGHzTQ5uObL/rY4IaD9UmfT9S1q7RwoVm3cKF00035WIDr4Zxt/B4zKeq5/eY6kS3JBNV5ljDXKyoOcHUJC9fyQdLBbySLu9RjkwnrlMz1id9bmGWC2SETGrt5szm3nZDgnOAjMNBMSNmpk9Szp7R6tQkRe/VVM+lqaKhzYpGdO009iOsYwfwArhf2NBNoEvv3+ZD0hPMT0XuayXBC20th3ZSQIP35p7Rxoxn7kpTknIjCw0OqU0caPjyfy5YWL+2ZLp1cYo6N/SqZfjoWN3Pd2pYktfs5e18cZLP1xFY9PPdhpdvTZbVYNbX7VDUr1+yi2yamJcrhcMjN6pbzWlhWDru5/u6wmb/H+d//iBHSlClmk0tei0/YJy29VTqzyQSwVxpkxn1a3aWUU1L8LqnynSaQHwAAAAAAAAAAAABwxd5c+aYW7VskSapdurYmdZlUZCaYB5C/CiyY/dVXX9WYMWM0ZMgQDR06VLt27dIDDzwgSYqOjpZftlQEqUaNGqpatarmz5+f58KvXr1aLVu21KRJkzRy5EhJUkpKiurWratSpUpp1apVkqSDBw8qMTFRNWs6O5NMnDhRzz77rNauXaumTZtKknbu3Kk6depo5MiReu211/JcjmIVzA4UA7GxpqP/0aMm1CI52QRahIdLzZubcHYAKFSnN0n/vGIC6ySpZGMzuC/9nJSwVwppJdUZK/1WT7KnShEPSU3fzzkoxZZiwrckORwOdfyso/468JckqXpwdW16eFP24HCgqEs9I507KKWdOR8u53M+vLNy5v86gJwW7Fmgj9Z/JEmqXKKy3uj6hotLBADAVbClmNCPrOFi/7xiwsktVqn6Y1JYVxOgn55oQtfSzkq1RmbfT26hMXumS2sfMss3/imV6WgGm+56R4qeZwbEBtXVH95b1Lmz2axDBxNcdDHvvmsCjCQT+jstl8mMJanK1CqKOhMlf09/+Xv6y+6w68S5E5Kkxfcs1o2VO0mL2kgxK82ETjctk3zKZt9J+jnJ3e8ie88f+07v0/qj6yVJVUtWVeOwxs4H83pBMCFKWvof6fQG8z4qDpR8K5q/X+Jh6fR6qfkMgtmvUb/t/k09Z/ZU9eDqSrena/+Z/eb/t8qNkqRPPjEhuZLUr5/08cdm4qEM6elSTIwJZ7neHD1qzk+fOGHOT6emmomZwsOlNq0dCl8RYD7j5fuaAHbJBEmeO+jcSanmOb8XcrPyHhNy7u4v1XlOKt3eBCmnxUnxO52ftdWDzc8Ov5kAcrvNhKZnsHpJu6ZmCWaPNftJPiEdnu3czrei2g7soeXLzd3t26WauY3l/jFUSjlpAt87/mbW7ftEivrKuc0NT0jlCnA2zdy+d+L3SnMjzHLEI1KzLF/sWYLZ34/aqKHnc+Mfflh6//2Lv8wPP0j9+5vlbt3MpB4XyphItPWM1lp5eKXaV2qvrlW76mTiSU1dPVWStPfxvapasupVvlkUG3mpix0OE0gb/avkFSo1/8h81tw8TZBDwj4zEXfZC9L6cvtM2FKlH0qY8I2gulL3jc7jtLVDpT3vSyUbSd3Xq/Z7tbU9ZvtFi9UsvJnWPOicaKbRh4208dhGfdrnU3299Wst2LtAE2+aqKfbPH3p932R44SlS6UFC8wkHqdOmUB2d3dzDbByZenNN01YOwDAhfLanpxb2xyLBjeVuq016w58K+2c4tym2oPmmHbDCHM/a+B6WoI063y6ceuvpa0vmf0F3CD12u4sxwXB7C9tmafnI5/PtVirHlilFuVNGGlMYoyqv1Nd8SnxZpKqo3/rza5vakSrEXl7jwCuaX9H/61JKyZJkoJ9gvV2j7flbnU3D+7/XFp1r1nuME8K72mOwbNOkGT1kLxCNH++NGOGCd1LSDCTOpcsafqyRUWZcO2dO5XZxl63TmrSJA8FvMSx8/Dh0lTTxNT//ie98kr2pzocJljXr+BOPeIKjV40Wq8tf00RwRF6ps0zkqTHfn1MKbYUfdf/Ow2oM0DHj5sJqhYtMhOH9u0rNWhgwpHPnJG2bjXhyHfddRUF4Jzt9cWWIv0YYoJCK/ST2s4y689uk2JWSWtMP3+C2ZFXdrs5ZxMZaSbOO3PGec6mdGkzoeX48S4uJAAAwDVk7VqpdWtzbblxY3NtLOSCeSLj47NM/nbugDmWTzlp+lXJInkEmZD2Mp2yT+AMAAAAAAAAAAAAAACAHK4kU9z9SnY8fPhwffvtt5o+fbo++sgExjkcDr355ps5QtnXrVunPXv26KGHHrqiwrdo0UIDBgzQ6NGjdeLECUVEROizzz5TVFSUZsyYkbndPffcoyVLlihrrvzQoUP10UcfqVevXho5cqQ8PDz05ptvqkyZMnrqqaeuqBwAipbgYKlHD1eXAgCyKNlAavudZE+Xko9JKackW6Lk5if5lpO8SpntWnwq/f2YtOdD6dhCKaS15FFCSj1lArrK3SI1NJPHWCwW/XTbTzpw9oAkKcw/jFB2XHs8S5gbgCvSLaKbukV0c3UxAAD4dy42EU+d56QKA6RDs0zY9/bXTZi6u79pO5W9gvov8ZBz2b+a+Zl2Vtr8XLbN5s1zLt9yS+67++23vG0nSTdWvlH/t/H/NLD2QM3oM0MrDq1Qm/9rI293b7Wu0NoE3bT6Slp5pwlnn1NFCu0k+YSZCYvid5qQuZt35PHNXrmqJavmHvx7JeE73ddLZ/+Rjv9pwqfObjWB+96lpSqDTagzrkk9qvdQ12pd9fteM8lc7xq9M0PZJem++8xA4AkTTCD1vHkmYCU42ASv/POPCQJ76SXXlN+VwsJMONbFWaTqj5rvtyNzpAPfSJVul0o2NDeHXTq1Ju+h7JLU6nMTWnlolnRskXTg6/OTOwRIfpWkireZkKV/XjITBP79qGT9SAptL5WoJ6UnSbFrTNmq3OcMZt8yTmr0lplALeL89TtbipSeoLAw58vv2nWJYPZSLaTouVLsOjM5m2cJqep95uZqxxc5lyvdZn6mJZiQ+7NbMx86Pwe0JKlr19x3N2eOc/m22y6+jfv5K609Inpo5eGV8nTz1HPtn9Pnmz6XJNUoVYNQdhh5rYvb/iDtfl86MFNa1k9y2Ey4gi1JsnhIVe7OGcyem9i15nmSVPX+7JPnXKBJeJNcg9mbhjfNdn9029G6bdZtej7yeR08e1AlvUvqkaaP5K1MF2jXztwAAEVYXuuwlfeYIPW47VLySdOGrHSb87gsw9JbzU83X6ny3RffV1q8c8Khsjc5w2U3jJJOLMm2aaOwRrkWyc3ipvplnOGjIb4hGtdhnEYsGKG/j/6tGqVq6LHmj+Xt/QG45jUJb6Jv+n9z8Qcr3SFtf0M6u0Va81+pwetSaDtzHizpmHRqteRVWgrvru7dpe7dzdfj2bPS6dMmoN3X15w/8PU1we0Zweyvvy7NnCm5XXA4npwseXvnrexZz3fee2/Oxy0WQtmLml41eum15a8pOj5a9zS4R7tO7VKKLUXuVnd1rWZORpQpY8L4YmKkP/6QDh+WYmPNpFVBQVKvXsqcgBS4pMRDJpRdMhOzZVj7iHTyL9eUCdc0q9VMfNyhg6tLAgAAUDw0ayZ995305JPS+vVmUuK2bc15hKQkM8FbcLCZGEeS6RPgV8mVRQYAAAAAAAAAAAAAALhuXFEwu6+vr5YvX6633npLq1atUqlSpTRgwAD17t07x7br169Xnz59dMvlEm0u4vPPP9fYsWP1xRdf6PTp06pfv77mzp2r9u3bX/J5AQEBioyM1IgRI/Tyyy/LbrerY8eOeuutt1S6dOkrLgcAAMBlWd0l3/LmdjGVB0nl+0gxq0wgVtJRSQ4poLoU1lMq0ynb5iV9SqqkDyF3AAAAAIqRwBpSnf/9+/24ZUkqsqean57BUotPnOs9Syr6C+fdulkySC509KhzuVatS7/0jVVMMPtfB02IyV8HzM/WFVrL2/18ufyrSF1WSHG7TFhT/G7JniK5+0llu0ilml3uHRYdQXXMDcXOjwN/1JnkM5J00fMPDz5obtHR0saN0vHjJqy9RAkpIsIEteMi6o4z53yivpRWDJI2jpL8KpvvqridkiNdGpBwZfsMbWdul3LjH9L6J6ToX6U/O0sWq5n4Ii1ekkNqMFGq/bRU/1Vpy/PSrndMeHxwM8kjUDp3wHxfNftAjz9+h2bNMrsdP15q0cIEhGWw2aSDB6UqdcdKR+dLKTHSn12kOmPPf184TPj54V+kpu9K7r5X9n7zQ+IR57JvRfMz9ZS0bmi2zc6dcy6XKJH77rZnyahu1erSL909oruej3xeyw8uV0p6ihbvX2zWV+ueh4IDWbh5SzVHmJvDYf6H0+JNOLtnKWcwbV6cWu1cLt3W/Ew5JW18RopZkW3TpmFN9eXmL1WlRBV9eeuXkqR+3/XTsYRjOYLZ+9furxqlamjXqV2SpMeaP6YAr4Arf68AgOKl9jPSwW/MhEJLekj1J5iJiixuJqz9yBzphiec9VNwU8nD3ywf/kk6kSU0ND3LsbNPOefy6fVm4pEsGpV1BrPf2+BelfYtrXVH1ykyKlI3hNyQYxLs4S2Ha3jL4f/+/QIoXqzuUudIaeuL0pGfpFUXTBzh7i81eTfbKovFtCkv1q687z5p8WLp669N8Nr69VLPnlJoqAndXrnShN2+NjGX4/ssx/3nEhzas8csh4ZKNWpc5XtEoWpVvpVKepfU6eTTWnFohTYc3SBJalOhjYK8g7JtGxIiDRzoilKi2HDYncvu/s7l4MbmWCyDR5bHAAAAABSq//xH6tNH2rHDnCeIipJSU81Ea/37Sy1burqEAAAAAAAAAAAAAAAA16crCmaXJH9/f40dO/ay2w0ZMkRDhgy5qkJ5e3tr0qRJmjRpUq7bREZGXnR9+fLl9f3331/V6wIAABQId1+p7I3mBgAAAAC4OqVaOJeP/S4FPGLaW1UHX9XurFbnst2e+3aSCWaXpD2xe3Q0/mhmMPuNlS/SzgusYW5AEeTn6Sc/T7/Lbhcebm7II3dfqdXnUoNXpeN/Smc2mUBKd3+pyr1Sqcukel8tv4pSu9mSLVk6tVZKipbkkLxCpMDaku/5P2Kd0VKl26ToedKJpVLKCRP27F1WqjtWKnOj2lWWRo2SJk2SNmwwQfxdupj/g5MnpaVLTUjYlCnNpU6/m/D52L+lpX2yl8kjyASzu4IjPUs5zodEW9wk7ywJ814hKlXKeffAgdx3l5AlDzQoKPftJKlpeFOV9i2tk4kntfzQci3eZ4LZe1TvkcfCAxdhsZjPs1fI1T0/Nda5nPE5SIuX9s3IsWlG+PqR+CNqFt5MKbYUHU84nu2xDFaLVUvvW6rTSaclSRWDKl5d+QAAxUtQHanDfOnvx8xxYmTX7I9b3KXqj5oJfqTsx2hHf5f2vO+8b/V0LmdMzCZJ1R+Tyt3ivO9bQeW8S2ceh/Wt2Vd9a/bVo/MeVWRUZLbQdgC4LK9gqckUc0uMlpLPz+roFSL5VjCToeWR1SrNnCk9/LA0d65pU8+aZSY9K1XKTHzXs6ek1xyX3dfZaOdyaOgVvSO4kJvVTd0iuumbrd/o972/a8MxE8zeq3ovF5cMxZJPmDnWcqSb85IZGr/lujIBAAAAyMFqlWrXNjcAAAAAAAAAAAAAAAAUDVcczA4AAAAAAAAAQKErc6MJGEk6Km17VSrTSQqs6Xz89EYp9bTCwztlrtq6VeraNeeuJKliRenvv83yhg1SlSq5v3RYQJhqhdTS9pjtioyK1PJDyyVJnat2/pdv6hplsVx+vePywVJAseNbXqpyt6S7C/d13byl0HaX3sa/qlRjmLnl4vXXpVtukb75Rlq4UPrlFxMaFxwsNW4s9cjIGC/TSeq2Tko6Jp1abYKe3X3NawTVlawuuvzoGexcPnfgfHheeek/x7Jt1iNOmj7dLP/0kzR48MV35+/vXD59WgoLy/2lLRaLukV005ebv9Q7a97Rkfgj8nH3UcfKHa/mnQD5w55lsgL3S0/K0Siskdwsbkq1pWrbyW1KSE2QQw75uPuodumc6RChfqEK9cslFZLjBAC4fpW9Ueq1TYrfK51cJqWdMceqfpWlUs0lz5KSPc1s6xGY+348gszjaXHSqVXO9RX+c9HNG4U10u97f9fm45vVt2ZfbT6x2awnmB3A1fINd0529i+0b29u/4aXl3M5Ofnf7QuFq2dET32z9RvN2z1Pe2L3mHXVe7q4VCiWPAKkMp2lYwvMxIwppySvUtm3sSWb4zIAAAAAAAAAAAAAAAAAAAAAQCarqwsAAAAAAAAAAMBlWaxSw0mSLFLiYWlebWlhW+mvPtK8WtL8RtKpterVy/mUX37JfXe9ezuXf/zx8i9/Y5UbJUnvrHlHcSlxCvQKVLPwZlf3XgCgiGrbVnr3XWnnTik93dxOnTJB7d26XbCxT1mpfB+pyl1ShVulkg1dF8ouSaXbOpePR+a6Wc+eUsmSZvnnn6Vp00wAfYadO01we926znUrVlz+5XtEmOT6n3b8JEnqWLmjvN0JvIILuWeZXSAlxvz0qyT1j3febjKTzfh6+KpW6VqSpI3HNmrjsY2SpAZlG8jdlZ9rAMC1KaCaVPVe6YYnpIiHpLBuJpRdck4WknbGuX298VKvHc5b+T5S2fMHnycizaQ7F0p1Pj8jgH3zcRPIvuX4FrM+jGB2ANe+kiWdE4ft3y/Fxbm2PMi7HtV7yGqxavPxzUpMS1SloEqqE1qn4F7QYnHe8rIexUvV+8zP1NPS4o7SgW+l+N1mspxN/5Miu7u0eAAAAAAAAAAAAAAAAAAAAABQFBHMDgAAAAAAAABwrbyGxlS+U2o3WwpuJskhxSyXjvwixe2QvMtIQXXUoYMUEmI2X7JEeuONnIG7U6dKffpIHh5m3cyZ0pQpUlqauW+3S99/b8KJM3Su0lmStPLwSklS+0rt5WZ1y9/fw7XC4bj8DUCx4HYtfc2Vai55ljLLu6Y6g6gzJB2VTi6Xp6f5zs/w6KNS1aomeL5ePalWLWnx4uwTeMycefGXTE11Lner1k1Wi/PSa0ZQO1Ag8nLsFFTLuT52nfNxD3/nzd0nc5MmYU0kmWD2Tcc3SZKahjW98rJxnAAAuBT/auZn7HrnOu9QKfAG580jQKp0u3nMliz90VmK+lpK2C/FrJQ2PC1FOmcNahzWWJK05cQWHTx7UGdTzkpyBrYDwLXMapVuusks22xm4jRcG0J8Q7JN7Nmzek8XlgbFXqXbpGpDzPLZrdKK26W5NaRF7aRtE0xgOwAAAAAAAAAAAAAAAAAAAAAgG4LZAQAAAAAAAADXjvJ9pG5rpF47pPa/mFuPLVLfaKlcL7m5SS+95Nx81Cjphhukfv2kFi2k2rWlpUul4GDpxRfNNg6HNGKEVKGC1KyZFBoqDRwoRUc799Oxcsdsgbs3Vr6xkN4wACBPLFap6mCznHhImltT2vQ/accUaeW90pxqUswqSdI990jffivVqGE2P3hQ+v13aetWUydEREhdukh+fubxP/+Uhg6VYmPN/dOnpZdfll5/3fnypXxLaUDtAWpQpoEalGlA4BpcL7SDpPPB7UfmXnwbe3rmYtNwE8K+8fhGbTy2Mds6AADyTWgH8/Pcfil+b+7bVbhVqjjQLCfslVbeIc2pKi1sLe2YJKUlZG6aEcC+J3aPVh9eLUmqXKKySvqULJC3AACFrVcv5/Lo0dLx49kf//lnafPmwi0T8ubZts/q8eaP6/Hmj+v+RvcX7IsxSRaafyh1nC9V6Cd5lpSsHpJvealCf6nhJFeXDgAAAAAAAAAAAAAAAAAAAACKHHdXFwAAAAAAAAAAcJ27mlCYwBvM7SIefliKiTEB7amp0t695pbB29v8fPZZ83PCBCkuzoQaZQ02KlvWuVzSp6Ralm+ZGVTauWrnKy8zAODqWCyXX+9wSPVekE4uk06tllJPSdsm5LrLgQPNbflyadUq6dw5KTxc6tRJqlbNbPPaa9KwYWb5/fel//s/qVQpU1fYbNKYMdn3+U3/b/7FmwTymVeIFFRXOrtFOvitVOZGqdp/zefGliztnCK5+0s1HpOUJZj92EalpKdIkpqEN3FV6QEAxVVoB2nX22Z53aNS21mSh7+5nxIrbXhSavmpud/qK6lUK7P9uf3OffhWlKo/nHk3IjhCAZ4Bik+N18ytMyU5w9oBoDgYOFAaN85MIrl7t1S9unTXXZK/v5mActUq8xNFT9+afdW3Zl9XFwPXk7Bu5gYAAAAAAAAAAAAAAAAAAAAAuCyLw3E1iTfFX1xcnIKCgnT27FkFBga6ujgAAAAAAAAAgCt04oT08cfSkiVSQoJUoYLUvbs0aJDk5eXc7tw56auvpPXrpZQUqWpVqU8fqX5915UdAJBFbsHsWWVc8kxPkvb9n7RjsjPA06ecVKGfVHu05FM2931cxKuvSq+8IiUm5nxs6lTp8cevaHdA4do7Q1rzX+f9gBvMZ+D0BiktTmo0War5pCQpOT1ZARMClG5PlyT5efjp7LNn5WZ1c0XJAQDFVXqSNDdCSoo2933CpXK9TSj70fmSLVG6PT37cxx2KW67lBYv+YRJfpVy7LbdJ+207OAyebp5KtWWqhc7vqixHcYWwhsCgMKxdKnUo4c5j5nb423bFm6ZAAAAAAAAAAAAAAAAAAAAAAAAiporyRQnmD0XBLMDAAAAAAAAAAAARcCVBLNnlRZvfnoE/KuXP3VK+vBDac0aM4FHjRrSwIFSmzb/ardAwXPYpWX9pcOzL/54lmB2SWr4QUNtOr5JktSmQhstu39ZYZQSAHC9OTJHWtrX1FMXsrjlDGbPg8d/e1zvrHkn8/6cQXN0c42b/0UhAaDo2btXmjRJ+uwzKTnZrCtZUvrvf6Vx4yQ/P9eWDwAAAAAAAAAAAAAAAAAAAAAAwNWuJFPcvZDKBAAAAAAAAAAAAABX7mrnmf6XgewZSpWS/ve/fNkVULgsVqnN99L+z6St46TEw2a9V4hU5V6p6n3ZNm8a3jQzmL1peNPCLi0A4HpRrrfUYb608WnpzEbnes+SUs2nrmqXjco2uuR9ACgOqlWTPvhAeuMN6eBBycPDrLNaXV0yAAAAAAAAAAAAAAAAAAAAAACAaw/B7AAAAAAAAAAAAAAAFEdWN6na/SaIPfmoJIvkEy5ZLDk2vbPenfL39JckDawzsJALCgC4roR1kcqul2JWSMnHJO8yUnAzyc3rqnbXOKxx5nKoX6jKBZbLr5ICQJHj7y/Vru3qUgAAAAAAAAAAAAAAAAAAAAAAAFzbLA6Hw+HqQhRFcXFxCgoK0tmzZxUYGOjq4gAAAAAAAAAAAAAAAAAALpBmS9OHf38oSQrzD1O/2v1cXCIAAAAAAAAAAAAAAAAAAAAAAAAAQGG7kkxx90IqEwAAAAAAAAAAAAAAAAAA+crDzUOPNX/M1cUAAAAAAAAAAAAAAAAAAAAAAAAAAFwjrK4uAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUNILZAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABR77q4uQFHlcDgkSXFxcS4uCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICLycgSz8gWvxSC2XMRHx8vSapQoYKLSwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgUuLj4xUUFHTJbSyOvMS3X4fsdruio6MVEBAgi8WiuLg4VahQQYcOHVJgYKCriwcAAHJBnQ0AQNFHfQ0AwLWBOhsAgKKP+hoAgGsDdTYAAEUf9TUAANcG6mwAAIo+6msAAK4N1NkAABR91NcAAFwbqLMBAChaHA6H4uPjFR4eLqvVeslt3QupTNccq9Wq8uXL51gfGBjIAQ8AANcA6mwAAIo+6msAAK4N1NkAABR91NcAAFwbqLMBACj6qK8BALg2UGcDAFD0UV8DAHBtoM4GAKDoo74GAODaQJ0NAEDRERQUlKftLh3bDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFAMHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIo9gtnzyMvLS+PGjZOXl5eriwIAAC6BOhsAgKKP+hoAgGsDdTYAAEUf9TUAANcG6mwAAIo+6msAAK4N1NkAABR91NcAAFwbqLMBACj6qK8BALg2UGcDAHDtsjgcDoerCwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcnq6gIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEEjmB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAsUcwOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBij2D2y0hJSdEzzzyj8PBw+fj4qEWLFlq4cKGriwUAwHUrMjJSFovlordVq1Zl23bFihVq27atfH19VbZsWT3++ONKSEhwUckBACieEhISNG7cOHXv3l3BwcGyWCz69NNPL7rt9u3b1b17d/n7+ys4OFh33323Tp48mWM7u92u119/XVWqVJG3t7fq16+vr7/+uoDfCQAAxVte6+zBgwdftM1ds2bNHNtSZwMAkL/Wrl2rxx57THXq1JGfn58qVqyogQMHateuXTm2pY0NAIBr5LW+pn0NAIBr/fPPPxowYICqVq0qX19fhYSEqH379pozZ06ObWljAwDgGnmtr2ljAwBQtLzyyiuyWCyqW7dujsfyOo6LcdsAABS83Orsjh07XrSd3b179xz7oM4GACB/FURWCvU1AAD5K6/1Ne1rAACKD3dXF6CoGzx4sGbNmqXhw4erevXq+vTTT9WzZ0/9+eefatu2rauLBwDAdevxxx9Xs2bNsq2LiIjIXN64caM6d+6sWrVq6c0339Thw4f1xhtvaPfu3frtt98Ku7gAABRbMTExevHFF1WxYkU1aNBAkZGRF93u8OHDat++vYKCgvTqq68qISFBb7zxhrZs2aI1a9bI09Mzc9vnnntOr732mh588EE1a9ZMP//8s+644w5ZLBbdfvvthfTOAAAoXvJaZ0uSl5eXPv7442zrgoKCcmxHnQ0AQP6aOHGili9frgEDBqh+/fo6duyY3n33XTVu3FirVq3KHCRHGxsAANfJa30t0b4GAMCVDhw4oPj4eN17770KDw9XYmKifvjhB91yyy368MMPNWTIEEm0sQEAcKW81tcSbWwAAIqKw4cP69VXX5Wfn1+Ox65kHBfjtgEAKFiXqrMlqXz58powYUK2deHh4Tm2o84GAKBg5GdWCvU1AAAF43L1tUT7GgCA4sLicDgcri5EUbVmzRq1aNFCkyZN0siRIyVJycnJqlu3rkJDQ7VixQoXlxAAgOtPZGSkOnXqpO+//179+/fPdbuePXtq48aN2rFjhwIDAyVJH3/8sR588EEtWLBAXbt2LawiAwBQrKWkpOj06dMqW7as1q1bp2bNmumTTz7R4MGDs203dOhQffrpp9qxY4cqVqwoSVq0aJG6dOmSbSDdkSNHVKVKFQ0ZMkTvvvuuJMnhcKhDhw7av3+/oqKi5ObmVqjvEQCA4iCvdXbGBf6EhIRL7o86GwCA/LdixQo1bdo0W+jb7t27Va9ePfXv319ffvmlJNrYAAC4Ul7ra9rXAAAUPTabTU2aNFFycrJ27NghiTY2AABFzcXqa9rYAAAUHbfffrtOnjwpm82mmJgYbd26NfOxvI7jYtw2AAAF71J1dseOHXOsuxjqbAAA8l9+Z6VQXwMAkP/yWl/TvgYAoPiwuroARdmsWbPk5uaW2alekry9vfXAAw9o5cqVOnTokAtLBwAA4uPjlZ6enmN9XFycFi5cqLvuuivzQoMk3XPPPfL399d3331XmMUEAKBY8/LyUtmyZS+73Q8//KCbb745czC7JN10002qUaNGtrr5559/VlpamoYOHZq5zmKx6JFHHtHhw4e1cuXK/H0DAABcJ/JaZ2ew2WyKi4vL9XHqbAAA8l/r1q2zhbxKUvXq1VWnTh1t3749cx1tbAAAXCev9XUG2tcAABQdbm5uqlChgs6cOZO5jjY2AABFy8Xq6wy0sQEAcK2//vpLs2bN0pQpU3I8diXjuBi3DQBAwbpUnZ1Venr6JSdBo84GAKBg5UdWCvU1AAAFK7f6Oiva1wAAXPsIZr+EDRs2qEaNGtlOUkhS8+bNJUkbN250QakAAIAk3XfffQoMDJS3t7c6deqkdevWZT62ZcsWpaenq2nTptme4+npqYYNG2rDhg2FXVwAAK5rR44c0YkTJ3LUzZJpY2etmzds2CA/Pz/VqlUrx3YZjwMAgIKVmJiowMBABQUFKTg4WI8++miOjgHU2QAAFA6Hw6Hjx48rJCREEm1sAACKogvr6wy0rwEAcL1z584pJiZGe/fu1VtvvaXffvtNnTt3lkQbGwCAouJS9XUG2tgAALiWzWbTsGHD9N///lf16tXL8fiVjONi3DYAAAXncnV2hl27dsnPz08BAQEqW7asxo4dq7S0tGzbUGcDAFBw8isrhfoaAICCc6n6OgPtawAAigd3VxegKDt69KjCwsJyrM9YFx0dXdhFAgDguufp6al+/fqpZ8+eCgkJ0bZt2/TGG2+oXbt2WrFihRo1aqSjR49KUq71+NKlSwu72AAAXNcuVzfHxsYqJSVFXl5eOnr0qMqUKSOLxZJjO4m2OAAABS0sLExPP/20GjduLLvdrvnz52vatGnatGmTIiMj5e5uLitQZwMAUDi++uorHTlyRC+++KIk2tgAABRFF9bXEu1rAACKiqeeekoffvihJMlqterWW2/Vu+++K4k2NgAARcWl6muJNjYAAEXBBx98oAMHDmjRokUXffxKxnExbhsAgIJzuTpbkqpVq6ZOnTqpXr16OnfunGbNmqWXX35Zu3bt0rfffpu5HXU2AAD5L7+zUqivAQDIf3mpryXa1wAAFCcEs19CUlKSvLy8cqz39vbOfBwAABSu1q1bq3Xr1pn3b7nlFvXv31/169fX6NGjNX/+/Mw6Ord6nDocAIDCdbm6OWMbLy8v2uIAALjYhAkTst2//fbbVaNGDT333HOaNWuWbr/9dkmcPwcAoDDs2LFDjz76qFq1aqV7771XEm1sAACKmovV1xLtawAAiorhw4erf//+io6O1nfffSebzabU1FRJtLEBACgqLlVfS7SxAQBwtVOnTun555/X2LFjVbp06YtucyXjuKizAQAoGHmpsyVpxowZ2e7ffffdGjJkiD766CONGDFCLVu2lESdDQBAQcjvrBTqawAA8l9e6muJ9jUAAMWJ1dUFKMp8fHyUkpKSY31ycnLm4wAAwPUiIiLUp08f/fnnn7LZbJl1dG71OHU4AACF63J1c9ZtaIsDAFD0jBgxQlarVYsWLcpcR50NAEDBOnbsmHr16qWgoCDNmjVLbm5ukmhjAwBQlORWX+eG9jUAAIWvZs2auummm3TPPfdo7ty5SkhIUO/eveVwOGhjAwBQRFyqvs4NbWwAAArPmDFjFBwcrGHDhuW6zZWM46LOBgCgYOSlzs7NU089JUm0swEAcIF/k5VCfQ0AQOG4sL7ODe1rAACuTQSzX0JYWJiOHj2aY33GuvDw8MIuEgAAyEWFChWUmpqqc+fOKSwsTJJyrcepwwEAKFyXq5uDg4MzZ3kNCwvTsWPHcgysoy0OAIDr+Pj4qFSpUoqNjc1cR50NAEDBOXv2rHr06KEzZ85o/vz52epV2tgAABQNl6qvc0P7GgAA1+vfv7/Wrl2rXbt20cYGAKCIylpf54Y2NgAAhWP37t2aPn26Hn/8cUVHRysqKkpRUVFKTk5WWlqaoqKiFBsbe0XjuBi3DQBA/strnZ2bChUqSFKOdjZ1NgAAheNqs1KorwEAKDxZ6+tLbSPRvgYA4FpDMPslNGzYULt27VJcXFy29atXr858HAAAFA379u2Tt7e3/P39VbduXbm7u2vdunXZtklNTdXGjRupwwEAKGTlypVT6dKlc9TNkrRmzZpsdXPDhg2VmJio7du3Z9uOtjgAAK4THx+vmJgYlS5dOnMddTYAAAUjOTlZvXv31q5duzR37lzVrl072+O0sQEAcL3L1de5oX0NAIDrJSUlSTKTrNDGBgCgaMpaX+eGNjYAAIXjyJEjstvtevzxx1WlSpXM2+rVq7Vr1y5VqVJFL7744hWN42LcNgAA+S+vdXZu9u3bJ0k52tnU2QAAFI6rzUqhvgYAoPBkra8vtY1E+xoAgGsNweyX0L9/f9lsNk2fPj1zXUpKij755BO1aNEic2YaAABQeE6ePJlj3aZNm/TLL7+oa9euslqtCgoK0k033aQvv/xS8fHxmdt98cUXSkhI0IABAwqzyAAAQFK/fv00d+5cHTp0KHPd4sWLtWvXrmx1c58+feTh4aFp06ZlrnM4HPrggw9Urlw5tW7dulDLDQDA9SQ5OTlbOzrDSy+9JIfDoe7du2euo84GACD/2Ww23XbbbVq5cqW+//57tWrV6qLb0cYGAMB18lJf074GAMD1Tpw4kWNdWlqaPv/8c/n4+GROrEIbGwAA18lLfU0bGwAA16pbt65mz56d41anTh1VrFhRs2fP1gMPPHBF47gYtw0AQP7La50dFxenlJSUbM91OBx6+eWXJUndunXLXE+dDQBA/svvrBTqawAA8l9e6mva1wAAFC/uri5AUdaiRQsNGDBAo0eP1okTJxQREaHPPvtMUVFRmjFjhquLBwDAdem2226Tj4+PWrdurdDQUG3btk3Tp0+Xr6+vXnvttcztXnnlFbVu3VodOnTQkCFDdPjwYU2ePFldu3bN1gkfAAD8e++++67OnDmj6OhoSdKcOXN0+PBhSdKwYcMUFBSk//3vf/r+++/VqVMnPfHEE0pISNCkSZNUr1493XfffZn7Kl++vIYPH65JkyYpLS1NzZo1008//aSlS5fqq6++kpubm0veIwAAxcHl6uzTp0+rUaNGGjRokGrWrClJWrBggX799Vd1795dffr0ydwXdTYAAPnvqaee0i+//KLevXsrNjZWX375ZbbH77rrLkmijQ0AgAvlpb4+duwY7WsAAFzsoYceUlxcnNq3b69y5crp2LFj+uqrr7Rjxw5NnjxZ/v7+kmhjAwDgSnmpr6OiomhjAwDgQiEhIerbt2+O9VOmTJGkbI/ldRwX47YBAMh/ea2zIyMjNWjQIA0aNEgRERFKSkrS7NmztXz5cg0ZMkSNGzfOfC51NgAA+S+/s1KorwEAyH95qa/Xr19P+xoAgGLE4nA4HK4uRFGWnJyssWPH6ssvv9Tp06dVv359vfTSS9lmowEAAIXn7bff1ldffaU9e/YoLi5OpUuXVufOnTVu3DhFRERk23bZsmV65plntH79egUEBGjgwIGaMGGCAgICXFR6AACKp8qVK+vAgQMXfWz//v2qXLmyJOmff/7Rk08+qWXLlsnT01O9evXS5MmTVaZMmWzPsdvtmjhxoj788EMdPXpU1atX1+jRo3XnnXcW9FsBAKBYu1ydXaJECQ0bNkyrVq1SdHS0bDabIiIidOedd2rkyJHy8PDI9hzqbAAA8lfHjh21ZMmSXB/PemmfNjYAAK6Rl/r6zJkztK8BAHCxb775RjNmzNCWLVt06tQpBQQEqEmTJho2bJhuueWWbNvSxgYAwDXyUl/TxgYAoGjq2LGjYmJitHXr1mzr8zqOi3HbAAAUjgvr7P379+uZZ57R2rVrdezYMVmtVtWqVUsPPvighgwZIovFku351NkAAOSvgshKob4GACB/5aW+pn0NAEDxQjA7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGLP6uoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBBI5gdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQLFHMDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAYo9gdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFHsHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIo9gtkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFHsEswMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo9ghmBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDsEcwOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoNgjmB0AAAAAAAAAAAAAAAAAAAAAUGxFRUXJYrFo8ODBV/Q8i8Wijh07FkiZAAAAAAAAAAAAAAAAAAAAAACuQTA7AAAAAAAAAAAAAAAAAAAAAKDAZASjZ715enqqQoUKuuOOO7R582aXlKtjx46yWCwueW0AAAAAAAAAAAAAAAAAAAAAgGu4u7oAAAAAAAAAAAAAAAAAAAAAAIDir1q1arrrrrskSQkJCVq1apW+/vpr/fjjj1q8eLHatGlTIK9brlw5bd++XUFBQVf0vO3bt8vX17dAygQAAAAAAAAAAAAAAAAAAAAAcA2C2QEAAAAAAAAAAAAAAAAAAAAABS4iIkLjx4/Ptm7MmDF65ZVX9NxzzykyMrJAXtfDw0M1a9a84uddzXMAAAAAAAAAAAAAAAAAAAAAAEWb1dUFAAAAAAAAAAAAAAAAAAAAAABcn4YNGyZJWrt2rSQpPT1db775pho0aCAfHx8FBQWpU6dOmjNnTo7n2u12ffzxx2revLmCg4Pl4+Oj8uXLq3fv3tlC3qOiomSxWDR48ODMdRaLRUuWLMlczrhduE3Hjh1zvG5MTIyGDx+uKlWqyMvLS6GhoRo4cKC2bt2aY9vBgwfLYrFo//79evvtt1WzZk15eXmpUqVKeuGFF2S326/itwYAAAAAAAAAAAAAAAAAAAAAuFruri4AAAAAAAAAAAAAAAAAAAAAAOD6ZrFY5HA41L9/f/3888+qUaOGHn30UZ07d07ffvutbrnlFr355psaMWJE5nNGjx6t119/XdWqVdMdd9yhgIAAHTlyRMuWLdOiRYsuGqqeYdy4cfr000914MABjRs3LnN9w4YNL1nOkydPqlWrVtq7d686duyo22+/Xfv379esWbM0b948LViwQG3bts3xvFGjRmnJkiW6+eab1a1bN/30008aP368UlNT9corr1zx7wsAAAAAAAAAAAAAAAAAAAAAcHUIZgcAAAAAAAAAAAAAAAAAAAAAuMS0adMkSc2bN9cXX3yhn3/+WR06dNDvv/8uT09PSSaAvUmTJnr66afVp08fVa1aVZL08ccfKzw8XJs3b5avr2+2/cbGxl7ydcePH6/IyEgdOHBA48ePz3N5n3nmGe3du1ejR4/Wq6++mrn+119/Va9evXTfffdp586dslqt2Z63fv16bd68WWFhYZKksWPHqnr16nrnnXc0bty4zPcKAAAAAAAAAAAAAAAAAAAAAChY1stvAgAAAAAAAAAAAAAAAAAAAADAv7Nnzx6NHz9e48eP16hRo9S+fXu9+OKL8vb21iuvvKLPPvtMkvT6669nCyqvWLGiRowYofT0dH311VfZ9unp6Sk3N7ccrxUcHJzv5U9NTdXXX3+tUqVKacyYMdke69mzp7p06aI9e/Zo+fLlOZ47duzYzFB2SQoJCVGfPn0UHx+vnTt35ntZAQAAAAAAAAAAAAAAAAAAAAAXRzA7AAAAAAAAAAAAAAAAAAAAAKDA7d27Vy+88IJeeOEFTZ06Vfv379cdd9yhNWvWqFWrVtqwYYN8fX3VvHnzHM/t1KmTJGnjxo2Z626//XZFRUWpbt26Gjt2rP744w8lJSUVWPl37Nih5ORkNW/eXL6+vnkqY4YmTZrkWFe+fHlJ0pkzZ/K1nAAAAAAAAAAAAAAAAAAAAACA3BHMDgAAAAAAAAAAAAAAAAAAAAAocN26dZPD4ZDD4VBqaqoOHTqkr776SvXq1ZMkxcXFKTQ09KLPDQsLy9wmw9SpUzVp0iR5enrq5ZdfVufOnRUcHKx7771XMTEx+V7+jNcuU6ZMnsuYITAwMMc6d3d3SZLNZsuvIgIAAAAAAAAAAAAAAAAAAAAALoNgdgAAAAAAAAAAAAAAAAAAAACAywUGBurEiRMXfezYsWOZ22Rwd3fXyJEj9c8//+jIkSOaOXOm2rVrp88//1x33nlngZRPko4fP57nMgIAAAAAAAAAAAAAAAAAAAAAihaC2QEAAAAAAAAAAAAAAAAAAAAALteoUSMlJiZqzZo1OR6LjIyUJDVs2PCizw0PD9egQYM0f/58RUREaNGiRUpKSrrk67m5uUmSbDZbnspXs2ZNeXt7a+3atUpMTLziMgIAAAAAAAAAAAAAAAAAAAAAXI9gdgAAAAAAAAAAAAAAAAAAAACAy917772SpNGjRystLS1z/aFDh/Tmm2/K3d1dd955pyQpJSVFK1asyLGPc+fOKSEhQR4eHrJaL91dPjg4OHP/eeHp6alBgwYpJiZGEyZMyPbY/PnztWDBAkVERKhNmzZ52h8AAAAAAAAAAAAAAAAAAAAAoPC5u7oAAAAAAAAAAAAAAAAAAAAAAADcfffd+vHHH/Xzzz+rfv36uvnmm3Xu3Dl9++23io2N1eTJk1W1alVJUlJSktq0aaMaNWqoSZMmqlixohISEjR37lwdO3ZMI0eOlJeX1yVf78Ybb9SsWbPUr18/9ejRQ97e3mrQoIF69+6d63MmTpyoJUuW6OWXX9aKFSvUokULRUVF6fvvv5evr68++eSTywbCAwAAAAAAAAAAAAAAAAAAAABch2B2AAAAAAAAAAAAAAAAAAAAAIDLWSwWzZo1S1OnTtVnn32md955R56enmrcuLGefPJJ3XLLLZnb+vn5aeLEiVq8eLGWLl2qEydOqGTJkrrhhhs0YcIE3X777Zd9vQcffFBRUVH65ptvNHHiRKWnp+vee++9ZDB76dKltXr1ar300kv6+eeftXTpUgUFBalv374aN26c6tatmy+/CwAAAAAAAAAAAAAAAAAAAABAwbA4HA6HqwsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXJ6uoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBBI5gdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQLFHMDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAYo9gdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFHsHsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIo9gtkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFHsEswMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo9ghmBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDsEcwOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoNgjmB0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAsUcwOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBij2B2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMUewewAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAir3/B/3WMxx/8m/tAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "crested.pl.patterns.contribution_scores(\n",
- " scores,\n",
- " one_hot_encoded_sequences,\n",
- " sequence_labels=regions_of_interest,\n",
- " class_labels=classes_of_interest,\n",
- " zoom_n_bases=600,\n",
- " title=\"FIRE Enhancer Region\",\n",
- ") # zoom in on the center 600bp"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Sequence evolution"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "We can create synthetic enhancers for a specified class using in silico evolution with the {meth}`~crested.tl.Crested.enhancer_design_in_silico_evolution` method."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "designed_sequences = evaluator.enhancer_design_in_silico_evolution(\n",
- " target_class=\"Astro\", n_sequences=1, n_mutations=25\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## TFModisco\n",
- "\n",
- "For ease of use, we've included the TFModisco Lite functionality inside the CREsted package. \n",
- "\n",
- "To calculate the contribution scores in the format required for TFModisco, use the {meth}`~crested.tl.Crested.tfmodisco_calculate_and_save_contribution_scores` method. \n",
- "This will save the contribution scores in the correct format for TFModisco Lite. \n",
- "\n",
- "Since this will calculate contribution scores for all regions in your dataset, it's recommended to only run this on a subset of your data. \n",
- "We've included a preprocessing function {func}`crested.pp.sort_and_filter_regions_on_specificity` to keep the top k most specific regions per cell type that you can use to filter your data before running TFModisco."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T16:43:03.596883+0200 INFO After sorting and filtering, kept 9500 regions.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "AnnData object with n_obs × n_vars = 19 × 9500\n",
- " obs: 'file_path'\n",
- " var: 'chr', 'start', 'end', 'split', 'Class name', 'rank', 'gini_score'\n",
- " obsm: 'weights'\n",
- " layers: 'checkpoint_15'"
- ]
- },
- "execution_count": 49,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "# most informative regions per class\n",
- "adata_filtered = adata.copy()\n",
- "crested.pp.sort_and_filter_regions_on_specificity(adata_filtered, top_k=500)\n",
- "adata_filtered"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Remember to reinitialize your crested object with the new data\n",
- "datamodule = crested.tl.data.AnnDataModule(\n",
- " adata_filtered,\n",
- " genome_file=\"../../../Crested_testing/data/tmp/mm10.fa\",\n",
- ")\n",
- "\n",
- "evaluator = crested.tl.Crested(data=datamodule)\n",
- "\n",
- "# load an existing model\n",
- "evaluator.load_model(\n",
- " \"../../../Crested_testing/mouse_biccn/chrombpnet_filtered_2114bp/15.keras\",\n",
- " compile=True,\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "Now you can calculate the contribution scores for all the regions in your filtered anndata. \n",
- "By default, the contribution scores are calculated using the expected integrated gradients method, but you can change this to simple integrated gradients to speed up the calculation (this might result in less accurate scores)."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# calculate contribution scores for all regions and save them to output_dir\n",
- "evaluator.tfmodisco_calculate_and_save_contribution_scores(\n",
- " output_dir=\"../../../Crested_testing/mouse_biccn/chrombpnet_filtered_2114bp/contribution_scores\",\n",
- " method=\"integrated_grad\",\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "When this is done, you can run TFModisco Lite on the saved contribution scores to find motifs that are important for the classification/regression task. \n",
- "\n",
- "You could use the tfmodisco package directly to do this, or you could use the {func}`crested.tl.tfmodisco` function which is essentially a wrapper around the tfmodisco package."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# run tfmodisco on the contribution scores\n",
- "crested.tl.tfmodisco(\n",
- " contrib_dir=\"../../../Crested_testing/mouse_biccn/chrombpnet_filtered_2114bp/contribution_scores\",\n",
- " output_dir=\"../../../Crested_testing/mouse_biccn/chrombpnet_filtered_2114bp/tfmodisco_results\",\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "When this is done, you can plot the results using the {func}`crested.pl.patterns.modisco_results` function."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "crested.pl.modisco_results(\n",
- " classes=[\"Astro\", \"Endo\"],\n",
- " contribution=\"positive\",\n",
- " contribution_dir=\"../../../Crested_testing/mouse_biccn/chrombpnet_filtered_2114bp/tfmodisco_results\",\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Plotting\n",
- "\n",
- "There is a bunch of plotting functions available in the `crested.pl` module to visualize the results of the model.\n",
- "We will show some examples below, but refer to the documentation for more information. \n",
- "\n",
- "All the plotting functions using {func}`crested.pl.render_plot` to render the plots. You can refer to the documentation of this function to customize the plots to your liking."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Regions of interest"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {},
- "outputs": [],
- "source": [
- "%matplotlib inline"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T16:16:09.870822+0200 INFO Plotting bar plots for region: chr18:60577255-60579369, models: ['checkpoint_15']\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAJRCAYAAACN9sAAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClYUlEQVR4nOzde5xXdZ0/8NeAw2VQ8AIi1Ig30MQLKV4z0kjzEq5rCMW6orbh1qrrYla06wJmpVa6laGWl8E1NoW0Iqm8G94vePmV4hXxAqikgMrFEb6/P1xmnZ0BZoaDX+a7z6ePecT3c87nnPf3db7fqXzzOaeqVCqVAgAAAAAAALRrHcpdAAAAAAAAALD+NP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAGAjsd1226WqqqrRT+fOnbPttttm5MiRmTlzZrlLbDBhwoRUVVVlwoQJjcbr6upSVVWVE088cYPX8MILL6SqqirbbbfdBj/X/0Xz5s3LhAkT8slPfjLbbLNNOnXqlM022yz9+/fP8OHDc/nll2fRokXlLrOsTjzxxFRVVaWurm6d+67+zrT254477tjg72NNVv9OeuGFF8pWAwAA0DqblLsAAACgsU984hPZaaedkiSLFi3KQw89lOuuuy5Tp07ND37wg4wdO7bMFX44tttuu8ydOzdz5szR3PuQ/eAHP8i//du/ZcWKFenatWv22Wef9OnTJ++9915efPHF/PrXv86vfvWrnHnmmbnxxhtz0EEHlbvkjd6gQYMyevToJuN/+MMf8uqrr2bPPffMoEGDmmzfZpttNkg9EyZMyMSJEzN+/PgmDXwAAKD90vgDAICNzD/8wz80WjG3fPnynHLKKbn66qvz9a9/PZ/73OcyYMCA8hW4Fn/7t3+b/fffPz169Njg5/rIRz6SJ598MtXV1Rv8XP+XfOMb38gFF1yQTp065YILLsipp56arl27Ntpn8eLFueqqq3L++efn5ZdfLlOl7csxxxyTY445psn4wQcfnFdffTXHHHOMBhwAALDe3OoTAAA2cl26dMlPf/rTdOvWLStXrsz1119f7pLWqEePHtlll13Sp0+fDX6u6urq7LLLLtlxxx03+Ln+r7jllltywQUXJEmuu+66nHXWWU2afsn71/mMM87IE088kcGDB3/YZQIAALAGGn8AANAObLrpptl5552TpNHztlY/ByxJrrrqqhxwwAHp0aNHk+dyzZs3L2PHjs3HPvax1NTUZLPNNss+++yTiy++OO+9916z51y2bFkmTJiQ/v37p3PnzunTp09Gjx6dF198cY11rusZf6+88krOOuus7L777tlss83SrVu3DBgwICeeeGLuueeeRseYO3dukmT77bdv9pln63rG38svv5zTTjst/fv3T5cuXdKjR4984hOfyGWXXZaVK1eutfZ33nkn48aNy0477ZTOnTtnm222yejRo/PKK680e65bbrklw4YNS+/evVNdXZ0tttgi/fv3z/HHH58//elPa8zrg774xS+mqqoq55133hr3+d3vfpeqqqp8/OMfbzQ+derUfOYzn8lWW22V6urqbLXVVtl1113z5S9/OY8//niLzp8k5557bpL3V27+zd/8zTr332KLLRpuS7vaB3N84403csYZZ2THHXdM586dc/DBBzfs99577+XSSy/NgQcemB49eqRLly7p379/Tj/99GZzbskzHdf0TLoPjt9+++057LDDssUWW6Rr167Za6+9cvXVV6/xmKvfQ79+/RqeuXnqqafmjTfeWGc+66sl3+91PYevuecQVlVVZeLEiUmSiRMnNvp+rem729rcAACA8nCrTwAAaCeWLFmSJOncuXOTbaeddlomTZqUAw88MEcddVSef/75hobBn/70pxxzzDF58803s9122+XQQw/NihUr8sADD+S0007L9OnT87vf/a7RLTOXLl2aoUOH5r777ku3bt1y2GGHpWvXrvnjH/+YG2+8MUcddVSr67/11lszfPjwLFq0KFtvvXWGDh2aTp065YUXXsiUKVOSJAceeGB22mmnjB49OtOmTcs777yTz3/+89l0000bjtOSZ549+OCDOfzww/PGG29k2223zTHHHJPFixfnjjvuyD333JMbbrghv/3tb9OpU6cmcxcvXpwDDzwwL774Yj75yU9mt912y7333purr746d955Zx577LFGtzKdPHlyTjrppCTJvvvum0MOOSTLli3Lyy+/nF/+8pfp2bNnhgwZss6aTzrppPzyl7/M5MmT881vfrPZfa666qokycknn9wwds4552T8+PHZZJNNcuCBB+YjH/lIFi9enBdffDFXXHFFBg4cmD322GOd53/zzTczc+bMJMnf//3fr3P/dVm4cGEGDx6cRYsW5ZOf/GT23nvvhrxXrFiRz33uc7nlllvSpUuXHHLIIenevXvuueee/OQnP8l//dd/5Y9//GP22muv9a7jg6688sqce+652WuvvXL44YfnhRdeyH333ZfRo0c3NPg+6NVXX80nP/nJPPPMM9liiy3yuc99LqtWrcovfvGL/OEPf8jAgQMLrW9N1vb9bovRo0fn0UcfzWOPPdbk2YLNPa+xtbkBAABlVAIAADYK/fr1KyUpXXXVVU22PfbYY6UOHTqUkpSuvPLKhvEkpSSl7t27l+69994m8+bPn1/aaqutSlVVVaVJkyaVVq5c2bBt4cKFpU9/+tOlJKWJEyc2mve1r32tlKS0yy67lF555ZWG8Xfeeaf0N3/zNw3nHT9+fKN5V111VSlJafTo0Y3GX3zxxVKPHj1KSUrf/OY3SytWrGi0/dVXXy3NnDmz2TzmzJnTXFylOXPmlJKU+vXr12h8+fLlDXP/8R//sfTuu+82bHvuuedK2223XSlJ6Vvf+laztScpffazny0tXry4Ydsbb7xRGjRoUClJ6bvf/W6jedtvv30pSZP6V7+vWbNmNVv//7Zy5crStttuW0rS7LV8/fXXS9XV1aVOnTqVFi5c2PBeu3btWtp0001Ls2fPbjLnhRdeKD355JMtOv+tt97a8P5feumlFs1pzgdzHDp0aKMcV/vGN75RSlLacccdG13fd999t/SlL32plKS0/fbbN/qcrOl6f9CaPjOrx6urq0vTp09vtt4ePXqUli5d2mjb8OHDS0lKn/zkJ0uLFi1qGP/rX/9a2m+//RreZ3Pf2Zb61Kc+1ex3qVRa9/f7g+9tTd+T0aNHN1vj+PHj13je/33s1uYGAACUj1t9AgDARmzx4sWZMWNGjj322KxatSp9+/bNiBEjmuz3ta99Lfvvv3+T8f/4j//IX//61/zTP/1TvvKVr6RDh//5vwBbbbVVrr766lRXV+fiiy9OqVRK8v4tPi+77LIkyUUXXZS+ffs2zKmpqcmll16aLl26tOp9XHjhhVm8eHGGDRuW733ve01W2m299dbNrjRqi6lTp2bu3Lnp27dv/uM//qPRSsYddtghP/jBD5IkP/nJT7J8+fIm87t165arrroq3bt3bxjbYostGlbh3XLLLY32f/XVV9OjR49m6996662b3JZzTTp06JDRo0cn+Z+VfR/0i1/8IvX19Tn66KOz1VZbJXl/FeiyZcuyww47NNwK9oP69euXXXbZpUXnX7hwYcOfe/Xq1ew+p512Wk488cRGP2u6NWl1dXV+9rOfNcoxSZYvX56f/vSnSd7/fH3w1p3V1dX58Y9/nN69e2fOnDmZNm1ai2pvqdNOOy2f+9znGo2deOKJ2WWXXbJ48eI89NBDDeMvvfRSrr/++lRVVeXSSy9ttMpzyy23zKWXXlpobWuzpu/3h6U1uQEAAOWl8QcAABuZk046qeF5W5tvvnmOOuqoPPfcc9lxxx0zY8aMdOvWrcmc4cOHN3usG2+8MUkycuTIZrd/5CMfSf/+/fP666/nmWeeSZLMmjUrb731Vnr27JnDDz+8yZxtttkmhx12WKve0x/+8IckyZgxY1o1ry1WPwPwC1/4QrO3RT322GOzxRZb5K233srDDz/cZPvgwYPTp0+fJuMf+9jHkqTJ8+f23XffLF68OCeccEIefvjhrFq1qs21r34e27XXXptly5Y12tbcbT579eqV7bbbLo8//njOPPPMPPHEE20+d0v813/9VyZPntzoZ/W1/d8+/vGPZ4cddmgy/tBDD+Xtt9/OlltumWHDhjXZXlNTky984QtJ3n+uXJGaO1/S/LX905/+lFWrVmWvvfbKrrvu2mTOoEGDWnQL1SKs6fv9YWlNbgAAQHlp/AEAwEbmE5/4REaPHp3Ro0fny1/+cv71X/8106dPz+zZs7Pnnns2O+eDq6Y+6Pnnn0+SfPKTn2xoJv7vn9XNotdffz1J8vLLL6/1mEmy/fbbt+o9zZ07N0lavPpsfaxuQqypxqqqqoZtzTUstt1222bnrV659r9XCU6aNCk77LBD/vM//zODBw/O5ptvnqFDh+Y73/lOXnzxxVbVvsMOO+RTn/pUFi9enBtuuKFh/JFHHsljjz2Wvn37Nmm6Xn311dl6661z4YUXZuDAgdlqq61y5JFH5qKLLmq0im9devbs2fDn1Z+F/23hwoUplUoplUr5z//8z7Ueb02fn3VdnyTZcccdG+1blNZc29Xfg7XV2drvQVut7bv4YWjtdwIAACifTcpdAAAA0Ng//MM/5MQTT2zVnK5duzY7vnr12fDhw5tdKfhBq28f+X/dB2+H2hIf+9jH8tRTT+Wmm27KbbfdlnvuuSczZ87MbbfdlnPOOSdXXHFFjj/++BYf7+STT84dd9yRurq6jBo1Ksn/rPY74YQT0rFjx0b7f/KTn8wLL7yQG2+8MXfeeWfuueee/PGPf8zvf//7jB8/PjfccEOGDh26zvMOGjQoHTp0yKpVq/LQQw/lox/9aCtSaGpNn8kNaV2rLVt7bTcW65Pl+qxAXa295gYAAP8XafwBAEAFq62tzTPPPJNvfOMbGTx4cIvmfOQjH0mSvPDCC2vcZ23bmrPtttvmqaeeyuzZs7PTTju1am5rra5/9WrH5syZM6fRvutrk002yZFHHpkjjzwyyfvP3rvwwgszceLEnHLKKfnbv/3bdTZeV/v85z+fU089Nbfeemteeuml9O7dO1OmTEny/m1gm9O1a9cMHz684ZaQr7/+ev7t3/4tP/vZz3LyySc3rLhcmy233DKf+MQnMnPmzFxzzTU55phjWlRva63OfPU1aM7qa/fB67P6uZBvvfVWs3Pq6+szf/78osrcIN+DDWFdubTk2gMAAJXDX9sDAIAKdsQRRyRJrrvuuhbP2XvvvbPppptm4cKFuemmm5psf/XVV5sdX5vVzwr8+c9/3uI5qxsa7733XqvOdfDBBydJrr322mZvQXjDDTfkzTffzGabbZa99967Vcduqe7du2fChAnZfPPNs3Tp0jz99NMtnltTU5ORI0dm1apVufrqqzN9+vT89a9/zSc+8YkMGDCgRcfo1atXLrjggiTJiy++mDfffLNF8/7t3/4tSXL99dc3PB+yaIMHD86mm26aN954I7/97W+bbF+2bFl++ctfJkkOOeSQhvFevXqlU6dOeeONN/Laa681mffHP/6x1Z+VtRkyZEiqqqoya9aszJ49u8n2xx57LI8//nhh52ur1Q3KJ598ssm2BQsWZNasWc3Oa+v3CwAA2Lhp/AEAQAU766yzsvnmm+fCCy/MD3/4w7z77rtN9pkzZ06uueaahtddu3bNmDFjkiT/8i//0mgV1bJly/KVr3wly5Yta1UdY8eOzWabbZbf/va3+bd/+7fU19c32v7aa6/lrrvuajS2+laTf/nLX1p1ruOOOy7bbrtt5s2bl7FjxzZqbMyZMydnnnlmkuS0005Lly5dWnXs/23p0qW58MILm30m3syZM7No0aJ07Nix1bfNPPnkk5MkdXV1ufLKK5M0v9pv7ty5ufzyy7NkyZIm26ZPn54k2WKLLRqexbYuhx12WM4888yUSqV8/vOfz4UXXtjstV6xYkUeeuihFr+fD+rSpUv+6Z/+KUly5plnNlqRVl9fn3/+53/OggULsv322zesYEyS6urqDBkyJMn7DcoP3sLysccey6mnntqmetZk2223zd/+7d9m1apV+cpXvtIo4zfffDNf/epXUyqVCj1nW3zmM59Jkpx//vlZtGhRw/jrr7+eE044IW+//Xaz89r6/QIAADZubvUJAAAV7KMf/Wh+85vf5POf/3y+9rWv5YILLshuu+2WPn36ZPHixXnyySfz3HPPZb/99mv0HLpzzjknd911Vx544IEMGDAghxxySLp06ZKZM2emvr4+J5xwQq6++uoW17Httttm2rRpGT58eL7zne/k8ssvzwEHHJDq6urMnTs3jzzySEaNGpWDDjqoYc7nP//53H777Tn++ONz2GGHZYsttkjyfjNz5513XuO5OnfunGnTpuXwww/PJZdckhkzZmT//ffPW2+9ldtuuy3Lly/PZz/72YwfP74NiTb27rvv5swzz8xZZ52V3XffPf379091dXVeeOGF3HfffUmSf/3Xf02vXr1addz9998/H/vYx/Lkk0/m2WefTbdu3TJy5Mgm+7355pv58pe/nK9+9asZNGhQtt9++yTJM888k0ceeSRVVVX5/ve/3+S5gGvzgx/8ID179sz48eNz5pln5uyzz84+++yTPn36pKqqKvPnz89DDz2Ut99+O5tttlmOO+64Vr23JJk4cWIeeuih3HrrrfnYxz6WQw45JJtttlnuvffevPjii9lqq60yderUhlVpq5177rn505/+lJ///Oe58847s8cee+SVV17JQw89lFGjRuWOO+4o9NaWP/3pT/PYY4/ljjvuyPbbb5+DDz44pVIpt99+e7baaqscffTRza5a/DD90z/9U37+859n1qxZ2XnnnXPAAQfknXfeyYMPPphtt902xxxzTH796183mffZz3423bp1y69//escdNBB6d+/fzp27JhPfOITa7ylLAAAsPGz4g8AACrckCFD8pe//CVnn312PvrRj+bBBx/M1KlT8+ijj6Z3794ZP358k1twduvWLbfffnvOPvvs9O7dO3/84x/zpz/9KUOHDs1DDz3U0GBqjcMOOyx//vOf88///M/ZfPPN84c//CG///3vs2jRovz93/99/vEf/7HR/l/5ylfyve99L/369cuMGTNyxRVX5IorrmjRc9z22WefPProo/mnf/qndOzYMTfccENmzpyZj3/847nkkkvyu9/9rklTqS023XTTXHrppRk5cmRWrFiRm2++Ob/+9a/z2muv5dhjj82tt96aiRMntunYH2y+DB8+PJtuummTfXbcccf8x3/8Rz73uc9l0aJFmTFjRm688ca88847OeGEE/Lggw/mS1/6UqvP/c1vfjPPPfdc/v3f/z0f//jH88QTT2TatGn57W9/mxdffDGHHnpoLrvsssydO7dh9V5rdO7cOX/4wx8yadKk7Lnnnpk5c2ZuuOGGVFdX57TTTstjjz3W7G1Y99tvv9x555057LDDsmDBgtx4441ZunRpfvSjH+Wqq65qdR3rss022+T+++/Paaedlpqamvzud7/Lgw8+mC984Qu57777GprR5bT55pvn7rvvzgknnJAk+f3vf5/nnnsuY8aMyT333JMePXo0O6937975/e9/n8985jN54okncvXVV+eKK67InXfe+WGWDwAAFKyqtDHcmwQAAAAAAABYL1b8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACrAJuUuYGOwatWqzJs3L5tttlmqqqrKXQ4AAAAAAAAkSUqlUt5666307ds3HTqsfU2fxl+SefPmpba2ttxlAAAAAAAAQLNeeumlfPSjH13rPhp/STbbbLMk7wfWvXv3MldDa9TX1+emm27KYYcdlurq6nKX067JsjiyLI4siyHH4siyOLIsjiyLI8viyLI4siyOLIsjy2LIsTiyLI4siyPL4siyOLJsv5YsWZLa2tqGftbaaPwlDbf37N69u8ZfO1NfX5+ampp0797dL6r1JMviyLI4siyGHIsjy+LIsjiyLI4siyPL4siyOLIsjiyLIcfiyLI4siyOLIsjy+LIsv1ryePq1n4jUAAAAAAAAKBd0PgDAAAAAACAClDWxt9f/vKXHHfccdlhhx1SU1OTnj17ZsiQIZk+fXqL5i9atChjxoxJr1690q1btxxyyCGZNWvWBq4aAAAAAAAANj5lfcbf3Llz89Zbb2X06NHp27dvli5dml/96lc5+uijc9lll2XMmDFrnLtq1aocddRReeyxx3LWWWelZ8+emTRpUg4++OA8/PDD6d+//4f4TgAAAAAAAKC8ytr4O/LII3PkkUc2Gjv11FOz995758ILL1xr42/atGm55557MnXq1AwfPjxJMmLEiAwYMCDjx4/PlClTNmjtAAAAAAAAsDHZ6J7x17Fjx9TW1mbRokVr3W/atGnp3bt3jj322IaxXr16ZcSIEfnNb36TFStWbOBKAQAAAAAAYOOxUTT+3nnnnSxcuDDPPfdcLrroovz+97/P0KFD1zrnkUceyV577ZUOHRq/hX333TdLly7N008/vSFLBgAAAAAAgI1KWW/1udqZZ56Zyy67LEnSoUOHHHvssbn44ovXOmf+/PkZMmRIk/E+ffokSebNm5fdd9+92bkrVqxotCJwyZIlSZL6+vrU19e36T1QHquvl+u2/mRZHFkWR5bFkGNxZFkcWRZHlsWRZXFkWRxZFkeWxZFlMeRYHFkWR5bFkWVxZFkcWbZfrblmVaVSqbQBa2mR2bNn5+WXX868efNy3XXXpVOnTrnkkkvSu3fvNc7p2LFjTjnllEyaNKnR+G233ZahQ4fmhhtuyDHHHNPs3AkTJmTixIlNxqdMmZKampr1ei8AAAAAAABQlKVLl2bUqFFZvHhxunfvvtZ9N4oVf7vsskt22WWXJMkJJ5yQww47LMOGDcv999+fqqqqZud07dq12ef4LV++vGH7mowbNy5jx45teL1kyZLU1tbmsMMOW2dgbFzq6+tz880359BDD011dXW5y2nXZFkcWRZHlsWQY3FkWRxZFkeWxZFlcWRZHFkWR5bFkWUx5FgcWRZHlsWRZXFkWRxZtl+r71zZEhtF4+9/Gz58eE455ZQ8/fTT2XnnnZvdp0+fPpk/f36T8dVjffv2XePxO3funM6dOzcZr66u9mFvp1y74siyOLIsjiyLIcfiyLI4siyOLIsjy+LIsjiyLI4siyPLYsixOLIsjiyLI8viyLI4smx/WnO9OmzAOtps2bJlSZLFixevcZ9BgwZl1qxZWbVqVaPx+++/PzU1NRkwYMAGrREAAAAAAAA2JmVt/L322mtNxurr63P11Vena9eu2XXXXZO8v4pv9uzZjR5eOHz48Lz66qu5/vrrG8YWLlyYqVOnZtiwYc2u6AMAAAAAAIBKVdZbfZ5yyilZsmRJhgwZko985CNZsGBBfvGLX2T27Nn54Q9/mE033TTJ+8/kmzx5cubMmZPtttsuyfuNv/333z8nnXRSnnjiifTs2TOTJk3KypUrM3HixDK+KwAAAAAAAPjwlbXxN3LkyFxxxRW55JJL8te//jWbbbZZ9t5775x//vk5+uij1zq3Y8eOmTFjRs4666z8+Mc/zrJly7LPPvukrq5ujc8FBAAAAAAAgEpV1sbfF77whXzhC19Y5351dXWpq6trMr7FFlvk8ssvz+WXX74BqgMAAAAAAID2o6zP+AMAAAAAAACKofEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKUNbG34MPPphTTz01AwcOTLdu3bLttttmxIgRefrpp9c5t66uLlVVVc3+LFiw4EOoHgAAAAAAADYem5Tz5Oeff37uvvvuHHfccdljjz2yYMGCXHzxxdlrr71y3333ZbfddlvnMc4555xsv/32jcY233zzDVQxAAAAAAAAbJzK2vgbO3ZspkyZkk6dOjWMjRw5MrvvvnvOO++8XHPNNes8xhFHHJHBgwdvyDIBAAAAAABgo1fWW30eeOCBjZp+SdK/f/8MHDgwTz75ZIuP89Zbb2XlypVFlwcAAAAAAADtRlkbf80plUp59dVX07Nnzxbtf8ghh6R79+6pqanJ0UcfnWeeeWYDVwgAAAAAAAAbn7Le6rM5v/jFL/LKK6/knHPOWet+NTU1OfHEExsafw8//HAuvPDCHHjggZk1a1Zqa2vXOHfFihVZsWJFw+slS5YkSerr61NfX1/MG+FDsfp6uW7rT5bFkWVxZFkMORZHlsWRZXFkWRxZFkeWxZFlcWRZHFkWQ47FkWVxZFkcWRZHlsWRZfvVmmtWVSqVShuwllaZPXt29ttvvwwcODAzZ85Mx44dWzX/rrvuypAhQzJmzJhceumla9xvwoQJmThxYpPxKVOmpKamptV1AwAAAAAAwIawdOnSjBo1KosXL0737t3Xuu9G0/hbsGBBPvGJT6S+vj733Xdf+vbt26bjHHDAAXn99dfz7LPPrnGf5lb81dbWZuHChesMjI1LfX19br755hx66KGprq4udzntmiyLI8viyLIYciyOLIsjy+LIsjiyLI4siyPL4siyOLIshhyLI8viyLI4siyOLIsjy/ZryZIl6dmzZ4safxvFrT4XL16cI444IosWLcrMmTPb3PRLktra2jz11FNr3adz587p3Llzk/Hq6mof9nbKtSuOLIsjy+LIshhyLI4siyPL4siyOLIsjiyLI8viyLI4siyGHIsjy+LIsjiyLI4siyPL9qc116vsjb/ly5dn2LBhefrpp3PLLbdk1113Xa/jPf/88+nVq1dB1QEAAAAAAED70KGcJ1+5cmVGjhyZe++9N1OnTs0BBxzQ7H7z58/P7NmzGz288PXXX2+y34wZM/Lwww/n8MMP32A1AwAAAAAAwMaorCv+zjzzzPz2t7/NsGHD8sYbb+Saa65ptP34449PkowbNy6TJ0/OnDlzst122yVJDjzwwHz84x/P4MGD06NHj8yaNStXXnllamtr861vfevDfisAAAAAAABQVmVt/D366KNJkunTp2f69OlNtq9u/DVn5MiRufHGG3PTTTdl6dKl6dOnT7785S9n/Pjx6d2794YqGQAAAAAAADZKZW383XHHHS3ar66uLnV1dY3Gzj333Jx77rnFFwUAAAAAAADtUFmf8QcAAAAAAAAUQ+MPAAAAAAAAKoDGHwAAAAAAAFQAjT8AAAAAAACoABp/AAAAAAAAUAE0/gAAAAAAAKACaPwBAAAAAABABdD4AwAAAAAAgAqg8QcAAAAAAAAVQOMPAAAAAAAAKoDGHwAAAAAAAFQAjT8AAAAAAACoABp/AAAAAAAAUAE0/gAAAAAAAKACaPwBAAAAAABABdhkfSa/8847ue666/Lss8+mT58++eIXv5itttqqqNoAAAAAAACAFmpV42/XXXfNXXfdlS233DIvvfRShgwZkjfffDMDBgzIc889l29/+9u57777sv3222+oegEAAAAAAIBmtOpWn7Nnz857772XJBk3blz69u2buXPn5oEHHsjcuXOzxx575F//9V83SKEAAAAAAADAmrX5GX/33ntvJkyYkB49eiRJNt1000ycODF33XVXYcUBAAAAAAAALdPqxl9VVVWSZPny5enTp0+jbR/5yEfy+uuvF1MZAAAAAAAA0GKtesZfkgwdOjSbbLJJlixZkqeeeiq77bZbw7a5c+dmq622KrRAAAAAAAAAYN1a1fgbP358o9ebbrppo9fTp0/PJz/5yfWvCgAAAAAAAGiV9Wr8/W/f//7316sYAAAAAAAAoG1a/Yw/AAAAAAAAYONTaOPvueeey6c//ekW7//ggw/m1FNPzcCBA9OtW7dsu+22GTFiRJ5++ukWzV+0aFHGjBmTXr16pVu3bjnkkEMya9astpYPAAAAAAAA7VarbvW5Lm+//XbuvPPOFu9//vnn5+67785xxx2XPfbYIwsWLMjFF1+cvfbaK/fdd1922223Nc5dtWpVjjrqqDz22GM566yz0rNnz0yaNCkHH3xwHn744fTv37+ItwQAAAAAAADtQqsafz/+8Y/Xuv2VV15p1cnHjh2bKVOmpFOnTg1jI0eOzO67757zzjsv11xzzRrnTps2Lffcc0+mTp2a4cOHJ0lGjBiRAQMGZPz48ZkyZUqragEAAAAAAID2rFWNvzPOOCN9+vRp1Kj7oHfffbdVJz/wwAObjPXv3z8DBw7Mk08+uda506ZNS+/evXPsscc2jPXq1SsjRozINddckxUrVqRz586tqgcAAAAAAADaq1Y9469fv3656KKLMmfOnGZ/brzxxvUuqFQq5dVXX03Pnj3Xut8jjzySvfbaKx06NH4L++67b5YuXdri5wQCAAAAAABAJWjVir+99947Dz/8cEaMGNHs9qqqqpRKpfUq6Be/+EVeeeWVnHPOOWvdb/78+RkyZEiT8T59+iRJ5s2bl913373ZuStWrMiKFSsaXi9ZsiRJUl9fn/r6+raWThmsvl6u2/qTZXFkWRxZFkOOxZFlcWRZHFkWR5bFkWVxZFkcWRZHlsWQY3FkWRxZFkeWxZFlcWTZfrXmmlWVWtGpe+KJJ7J06dIMHjx4jSeeN29e+vXr1+ICPmj27NnZb7/9MnDgwMycOTMdO3Zc474dO3bMKaeckkmTJjUav+222zJ06NDccMMNOeaYY5qdO2HChEycOLHJ+JQpU1JTU9Om2gEAAAAAAKBoS5cuzahRo7J48eJ07959rfu2asXfrrvuutbt1dXVjZp+d999dwYPHtyiZ+0tWLAgRx11VHr06JFp06attemXJF27dm20am+15cuXN2xfk3HjxmXs2LENr5csWZLa2tocdthh6wyMjUt9fX1uvvnmHHrooamuri53Oe2aLIsjy+LIshhyLI4siyPL4siyOLIsjiyLI8viyLI4siyGHIsjy+LIsjiyLI4siyPL9mv1nStbolWNv9Y64ogj8uijj2aHHXZY636LFy/OEUcckUWLFmXmzJnp27fvOo/dp0+fzJ8/v8n46rG1HaNz587NNiOrq6t92Nsp1644siyOLIsjy2LIsTiyLI4siyPL4siyOLIsjiyLI8viyLIYciyOLIsjy+LIsjiyLI4s25/WXK8OG7COFj3vb/ny5Rk2bFiefvrp/O53v1vnqsLVBg0alFmzZmXVqlWNxu+///7U1NRkwIABbaoZAAAAAAAA2qMN2vhbl5UrV2bkyJG59957M3Xq1BxwwAHN7jd//vzMnj270cMLhw8fnldffTXXX399w9jChQszderUDBs2rEW3FwUAAAAAAIBKsUFv9bkuZ555Zn77299m2LBheeONN3LNNdc02n788ccnef+ZfJMnT86cOXOy3XbbJXm/8bf//vvnpJNOyhNPPJGePXtm0qRJWblyZSZOnPhhvxUAAAAAAAAoq7I2/h599NEkyfTp0zN9+vQm21c3/prTsWPHzJgxI2eddVZ+/OMfZ9myZdlnn31SV1eXnXfeeUOVDAAAAAAAABulDdr4q6qqWuv2O+64o0XHqaurS11dXZPxLbbYIpdffnkuv/zyNlQHAPB/17Cf3FXW81dXrcro2mTkZfemvlS+u89PP+2gsp0bAAAAoGgb9N+ylEqlDXl4AAAAAAAA4L+1qfH36U9/OosWLWoyvmTJknz6059ueP3WW29lhx12aHNxAAAAAAAAQMu0qfF3xx135N13320yvnz58sycOXO9iwIAAAAAAABap1XP+Hv88ccb/vzEE09kwYIFDa9XrlyZP/zhD/nIRz5SXHUAAAAAAABAi7Sq8Tdo0KBUVVWlqqqq0S09V+vatWt+8pOfFFYcAAAAAAAA0DKtavzNmTMnpVIpO+ywQx544IH06tWrYVunTp2y9dZbp2PHjoUXCQAAAAAAAKxdqxp//fr1S5KsWrVqgxQDAAAAAAAAtE2rGn8f9Mwzz+T222/Pa6+91qQR+O///u/rXRgAAAAAAADQcm1q/P385z/PV77ylfTs2TPbbLNNqqqqGrZVVVVp/AEAAAAAAMCHrE2Nv3PPPTff+c538o1vfKPoegAAAAAAAIA26NCWSW+++WaOO+64omsBAAAAAAAA2qhNjb/jjjsuN910U9G1AAAAAAAAAG3Uplt97rTTTjn77LNz3333Zffdd091dXWj7aeffnohxQEAAAAAAAAt06bG389+9rNsuummufPOO3PnnXc22lZVVaXxBwAAAAAAAB+yNjX+5syZU3QdAAAAAAAAwHpo0zP+AAAAAAAAgI1Li1f8jR07Nt/+9rfTrVu3jB07dq37XnjhhetdGAAAAAAAANByLW78PfLII6mvr2/485pUVVWtf1UAAAAAAABAq7S48Xf77bc3+2cAAAAAAACg/Nb7GX8vv/xyXn755SJqAQAAAAAAANqoTY2/VatW5ZxzzkmPHj3Sr1+/9OvXL5tvvnm+/e1vZ9WqVUXXCAAAAAAAAKxDi2/1+UH/+q//miuuuCLnnXdePvGJTyRJ7rrrrkyYMCHLly/Pd77znUKLBAAAAAAAANauTY2/yZMn5/LLL8/RRx/dMLbHHnvkIx/5SL761a9q/AEAAAAAAMCHrE23+nzjjTeyyy67NBnfZZdd8sYbb6x3UQAAAAAAAEDrtKnxt+eee+biiy9uMn7xxRdnzz33bNWx3n777YwfPz6HH354ttxyy1RVVaWurq5Fc+vq6lJVVdXsz4IFC1pVBwAAAAAAALRnbbrV5wUXXJCjjjoqt9xySw444IAkyb333puXXnopM2bMaNWxFi5cmHPOOSfbbrtt9txzz9xxxx2truecc87J9ttv32hs8803b/VxAAAAAAAAoL1qU+PvU5/6VJ5++un89Kc/zezZs5Mkxx57bL761a+mb9++rTpWnz59Mn/+/GyzzTZ56KGHss8++7S6niOOOCKDBw9u9TwAAAAAAACoFG1q/CVJ3759853vfGe9C+jcuXO22Wab9T7OW2+9lZqamnTs2HG9jwUAAAAAAADtTZsbf2+++WauuOKKPPnkk0mSXXfdNSeddFK23HLLwoprqUMOOSRvv/12OnXqlM9+9rP54Q9/mP79+3/odQAAAG037Cd3lfX81VWrMro2GXnZvakvtelx6IWYftpBZTs3AAAA7VubGn9/+tOfMmzYsPTo0aPhFps//vGPc84552T69OkZMmRIoUWuSU1NTU488cQccsgh6d69ex5++OFceOGFOfDAAzNr1qzU1tY2O2/FihVZsWJFw+slS5YkSerr61NfX/+h1E4xVl8v1239ybI4siyOLIshx+JUUpbVVavKfP7SB/6zfLVUwrX0uSzy/D6XRamkz2W5ybI4siyOLIshx+LIsjiyLI4siyPL4siy/WrNNasqlUql1p5g9913zwEHHJBLLrmk4daaK1euzFe/+tXcc889+X//7/+19pBJ0vCMv6uuuionnnhim45x1113ZciQIRkzZkwuvfTSZveZMGFCJk6c2GR8ypQpqampadN5AQAAAAAAoGhLly7NqFGjsnjx4nTv3n2t+7ap8de1a9c8+uij2XnnnRuNP/XUUxk0aFCWLVvW2kMmKabxlyQHHHBAXn/99Tz77LPNbm9uxV9tbW0WLly4zsDYuNTX1+fmm2/OoYcemurq6nKX067JsjiyLI4siyHH4lRSliMvu7es56+uKmXURxdlysubp75UVbY6rj3lgLKduyg+l8XxuSxOJX0uy02WxZFlcWRZDDkWR5bFkWVxZFkcWRZHlu3XkiVL0rNnzxY1/tp0q8+99torTz75ZJPG35NPPpk999yzLYcsVG1tbZ566qk1bu/cuXM6d+7cZLy6utqHvZ1y7Yojy+LIsjiyLIYci1MJWZbz+WXvW/XfdVSVtZb2fh0/yOeyCD6XRauEz+XGQpbFkWVxZFkMORZHlsWRZXFkWRxZFkeW7U9rrlebGn+nn356/vmf/znPPvts9t9//yTJfffdl5/+9Kc577zz8vjjjzfsu8cee7TlFOvl+eefT69evT708wIAAAAAAEC5tKnx98UvfjFJ8vWvf73ZbVVVVSmVSqmqqsrKlSvXr8L/Nn/+/CxevDg77rhjQ2fz9ddfb9LgmzFjRh5++OGcfvrphZwXAAAAAAAA2oM2Nf7mzJlTaBEXX3xxFi1alHnz5iVJpk+fnpdffjlJctppp6VHjx4ZN25cJk+enDlz5mS77bZLkhx44IH5+Mc/nsGDB6dHjx6ZNWtWrrzyytTW1uZb3/pWoTUCAAAAAADAxqxNjb8ttthijQ8PfPbZZ7PTTju16ng/+MEPMnfu3IbX119/fa6//vokyfHHH58ePXo0O2/kyJG58cYbc9NNN2Xp0qXp06dPvvzlL2f8+PHp3bt3q2oAAAAAAACA9qxNT6w/6qijsnz58ibjTz31VA4++OBWH++FF15IqVRq9mf16r66urpGr5Pk3HPPzSOPPJJFixbl3Xffzdy5czNp0iRNPwAAAAAAAP7PaVPjb9NNN82xxx6b9957r2HsySefzMEHH5zPf/7zhRUHAAAAAAAAtEybGn/XX399Fi9enL/7u79LqVTKn//85xx88MH54he/mB/96EdF1wgAAAAAAACsQ5saf127ds2NN96Yp556KiNGjMjQoUNzwgkn5MILLyy6PgAAAAAAAKAFNmnpjkuWLGn0ukOHDrn22mtz6KGH5vOf/3zOPvvshn26d+9ebJUAAAAAAADAWrW48bf55punqqqqyXipVMqll16ayy67LKVSKVVVVVm5cmWhRQIAAAAAAABr1+LG3+23374h6wAAAAAAAADWQ4sbf5/61Kc2ZB0AAAAAAADAeujQlklXXXVVpk6d2mR86tSpmTx58noXBQAAAAAAALROi1f8fdD3vve9XHbZZU3Gt95664wZMyajR49e78IAAKA9GPaTu8p6/uqqVRldm4y87N7Ul9r09/oKMf20g8p2bgAAAOB9bfo3Ay+++GK23377JuP9+vXLiy++uN5FAQAAAAAAAK3Tpsbf1ltvnccff7zJ+GOPPZatttpqvYsCAAAAAAAAWqdNjb8vfvGLOf3003P77bdn5cqVWblyZW677bb88z//c77whS8UXSMAAAAAAACwDm16xt+3v/3tvPDCCxk6dGg22eT9Q6xatSonnHBCvvvd7xZaIAAAAAAAALBubWr8derUKddee22+/e1v57HHHkvXrl2z++67p1+/fkXXBwAAAAAAALRAmxp/q2233XYplUrZcccdG1b+AQAAAAAAAB++Nj3jb+nSpfnSl76UmpqaDBw4MC+++GKS5LTTTst5551XaIEAAAAAAADAurWp8Tdu3Lg89thjueOOO9KlS5eG8c985jO59tprCysOAAAAAAAAaJk23Z/z17/+da699trsv//+qaqqahgfOHBgnnvuucKKAwAAAAAAAFqmTSv+Xn/99Wy99dZNxt95551GjUAAAAAAAADgw9Gmxt/gwYNz4403Nrxe3ey7/PLLc8ABBxRTGQAAAAAAANBibbrV53e/+90cccQReeKJJ/Lee+/lRz/6UZ544oncc889ufPOO4uuEQAAAAAAAFiHNq34O+igg/Loo4/mvffey+67756bbropW2+9de69997svffeRdcIAAAAAAAArEObVvwlyY477pif//znRdYCAAAAAAAAtFGbG3+rVq3Ks88+m9deey2rVq1qtG3IkCHrXRgAAAAAAADQcm261ed9992XnXbaKR/72McyZMiQHHzwwQ0/hxxySKuO9fbbb2f8+PE5/PDDs+WWW6aqqip1dXUtnr9o0aKMGTMmvXr1Srdu3XLIIYdk1qxZrXxHAAAAAAAA0L61qfH3j//4jxk8eHD+/Oc/54033sibb77Z8PPGG2+06lgLFy7MOeeckyeffDJ77rlnq+auWrUqRx11VKZMmZJTTz01F1xwQV577bUcfPDBeeaZZ1p1LAAAAAAAAGjP2nSrz2eeeSbTpk3LTjvttN4F9OnTJ/Pnz88222yThx56KPvss0+L506bNi333HNPpk6dmuHDhydJRowYkQEDBmT8+PGZMmXKetcHAAAAAAAA7UGbVvztt99+efbZZwspoHPnztlmm23aNHfatGnp3bt3jj322IaxXr16ZcSIEfnNb36TFStWFFIjAAAAAAAAbOxavOLv8ccfb/jzaaedljPPPDMLFizI7rvvnurq6kb77rHHHsVVuBaPPPJI9tprr3To0Lh/ue++++ZnP/tZnn766ey+++4fSi0AAAAAAABQTi1u/A0aNChVVVUplUoNYyeffHLDn1dvq6qqysqVK4utcg3mz5+fIUOGNBnv06dPkmTevHnNNv5WrFjRaDXgkiVLkiT19fWpr6/fQNWyIay+Xq7b+pNlcWRZHFkWQ47FqaQsq6tWlfn8pQ/8Z/lqKeJayvJ9sixOJfyOqaTfl+Umy+LIsjiyLIYciyPL4siyOLIsjiyLI8v2qzXXrKr0wU7eWsydO7fFB+3Xr1+L9/2g1c/4u+qqq3LiiSeuc/+OHTvmlFNOyaRJkxqN33bbbRk6dGhuuOGGHHPMMU3mTZgwIRMnTmwyPmXKlNTU1LSpdgAAAAAAACja0qVLM2rUqCxevDjdu3df674tXvH3wWbe9773vfTu3bvRir8kufLKK/P666/nG9/4RitLbpuuXbs2+xy/5cuXN2xvzrhx4zJ27NiG10uWLEltbW0OO+ywdQbGxqW+vj4333xzDj300Ca3nKV1ZFkcWRZHlsWQY3EqKcuRl91b1vNXV5Uy6qOLMuXlzVNfqipbHdeecsB6H0OW75NlcYrIstwq6fdlucmyOLIsjiyLIcfiyLI4siyOLIsjy+LIsv1afefKlmhx4++DLrvsskyZMqXJ+MCBA/OFL3zhQ2v89enTJ/Pnz28yvnqsb9++zc7r3LlzOnfu3GS8urrah72dcu2KI8viyLI47T3LYT+5q6znr65aldG1yfFXPpT6Uod1T9iApp92UFnPX5T2/plMUvbPwurbKNaXqspaSxHXUZbvk2Vx2vvvlw+qhN+XGwtZFkeWxZFlMeRYHFkWR5bFkWVxZFkcWbY/rblebWr8LViwoOE5eh/Uq1evZhtxG8qgQYMyc+bMrFq1Kh06/M//Mb///vtTU1OTAQMGfGi1ABuHcjdYkv9psoy87N6y/kvD9W2wyPJ/VEqzCgAAAACobG36t6i1tbW5++67m4zffffda1xlt77mz5+f2bNnN3qA4fDhw/Pqq6/m+uuvbxhbuHBhpk6dmmHDhjW7qg8AAAAAAAAqUZtW/H35y1/OGWeckfr6+nz6059Oktx66635+te/njPPPLPVx7v44ouzaNGizJs3L0kyffr0vPzyy0mS0047LT169Mi4ceMyefLkzJkzJ9ttt12S9xt/+++/f0466aQ88cQT6dmzZyZNmpSVK1dm4sSJbXlrAAAAAAAA0C61qfF31lln5a9//Wu++tWv5t13302SdOnSJd/4xjcybty4Vh/vBz/4QebOndvw+vrrr29YxXf88cenR48ezc7r2LFjZsyYkbPOOis//vGPs2zZsuyzzz6pq6vLzjvv3IZ3BgAAAAAAAO1Tmxp/VVVVOf/883P22WfnySefTNeuXdO/f/8231rzhRdeWOc+dXV1qaurazK+xRZb5PLLL8/ll1/epnMDAAAAAABAJWhT42+1TTfdNPvss09RtQAAAAAAAABt1KHcBQAAAAAAAADrT+MPAAAAAAAAKoDGHwAAAAAAAFQAjT8AAAAAAACoABp/AAAAAAAAUAE0/gAAAAAAAKACaPwBAAAAAABABdD4AwAAAAAAgAqg8QcAAAAAAAAVQOMPAAAAAAAAKoDGHwAAAAAAAFQAjT8AAAAAAACoABp/AAAAAAAAUAE0/gAAAAAAAKACaPwBAAAAAABABdD4AwAAAAAAgAqg8QcAAAAAAAAVQOMPAAAAAAAAKoDGHwAAAAAAAFQAjT8AAAAAAACoABp/AAAAAAAAUAE0/gAAAAAAAKACaPwBAAAAAABABSh742/FihX5xje+kb59+6Zr167Zb7/9cvPNN69z3oQJE1JVVdXkp0uXLh9C1QAAAAAAALBx2aTcBZx44omZNm1azjjjjPTv3z91dXU58sgjc/vtt+eggw5a5/xLLrkkm266acPrjh07bshyAQAAAAAAYKNU1sbfAw88kF/+8pf5/ve/n6997WtJkhNOOCG77bZbvv71r+eee+5Z5zGGDx+enj17buhSAQAAAAAAYKNW1lt9Tps2LR07dsyYMWMaxrp06ZIvfelLuffee/PSSy+t8xilUilLlixJqVTakKUCAAAAAADARq2sjb9HHnkkAwYMSPfu3RuN77vvvkmSRx99dJ3H2GGHHdKjR49sttlmOf744/Pqq69uiFIBAAAAAABgo1bWW33Onz8/ffr0aTK+emzevHlrnLvFFlvk1FNPzQEHHJDOnTtn5syZ+elPf5oHHnggDz30UJNm4getWLEiK1asaHi9ZMmSJEl9fX3q6+vb+nYog9XXy3Vbf5WSZXXVqnKXkOqq0gf+s3z1rO+1lOX/aO9Zbiw5Ju3/d0yl/K5MfC5XK+JayvJ9sixOJfyOqaTfl+Umy+LIsjiyLIYciyPL4siyOLIsjiyLI8v2qzXXrKpUxntk7rjjjtl5550zY8aMRuPPP/98dtxxx1x00UU544wzWny8KVOm5O/+7u/yve99L9/85jfXuN+ECRMyceLEZufX1NS0+HwAAAAAAACwIS1dujSjRo3K4sWL17rwLSlz42+33XZL7969c+uttzYaf+KJJzJw4MBceumlOeWUU1p1zD59+mTgwIG55ZZb1rhPcyv+amtrs3DhwnUGxsalvr4+N998cw499NBUV1eXu5x2rVKyHHnZveUuIdVVpYz66KJMeXnz1JeqylbHtaccsF7zZfk/2nuWG0uOyfpnWW6V8rsy8blcrYjPpCzfJ8vitPfflUll/b4sN1kWR5bFkWUx5FgcWRZHlsWRZXFkWRxZtl9LlixJz549W9T4K+utPvv06ZNXXnmlyfj8+fOTJH379m31MWtra/PGG2+sdZ/OnTunc+fOTcarq6t92Nsp16447T3L+lJZH136396/NVh9qaqs9azvdZTl/2j/WW4cOSbrn+XGor3/rkx8Llcr4jrK8n2yLE57//3yQZXw+3JjIcviyLI4siyGHIsjy+LIsjiyLI4siyPL9qc116us/8960KBBefrppxuesbfa/fff37C9NUqlUl544YX06tWrqBIBAAAAAACgXShr42/48OFZuXJlfvaznzWMrVixIldddVX222+/1NbWJklefPHFzJ49u9Hc119/vcnxLrnkkrz++us5/PDDN2zhAAAAAAAAsJEp660+99tvvxx33HEZN25cXnvttey0006ZPHlyXnjhhVxxxRUN+51wwgm5884788HHEfbr1y8jR47M7rvvni5duuSuu+7KL3/5ywwaNKjVzwUEAAAAAACA9q6sjb8kufrqq3P22WfnP//zP/Pmm29mjz32yO9+97sMGTJkrfP+7u/+Lvfcc09+9atfZfny5enXr1++/vWv51//9V9TU1PzIVUPAHyYhv3krrKev7pqVUbXJiMvu7esz/+aftpBZTs3AAAAABuvsjf+unTpku9///v5/ve/v8Z97rjjjiZjP//5zzdgVQAAAAAAANC+lL3xBwAAQLGskH6fFdIAAMD/NeX7f2AAAAAAAABAYTT+AAAAAAAAoAJo/AEAAAAAAEAF0PgDAAAAAACACrBJuQugfRv2k7vKev7qqlUZXZuMvOze1JfK18eeftpBZTs3AAAAAABAYsUfAAAAAAAAVAQr/gAAAAAANgLurvU+d9cCaDsr/gAAAAAAAKACaPwBAAAAAABABdD4AwAAAAAAgArgGX8AAAAAAAAbmOd4vs9zPDcsjT8AAAAA/s/xL1//h38BCwCVw60+AQAAAAAAoAJY8QcAAAAAtJnVk//D6kkAyk3jDwAAAACAiqIh/T7NaPi/x60+AQAAAAAAoAJY8QcAAABscFZevM/KCwAANiSNPwAAAAAAoFn+8s77/OUd2gu3+gQAAAAAAIAKoPEHAAAAAAAAFcCtPmEjYcn8+yyZBwAAAACAtrHiDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqABlb/ytWLEi3/jGN9K3b9907do1++23X26++eYWzX3llVcyYsSIbL755unevXv+5m/+Js8///wGrhgAAAAAAAA2PpuUu4ATTzwx06ZNyxlnnJH+/funrq4uRx55ZG6//fYcdNBBa5z39ttv55BDDsnixYvzrW99K9XV1bnooovyqU99Ko8++mi22mqrD/FdAAAAAGx4w35yV7lLSHXVqoyuTUZedm/qS+X7O+XTT1vzvzcCAPi/qqyNvwceeCC//OUv8/3vfz9f+9rXkiQnnHBCdtttt3z961/PPffcs8a5kyZNyjPPPJMHHngg++yzT5LkiCOOyG677ZYf/vCH+e53v/uhvAcAAAAAAADYGJS18Tdt2rR07NgxY8aMaRjr0qVLvvSlL+Vb3/pWXnrppdTW1q5x7j777NPQ9EuSXXbZJUOHDs11112n8QcAAMB6K/fqKiurAACA1ijrM/4eeeSRDBgwIN27d280vu+++yZJHn300WbnrVq1Ko8//ngGDx7cZNu+++6b5557Lm+99Vbh9QIAAAAAAMDGqqwr/ubPn58+ffo0GV89Nm/evGbnvfHGG1mxYsU65+68887Nzl+xYkVWrFjR8Hrx4sUNx62vr2/dm/i/bnmZG6xVpSxdujRZXp2UqspWxl//+tf1P4gskxSQZblzTGRZJFkWYyPJMZFlUfz3TnFkWRxZFkeWxZFlcWRZnHb/v4cSWRZlI8kxkWWRZFkM/71THFkWR5bFKSTL/2NWL3YrlUrr3Leq1JK9NpAdd9wxO++8c2bMmNFo/Pnnn8+OO+6Yiy66KGeccUaTeS+99FK23XbbnH/++fn617/eaNuVV16ZL33pS3nkkUcyaNCgZs87YcKETJw4sai3AQAAAAAAABvUSy+9lI9+9KNr3aesK/66du3aaOXdasuXL2/YvqZ5Sdo0N0nGjRuXsWPHNrxetWpV3njjjWy11Vapqirv3wqidZYsWZLa2tq89NJLTW4ZS+vIsjiyLI4siyHH4siyOLIsjiyLI8viyLI4siyOLIsjy2LIsTiyLI4siyPL4siyOLJsv0qlUt5666307dt3nfuWtfHXp0+fvPLKK03G58+fnyRrfANbbrllOnfu3LBfa+YmSefOndO5c+dGY5tvvnlLy2Yj1L17d7+oCiLL4siyOLIshhyLI8viyLI4siyOLIsjy+LIsjiyLI4siyHH4siyOLIsjiyLI8viyLJ96tGjR4v267CB61irQYMG5emnn86SJUsajd9///0N25vToUOH7L777nnooYeabLv//vuzww47ZLPNNiu8XgAAAAAAANhYlbXxN3z48KxcuTI/+9nPGsZWrFiRq666Kvvtt19qa2uTJC+++GJmz57dZO6DDz7YqPn31FNP5bbbbstxxx334bwBAAAAAAAA2EiU9Vaf++23X4477riMGzcur732WnbaaadMnjw5L7zwQq644oqG/U444YTceeedKZVKDWNf/epX8/Of/zxHHXVUvva1r6W6ujoXXnhhevfunTPPPLMcb4cy6Ny5c8aPH9/k1q20niyLI8viyLIYciyOLIsjy+LIsjiyLI4siyPL4siyOLIshhyLI8viyLI4siyOLIsjy/8bqkof7KaVwfLly3P22WfnmmuuyZtvvpk99tgj3/72t/PZz362YZ+DDz64SeMvSV5++eX8y7/8S2666aasWrUqBx98cC666KLstNNOH/bbAAAAAAAAgLIqe+MPAAAAAAAAWH9lfcYfAAAAAAAAUAyNPwAAAAAAAKgAGn8AAAAAAABQATT+AAAAAAAAoAJo/AEAAAAAAEAF0PgDAAAAAACACqDxBwAAAAAAABVA4w8AAAAAAAAqgMYfAAAAAAAAVACNPwAAAAAAAKgAGn8AAAAAAABQATT+AAAAAAAAoAJo/AEAAAAAAEAF0PgDAAAAAACACqDxBwAAAAAAABVA4w8AAAAAAAAqgMYfAAAAAAAAVIBNyl3AxmDVqlWZN29eNttss1RVVZW7HAAAAAAAAEiSlEqlvPXWW+nbt286dFj7mj6NvyTz5s1LbW1tucsAAAAAAACAZr300kv56Ec/utZ9NP6SbLbZZkneD6x79+5lrobWqK+vz0033ZTDDjss1dXV5S6nXZNlcWRZHFkWQ47FkWVxZFkcWRZHlsWRZXFkWRxZFkeWxZBjcWRZHFkWR5bFkWVxZNl+LVmyJLW1tQ39rLXR+Esabu/ZvXt3jb92pr6+PjU1NenevbtfVOtJlsWRZXFkWQw5FkeWxZFlcWRZHFkWR5bFkWVxZFkcWRZDjsWRZXFkWRxZFkeWxZFl+9eSx9Wt/UagAAAAAAAAQLug8QcAAAAAAAAVoKyNv7/85S857rjjssMOO6SmpiY9e/bMkCFDMn369BbNX7RoUcaMGZNevXqlW7duOeSQQzJr1qwNXDUAAAAAAABsfMr6jL+5c+fmrbfeyujRo9O3b98sXbo0v/rVr3L00Ufnsssuy5gxY9Y4d9WqVTnqqKPy2GOP5ayzzkrPnj0zadKkHHzwwXn44YfTv3//D/GdAAAAAAAAQHmVtfF35JFH5sgjj2w0duqpp2bvvffOhRdeuNbG37Rp03LPPfdk6tSpGT58eJJkxIgRGTBgQMaPH58pU6Zs0NoBAAAAAABgY7LRPeOvY8eOqa2tzaJFi9a637Rp09K7d+8ce+yxDWO9evXKiBEj8pvf/CYrVqzYwJUCAAAAAADAxmOjaPy98847WbhwYZ577rlcdNFF+f3vf5+hQ4eudc4jjzySvfbaKx06NH4L++67b5YuXZqnn356Q5YMAAAAAAAAG5Wy3upztTPPPDOXXXZZkqRDhw459thjc/HFF691zvz58zNkyJAm43369EmSzJs3L7vvvnuzc1esWNFoReCSJUuSJPX19amvr2/Te6A8Vl8v1239ybI4siyOLIshx+LIsjiyLI4siyPL4siyOLIsjiyLI8tiyLE4siyOLIsjy+LIsjiybL9ac82qSqVSaQPW0iKzZ8/Oyy+/nHnz5uW6665Lp06dcskll6R3795rnNOxY8eccsopmTRpUqPx2267LUOHDs0NN9yQY445ptm5EyZMyMSJE5uMT5kyJTU1Nev1XgAAAAAAAKAoS5cuzahRo7J48eJ07959rftuFCv+dtlll+yyyy5JkhNOOCGHHXZYhg0blvvvvz9VVVXNzunatWuzz/Fbvnx5w/Y1GTduXMaOHdvwesmSJamtrc1hhx22zsDYuNTX1+fmm2/OoYcemurq6nKX067JsjiyLI4siyHH4lRSliOnjSzr+atTnVE1ozJl6ZTUp3x/0/Da4deW7dxFqaTPZbnJsjiyLI4siyPL4siyGHIsjiyLI8viyLI4siyOLNuv1XeubImNovH3vw0fPjynnHJKnn766ey8887N7tOnT5/Mnz+/yfjqsb59+67x+J07d07nzp2bjFdXV/uwt1OuXXFkWRxZFkeWxZBjcSohy3I22z6o/r//KZf2fh0/qBI+lxsLWRZHlsWRZXFkWRxZFkOOxZFlcWRZHFkWR5bFkWX705rr1WED1tFmy5YtS5IsXrx4jfsMGjQos2bNyqpVqxqN33///ampqcmAAQM2aI0AAAAAAACwMSlr4++1115rMlZfX5+rr746Xbt2za677prk/VV8s2fPbvTwwuHDh+fVV1/N9ddf3zC2cOHCTJ06NcOGDWt2RR8AAAAAAABUqrLe6vOUU07JkiVLMmTIkHzkIx/JggUL8otf/CKzZ8/OD3/4w2y66aZJ3n8m3+TJkzNnzpxst912Sd5v/O2///456aST8sQTT6Rnz56ZNGlSVq5cmYkTJ5bxXQEAAAAAAMCHr6yNv5EjR+aKK67IJZdckr/+9a/ZbLPNsvfee+f888/P0Ucfvda5HTt2zIwZM3LWWWflxz/+cZYtW5Z99tkndXV1a3wuIAAAAAAAAFSqsjb+vvCFL+QLX/jCOverq6tLXV1dk/Etttgil19+eS6//PINUB0AAAAAAAC0H2V9xh8AAAAAAABQDI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNil3AQAA0J4N+69hZT1/daozumZ0Rk4bmfrUl62O6V+cXrZzAwAAAO+z4g8AAAAAAAAqgMYfAAAAAAAAVACNPwAAAAAAAKgAGn8AAAAAAABQAcra+HvwwQdz6qmnZuDAgenWrVu23XbbjBgxIk8//fQ659bV1aWqqqrZnwULFnwI1QMAAAAAAMDGY5Nynvz888/P3XffneOOOy577LFHFixYkIsvvjh77bVX7rvvvuy2227rPMY555yT7bffvtHY5ptvvoEqBgAAAAAAgI1TWRt/Y8eOzZQpU9KpU6eGsZEjR2b33XfPeeedl2uuuWadxzjiiCMyePDgDVkmAAAAAAAAbPTKeqvPAw88sFHTL0n69++fgQMH5sknn2zxcd56662sXLmy6PIAAAAAAACg3Shr4685pVIpr776anr27Nmi/Q855JB07949NTU1Ofroo/PMM89s4AoBAAAAAABg41PWW3025xe/+EVeeeWVnHPOOWvdr6amJieeeGJD4+/hhx/OhRdemAMPPDCzZs1KbW3tGueuWLEiK1asaHi9ZMmSJEl9fX3q6+uLeSN8KFZfL9dt/cmyOLIsjiyLIcfiVFKW1aneKM5f7jqKuJblfg+VlGW5VdJ3vNxkWRxZFkeWxZFlMeRYHFkWR5bFkWVxZFkcWbZfrblmVaVSqbQBa2mV2bNnZ7/99svAgQMzc+bMdOzYsVXz77rrrgwZMiRjxozJpZdeusb9JkyYkIkTJzYZnzJlSmpqalpdNwAAAAAAAGwIS5cuzahRo7J48eJ07959rftuNI2/BQsW5BOf+ETq6+tz3333pW/fvm06zgEHHJDXX389zz777Br3aW7FX21tbRYuXLjOwNi41NfX5+abb86hhx6a6ury/i339k6WxZFlcWRZDDkWp5KyHDltZFnPX53qjKoZlSlLp6Q+5fubhtcOv3a9jyHL9xWRZblV0ne83GRZHFkWR5bFkWUx5FgcWRZHlsWRZXFkWRxZtl9LlixJz549W9T42yhu9bl48eIcccQRWbRoUWbOnNnmpl+S1NbW5qmnnlrrPp07d07nzp2bjFdXV/uwt1OuXXFkWRxZFkeWxZBjcSohy3I2iD6o/r//KZcirqMs39fevxMfVAnf8Y2FLIsjy+LIsjiyLIYciyPL4siyOLIsjiyLI8v2pzXXq+yNv+XLl2fYsGF5+umnc8stt2TXXXddr+M9//zz6dWrV0HVAQAAAAAAQPvQoZwnX7lyZUaOHJl77703U6dOzQEHHNDsfvPnz8/s2bMbPbzw9ddfb7LfjBkz8vDDD+fwww/fYDUDAAAAAADAxqisK/7OPPPM/Pa3v82wYcPyxhtv5Jprrmm0/fjjj0+SjBs3LpMnT86cOXOy3XbbJUkOPPDAfPzjH8/gwYPTo0ePzJo1K1deeWVqa2vzrW9968N+KwAAAAAAAFBWZW38Pfroo0mS6dOnZ/r06U22r278NWfkyJG58cYbc9NNN2Xp0qXp06dPvvzlL2f8+PHp3bv3hioZAAAAAAAANkplbfzdcccdLdqvrq4udXV1jcbOPffcnHvuucUXBQAAAAAAAO1QWZ/xBwAAAAAAABRD4w8AAAAAAAAqgMYfAAAAAAAAVACNPwAAAAAAAKgAGn8AAAAAAABQATT+AAAAAAAAoAJo/AEAAAAAAEAF0PgDAAAAAACACqDxBwAAAAAAABVA4w8AAAAAAAAqgMYfAAAAAAAAVACNPwAAAAAAAKgAGn8AAAAAAABQATT+AAAAAAAAoAJo/AEAAAAAAEAF0PgDAAAAAACACqDxBwAAAAAAABVA4w8AAAAAAAAqgMYfAAAAAAAAVACNPwAAAAAAAKgAm7Rl0q233ppbb701r732WlatWtVo25VXXllIYQAAAAAAAEDLtbrxN3HixJxzzjkZPHhw+vTpk6qqqg1RFwAAAAAAANAKrW78XXrppamrq8vf//3fb4h6AAAAAAAAgDZo9TP+3n333Rx44IEbohYAAAAAAACgjVrd+PuHf/iHTJkypZCTP/jggzn11FMzcODAdOvWLdtuu21GjBiRp59+ukXzFy1alDFjxqRXr17p1q1bDjnkkMyaNauQ2gAAAAAAAKA9adGtPseOHdvw51WrVuVnP/tZbrnlluyxxx6prq5utO+FF17Y4pOff/75ufvuu3Pcccdljz32yIIFC3LxxRdnr732yn333ZfddtttjXNXrVqVo446Ko899ljOOuus9OzZM5MmTcrBBx+chx9+OP37929xHQAAAAAAANDetajx98gjjzR6PWjQoCTJn//85/U6+dixYzNlypR06tSpYWzkyJHZfffdc9555+Waa65Z49xp06blnnvuydSpUzN8+PAkyYgRIzJgwICMHz++sFWJAAAAAAAA0B60qPF3++23b5CTN/eswP79+2fgwIF58skn1zp32rRp6d27d4499tiGsV69emXEiBG55pprsmLFinTu3LnwmgEAAAAAAGBj1Opn/J188sl56623moy/8847Ofnkk9e7oFKplFdffTU9e/Zc636PPPJI9tprr3To0Pgt7Lvvvlm6dGmLnxMIAAAAAAAAlaBFK/4+aPLkyTnvvPOy2WabNRpftmxZrr766lx55ZXrVdAvfvGLvPLKKznnnHPWut/8+fMzZMiQJuN9+vRJksybNy+77757s3NXrFiRFStWNLxesmRJkqS+vj719fVtLZ0yWH29XLf1J8viyLI4siyGHItTSVlWp3rdO30I5y93HUVcy3K/h0rKstwq6TtebrIsjiyLI8viyLIYciyOLIsjy+LIsjiyLI4s26/WXLOqUqlUasmOS5YsSalUyhZbbJFnnnkmvXr1ati2cuXKTJ8+Pd/85jczb9681lf832bPnp399tsvAwcOzMyZM9OxY8c17tuxY8eccsopmTRpUqPx2267LUOHDs0NN9yQY445ptm5EyZMyMSJE5uMT5kyJTU1NW2uHwAAAAAAAIq0dOnSjBo1KosXL0737t3Xum+LV/xtvvnmqaqqSlVVVQYMGNBke1VVVbPNtJZasGBBjjrqqPTo0SPTpk1ba9MvSbp27dpo1d5qy5cvb9i+JuPGjcvYsWMbXi9ZsiS1tbU57LDD1hkYG5f6+vrcfPPNOfTQQ1NdXd6/5d7eybI4siyOLIshx+JUUpYjp40s6/mrU51RNaMyZemU1Kd8f9Pw2uHXrvcxZPm+IrIst0r6jpebLIsjy+LIsjiyLIYciyPL4siyOLIsjiyLI8v2a/WdK1uixY2/22+/PaVSKZ/+9Kfzq1/9KltuuWXDtk6dOqVfv37p27dv6yr9b4sXL84RRxyRRYsWZebMmS06Tp8+fTJ//vwm46vH1naMzp07p3Pnzk3Gq6urfdjbKdeuOLIsjiyLI8tiyLE4lZBlORtEH1T/3/+USxHXUZbva+/fiQ+qhO/4xkKWxZFlcWRZHFkWQ47FkWVxZFkcWRZHlsWRZfvTmuvV4sbfpz71qSTJnDlzsu2226aqqqr1lTVj+fLlGTZsWJ5++unccsst2XXXXVs0b9CgQZk5c2ZWrVqVDh06NIzff//9qampaXZVIgAAAAAAAFSqFjf+Vps7d27mzp27xu1Dhgxp8bFWrlyZkSNH5t57781vfvObHHDAAc3uN3/+/CxevDg77rhjQ1dz+PDhmTZtWq6//voMHz48SbJw4cJMnTo1w4YNa3ZFHwAAAAAAAFSqVjf+Dj744CZjH1z9t3LlyhYf68wzz8xvf/vbDBs2LG+88UauueaaRtuPP/74JO8/k2/y5MmZM2dOtttuuyTvN/7233//nHTSSXniiSfSs2fPTJo0KStXrlyvZw0CAAAAAABAe9Tqxt+bb77Z6HV9fX0eeeSRnH322fnOd77TqmM9+uijSZLp06dn+vTpTbavbvw1p2PHjpkxY0bOOuus/PjHP86yZcuyzz77pK6uLjvvvHOr6gAqx7D/GlbuElKd6oyuGZ2R00aW9VlL07/Y9PcqAAAAAACVq9WNvx49ejQZO/TQQ9OpU6eMHTs2Dz/8cIuPdccdd7Rov7q6utTV1TUZ32KLLXL55Zfn8ssvb/E5AQAAAAAAoBJ1KOpAvXv3zlNPPVXU4QAAAAAAAIBWaPWKv8cff7zR61KplPnz5+e8887LoEGDiqoLAAAAAAAAaIVWN/4GDRqUqqqqlEqlRuP7779/rrzyysIKAwAAAAAAAFqu1Y2/OXPmNHrdoUOH9OrVK126dCmsKAAAAAAAAKB1WvWMv/r6+px88sl59913069fv/Tr1y+1tbWafgAAAAAAAFBmrWr8VVdXN3nGHwAAAAAAAFB+rWr8Jcnxxx+fK664YkPUAgAAAAAAALRRq5/x99577+XKK6/MLbfckr333jvdunVrtP3CCy8srDgAAAAAAACgZVrd+Pvzn/+cvfbaK0ny9NNPF14QAAAAAAAA0HqtbvzdfvvtG6IOAAAAAAAAYD20+hl/J598ct56660m4++8805OPvnkQooCAAAAAAAAWqfVjb/Jkydn2bJlTcaXLVuWq6++upCiAAAAAAAAgNZp8a0+lyxZklKplFKplLfeeitdunRp2LZy5crMmDEjW2+99QYpEgAAAAAAAFi7Fjf+Nt9881RVVaWqqioDBgxosr2qqioTJ04stDgAAAAAAACgZVrc+Lv99ttTKpXy6U9/Or/61a+y5ZZbNmzr1KlT+vXrl759+26QIgEAAAAAAIC1a3Hj71Of+lSSZM6cOdl2221TVVW1wYoCAAAAAAAAWqfFjb/V+vXrtyHqAAAAAAAAANZDh3IXAAAAAAAAAKw/jT8AAAAAAACoABp/AAAAAAAAUAE0/gAAAAAAAKACbNKSnT7+8Y+nqqqqRQecNWvWehUEAAAAAAAAtF6LGn/HHHNMw5+XL1+eSZMmZdddd80BBxyQJLnvvvvyl7/8JV/96lc3SJEAAAAAAADA2rWo8Td+/PiGP//DP/xDTj/99Hz7299uss9LL71UbHUAAAAAAABAi7T6GX9Tp07NCSec0GT8+OOPz69+9atWF/D2229n/PjxOfzww7PlllumqqoqdXV1LZpbV1eXqqqqZn8WLFjQ6loAAAAAAACgvWrRir8P6tq1a+6+++7079+/0fjdd9+dLl26tLqAhQsX5pxzzsm2226bPffcM3fccUerj3HOOedk++23bzS2+eabt/o4AAAAAAAA0F61uvF3xhln5Ctf+UpmzZqVfffdN0ly//3358orr8zZZ5/d6gL69OmT+fPnZ5tttslDDz2UffbZp9XHOOKIIzJ48OBWzwMAAAAAAIBK0erG3ze/+c3ssMMO+dGPfpRrrrkmSfKxj30sV111VUaMGNHqAjp37pxtttmm1fP+t7feeis1NTXp2LHjeh8LAIo07L+GlfX81anO6JrRGTltZOpTX9Zapn9xelnPDwAAAACVrNWNvyQZMWJEm5p8G8ohhxySt99+O506dcpnP/vZ/PCHP2xyK1IAAAAAAACoZG1q/CXJu+++m9deey2rVq1qNL7tttuud1EtVVNTkxNPPDGHHHJIunfvnocffjgXXnhhDjzwwMyaNSu1tbXNzluxYkVWrFjR8HrJkiVJkvr6+tTXl3clBK2z+nq5buuvUrKsTnW5S2ioody1tPdrmfhcFn3+cteRtP9rWSmfyaT8n4eN5XNZxLUs93uopCzLrZK+4+Umy+LIsjiyLI4siyHH4siyOLIsjiyLI8viyLL9as01qyqVSqXWHPyZZ57JySefnHvuuafReKlUSlVVVVauXNmawzWy+hl/V111VU488cQ2HeOuu+7KkCFDMmbMmFx66aXN7jNhwoRMnDixyfiUKVNSU1PTpvMCAAAAAABA0ZYuXZpRo0Zl8eLF6d69+1r3bfWKvxNPPDGbbLJJfve736VPnz6pqqpqc6EbwkEHHZT99tsvt9xyyxr3GTduXMaOHdvwesmSJamtrc1hhx22zsDYuNTX1+fmm2/OoYcemurq8q9kac8qJcuR00aWu4RUpzqjakZlytIpZX2e2rXDry3buYvic1mMjeUzmbT/z2WlfCYTn8vVivhMyvJ97f37nVTWd7zcZFkcWRZHlsWRZTHkWBxZFkeWxZFlcWRZHFm2X6vvXNkSrW78Pfroo3n44Yezyy67tHbqh6a2tjZPPfXUGrd37tw5nTt3bjJeXV3tw95OuXbFae9Zlrup8UH1//1PubTn6/i/+VwWo9yfyaRyPpft/TOZ+FyuVsR1lOX72vt34oMq4Tu+sZBlcWRZHFkWR5bFkGNxZFkcWRZHlsWRZXFk2f605np1aO3Bd9111yxcuLC10z5Uzz//fHr16lXuMgAAAAAAAOBD0+rG3/nnn5+vf/3rueOOO/LXv/41S5YsafSzocyfPz+zZ89u9ADD119/vcl+M2bMyMMPP5zDDz98g9UCAAAAAAAAG5tW3+rzM5/5TJJk6NChjcZLpVKqqqqycuXKVhdx8cUXZ9GiRZk3b16SZPr06Xn55ZeTJKeddlp69OiRcePGZfLkyZkzZ0622267JMmBBx6Yj3/84xk8eHB69OiRWbNm5corr0xtbW2+9a1vtboOAACgfIb917Cynr861RldMzojp40s621Tp39xetnODQAAQPvW6sbf7bffXngRP/jBDzJ37tyG19dff32uv/76JMnxxx+fHj16NDtv5MiRufHGG3PTTTdl6dKl6dOnT7785S9n/Pjx6d27d+F1AgAAAAAAwMaq1Y2/T33qU4UX8cILL6xzn7q6utTV1TUaO/fcc3PuuecWXg8AAAAAAAC0N61u/P3pT39a6/YhQ4a0uRgAAAAAAACgbVrd+Dv44IObjFVVVTX8uS3P+AMAAAAAAADWT4fWTnjzzTcb/bz22mv5wx/+kH322Sc33XTThqgRAAAAAAAAWIdWr/jr0aNHk7FDDz00nTp1ytixY/Pwww8XUhgAAAAAAADQcq1e8bcmvXv3zlNPPVXU4QAAAAAAAIBWaPWKv8cff7zR61KplPnz5+e8887LoEGDiqoLAAAAAAAAaIVWN/4GDRqUqqqqlEqlRuP7779/rrzyysIKAwAAAAAAAFqu1Y2/OXPmNHrdoUOH9OrVK126dCmsKAAAAAAAAKB1Wt3469ev34aoAwAAAAAAAFgPHdoy6c4778ywYcOy0047ZaeddsrRRx+dmTNnFl0bAAAAAAAA0EKtbvxdc801+cxnPpOampqcfvrpOf3009O1a9cMHTo0U6ZM2RA1AgAAAAAAAOvQ6lt9fuc738kFF1yQf/mXf2kYO/3003PhhRfm29/+dkaNGlVogQAAAAAAAMC6tXrF3/PPP59hw4Y1GT/66KMzZ86cQooCAAAAAAAAWqfVjb/a2trceuutTcZvueWW1NbWFlIUAAAAAAAA0DqtvtXnmWeemdNPPz2PPvpoDjzwwCTJ3Xffnbq6uvzoRz8qvEAAAAAAAABg3Vrd+PvKV76SbbbZJj/84Q9z3XXXJUk+9rGP5dprr83f/M3fFF4gAAAAAAAAsG6tavy99957+e53v5uTTz45d91114aqCQAAAAAAAGilVj3jb5NNNskFF1yQ9957b0PVAwAAAAAAALRBqxp/STJ06NDceeedG6IWAAAAAAAAoI1a/Yy/I444It/85jfz//7f/8vee++dbt26Ndp+9NFHF1YcAAAAAAAA0DKtbvx99atfTZJceOGFTbZVVVVl5cqV618VAAAAAAAA0CqtbvytWrVqQ9QBwEZm2H8NK3cJqU51RteMzshpI1Of+rLVMf2L08t2bgAAAACAlmr1M/4AAAAAAACAjU+LV/wtW7Yst956az73uc8lScaNG5cVK1Y0bO/YsWO+/e1vp0uXLsVXCQAAAAAAAKxVixt/kydPzo033tjQ+Lv44oszcODAdO3aNUkye/bs9O3bN//yL/+yYSoFAAAAAAAA1qjFt/r8xS9+kTFjxjQamzJlSm6//fbcfvvt+f73v5/rrruu1QW8/fbbGT9+fA4//PBsueWWqaqqSl1dXYvnL1q0KGPGjEmvXr3SrVu3HHLIIZk1a1ar6wAAAAAAAID2rMWNv2effTa77757w+suXbqkQ4f/mb7vvvvmiSeeaHUBCxcuzDnnnJMnn3wye+65Z6vmrlq1KkcddVSmTJmSU089NRdccEFee+21HHzwwXnmmWdaXQsAAAAAAAC0Vy2+1eeiRYsaPdPv9ddfb7R91apVjba3VJ8+fTJ//vxss802eeihh7LPPvu0eO60adNyzz33ZOrUqRk+fHiSZMSIERkwYEDGjx+fKVOmtLoeAAAAAAAAaI9avOLvox/9aP785z+vcfvjjz+ej370o60uoHPnztlmm21aPS95v/HXu3fvHHvssQ1jvXr1yogRI/Kb3/ymTY1IAAAAAAAAaI9a3Pg78sgj8+///u9Zvnx5k23Lli3LxIkTc9RRRxVa3Lo88sgj2WuvvRrdcjR5/7ajS5cuzdNPP/2h1gMAAAAAAADl0uJbfX7rW9/Kddddl5133jmnnnpqBgwYkCR56qmncvHFF+e9997Lt771rQ1WaHPmz5+fIUOGNBnv06dPkmTevHmNnku42ooVKxqtBlyyZEmSpL6+PvX19RuoWjaE1dfLdVt/lZJldarLXUJDDeWuZX2vZbnr/2AN5a6lvWe5seSYtP/fMZXyuzIp/+dhY/lcFnEty/0eZFmcSsqy3Crp92W5ybI4siyOLIshx+LIsjiyLI4siyPL4siy/WrNNasqlUqllu48Z86cfOUrX8nNN9+c1dOqqqpy6KGHZtKkSdlhhx1aX+0HrH7G31VXXZUTTzxxnft37Ngxp5xySiZNmtRo/LbbbsvQoUNzww035Jhjjmkyb8KECZk4cWKT8SlTpqSmpqat5QMAAAAAAEChli5dmlGjRmXx4sXp3r37Wvdt8Yq/JNl+++3zhz/8IW+88UaeffbZJMlOO+2ULbfcsu3VroeuXbs2+xy/1bcj7dq1a7Pzxo0bl7Fjxza8XrJkSWpra3PYYYetMzA2LvX19bn55ptz6KGHprq6/CtZ2rNKyXLktJHlLiHVqc6omlGZsnRK6lO+vz1z7fBr12u+LP9He89yY8kxWf8sy61SflcmPperFfGZlOX7ZFmc9v67Mqms35flJsviyLI4siyGHIsjy+LIsjiyLI4siyPL9mv1nStbolWNv9W23HLL7Lvvvm2ZWqg+ffpk/vz5TcZXj/Xt27fZeZ07d07nzp2bjFdXV/uwt1OuXXHae5blbmp8UP1//1Mu63sdZfk/KiXLcueYrH+WG4v2/rsy8blcrYjrKMv3ybI47f33ywdVwu/LjYUsiyPL4siyGHIsjiyLI8viyLI4siyOLNuf1lyvDhuwjg1u0KBBmTVrVlatWtVo/P77709NTU3DcwgBAAAAAACg0rWbxt/8+fMze/bsRg8wHD58eF599dVcf/31DWMLFy7M1KlTM2zYsGZX9QEAAAAAAEAlatOtPot28cUXZ9GiRZk3b16SZPr06Xn55ZeTJKeddlp69OiRcePGZfLkyZkzZ0622267JO83/vbff/+cdNJJeeKJJ9KzZ89MmjQpK1euzMSJE8v1dgAAAAAAAOBDt1E0/n7wgx9k7ty5Da+vv/76hlV8xx9/fHr06NHsvI4dO2bGjBk566yz8uMf/zjLli3LPvvsk7q6uuy8884fSu0AAAAAAACwMdgoGn8vvPDCOvepq6tLXV1dk/Etttgil19+eS6//PLiCwMAAAAAAIB2ot084w8AAAAAAABYM40/AAAAAAAAqAAbxa0+AQBaYth/DSvr+atTndE1ozNy2sjUp75sdUz/4vSynRsAAACAjZcVfwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFUDjDwAAAAAAACqAxh8AAAAAAABUAI0/AAAAAAAAqAAafwAAAAAAAFABNP4AAAAAAACgAmj8AQAAAAAAQAXQ+AMAAAAAAIAKoPEHAAAAAAAAFaDsjb8VK1bkG9/4Rvr27ZuuXbtmv/32y80337zOeRMmTEhVVVWTny5dunwIVQMAAAAAAMDGZZNyF3DiiSdm2rRpOeOMM9K/f//U1dXlyCOPzO23356DDjponfMvueSSbLrppg2vO3bsuCHLBQAAAAAAgI1SWRt/DzzwQH75y1/m+9//fr72ta8lSU444YTstttu+frXv5577rlnnccYPnx4evbsuaFLBQAAAAAAgI1aWW/1OW3atHTs2DFjxoxpGOvSpUu+9KUv5d57781LL720zmOUSqUsWbIkpVJpQ5YKAAAAAAAAG7WyNv4eeeSRDBgwIN27d280vu+++yZJHn300XUeY4cddkiPHj2y2Wab5fjjj8+rr766IUoFAAAAAACAjVpZb/U5f/789OnTp8n46rF58+atce4WW2yRU089NQcccEA6d+6cmTNn5qc//WkeeOCBPPTQQ02aiR+0YsWKrFixouH1kiVLkiT19fWpr69v69uhDFZfL9dt/VVKltWpLncJDTWUu5b1vZblrv+DNZS7lvae5caSYyLLohTxu7rc70GWxZFlcSopy3KrlP9tuTGQZXFkWRxZFkOOxZFlcWRZHFkWR5bFkWX71ZprVlUq4z0yd9xxx+y8886ZMWNGo/Hnn38+O+64Yy666KKcccYZLT7elClT8nd/93f53ve+l29+85tr3G/ChAmZOHFis/NrampafD4AAAAAAADYkJYuXZpRo0Zl8eLFa134lpS58bfbbruld+/eufXWWxuNP/HEExk4cGAuvfTSnHLKKa06Zp8+fTJw4MDccssta9ynuRV/tbW1Wbhw4ToDY+NSX1+fm2++OYceemiqq/9/e3ceH9P1/w/8NSKZySIJkUQiJGILCdKP7UNVosQSopZEEkGoWmopavl80dppNbWrtaglkRRROwlVrQ+tpZTyUYQQksaSiC0Lyfn94TdTY7LMJDczyXg9+5jHozn33HvPebtzz7n3zD3X8E+ylGfGEsvg7cGGLgJMYYq+Fn0R9TwKL2C4X8/EBMaUaH3G8h/lPZZlJY4AYymVksYRYCyVGEvpMJbSkSKWhmYsfcuygLGUDmMpHcZSGoyjdBhL6TCW0mEspcNYSoexLL8eP36MqlWrajXwZ9CpPp2cnHD37l2N9JSUFACAs7OzztusUaMG0tLSCs0jl8shl8s10k1NTXmwl1P8t5NOeY+loQc1Xvfi//9nKCX9d2Qs/2EssTR0HAHGUipSnKcZy1cYS+kwltIpz32xN5X3vmVZwlhKh7GUDmMpDcZROoyldBhL6TCW0mEspcNYlj+6/HtVKMVyFMnb2xtXr15VvWNP6bffflMt14UQAomJibC3t5eqiERERERERERERERERETlgkEH/gIDA5Gbm4s1a9ao0rKzs7Fhwwa0bNkSNWrUAADcvn0bV65cUVv3/v37GttbuXIl7t+/j86dO5duwYmIiIiIiIiIiIiIiIjKGINO9dmyZUsEBQVh8uTJuHfvHurUqYONGzciMTER69atU+UbMGAAjh07htdfR+jq6org4GA0atQICoUCx48fR3R0NLy9vXV+LyARERERERERERERERFReWfQgT8A2LRpEz7//HNs3rwZ6enpaNy4Mfbu3Yu2bdsWul5YWBhOnDiBHTt2ICsrC66urpg0aRKmTp0KCwsLPZWeiIiIiIiIiIiIiIiIqGww+MCfQqFAREQEIiIiCszz008/aaStXbu2FEtFREREREREREREREREVL4Y9B1/RERERERERERERERERCQNDvwRERERERERERERERERGQEO/BEREREREREREREREREZAYO/44+IiIiIiIiIiIiIgICtAQbdvylMEW4RjuDtwXiBFwYrx57QPQbbNxFReceBPyIiIiIiIiIieutwgOUfHGQhIiIyHpzqk4iIiIiIiIiIiIiIiMgIcOCPiIiIiIiIiIiIiIiIyAhw4I+IiIiIiIiIiIiIiIjICHDgj4iIiIiIiIiIiIiIiMgIcOCPiIiIiIiIiIiIiIiIyAhUNHQBiIiIiIiIiIiIqPwK2Bpg0P2bwhThFuEI3h6MF3hh0LLsCd1j0P3TP3hcvsJjkujtwyf+iIiIiIiIiIiIiIiIiIwAB/6IiIiIiIiIiIiIiIiIjACn+iQiIiIiIjIynNrqFU5tRURERERlCfvpr7CfXrr4xB8RERERERERERERERGREeDAHxEREREREREREREREZER4FSfRGUEH/N+hY95ExEREREREREREREVD5/4IyIiIiIiIiIiIiIiIjICHPgjIiIiIiIiIiIiIiIiMgKc6pOIiIiIiIiISh1fb/AKX29ARERERKWJT/wRERERERERERERERERGQE+8Uclwl9svsJfbBIREREREZE+GPo6HOC1OBEREVFZxif+iIiIiIiIiIiIiIiIiIwAB/6IiIiIiIiIiIiIiIiIjIDBp/rMzs7GtGnTsHnzZqSnp6Nx48aYM2cO/Pz8ilz37t27GDduHOLi4pCXl4d27dph0aJFcHd310PJiYiIiIiIyNgZelpFTqlIRERERES6MPgTfwMHDsTChQsRFhaGJUuWwMTEBP7+/jh+/Hih6z19+hTt2rXDsWPHMGXKFMycORPnzp2Dj48PHj58qKfSExEREREREREREREREZUNBn3i79SpU4iOjkZERAQmTJgAABgwYAC8vLwwadIknDhxosB1V6xYgWvXruHUqVNo3rw5AKBLly7w8vLCggULMG/ePL3UgYiIiIiIiIiIiIiIiKgsMOjA3/bt22FiYoKhQ4eq0hQKBQYPHowpU6YgKSkJNWrUKHDd5s2bqwb9AMDDwwPt27fH999/z4E/IiIiIiIiIiIiIqIS4tTnr3DqcyovDDrV57lz51CvXj1YW1urpbdo0QIAcP78+XzXy8vLw4ULF9CsWTONZS1atEBCQgKePHkieXmJiIiIiIiIiIiIiIiIyiqDPvGXkpICJycnjXRlWnJycr7rpaWlITs7u8h169evn+/62dnZyM7OVv2dkZGh2u6LF4b7xUC59NzQBQCe47nByyHJeyUZSwASxLIMxBFgLKXEWEqjLMQRYCylwnZHOoyldBhL6TCW0mEspcNYSscY+kMAYymVshBHgLGUEmMpDbY70mEspcNYSkeSWL5llA+7CSGKzCsT2uQqJbVr10b9+vWxf/9+tfQbN26gdu3aWLRoEcaOHauxXlJSEmrWrIn58+dj0qRJasvWr1+PwYMH49y5c/D29s53vzNmzMDMmTOlqgYRERERERERERERERFRqUpKSoKLi0uheQz6xJ+5ubnak3dKWVlZquUFrQegWOsCwOTJk/Hpp5+q/s7Ly0NaWhrs7Owgk8m0rwAZ3OPHj1GjRg0kJSVpTBlLumEspcNYSoexlAbjKB3GUjqMpXQYS+kwltJhLKXDWEqHsZQOYykNxlE6jKV0GEvpMJbSYSylw1iWX0IIPHnyBM7OzkXmNejAn5OTE+7evauRnpKSAgAFVqBKlSqQy+WqfLqsCwByuRxyuVwtzdbWVttiUxlkbW3NE5VEGEvpMJbSYSylwThKh7GUDmMpHcZSOoyldBhL6TCW0mEspcNYSoNxlA5jKR3GUjqMpXQYS+kwluWTjY2NVvkqlHI5CuXt7Y2rV6/i8ePHaum//fabanl+KlSogEaNGuHMmTMay3777Te4u7ujUqVKkpeXiIiIiIiIiIiIiIiIqKwy6MBfYGAgcnNzsWbNGlVadnY2NmzYgJYtW6JGjRoAgNu3b+PKlSsa654+fVpt8O+vv/7Cjz/+iKCgIP1UgIiIiIiIiIiIiIiIiKiMMOhUny1btkRQUBAmT56Me/fuoU6dOti4cSMSExOxbt06Vb4BAwbg2LFjEEKo0kaMGIG1a9eia9eumDBhAkxNTbFw4UI4Ojpi/PjxhqgOGYBcLsf06dM1pm4l3TGW0mEspcNYSoNxlA5jKR3GUjqMpXQYS+kwltJhLKXDWEqHsZQG4ygdxlI6jKV0GEvpMJbSYSzfDjLx+miaAWRlZeHzzz/Hli1bkJ6ejsaNG2P27Nno1KmTKo+vr6/GwB8A3LlzB+PGjUNcXBzy8vLg6+uLRYsWoU6dOvquBhEREREREREREREREZFBGXzgj4iIiIiIiIiIiIiIiIhKzqDv+CMiIiIiIiIiIiIiIiIiaXDgj4iIiIiIiIiIiIiIiMgIcOCPiLQycOBAuLm5GboYRERERAbh6+sLLy8vQxeDygCZTIYZM2YYuhhEpe67776DTCZDYmKiKs3X1xe+vr4GK9Pb6KeffoJMJsNPP/2kSmObRFS+KL/H27dvL/V95Xf/jn0XUsqvbSfjxIE/MpgVK1ZAJpOhZcuWxVr/8uXLmDFjxlt/olKesAv6/Prrr4YuYpmijNeZM2fyXZ6UlISZM2eiRYsWqFy5MqpWrQpfX18cPnxY531lZmZi8ODB8PLygo2NDaysrNCkSRMsWbIEL168UMs7Y8YMyGQyPHjwQNUh1OZTVhUVZwAF1unLL79Uyzdw4MAC8yoUCgCAm5ubVvH67rvvSrPapU7quFpZWaltt6hPWRz8lzIm2kpISEDfvn3h4OAAc3Nz1K1bF1OnTlXL4+vrC5lMhoCAAI31ExMTIZPJ8PXXX6vS3vzem5qawt3dHQMGDMCNGzeKVc7Sok3MASA1NRXDhg1D9erVoVAo4ObmhsGDB+eb96effkKvXr1QrVo1mJmZwcHBAQEBAYiNjQXwTzyL+pTni1kp42os328plMbxWt5pG5OyRHnezO8THR1d7O2+/v04fvy4xnIhBGrUqAGZTIZu3bqVpAp6oU1bsnDhQshkskL7tmvXroVMJsPu3bsB/HMOrlu3br754+PjVfvUxw1NpUuXLqFfv36oXr065HI5nJ2dERYWhkuXLqnle/M8qFAoUK9ePYwaNQqpqaka201NTcWECRPg4eEBCwsLWFpaomnTppgzZw4ePXqkp9qVLm1jR5p0PZ5IOxcvXkRgYCBcXV2hUChQvXp1+Pn5YdmyZYYumlGRIs7JycmYMWMGzp8/X3oFlYi+6lvUtczbpnv37rCwsMCTJ08KzBMWFgYzMzM8fPgQMpkMo0aNKnSbJe2LJCQkYNiwYXB3d4dCoYC1tTXeffddLFmyBJmZmbpVsAzSNeb0dqho6ALQ2ysyMhJubm44deoUrl+/jjp16ui0/uXLlzFz5kz4+voa7c0qXcyaNQu1atXSSNc1rm+7Xbt2Yf78+ejRowfCw8Px8uVLbNq0CX5+fli/fj0GDRqk9bYyMzNx6dIl+Pv7w83NDRUqVMCJEycwbtw4/Pbbb4iKisp3vQYNGmDz5s1qaZMnT4aVlZXG4EJ55+fnhwEDBqilvfPOOxr55HI5vv32W410ExMTAMDixYvx9OlTVfr+/fuxdetWLFq0CFWrVlWlt27dWqqil2naxlWpbdu2GsfcRx99hBYtWmDo0KGqNOVAQnmka0wKcv78efj6+qJ69eoYP3487OzscPv2bSQlJeWbf+/evTh79iyaNm2q1fY/+eQTNG/eHC9evMDvv/+ONWvWYN++fbh48SKcnZ11Lq+hJCUl4d133wUADB8+HNWrV0dycjJOnTqlkXf69OmYNWsW6tati2HDhsHV1RUPHz7E/v370bt3b0RGRmLq1Kn46KOPVOucPn0aS5cuxZQpU9CgQQNVeuPGjUu/cgakS1yV3obvd0kVJ65kGKGhofD391dLa9WqVYm3q1AoEBUVhTZt2qilHzt2DHfu3IFcLldLz8zMRMWKZfdSurC2JCQkBBMnTkRUVBQ6dOiQ7/pRUVGws7NDly5dVGkKhQLXr1/HqVOn0KJFC7X8kZGRUCgUyMrKKtV6vS42NhahoaGoUqUKBg8ejFq1aiExMRHr1q3D9u3bER0djZ49e6qto7xeysrKwvHjx7Fy5Urs378ff/75JywsLAC8al/8/f3x9OlT9OvXT9V+nzlzBl9++SV+/vlnxMXF6a2epaE4sXtdea+/VLQ5nkg7J06cQLt27VCzZk0MGTIE1apVQ1JSEn799VcsWbIEo0ePNnQRjYJUcU5OTsbMmTPh5uYGb2/v0i10Ceirvtpcy/Tt21fi2pVtYWFh2LNnD3bu3KlxDQ4Az58/x65du9C5c2fY2dlpvd3i9kX27duHoKAgyOVyDBgwAF5eXsjJycHx48cxceJEXLp0CWvWrNG9omWILjEfO3YsRo4cqdG/JSMkiAzgxo0bAoCIjY0V9vb2YsaMGTpvY9u2bQKAOHr0aJF58/LyxPPnz4tR0rJvw4YNAoA4ffp0qe4nPDxcuLq6luo+9KGoeP3555/i/v37amlZWVnCw8NDuLi4SFKGUaNGCQAiJSVFlTZ9+nQBQGPfSp6ensLHx0eS/euDNsclADFy5MgitxUeHi4sLS112n9ERIQAIG7evKnTemWdPuNqaWkpwsPDi1NMvZIyJkXJzc0VXl5eomXLlkW2KT4+PqJmzZqicuXKIiAgQG3ZzZs3BQARERGhSjt69KgAILZt26aWd+nSpQKAmDdvXonLLxVtYt6lSxdRq1Yt8eDBg0K3pWzLAwMDRU5OjsbygwcPij179hS4njZ9gPJCyrgay/dbClLG1cfHR3h6ekpdRL3TV99RSvmdN6WgjEWvXr1E1apVxYsXL9SWDxkyRDRt2lS4urqKrl27SrpvIYR4+vSppNvTti1p3769sLGxEVlZWRrbuHPnjqhQoYIYPny4Kk157NevX1+MHTtWLX9mZqawtrYWvXv3znffpeH69evCwsJCeHh4iHv37qktu3//vvDw8BCWlpYiISFBCFHwMf/pp58KACIqKkoIIUR6erqoXr26cHR0FP/73/809vv333+L2bNnl1Kt9KO4sTO2PnVJaHs8SUn53X6932MsbZIQQvj7+wt7e3uRnp6usSw1NVX/BTJSUsX59OnTAoDYsGGDdIUrBfqory7XMgW10aUhv/t3AMT06dNLfd9CCPH8+XNRqVIl0alTp3yXR0VFCQAiOjpaVbairteL2xe5ceOGsLKyEh4eHiI5OVlju9euXROLFy/WtYpljq4xp7cDp/okg4iMjETlypXRtWtXBAYGIjIyUiNPdHQ0mjZtikqVKsHa2hqNGjXCkiVLALyaXiMoKAgA0K5dO9Xj3Mo5793c3NCtWzccOnQIzZo1g7m5OVavXg0AuHHjBoKCglClShVYWFjg3//+N/bt26efihvI69PKrVmzBrVr14ZcLkfz5s1x+vRpjfw//PADvLy8oFAo4OXlhZ07d+a73WfPnmH8+PGoUaMG5HI56tevj6+//hpCiNKuUqnx9PRUe0IMePW0mb+/P+7cuVPoY/PaUj6haixTBZVUZmamXn8h/rZgXDWVNCZxcXH4888/MX36dJibm+P58+fIzc0tMH+lSpUwbtw47NmzB7///nux9vn+++8DAG7evFms9Q3hypUrOHDgACZOnAg7OztkZWVpTG+s9Pnnn6NKlSpYv349TE1NNZZ36tSpXEyvpw+6xJW0V5y4nj17Fq1bt4a5uTlq1aqFVatW6am0+pGTk4Np06ahadOmsLGxgaWlJd577z0cPXpULd/r/ctvvvkG7u7usLCwQMeOHZGUlAQhBGbPng0XFxeYm5vjgw8+QFpamto2lH32uLg4eHt7Q6FQoGHDhoVOjfXs2TPk5ORIWufQ0FA8fPgQ8fHxanHYvn17vr/Sz29q4bt372Lw4MFwdnaGXC5HrVq18PHHH6vKqpwe8NixYxgxYgQcHBzg4uKiWn/FihXw9PRUTbs4cuRIyfqKb7Yl/fr1Q0ZGRr7XQNHR0cjLy0NYWJjGstDQUMTExCAvL0+VtmfPHjx//hx9+vSRpKzaiIiIwPPnz7FmzRrY29urLatatSpWr16NZ8+e4auvvip0O2/GZfXq1bh79y4WLlwIDw8PjfyOjo747LPPJKqFYUgRO9983vF369YtdO/eHZaWlnBwcMC4ceNw6NAhtWt0pW3btqFp06YwNzdH1apV0a9fP9y9e1eqKhqM8ni6du0aZDIZNm7cqJFHGZO9e/cCeBW3ESNGoH79+jA3N4ednR2CgoJ0ep2JMbRJCQkJ8PT0hK2trcYyBwcH1f8rpwNU3q+Qy+Xw9PTEwYMHNdYr6pwMABcuXICPjw/Mzc3h4uKCOXPmYMOGDZDJjPPdV9rGOT4+Hm3atIGtrS2srKxQv359TJkyBcCrKS2bN28OABg0aFCZfqWGPupbnGuZvLw8zJ07Fy4uLlAoFGjfvj2uX7+usa6250pt79/pk7m5OXr16oUjR47g3r17GsujoqJQqVIldO/eXedt69oX+eqrr/D06VOsW7cOTk5OGsvr1KmDMWPG6FyOskaXmOf3jr/i9Mmp7OPAHxlEZGQkevXqBTMzM4SGhuLatWtqA1Dx8fEIDQ1F5cqVMX/+fHz55Zfw9fXFf//7XwCvpq365JNPAABTpkzB5s2bsXnzZrXpvv766y+EhobCz88PS5Ysgbe3N1JTU9G6dWscOnQII0aMwNy5c5GVlYXu3buXicaxJDIyMvDgwQO1z5vzNkdFRSEiIgLDhg3DnDlzkJiYiF69eqnd4IqLi0Pv3r0hk8nwxRdfoEePHhg0aJDGe2CEEOjevTsWLVqEzp07Y+HChahfvz4mTpyITz/9VC911qe///4bFhYWxZq2JScnBw8ePEBSUhJ27tyJr7/+Gq6urpyGFa9ugllaWsLc3BwNGzYscPpTABrH94MHD/D48WM9lrb80CWubwspYqJ8H5JcLkezZs1gaWkJCwsLhISEaNzMVhozZgwqV65c7HfPJSQkAIBOU6AYmjJOjo6OaN++PczNzWFubo4uXbqoXVxcu3YNV65cQY8ePVCpUiUDlbb80DaupBtd45qeng5/f380bdoUX331FVxcXPDxxx9j/fr1ei556Xn8+DG+/fZb+Pr6Yv78+ZgxYwbu37+PTp065ft+m8jISKxYsQKjR4/G+PHjcezYMfTp0wefffYZDh48iP/85z8YOnQo9uzZgwkTJmisf+3aNQQHB6NLly744osvULFiRQQFBakNwinNnDkTVlZWUCgUaN68uWRTDrq5uaFVq1bYunWrKu3AgQPIyMhASEhIkesnJyejRYsWiI6ORnBwMJYuXYr+/fvj2LFjeP78uVreESNG4PLly5g2bRr+7//+D8Crdz2PHDkSzs7OWLBgAXr37o3Vq1ejY8eOkgzwv9mW9OrVSzW96ZuioqLg6uqqmv72dX379kVKSoraQE5UVBTat2+vdhO1tO3Zswdubm5477338l3etm1buLm5Ffnjzjfjsnv3bpibmyMwMFDaApchUsXudc+ePcP777+Pw4cP45NPPsHUqVNx4sQJ/Oc//9HI+91336FPnz4wMTHBF198gSFDhiA2NhZt2rQp9z+KVB5Pjo6OcHd3x/fff6+RJyYmBpUrV0anTp0AvJpa9sSJEwgJCcHSpUsxfPhwHDlyBL6+vhrnjvwYS5vk6uqKs2fP4s8//ywy7/HjxzFixAiEhITgq6++QlZWFnr37q1270Obc/Ldu3fRrl07XLp0CZMnT8a4ceMQGRmp+rG5MdImzpcuXUK3bt2QnZ2NWbNmYcGCBejevbvqXlyDBg0wa9YsAMDQoUNV9+Latm2rlzroorTrW9xrmS+//BI7d+7EhAkTMHnyZPz6668aP7bR9lyp7f07QwgLC8PLly81zoVpaWk4dOgQevbsCXNzc523q2tfZM+ePXB3d38rXvtS0pjr0iencsLATxzSW+jMmTMCgIiPjxdCvJqG08XFRYwZM0aVZ8yYMcLa2lq8fPmywO0UNs2Xq6urACAOHjyolj527FgBQPzyyy+qtCdPnohatWoJNzc3kZubW7LKGYByqpH8PnK5XAjxz/RIdnZ2Ii0tTbXurl27BAC1adS8vb2Fk5OTePTokSotLi5OAFCbKuCHH34QAMScOXPUyhMYGChkMpm4fv16KdW4ZIozvdW1a9eEQqEQ/fv3L9Y+t27dqvbv0qxZM3HhwgW1PG/jVJ+tW7cWixcvFrt27RIrV64UXl5eAoBYsWKFWr7w8PACj/GCpjF4m6f61CWuxjAVoJQxKUr37t1V59KwsDCxfft28fnnn4uKFSuK1q1bi7y8PFXe16dfmjlzpgAgzp49K4QofKrP9evXi/v374vk5GSxb98+4ebmJmQyWZmakq+omH/yySeqOHXu3FnExMSIiIgIYWVlJWrXri2ePXsmhPinDVq0aJHOZXgbp/rUNq5CGM/3WwpSxtXHx0cAEAsWLFClZWdnC29vb+Hg4JDvFE9lUVExefnypcjOzlZLS09PF46OjuLDDz9UpSnPZfb29mr9xsmTJwsAokmTJmpTZ4aGhgozMzO16SWVffYdO3ao0jIyMoSTk5N45513VGm3bt0SHTt2FCtXrhS7d+8WixcvFjVr1hQVKlQQe/fulSQWy5cvF5UqVVJN5RwUFCTatWunKufrU33ijemyBgwYICpUqJBvTJVtg3Jfbdq0UbvGuXfvnjAzMxMdO3ZUuxZZvny5ql3Qli5tSVBQkFAoFCIjI0OVduXKFQFATJ48WW27r7dpzZo1E4MHDxZCvDouzMzMxMaNG/U2hdmjR48EAPHBBx8Umk/ZZj9+/FgV+8OHD4v79++LpKQkER0dLezs7IS5ubm4c+eOEEKIypUriyZNmpRq+Q2pJLF7vU/t4+Ojdl2yYMECAUD88MMPqrTMzEzh4eGh1lbn5OQIBwcH4eXlJTIzM1V59+7dKwCIadOmSVHNUqfN8TR58mRhamqqdu2dnZ0tbG1t1c6j+U0df/LkSQFAbNq0SZVW0FSfxtAmCfHqfoOJiYkwMTERrVq1EpMmTRKHDh3SqAMAYWZmpnav4Y8//hAAxLJly1Rp2pyTR48eLWQymTh37pxq2cOHD0WVKlWM8jpSCO3ivGjRokLvSwhRfqb6LO366noto/weN2jQQK2ftWTJEgFAXLx4UQih27lS2/t3Quh3qk8hXvUnnZycRKtWrdTSV61aJQCIQ4cOqZVN26k+hdC+L5KRkaFVu2cstI15fm27tn1yKl/4xB/pXWRkJBwdHdGuXTsAr6ZrCA4ORnR0tGrKNFtbWzx79qxEvyqoVauW6pd0Svv370eLFi3Qpk0bVZqVlRWGDh2KxMREXL58udj7M7RvvvkG8fHxap8DBw6o5QkODkblypVVfyt/6Xnjxg0AQEpKCs6fP4/w8HDY2Nio8vn5+aFhw4Zq29q/fz9MTExUT14qjR8/HkIIjX2XV8+fP0dQUBDMzc3x5ZdfFmsb7dq1Q3x8PLZt24bhw4fD1NQUz549k7ik5c9///tfjBkzBt27d8fw4cNx9uxZeHl5YcqUKcjMzFTLq1AoNI7v+Pj4Yv+bGDNd4vq2kComT58+BQA0b94cW7ZsQe/evTFr1izMnj0bJ06cwJEjR/JdT/nU38yZM4vcx4cffgh7e3s4Ozuja9euePbsGTZu3IhmzZppXU5DU8apWrVq2LdvH/r06YMJEyZg7dq1SEhIUD1honxil0/7aUfbuJJudI1rxYoVMWzYMNXfZmZmGDZsGO7du4ezZ8/qteylxcTEBGZmZgBeTUeVlpaGly9folmzZvlOWxwUFKTWb2zZsiWAV9NJVqxYUS09JydHY5oqZ2dn9OzZU/W3tbU1BgwYgHPnzuHvv/8GANSsWROHDh3C8OHDERAQgDFjxuDcuXOwt7fH+PHjJal3nz59kJmZib179+LJkyfYu3dvvtN8vikvLw8//PADAgIC8j1Xy2Qytb+HDBkCExMT1d+HDx9GTk4Oxo4diwoVKqjls7a2LtYrCbRpS/r164esrCy1KZyUx3t+03wq9e3bF7GxsaqpUE1MTNT+/Uqbctr9otoO5fLXZ4fo0KED7O3tUaNGDYSEhMDKygo7d+5E9erVVXmNuU0qSewKc/DgQVSvXl1tyjaFQoEhQ4ao5Ttz5gzu3buHESNGQKFQqNK7du0KDw+Pcvf6jcKOp+DgYLx48ULt+xUXF4dHjx4hODhYlfb6kxcvXrzAw4cPUadOHdja2mo1TbyxtEl+fn44efIkunfvjj/++ANfffUVOnXqhOrVq2P37t1qeTt06IDatWur/m7cuDGsra1V9zS0PScfPHgQrVq1gre3t2pZlSpVCj3/lXfaxFk5LeauXbvUplIsj0q7vsW9lhk0aJCqnwVo3pfT9lypy/07QzAxMUFISAhOnjypNotGVFSUaqaN4tK2L/K2XW+WNOba9MmpfOHAH+lVbm4uoqOj0a5dO9y8eRPXr1/H9evX0bJlS6Smpqpumo4YMQL16tVDly5d4OLigg8//DDfedsLU6tWLY20W7duoX79+hrpyilCb926VYxalQ0tWrRAhw4d1D7KwVWlmjVrqv2tHARMT08H8E/969atq7H9N+N269YtODs7azSgxhBLpdzcXISEhODy5cvYvn07nJ2di7UdR0dHdOjQAYGBgVi5ciW6desGPz8/NpxvMDMzw6hRo/Do0SONC1UTExON47tDhw5qF2qUv8Li+rYqbkyUN2dCQ0PV0pU3hk+cOJHvejY2Nhg7dix2796Nc+fOFbqPadOmIT4+Hj/++CMuXLiA5ORk9O/fX+sylgXKOPXp00ftJnZQUBAqVqyoipO1tTUASPLu1LeBtnEl3egaV2dnZ1haWqql1atXDwCMasrVjRs3onHjxlAoFLCzs4O9vT327duHjIwMjbxv9i+VN59q1KiRb7qy36lUp04djcExbWJapUoVDBo0CH/99Rfu3LmjXcUKYW9vjw4dOiAqKgqxsbHIzc3VasrH+/fv4/Hjx/Dy8tJqP29eoyj7zG/2tc3MzODu7l6sPrU2bUmXLl1QpUoVtcHtrVu3okmTJvD09Cxw2yEhIcjIyMCBAwcQGRmJbt266fWGmnJfRbUd+Q1yKX8oefToUVy+fBk3btxQ+6GotbW1UbdJJYldYW7duoXatWtrfI/ffK1BQcc6AHh4eJS768fCjqcmTZrAw8MDMTExqvwxMTGoWrWq6l2AwKv3T0+bNg01atSAXC5H1apVYW9vj0ePHuV7vn2TMbVJzZs3R2xsLNLT03Hq1ClMnjwZT548QWBgoNoPtN9sc4BX9zWUbYu25+Rbt27l++oNY38dR1FxDg4OxrvvvouPPvoIjo6OCAkJwffff19uBwFLs77FvZbR9r5cUedKXe7fGYpyIF3Z17hz5w5++eUXhISEqP0ISlfa9kXexuvNksS8uH1yKrs48Ed69eOPPyIlJQXR0dGoW7eu6qN8AWtkZCSAVy/aPX/+PHbv3o3u3bvj6NGj6NKlC8LDw7XeV3HmijZ2BZ3khRB6Lkn5MGTIEOzduxffffed2gVaSQUGBuLp06fYtWuXZNs0FsqbhAW9L42Kh3HVVJyYKAf/HR0d1dKV7xJ482b268aMGQNbW9sin/pr1KiR6ocbjRo1UntaprwoKE4mJiaws7NTxcnDwwMAcPHiRf0WsJzSNq6kG8ZV05YtWzBw4EDUrl0b69atw8GDBxEfH4/3338/3xthBfUv9dHvlLp969u3Lw4cOIBVq1ahS5cuqicBpKSPaxRt2hJTU1P06dMHP/74I1JTU3H69Glcu3atyKddnJyc4OvriwULFuDnn3/W6qlIKdnY2MDJyQkXLlwoNN+FCxdQvXp11U0/4J8fSvr6+qJBgwZqg/3Aq3bp6tWryMnJKZWyG1pJYkeaijqegoODcfToUTx48ADZ2dnYvXs3evfurfZ9HD16NObOnYs+ffrg+++/R1xcHOLj42FnZ1duB1pKyszMDM2bN8e8efOwcuVKvHjxAtu2bVMt5z0NaRQUZ3Nzc/z88884fPgw+vfvjwsXLiA4OBh+fn6qGbrKo9Kob3GvZd6mY7hp06bw8PBQvUN569atEEKU+Mlabfsi1tbWcHZ21ur9ocaitGJO5RMH/kivIiMj4eDggG3btml8QkNDsXPnTtW0a2ZmZggICMCKFSuQkJCAYcOGYdOmTbh+/ToAzWlztOHq6oq//vpLI/3KlSuq5W8zZf2vXbumsezNuLm6uiI5OVnjlzPGEsuJEydiw4YNWLRokcbTPSWlPMa1+RXn20Y5vYW9vb2BS2JcGFdNxYlJ06ZNAUBjmrrk5OQit6V86m/Xrl1FPvVX3hUUp5ycHDx48EAVp3r16qF+/frYtWuXarpFKpi2cSXd6BrX5ORkjem6r169CgBwc3MrvYLq0fbt2+Hu7o7Y2Fj0798fnTp1QocOHZCVlVUq+7t+/brGzS5tYyp1+9azZ09UqFABv/76q9YDWvb29rC2ti72TSVln/nNvnZOTg5u3rxZqn3qsLAw5ObmIiYmBlFRUZDJZFr1e/v27YtffvkF1tbW8Pf3L7XyFaRbt264efMmjh8/nu/yX375BYmJiejWrZtO2w0ICEBmZiZ27NghRTHLpNKInaurKxISEjS+x8rr9tfzAZrHujKtvF8/vik4OBgvX77Ejh07cODAATx+/BghISFqebZv347w8HAsWLAAgYGB8PPzQ5s2bfDo0SOt9mHsbZJyqs6UlBSt19H2nOzq6qpxjAKax+3b4M04V6hQAe3bt8fChQtx+fJlzJ07Fz/++COOHj0KoHj34soSqepbWtcy2p4rdbl/Z0hhYWH4888/ceHCBURFRaFu3bpo3rx5iberbV+kW7duSEhIwMmTJ0u8z/KiuDEvSZ+cyiYO/JHeZGZmIjY2Ft26dUNgYKDGZ9SoUXjy5Al2796Nhw8fqq1boUIFNG7cGACQnZ0NAKopLbTtFAOAv78/Tp06pXbCf/bsGdasWQM3N7cyMQ+2ITk5OcHb2xsbN25UG5SKj4/XeP+hv78/cnNzsXz5crX0RYsWQSaToUuXLnopc2mIiIjA119/jSlTpmDMmDHF3s6DBw/y/dXWt99+CwDl6p1dUrt//75G2pMnT7B48WJUrVpVdSOWdMO4apIyJh988AHkcjk2bNig9its5Xfaz8+v0PXHjh0LW1tbzJo1S+t9lke+vr5wcHBAZGSk2kDBd999h9zcXLU4zZw5Ew8fPsRHH32Ely9famwrLi4Oe/fu1Uu5yzpd4kra0zWuL1++xOrVq1V/5+TkYPXq1bC3tzeac6zyl+iv92F+++23UrthkpycjJ07d6r+fvz4MTZt2gRvb29Uq1YNQP7n8rt372L9+vVo3LgxnJycJCmLlZUVVq5ciRkzZiAgIECrdSpUqIAePXpgz549OHPmjMbyon7B36FDB5iZmWHp0qVqedetW4eMjAx07dpVt0ro4N1334Wbmxu2bNmCmJgY+Pj4wMXFpcj1AgMDMX36dKxYsULtPUX6MnHiRJibm2PYsGEa141paWkYPnw4LCwsMHHiRJ22O3z4cDg5OWH8+PGqG12vu3fvHubMmVOishtaacSuU6dOuHv3rtq72LKysrB27Vq1fM2aNYODgwNWrVqluqYHgAMHDuB///tfqR7rhtCgQQM0atQIMTExiImJgZOTE9q2bauWx8TEROMcsWzZMq2frDKWNuno0aP5niv3798PQLdpC7U9J3fq1AknT57E+fPnVcvS0tJUs1AZI23inN8T9MrXa5TkXpwh6KO+pXEto+25Upf7d4akfNJs2rRpOH/+vGRPnmnbF5k0aRIsLS3x0UcfITU1VWN5QkIClixZIkmZyorixlybPjmVL+Vv/igqt3bv3o0nT56ovfT7df/+979hb2+PyMhIREdHIy0tDe+//z5cXFxw69YtLFu2DN7e3qp3yHl7e8PExATz589HRkYG5HI53n//fdWUa/n5v//7P2zduhVdunTBJ598gipVqmDjxo24efMmduzYoTE9R3ly4MAB1dN2r2vdurVO9friiy/QtWtXtGnTBh9++CHS0tKwbNkyeHp6qv2KKSAgAO3atcPUqVORmJiIJk2aIC4uDrt27cLYsWPVXrhdFq1fvz7f90a6urpi0qRJqFu3Lho0aIAtW7aoLffz89OYDqwgW7ZswapVq9CjRw+4u7vjyZMnOHToEOLj4xEQECDp9KFlVUFxTk9Px5EjRxAQEICaNWsiJSUF69evx+3bt7F582aNjtvLly81/i2UevbsqfFuC2MnVVyNiT5iUq1aNUydOhXTpk1D586d0aNHD/zxxx9Yu3YtQkNDi/wVnY2NDcaMGVPkdJ/lRUExHzNmDCIiIhAeHo62bduif//+uH37NpYsWYL33nsPvXr1UuUNDg7GxYsXMXfuXJw7dw6hoaFwdXXFw4cPcfDgQRw5ckTt/VNvAyniSpqkiquzszPmz5+PxMRE1KtXDzExMTh//jzWrFkDU1NTfVVHEgXFxNfXF7GxsejZsye6du2KmzdvYtWqVWjYsGGpPJ1br149DB48GKdPn4ajoyPWr1+P1NRUbNiwQZVn0qRJSEhIQPv27eHs7IzExESsXr0az549k/xmjS6vFlCaN28e4uLi4OPjg6FDh6JBgwZISUnBtm3bcPz48UKnDLW3t8fkyZMxc+ZMdO7cGd27d8dff/2FFStWoHnz5ujXr18JalM4mUyGvn37Yt68eQCg9Q9TbGxsMGPGjFIrV1Hq1q2LjRs3IiwsDI0aNcLgwYNRq1YtJCYmYt26dXjw4AG2bt2q8/VI5cqVsXPnTvj7+8Pb2xv9+vVTDZ78/vvv2Lp1K1q1alUaVdKb0ojdsGHDsHz5coSGhmLMmDFwcnJCZGQkFAoFgH+eljE1NcX8+fMxaNAg+Pj4IDQ0FKmpqViyZAnc3Nwwbty4UqmzIQUHB2PatGlQKBQYPHiwxnV5t27dsHnzZtjY2KBhw4Y4efIkDh8+DDs7O622byxt0ujRo/H8+XP07NkTHh4eyMnJwYkTJxATEwM3NzcMGjRIp+1pc06eNGkStmzZAj8/P4wePRqWlpb49ttvUbNmTaSlpZX7p9ryo02cZ8yYgZ9//hldu3aFq6sr7t27hxUrVsDFxQVt2rQBANSuXRu2trZYtWoVKlWqBEtLS7Rs2VLjHbaGpo/6lsa1jC7nSm3v3xlSrVq10Lp1a9WrbgoahDpz5ky+P67x9fVV/Vu8Ttu+SO3atREVFYXg4GA0aNAAAwYMgJeXl+p42LZtGwYOHKhTnco6bWP+Jm365FTOCCI9CQgIEAqFQjx79qzAPAMHDhSmpqZi+/btomPHjsLBwUGYmZmJmjVrimHDhomUlBS1/GvXrhXu7u7CxMREABBHjx4VQgjh6uoqunbtmu8+EhISRGBgoLC1tRUKhUK0aNFC7N27V7J66tuGDRsEgAI/GzZsEDdv3hQAREREhMb6AMT06dPV0nbs2CEaNGgg5HK5aNiwoYiNjRXh4eHC1dVVLd+TJ0/EuHHjhLOzszA1NRV169YVERERIi8vrxRrXDJFxWvw4MGFLlceY9o4ffq0CAoKEjVr1hRyuVxYWlqKf/3rX2LhwoXixYsXanmnT58uAIj79+/nuy1PT0/h4+NTgprrV1Fx3rRpk/Dz8xPVqlUTpqamwtbWVnTs2FEcOXJEY1vh4eGFbuvmzZsa60RERBS4rDyTOq6WlpYF7svS0lKEh4eXYm2kIWVMtJGXlyeWLVsm6tWrJ0xNTUWNGjXEZ599JnJyctTy+fj4CE9PT43109PThY2NjcY5+ejRowKA2LZtW7HKpU9FxTwpKUkIIcTWrVtFkyZNhFwuF46OjmLUqFHi8ePH+W7zyJEj4oMPPhAODg6iYsWKwt7eXgQEBIhdu3blm3/btm06n5PLOinjaizfbylIGVfl9/rMmTOiVatWQqFQCFdXV7F8+XJDVK3YiorJ7du3xbx584Srq6uQy+XinXfeEXv37tXoCxbUvyzofKbc7+nTp1Vpyj77oUOHROPGjYVcLhceHh4a60ZFRYm2bdsKe3t7UbFiRVG1alXRs2dPcfbsWUli8XqZ8vPmtUV+/edbt26JAQMGCHt7eyGXy4W7u7sYOXKkyM7O1mpfy5cvFx4eHsLU1FQ4OjqKjz/+WKSnp+tUn+K0JZcuXRIAhFwuL3B/BbVpJd13SV24cEGEhoYKJycnYWpqKqpVqyZCQ0PFxYsX1fJp+++slJycLMaNGyfq1asnFAqFsLCwEE2bNhVz584VGRkZpVEVvdM1dq/3qX18fDSuS27cuCG6du0qzM3Nhb29vRg/frzYsWOHACB+/fVXtbwxMTHinXfeEXK5XFSpUkWEhYWJO3fulFZVJafL8XTt2jXVufX48eMay9PT08WgQYNE1apVhZWVlejUqZO4cuWKcHV1VWunld+v1/s9xtImCSHEgQMHxIcffig8PDyElZWVMDMzE3Xq1BGjR48WqampqnwAxMiRIzXWfzNeQhR9ThZCiHPnzon33ntPyOVy4eLiIr744guxdOlSAUD8/fffpVZfQ9Emzso+ubOzszAzMxPOzs4iNDRUXL16VW1bu3btEg0bNhQVK1ZU3Xcqa/RZX22uZQpqJ5X9qTe3qe25Utv7d/n1XfTlm2++EQBEixYt8l1eWL909uzZQoiS90WuXr0qhgwZItzc3ISZmZmoVKmSePfdd8WyZctEVlZWyStZxhQW8/zadm375FS+yIQwwreHEhERERERUZnm5uYGLy8vTulLZIQWL16McePG4c6dO6hevbqhi0OklbFjx2L16tV4+vSpauprIiJjxz65cSq/8xoSEREREREREZFBZWZmqv2dlZWF1atXo27duhz0ozLrzeP24cOH2Lx5M9q0acNBPyIiKvf4jj8iIh3l5OTk+xLo19nY2MDc3FxPJSKiksjMzFR7IXp+qlSpYtTvSCQiorKL7RSVdb169ULNmjXh7e2NjIwMbNmyBVeuXEFkZKShi0ZUoFatWsHX1xcNGjRAamoq1q1bh8ePH+Pzzz83dNGIiIhKjAN/REQ6OnHiBNq1a1dong0bNhjdC4KJjFVMTAwGDRpUaJ6jR4/C19dXPwUiIiJ6DdspKus6deqEb7/9FpGRkcjNzUXDhg0RHR2N4OBgQxeNqED+/v7Yvn071qxZA5lMhn/9619Yt24d2rZta+iiERERlRjf8UdEpKP09HScPXu20Dyenp5wcnLSU4mIqCRSUlJw6dKlQvM0bdoUlStX1lOJiIiI/sF2ioiIiIiIdMGBPyIiIiIiIiIiIiIiIiIjUMHQBSAiIiIiIiIiIiIiIiKikuPAHxEREREREREREREREZER4MAfERERERERERERERERkRHgwB8RERERERERERERERGREeDAHxEREREREREREREREZER4MAfERERERERERERERERkRHgwB8RERERERERERERERGREeDAHxEREREREREREREREZER+H+ypQ0Rg8XzRgAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "# plot predictions vs ground truth for a random region in the test set\n",
- "crested.pl.bar.region_predictions(\n",
- " adata, \"chr18:60577255-60579369\", title=\"Predictions vs Ground Truth\"\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Class Distributions"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T16:20:00.057748+0200 INFO Plotting histograms for target: groundtruth, classes: ['Astro', 'Endo']\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAJRCAYAAAANqTVWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMVUlEQVR4nOzdeZhcZZk34F919ZJ9IwQSSAiGVQICsriyiCCLjsvA4CADKAozjrsMyvgpoI6OoqAOOsgIARwQR8QREZWwOSIooyyOsi8JWwRC9q2Xqvr+6CVp0yGdTndXV/q+r6uv0KfOqXqr+u1wTn7neZ9CpVKpBAAAAAAAYIirq/YAAAAAAAAAekOoAQAAAAAA1AShBgAAAAAAUBOEGgAAAAAAQE0QagAAAAAAADVBqAEAAAAAANQEoQYAAAAAAFAThBoAAAAAAEBNEGoAAAAAAAA1QagBAECf3HbbbXnf+96Xl7/85Zk4cWIaGhqy1VZb5YADDsgHPvCB3HTTTalUKtUeZlUVCoUUCoVe7Ttz5syu/Xv7NXPmzIF9Ay/htttuS6FQyCGHHNKvz/uXn0NdXV3Gjh2b7bffPoceemjOOOOM3HXXXS/5HIccckgKhUJuu+22fh1bX3W+p3nz5nXbPtTGmSSnnHJKCoVCLrvssmoPBQAAelRf7QEAAFBbFi5cmHe961258cYbkyTbbbddXvva12b8+PFZunRp/vjHP+ab3/xmvvnNb2afffbJ3XffXeUR14Zjjz02Cxcu7LZtxYoV+eEPf5gk+eu//uuMGTOm2+OTJ08esPHMnDkz8+fPzxNPPFGV8OS1r31tdtpppyTJ6tWrs3Dhwtxzzz257bbb8tWvfjUHH3xwLr300rzsZS8bsDFU+zPob5dddlne/e535+STTxZaAABQs4QaAAD02pIlS/K6170uDz30UHbbbbd861vfyqGHHrrefn/84x9zwQUX5Oqrr67CKGvTV77ylfW2zZs3ryvU+MpXvrJF/MN6b733ve/NKaec0m1bpVLJz372s3zkIx/JL3/5y7zmNa/JnXfemR133LHbfldccUVWrVqVGTNmDOKIN+zmm29Oa2trtttuu2oPZaO++MUv5pOf/GSmTp1a7aEAAECPhBoAAPTaBz/4wTz00EN52cteljvuuCMTJ07scb/Zs2fnkksuyemnnz7II2RLVigUcvTRR+c1r3lNDjjggDzyyCN573vfm5tvvrnbfkMlzOg0a9asag+h16ZOnSrQAABgSNNTAwCAXnnsscdy1VVXJUkuuOCCDQYa6zrggAPW27ZuH4Ff/epXectb3pKtt946dXV13ZbEefrpp/PBD34wO++8c0aMGJHx48fnta99bb797W+nVCqt97znnHNOCoVCzjnnnB7HsqEeEOtub21tzZe+9KXsscceGTlyZLbaaqu84x3vyAMPPLDB93jnnXfmqKOOyoQJEzJmzJjst99+ufTSSzf62Wyuyy67LIVCIaecckoWLVqUj3zkI5k1a1aampq63mNv+l78Zd+PzuedP39+kmTHHXfs1uOip/4PffncNseECRPyta99LUlyyy235Pe//323xzfUq6K5uTnnnXdeXvnKV2bs2LFpbGzMtttum/333z9nnnlmFi1alKT3n8G6n++qVavymc98JrvvvntGjRrVrapmQz011vXLX/4yRxxxRCZNmpRRo0blgAMOyHe/+90e991YL46efhdmzpyZd7/73UmSyy+/vNv7WXd+bKynxtVXX53DDjsskyZNSlNTU3bYYYe85z3vycMPP9zj/uu+91tvvTVHHHFEJk6cmJEjR2bffffNFVdcscHPBAAAeqJSAwCAXrn++utTLpczceLEvPnNb97s5/vBD36Qiy66KLvttlve+MY3ZtGiRWlqakqS/O///m+OPPLILFq0KDNmzMjb3va2LF26NLfddlvuuOOO/OhHP8p1112XxsbGzR5Hp9bW1hx99NG54447ctBBB2X33XfPXXfdlR/96Ee59dZbc88996y3/NMPfvCD/O3f/m1KpVJmz56dPffcM0899VTe+9735k9/+lO/je2lLFy4MPvtt1+WLFmS17/+9XnlK1+5WZ/LTjvtlJNPPjnXXHNNVq5cuV4vj2233bbb/n353PrDUUcdlUmTJmXRokWZO3duXvnKV77k/uVyOcccc0xuvvnmjBs3Lq9//eszYcKEvPDCC3nkkUdy3nnn5YQTTsikSZM2+TNYs2ZNDjnkkNx///056KCD8opXvCIvvvhir9/Lj370o1x44YXZbbfd8qY3vSnPPvtsbr/99px00km5995789WvfnXTPpweHHvssfnNb36TX//615k1a1Ze97rXdT222267bfT4SqWSU045JVdccUXq6+tz0EEHZcqUKbn77rszZ86cfP/7388Pf/jDHHnkkT0ef+mll+bzn/989t133xx55JGZN29efvOb3+Tkk0/uCuUAAKBXKgAA0At/93d/V0lSOeywwzbreQ4++OBKkkqSyje/+c31Hl+zZk1lhx12qCSp/P3f/32lpaWl67HHHnusMnPmzEqSyj//8z93O+7ss8+uJKmcffbZPb7urbfeWklSOfjgg3vcnqSyzz77VBYsWND12OrVqytvetObKkkqp512WrfjFixYUBk7dmwlSeX888/v9thNN91UGTFiRNfz9tUTTzzR9RxPPPFEt8fmzJnT9dhhhx1WWbp0aa/f87o2NMbOn8Ffvu5fPvemfm4b0/m6c+bM2ei+b3zjGytJKieeeGK37Z1z7NZbb+3a9stf/rJrrMuWLVvvuf73f/+3snDhwh7H0pvPYK+99ur2GfTmedb9XfjCF77Q7bHbbrutMnLkyEqSys9//vONvr91beh3oXPOnHzyyT0eV6lUKieffHKPn/+///u/V5JUJk+eXLnnnnu6tpfL5a7XmzBhQuX555/v8b03NDRUfvKTn/Q4nvHjx1dWrVq1wTEBAMC6LD8FAECvLFy4MEmy9dZb9/j4fffdl1NOOWW9r9tvv73H/d/whjfk/e9//3rbf/CDH2T+/PmZNm1avva1r6WhoaHrsZe97GVdDbX/7d/+LWvWrNnct9WlUChkzpw53e7CHzFiRM4999wkyU033dRt/0suuSTLly/Pq171qnz0ox/t9thhhx02aP1EGhoacvHFF2fcuHGD8np/aVM/t/40efLkJOlVVcRzzz2XJHn961+fsWPHrvf4fvvtl6222qrPY7nwwgvXq+DorX322SdnnXVWt20HH3xw1+9Hf1RqbK7O37vPfOYz2Xvvvbu2FwqFnH322dlrr72yZMmS/Md//EePx3/wgx9cr8LrlFNOyW677ZalS5fmd7/73YCNHQCALYtQAwCAfvHUU0/l8ssvX+/r0Ucf7XH/Y489tsftnX0C3vnOd3YtR7Wud7zjHZk4cWKWL1++Xi+FzTFjxoy84hWvWG/77rvvniR55plnehznu971rh6f7+STT+63sb2UffbZJy972csG5bV6sqmfW38ql8tJ0q0nyIbsu+++KRaLufTSS/PNb34zCxYs6LdxTJkyJa9//ev7fPxJJ53U4/bOOXT77bf32EdmsDz99NN57LHHuo1pXYVCoatfx6233trjc7zlLW/pcftgzBMAALYsQg0AAHql8674F154ocfH3/zmN6dSqXR9HXbYYS/5fBvqs9D5j5s77rhjj48XCoWux/rzH0JnzJjR4/bOCojm5uZu259++ukkGx7nhrb3t4HoV7EpNvVz60+d1UOTJk3a6L6zZs3KBRdckNbW1nzgAx/ItGnTMnPmzPzt3/5trrzyyrS0tPR5HJv7M9jYHFq9evUm9ejob52/Z1tttdUGK4JmzZrVbd+/tLF50p9VVwAAbNmEGgAA9Mq+++6bJLn77ru77pDfHCNHjtzs59gUGxtzXV1tnhpvzufYHz/Han1ulUol99xzT5Jkzz337NUxH/zgBzN//vxcfPHFOemkk1IsFnP11VfnxBNPzMtf/vI+V28MxlyuVCq93rc/fq79rVZ/vwAAGHqcWQIA0CtvfvObU1dXl8WLF+eGG24YsNfZbrvtkiSPP/74Bvd54oknuu2bJI2NjUmS5cuX93jM/Pnz+2uI3V573rx5PT6+oe2DabA/k8F0ww03ZPHixUmSI444otfHbbPNNnnf+96Xyy+/PI899lgeeOCBvPrVr85jjz2WT37ykwM13JfUOZ//UuccGjFiRLd+H9Wa6y+++GKWLVvW4z6dv6/r/k4CAMBAEGoAANArO+20U44//vgkycc+9rEsXbp0QF7nkEMOSZJ8//vf73FJmh/96EdZvHhxxo4dm1e+8pVd2zv/MfWBBx7o8Xl/+tOf9us4Dz744CTJlVde2ePjV1xxRb++Xl+sGxD1tLzSS30mnf9w3tbWNjCD2wxLly7tas5++OGHd2tcval22223fOITn0iS3Hvvvd0eG6zP4D//8z973N45h173utelvr6+a/tLzfVVq1ZtsK9FX9/P9ttv37W81GWXXbbe45VKpWv7oYceuknPDQAAm0qoAQBAr33zm9/MTjvtlEceeSSvec1r8stf/rLH/ebNm9fVc2JTHXfccZkxY0aeffbZfOxjH+v2D7BPPPFEPv7xjydpX0poxIgRXY+94Q1vSF1dXX7xi190G1elUsk3vvGN/PCHP+zTeDbk1FNPzZgxY3LnnXfmG9/4RrfHbrvttlx00UX9+np9scMOO2TnnXfOkiVL8qUvfanbY7fddls+85nPbPDY7bffPknypz/9aUDHuCkqlUp+9rOf5YADDsgjjzySqVOn5j/+4z96dewtt9ySG264Ia2tres95/XXX5+k/fNa12B9Br///e/z5S9/udu222+/Pd/85jeTpCvA6fTGN74xSfvv47o9LFauXJnTTjstTz31VI+v0/l+7r///k0e4xlnnJEk+dznPpf77ruva3ulUsnnP//53HvvvZkwYULe9773bfJzAwDApqjf+C4AANBu4sSJ+fWvf50TTjghN998cw455JBsv/322XvvvTNhwoSsXr06jzzySP7v//4vlUole+65Z/bbb79Neo2mpqZcc801OfLII/Pv//7vueGGG/KqV70qy5cvzy233JI1a9bkTW96U84+++xux02fPj0f/OAH8/Wvfz2HHXZYXv/612fSpEm577778uSTT+aTn/xk/vVf/7XfPotp06blP/7jP3LiiSfmwx/+cL7zne9k9uzZeeaZZ/KrX/0qH/nIR3LBBRf02+v11b/+67/m2GOPzWc+85lce+212XnnnfP444/n7rvvzqc//el89rOf7fG4v/7rv86tt96aE088MUcccUQmTpyYJPmnf/qn7LrrrgM+7u985zu57bbbkrQ3G1+4cGHuvvvuLFq0KEl7Rc+ll166XhCxIX/4wx/y0Y9+NOPGjcu+++6badOmZfXq1bn77rszf/78jB8/fr3PYrA+gw996EM566yzcsUVV2SvvfbKs88+m1/96lcpl8v58Ic/nKOPPrrb/n/zN3+Tr33ta/nd736XPfbYI6973etSLpfzu9/9Lo2NjXnPe96TSy+9dL3XedWrXpVp06blnnvuyb777ps999wzDQ0N2XXXXfNP//RPLznG008/PXfccUe++93vZr/99svBBx+cKVOm5O67785DDz2UkSNH5qqrrsrWW2/db58LAAD0RKgBAMAmmTJlSm666abcfPPNueqqq/LrX/86//M//5NVq1Zl7Nix2XHHHXPaaafl2GOP7aqe2FT7779/7r333nzpS1/Kz372s/zoRz9KU1NT9tlnn5x00kl573vf2205nk4XXHBBZsyYke985zu54447MmbMmLz2ta/Nf/3Xf2XZsmX9GmokyTvf+c5sv/32+fznP58777wzjz32WHbddddcdNFFOe2004ZEqPGOd7wj119/fb7whS/knnvuySOPPJI999wzV199df7mb/5mg6HGP/zDP2T58uX5z//8z9xwww1dS4GdeOKJgxJq/PrXv86vf/3rJMno0aMzfvz4rpDs+OOPz/77779Jz/eWt7wlS5cuza9+9as88sgj+c1vfpORI0dm+vTp+eQnP5l//Md/7Kpk6DRYn8Hb3/72vPWtb80XvvCF3HDDDWlpacm+++6bD3zgAzn55JPX27+hoSFz587Npz/96fz3f/93brzxxkyZMiVvf/vb87nPfS7f+ta3enydxsbG/OIXv8inPvWp3HnnnbnvvvtSLpdz8MEHbzTUKBQKueKKK3LUUUfl4osvzu9///usXLky2267bU455ZR88pOfHJR5AQAAhUqlUqn2IAAAAAAAADZGTw0AAAAAAKAmCDUAAAAAAICaINQAAAAAAABqglADAAAAAACoCUINAAAAAACgJgg1AAAAAACAmiDUAAAAAAAAaoJQAwAAAAAAqAlCDQAAAAAAoCYINQAAAAAAgJog1AAAAAAAAGqCUAMAAAAAAKgJQg0AAAAAAKAmCDUAAAAAAICaINQAAAAAAABqglADAAAAAACoCUINAAAAAACgJgg1AAAAAACAmiDUAAAAAAAAaoJQAwAAAAAAqAlCDQAAAAAAoCYINQAAAADY4pxyyimZOXNmtYcBQD8TagAwpHzrW99KoVDIgQce2Kfj77///pxzzjmZN29e/w4MAADoF5dddlkKhcIGv37zm99Ue4gADGH11R4AAKzryiuvzMyZM3PXXXfl0UcfzU477bRJx99///0599xzc8ghh7grCwAAhrDPfvaz2XHHHdfbvqnXAAAML0INAIaMJ554InfccUeuvfbanH766bnyyitz9tlnD9jrVSqVrFmzJiNHjhyw1wAAAHp21FFHZb/99qv2MACoMZafAmDIuPLKKzNx4sQcc8wxOfbYY3PllVeut8/VV1+dV77ylRk7dmzGjRuXPffcM1//+teTtJexH3fccUmSQw89tKt8/bbbbkuSzJw5M29+85vzi1/8Ivvtt19GjhyZb3/720mSxx9/PMcdd1wmTZqUUaNG5VWvelV++tOfDs4bBwAAupk3b14KhUK+8pWv5OKLL86sWbPS1NSU/fffP//7v/+73v7//d//ndmzZ2fEiBGZPXt2fvSjH/X4vCtXrszHP/7xTJ8+PU1NTdl1113zla98JZVKZaDfEgD9pFDxtzYAQ8Tuu++e1772tfnOd76TX/3qVznooINy1113Zf/990+SzJ07N0cccUQOO+ywvOMd70iSPPDAA3nuuefyX//1X3n88cfz9a9/Pd/4xjfyz//8z9l9992TJIcffni22WabzJw5Mw0NDXnxxRdz+umnZ+bMmdl1112z++675xWveEVWrVqVD33oQ9lqq61y+eWX5//+7/9yzTXX5O1vf3vVPhMAANjSXHbZZXn3u9+dm266Ka94xSu6PVYoFLLVVltl3rx52XHHHbPPPvtk+fLled/73pdCoZAvf/nLGTFiRB5//PE0NDQkSW688cYcddRRefnLX573vOc9efHFF3PhhRdm++23z4oVK7r67VUqlbzxjW/MrbfemlNPPTV77713fvGLX+QnP/lJPvKRj+SCCy4Y7I8CgD4QagAwJPz+97/Pfvvtl7lz5+aNb3xjKpVKZsyYkb/+67/O1772tSTJRz7ykcyZMyeLFi1KsVjs8XmuueaaHHfccbn11ltzyCGHdHts5syZmT9/fn7+85/nTW96U9f2j370o/na176WX/3qV3nd616XJFmxYkX22muvVCqVPPbYY6mrU9wIAAD9oTPU6ElTU1PWrFnTFWpstdVWeeSRRzJx4sQkyXXXXZe3vvWt+clPfpI3v/nNSZJ99tknzz33XB544IGMHz8+ydobonbYYYeuUOPHP/5x3va2t+Xzn/98PvWpT3W95nHHHZcf/vCHeeSRRzJr1qwBfOcA9Af/QgPAkHDllVdmm222yaGHHpqk/Q6t448/PldffXVKpVKSZMKECVm5cmXmzp3b59fZcccduwUaSXLDDTfkgAMO6Ao0kmTMmDE57bTTMm/evNx///19fj0AAKBn3/zmNzN37txuXz/72c+67XP88cd3BRpJ8vrXvz5J+/KxSbJgwYLce++9Ofnkk7sCjaS9WvvlL395t+e64YYbUiwW86EPfajb9o9//OOpVCrrvTYAQ5NQYx3/8z//k7e85S2ZNm1aCoVC/vu//3uTn6NSqeQrX/lKdtlllzQ1NWW77bbLv/zLv/T/YAG2IKVSKVdffXUOPfTQPPHEE3n00Ufz6KOP5sADD8xzzz2Xm2++OUny/ve/P7vsskuOOuqobL/99nnPe96Tn//855v0WjvuuON62+bPn59dd911ve2dy1fNnz+/D+8KAAB4KQcccEDe+MY3dvvqvMmp04wZM7p93xlwLF68OMnac/Wdd955vef/y3P8+fPnZ9q0aRk7dmy37c77AWqLUGMdK1euzCte8Yp885vf7PNzfPjDH853vvOdfOUrX8mDDz6Y6667LgcccEA/jhJgy3PLLbdkwYIFufrqq7Pzzjt3ff3N3/xNknQ1DJ8yZUruvffeXHfddfmrv/qr3HrrrTnqqKNy8skn9/q1Ro4cOSDvAQAA6H8bWnbWauoAw1d9tQcwlBx11FE56qijNvh4c3NzPvWpT+V73/telixZktmzZ+dLX/pS15rtDzzwQP793/89f/zjH7vuBujpjmAAurvyyiszZcqUHkPla6+9Nj/60Y9y0UUXZeTIkWlsbMxb3vKWvOUtb0m5XM773//+fPvb386nP/3p7LTTTikUCpv8+jvssEMeeuih9bY/+OCDXY8DAABDT+e5+iOPPLLeY395jr/DDjvkpptuyvLly7tVazjvB6gtKjU2wQc+8IHceeedufrqq/OHP/whxx13XI488siu/3H+5Cc/ycte9rJcf/312XHHHTNz5sy8973vzaJFi6o8coCha/Xq1bn22mvz5je/Occee+x6Xx/4wAeyfPnyXHfddXnxxRe7HVtXV5e99torSXvwnCSjR49OkixZsqTXYzj66KNz11135c477+zatnLlylx88cWZOXPmemvxAgAAQ8PUqVOz99575/LLL8/SpUu7ts+dO3e93nhHH310SqVSLrzwwm7bL7jgghQKhZe80RWAoUOlRi89+eSTmTNnTp588slMmzYtSXLGGWfk5z//eebMmZMvfOELefzxxzN//vz84Ac/yBVXXJFSqZSPfvSjOfbYY3PLLbdU+R0ADE3XXXddli9fnr/6q7/q8fFXvepV2XrrrXPllVfm6quvzqJFi/KGN7wh22+/febPn59/+7d/y9577921Du7ee++dYrGYL33pS1m6dGmampryhje8IVOmTNngGD75yU/me9/7Xo466qh86EMfyqRJk3L55ZfniSeeyA9/+MPU1bkHAAAA+tvPfvazriqJdb3mNa/ZpHPwL37xiznmmGPyute9Lu95z3uyaNGi/Nu//Vv22GOPrFixomu/t7zlLTn00EPzqU99KvPmzcsrXvGK3Hjjjfnxj3+cj3zkI5k1a1a/vC8ABpZQo5f+7//+L6VSKbvssku37c3Nzdlqq62SJOVyOc3Nzbniiiu69rvkkkvyyle+Mg899FCPTWgBhrsrr7wyI0aMyOGHH97j43V1dTnmmGNy5ZVX5nvf+14uvvjifOtb38qSJUuy7bbb5vjjj88555zTddGz7bbb5qKLLsoXv/jFnHrqqSmVSrn11ltfMtTYZpttcscdd+QTn/hE/u3f/i1r1qzJXnvtlZ/85Cc55phjBuR9AwDAcPeZz3ymx+1z5szpWuq7N4488sj84Ac/yP/7f/8vZ511VmbNmpU5c+bkxz/+cW677bau/erq6nLdddflM5/5TL7//e9nzpw5mTlzZs4777x8/OMf38x3A8BgKVR0VupRoVDIj370o7ztbW9Lknz/+9/Pu971rvzpT39ar0nVmDFjsu222+bss8/OF77whbS2tnY9tnr16owaNSo33njjBv/BDgAAAAAA2DiVGr20zz77pFQq5fnnn8/rX//6Hvd57Wtfm7a2tjz22GNdJYsPP/xwEs2mAAAAAABgc6nUWMeKFSvy6KOPJmkPMc4///wceuihmTRpUmbMmJETTzwxv/71r/PVr341++yzT1544YXcfPPN2WuvvXLMMcekXC5n//33z5gxY/K1r30t5XI5//iP/5hx48blxhtvrPK7AwAAAACA2ibUWMdtt92WQw89dL3tJ598ci677LK0trbm85//fK644oo888wzmTx5cl71qlfl3HPPzZ577pkkefbZZ/PBD34wN954Y0aPHp2jjjoqX/3qVzNp0qTBfjsAAAAAALBFEWoAAAAAAAA1oa7aAwAAAAAAAOgNoQYAAAAAAFAT6qs9gKGgXC7n2WefzdixY1MoFKo9HAAAoEOlUsny5cszbdq01NVt/j1Zzv0BAGBo6u25f1VDjRUrVuS8887Lb3/729x1111ZvHhx5syZk1NOOWWjx95888258sorc/vtt+fpp5/Otttumze84Q353Oc+l6lTp27SOJ599tlMnz69j+8CAAAYaE899VS23377zX4e5/4AADC0bezcv6qhxsKFC/PZz342M2bMyCte8YrcdtttvT72E5/4RBYtWpTjjjsuO++8cx5//PFceOGFuf7663Pvvfdm22237fVzjR07Nkn7hzVu3LhNfRv9prW1NTfeeGOOOOKINDQ0VG0cDA/mG4PJfGMwmW8MNnNuYC1btizTp0/vOmffXM79GY7MNwaT+cZgMt8YbObcwOrtuX9VQ42pU6dmwYIF2XbbbfO73/0u+++/f6+PPf/88/O6172uWxnKkUcemYMPPjgXXnhhPv/5z/f6uTrLzseNG1f1C5tRo0Zl3LhxfikYcOYbg8l8YzCZbww2c25w9NdSUc79GY7MNwaT+cZgMt8YbObc4NjYuX9VQ42mpqZNqqhY10EHHdTjtkmTJuWBBx7Y3KEBAAAAAABDzOZ32htCVqxYkRUrVmTy5MnVHgoAAAAAANDPqlqp0d++9rWvpaWlJccff/xL7tfc3Jzm5uau75ctW5akvXyotbV1QMf4Ujpfu5pjYPgw3xhM5huDyXxjsJlzA2tzP1fn/mC+MbjMNwaT+cZgM+cGVm8/10KlUqkM8Fh6pbOnxpw5c3LKKads8vH/8z//k8MOOyzveMc78v3vf/8l9z3nnHNy7rnnrrf9qquuyqhRozb5tQEAgIGxatWqnHDCCVm6dGmfemA49wcAgNrQ23P/LSLUePDBB/Pa1742M2bMyP/8z/9stDt6T3drTZ8+PQsXLqx6s8C5c+fm8MMP12iGAWe+MZjMNwaT+cZgM+cG1rJlyzJ58uQ+hxrO/cF8Y3CZbwwm843BZs4NrN6e+9f88lNPPfVUjjjiiIwfPz433HDDRgONpL1BeVNT03rbGxoahsRkHCrjYHgw3xhM5huDyXxjsJlzA2NzP1Pn/rCW+cZgMt8YTOYbg82cGxi9/UxrOtR48cUXc8QRR6S5uTk333xzpk6dWu0hAQAAAAAAA6Su2gPojQULFuTBBx/s1ihk5cqVOfroo/PMM8/khhtuyM4771zFEQIAAAAAAAOt6pUaF154YZYsWZJnn302SfKTn/wkTz/9dJLkgx/8YMaPH5+zzjorl19+eZ544onMnDkzSfKud70rd911V97znvfkgQceyAMPPND1nGPGjMnb3va2wX4rAAAAAADAAKp6qPGVr3wl8+fP7/r+2muvzbXXXpskOfHEEzN+/Pgej7v33nuTJJdeemkuvfTSbo/tsMMOQg0AAAAAANjCVD3UmDdv3kb3ueyyy3LZZZdt8nEAAAAAAMCWoyZ6agAAAAAAAAg1AAAAAACAmiDUAAAAAAAAaoJQAwAAAAAAqAlCDQAAAAAAoCYINQAAAAAAgJog1AAAAAAAAGqCUAMAAAAAAKgJQg0AAAAAAKAm1Fd7AAAAAMPVdtOnZ82aNb3bd7vt88Cf/jjAIwIAgKFNqAEAAFAl1/zuoRSKvbssO2b37QZ4NAAAMPRZfgoAAAAAAKgJQg0AAAAAAKAmCDUAAAAAAICaINQAAAAAAABqglADAAAAAACoCUINAAAAAACgJgg1AAAAAACAmiDUAAAAAAAAaoJQAwAAAAAAqAlCDQAAAAAAoCYINQAAAAAAgJog1AAAAAAAAGqCUAMAAAAAAKgJQg0AAAAAAKAmCDUAAAAAAICaINQAAAAAAABqglADAAAAAACoCUINAAAAAACgJgg1AAAAAACAmiDUAAAAAAAAaoJQAwAAAAAAqAlCDQAAAAAAoCYINQAAAAAAgJog1AAAAAAAAGqCUAMAAAAAAKgJQg0AAAAAAKAmCDUAAAAAAICaINQAAAAAAABqglADAAAAAACoCUINAAAAAACgJgg1AAAAAACAmiDUAAAAAAAAaoJQAwAAAAAAqAlCDQAAAAAAoCYINQAAAAAAgJog1AAAAAAAAGqCUAMAAAAAAKgJQg0AAAAAAKAmCDUAAAAAAICaINQAAAAAAABqglADAAAAAACoCUINAAAAAACgJgg1AAAAAACAmiDUAAAAAAAAaoJQAwAAAAAAqAlCDQAAAAAAoCYINQAAAAAAgJog1AAAAAAAAGqCUAMAAAAAAKgJQg0AAAAAAKAmCDUAAAAAAICaINQAAAAAAABqglADAACgCiopVHsIAABQc+qrPQAAAIDh5PFlLbl+3vJkyh6ZVO3BAABAjRFqAAAADKIRxUJWlSqprx9R7aEAAEDNqfryUytWrMjZZ5+dI488MpMmTUqhUMhll13W6+OXLFmS0047LVtvvXVGjx6dQw89NHfffffADRgAAGAzTGgsJknaio0pVypVHg0AANSWqocaCxcuzGc/+9k88MADecUrXrFJx5bL5RxzzDG56qqr8oEPfCBf/vKX8/zzz+eQQw7JI488MkAjBgAA6LuR9YU01CUpFNJcqvZoAACgtlR9+ampU6dmwYIF2XbbbfO73/0u+++/f6+Pveaaa3LHHXfkBz/4QY499tgkyd/8zd9kl112ydlnn52rrrpqoIYNAADQJ4VCIRMa6/LCmnLWlCoZVe0BAQBADal6pUZTU1O23XbbPh17zTXXZJtttsk73vGOrm1bb711/uZv/iY//vGP09zc3F/DBAAA6DfjG9svxdaULT8FAACbouqhxua45557su+++6aurvvbOOCAA7Jq1ao8/PDDVRoZAADAho1v6Ag1LD8FAACbpOrLT22OBQsW5KCDDlpv+9SpU5Mkzz77bPbcc8/1Hm9ubu5WxbFs2bIkSWtra1pbWwdotBvX+drVHAPDh/nGYDLfGEzmG4PNnBtYm/u5DtVz/7HF9gqNNW3lVEptvTpmxIgR5hl94u8pBpP5xmAy3xhs5tzA6u3nWtOhxurVq9PU1LTe9hEjRnQ93pMvfvGLOffcc9fbfuONN2bUqOqvaDt37txqD4FhxHxjMJlvDCbzjcFmzg2MVatWbdbxQ/Xcf8WICcmUPbJq5cosfuzeXh3zH9/+dm644YYBHRdbNn9PMZjMNwaT+cZgM+cGRm/P/Ws61Bg5cmSPfTPWrFnT9XhPzjrrrHzsYx/r+n7ZsmWZPn16jjjiiIwbN25gBtsLra2tmTt3bg4//PA0NDRUbRwMD+Ybg8l8YzCZbww2c25gdVZW9NVQPfd/YWVzrnhiTVobR2fCvgenUChs9Jhj99s1zzz11CCMji2Nv6cYTOYbg8l8Y7CZcwOrt+f+NR1qTJ06NQsWLFhve+e2adOm9XhcU1NTjxUeDQ0NQ2IyDpVxMDyYbwwm843BZL4x2My5gbG5n+lQPfefNLKSVFanXCikrVCfxuLGQ401a9aYY2yWas97hhfzjcFkvjHYzLmB0dvPtKYbhe+99965++67Uy6Xu23/7W9/m1GjRmWXXXap0sgAAAA2rFhXSH2pvep8Tam8kb0BAIBONRNqLFiwIA8++GC3ZiHHHntsnnvuuVx77bVd2xYuXJgf/OAHectb3tLjHVkAAABDQWNb+7K5a0qVKo8EAABqx5BYfurCCy/MkiVL8uyzzyZJfvKTn+Tpp59Oknzwgx/M+PHjc9ZZZ+Xyyy/PE088kZkzZyZpDzVe9apX5d3vfnfuv//+TJ48Od/61rdSKpV6bAYIAAAwVDS0dVZqCDUAAKC3hkSo8ZWvfCXz58/v+v7aa6/tqr448cQTM378+B6PKxaLueGGG/JP//RP+cY3vpHVq1dn//33z2WXXZZdd911UMYOAADQF52VGs1tQg0AAOitIRFqzJs3b6P7XHbZZbnsssvW2z5x4sR85zvfyXe+853+HxgAAMAAabD8FAAAbLKa6akBAACwJVnbU0OjcAAA6C2hBgAAQBV0Vmq0lJNSRbUGAAD0hlADAACgCorlthQL7f/dbAkqAADoFaEGAABAFRSSjCi2//cazcIBAKBXhBoAAABV0lTXXqqhWTgAAPSOUAMAAKBKRhQ7Qw3NwgEAoDeEGgAAAFXStfyUSg0AAOgVoQYAAECVrK3UEGoAAEBvCDUAAACqpLOnRotQAwAAekWoAQAAUCUdmUbKMg0AAOgVoQYAAECVdIYalSSVimQDAAA2RqgBAABQJZ2hRpKUqzcMAACoGUINAACAKln3gswSVAAAsHFCDQAAgCopFArpLNYQagAAwMYJNQAAAKqo0NlXQ08NAADYKKEGAABAFXVelOmpAQAAGyfUAAAAqKK6jlINy08BAMDGCTUAAACqqK5j+amy5acAAGCjhBoAAABVtDbUqO44AACgFgg1AAAAqkhPDQAA6D2hBgAAQBV19tSw+hQAAGycUAMAAKCKOjKNlKQaAACwUUINAACAKursqSHTAACAjRNqAAAAVFHn8lMahQMAwMYJNQAAAKpobaNwqQYAAGyMUAMAAKCKOpefUqkBAAAbJ9QAAACoIqEGAAD0nlADAACgivTUAACA3hNqAAAAVFFHoUYqemoAAMBGCTUAAACqyPJTAADQe0INAACAKhJqAABA7wk1AAAAqmhtTw2pBgAAbIxQAwAAoIo6L8rKVR0FAADUBqEGAABAFVl+CgAAek+oAQAAUEWdy09ZfQoAADZOqAEAAFBFHZlGSlINAADYKKEGAABAFXVelIk0AABg44QaAAAAVaSnBgAA9J5QAwAAoIo6e2qULT8FAAAbJdQAAACoIpUaAADQe/XVHgDrK5VKqavrfd5UKBQ2aX8AAGDo6DyTL1d1FAAAUBuEGkNIudx+GTNp0qSsXr2618dtt/30PDl/nmADAABq0Nrlp6o8EAAAqAFCjSGk0rGG7k/+OD/FxqZeHVMulXLYzEldxwIAALWlc/mppP2aoFAobHhnAAAY5oQaQ1BdsZhisVjtYQAAAINg3QyjXEmKMg0AANgg6xUBAABU0boXZfpqAADASxNqAAAAVFGhUEhncYa+GgAA8NKEGgAAAFXW2VejrFceAAC8JKEGAABAla0NNao7DgAAGOqEGgAAAFVW17EAlZ4aAADw0oQaAAAAVVaw/BQAAPSKUAMAAKDKOpefkmkAAMBLE2oAAABUmZ4aAADQO0INAACAKtNTAwAAekeoAQAAUGV1emoAAECvCDUAAACqzPJTAADQO0INAACAKqsrdCw/JdQAAICXJNQAAACoss4Ls3KkGgAA8FKEGgAAAFXWUagRLTUAAOClCTUAAACqTE8NAADoHaEGAABAlempAQAAvSPUAAAAqDI9NQAAoHeEGgAAAFVm+SkAAOgdoQYAAECVWX4KAAB6R6gBAABQZYWuSg2pBgAAvBShBgAAQJV1XpjJNAAA4KUJNQAAAKqsq6dGdYcBAABDXtVDjebm5nziE5/ItGnTMnLkyBx44IGZO3dur4696aabcuihh2by5MmZMGFCDjjggHz3u98d4BEDAAD0Lz01AACgd6oeapxyyik5//zz8653vStf//rXUywWc/TRR+f2229/yeOuu+66HHHEEWlpack555yTf/mXf8nIkSNz0kkn5YILLhik0QMAAGy+Oj01AACgV+qr+eJ33XVXrr766px33nk544wzkiQnnXRSZs+enTPPPDN33HHHBo+98MILM3Xq1Nxyyy1pampKkpx++unZbbfdctlll+WjH/3ooLwHAACAzdV5t5lKDQAAeGlVrdS45pprUiwWc9ppp3VtGzFiRE499dTceeedeeqppzZ47LJlyzJx4sSuQCNJ6uvrM3ny5IwcOXJAxw0AANCfupafqvI4AABgqKtqqHHPPfdkl112ybhx47ptP+CAA5Ik99577waPPeSQQ/KnP/0pn/70p/Poo4/msccey+c+97n87ne/y5lnnjmQwwYAAOhXlp8CAIDeqeryUwsWLMjUqVPX29657dlnn93gsZ/+9KfzxBNP5F/+5V/y+c9/PkkyatSo/PCHP8xb3/rWl3zd5ubmNDc3d32/bNmyJElra2taW1s3+X30l7a2tiRJpdSWSqnYq2MqpVJGjhyZ1tbWlMvu66L3Oud6Nec8w4f5xmAy3xhs5tzA2tzPdaie+3e+dqXUfg1Q6Fh3qlJZu+0vjRgxwjyjT/w9xWAy3xhM5huDzZwbWL39XAuVSvVuBZo1a1Z23XXX3HDDDd22P/7445k1a1YuuOCCfOQjH+nx2La2tpx77rl56KGH8o53vCOlUikXX3xx7r777sydOzevetWrNvi655xzTs4999z1tl911VUZNWrUZr0nAACg/6xatSonnHBCli5dul6Fd2/Uyrl/a7Epj263XwrlUnZ7+jfVHg4AAAy63p77VzXUmD17drbZZpvcfPPN3bbff//92WOPPXLRRRfl9NNP7/HYv//7v89vfvOb3H333amra19Fq7W1NXvssUcmTpyY3/72txt83Z7u1po+fXoWLlzYpwul/tLc3Jybb745Y/d8deobmzZ+QJJSqZRjdt8+ixYtSrHYu+oOSNp/X+bOnZvDDz88DQ0N1R4OWzjzjcFkvjHYzLmBtWzZskyePLnPocZQPffvnDcT9n5dCsX6tJQr+d2L7RUar55cn0JHj411HbvfrnnmJfoOwob4e4rBZL4xmMw3Bps5N7B6e+5f1eWnpk6dmmeeeWa97QsWLEiSTJs2rcfjWlpacskll+TMM8/sCjSSpKGhIUcddVQuvPDCtLS0pLGxscfjm5qaujUYX/f4ak7GUqmUJCkU61Mo9u5HU0ghq1evTkNDg1CDPqn2vGd4Md8YTOYbg82cGxib+5kO1XP/Tp3n/sVCJUnHslPFnkONNWvWDIkxU7uGyrxneDDfGEzmG4PNnBsYvf1Mq9oofO+9987DDz/cta5tp84qi7333rvH41588cW0tbV1hQDr6uwt0dNjAAAAQ1HdOhlGWa9wAADYoKqGGscee2xXL4xOzc3NmTNnTg488MBMnz49SfLkk0/mwQcf7NpnypQpmTBhQn70ox+lpaWla/uKFSvyk5/8JLvttltGjhw5eG8EAABgM6xblyHUAACADavq8lMHHnhgjjvuuJx11ll5/vnns9NOO+Xyyy/PvHnzcskll3Ttd9JJJ+WXv/xlOtt/FIvFnHHGGfl//+//5VWvelVOOumklEqlXHLJJXn66afzn//5n9V6SwAAAJusUCikLkk5SSWVdI85AACATlUNNZLkiiuuyKc//el897vfzeLFi7PXXnvl+uuvz0EHHfSSx33qU5/KjjvumK9//es599xz09zcnL322ivXXHNN/vqv/3qQRg8AANA/CoUklaSkUgMAADao6qHGiBEjct555+W8887b4D633XZbj9tPOOGEnHDCCQM0MgAAgMFTV2gPNCpCDQAA2KCq9tQAAACgXV2hfckpPTUAAGDDql6pwaapVCp5ZGlrkmTn8Q1VHg0AANBfOu84K0eqAQAAGyLUqDHNpUpeWFNKkmwzspgxfoIAALBFqOvoDa5SAwAANszyUzVm1TpdA/+8ulTFkQAAAP1JqAEAABsn1Kgxq9vWXuG8uKaUVlc8AACwRSh09dRwjg8AABsi1Kgxq9vKXf9dSfLCmvKGdwYAAGpG58WZSAMAADZMqFFjOis1xje2/+ieW13quqMLAACoXZafAgCAjRNq1JjVpfbKjOlj6lMsJM3l5GX7v77KowIAADZXXdfyU1UeCAAADGFCjRrSVq6ktWO1qTH1ddl6ZDFJcuBfn1zFUQEAAP1hbaWGVAMAADZEqFFDOpeeaqwrpFhXyLYj65MkLz/kqKxo1VsDAABqWefFmTN7AADYMKFGDVnV0SR8ZH37LVyjG+oypr6QYkNDHlnaUs2hAQAAm0lPDQAA2DihRg1ZXWq/uukMNZJkbEP7fy9pcT8XAADUsrU9NaQaAACwIUKNGrK6o1JjVHHtj62x43au5ZafAgCAmlZQqQEAABsl1KghnT011q3UaCq2//cyoQYAANS0zoszhRoAALBhQo0aUa5UsqaH5acaO36Cyyw/BQAANa1r+akqjwMAAIYyoUaNWFOqpJL25oGdS04lays1VrZV0qZOHQAAatbaRuHO6wEAYEOEGjWia+mpYiGFwtpQo76QtK5ZnURfDQAAqGV1emoAAMBGCTVqRGeT8JH13X9khUIhS/78TJJkWUtp0McFAAD0j84zfaEGAABsmFCjRqzu6Kcxap1+Gp2W/PnpJPpqAABALSt09dSQagAAwIYINWrEustP/aWuSg3LTwEAQM3qXH5KSw0AANgwoUYNqFQqG1x+KkmWdlVqWH4KAABqlZ4aAACwcUKNGtBaTjoKNTKix+WnOntqqNQAAIBaVZeO5aeEGgAAsEFCjRqwutQeVjQVCykW9NQAAIAtUVelhp4aAACwQUKNGtDZT2NUD/00kmTJgs6eGqVULMALAAA1yfJTAACwcUKNGtBcar+qadpAqLH0ufZQo7WcrCm5AgIAgFok1AAAgI0TatSAUkf1RX1dz6FGW0tzRnX02lhqCSoAAKhJdR1LzVYSFdgAALABQo0a0NaRUxRf4qc1rqH9wWUtpUEYEQAA0N/WvYXJrUoAANAzoUYNaOus1OihSXincY0doUaryx8AAKhF6xZmW4IKAAB6JtSoAZ2VGhtafipJxnZVagg1AACgFtUVCl3VGmXLTwEAQI+EGjVgbaXGhvex/BQAANS+Ysc5f8m9SgAA0COhRg1oK790o/BkneWnVGoAAEDNKnac85cUagAAQI+EGjWg8y6t3lVqCDUAAKBWdVVqWH4KAAB6JNQY4sqVSjpjipfsqdFRqbGirdxV2QEAANSWYkGlBgAAvBShxhDXtk7hRfElKjVGFQtdj69oVa0BAAC1SKUGAAC8NKHGENfZJLxYSAqFDacahUKhq6/GUs3CAQCgJq0NNao7DgAAGKqEGkNcb5qEdxrXUEyirwYAANSqruWnLCkLAAA96lOo8fjjj/f3ONiAto5rmZdqEt6ps1JjmeWnAACgJhU7rtBUagAAQM/6FGrstNNOOfTQQ/Of//mfWbNmTX+PiXWUNqVSozPUsPwUAADUpLquRuFSDQAA6EmfQo277747e+21Vz72sY9l2223zemnn5677rqrv8dG1jYK712lhuWnAACglumpAQAAL61Pocbee++dr3/963n22Wdz6aWXZsGCBXnd616X2bNn5/zzz88LL7zQ3+MctroahfeiUmN8g+WnAACglnX11BBqAABAjzarUXh9fX3e8Y535Ac/+EG+9KUv5dFHH80ZZ5yR6dOn56STTsqCBQv6a5zD1tpKjY2HGqM7Qo2VQg0AAKhJnZUaZY3CAQCgR5sVavzud7/L+9///kydOjXnn39+zjjjjDz22GOZO3dunn322bz1rW/tr3EOW52VGvW9+El1hhprSpWuXhwAAEDt6KzQVqkBAAA9q+/LQeeff37mzJmThx56KEcffXSuuOKKHH300amra/9H9R133DGXXXZZZs6c2Z9jHZbaNqFR+MhiIYUklSQr28pdPTYAAIDasLanhlQDAAB60qdQ49///d/znve8J6ecckqmTp3a4z5TpkzJJZdcslmDY+0dWr1pFF4oFDK6vi4r2spZ1VbJuMaBHRsAANC/NAoHAICX1qdQ45FHHtnoPo2NjTn55JP78vSsY1MqNZJkVEMhK9r01QAAgFq0tlG4VAMAAHrSp54ac+bMyQ9+8IP1tv/gBz/I5ZdfvtmDYq1NaRSeJKM7mm+sbBNqAABArVGpAQAAL61PocYXv/jFTJ48eb3tU6ZMyRe+8IXNHhRrdTYKL/byJzWqI9RYJdQAAICa09kovFxJKqo1AABgPX0KNZ588snsuOOO623fYYcd8uSTT272oGhXqVTW6anRy0qNho5KDctPAQBAzSmuc9qvWgMAANbXp1BjypQp+cMf/rDe9vvuuy9bbbXVZg+Kdm3rXMTU9/InNbqjo/jKNldAAABQawodX4lQAwAAetKnUONv//Zv86EPfSi33nprSqVSSqVSbrnllnz4wx/OO9/5zv4e47BV6mgSXldI6lRqAADAFq9QKKSuq6+GVAMAAP5SfV8O+tznPpd58+blsMMOS319+1OUy+WcdNJJemr0o7aupad6f8xoPTUAAKCmFQuFlNZZihYAAFirT6FGY2Njvv/97+dzn/tc7rvvvowcOTJ77rlndthhh/4e37DW1lGpUV/X+1Sjs1H4SqEGAADUpGJdkvLaym0AAGCtPoUanXbZZZfssssu/TUW/kLbJjYJT9YuP7WqrZJypdLrZasAAIChodi1/FR1xwEAAENRn0KNUqmUyy67LDfffHOef/75lMvdqwJuueWWfhnccNdZqVHchM4no9ZZq2pVWyVjGoQaAABQS4qFQpKKnhoAANCDPoUaH/7wh3PZZZflmGOOyezZs1NQDTAgupaf2oTPt65QyKj6Qla1VbKqrZwxDX3qBQ8AAFRJZ6WG1acAAGB9fQo1rr766vzXf/1Xjj766P4eD+voLDev38RcYnR9XVa1lbKytZyM7P9xAQAAA6fYcVOTSg0AAFhfn27jb2xszE477dTfY+Ev9KVSI9EsHAAAallXTw2n8wAAsJ4+hRof//jH8/Wvfz0Vdw4NqK5G4XWbFmp0Ngtf2eoqCAAAak2xrrNSo8oDAQCAIahPy0/dfvvtufXWW/Ozn/0se+yxRxoaGro9fu211/bL4Ia7rkqNTYyeOpuFr2pzFQQAALWmq1LDTWQAALCePoUaEyZMyNvf/vb+Hgt/oa3jIqa4ictPjbb8FAAA1Ky1PTWqPBAAABiC+hRqzJkzp7/HQQ86M4lNbhRu+SkAAKhZKjUAAGDD+tRTI0na2tpy00035dvf/naWL1+eJHn22WezYsWKfhvccNd5EbOpjcJVagAAQO2q0ygcAAA2qE+VGvPnz8+RRx6ZJ598Ms3NzTn88MMzduzYfOlLX0pzc3Muuuii/h7nsFOpVDa7UmNVqzu7AACg1qxtFO58HgAA/lKfKjU+/OEPZ7/99svixYszcuTIru1vf/vbc/PNN/fb4IazciXpvITZ1EqNzkbhK9vKqbgQAgCAmrJ2+anqjgMAAIaiPlVq/OpXv8odd9yRxsbGbttnzpyZZ555pl8GNty1rXMBU7dpmUbX8lOVJKtLla6QAwAAGPrWNgqXagAAwF/qU6VGuVxOqVRab/vTTz+dsWPHbtJzNTc35xOf+ESmTZuWkSNH5sADD8zcuXN7ffz3v//9vPrVr87o0aMzYcKEvOY1r8ktt9yySWMYitrKnf00ksImVmoU6woZ0XF7l2bhAABQW1RqAADAhvUp1DjiiCPyta99rev7QqGQFStW5Oyzz87RRx+9Sc91yimn5Pzzz8+73vWufP3rX0+xWMzRRx+d22+/faPHnnPOOfnbv/3bTJ8+Peeff34+//nPZ6+99toiqkXaOpuEb2qZRofOao1VmoUDAEBN6azUKFdiOVkAAPgLfVp+6qtf/Wre9KY35eUvf3nWrFmTE044IY888kgmT56c733ve71+nrvuuitXX311zjvvvJxxxhlJkpNOOimzZ8/OmWeemTvuuGODx/7mN7/JZz/72Xz1q1/NRz/60b68jSGtr03CO41qKOTF5mRlm4sgAACoJcV17msqV7p/DwAAw12fQo3tt98+9913X66++ur84Q9/yIoVK3LqqafmXe96V7fG4RtzzTXXpFgs5rTTTuvaNmLEiJx66qn553/+5zz11FOZPn16j8d+7Wtfy7bbbpsPf/jDqVQqWblyZcaMGdOXtzMkda6fu6lNwjt1VmpYfgoAAGrLusXapUpSrN5QAABgyOlTqJEk9fX1OfHEEzfrxe+5557ssssuGTduXLftBxxwQJLk3nvv3WCocfPNN+c1r3lNvvGNb+Tzn/98XnzxxWy77bb51Kc+lQ984AObNa6hYG2lRh9DjQbLTwEAQC0qFAopFtoDjfabnZRqAABApz6FGldcccVLPn7SSSf16nkWLFiQqVOnrre9c9uzzz7b43GLFy/OwoUL8+tf/zq33HJLzj777MyYMSNz5szJBz/4wTQ0NOT000/f4Os2Nzenubm56/tly5YlSVpbW9Pa2tqrsQ+Etra2JEml1JbWjj7sxVRSKbVt8JhKqZSRI0emtbU15fLaAGNEob3SY3lzW1XfE0NX57wwPxgM5huDyXxjsJlzA2tzP9eheu7f+dobOtfvDDXa2kqpFNrP80eMGGGe0Sf+nmIwmW8MJvONwWbODazefq6FSh86z02cOHG9F1u1alUaGxszatSoLFq0qFfPM2vWrOy666654YYbum1//PHHM2vWrFxwwQX5yEc+st5xTz31VGbMmJEkufrqq3P88ccnScrlcvbcc88sW7YsTz311AZf95xzzsm555673varrroqo0aN6tXYB9qfJ+6YxWOnZaulT2fK0vmbfPzi0dvkz1vtlDGrF2X6Cw8MwAgBAGDgrVq1KieccEKWLl26XoV3b9TCuX9PHpu6T1oaRmXGc/+X0c3Lqj0cAAAYcL099+9TqNGTRx55JP/wD/+Qf/qnf8qb3vSmXh0ze/bsbLPNNrn55pu7bb///vuzxx575KKLLuqx4mLhwoXZeuut09DQkNWrV6dYXLvK7Gc/+9mcffbZmT9/flfw8Zd6ultr+vTpWbhwYZ8ulPpLc3Nzbr755ozd89V5Yk0xLzRXssPoumw3asOr6JZKpRyz+/ZZtGhRt8/h0WWt+fGTq7LNyGJOnLXl9Bqh/7S2tmbu3Lk5/PDD09DQUO3hsIUz3xhM5huDzZwbWMuWLcvkyZP7HGoM1XP/znkzYe/XpVBcv4D+vsVtWdlWyW7jipnU1L607LH77ZpnXuLmLdgQf08xmMw3BpP5xmAz5wZWb8/9+9xT4y/tvPPO+dd//deceOKJefDBB3t1zNSpU/PMM8+st33BggVJkmnTpvV43KRJkzJixIhMmDCh2z/kJ8mUKVOStC9RtaFQo6mpKU1NTettb2hoqOpkLJXa15wqFOvTsRBV6ovFHi9yOhVSyOrVq9PQ0NDtsxg/ov3P1W0Vv2C8pGrPe4YX843BZL4x2My5gbG5n+lQPffvVCjW93i+X6wrJamkXKjrenzNmjVDYszUrqEy7xkezDcGk/nGYDPnBkZvP9O6/nzR+vr6DfbB6Mnee++dhx9+uGtd206//e1vux7vSV1dXfbee++88MILaWlp6fZY5+tvvfXWmzDyoae0mY3CR9W3/2hXtpXTT8U4AADAICl2XAaUnMoDAEA3fQo1rrvuum5fP/7xj3PRRRflxBNPzGtf+9peP8+xxx6bUqmUiy++uGtbc3Nz5syZkwMPPDDTp09Pkjz55JPrVX8cf/zxKZVKufzyy7u2rVmzJldeeWVe/vKXb7DKo1a0dQQR9X3LNDK6of1HW6okza6EAACgphQL7RcCTuUBAKC7Pi0/9ba3va3b94VCIVtvvXXe8IY35Ktf/Wqvn+fAAw/Mcccdl7POOivPP/98dtppp1x++eWZN29eLrnkkq79TjrppPzyl7/sVnFw+umn5zvf+U7+8R//MQ8//HBmzJiR7373u5k/f35+8pOf9OVtDSltHZUaxT5WajTUFdJYV0hLuZKVbeWMqO/XohwAAGAAra3UkGoAAMC6+hRqlMvlfhvAFVdckU9/+tP57ne/m8WLF2evvfbK9ddfn4MOOugljxs5cmRuueWWnHnmmbn00kuzcuXK7L333vnpT3/a60blQ1nnxUuxj5UaSTK6oZCW5kpWtVWyVT+NCwAAGHidlRplmQYAAHTTb43C+2rEiBE577zzct55521wn9tuu63H7VOmTMlll102MAOrokql0lVm3nkx0xej6+uyuLmcla39F0IBAAADr6tSQ6oBAADd9CnU+NjHPtbrfc8///y+vMSwtu5ly+ZUaqzbLBwAAKgdxY7VY/XUAACA7voUatxzzz2555570traml133TVJ8vDDD6dYLGbfffft2q+wGVUGw9m6Fy69DTVKpdJ620Z1dBlf0VLq8fFCoZC6Or02AABgqFnbKFyqAQAA6+rTv2i/5S1vyUEHHZSnn346d999d+6+++489dRTOfTQQ/PmN785t956a2699dbccsst/T3eYaEz1KgrbDwYKpfLKdQV09TUlPr6+m5fX/mXzyZJvvbv317vsfr6+szYYWa/9kcBAAD6x9pG4dUdBwAADDV9qtT46le/mhtvvDETJ07s2jZx4sR8/vOfzxFHHJGPf/zj/TbA4WhtP42N71upVFIpl3LT4y+m2ND9x/nn1aXMW1HKkX97Sj789+/r9li5VMphMyel4s4vAAAYclRqAABAz/oUaixbtiwvvPDCettfeOGFLF++fLMHNdyV+9AkvK5YTLFY7LZtRH2SlNJWyXqPAQAAQ9faRuHVHQcAAAw1fVp+6u1vf3ve/e5359prr83TTz+dp59+Oj/84Q9z6qmn5h3veEd/j3HY2ZRKjZfS0PHTbXEhBAAANaWurrNSo8oDAQCAIaZPlRoXXXRRzjjjjJxwwglpbW1tf6L6+px66qk577zz+nWAw1FnS+9NqdToSUPHhVBr2ZUQAADUkrU9NZzLAwDAuvoUaowaNSrf+ta3ct555+Wxxx5LksyaNSujR4/u18ENV+V+q9QodD1fqVxJsW4znxAAABgUa3tqtPfRK2zmDU8AALCl6NPyU50WLFiQBQsWZOedd87o0aM1ne4nnSXmdZsZQhQLa3/ALao1AACgZqx7g5PVZAEAYK0+hRovvvhiDjvssOyyyy45+uijs2DBgiTJqaeemo9//OP9OsDhqL96ahQKhTQULUEFAAC1Zt1rAc3CAQBgrT6FGh/96EfT0NCQJ598MqNGjerafvzxx+fnP/95vw1uuOpcN3dzQ41kbbPwVhdCAABQMwqFQjoLt8sq4gEAoEufemrceOON+cUvfpHtt9++2/add9458+fP75eBDWdre2psfqrRWFdIUlGpAQAANaZYaL82aHMqDwAAXfpUqbFy5cpuFRqdFi1alKamps0e1HDXX8tPJWubheupAQAAtaWx41y+ueRcHgAAOvUp1Hj961+fK664ouv7QqGQcrmcL3/5yzn00EP7bXDDVakfKzU6Qw2VGgAAUFuaOu5yahFqAABAlz4tP/XlL385hx12WH73u9+lpaUlZ555Zv70pz9l0aJF+fWvf93fYxx2upaf6lPk1F3n3V2tLoQAAKCmdIYazW5QAgCALn36Z/PZs2fn4Ycfzute97q89a1vzcqVK/OOd7wj99xzT2bNmtXfYxx2Sh1/9k+lRvufGoUDAEBtaVSpAQAA69nkSo3W1tYceeSRueiii/KpT31qIMY07PVrT42inhoAAFCLmvTUAACA9WxypUZDQ0P+8Ic/DMRY6NCZP9T1Y6NwPTUAAKC2WH4KAADW16flp0488cRccskl/T0WOvRno/DOnhqlSlKuuBgCAIBase7yUxXn8gAAkKSPjcLb2tpy6aWX5qabbsorX/nKjB49utvj559/fr8Mbrjqz+WnioWkkKSS9iWoRvTHkwIAAAOu8walSvTIAwCATpsUajz++OOZOXNm/vjHP2bfffdNkjz88MPd9in0Q3XBcFbp+EqSYj+sP1UoFNJQV0hLuZLWUjKiuNlPCQAADIK6QiGNdUlL2RJUAADQaZNCjZ133jkLFizIrbfemiQ5/vjj841vfCPbbLPNgAxuOCoX1qYO/VVU0dBxIaSvBgAA1JbGYvsNSi2ahQMAQJJN7Knxl+u4/uxnP8vKlSv7dUDDXbmuPdQopP3OrP7QuRavUAMAAGpLU0f1drNQAwAAkvSxUXgnzer6X2elRn+2vmjouBBqEWoAAEBNaSoKNQAAYF2bFGoUCoX1emboodG/Ois1iv34uXaGGio1AACgtnRWXbtBCQAA2m1ST41KpZJTTjklTU1NSZI1a9bk7//+7zN69Ohu+1177bX9N8JhprNSo26zami6a+wKNfrvOQEAgIHXVGy/MFCpAQAA7TYp1Dj55JO7fX/iiSf262BYt1Kj/56zoSMgcXcXAADUFj01AACgu00KNebMmTNQ46DD2p4aA7D8lAshAACoKesuP1Xoz3JuAACoUc6Kh5iBqdTQUwMAAGpRY13SeWkwZtKUqo4FAACGAqHGEFMutP9I+rNSo/PurrZKUq4INgAAoFYUCoWuHnnjpkyt8mgAAKD6hBpDzEBUatSv81yahQMAQG3pvElp7NbbVnkkAABQfUKNIaarp0Zd/6UahUKhq1m4JagAAKC2NBVVagAAQCehxhAzEJUaSbpK1oUaAABQW7pCja2FGgAAINQYYjorNer6sadGolk4AADUKj01AABgLaHGEDNQlRqdoUZLSagBAAC1pLNSY+wUPTUAAECoMcR09dQYoFBDo3AAAKgtjZafAgCALkKNIWZtqNG/qUZj+9NafgoAAGpMU8cNSmMmbZ2S83kAAIY5ocYQU65r/5EU+/kn07X8lIsgAACoKQ11SSFJoa4uy5VeAwAwzAk1hpgBq9TQUwMAAGpSoVDo6qsh1AAAYLgTagwxA9UovHMdXpUaAABQezpDjaUtpSqPBAAAqkuoMYRUKpUBr9QoVZJSRbABAAC1ZERHqLG4WagBAMDwJtQYQtoqSTrCjP6u1CgW1v6wWy1BBQAANWVtqGH5KQAAhjehxhCy7tJQdf0cahQKhTRYggoAAGrSyPr2SzeVGgAADHdCjSGks+dfXdpDiP7W1SzczV0AAFBTLD8FAADthBpDSGcFRX8vPdWpseOn3WL5KQAAqCmdocaaUiWr29ylBADA8CXUGEI6KzUGLNToeOJWy08BAEBNKdYVsvyFPydRrQEAwPAm1BhCOis1+rufRqeu5adUagAAQM1Z/OyT7X8KNQAAGMaEGkNI6wAvP9VQp1E4AADUqkXPzE+SLG62/BQAAMOXUGMIGazlp4QaAABQexY/Pa/9T5UaAAAMY0KNIcTyUwAAwIYs7qrUEGoAADB8CTWGkMGq1GirJOWKYAMAAGpJ1/JTLUINAACGL6HGENJZqVEcoOevLySdeUmrZXgBAKCmLOloFL66rZI1bU7oAQAYnoQaQ0hn0DBQy08VCgXNwgEAoEa1rF6Z0fXt5/NLWoQaAAAMT0KNIaSrUqMwQKlGksaOMhCVGgAAUHsmNrWf0OurAQDAcCXUGEJau0KNgXuNRpUaAABQszpDjUVCDQAAhimhxhDSMsDLTyVrQ41WoQYAANQclRoAAAx3Qo0hZFAqNYqdlRoD9xoAAMDA6Aw1lgg1AAAYpoQaQ0hn0DAYy0+p1AAAgNqjUgMAgOFOqDGEdAYNA7n8VINKDQAAqFkTmtov4Va2VdJcclIPAMDwI9QYQjqbdxcH8DVUagAAQO0aUazLqPr2c/rFzUINAACGH6HGENI6qMtPJXXFgYxPAACAgaCvBgAAw5lQY4goVSopdRRPDGSo0bDOT3z0xMkD90IAAMCA6Aw1XhRqAAAwDAk1hojW0trloAayp0ahUEhjx0997NbbDNwLAQAAA2LyiI5QY41QAwCA4UeoMUQ0d/S4KFTKqSsMYKqRpKEjNRk3WagBAAC1ZquOUGPhmrYqjwQAAAafUGOI6KzUqCsP/N1WjR3rW43detsBfy0AAKB/TR5RnyRZtKaUcqWykb0BAGDLItQYIlo6KjXqKoMQaqjUAACAmjW+sS7FQtJWSZa1lKs9HAAAGFRVDzWam5vziU98ItOmTcvIkSNz4IEHZu7cuZv8PIcffngKhUI+8IEPDMAoB15XqDEYlRodocZYoQYAANScukIhk5o6l6DSVwMAgOGl6qHGKaeckvPPPz/vete78vWvfz3FYjFHH310br/99l4/x7XXXps777xzAEc58FpKg1ipURRqAABALVvbLFxfDQAAhpeqhhp33XVXrr766nzxi1/Meeedl9NOOy233HJLdthhh5x55pm9eo41a9bk4x//eD7xiU8M8GgH1pSR9Tl0m6ZMWr5gwF+rQaUGAADUtK06+mqo1AAAYLipaqhxzTXXpFgs5rTTTuvaNmLEiJx66qm5884789RTT230Ob785S+nXC7njDPOGMihDrgJTcW8YlJDxq1aOOCv1VmpMU6jcAAAqElrKzWEGgAADC9VDTXuueee7LLLLhk3bly37QcccECS5N57733J45988sn867/+a770pS9l5MiRAzXMLU5nT40xk7ZOpVKp8mgAAIBNtdWItT01nNMDADCc1FfzxRcsWJCpU6eut71z27PPPvuSx3/84x/PPvvsk3e+852b9LrNzc1pbm7u+n7ZsmVJktbW1rS2tm7Sc/Wntrb29XArpbZUSsVeHVMptWXkyJHtx/QyomrouOgpNjRk6ZqWjGtyETQcdc71as55hg/zjcFkvjHYzLmBtbmf61A99+987Uqp9z0xRowY0XXc2LpKCklaypUsXt2SsQ1Vb5fIEObvKQaT+cZgMt8YbObcwOrt51qoVPG2nlmzZmXXXXfNDTfc0G37448/nlmzZuWCCy7IRz7ykR6PvfXWW3PYYYflt7/9bfbff/8kSaFQyD/+4z/mwgsvfMnXPeecc3Luueeut/2qq67KqFGj+vZmaswj0/ZLW31TZv75voxsWVHt4QAAQI9WrVqVE044IUuXLl2vwrs3tuRz/8em7pOWhlGZ/vwfM2bN0moPBwAANktvz/2rWqkxcuTIbndNdVqzZk3X4z1pa2vLhz70ofzd3/1dV6CxKc4666x87GMf6/p+2bJlmT59eo444og+XSj1l+bm5tx8880Zu+erU9/Y1KtjWlpa8lezd8j1f3oq9Q29/3E2LWpNWymZ/coDs+vE3r0WW5bW1tbMnTs3hx9+eBoaGqo9HLZw5huDyXxjsJlzA6uzsqKvhuq5f+e8mbD361Io9u48/tj9ds0z6/Qd/PGTK/PosrbstNd+2Xeyc3o2zN9TDCbzjcFkvjHYzLmB1dtz/6qGGlOnTs0zzzyz3vYFCxYkSaZNm9bjcVdccUUeeuihfPvb3868efO6PbZ8+fLMmzcvU6ZM2eCdV01NTWlqWv+kv6GhoaqTsVRqb/JXKNb3+sKmUCxn9erVm3RMkjTVl7KyVM6qSsEv4DBX7XnP8GK+MZjMNwabOTcwNvczHarn/p025Tx+zZo13cY8ZWRDHl3WlsWtm/85MTwMlXnP8GC+MZjMNwabOTcwevuZVnXh1b333jsPP/zwegnMb3/7267He/Lkk0+mtbU1r33ta7Pjjjt2fSXtgceOO+6YG2+8cUDHXuuaOn7yy1rK1R0IAADQJ2ubhfe+LwcAANS6qlZqHHvssfnKV76Siy++OGeccUaS9iWY5syZkwMPPDDTp09P0h5irFq1KrvttluS5J3vfGePgcfb3/72HH300Xnf+96XAw88cNDeRy1qrCskSZa3CjUAAKAWbTWi/XLuxTWlKo8EAAAGT1VDjQMPPDDHHXdczjrrrDz//PPZaaedcvnll2fevHm55JJLuvY76aST8stf/jKdPc132223roDjL+24445529veNhjDr2lNxfZQY5lQAwAAalJnpcbqUiWrWssZ1VDVQnwAABgUVQ01kvbloj796U/nu9/9bhYvXpy99tor119/fQ466KBqD22L1thxvbPc8lMAAFCTGuoKGd9Yl6Ut5SxcU8oMoQYAAMNA1UONESNG5Lzzzst55523wX1uu+22Xj1XZyUHG9dZqbGirZJSuZJix3JUAABA7Zg8opilLeW82NyWGWM1qwQAYMvnVp5hqr6QtDavSaKvBgAA1ILVq9dk3IQJ3b7+89sXJkm+eOHF6z02bsKE7L7H7CqPGgAA+lfVKzWojkKhkKXPPZvJM16WZa3lTGgqVntIAADASyiXSvnpA89027ZwTSkPLWnJ6//6xHzw9Peud8wxu283WMMDAIBBoVJjGFv6XPsF0fKWUpVHAgAA9MWYhvZlZFe1VVKyHC8AAMOAUGMYW7KgPdRYplk4AADUpKa6QhrqkkqSlZaVBQBgGBBqDGOdlRrLXPwAAEBNKhQKGdvQflm3olWlBgAAWz6hxjC25M9PJ0mWWX4KAABq1piOUGO5m5UAABgGhBrD2JI/W34KAABq3dpKDef1AABs+YQaw9jSP1t+CgAAal1npcaaUiWtZUtQAQCwZRNqDGNLOnpqNJcqaS4JNgAAoBbV1xUyslhIkixXhQ0AwBZOqDGMtaxamSYXPwAAUPPGWIIKAIBhQqgxzI3ruPixBBUAANSusY2ahQMAMDwINYa5zqaCmoUDAEDtWrdSo1LRVwMAgC2XUGOYG9fYGWqUqjwSAACgr0bXF1JI0lZpbxgOAABbKqHGMDe2ob2nhuWnAACgdtUVCl3VGpagAgBgSybUGObGWX4KAAC2CGM6bljSLBwAgC2ZUGOYW9tTw/JTAABQy/TLAwBgOBBqDHOdPTWWaygIAAA1bVxjMUmysq2StrJzewAAtkxCjWGuc93dUiVZ1ebCBwAAalVTsZCmOktQAQCwZRNqDHPFdRoKLmu1BBUAANSysY2WoAIAYMsm1ECzcAAA2EJ0Li+7TKUGAABbKKEGay98hBoAAFDTOm9Y0jMPAIAtlVCDroaCS1ssPwUAALVsVH0hxUJSrrQ3DAcAgC2NUINMbGqfBoubhRoAAFDLCoWCSmwAALZoQg0ysaNSY0mzix4AAKh1Y7t65rlpCQCALY9Qg0xo6gg1WkopW3cXAABqmmbhAABsyYQaZFxjXeoKSanS3lAQAACoXWMa6lJI0lpOJkydXu3hAABAvxJqkLpCIRM6lqDSVwMAAGpbsVDImI4lqLbf85VVHg0AAPQvoQZJkgkdzcL11QAAgNrX2Vdj+p77VXkkAADQv4QaJEkmNqnUAACALUVnX43ps4UaAABsWYQaJEnX8lNLWoQaAABQ6zpDjckzd8rqNtXYAABsOYQaJFGpAQAAW5KGukJGFgtJkqdXtlZ5NAAA0H+EGiRJJq7TU6NSqVR5NAAAwOYa21Gt8fSKtiqPBAAA+o9QgyTJ+I7lp1rKlaxqE2oAAECtG9fRLFylBgAAWxKhBkmS+rpC10WPJagAAKD2dfbV+POqtrSV3bgEAMCWQahBF301AABgyzGiWMiKRS+kVEkWrLIEFQAAWwahBl0mdPbVaBFqAABArSsUCnn6/36fJHl6hSWoAADYMgg16LK2UqNc5ZEAAAD94ak/doQa+moAALCFEGrQZUJHqLHE8lMAALBFePr/ftf+58q2VCr6agAAUPuEGnSZ2KinBgAAbEmee/SBNNQlzaVKFq5xng8AQO0TatCls6fG6lIla0qWoAIAgFpXLrVl2qiGJJagAgBgyyDUoEtTsS6j6wtJkiX6agAAwBZhuzH1SZKnV7RVeSQAALD5hBp0M6HJElQAALAlmT66vVLjKZUaAABsAYQadDNRs3AAANiiTBtdn0KSZS1l5/kAANQ8oQbdTNAsHAAAtihNxbpMHdW+BNWTK1RrAABQ24QadDOxo1n44hahBgAAbClmjG1fgkqoAQBArRNq0M3Erp4aGoUDAMCWYocxHaHG8tZUKpUqjwYAAPpOqEE3kzpCjRWt5axpE2wAAMCWYLvRDalLsqy1nKUtzvMBAKhdQg26GVFfl7EN7dNi4RpLUAEAwJagsVjI1NHtfTXmW4IKAIAaJtRgPZNHtFdrCDUAAGDLse4SVAAAUKuEGqxnbajRVuWRAAAA/WXGmLXNwvXVAACgVtVXewBUV6m0fjXGpKb2rOuF1W3rPV4oFFJXJwsDAIBas92YhtQVkuWt5SxpKWdiRz89AACoJf51epgql8sp1BXT1NSU+vr6bl9vPeygJMn/PfH0eo/N2GFmymWNBQEAoNY01BUybVT7fW2WoAIAoFap1BimKpVKKuVSbnr8xRQbuk+DtnIlv3uxNeO23jZz5y9JfV0hSVIulXLYzElK1QEAoEbNGNuQp1e2Zf6K1rxi8ohqDwcAADaZSo1hrq5YTPEvvpoa6tPUEWQ0Vwpd2+uKytMBAKCWzVinWbiblQAAqEVCDXo0qr491FjZ5kIHAABq1erVazJuwoSur31nTU9bS3NWtJUza+/9uz02bsKE7L7H7GoPGQAAXpLlp+jRyPq6LG4pZ3Wb/hkAAFCryqVSfvrAM922/WlRc5a0lPOFH96c7UZ3vyQ8ZvftBnN4AACwyVRq0KPOSo1VKjUAAGCLMqGp/TJwSXOpyiMBAIBNJ9SgR6Ma2qfGKpUaAACwRZnQ2N4rb1lLOSV9NQAAqDFCDXo0qtheqdFaTlrLLnQAAGBLMaq+kMa6pJz2YAMAAGqJUIMeFesKaSp2LkHlQgcAALYUhUIhE5raqzWWNDvXBwCgtgg12CB9NQAAYMs0obGjr0aLvhoAANQWoQYbNKpeXw0AANgSdVZqrGqrpLnkJiYAAGqHUIMN6qrUaHWRAwAAW5KGukLGNLSf7y9pVq0BAEDtEGqwQetWalQqgg0AANiSTGjs6KuhWTgAADVEqMEGjeyo1GirJK2ucwAAYIsysamjr0ZzyU1MAADUDKEGG1QsFDKi2NksXKoBAABbkrENdSkW2m9iWu4uJgAAakTVQ43m5uZ84hOfyLRp0zJy5MgceOCBmTt37kaPu/baa3P88cfnZS97WUaNGpVdd901H//4x7NkyZKBH/Qw0tlXY6VQAwAAtiiFQiETOxqGL2p2vg8AQG2oeqhxyimn5Pzzz8+73vWufP3rX0+xWMzRRx+d22+//SWPO+200/LAAw/kxBNPzDe+8Y0ceeSRufDCC/PqV786q1evHqTRb/nGNLRPkRWahQMAwBZnUscSVIs0CwcAoEbUV/PF77rrrlx99dU577zzcsYZZyRJTjrppMyePTtnnnlm7rjjjg0ee8011+SQQw7ptu2Vr3xlTj755Fx55ZV573vfO5BDHzbGdoUa5STF6g4GAADoVxObiimkNavbKlmtOhsAgBpQ1UqNa665JsViMaeddlrXthEjRuTUU0/NnXfemaeeemqDx/5loJEkb3/725MkDzzwQL+Pdbga3RFqrClV0lZWrQEAAFuS+rpCxjV2VmsINQAAGPqqGmrcc8892WWXXTJu3Lhu2w844IAkyb333rtJz/fnP/85STJ58uR+GR9JQ93aZuEr2oQaAACwpZnU1VfDElQAAAx9VV1+asGCBZk6dep62zu3Pfvss5v0fF/60pdSLBZz7LHHvuR+zc3NaW5u7vp+2bJlSZLW1ta0trZu0mv2p7a2tiRJpdSWSql3Sz1VSm0ZOXJk+zGbEFFtynFj6pM1pWRFSykjR45Ma2trymV3cdW6zrlezTnP8GG+MZjMNwabOTewNvdzHarn/p2vXSm19fqYzvP3TdGbYyY2VPJEkmUt5UyYPMVc3gL5e4rBZL4xmMw3Bps5N7B6+7kWKpVK1W6/nzVrVnbdddfccMMN3bY//vjjmTVrVi644IJ85CMf6dVzXXXVVXnXu96VM888M1/60pdect9zzjkn5557bo/PMWrUqF6Pf7h4cey0PD9xx4xZ9WKmL3yw2sMBAGAYWbVqVU444YQsXbp0vQrv3nDu3zuPb7t3mhtHZ9rChzN+1QvVHg4AAMNQb8/9qxpqzJ49O9tss01uvvnmbtvvv//+7LHHHrnoooty+umnb/R5fvWrX+WII47IwQcfnOuvvz719S9dgNLT3VrTp0/PwoUL+3Sh1F+am5tz8803Z+yer059Y1Ovjmlpaclfzd4h1//pqdQ39L7wZlOOW9pSzp+WltJQSD79mhlZtGhRikVNw2tda2tr5s6dm8MPPzwNDQ3VHg5bOPONwWS+MdjMuYG1bNmyTJ48uc+hxlA99++cNxP2fl0Kxd6dxx+9+/Tc8MCG+w5uzjFPrizl6VXlPPQ/P8/F7z9+k16Doc/fUwwm843BZL4x2My5gdXbc/+qLj81derUPPPMM+ttX7BgQZJk2rRpG32O++67L3/1V3+V2bNn55prrtlooJEkTU1NaWpaPzRoaGio6mQsldrXsC0U63t9YVMolrN69epNOmZTjxvbVElSSmslqR89Lg0NDUKNLUi15z3Di/nGYDLfGGzm3MDY3M90qJ77d9qU8/jO8/dN0dtjJo2oy9OrmjPzle0hS31dYZNeh9owVOY9w4P5xmAy3xhs5tzA6O1nWtVG4XvvvXcefvjhrnVtO/32t7/tevylPPbYYznyyCMzZcqU3HDDDRkzZsxADXVYK9YVMqq+/aJm+5fvXd3BAAAA/W5MQyENdUnT6DGZv9wa0QAADF1VDTWOPfbYlEqlXHzxxV3bmpubM2fOnBx44IGZPn16kuTJJ5/Mgw927+Xw5z//OUcccUTq6uryi1/8IltvvfWgjn24GdPQPlW2E2oAAMAWp1AoZPKI9mrs+xc3b2RvAAConqouP3XggQfmuOOOy1lnnZXnn38+O+20Uy6//PLMmzcvl1xySdd+J510Un75y19m3fYfRx55ZB5//PGceeaZuf3223P77bd3PbbNNtvk8MMPH9T3sqUbU1+X51PK9nvsU+2hAAAAA2DyiGIWrCrlkaUtaS1X0mAJKgAAhqCqhhpJcsUVV+TTn/50vvvd72bx4sXZa6+9cv311+eggw56yePuu+++JMmXv/zl9R47+OCDhRr9rLNSY/uX750q9pYHAAAGyNiGuixZ8FQmTJ2ex5a2ZLeJ6/ciAQCAaqvq8lNJMmLEiJx33nlZsGBB1qxZk7vuuitvetObuu1z2223rfcP6ZVKZYNft9122yC+g+FhdEMhhSSjJ26Vpa3lag8HAADoZ4VCIfff8tMkyZ8sQQUAwBBV9VCD2lBXWNss/LlVpSqPBgAAGAh/uvm6JMnjy1qyps3NTAAADD1CDXptdEeosWB1W5VHAgAADIQXnng4k0cUU6okDy1tqfZwAABgPUINem1MZ6ihUgMAALZYL+/opXH/IktQAQAw9Ag16LWxHc3CF6xqS2tZs3AAANgSdYYa81e0ZoV+egAADDFCDXptRDFZ+tyzKVWSZ1a0Vns4AADAAJjQVMy0UfVJkj8tWlPl0QAAQHdCDXqtUCjksf/9VZL2u7YAAIAt015bjUiS3PvimlQqqrQBABg6hBpsksd/9+skyfzlQg0AANhSvXxiUxrrClncXHZDEwAAQ4pQg03SWamxYFVbmkvW1wUAgC1RY7GQPSa199a4d6ElqAAAGDqEGmySJQuezvjGulSSPL2irdrDAQAABsjeHUtQPbykJSs1DAcAYIgQarDJZoxubxqoDB0AALZc24yqz7RR9Skn+cOLqjUAABgahBpsshljGpIk85e3VHkkAADAQNp7sobhAAAMLUINNtmMMe2VGs+tLmV1mzJ0AADYUu0+sSlNxUKWtpTzxHKV2gAAVJ9Qg002pqEuWzUVkyRPWYIKAAC2GKtXr8m4CRO6vraaNDG3/9ecJMkXr/pJt8fGTZiQ3feYXeURAwAw3NRXewDUphljG/JicynzV7RmlwlN1R4OAADQD8qlUn76wDPdtq1pK+f3C5sz68CD819/eCqjG9beG3fM7tsN9hABABjmVGrQJzt09NV4Ugk6AABs0UbU12WrEe2V2s+sbKvyaAAAGO6EGvTJjLHtocYLa0pZ0aqvBgAAbMm2G91e5L9wTSnNJef/AABUj1CDPhlVX5dtR7Zf2Dy6tKXKowEAAAbS2Ia6jG+sSyXJsytL1R4OAADDmFCDPttlQmOS5OElzVUeCQAAMNA6qzX+vLotbeVKlUcDAMBwJdSgz3btCDXmrWjNmjYl6AAAsCWb0FiXUfWFlCvJglV6awAAUB1CDfpsqxH1mTyimHIleXSZJagAAGBLVigUsn1HtcYzK9vSqloDAIAqEGqwWXYZ37kElVADAAC2dJNHFDO6vpBSJXlqRWu1hwMAwDAk1GCz7DqhKUny+LKWtJTcqQUAAFuyQqGQmWMbkiR/XlXKxO12qPKIAAAYboQabJYpI4sZ31iXtkry+HLVGgAAsKWb0FTMxKa6VJIc+r5/qvZwAAAYZoQabJZCodBVrWEJKgAAGB5mjmmv1tjt4CPztGWoAAAYREINNtuuE9r7ajy2tCVtmgUCAMAWb1RDXbYZWUySzH16RUoV1wEAAAwOoQabbdqo+oypr0tzuZL5y92lBQAAw8GMMQ1ZvWxJnltdym+fW13t4QAAMEwINdhshUIhu3RUa9y/uLnKowEAAAZDY7GQG//ts0mS2/+8Ks+vbqvyiAAAGA6EGvSLPSe199V4cElzVrWVqzwaAABgMPzppuuy0/jGlCvJT+cvtwwVAAADTqjBJiuVSut9TRnRvqZuqZLct3D1eo+Xy4IOAADYEh05fUxGFAuWoQIAYFAINei1crmcQl0xTU1Nqa+vX+/rW2d9KEnyw9/+KQ0NDd0em7HDTMEGAABsgcY01OWN249O0r4M1QuWoQIAYADVV3sA1I5KpZJKuZSbHn8xxYb1p06pUsndL7Zm8oyX5dpHF2VCY3tmVi6VctjMSakoRQcAgC3SHhOb8uDiljy6rCU/nb8iJ+06PnWFQrWHBQDAFkilBpusrlhMsYevxvr6TBlZTJK8sKbctb2uWKzyiAEAgIFUKBRy5IwxaSoW8ufVbZahAgBgwAg16Ffbjmyv4HixuZzmksoMAAAYLsY01OVwy1ABADDAhBr0q1ENdRnX0D6tnnMRAwAAw8oeE5sya1xDSpXkp0+uSNkStAAA9DOhBv1u21Hty009t6rNRQwAAGzBVq9ek3ETJnR9jZ84MR8+Yv+sXr40f17VlqPe/8luj4+bMCG77zG72sMGAKCGaRROv9tqRDGNy1vTUk6eW1XKlBEaBAIAwJaoXCrlpw88s97251e35ZGlrXnDaf+Uj531/zKqYe39dMfsvt1gDhEAgC2MSg36XV2hkO3HNCRJnlrZmpJqDQAAGFa2HlHMxKa6VJI8sqwlFdcEAAD0E6EGA2KbkcU0FQtpLSfPrS5XezgAAMAgKhQKmTWuMcVCsqK1kmdW6rcHAED/EGowIOoKhUwf3b662bOrSmkaPabKIwIAAAZTU7GQl41rr+B+ckVbVra62QkAgM0n1GDATBlZzMhiIW2V5LUnnF7t4QAAAINs6xHFTOpYhuqhJS0plS1DBQDA5hFqMGAKhUJmjGmv1nj9ie/P6jZ3ZgEAwHBSKBSy0/jGNNYlq0uVPL68tdpDAgCgxgk1GFBbjShmVLGQEWPH5X/+vLrawwEAAAZZQ10hu4xvTJI8v7qUlx96TJVHBABALRNqMKAKhUJmjimmXC7nD4ta8sSylmoPCQAAGGTjm4rZvqPn3lEf/5c8v1rjcAAA+kaowYAb11iXO6/+TpLkZ0+uSHPJMlQAADDczBhTn3ENdWkaPSbff3RpFjeXqj0kAABqkFCDQfGLC/8l4xvrsqy1nFufWVXt4QAAAIOsUChk94mNee6xB7KyrZLvPbo0y1oEGwAAbBqhBoOidc2qHLn9qCTJvS+uyTzLUAEAwLBTX1fI1f90SiY21WVZSzlXP7osywUbAABsAqEGg2bGmIbsO3lEkuQn85dnqYsXAAAYdlYufjHv3Gl8xjXUZVFzKZc/tDQLVrZWe1gAANQIoQaD6pBpo7P1iGJWtlVyzWPL9NcAAIBhaHxjMSfsPD5bjyhmRVs5Vz6yNPcvaq72sAAAqAFCDQZVY7GQY2eNy+j6Ql5YU8qPn1iecqVS7WEBAACDbEJTMSfuMj6zxjWkrZJcN3955j69Iq1l1wcAAGyYUINBN76xmGNnjUt9IXl8eWtuenplKoINAAAYFlavXpNxEyZk3IQJ2XqrSXnv/jvmzu99O0ny+xfW5Kwf/zY77/earn1232N2lUcMAMBQUl/tATA8TR3VkL+aOTbXPrE8dy9ckyQ5fPvRKRQKVR4ZAAAwkMqlUn76wDPrbV/cXMojS1syeeZOee9/XJftx9Rn+9H1ecvLt6/CKAEAGKpUajBoSqVSt69ZY+vzxu1GJUnuXrgmP35iWVpa27rtUy7ruQEAAMPBxKZi9pk8IpOa6lJJ8tSKtty7sDkzXnFAtYcGAMAQItRgwJXL5RTqimlqakp9fX23r/23GZ2rzzotpdbWPLi0NX//Hz/KqLHjux6fscNMwQYAAAwTDXWF7DahMbuMb0hDXbK6VMmJX7sqP52/PKvbXBcAAGD5KQZBpVJJpVzKTY+/mGJDz1NuSUs5Dy9tyy6vPjRf/s287DyuPiMKlRw2c5J+GwAAMIwUCoVsPbI+E5uKmbe8Nc+tLuX/FjXn0WUtOWy70dljYpNlawEAhjGVGgyaumIxxQ18bTWyIbMnNaWxLlldSv64uC0vtFR7xAAAQLXU1xWy0/jGXP6B4zJ5RDGr2yq5fv6KXP3osixaU6r28AAAqBKhBkPG2Ma67D15RCY21aWc5IkVpZz4lcuyvFWZOQAADFfP/OmevHvXCTl46qjUF5L5K1pzyYOL8+s/r0qprKobAGC4EWowpDTUFbL7hMbMHNuQQpI93nBMLnloae56fnXKlqECAIBhqVhXyKu3HZVTd5+YmWMbUqokv1qwKpc+uCTzlyvxBgAYToQaDDmFQiHbja7P7In1mX/fXWktJ7c8szJzHlySx5e16LEBAADDyOrVazJuwoSMmzAhO2yzVU7bb4f89+c/mpWLFubF5lK+9+iynPjlSzJ1x5269tt9j9nVHjYAAANEo3CGrNH1dfn2e96c3z+3Ir9csDovrCnlvx5blu1H1+f1U0dlh7GN1R4iAAAwwMqlUn76wDPrbW8rVzJ/RWv+vKqU2Ye/Na844q3ZfnR9po6uz1+9fPsqjBQAgMEg1GBIq1Qq2WN8fXYeNy6/eX5N7n2xOU+vbMv3Hl2W7UbVZ9/JTdl5fEOKhULXMYVCIXV1ipAAAGBLVl9XyKxxjZkyspzHl7ZkRVsl81e0ZcGqUvZ809tTqlS6XScAALBlEGowZJXL5RTqimlqauraNnbyNjn01I9m/3f8XZ5ZlTzzZFuWPr8gd/3w8tz7sx9m0dPzst320/Pk/HmCDQAAGAbGNtRlr62a8sKaUuYvb0tLuZK3fPK8fPtPi/PKrUfkFZNHZETRtQEAwJZCqMGQValUUimXctPjL6bY0H2qtpQqeW5NKc+vLmf8lKk5/B8+mcP/4ZMZVUyu+crZeXFNWyaPbEjBnVkAALDFKxQKmTKyPluNKGbByrbc/+Sfk0mTc+uzq3L7n1dl5tjG7DS+MTuNa8zoBgEHAEAtE2ow5NUViykWi922jSwmMxvrM2NsJQvXlPLC6lKWtJSzqpQc/dFzc8lDyzKusS47jm3IDmMbM21UfcY31gk5AABgC1YsFLL9mIa8/50H5bYHn8z/Pr86C9eU8sjSljyytCVJMrGpLlNHNWTaqPb+G9uMrE99nesEAIBaIdSgptV13JE1ZWR9WsuVvLCqNXNvviW7vurgLGsp574Xm3Pfi81JklH1hUwb1ZBpo+szbVR9th1drwwdAAC2QCuWLcvrZ22bJNlmp5dn59e8ITu/5rBM3XXPLG4uZ3Fzc+5f3H6dUGptyeKnHs8RB+ydqaPqM210fSY1Fd0QBQAwRAk12GI01BWyzchiLvmHY7Ni9Zo8u7qSeSta88zKtjy/upRVbZU8uqwljy5r6TpmQmNdJo8oZqumYiaPLGbrkQ3ZakQxDe7UAgCAmlUulfLTB55Zb3truZIVreWsaC1necefaWjM5JftlrsXrunar6lYaA84Oqo5po1qsGwVAMAQIdRgi9LZXHzMyBHdttc3NmXabntm+uxXZvrsfTN9z1dm0nY7ZElLOUtaynk0rd32H99Yl4lNxUxoLGZ8Y10mNLX/Ob6xmFH1BXdtAf+/vbsPjtq88wD+lbRardf2+j1gXw2Ni4ES3ovtgyMBH9NJCKXtETCThiNc4eg0TVtIIQnkWnppmzku07idppDSSzHT5g6Cm0xnOpkcTSBMQ4gxLw7XKcQML4ML5i3GL8T2er373B/a9zev116thb+fGc2uHumRHq0fa3/ST9ISERGRCamyhDxNQZ6mP95WCAGnW+DfvvMNvPCLXWjt7se17n443QKXuly41BU4TnBYZYz13iV+T4aCogz9Ebcyjw2IiIiIDJX2pIbT6cQPfvAD/Pa3v8Xt27cxffp0/PjHP8YXv/jFAeteuXIFGzduxIEDB+DxeFBdXY3a2lqUlZUZ0HIaieL9uHg4l0egu1+gxy3Q7fLgww+OYErlP6DXLdDR50FHnwcIS3YAgCoBmaqMTIuETFVGlqp4x2XYLRJsFhk2RfIOMlQZTIIQEREREY1AkiTBZpFw8q038E+H3gIAyIoFRfdORMnnp6Pk8zNQMnkGCsdPQGcf0NnXh+aOwJ3fMoAcTb/4yXc8YLfIsAcdH9gtMuwWGVaFxwREREREwyHtSY01a9agvr4eGzZsQHl5Oerq6vDwww/j0KFDmD9/fsx6d+7cQXV1NTo6OrB161aoqora2losWLAATU1NKCgoMHAraKSJ9uPi4RQFsKn6e5fLhXXfWAbhcSMztwD3lE1C/mfGI69kHPJKSpH3d+ORXzIO2UVj4ZJl7x0eAOBGtMRHSFug375uUyT/q574kGGzBJIfgWn6uG9+XvlFRERERJRasR5X5dPvfWzVp/0efOoS6O73oP3THqiazfsbHZ4B12GREJLsyLTI+sVRqows33vvNE3h3eFEREREsaQ1qXHs2DHs3bsXL774IjZt2gQAWL16NaZOnYqnn34aH3zwQcy6O3bswLlz53Ds2DFUVFQAABYvXoypU6fipz/9KV544QVDtoHuDone4eERAn0eoM8j0NvXj59t24Ks/EJkFdyD7MJ7kJVXiAxHLmzZDmRk50JRVXgA9Lj1O0KSocqAJkuwepMcmiLDKuvvLbIEiwRYZAmKJMEiw/9qkSRvOcJeJUjQD9yclgy0Od2wemRIACQJ/lcZUkSZBMk/LntfAd6JQkRERER3N4ssIVdTkKsFLpxaVPEZFH1mPPL+bjxyxpbAnpMPe14BMnMLYM/Nhz3X+z6vAKpmQ78AOvs86OwbOAECwBv7By6CsioSVG9Mr8qBYwH/e1l/H3xc4DsGEN7Yv73PA5tw+48LFFm/CIvxPBEREZlJWpMa9fX1UBQF69ev95fZbDasXbsWW7duRUtLC0pLS2PWraio8Cc0AGDy5MlYtGgRXn/9dSY1KCkD3eGhAFABZALokwWO7vuvmIkQIQQ8APo9gFsI7yvg7O/HL/79OWRkO/QESFYOMhw5sGXrrxlZOchw5ELLzAIAuDz6o7LQ70uKuIdvg0tm48K5O8OyKP1gCKGJkKAkSHAyRA5PjnjLAu/1Ays5Sp1AmT5d9s8XWl+WpKBlBdoCBCVjfK9Bx3DBh3O+g7uQ+aXY9SVIIfPFW1egXPIv05/2EoDwjvnKhEDIePB7CcGJpsjP3J+kiiiXwuoGlQ1YN2x7gz+7KJ+Ryy3glhQ43QJQhPdvxANoIiIiMi93fz/2/vnEgPMJIeARQM382cgfW6wnO/IKkZlXgKz8ImTmFyErv1B/LSiCNSMTAOB067/30amvbegNLpmNC81dEcUSfImRoIRJ0AVRsgQo3rg79BVB0wPTwuf3JU98F135ki8WKWid3nlCYlkEYk+AcSMREREFpDWpcerUKUycOBEOhyOkvLKyEgDQ1NQUNanh8Xhw+vRpfP3rX4+YVllZiQMHDqCrqwvZ2dmpaThRkIESIdaw8b4+gQ/+Z9eAd4UIIdAv9ESI2yPQ19+P5/71n6HZM6FlZsOW5YBF02Cx2qBqGixWDYpVg2rV31s0GyxWK1QtA4pq1edVrbBYNUiyAsWiwOHIwZ1Pu/UT2YoCWZYhybJ3+uB2Dx4g6Aw8wt+Eb92glk13idK/R/OZzpAif9LKd+AL/eBV8SalFO+BrO+A2TdfcBJIT/hESQL5jntFcj0uWnIq8D56kkz4hrDEVHBSSgjffGEN864weHmxEnGRiaMYSbugzyD8PEDgs5dC3sv+xKD3cw86oRGc5Ar9PIKI2J923M9UinzcXvy/QdB4SHskuN1u3M4cg9NtfbBY3FHrxUtqSkErjfjsw8pjLys06Rd7XaEzhS5XSnBdgTIJgcRkeFI3asIyrEwK3dLYSd+gNxF/j5D6PAFFRCR5T+5/0nIRv//g1IDze7wXRD36wBdQd+g4+oVAv0fALQCP0Kd7hB5/e0RoecPhg7DaMvRjA9UKi2qFYrVCtWrIyctHT58LiqpCsaj+9Qnod6L3hQT0I1My3yqxtig4maN6kzm+8eCLeoDI5Iov6RI8LXx6xDRJD5P8f0MExiMSQXJosig4ueR771u+vuiguCNG/Bjv4qrgct+ILz4cKLaIdnGUp1+/M+iTXjcs/YElJ9K7om9DYBnx4tDgaZHxtx6dh1+w5bugLnRb9HX64l/f35BxDRHRyJHWpEZrayuKi4sjyn1lV69ejVqvra0NTqdzwLqTJk2KWt/pdMLpdPrHOzo6/Mt1ueL/PkIqOZ1OdHd3A223oKjhp8Kjc7lcsNls6PzkFhQ1/m9IDLWekesyQxuHuq477bcHVQ8uFy42vIf/fv+jhBMOLlcfVt0/K2od4elH99n3YJ/8BUiyBfrVX+5AvXmz8Nqf9XrhuYrwuwcAwNXfh+88shi/+P3/Qg5aV3Ad37lnEVTucrnwH089gWdrX4GsKDHnCy/3uN14bcfP9Ds6FAWyokBSFEiSnpzxj8veabJ++k6WZQghvIG6HqVKkuSPgPVA1VcWNK4o+gaHTPee3JWkwEGBbzokSIrsrxO+rmjrEd6z3ZIkwePxABDesqBXCP8H7/v8JQmQvQemsqxAkiVIsgJJkiErEiRJBiRfwkpPWkmyHEhiSZJ/miwpgfkkGbKiT0dwPSkwXZLlhPoikeG0MbjUfCPdraAooiZHEHoiIu68UuS0mOMR84anbSIrx11ulHVL0L+XerPLcf7ElRjrjbP8GOdHEj1tEmu+eOddEll28Oe9bHwWLHKiLRp+XV36leUiTtI0npEa+7tcLnR3d0Ntv63HGQnQY8i2Qa1nsHVSPT/Xkfj8n964Cqm7HSr0u8UHJAEbN/8L6hv/GjFJuN3o+L/3kDNtLiSlH0K44AGw+h/nYvc7R70JkqCEiTdp4rsYwxuZQgCoq/1PaBkZkGULZIsFikUNvCoKZMUC2VvmG7dYNVisVihWm/cCLA0W1Vum2WBRtYQ/l+HUk5a1jhKOcvy1qTXdrRhWgYRHZEInHW0Z9PRBNjOZrUrko0iq7XHWIwTQ44vD4sRgg1lmsm0bbNsTkVjcJoUXJLEMiufeLAvmFNkABGK4Tz75BKqa0Dc0DULCsb9Io7KyMrF48eKI8vPnzwsAora2Nmq9y5cvCwBi+/btEdNeffVVAUCcOnUq5nq3bdvmv5iWAwcOHDhw4MCBAwcOI39oaWlJ6piDsT8HDhw4cODAgQMHDuYaBor903qnRkZGRshVUz69vb3+6bHqAUiqLgBs2bIFTz31lH/c4/Ggra0NBQUFab2dsLOzE6WlpWhpaYl4JBfRcGN/IyOxv5GR2N/IaOxzqSWEQFdXF0pKSpKqz9ifiP2NjMX+RkZifyOjsc+lVqKxf1qTGsXFxbhy5UpEeWurfotirMbn5+dD0zT/fIOpCwCapkHTQm9vzc3NTbTZKedwOPhPQYZhfyMjsb+RkdjfyGjsc6mTk5OTdF3G/kQB7G9kJPY3MhL7GxmNfS51Eon90/ow9JkzZ6K5uRmdnaE/HNvQ0OCfHo0sy5g2bRqOHz8eMa2hoQFlZWX8kXAiIiIiIiIiIiIiortMWpMay5cvh9vtxq5du/xlTqcTu3fvRlVVFUpLSwEAly9fxtmzZyPqNjY2hiQ2Pv74Yxw8eBArVqwwZgOIiIiIiIiIiIiIiMgwaX38VFVVFVasWIEtW7bgxo0bmDBhAvbs2YNLly7h1Vdf9c+3evVqHD58OORXz5944gn8+te/xpIlS7Bp0yaoqoqXXnoJY8aMwfe+9710bM6QaZqGbdu2RdweT5QK7G9kJPY3MhL7GxmNfY6SwX5DRmJ/IyOxv5GR2N/IaOxzI4MkgjMFadDb24vvf//7+N3vfofbt29j+vTp+NGPfoQHH3zQP8/ChQsjkhoA8Le//Q0bN27EgQMH4PF4sHDhQtTW1mLChAlGbwYREREREREREREREaVY2pMaREREREREREREREREiUjrb2oQERERERERERERERElikkNIiIiIiIiIiIiIiIyBSY1iIiIiIiIiIiIiIjIFJjUMIDT6cQzzzyDkpISZGRkoKqqCn/6058SqnvlyhXU1NQgNzcXDocDX/nKV3DhwoUUt5jMLNn+9sMf/hCSJEUMNpvNgFaTWd25cwfbtm3DQw89hPz8fEiShLq6uoTrt7e3Y/369SgqKkJmZiaqq6tx8uTJ1DWYTG0o/a2uri7qPk6SJFy7di21DSdTamxsxJNPPon77rsPmZmZGDduHGpqatDc3JxQfe7fRi/G/mQkxv5kJMb+ZCTG/mQkxv7mY0l3A0aDNWvWoL6+Hhs2bEB5eTnq6urw8MMP49ChQ5g/f37Menfu3EF1dTU6OjqwdetWqKqK2tpaLFiwAE1NTSgoKDBwK8gsku1vPjt37kRWVpZ/XFGUVDaXTO7WrVt4/vnnMW7cOMyYMQPvvfdewnU9Hg+WLFmCjz76CJs3b0ZhYSF27NiBhQsX4sSJEygvL09dw8mUhtLffJ5//nnce++9IWW5ubnD00C6q2zfvh1HjhzBihUrMH36dFy7dg0vv/wyZs+ejQ8//BBTp06NWZf7t9GNsT8ZibE/GYmxPxmJsT8ZibG/CQlKqYaGBgFAvPjii/6ynp4e8bnPfU7MnTs3bt3t27cLAOLYsWP+sjNnzghFUcSWLVtS1mYyr6H0t23btgkA4ubNm6luJt1Fent7RWtrqxBCiMbGRgFA7N69O6G6+/btEwDE/v37/WU3btwQubm54tFHH01Fc8nkhtLfdu/eLQCIxsbGFLaQ7iZHjhwRTqczpKy5uVlomiYee+yxuHW5fxu9GPuTkRj7k9EY+5ORGPuTkRj7mw8fP5Vi9fX1UBQF69ev95fZbDasXbsWR48eRUtLS9y6FRUVqKio8JdNnjwZixYtwuuvv57SdpM5DaW/+Qgh0NnZCSFEKptKdwlN0zB27Nik6tbX12PMmDFYtmyZv6yoqAg1NTX4wx/+AKfTOVzNpLvEUPpbsK6uLrjd7mFoEd3N5s2bB6vVGlJWXl6O++67D2fOnIlbl/u30YuxPxmJsT8ZjbE/GYmxPxmJsb/5MKmRYqdOncLEiRPhcDhCyisrKwEATU1NUet5PB6cPn0ac+bMiZhWWVmJ8+fPo6ura9jbS+aWbH8LVlZWhpycHGRnZ2PVqlW4fv16KppKhFOnTmH27NmQ5dCvosrKSnR3dyf87EqiwaiurobD4YDdbseXv/xlnDt3Lt1NIhMRQuD69esoLCyMOx/3b6MXY38yEmN/MhN+N1I6MPanoWDsP7IxqZFira2tKC4ujij3lV29ejVqvba2NjidzqTq0uiVbH8DgLy8PDz55JP41a9+hfr6eqxbtw779u3D/fffj87OzpS1mUavofRXosGy2+1Ys2YNfvnLX+LNN9/E008/jXfffRfz5s1L6EpWIgB47bXXcOXKFaxcuTLufNy/jV6M/clIjP3JTPjdSEZi7E/DgbH/yMYfCk+xnp4eaJoWUW6z2fzTY9UDkFRdGr2S7W8A8N3vfjdk/JFHHkFlZSUee+wx7NixA88+++zwNpZGvaH0V6LBqqmpQU1NjX/8q1/9Kh588EE88MAD+MlPfoJXXnklja0jMzh79iy+9a1vYe7cuXj88cfjzsv92+jF2J+MxNifzITfjWQkxv40VIz9Rz7eqZFiGRkZUZ+d1tvb658eqx6ApOrS6JVsf4vla1/7GsaOHYt33nlnWNpHFGy4+yvRYM2fPx9VVVXcx9GArl27hiVLliAnJ8f/DPt4uH8bvRj7k5EY+5OZ8LuR0o2xPyWKsb85MKmRYsXFxWhtbY0o95WVlJRErZefnw9N05KqS6NXsv0tntLSUrS1tQ25bUThUtFfiQaL+zgaSEdHBxYvXoz29na8/fbbCe2buH8bvRj7k5EY+5OZ8LuRRgLu42ggjP3Ng0mNFJs5cyaam5sjnkva0NDgnx6NLMuYNm0ajh8/HjGtoaEBZWVlyM7OHvb2krkl299iEULg0qVLKCoqGq4mEvnNnDkTJ0+ehMfjCSlvaGiA3W7HxIkT09QyGk0uXLjAfRzF1Nvbi6VLl6K5uRl//OMfMWXKlITqcf82ejH2JyMx9icz4XcjjQSM/Skexv7mwqRGii1fvhxutxu7du3ylzmdTuzevRtVVVUoLS0FAFy+fBlnz56NqNvY2BhycPPxxx/j4MGDWLFihTEbQKYylP528+bNiOXt3LkTN2/exEMPPZTahtNdr7W1FWfPnoXL5fKXLV++HNevX8cbb7zhL7t16xb279+PpUuXRn0mJVEiovW3aPu4t956CydOnOA+jqJyu91YuXIljh49iv3792Pu3LlR5+P+jYIx9icjMfankYrfjWQkxv40HBj7m48khBDpbsTdrqamBm+++SY2btyICRMmYM+ePTh27BjeffddPPDAAwCAhQsX4vDhwwj+c3R1dWHWrFno6urCpk2boKoqXnrpJbjdbjQ1NTG7TFEl29/sdjtWrlyJadOmwWaz4f3338fevXsxY8YMHDlyBHa7PV2bRCPcyy+/jPb2dly9ehU7d+7EsmXLMGvWLADAt7/9beTk5GDNmjXYs2cPLl68iM9+9rMA9KBh/vz5+Mtf/oLNmzejsLAQO3bswOXLl9HY2IhJkyalcatopEq2v5WXl2PWrFmYM2cOcnJycPLkSfzmN79BcXExGhsbMWbMmDRuFY1EGzZswM9//nMsXbo05IcmfVatWgUA3L9RBMb+ZCTG/mQ0xv5kJMb+ZBTG/iYkKOV6enrEpk2bxNixY4WmaaKiokK8/fbbIfMsWLBARPtztLS0iOXLlwuHwyGysrLEl770JXHu3Dmjmk4mlGx/W7dunZgyZYrIzs4WqqqKCRMmiGeeeUZ0dnYa2XwyofHjxwsAUYeLFy8KIYR4/PHHQ8Z92traxNq1a0VBQYGw2+1iwYIForGx0fiNINNItr8999xzYubMmSInJ0eoqirGjRsnvvnNb4pr166lZ0NoxPN9V8YafLh/o3CM/clIjP3JaIz9yUiM/ckojP3Nh3dqEBERERERERERERGRKfA3NYiIiIiIiIiIiIiIyBSY1CAiIiIiIiIiIiIiIlNgUoOIiIiIiIiIiIiIiEyBSQ0iIiIiIiIiIiIiIjIFJjWIiIiIiIiIiIiIiMgUmNQgIiIiIiIiIiIiIiJTYFKDiIiIiIiIiIiIiIhMgUkNIiIiIiIiIiIiIiIyBSY1iIiIiIiIiIiIiIjIFJjUICIiIiIiIiIiIiIiU2BSg4iIiIiIiIiIiIiITIFJDSIiIiIiIiIiIiIiMgUmNYiIiIiIiIiIiIiIyBT+H2I+/VCnYERbAAAAAElFTkSuQmCC",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "crested.pl.hist.distribution(\n",
- " adata,\n",
- " target=\"groundtruth\",\n",
- " class_names=[\"Astro\", \"Endo\"],\n",
- " log_transform=True,\n",
- " share_y=True,\n",
- " title=\"Ground Truth Distribution\",\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T16:20:26.880627+0200 INFO Plotting histograms for target: checkpoint_15, classes: ['Astro', 'Endo']\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABjUAAAJRCAYAAAANqTVWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSjElEQVR4nOzdeXhU9dn/8c+ZJZOFhEW2IKusKiJaBdxBhQLWqojan1Kk2kofrdUqaq21irVaRVFbaq2PymK1WCk+bqggi4q7FbVVBGUViMoesk1mzjm/P2ZJYhKYTE4yZ2ber+viojkzZ+Yb8pWew2fu+zZs27YFAAAAAAAAAADgcp5ULwAAAAAAAAAAACARhBoAAAAAAAAAACAtEGoAAAAAAAAAAIC0QKgBAAAAAAAAAADSAqEGAAAAAAAAAABIC4QaAAAAAAAAAAAgLRBqAAAAAAAAAACAtECoAQAAAAAAAAAA0gKhBgAAAAAAAAAASAuEGgAAAGgxvXv3lmEYdX4FAgH17NlTF1xwgd54441ULzHu1ltvlWEYuvXWW+scnzNnjgzD0JQpU1p8DRs3bpRhGOrdu3eLv1drif351f6Vk5Ojjh076rDDDtOFF16ohx9+WKWlpY2+xooVK2QYhkaOHNl6C9+PxvaE29YpZeaeAgAAQHYj1AAAAECLO+GEE3TxxRfr4osv1rhx42RZlv75z3/qlFNO0cyZM1O9vFYTC3k2btyY6qW0uoKCgvge+NGPfqQTTjhBXq9XTz31lKZOnapu3brpT3/6k2zbbrE1tGZA1VqyeU8BAAAgO/lSvQAAAABkvp/+9Kd1/iG5qqpKU6dO1bx583T99dfrBz/4gQYMGJC6Be7HOeecoxEjRqht27Yt/l4HH3ywVq9eLb/f3+Lv1do6duyoOXPm1DteUlKiu+++Ww888ICuuuoqbdmyRXfffXed5wwbNkyrV69Wfn5+K612/1pzTzRXJu8pAAAAZCcqNQAAANDqcnNz9Ze//EUFBQUyTVMLFy5M9ZIa1bZtWw0aNEjFxcUt/l5+v1+DBg1S3759W/y93KK4uFj33XefZs2aJUmaMWNGvbZk+fn5GjRokHr27JmKJdbTmnuiubJxTwEAACCzEWoAAAAgJdq0aaOBAwdKUp3WObG5C5I0e/ZsHXfccWrbtm29Fjvbtm3TNddco0MPPVT5+fkqLCzUscceq1mzZikcDjf4npWVlbr11lvVv39/BQIBFRcX6+KLL9bmzZsbXeeBWhZt3bpV1113nY444ggVFhaqoKBAAwYM0JQpU/TWW2/VeY1NmzZJkvr06VNnxsSKFSvifw77m3+wZcsWXXnllerfv79yc3PVtm1bnXDCCfrb3/4m0zT3u/by8nLdeOON6tevnwKBgLp27aqLL75YW7dubfC9Xn31VZ155pnq0qWL/H6/2rdvr/79+2vSpEl6/fXXG/3zStbll1+uY489VpLqVWrsb1bFv//9b11wwQXq3r27cnJyVFRUpEMOOUTnnnuunn322fjzevfurZ/85CeSpLlz59b586/9uiNHjoz/TN544w2deeaZ6tSpkzweT7zSJJE2VhUVFfrNb36jfv36KTc3V926ddOll17a4J93IrM4av93UXsN6bSnAAAAACfQfgoAAAApExsOHQgE6j125ZVX6sEHH9Txxx+vM844Q+vXr4//o+7rr7+us88+W7t371bv3r01evRoBYNBvffee7ryyiv1/PPP64UXXqjTcqeiokKnnXaa3nnnHRUUFGjMmDHKy8vTK6+8ohdffFFnnHFGk9e/dOlSTZw4UXv27FHnzp112mmnKScnRxs3btSTTz4pSTr++OPVr18/XXzxxVqwYIHKy8t17rnnqk2bNvHX6dq16wHf6/3339fYsWO1a9cu9ezZU2effbb27t2rFStW6K233tIzzzyj5557Tjk5OfXO3bt3r44//nht3rxZJ510kgYPHqy3335b8+bN02uvvaaPP/64TiuluXPnxgOAYcOGadSoUaqsrNSWLVs0f/58dezYUSeffHKT/7wOZNKkSXr//fe1YsUKhcNh+Xz7v11ZunSpxo0bp1AopCOPPFLHHXecTNPU1q1b9eKLL8o0TZ111lmSpIkTJ+qdd97Rm2++qb59++rEE0+Mv86gQYPqvfbTTz+thx56SIMGDdLpp5+uXbt2NbhPG1JdXa3TTjtNn3zyiUaOHKmjjz5aK1eu1GOPPaZFixbp9ddfV//+/ZvwJ1Nfuu0pAAAAwDE2AAAA0EJ69eplS7Jnz55d77GPP/7Y9ng8tiT7scceix+XZEuyi4qK7LfffrveeSUlJfZBBx1kG4ZhP/jgg7ZpmvHHduzYYZ966qm2JHv69Ol1zps2bZotyR40aJC9devW+PHy8nL7rLPOir/vLbfcUue82bNn25Lsiy++uM7xzZs3223btrUl2b/+9a/tYDBY5/FvvvnGfuONNxr889iwYUNDf1z2hg0bbEl2r1696hyvqqqKn/vzn//crq6ujj+2bt06u3fv3rYk+ze/+U2Da5dkf//737f37t0bf2zXrl320KFDbUn2HXfcUee8Pn362JLqrT/2fX344YcNrr8hsTV893tqyMqVK+Pr/fLLL+PHly9fbkuyTznllDrPHzVqlC3J/vvf/17vtfbs2VNv/zT2s6ztlFNOia/hL3/5y36/p+++Tmydkux+/frZmzZtij9WWVlpn3vuubYke8SIEQ2e993vr7bY635XuuwpAAAAwCm0nwIAAECr2rt3rxYtWqQJEybIsix169ZN559/fr3nTZs2TSNGjKh3/P7779fOnTt1xRVX6H/+53/k8dRc0h500EGaN2+e/H6/Zs2aJdu2JUXaTv3tb3+TJN13333q1q1b/Jz8/Hw99NBDys3NbdL3MXPmTO3du1dnnnmm7rzzznqfZu/cuXOdaoDmePrpp7Vp0yZ169ZN999/f50KlEMOOUT33HOPJOnPf/6zqqqq6p1fUFCg2bNnq6ioKH6sffv2+vWvfy0p0mqqtm+++UZt27ZtcP2dO3fWUUcd5cj39V0dO3aM/++dO3ce8PnffPONJGn8+PH1Hmvbtm2D+ydRp556qi6//PKkz7/nnnvqzADJzc3Vgw8+qPz8fL3zzjvx1mSp0tp7CgAAAHAKoQYAAABa3E9+8pN4r/927drpjDPO0Lp169S3b18tWrRIBQUF9c6ZOHFig6/14osvSpIuuOCCBh8/+OCD1b9/f23fvl1ffPGFJOnDDz/Uvn371LFjR40dO7beOV27dtWYMWOa9D29/PLLkqTLLrusSeclIzYf4Uc/+lGDLZAmTJig9u3ba9++ffr3v/9d7/FjjjmmwaHWhx56qCTVm4EwbNgw7d27V5MnT9a///1vWZblwHdxYLXfp/b8iMYMGzZMknTRRRdp5cqVjc5SSUZj+y8R7dq10w9/+MN6xzt37hzff7Gfaaq09p4CAAAAnMJMDQAAALS4E044Qf369ZMk5eTkqHPnzhoxYoTGjh3b6NyExgYbr1+/XpJ00kknHfB9t2/frgEDBmjLli37fU0pMmi5KWIDmhuax+C02D8QN7ZGwzDUp08f7d69u8F/TK5dMVBb7FP23/0k/oMPPqgf/OAHevzxx/X444/Hh7Cfeuqp+vGPf9zo6zXXjh074v+7Q4cOB3z+nXfeqU8++UQvvfSSXnrpJeXl5enoo4/WyJEjddFFF8X/gT0Z+9sriZzbWCgT+xnG9mSqtPaeAgAAAJxCqAEAAIAW99Of/lRTpkxp0jl5eXkNHo99mn/ixIkNVnjUdtBBBzXpPTNV7RZdiTj00EO1Zs0aLV68WMuWLdNbb72lN954Q8uWLdNtt92mRx99VJMmTXJ8nR9++KEkqbCwMKFQoWvXrvrggw/02muv6dVXX9Wbb76pd999V2+++abuuOMO3XnnnbrhhhuSWktj+88psdZoiWitSpmmaOqeAgAAAJxCqAEAAIC00qNHD33xxRe64YYbdMwxxyR0zsEHHyxJ2rhxY6PP2d9jDenZs6fWrFmjzz//PF6F0lJi649VqTRkw4YNdZ7bXD6fT+PHj4/PqygtLdXMmTM1ffp0TZ06Veecc84BQ6WmeuKJJyRF5ll4vd6EzjEMQyNHjtTIkSMlRSoE5syZoyuuuEK/+c1vNHHiRPXt29fRdR5IIvuse/fu8WOxeSz79u1r8JxYVZCTUrGnAAAAACfw8RoAAACklXHjxkmS/vnPfyZ8zve+9z21adNGO3bs0OLFi+s9/s033zR4fH9isxH+93//N+FzYv943dTZD7F/sH/qqacabOvzzDPPaPfu3SosLNT3vve9Jr12ooqKinTrrbeqXbt2qqio0Nq1ax19/QcffFDvv/++JOn6669P+nVyc3P185//XEOGDJFlWfrkk0/ijyX7599Ue/bs0fPPP1/v+Pbt2+OzWGI/U6luwFBdXV3vvNgcmYak854CAAAAkkGoAQAAgLRy3XXXqV27dpo5c6buvffeBv8ReMOGDfr73/8e/zovLy8+0PtXv/qVSkpK4o9VVlbqf/7nf1RZWdmkdVxzzTUqLCzUc889p9/+9rcKhUJ1Hv/222+1cuXKOsdin87/9NNPm/Re5513nnr27Klt27bpmmuuqfMP2Bs2bNC1114rSbryyiuVm5vbpNf+roqKCs2cOVPbt2+v99gbb7yhPXv2yOv11qk0aI6vv/5a11xzjX7xi19Ikm688UYdf/zxCZ17zz33aPPmzfWOf/755/Eh8b169Yofj635s88+a+6yD+jaa6+tMzcjGAzqiiuuUHl5uYYNG6YTTjgh/livXr3Uv39/7dmzR3fddVed11mxYoV+97vfNfo+6bCnAAAAACfRfgoAAABppXv37nr22Wd17rnnatq0abr77rs1ePBgFRcXa+/evVq9erXWrVun4cOH15n7cNttt2nlypV67733NGDAAI0aNUq5ubl64403FAqFNHnyZM2bNy/hdfTs2VMLFizQxIkT9Yc//EGPPPKIjjvuOPn9fm3atEmrVq3ShRdeqBNPPDF+zrnnnqvly5dr0qRJGjNmjNq3by8pEtQMHDiw0fcKBAJasGCBxo4dq7/+9a9atGiRRowYoX379mnZsmWqqqrS97//fd1yyy1J/InWVV1drWuvvVbXXXedjjjiCPXv319+v18bN27UO++8I0m66aab1KlTpya97o4dO+JzVSzL0r59+7Ru3Tp9+umnsixLbdq00Z133qkrrrgi4de8/fbbdd1112nQoEE69NBDlZeXp23btmnlypUKh8OaPHmyjj766PjzR4wYoW7dumnVqlU6+uijdcQRR8jv92vgwIG67rrrmvT97M9xxx0ny7I0cOBAnXrqqcrPz9fKlSu1bds2de7cucF99sc//lETJ07U7373Oy1cuFD9+/fX+vXr9eGHH+rmm2/Wbbfd1uB7pcOeAgAAAJxEqAEAAIC0c/LJJ+vTTz/VrFmz9OKLL+r9999XMBhU586d1bNnT02aNEnnnntunXMKCgq0fPly/fGPf9STTz6pV155Re3bt9fpp5+u22+/XXPmzGnyOsaMGaP//ve/mjlzpl5++WW9/PLL8vl86tatm3784x/rZz/7WZ3n/8///I/27dunv//971q0aFG87c+kSZP2+w/QknTsscfqo48+0l133aWXXnpJzzzzjAKBgI466ihNnjxZP/3pT+XzNf/yvk2bNnrooYf02muvadWqVVqyZImqq6vVrVs3TZgwQZdffrlOPfXUJr9ueXm55s6dK0ny+/0qLCxUly5ddP7552vUqFH60Y9+pKKioia95l/+8hctXbpU77//vl577TWVl5era9euGj16tC677DKdddZZdZ6fk5OjV155RTfddJPefvttffzxx7IsS6eccoqjoUZOTo5efPFFTZ8+XQsWLNDWrVvVvn17TZkyRbfddpt69OhR75wJEybohRde0B133KFVq1bpiy++0BFHHKH58+fr/PPPbzTUSIc9BQAAADjJsG3bTvUiAAAAAAAAAAAADoSZGgAAAAAAAAAAIC0QagAAAAAAAAAAgLRAqAEAAAAAAAAAANICoQYAAAAAAAAAAEgLhBoAAAAAAAAAACAtEGoAAAAAAAAAAIC0QKgBAAAAAAAAAADSAqEGAAAAAAAAAABIC4QaAAAAAAAAAAAgLRBqAAAAAAAAAACAtECoAQAAAAAAAAAA0gKhBgAAAAAAAAAASAuEGgAAAAAAAAAAIC0QagAAAAAAAAAAgLRAqAEAAAAAAAAAANICoQYAAAAAAAAAAEgLhBoAAAAAAAAAACAtEGoAAAAAAAAAAIC0QKgBAAAAAAAAAADSAqEGAAAAAAAAAABIC4QaAAAAAAAAAAAgLRBqAAAAAAAAIONMmTJFvXv3TvUyAAAOI9QAALjKgw8+KMMwNHz48KTO/+yzz3Trrbdq48aNzi4MAAAAgCPmzJkjwzAa/fXOO++keokAABfzpXoBAADU9sQTT6h3795677339OWXX6pfv35NOv+zzz7T9OnTNXLkSD6VBQAAALjYbbfdpj59+tQ73tR7AABAdiHUAAC4xoYNG/TWW29p4cKFmjp1qp544gndcsstLfZ+tm2rqqpKeXl5LfYeAAAAABo2btw4HXPMMaleBgAgzdB+CgDgGk888YTat2+vM844QxMnTtQTTzxR7znz58/X9773PRUWFqqoqEhHHHGEHnjgAUmRMvbzzjtPkjRq1Kh4+fqKFSskSb1799YPfvADvfLKKzrmmGOUl5env/3tb5Kk9evX67zzzlOHDh2Un5+vESNG6MUXX2ydbxwAAABAHRs3bpRhGLrnnnv08MMPq2/fvgoEAjr22GP1/vvv13v+//3f/2nw4MHKzc3V4MGD9cwzzzT4uuXl5br22mvVo0cPBQIBDRw4UPfcc49s227pbwkA4BDD5m9tAIBLHHrooTrhhBP0yCOP6I033tDJJ5+s9957T8cee6wkacmSJRozZoxOO+00TZgwQZK0evVqffPNN/rnP/+p9evX64EHHtCf/vQn/eY3v9Ghhx4qSRo9erS6dOmi3r17y+/3a+fOnZo6dap69+6tgQMH6tBDD9WRRx6piooK/fKXv9RBBx2kuXPn6j//+Y8WLFigc845J2V/JgAAAECmmTNnjn7yk5/o1Vdf1ZFHHlnnMcMwdNBBB2njxo3q06ePjjrqKO3bt08/+9nPZBiG7r77buXm5mr9+vXy+/2SpMWLF2vcuHE67LDDdMkll2jnzp2aNWuWunfvrrKysvi8Pdu2dfrpp2v58uW69NJLNXToUL3yyit6/vnndfXVV+u+++5r7T8KAEASCDUAAK7w73//W8ccc4yWLFmi008/XbZtq2fPnjr33HN1//33S5KuvvpqzZ49W7t27ZLX623wdRYsWKDzzjtPy5cv18iRI+s81rt3b23atEkvv/yyvv/978eP/+pXv9L999+vN954QyeeeKIkqaysTEOGDJFt21q3bp08HoobAQAAACfEQo2GBAIBVVVVxUONgw46SF988YXat28vSXruued01lln6fnnn9cPfvADSdJRRx2lb775RqtXr1bbtm0l1XwgqlevXvFQ49lnn9XZZ5+t22+/XTfddFP8Pc877zz961//0hdffKG+ffu24HcOAHAC/0IDAHCFJ554Ql26dNGoUaMkRT6hdcEFF2j+/PkyTVOS1K5dO5WXl2vJkiVJv0+fPn3qBBqStGjRIg0bNiweaEhSmzZtdNlll2njxo367LPPkn4/AAAAAA37y1/+oiVLltT59dJLL9V5zgUXXBAPNCTppJNOkhRpHytJJSUl+uijj3TxxRfHAw0pUq192GGH1XmtRYsWyev16pe//GWd49dee61s26733gAAdyLUqOX111/XmWeeqW7duskwDP3f//1fk1/Dtm3dc889GjBggAKBgA4++GD94Q9/cH6xAJBBTNPU/PnzNWrUKG3YsEFffvmlvvzySw0fPlzffPONli5dKkm6/PLLNWDAAI0bN07du3fXJZdcopdffrlJ79WnT596xzZt2qSBAwfWOx5rX7Vp06YkvisAAAAA+zNs2DCdfvrpdX7FPuQU07NnzzpfxwKO3bt3S6q5Vu/fv3+91//uNf6mTZvUrVs3FRYW1jnOdT8ApBdCjVrKy8t15JFH6i9/+UvSr3HVVVfpkUce0T333KPPP/9czz33nIYNG+bgKgEg8yxbtkwlJSWaP3+++vfvH/91/vnnS1J8YHjnzp310Ucf6bnnntMPf/hDLV++XOPGjdPFF1+c8Hvl5eW1yPcAAAAAwHmNtZ2lmzoAZC9fqhfgJuPGjdO4ceMafTwYDOqmm27SP/7xD+3Zs0eDBw/WXXfdFe/Zvnr1av31r3/Vf//73/inARr6RDAAoK4nnnhCnTt3bjBUXrhwoZ555hk99NBDysvLU05Ojs4880ydeeaZsixLl19+uf72t7/p5ptvVr9+/WQYRpPfv1evXlqzZk29459//nn8cQAAAADuE7tW/+KLL+o99t1r/F69eunVV1/Vvn376lRrcN0PAOmFSo0m+MUvfqG3335b8+fP1yeffKLzzjtPY8eOjf8f5/PPP69DDjlEL7zwgvr06aPevXvrpz/9qXbt2pXilQOAe1VWVmrhwoX6wQ9+oIkTJ9b79Ytf/EL79u3Tc889p507d9Y51+PxaMiQIZIiwbMkFRQUSJL27NmT8BrGjx+v9957T2+//Xb8WHl5uR5++GH17t27Xi9eAAAAAO5QXFysoUOHau7cudq7d2/8+JIlS+rNxhs/frxM09SsWbPqHL/vvvtkGMZ+P+gKAHAPKjUStHnzZs2ePVubN29Wt27dJEnTpk3Tyy+/rNmzZ+uOO+7Q+vXrtWnTJj399NOaN2+eTNPUr371K02cOFHLli1L8XcAAO703HPPad++ffrhD3/Y4OMjRoxQp06d9MQTT2j+/PnatWuXTj31VHXv3l2bNm3Sn//8Zw0dOjTeB3fo0KHyer266667tHfvXgUCAZ166qnq3Llzo2v49a9/rX/84x8aN26cfvnLX6pDhw6aO3euNmzYoH/961/yePgMAAAAAOC0l156KV4lUdvxxx/fpGvwO++8U2eccYZOPPFEXXLJJdq1a5f+/Oc/6/DDD1dZWVn8eWeeeaZGjRqlm266SRs3btSRRx6pxYsX69lnn9XVV1+tvn37OvJ9AQBaFqFGgv7zn//INE0NGDCgzvFgMKiDDjpIkmRZloLBoObNmxd/3qOPPqrvfe97WrNmTYNDaAEg2z3xxBPKzc3V6NGjG3zc4/HojDPO0BNPPKF//OMfevjhh/Xggw9qz5496tq1qy644ALdeuut8Zuerl276qGHHtKdd96pSy+9VKZpavny5fsNNbp06aK33npLN9xwg/785z+rqqpKQ4YM0fPPP68zzjijRb5vAAAAINv97ne/a/D47Nmz462+EzF27Fg9/fTT+u1vf6sbb7xRffv21ezZs/Xss89qxYoV8ed5PB4999xz+t3vfqennnpKs2fPVu/evTVjxgxde+21zfxuAACtxbCZrNQgwzD0zDPP6Oyzz5YkPfXUU7rooov06aef1htS1aZNG3Xt2lW33HKL7rjjDoVCofhjlZWVys/P1+LFixv9BzsAAAAAAAAAAHBgVGok6KijjpJpmvr222910kknNficE044QeFwWOvWrYuXLK5du1YSw6YAAAAAAAAAAGguKjVqKSsr05dffikpEmLMnDlTo0aNUocOHdSzZ09NmjRJb775pu69914dddRR2r59u5YuXaohQ4bojDPOkGVZOvbYY9WmTRvdf//9sixLV1xxhYqKirR48eIUf3cAAAAAAAAAAKQ3Qo1aVqxYoVGjRtU7fvHFF2vOnDkKhUK6/fbbNW/ePG3dulUdO3bUiBEjNH36dB1xxBGSpG3btunKK6/U4sWLVVBQoHHjxunee+9Vhw4dWvvbAQAAAAAAAAAgoxBqAAAAAAAAAACAtOBJ9QIAAAAAAAAAAAASQagBAAAAAAAAAADSgi/VC3ADy7K0bds2FRYWyjCMVC8HAAAAQJRt29q3b5+6desmj6f5n8ni2h8AAABwp0Sv/Qk1FBnu3aNHj1QvAwAAAEAjvvrqK3Xv3r3Zr8O1PwAAAOBuB7r2J9SQVFhYKCnyh1VUVJSydYRCIS1evFhjxoyR3+9P2TqQ3thHcAp7CU5gH8Ep7KXsVVpaqh49esSv2ZuLa39kEvYRnMJeghPYR3AKeyl7JXrtT6ghxcvOi4qKUn5jk5+fr6KiIv6DRdLYR3AKewlOYB/BKewlONUqimt/ZBL2EZzCXoIT2EdwCnsJB7r2Z1A4AAAAAAAAAABIC4QaAAAAAAAAAAAgLRBqAAAAAAAAAACAtECoAQAAAAAAAAAA0gKhBgAAAAAAAAAASAuEGgAAAAAAAAAAIC0QagAAAAAAAAAAgLRAqAEAAAAAAAAAANICoQYAAAAAAAAAAEgLhBoAAAAAAAAAACAtEGoAAAAAAAAAAIC0QKgBAAAAAAAAAADSAqEGAAAAAAAAAABIC4QaAAAAAAAAAAAgLRBqAAAAAAAAAACAtECoAQAAAAAAAAAA0gKhBgAAAAAAAAAASAuEGgAAAAAAAAAAIC0QagAAAAAAAAAAgLTgS/UCAAAAAAAN21tt6tNdQRX6PTrioNxULwcAAABIOUINAAAAAHCZkoqQVpZUaH1pSLYkjyEd3iEgj2GkemkAAABAShFqAAAAAIDLvLipTDuqzPjXli2FLFsBL6EGAAAAshszNQAAAADAZapMW5J0ft+i+LGQlarVAAAAAO5BqAEAAAAALmNakVCjyO9RjidSnRGKHgMAAACyGaEGAAAAALhMtFBDXo8hf/SujVADAAAAINQAAAAAANcx7UiA4TEkP5UaAAAAQByhBgAAAAC4iG3bNZUahlETapiEGgAAAAChBgAAAAC4SO3owlerUqOaSg0AAACAUAMAAAAA3KR2QYandqUGoQYAAABAqAEAAAAAbmLWCi+8ntozNVK1IgAAAMA9CDUAAAAAwEXqVGpI8kfv2qjUAAAAAAg1AAAAAMBVTDsSXngNyTAM+b20nwIAAABiCDUAAAAAwEVilRpeIxJmMFMDAAAAqEGoAQAAAAAuEqvUiGYZhBoAAABALYQaAAAAAOAiZnQguI9KDQAAAKAeQg0AAAAAcBErVqkRvVurCTVStSIAAADAPQg1AAAAAMBFamZqRH7PoVIDAAAAiCPUAAAAAAAXCUcrNWKDwn3RuzZCDQAAAIBQAwAAAABcxfpOpQYzNQAAAIAahBoAAAAA4CLmdyo1Yu2nqk1CDQAAAIBQAwAAAABcxIwOBPdQqQEAAADUQ6gBAAAAAC4Sq9TwRcMMQg0AAACgBqEGAAAAALiI2chMjbCVogUBAAAALkKoAQAAAAAuEivI8BixSo3I19WWLdumWgMAAADZjVADAAAAAFwkHB8UHvk6Vqlhq6aKAwAAAMhWhBoAAAAA4CKmFQs1opUasXRDzNUAAAAACDUAAAAAwEWs78zU8BqGosUahBoAAADIeoQaAAAAAOAi8UHhnpoKjVgLKkINAAAAZDtCDQAAAABwEfM7MzUkKSceaqRiRQAAAIB7EGoAAAAAgIvEKzWMmlTDF71zo1IDAAAA2Y5QAwAAAABcpKFKDdpPAQAAABGEGgAAAADgIma0xZSnVqVGrP1UNaEGAAAAshyhBgAAAAC4yH4rNUxCDQAAAGS3lIYaZWVluuWWWzR27Fh16NBBhmFozpw5CZ27dOlSXXLJJRowYIDy8/N1yCGH6Kc//alKSkpadtEAAAAA0IJixRheT02qEQs1wjahBgAAALKbL5VvvmPHDt12223q2bOnjjzySK1YsSLhc2+44Qbt2rVL5513nvr376/169dr1qxZeuGFF/TRRx+pa9euLbdwAAAAAGgh+6vUqKZSAwAAAFkupaFGcXGxSkpK1LVrV33wwQc69thjEz535syZOvHEE+Xx1BSbjB07VqeccopmzZql22+/vSWWDAAAAAAtKpZbeI36lRohKxUrAgAAANwjpaFGIBBIuqLi5JNPbvBYhw4dtHr16uYuDQAAAABSouFKjcjvIQaFAwAAIMtl1KDwsrIylZWVqWPHjqleCgAAAAAkxYxWYzRcqUGoAQAAgOyW0koNp91///2qrq7WBRdcsN/nBYNBBYPB+NelpaWSpFAopFAo1KJr3J/Ye6dyDUh/7CM4hb0EJ7CP4BT2UvZq7s88Ha/9w1Yk1bAtM/64R5FjwbDJfweI4+9GOIW9BCewj+AU9lL2SvRnbti27YqP+sRmasyePVtTpkxp8vmvv/66TjvtNE2YMEFPPfXUfp976623avr06fWOP/nkk8rPz2/yewMAAABoGRUVFbrwwgu1d+9eFRUVNfn8dLz239BliKoCheq+/TMVVu6WJO1qU6xvOhyiwvId6r5zTYpXCAAAADgv0Wv/jAg1Pv/8c51wwgnq2bOnXn/9dRUWFu73+Q19WqtHjx7asWNHUjdKTgmFQlqyZIlGjx4tv9+fsnUgvbGP4BT2EpzAPoJT2EvZq7S0VB07dkw61EjHa/95X+7T9ipL5/bKV+/CyGP/2VWtxdsqdUihT+f0KkjFkuFC/N0Ip7CX4AT2EZzCXspeiV77p337qa+++kpjxoxR27ZttWjRogMGGlJkQHkgEKh33O/3u+I/FLesA+mNfQSnsJfgBPYRnMJeyj7N/Xmn47W/rcj8jBy/L/5Ybk6k/VTYNlyxbriLW/Yz0h97CU5gH8Ep7KXsk+jPO61DjZ07d2rMmDEKBoNaunSpiouLU70kAAAAAGgWM1pMX3dQeOR3BoUDAAAg23lSvYBElJSU6PPPP68zKKS8vFzjx4/X1q1btWjRIvXv3z+FKwQAAAAAZ5iRogx5a92t+T2RgINQAwAAANku5ZUas2bN0p49e7Rt2zZJ0vPPP68tW7ZIkq688kq1bdtWN954o+bOnasNGzaod+/ekqSLLrpI7733ni655BKtXr1aq1evjr9mmzZtdPbZZ7f2twIAAAAAzdZQpUYOoQYAAAAgyQWhxj333KNNmzbFv164cKEWLlwoSZo0aZLatm3b4HkfffSRJOmxxx7TY489VuexXr16EWoAAAAASEtmNLfw1mQaVGoAAAAAUSkPNTZu3HjA58yZM0dz5sxp8nkAAAAAkG4anqlBqAEAAABIaTJTAwAAAACyRaxSw9NgpYZk2wQbAAAAyF6EGgAAAADgErZty4q3n6pfqSFFgg0AAAAgWxFqAAAAAIBL1O4u5a11t+av9b9pQQUAAIBsRqgBAAAAAC5h1g41alVqGIYhX/RLQg0AAABkM0INAAAAAHAJs9a8DK9R9zG/l2HhAAAAAKEGAAAAALhErFLDkOQx6qYafoNQAwAAACDUAAAAAACXiFVqfLdKQ6JSAwAAAJAINQAAAADANUwr8rvXqJ9q+D2xUKM1VwQAAAC4C6EGAAAAALhErFLD08Cdmj96jEoNAAAAZDNCDQAAAABwidhMDV8DlRo5HtpPAQAAAIQaAAAAAOASVqxSo6GZGoQaAAAAAKEGAAAAALhFrFKjoZkaPkINAAAAgFADAAAAANwiNlPD20ClRqz9VDWhBgAAALIYoQYAAAAAuIRpRX5vqFIj3n7KJNQAAABA9iLUAAAAAACXiFdqNHCnFgs1wmQaAAAAyGKEGgAAAADgErEijIYHhUd+r6ZSAwAAAFmMUAMAAAAAXCJWqeHbX/spZmoAAAAgixFqAAAAAIBL7L9Sg1ADAAAAINQAAAAAAJewYjM1qNQAAAAAGkSoAQAAAAAuYVqR371UagAAAAANItQAAAAAAJeIzdTwNtB/yhe9ewuTaQAAACCLEWoAAAAAgEvEZmo0VKnhiwYdYSo1AAAAkMUINQAAAADAJcz9zNTwGYQaAAAAAKEGAAAAALjE/is1Ir/TfgoAAADZjFADAAAAAFzCtPZTqUH7KQAAAIBQAwAAAADcIlap4WngTi3Wfsq0Jdsm2AAAAEB2ItQAAAAAAJew4u2nGqrUqPnftKACAABAtiLUAAAAAACXCMcHhdd/LNZ+SqIFFQAAALIXoQYAAAAAuMT+KjW8hqHY0TDtpwAAAJClCDUAAAAAwCXM/VRqSDUtqMJWKy0IAAAAcBlCDQAAAABwCTMaVjRUqSHVtKCi/RQAAACyFaEGAAAAALhEvFKjkTs1XzTsoP0UAAAAshWhBgAAAAC4hLmfmRoS7acAAAAAQg0AAAAAcAkrWoHhaWymhkH7KQAAAGQ3Qg0AAAAAcInwASs1aD8FAACA7EaoAQAAAAAuYUYrMLyNVWrQfgoAAABZjlADAAAAAFzCOlClBu2nAAAAkOUINQAAAADAJcxoWylvI3dqtJ8CAABAtiPUAAAAAACXMA9YqRH5nfZTAAAAyFaEGgAAAADgEvFKjUZnatB+CgAAANmNUAMAAAAAXOKAlRq0nwIAAECWI9QAAAAAAJcwoxUYnsYqNWg/BQAAgCxHqAEAAAAALhGv1GBQOAAAANAgQg0AAAAAcAHLthWLKg7YfoqZGgAAAMhShBoAAAAA4AK1c4pGB4XTfgoAAABZjlADAAAAAFzArNVSikHhAAAAQMMINQAAAADABcxEKjVoPwUAAIAsR6gBAAAAAC4Qq9TwSDIaq9Sg/RQAAACyHKEGAAAAALiAGQ0qvPu5S4tVapi0nwIAAECWItQAAAAAABeIV2o0UqUhSb7oYyHaTwEAACBLEWoAAAAAgAvEZmo0Nk9Dknyeus8FAAAAsg2hBgAAAAC4gBUPNfZTqeGhUgMAAADZjVADAAAAAFwg1n5qv5Ua0cDDZFA4AAAAshShBgAAAAC4QM2g8P1VakR+DzEoHAAAAFmKUAMAAAAAXCChSg1PrFKDUAMAAADZiVADAAAAAFzATGSmRvSxsC3ZVGsAAAAgCxFqAAAAAIALJFapUfv5LbwgAAAAwIVSHmqUlZXplltu0dixY9WhQwcZhqE5c+YkfP6ePXt02WWXqVOnTiooKNCoUaP04YcfttyCAQAAAKAFxEIKz/4qNWrN2wjTggoAAABZKOWhxo4dO3Tbbbdp9erVOvLII5t0rmVZOuOMM/Tkk0/qF7/4he6++259++23GjlypL744osWWjEAAAAAOC82J2N/lRoeSbGHw2QaAAAAyEK+VC+guLhYJSUl6tq1qz744AMde+yxCZ+7YMECvfXWW3r66ac1ceJESdL555+vAQMG6JZbbtGTTz7ZUssGAAAAAEfFCi+8nsZTDcMw5PNIIYtKDQAAAGSnlFdqBAIBde3aNalzFyxYoC5dumjChAnxY506ddL555+vZ599VsFg0KllAgAAAECLSmSmhlRrWDihBgAAALJQykON5li1apWOPvpoeTx1v41hw4apoqJCa9euTdHKAAAAAKBpYjM1vPuZqSHVzNWg/RQAAACyUcrbTzVHSUmJTj755HrHi4uLJUnbtm3TEUccUe/xYDBYp4qjtLRUkhQKhRQKhVpotQcWe+9UrgHpj30Ep7CX4AT2EZzCXspezf2Zp9O1f3XYlCQZtrXftcUqOaqqQwr5STayGX83winsJTiBfQSnsJeyV6I/87QONSorKxUIBOodz83NjT/ekDvvvFPTp0+vd3zx4sXKz893dpFJWLJkSaqXgAzAPoJT2EtwAvsITmEvZZ+KiopmnZ9O1/7bi7pL7Xpp61dfadEn6xo9p7LrUCmnQG+9864KgntbYZVwO/5uhFPYS3AC+whOYS9ln0Sv/dM61MjLy2twbkZVVVX88YbceOONuuaaa+Jfl5aWqkePHhozZoyKiopaZrEJCIVCWrJkiUaPHi2/35+ydSC9sY/gFPYSnMA+glPYS9krVlmRrHS69n/zmyrt2B5U7149ddpxAxs994l1Zfq60tTRxw5T3yL+e8hm/N0Ip7CX4AT2EZzCXspeiV77p3WoUVxcrJKSknrHY8e6devW4HmBQKDBCg+/3++K/1Dcsg6kN/YRnMJeghPYR3AKeyn7NPfnnU7X/rZRHTnm9ex3bf5Y/ymP1xXfA1LPLfsZ6Y+9BCewj+AU9lL2SfTnndaDwocOHaoPP/xQlmXVOf7uu+8qPz9fAwYMSNHKAAAAAKBpTDsyHyM2CLwxPiM2KJx5GgAAAMg+aRNqlJSU6PPPP68zLGTixIn65ptvtHDhwvixHTt26Omnn9aZZ57Z4CeyAAAAAMCNrGhGcYBMIx56hK39Pw8AAADIRK5oPzVr1izt2bNH27ZtkyQ9//zz2rJliyTpyiuvVNu2bXXjjTdq7ty52rBhg3r37i0pEmqMGDFCP/nJT/TZZ5+pY8eOevDBB2WaZoPDAAEAAADArWKVGl7jQJUakd/DFpUaAAAAyD6uCDXuuecebdq0Kf71woUL49UXkyZNUtu2bRs8z+v1atGiRbruuuv0pz/9SZWVlTr22GM1Z84cDRzY+GA9AAAAAHAbM5pReBOt1KD9FAAAALKQK0KNjRs3HvA5c+bM0Zw5c+odb9++vR555BE98sgjzi8MAAAAAFqJaSVYqUH7KQAAAGSxtJmpAQAAAACZzEx0pgbtpwAAAJDFCDUAAAAAwAVihReeRCs1aD8FAACALESoAQAAAAAuYEdDigNWatB+CgAAAFmMUAMAAAAAXMBqavspKjUAAACQhQg1AAAAAMAF4qGGEh0UTqgBAACA7EOoAQAAAAAuYCnB9lMG7acAAACQvQg1AAAAAMAFYt2kDjAnXL7oXRztpwAAAJCNCDUAAAAAwAUSnanhpf0UAAAAshihBgAAAAC4QKIzNfy0nwIAAEAWI9QAAAAAABdIdKaGl/ZTAAAAyGKEGgAAAADgAonO1PDTfgoAAABZjFADAAAAAFygZqbG/lMNb6z9FJkGAAAAshChBgAAAAC4QLz91AGe54+1n6JSAwAAAFmIUAMAAAAAXKCmUmP/z4tXahBqAAAAIAsRagAAAACACyTafio+U8OWbIaFAwAAIMsQagAAAACAC1jRgOIAhRry1rqLM8k0AAAAkGUINQAAAADABWL5xIHaT/lrVXLQggoAAADZhlADAAAAAFwg0ZkatR8Pk2kAAAAgyxBqAAAAAIALJDpTwzAM+aN3clRqAAAAINsQagAAAACAC8RmahyoUkOSvNHgg1ADAAAA2YZQAwAAAABcwIr+nkCmIX80+aD9FAAAALINoQYAAAAAuECi7ackyRt9CpUaAAAAyDaEGgAAAACQYrZdE04k0n6qplKDUAMAAADZhVADAAAAAFLMqvW/E7lJ88ZCDesATwQAAAAyDKEGAAAAAKRY7S5SibSf8tF+CgAAAFmKUAMAAAAAUsxqYvspH+2nAAAAkKV8qV4AAAAAAGS72tlEQ4UaJ558ir759tv416dfe4d6HXOSfv3b32nNsufrPLdL585a+fprLbVUAAAAIKUINQAAAAAgxeq0n2rg8W++/VaPLf8g/vXne6q1s8rUj6+5Sd1uvqXOcy8ZdUwLrRIAAABIPdpPAQAAAECKxeZ9G5KMBGZqeGPn0X4KAAAAWYZQAwAAAABSLBZOJDJPQ6ppUWXt/2kAAABAxiHUAAAAAIAUi7WfSjTUiD3PolADAAAAWYaZGgAAAACQIkcdc6yCwaAKuxys8++fr/KyMvUfdFK953399Td1vvZGSzVoPwUAAIBsQ6gBAAAAACny4IuvyfD6VBG2tGpHUPkFbeoMBI/5/sBudb42qNQAAABAlqL9FAAAAACkWKzgIoEZ4ZJoPwUAAIDsRagBAAAAACnW1GzCK9pPAQAAIDsRagAAAACASxhKrFQjXqnRgmsBAAAA3IhQAwAAAABSjPZTAAAAQGIINQAAAAAgxexoA6oEMw15oumHSfspAAAAZBlCDQAAAABIsVg0kWio4aVSAwAAAFmKUAMAAAAAUoz2UwAAAEBiCDUAAAAAIMWaWqkRaz9l0X4KAAAAWYZQAwAAAABSLF6pkeDzqdQAAABAtiLUAAAAAIAUi1dqJJhqxGZqmIQaAAAAyDKEGgAAAADgEkaCtRqx9lO2JJsWVAAAAMgihBoAAAAAkGJ2E/tP1b6RowUVAAAAsgmhBgAAAACkWNMHhdf8b8vpxQAAAAAuRqgBAAAAACnW1FDDMGoaVVm0nwIAAEAWIdRIQxv3VWvTvupULwMAAACAQ+LdpxJNNcSwcAAAAGQnQo00U23aenpdqeZ/WaqvykKpXg4AAAAABzS1UkOqaUHFTA0AAABkE0KNNFMetmTakZueFzbtU9Ckgy4AAACQ7pILNSLPpv0UAAAAsgmhRpqpCNeEGHurLS3dUp7C1QAAAABwQk37qcRjDSo1AAAAkI0INdJMLNTIjTbQ/WRXUGv3BFO5JAAAAADNlEwu4WGmBgAAALIQoUaaqQhH7li6Ffg0vHOeJOmlr8pUHqINFQAAAJCu7Gis0ZT2U17aTwEAACALEWqkmcpopUa+z6OTivPVKderyrCtz3ZTrQEAAACkrXj7qcRPof0UAAAAshGhRpqJVWrk+zzyeQz1KcqRJO2jUgMAAABIW0kNCo/+TqgBAACAbEKokWYq4pUakdudgujvZYQaAAAAQNqyk6rUiLafSmoiBwAAAJCeUh5qBINB3XDDDerWrZvy8vI0fPhwLVmyJKFzX331VY0aNUodO3ZUu3btNGzYMD3++OMtvOLUirWfyvNFfnRt/JHfCTUAAACA9JVUpQaDwgEAAJCFUh5qTJkyRTNnztRFF12kBx54QF6vV+PHj9fKlSv3e95zzz2nMWPGqLq6Wrfeeqv+8Ic/KC8vT5MnT9Z9993XSqtvfTXtpyJ3MIQaAAAAQPprTqhB+ykAAABkE18q3/y9997T/PnzNWPGDE2bNk2SNHnyZA0ePFjXX3+93nrrrUbPnTVrloqLi7Vs2TIFAgFJ0tSpUzVo0CDNmTNHv/rVr1rle2htFbUGhUuEGgAAAEAmqGk/lXis4Y21n7JJNQAAAJA9UlqpsWDBAnm9Xl122WXxY7m5ubr00kv19ttv66uvvmr03NLSUrVv3z4eaEiSz+dTx44dlZeX16LrTqXKaKVGnrduqFFt2aqm7hwAAABIS3a0VoNKDQAAAGD/UhpqrFq1SgMGDFBRUVGd48OGDZMkffTRR42eO3LkSH366ae6+eab9eWXX2rdunX6/e9/rw8++EDXX399Sy47ZcKWrWqrbvupgNejaK5BtQYAAACQppLJJQg1AAAAkI1S2n6qpKRExcXF9Y7Hjm3btq3Rc2+++WZt2LBBf/jDH3T77bdLkvLz8/Wvf/1LZ5111n7fNxgMKhgMxr8uLS2VJIVCIYVCoSZ/H06JvXdjayitjoQWHkPyWGGFQtG5Gj6Pdldb2ltVrUJvSn+kcIED7SMgUewlOIF9BKewl7JXc3/mbr/2t81w5PdoMmHYVvxYbXm5ufWOe+zI/YFp1T0nEAjw30qW4O9GOIW9BCewj+AU9lL2SvRnbth26hqw9u3bVwMHDtSiRYvqHF+/fr369u2r++67T1dffXWD54bDYU2fPl1r1qzRhAkTZJqmHn74YX344YdasmSJRowY0ej73nrrrZo+fXq9408++aTy8/Ob9T21pEp/gTYWD5UvXK3+296PH9/UebAqctuq2441aluxI4UrBAAAAJxVUVGhCy+8UHv37q1X4Z2IdLn2L+nQV3vadFWnPZvUsXRLQufsKeikkoMGqKByt3pu/6yFVwgAAAC0rESv/VMaagwePFhdunTR0qVL6xz/7LPPdPjhh+uhhx7S1KlTGzz35z//ud555x19+OGH8ngi/ZdCoZAOP/xwtW/fXu+++26j79vQp7V69OihHTt2JHWj5JRQKKQlS5Zo9OjR8vv99R7fuC+kf22qUMeARxf3L4wff+GrCq3ZG9LIrrn6XsdAvfOQXQ60j4BEsZfgBPYRnMJeyl6lpaXq2LFj0qGG26/92w09UYbXpy9Kw9oetNWzwKPu+d56zz/n6AF65sO1dY7tCFpaW2qqyG9ocLuaiu3LzzhFqz54/7svgQzE341wCnsJTmAfwSnspeyV6LV/SnsVFRcXa+vWrfWOl5SUSJK6devW4HnV1dV69NFHdf3118cDDUny+/0aN26cZs2aperqauXk5DR4fiAQqDNgvPb5bvgPpbF1VMuUJBX4vXUeL8rxSgqpwjJcsX64g1v2M9IfewlOYB/BKeyl7NPcn7fbr/0Nr0+G1ycZliRTHo8n8vV3VFZV1Tvu9ZiSTFnR14kJBoOu+N7Qetyyn5H+2EtwAvsITmEvZZ9Ef94pHRQ+dOhQrV27Nt7XNiZWZTF06NAGz9u5c6fC4bBM06z3WCgUkmVZDT6W7irCdYeEx7SJTgovZ1A4AAAAkJZi5fOGjP0+rzYGhQMAACAbpTTUmDhxYnwWRkwwGNTs2bM1fPhw9ejRQ5K0efNmff755/HndO7cWe3atdMzzzyj6urq+PGysjI9//zzGjRokPLy8lrvG2klleFIaJHnq/tji4UaZYQaAAAAQFqKdQVOPNKQvEbk2YQaAAAAyCYpbT81fPhwnXfeebrxxhv17bffql+/fpo7d642btyoRx99NP68yZMn67XXXotf6Hu9Xk2bNk2//e1vNWLECE2ePFmmaerRRx/Vli1b9Pe//z1V31KLqqnUqBtqFBBqAAAAAGktXqnRhFQjVqlhpm5MIgAAANDqUhpqSNK8efN088036/HHH9fu3bs1ZMgQvfDCCzr55JP3e95NN92kPn366IEHHtD06dMVDAY1ZMgQLViwQOeee24rrb51VUQrNb7bfqowFmqECTUAAACAdFTTfipxtJ8CAABANkoq1Fi/fr0OOeQQRxaQm5urGTNmaMaMGY0+Z8WKFQ0ev/DCC3XhhRc6so50UBNqNFypETRthSxbfk9TboUAAAAApFw0mGhapQbtpwAAAJB9kpqp0a9fP40aNUp///vfVVVV5fSa0IjKaPupvO9UagQ8hqK5Bi2oAAAAgDSUTC4R+yyTrZqZHAAAAECmSyrU+PDDDzVkyBBdc8016tq1q6ZOnar33nvP6bXhOxqr1DAMQwU+5moAAAAA6SqZ9lPeWk82yTQAAACQJZIKNYYOHaoHHnhA27Zt02OPPaaSkhKdeOKJGjx4sGbOnKnt27c7vc6sZ9m2Ks2GB4VLUhuGhQMAAABpy463n0o81qj9TFpQAQAAIFskFWrE+Hw+TZgwQU8//bTuuusuffnll5o2bZp69OihyZMnq6SkxKl1Zr2qcM1dynfbT0mEGgAAAEA6S6ZSwzCMWsPCSTUAAACQHZoVanzwwQe6/PLLVVxcrJkzZ2ratGlat26dlixZom3btumss85yap1ZL9Z6KtdrxAcC1kaoAQAAAKQvOxprNCXUkGpu6LgLAAAAQLbwJXPSzJkzNXv2bK1Zs0bjx4/XvHnzNH78eHk8kUvqPn36aM6cOerdu7eTa81qFeHGW09JhBoAAABAOqtpP9W08zyGIdk2MzUAAACQNZIKNf7617/qkksu0ZQpU1RcXNzgczp37qxHH320WYtDjQozNiS84bscQg0AAAAgfSXTfkqqGRZO+ykAAABki6RCjS+++OKAz8nJydHFF1+czMujAZXR9lN5B6jUKA8TagAAAADpJtlIomamhmNLAQAAAFwtqZkas2fP1tNPP13v+NNPP625c+c2e1Gor6b9VCOVGtGwYx+VGgAAAEDaaVb7KRFqAAAAIHskFWrceeed6tixY73jnTt31h133NHsRaG+2KDwA83UCJq2QtzRAAAAAGmpyYPCaT8FAACALJNUqLF582b16dOn3vFevXpp8+bNzV4U6quMVmo01n4q4DUUK+Iop1oDAAAASCs1lRpNizVioQaDwgEAAJAtkgo1OnfurE8++aTe8Y8//lgHHXRQsxeF+moqNRq+yTEMg2HhAAAAQJqyo1M1mj4onPZTAAAAyC5JhRr/7//9P/3yl7/U8uXLZZqmTNPUsmXLdNVVV+lHP/qR02uEDtx+ShKhBgAAAJCmYpkE7acAAACA/fMlc9Lvf/97bdy4Uaeddpp8vshLWJalyZMnM1PDAaZpyuOpG17EQo2AYcs0zTqPGYYhj8dDqAEAAACkqeQHhUd+p1IDAAAA2SKpUCMnJ0dPPfWUfv/73+vjjz9WXl6ejjjiCPXq1cvp9WUVy4qEER06dFBlZWWdx37/zhb5cgI6fEBf7f16a53HDu7eQ5s3bVRBLNQIE2oAAAAA6STpSo3oGdwBAAAAIFskFWrEDBgwQAMGDHBqLVnPjn486/n/bpI3JxA/HrZsfbAzJEn613ufxvvmSpJlmjqtdwfZtq02Pio1AAAAgHRE+ykAAAAgMUmFGqZpas6cOVq6dKm+/fbbeIVBzLJlyxxZXLbyeL3yer3xr6vtyJ+vx5ByfI3/yGg/BQAAAKSnZNtPeaPPN8k0AAAAkCWSCjWuuuoqzZkzR2eccYYGDx4so6lX3miSWDcp/wH+nAk1AAAAgHTXtHsrT/QegZkaAAAAyBZJhRrz58/XP//5T40fP97p9aABoegdit+z/+fFZmpUMFMDAAAASBu2bdN+CgAAAEjQAf6ZvGE5OTnq16+f02tBI2Khhs+z/1ucPF/k8cqwHZ/PAQAAACB9NLUIvibUcH4tAAAAgBslFWpce+21euCBB/iH81YSsmOVGgcINbyRH6ctKUhTXQAAACAt1L5yb2qlhpf2UwAAAMgySbWfWrlypZYvX66XXnpJhx9+uPx+f53HFy5c6MjiEGFGu0l5DxBB+TyGcjyGqi1bFWFbuUn9dAEAAAC0ptqfFUu2/ZTJB84AAACQJZL6Z+927drpnHPOcXotaETsU1feBGrR832GqqttVYQtdZC3hVcGAAAAoLnqVGrQfgoAAADYr6RCjdmzZzu9DuxHbOjfAbpPSZLyfB7tqbZUaTIsHAAAAEgHzWk/5aH9FAAAALJMUjM1JCkcDuvVV1/V3/72N+3bt0+StG3bNpWVlTm2OESY8UqNAz83PzosvCLMXQ0AAACQDprTOSp2Q2eJ638AAABkh6QqNTZt2qSxY8dq8+bNCgaDGj16tAoLC3XXXXcpGAzqoYcecnqdWa2mUuPAqUaeL3JbUxmmUgMAAABIB3XbTzWtVsMbn6nh3HoAAAAAN0uqUuOqq67SMccco927dysvLy9+/JxzztHSpUsdWxwimlapEfmRUqkBAAAApIvItXtTW09JddtP2QwLBwAAQBZIqlLjjTfe0FtvvaWcnJw6x3v37q2tW7c6sjDUiPXHTahSI5p8UKkBAAAApIdYFtHUIeFS3bl7tpILRgAAAIB0klSlhmVZMk2z3vEtW7aosLCw2YtCXWb0LqdplRqEGgAAAEA6iNVXJFepUfO/GRYOAACAbJBUqDFmzBjdf//98a8Nw1BZWZluueUWjR8/3qm1IaqmUuPAz83zxSo1uKMBAAAA0kHzQo2aswg1AAAAkA2Saj9177336vvf/74OO+wwVVVV6cILL9QXX3yhjh076h//+IfTa8x6NTM1DnybQ6UGAAAAkF6a035KilR0m3aswpsGVAAAAMhsSYUa3bt318cff6z58+frk08+UVlZmS699FJddNFFdQaHwxlW9C6nSZUaJh/TAgAAANJBcyo1pMh9gmlTqQEAAIDskFSoIUk+n0+TJk1yci1oRE2lxoGfG6vUCJq2TNtOqLoDAAAAQOrUhBrJXbtHWlDZhBoAAADICkmFGvPmzdvv45MnT05qMajPtu34TY4ngYAi4I3cCtmKzNVo4yfUAAAAANzMjlZmJ/t5pNigxFiFNwAAAJDJkgo1rrrqqjpfh0IhVVRUKCcnR/n5+YQaDqrdRSqRSg2PYSjXZ6gybKsibKmNP6lZ8AAAAABaSXOjiFibWqbqAQAAIBsk9S/eu3fvrvOrrKxMa9as0YknnsigcIfVLiFP9INbsRZUlQwLBwAAAFyv+YPCIycyVg8AAADZwLGP8ffv319//OMf61VxoHnMWkPCjQTvcvKiJR2VYe5qAAAAgHTRnEHhEu2nAAAAkB0c7U3k8/m0bds2J18y61lNGBIeE6vUqKBSAwAAAHC9mkHhyakJNZxYDQAAAOBuSc3UeO655+p8bdu2SkpKNGvWLJ1wwgmOLAwRsUoNbxNq0fN8kedWUKkBAAAAuJ5z7ae4/gcAAEDmSyrUOPvss+t8bRiGOnXqpFNPPVX33nuvE+tCVOzTVp4kKjUqTSo1AAAAALerqdRILtWIVXUzUwMAAADZIKlQw7L4x/LWYiYRauTFB4VzVwMAAAC4XXPbT3mjNwt8pgkAAADZwNGZGnCelUT7qfx4+ynuagAAAAC3s6PX/Mm2n2JQOAAAALJJUpUa11xzTcLPnTlzZjJvgaikKjW8DAoHAAAA0kWzKzVoPwUAAIAsklSosWrVKq1atUqhUEgDBw6UJK1du1Zer1dHH310/HlGsh81QlxspkaTKjX8kefSfgoAAADIfAwKBwAAQDZJKtQ488wzVVhYqLlz56p9+/aSpN27d+snP/mJTjrpJF177bWOLjKbxUrIk6nUqAxbsm2bcAkAAABwsVgWkexlO5UaAAAAyCZJzdS49957deedd8YDDUlq3769br/9dt17772OLQ41NybeJtzg5EcHhYdtKUQHKgAAAMDVmt9+ikoNAAAAZI+kQo3S0lJt37693vHt27dr3759zV4UapjxSo3Eb3H8npoQhLkaAAAAgLvFKzWSPN9DpQYAAACySFKhxjnnnKOf/OQnWrhwobZs2aItW7boX//6ly699FJNmDDB6TVmNSuJSg3DMOLVGpUmoQYAAADgZvFKjST7T3mjqYbFpT8AAACyQFIzNR566CFNmzZNF154oUKhUOSFfD5deumlmjFjhqMLzHaxUKMpMzUkKc9naF+IYeEAAACA29nRWCP59lOR32k/BQAAgGyQVKiRn5+vBx98UDNmzNC6deskSX379lVBQYGji0PNjYm3iZ/ailRqmLSfAgAAAFyu+YPCYzM1HFoQAAAA4GJJtZ+KKSkpUUlJifr376+CggLZfDLIcUlXakQ/rlVBpQYAAADgas29Yo9VatiSLO7JAAAAkOGSCjV27typ0047TQMGDND48eNVUlIiSbr00kt17bXXOrrAbGfGZ2o0LdXIi83UoFIDAAAAcLX4TI0kz689f49qDQAAAGS6pEKNX/3qV/L7/dq8ebPy8/Pjxy+44AK9/PLLji0ONZ+0amqlRnxQOJUaAAAAgKs1t/2UYRjxGzsqNQAAAJDpkpqpsXjxYr3yyivq3r17neP9+/fXpk2bHFkYImoqNZp2Xr4v1n6KSg0AAAAgHSRbqSFFPgRl2VRqAAAAIPMlValRXl5ep0IjZteuXQoEAs1eFGrUVGok136KUAMAAABwt5r2U8nHGt5oabfJ5T8AAAAyXFKhxkknnaR58+bFvzYMQ5Zl6e6779aoUaMcWxxqPmnV5EHh0UqNSj6qBQAAALiaHf0gU7Ltp6Saym6T9lMAAADIcEm1n7r77rt12mmn6YMPPlB1dbWuv/56ffrpp9q1a5fefPNNp9eY1awkB4XnMygcAAAASAvNHRQuxe4XbNpPAQAAIOMlVakxePBgrV27VieeeKLOOusslZeXa8KECVq1apX69u3bpNcKBoO64YYb1K1bN+Xl5Wn48OFasmRJwuc/9dRTOu6441RQUKB27drp+OOP17Jly5r6LbmSZdvxG5ymz9SoGRRu82ktAAAAwLWcCTUiv1OpAQAAgEzX5EqNUCiksWPH6qGHHtJNN93U7AVMmTJFCxYs0NVXX63+/ftrzpw5Gj9+vJYvX64TTzxxv+feeuutuu222zRx4kRNmTJFoVBI//3vf7V169Zmr8sNrFr3I01uPxW9q7ElVZl2vB0VAAAAAHeJ5RDNaT8Vu1+wyDQAAACQ4Zocavj9fn3yySeOvPl7772n+fPna8aMGZo2bZokafLkyRo8eLCuv/56vfXWW42e+8477+i2227Tvffeq1/96leOrMdtapeON/X+xusxFPAYClq2KsJWfHA4AAAAAHdxrv0UlRoAAADIfEn9S/ekSZP06KOPNvvNFyxYIK/Xq8suuyx+LDc3V5deeqnefvttffXVV42ee//996tr16666qqrZNu2ysrKmr0et7GiNyReIzKMfX9M06z3KzdanVFWXf8x0zRlWczbAAAAAFLNdiDViLef4hIfAAAAGS6pUCMcDuuvf/2rjjnmGE2dOlXXXHNNnV+JWrVqlQYMGKCioqI6x4cNGyZJ+uijjxo9d+nSpTr22GP1pz/9SZ06dVJhYaGKi4s1a9asZL4lV4pVauyv9ZRlWTI8XgUCAfl8vjq//vPv9yRJ4886p95jPp9PPXv1JtgAAAAAUqwm00g+1fB6YpUaDiwIAAAAcLEmtZ9av369evfurf/+9786+uijJUlr166t85wDVRTUVlJSouLi4nrHY8e2bdvW4Hm7d+/Wjh079Oabb2rZsmW65ZZb1LNnT82ePVtXXnml/H6/pk6d2uj7BoNBBYPB+NelpaWSIvNCQqFQwut3WjgcliTZZli26ZUZ/ZiVN3qsIVY4pNxAjp77ZKO8/ro/zjX7LO0JSb976HF1zq37c7FMU2cO7qXq6mp5vV7nvxmkTGwPp3IvIzOwl+AE9hGcwl7KXs39mbv12j/23rYZrpmpYZmyzYafn5eb2+g9gSR57Mi9g2lZCgQC/LeSJfi7EU5hL8EJ7CM4hb2UvRL9mRu2nXjTVa/Xq5KSEnXu3FmSdMEFF+hPf/qTunTpktQi+/btq4EDB2rRokV1jq9fv159+/bVfffdp6uvvrreeV999ZV69uwpSZo/f74uuOACSZGqhSOOOEKlpaX7bV116623avr06fWOP/nkk8rPz0/qe2kJZbnt9FXnwxWoLtchX3/U5PO3deinvW26qNOeTepYusX5BQIAAAAtrKKiQhdeeKH27t1br8I7Eelw7b+l40Dty++oLrvWqUPZ10m9xs7Cbvq2fR8VlW/XwTvXHvgEAAAAwGUSvfZvUqjh8Xj09ddfx0ONoqIiffTRRzrkkEOSWuTgwYPVpUsXLV26tM7xzz77TIcffrgeeuihBisuduzYoU6dOsnv96uysrJOpcFtt92mW265RZs2bYoHH9/V0Ke1evTooR07diR1o+SUYDCopUuXqvCI4+TLCWhn0NKaUlOFPkNHtG+4qKa6ulo/HNxLL3z6lXzfqdTYVGZqa6Wl4jyP+rSpW41hmqbOOLS7du3aRaVGhgmFQlqyZIlGjx4tv9+f6uUgjbGX4AT2EZzCXspepaWl6tixY9Khhluv/WN7ut3QE7WmTNpVbeuQNl51zWu4Q/A5Rw/QMx82HlZ8U2lpXZmp9jmG/nzhaVr1wfsttXS4CH83winsJTiBfQSnsJeyV6LX/k1qP/VdTchDGlRcXKytW7fWO15SUiJJ6tatW4PndejQQbm5uWrXrl29f5CPBS67d+9uNNQIBAIKBAL1jvv9/pT+h2KakVpzw+uT4fXJMsKSTHk8hgxvwz8qw2upsrIyfk5tkYzDUsiuf74hQ5WVlfL7/YQaGSrV+xmZg70EJ7CP4BT2UvZp7s/brdf+MYbXJ9swJdnyeDyNXvdXVlU1+pgkeb2RewdLhoLBoCu+N7Qet+xnpD/2EpzAPoJT2EvZJ9Gfd5MGhRuGUW9mRlNmaHzX0KFDtXbt2nhf25h33303/nhDPB6Phg4dqu3bt6u6urrOY7E5HJ06dUp6XW5hRTMjb5J/xP7oTzdkMS0QAAAAcKv4TI3kb63kNWKDwrn2BwAAQGZrUqhh27amTJmiCRMmaMKECaqqqtLPf/7z+NexX4maOHGiTNPUww8/HD8WDAY1e/ZsDR8+XD169JAkbd68WZ9//nmdcy+44AKZpqm5c+fGj1VVVemJJ57QYYcd1miVRzoxo/cjniTvbnI8kfMINQAAAAD3il2tNyPTiH8QyrSauxoAAADA3ZrUfuriiy+u8/WkSZOa9ebDhw/XeeedpxtvvFHffvut+vXrp7lz52rjxo169NFH48+bPHmyXnvttTrtrqZOnapHHnlEV1xxhdauXauePXvq8ccf16ZNm/T88883a11uYUW/32QrNXyEGgAAAIDrOVFc4fHEKjWa/1oAAACAmzUp1Jg9e7bjC5g3b55uvvlmPf7449q9e7eGDBmiF154QSeffPJ+z8vLy9OyZct0/fXX67HHHlN5ebmGDh2qF198Ud///vcdX2cqWPFKjeTO98dDjUiVTXNahQEAAABoWc25Xo99EMqi/RQAAAAyXLMGhTshNzdXM2bM0IwZMxp9zooVKxo83rlzZ82ZM6dlFuYCZrxSI7mbG3+t5mJhW/KTaQAAAACuY0cbUDWv/RSVGgAAAMgOTZqpgdZlNrNSw2MY8kXPpQUVAAAA4E7xQeHNeI1YpYYtyePzN3dJAAAAgGsRarhYLIdItlJDYq4GAAAA4HbxQeHNSDVqz+Hz5+Y1az0AAACAmxFquFisH26ylRqSlFNrrgYAAAAA94mHGs14DcMw4jd3hBoAAADIZIQaLtbc9lNSzVwNKjUAAAAAd4q3n2rmDDxv9NrfR6gBAACADEao4WJWMweFS7XaTzExEAAAAHAlJyo1pMhMPUny5+Y385UAAAAA9yLUcDEzPlMj+dfwM1MDAAAAcLWaUKN5sUbsvoH2UwAAAMhkhBouZjnQfiqHUAMAAABwNduhUg0vlRoAAADIAoQaLmbGB4Unf3dTM1PDiRUBAAAAcJodrdVobvupWKUGMzUAAACQyQg1XMxyoP2Uj0oNAAAAIC04FWpQqQEAAIBMRqjhUrZtx2dqNKdSg/ZTAAAAgLvF2k8147JfUu1B4VRqAAAAIHMRarhU7QiiWYPCoyeH7UhQAgAAAMBdHBqpIW/07o72UwAAAMhkhBouZdbKH5ozKNxX61zmagAAAADu41ioQaUGAAAAsgChhktZds2wwOa0nzIMo9awcCo1AAAAALdxqv0UMzUAAACQDQg1XKpmnkbzX8vPXA0AAADAtWoqNZp38U+lBgAAALIBoYZLxfKH5szTiPERagAAAACuVHvuXfMHhUd+Z6YGAAAAMhmhhkuZ0Zub5rSeiqmp1Gj2SwEAAABwUO2PHTV/pkbkdyo1AAAAkMkINVzKyUqNHGZqAAAAAK7k5BV6vP1UgFADAAAAmYtQw6VqZmo4WalBqAEAAAC4VbMHhUfv7vx5DAoHAABA5iLUcCkr2n6KmRoAAABA5qo1UsOB9lORV2CmBgAAADIZoYZL1VRqNP+1cpipAQAAALhSi8zUCFCpAQAAgMxFqOFSNZUaTrSfivxOpQYAAADgLnVCjWZe+8da1/pz82TbXPsDAAAgMxFquJSTlRq0nwIAAADcKZY9OHDZH6/U8Ph88fsJAAAAINMQarhULH9wYqZGrP2UaddUgAAAAABIvdjVuZOhhiRV84EmAAAAZChCDZeKhQ8eB9pPeY2amySqNQAAAAAXciDVMAwjXuldTakGAAAAMhShhkuZDlZqGIZRa65G818PAAAAgDOcbD8l1dw/UKkBAACATEWo4VI1MzWcub3xM1cDAAAAcB0n209Jkjd6/0ClBgAAADIVoYZLxdpPOVGpIRFqAAAAAG4UDzUcuu73RV+nilADAAAAGYpQw6WseKWGM69HqAEAAAC4T037KWcu/H3R6/4qk76zAAAAyEyEGi5lOjgoXJJ8zNQAAAAAXMeO1mo41n4qGmoEqdQAAABAhiLUcCnLwUHhkpRDpQYAAADgOrSfAgAAAJqGUMOlzHio4eygcAYGAgAAAO5R037KGT4qNQAAAJDhCDVcyoq3n3Lm9XK8VGoAAAAAbuVUpUas0rsqTN9ZAAAAZCZCDZcyHR4UHms/VU2oAQAAALhGvP2UQ69XMyic634AAABkJkINF7Jtu9ZMDWdub2oqNWqqQAAAAACkltOX5rGZGrSfAgAAQKYi1HCh2rcfTlVq+IyaT3/RggoAAABwB8cHhccrNWg/BQAAgMxEqOFCtTMHp0INwzBqWlCZzrwmAAAAgOapaT/lzIV/fKYGlRoAAADIUIQaLhS7/zAkeZz6yJZqWlAxVwMAAABwh5aaqUH7KQAAAGQqQg0XihWKO1WlEZMT/WlXc4MDAAAAuEJspoZj7aeMmlDDZpYeAAAAMhChhgvVDAl39nWp1AAAAADcxflKjZrX5bofAAAAmYhQw4Vi9x5Otp6SVGumBjc3AAAAgBs4PSjcYxgKVwclMVcDAAAAmYlQw4Vic7yp1AAAAAAyXK15ek6priiTJFWFue4HAABA5iHUcKEWr9Qg1AAAAABcwZbz1+bV5fskMSwcAAAAmYlQw4VqQg1nXzdeqcHNDQAAAOAKNe2nnLv4ry6PVmqYlmOvCQAAALgFoYYLtdig8GhKErYlyybYAAAAAFLNboH2U8Fo+ykqNQAAAJCJCDVcKDZTw+n2U16j5gdezYe2AAAAgJSLV2o4+JrxmRqEGgAAAMhAhBou1FLtpwzDYFg4AAAA4CI17aece03aTwEAACCTEWq4UKw1lNPtp6SaFlQhPrUFAAAApFyLtJ9iUDgAAAAyGKGGC9VUajifatRUajj+0gAAAACaKBY7OFmlTfspAAAAZDJCDReK5Q0tU6kR+Z32UwAAAEDqWfFKDecu/qup1AAAAEAGI9RwIbOFZmpINZUaISo1AAAAgJRr2UoNLvoBAACQeQg1XKhF2095GBQOAAAAuIXVAjM14oPCw1zzAwAAIPMQarhQy7afItQAAAAA3MKO1mo4+XkmBoUDAAAgkxFquBCDwgEAAIDsYMcqNVqg/RShBgAAADIRoYYLxe49WqJSwx+t1LBsKSe/wPk3AAAAAJCw+EwNRweFR0MNy5ZlE2wAAAAgsxBquJDVgoPCfR4jHpYUderq/BsAAAAASJjVApUawYp9Nf+bag0AAABkGEINF4p1hmqJ9lNSzVwNQg0AAAAgtWoqNRx8TdOUP/qChBoAAADINCkPNYLBoG644QZ169ZNeXl5Gj58uJYsWdLk1xk9erQMw9AvfvGLFlhl67JasP2UVDNXg1ADAAAASK2WmKkhSbneyK1eFaEGAAAAMkzKQ40pU6Zo5syZuuiii/TAAw/I6/Vq/PjxWrlyZcKvsXDhQr399tstuMrWFW8/1UKvH6vUKCTUAAAAAFIqVqXt9OeZAtEPMlWZ1gGeCQAAAKSXlIYa7733nubPn68777xTM2bM0GWXXaZly5apV69euv766xN6jaqqKl177bW64YYbWni1rcNWK7SfolIDAAAAcAU7Pk/P2Wv/3HioQaUGAAAAMktKQ40FCxbI6/Xqsssuix/Lzc3VpZdeqrfffltfffXVAV/j7rvvlmVZmjZtWksutdXYRs2PpMXaTzFTAwAAAHCFlq7UYKYGAAAAMk1KQ41Vq1ZpwIABKioqqnN82LBhkqSPPvpov+dv3rxZf/zjH3XXXXcpLy+vpZbZqqxaoYanhWdq0H4KAAAASC07WqrRYjM1wrSfAgAAQGbxpfLNS0pKVFxcXO947Ni2bdv2e/61116ro446Sj/60Y+a9L7BYFDBYDD+dWlpqSQpFAopFAo16bWcFA6HZRleSdG0yTJ1oM9V2WZYeXl5ss2w7AQjKn/082BtOxcrFArJsrjRySSxPZzKvYzMwF6CE9hHcAp7KXs192fu1mv/2HvHB4Vbpuz9VFXk5ebKNsMJvXYgEJDfiLxWZcjkv5sMxt+NcAp7CU5gH8Ep7KXslejPPKWhRmVlpQKBQL3jubm58ccbs3z5cv3rX//Su+++2+T3vfPOOzV9+vR6xxcvXqz8/Pwmv56TbF+k4sQwQ9r97zcTOucf//iH9n2S+GD1am9AOvgYHVTcXS+/8orjpe5whyVLlqR6CcgQ7CU4gX0Ep7CXsk9FRUWzznfztb8khYOVkj9PZWtWyare1+jzHvvfh7X73ysSes0/3DZdX21YJ7XtoTXrN2rvv9c7tFq4FX83winsJTiBfQSnsJeyT6LX/ikNNfLy8up8aiqmqqoq/nhDwuGwfvnLX+rHP/6xjj322Ca/74033qhrrrkm/nVpaal69OihMWPG1GuF1ZqCwaBeeCMS0nj9frX/3sgDnlNdXa0fDu6lFz79Sj5/Yj9Oy7a1bkdYtserkaePUUFOSrcBHBYKhbRkyRKNHj1afr8/1ctBGmMvwQnsIziFvZS9YpUVyXLrtX9sTxuBPMmS2g46Sm38jZden3P0AD3z4dqEXvvyM07R/768Uq99XaWu3Xtq/HGDnFo2XIa/G+EU9hKcwD6CU9hL2SvRa/+U/mt2cXGxtm7dWu94SUmJJKlbt24Nnjdv3jytWbNGf/vb37Rx48Y6j+3bt08bN25U586dG/3kVSAQaLBCxO/3p/Q/FNM04zM1vIYhw3vgH4/htVRZWSnD60vo+ZLkleQzwgrbUoXtUTv+cshIqd7PyBzsJTiBfQSnsJeyT3N/3m699o+JtZ/yeH0yvI2HGpVVVQlf7weDQeVHP7hUbTf/zxDu55b9jPTHXoIT2EdwCnsp+yT6807poPChQ4dq7dq19RKYWEupoUOHNnje5s2bFQqFdMIJJ6hPnz7xX1Ik8OjTp48WL17comtvKXY01GipIeExgeiw8L3VzNMAAAAAUiU2RcP5QeGRFwzuZ04HAAAAkI5SWqkxceJE3XPPPXr44Yc1bdo0SZFPFc2ePVvDhw9Xjx49JEVCjIqKCg0aFCmb/tGPftRg4HHOOedo/Pjx+tnPfqbhw4e32vfhpNigcK/TdzXfEfAaKg/bhBoAAABAClmxSg2HXzf2IaYqQg0AAABkmJSGGsOHD9d5552nG2+8Ud9++6369eunuXPnauPGjXr00Ufjz5s8ebJee+012dHa7EGDBsUDju/q06ePzj777NZYfouwPK1TqZEbvWsqJdQAAAAAUqblKjUiF/yEGgAAAMg0KZ8QPW/ePN188816/PHHtXv3bg0ZMkQvvPCCTj755FQvLSXsaKUG7acAAACAzGarVqghZ28AYu2nqsJc7wMAACCzpDzUyM3N1YwZMzRjxoxGn7NixYqEXitWyZHOag8Kb0nxUCNktuj7AAAAAGhMzTW/0x9qyvVFXjBsSyHLlr+lPzUFAAAAtJKUDgpHfVZrDQr31FRqZEIYBAAAAKQbu9YHmZy+/A94DEU/x6QKqjUAAACQQQg1XKb12k9Ffg9ZUiV9dgEAAIBWZ9eKMpwu1DYMQ/m+yO0eoQYAAAAyCaGGy8QGhbd0+ymPYWjvtyWSpL1BWlABAAAArc02am7HWuLqPz/agqo8xIeYAAAAkDkINVzGaqVKDUnave0rSQwLBwAAAFIh1n7KUKSywmkFVGoAAAAgAxFquIzdSoPCJWn3tk2SpD3VVGoAAAAArS127d9Sl/75fkINAAAAZB5CDZdprUHhEpUaAAAAQCrFZmq01E1ZbKZGeYjrfQAAAGQOQg2Xaa1B4ZK0e+tmSczUAAAAAFIh3n6qha79C6IzNSrCzNQAAABA5iDUcJnWGhQuSbtLoqEGlRoAAABAq4u3n2qRMeE1lRq0nwIAAEAmIdRwmdZsP7UrVqlRbcq2+fQWAAAA0Jri7adaqlIjOlOjnFADAAAAGYRQw2WsaPspbyuEGnu/2SpDUtiWyilJBwAAAFpVvP1UC71+vFIjxLU+AAAAMgehhsvY8UqNlk81rHBYhdFPb+2tZq4GAAAA0JrsFq7Szo/P1LCozAYAAEDGINRwGcvTeoPCJakoJ7IF9jAsHAAAAGhVsfZTLfV5plilhiWpyiTUAAAAQGYg1HCZ2EyN1mg/JUltc2KVGvTZBQAAAFpTTfuplrn493kMBbw11RoAAABAJiDUcBHTtqVWbD8lSW1pPwUAAACkREu3n5JqWlAxQw8AAACZglDDRWp/eIpKDQAAACCztfSgcEkqiA8L53ofAAAAmYFQw0XCVs2np1op04iHGszUAAAAAFpby87UkGrmatB+CgAAAJmCUMNFQtFMwyPJaK32UzmRweSlIUuWTUk6AAAA0Fri7ada8D0Kou1mywk1AAAAkCEINVwkFK3UaMmeut/Vxm/II8mypTJK0gEAAIBWE28/1YIfaIrN1KhgpgYAAAAyBKGGi8TuM1prnoYUGUhexFwNAAAAoNXZ0duxlrz8j7WfKucDTAAAAMgQhBouEk5BpYZU04KKuRoAAABA64lVarTk9X8BMzUAAACQYQg1XCT24anW/qG0DUSHhVcTagAAAACtpab9VMu9R82gcNpPAQAAIDMQarhIyE5NpUaHQKRSY1cVoQYAAADQWlql/ZQ/8uoMCgcAAECmINRwkdh9RmvO1JCkg3IjocZO2k8BAAAAraam/VTL3QDE2k8FTVumRbUGAAAA0h+hhouEUjRTo2OuT1KkUsO2udEBAAAAWkO8/VQLvkeu14jf9DFXAwAAAJmAUMNFYm1uW32mRo5HXiPy/nurudEBAAAAWkO8/VQLphqGYcTnapQzVwMAAAAZgFDDRVJVqeExjPhcjZ3M1QAAAABaRbz9VAu/T2yuBpUaAAAAyASEGi6SqpkaktSBuRoAAABAq4q3n2rh6/94pUaIUAMAAADpz5fqBaBGKEXtp6Raw8Krwil4dwAAACD7xNpPeRyeqlFSUqL+gw6Nf33KFTer34lj9Ls77tJ/X5xf57ldOnfWytdfc/T9AQAAgJZEqOEiNe2nWr9Uo2MgshVoPwUAAAC0jpaq1LBsW48t/yD+9YbSam2rMDVh6lW6Ztq0Os+9ZNQxzr45AAAA0MJoP+UisfZTrT1TQ6rVfopQAwAAAGgV8VCjhd/HH73BCJkMCgcAAED6I9RwkbCdmkHhUk37qUrTVgW9dgEAAIAWZxvR9lMtfP0fDzUsQg0AAACkP0INF4llCd4UvLffY6htTmQ7MCwcAAAAaHm2Yu2nWjbViIUa1YQaAAAAyACEGi5SM1MjNe9/UIAWVAAAAECraaX2UwFv5B2CtJ8CAABABiDUcJFw9B4jZaFGfK5GODULAAAAALJIa7WfioUaYVsyqdYAAABAmiPUcJGUV2rk+iRRqQEAAAC0hnj7qRZ+H5/HUDTXoFoDAAAAaY9Qw0XCKZypIdVUauxgpgYAAADQ4mKVGi08UkNSTbVGFZUaAAAASHOEGi4SslNdqREJNUqrrXjVCAAAAICWYUfTDE+L12owVwMAAACZg1DDJWzbjldqpCrUyPd5lBe92aEFFQAAANCy4u2nWuH6P5dQAwAAABmCUMMlTFuK3V6k8ocSq9bYRagBAAAAtKj4oPBWeC8qNQAAAJApCDVcona7p1RVaki152qEU7cIAAAAIAvE2k+1ykwND6EGAAAAMgOhhkvEQw3bkqc17moacVCuTxLtpwAAAICW1prtpwLeyK0foQYAAADSHaGGS8TnadhWStdxUCBSqUGoAQAAALSsmvZTrTcovNqyZdkEGwAAAEhfvlQvABHV0UoNj9W6YYJp1n2/9jmR33cFTQVDYfm+0wvLMAx5PGRhAAAAQHNYth0v0WiNSg2/RzIUmeNXbdrK9aWw5y0AAADQDPzrtEuEo6GG0UqVGpZlyfB4FQgE5PP54r8Oyg+oYs8uWbZ0yJHfq/OYz+dTz169ZVmprSYBAAAA0l2tkXqtUKcR+XASw8IBAACQCajUcInYTI3Waj9l27Zsy9Sr63fK66+7DVbvCWlvyNbMZ1eoS543ftwyTZ3Wu4NsytUBAACAZqmdK3haqWgi4DVUZdoKWlzPAwAAIH0RarhETajRuu2nPF6vvF5vnWNtciztDYVVYareYwAAAACaz6z1QaHWagRFpQYAAAAyAe2nXOLgAr/O7pGrzns2pXopauOPbIvyEG2mAAAAgJZQp/1UawzVUE2oUUWoAQAAgDRGqOESBX6PerfxKT9YmuqlqCA6NLA8bEcGGAIAAABwVCxXaM0bslwqNQAAAJABCDVQT67XkNeQbEkVYW54AAAAAKfFPjzUSkUakqQcD6EGAAAA0h+hBuoxDIMWVAAAAEALiuUKrZhp1KnUsKnIBgAAQJoi1ECDCnyRrVEWJtQAAAAAnBZvP9WalRrRUMOWxGeXAAAAkK4INdCgNv7oXA3udgAAAADHxdtPteJ7egxDOdE7QFpQAQAAIF0RaqBBBfH2U5SmAwAAAE6Lt59qzVRDUsAbuc4PWlzjAwAAID0RaqBBeV5DHkOyxLBwAAAAwGnx9lOt/L6B+FwNKrIBAACQngg10CDDMNQmOlejnLkaAAAAgKPi7adavVIj8oZVtJ8CAABAmiLUQKMKonM1ypirAQAAADgq3n6qVadqRCqyJamSamwAAACkKUINNKpNrbkaAAAAAJwTbz/VypUa+dFr/AqqsQEAAJCmUh5qBINB3XDDDerWrZvy8vI0fPhwLVmy5IDnLVy4UBdccIEOOeQQ5efna+DAgbr22mu1Z8+ell90loiFGmVhi2HhAAAAgIPi7ada+X3zo5UaIUsKMSwcAAAAaSjlocaUKVM0c+ZMXXTRRXrggQfk9Xo1fvx4rVy5cr/nXXbZZVq9erUmTZqkP/3pTxo7dqxmzZql4447TpWVla20+syW5zXkkWTZUiU9dwEAAADHxNtPtXKq4fUYyo0GGxW0mQUAAEAa8qXyzd977z3Nnz9fM2bM0LRp0yRJkydP1uDBg3X99dfrrbfeavTcBQsWaOTIkXWOfe9739PFF1+sJ554Qj/96U9bculZwTAMFfg92heyVBayFMhp7c+RAQAAAJkpViSRik+Z5fkMVZm2KpirAQAAgDSU0kqNBQsWyOv16rLLLosfy83N1aWXXqq3335bX331VaPnfjfQkKRzzjlHkrR69WrH15qtinIiW2RvNZ/iAgAAAJxixtpPpeBzQwU+5moAAAAgfaU01Fi1apUGDBigoqKiOseHDRsmSfroo4+a9Hpff/21JKljx46OrA81oUYpoQYAAADgmHj7qRS8d54v2n6KSg0AAACkoZS2nyopKVFxcXG947Fj27Zta9Lr3XXXXfJ6vZo4ceJ+nxcMBhUMBuNfl5aWSpJCoZBCoVCT3tNJ4XBYkmSbYdmmN6FzbDOsvLy8yDlNiKgSPa/QE7nRqTJtVYVCysvLUygUkmURcrhVbA+nci8jM7CX4AT2EZzCXspezf2Zu/XaPxQ2JUmGbcs2wwd8fl5ubkLPS+S5+dFr/IqwpUAgwH9XaYy/G+EU9hKcwD6CU9hL2SvRn7lh23bKPp7Tt29fDRw4UIsWLapzfP369erbt6/uu+8+XX311Qm91pNPPqmLLrpI119/ve666679PvfWW2/V9OnTG3yN/Pz8hNefLTZ0GaKqQKG67VirthXbU70cAAAAZJGKigpdeOGF2rt3b70K70S49dp/e1EP7WjXU+32fa3i3eta9b0tGVrT4zjJMNRv6/vym9Wt+v4AAABAQxK99k9pqDF48GB16dJFS5curXP8s88+0+GHH66HHnpIU6dOPeDrvPHGGxozZoxOOeUUvfDCC/L59l+A0tCntXr06KEdO3YkdaPklGAwqKVLl6rwiOPkywkkdE51dbV+OLiXXvj0K/n8iRfeNOW8jWWmtlVa6hSQrjymp3bt2iWvN7FKErS+UCikJUuWaPTo0fL7/aleDtIYewlOYB/BKeyl7FVaWqqOHTsmHWq49dr/9W3len9XWF0D0iFFB97T5xw9QM98uDah107kuat2hVRpSq/OuF4vzf1bQq8L9+HvRjiFvQQnsI/gFPZS9kr02j+l7aeKi4u1devWesdLSkokSd26dTvga3z88cf64Q9/qMGDB2vBggUHDDQkKRAIKBCoHxr4/f6U/odimtESdK9PhjexH43htVRZWdmkc5p6XtuAoW2V1doXliorK+X3+wk10kCq9zMyB3sJTmAfwSnspezT3J+3W6/95fFEf/MkdB1fWVWV8PV+Is/N95mqNC216dKD/6YyQMr3MzIGewlOYB/BKeyl7JPozzulg8KHDh2qtWvXxvvaxrz77rvxx/dn3bp1Gjt2rDp37qxFixapTZs2LbXUrBYbFl5lSoUdu6R4NQAAAED6S+WgcEnK90Wu8dt375OiFQAAAADJSWmoMXHiRJmmqYcffjh+LBgMavbs2Ro+fLh69OghSdq8ebM+//zzOud+/fXXGjNmjDwej1555RV16tSpVdeeTXweQwW+yO3WId87PsWrAQAAANJfPNRIUaqRH72+b9+9d2oWAAAAACQppe2nhg8frvPOO0833nijvv32W/Xr109z587Vxo0b9eijj8afN3nyZL322muqPf5j7NixWr9+va6//nqtXLlSK1eujD/WpUsXjR49ulW/l0zXNsej8rCpPseckOqlAAAAAGnPit7bpOpTZvn+yDu3695Htm3LSFW6AgAAADRRSkMNSZo3b55uvvlmPf7449q9e7eGDBmiF154QSeffPJ+z/v4448lSXfffXe9x0455RRCDYcV5Xi1rcJUn6Op1AAAAACaK9WVGrleQ4aknPwClYYstc1hZh4AAADSQ8pDjdzcXM2YMUMzZsxo9DkrVqyod6x21QZaXtvoXI3OffqrLGSpLYPCAQAAgKSleqaGxzCU5zNUEba1o9Ik1AAAAEDaSOlMDaQPn8dQvjdyy7WlPJzi1QAAAADpLd5+KoVdn2LDwr+p5PoeAAAA6YNQAwkryonccW0uC6V4JQAAAEB6q6nUSF2q0cYfee+vKwg1AAAAkD4INZCwougwwY37wrT/AgAAAJrBSvFMDUlqE72+J9QAAABAOiHUQMLa5hiqrqzQ3pClbyvNVC8HAAAASFtmrP1UCtdQ4PPItiyVhiyVh6wUrgQAAABIHKEGEuY1DH3x9nJJ0pq9wRSvBgAAAEhfpgsqNXweQ3u2bZJEtQYAAADSB6EGmuTT5S9Kkr7YU53ilQAAAADpK95+KrXL0I71n0uSSgg1AAAAkCYINdAkq19fLI+k7VWmdlXRggoAAABIRrz9VIpTjR3r10iSSipCqV0IAAAAkCBCDTRJ1b696tHGJ0laSwsqAAAAICmmyyo1vq4Iy44GLQAAAICbEWqgyfq3zZEkraUFFQAAAJAUywUzNSRp56YvZUgqD9sqY1g4AAAA0gChBpqsf5FfkrStIqx9IVpQAQAAAE0Vbz+V6nVUB9Ux1yuJuRoAAABID6m+hkYaauP3qFt+pAUVA8MBAACApou3n0p1qYak4ui1/deEGgAAAEgDhBpIysB20RZUewk1AAAAgKayXDJTQ5K6EmoAAAAgjRBqICkD2gUkSZv3hVQZpvcuAAAA0BTx9lMuSDVilRollQwLBwAAgPsRaiAp7QNedcnzypL0n13BVC8HAAAASCtuqtTolOeTx5Aqw7b2VvOBJQAAALgboQaSNrRjriTpox1VfKILAAAASJBt27VmaqR2LZLk8xjqmhep1thSHkrxagAAAID9I9RA0g5rH1COx9CuoKnNZdz8AAAAAImoXQvhlhuyHm38kiLtZQEAAAA3c8s1NNJQwOvRYe0jszU+2lGV4tUAAAAA6cGslWq4oVJDknrGQg0+rAQAAACXI9RAs8RaUK3ZW63yEP13AQAAgAOxarVudUmmoe5tfDIk7am2VFptpno5AAAAQKMINdAsXfN96pbvk2VL/9lFtQYAAABwIGatcXRuCTUCXo+65kfmalCtAQAAADcj1ECzxao1VjEwHAAAADggM3rNbNiWDLf0n1JNC6qvCDUAAADgYoQaaLZD2wcU8BraW21pA4MFAQAAgP2yop8DMlz2gaAezNUAAABAGiDUQJOZplnnl8e2dHi7HEnSu99U1HvcNE1ZFvM2AAAAAKlupYabxOZq7A5a2sdcDQAAALgUoQYSZlmWDI9XgUBAPp+vzq8LRhwmMxTSprKw+h5zQr3He/bqTbABAAAAqPZMDXdVauR6PeqSx1wNAAAAuJsv1QtA+rBtW7Zl6tX1O+X119866/eF9W2VpRsef1GHtvPHj1umqdN6d2DeBgAAACB3VWqUlJSo/6BD418Pu+hyHfGD/6cZjz2pNx+ZUee5XTp31srXX2vtJQIAAAB1EGqgyTxer7xeb73jPQoNba8Kam/IVrkpFeXUfw4AAACQ7cxoluGGmRqWbeux5R/Ev95VZWr1nmoNHXOWLr3ogjrPvWTUMa29PAAAAKAe2k/BMblejzrnRYKMzWXhFK8GAAAAcKd4pYbL2k9JUlGOR4akKtNWeSj1lSQAAADAdxFqwFGx4YJ7qy3tZbggAAAAUI8VzTLc0H7qu3weQx0CkdvEbyu5ngcAAID7EGrAUbWrNb4qCzNHAwAAAPiO3oV+XX1YkXp/859UL6VBnaPDwrdXcT0PAAAA9yHUgONqV2vsCrrv02cAAABAKhmGIa/HkMeFlRqS1C7gkd8jhSxpd7U71wgAAIDsRagBx+V6PTq4IPLprvWloXjPYAAAAADu5zEMdcyNVF/TggoAAABuQ6iBFtG9jU8Br6Fqy9bWcm6EAAAAgHQSa0G1q8pU2OJDSgAAAHAPQg20CK9h6JBCvySppNJS5z4DUrwiAAAAAIkq8BnK9xmyJe2o4kNKAAAAcA9CDbSYDrledQh4ZEv64a/vYsggAAAAkCYMw1CnvEgLqq8rGBgOAAAA9yDUQIvqU+iXR1LfY0/Uf3ZVp3o5AAAAABLUJc8njyGVh23tCjIwHAAAAO5AqIEWlevzqHtB5BNeS7dVaEdlOMUrAgAAAJAIv8dQt/zIbI3NZSEZBrePAAAASD2uStHiivM8+uLt5Qrb0rMb9ynEoEEAAAAgLRxc4JPXkCrCtvocd2qqlwMAAAAQaqDlGYahf958hfJ9hrZXmVq6pTzVSwIAAACQAJ/H0MEFkWqNoydeIovZGgAAAEgxQg20irJd23VGjwJJ0kc7q7R6dzDFKwIAAACQiOJ8n3yG1La4hz7eWZXq5QAAACDLEWqg1fQu9Ou4LnmSpBc37dOWslCKVwQAAADgQHweQz3a+CVJK7ZWaG+1meIVAQAAIJsRaqBVnVScr75FfoVtacH6Um1ncDgAAADgesX5Xn2z5j8KWrZe3FQmmzZUAAAASBFCDbQqj2Ho7D5F6pbvU5Vp65/rSvmkFwAAAOByhmHotb/+QX6PtLkspA+204YKAAAAqUGogVZjmqZM05THtjShd4EOCni0L2TpqS/3am9VKP547V+WZaV62QAAAAAk7ftmq0Z1i8zJe21bub6l6hoAAAApQKiBFmdZlgyPV4FAQD6fTz6fT4W5Obru1CO05+ut2hW0dOeyT9Wt/2Hxx2O/evbqTbABAAAAuMRRHXN1SGGkney/1peqIsy1OgAAAFqXL9ULQOazbVu2ZerV9Tvl9dfdclWmrc/3htSuuLumLXxTA4t8KsqJZG2Waeq03h3o1wsAAAC4hGEYOrN3oeau2aM91Zae2VCqH/VtK6/HSPXSAAAAkCWo1ECr8Xi98n7nV0GOT0MOylWh3yPTllbvDWtntS2PxyOP15vqJQMAAAD4jjyfRxMPKVKOx9BXZWEt3sLgcAAAALQeKjWQcn6PocM75GjtnmrtClr6Ym9Iu4OWeheQuQEAAABuUVJSov6DDo1/3X3oCI2+7o/6eGdQT/z9cb0778/xx7p07qyVr7+WimUCAAAgwxFqwBW8hqFB7XK0pTyszWVh7agyVVptqvfRx6V6aQAAAAAkWbatx5Z/UOfY1xVhrSsNafC483X6hP+nQ4r8MgxDl4w6JkWrBAAAQKbjo/BwDcMw1KONX0M6BJTrNVRtSVMfeU4vbC5XabWZ6uUBAAAA+I6u+T71K/JLkr6uNPXl3pAsWlEBAACgBVGpAdcpzPHoyIMC2lBara8rwlq9p1pfllZreOd8HdM5V7lesjgAAADALbrk+2QY0hd7Q/q2ylS1Zcufl5/qZQEAACBD8a/DcCWfx9AhhT795cejdXC+VyFLWvl1hR787269uqVMu4NUbgAAAABu0TnPp0Pb5chjSHuqLZ1xy1+otgYAAECLoFIDrrZt9Sc6v3e+viyz9NY3ldoZtPTB9ip9sL1KfQp9GtQ2R/3b5ijgNeLnGIYhj4e8DgAAAGhNHXK9GuwNaPXuoA7q1U+Pfr5Ho7sX6PD2ARmGceAXAAAAABJAqAHXsixLhser3Nzc+LH+I0bqhAunauCJp2vDvrA27Avr+fW7tfatZVr9+mKtWblERbk52rxpI8EGAAAA0MoK/R4N6RDQy+99rE6HDNILm8r0+Z5qnXZwgdoHvKleHgAAADIAoQZcy7Zt2ZapV9fvlNdfd6tWhm3tDFraGTRVmRPQYSPH6bCR4yRJW1d/ojdKKtSvXUDF+T55+FQYAAAA0GpyfR49/7ufa87S97Ty6wp9ubda6/ZWa0C7HA3vnKduBf5ULxEAAABpjFADrufxeuX11v1UVxuv1CYg9bRtVYRt7Qqa2hU0VRaydfChQ/T2t1V6+9sq5fkM9SnM0cEFPnUv8KtTnpeQAwAAAGhhtmnq+K756tc2Ryu2lWt9aUhr9lRrzZ5qdcnzashBuTq8fUC5PqqrAQAA0DSEGkhrhmGowG+owO9RjzZ+VYXC+vUVU3XT/Q9pY1lYlWFbn+0O6rPdQUmS3yN1yvWqY+xXIPJ7vi8yh4OWVQDw/9u7++Co6nuP459zzj5lyZM8FEJvUFOervKokgwOCozXUUSqVQhtdZRbvNyx1Sm0qIVOpWNrZxhbmc4otDoKTB9GJVPbudbhYpU6V6ohCtHxDghXsWAICAaSYJIl2f3dPza77LKbEJKz2U3yfs38yJ7fOb+zv7P5cfZ78j0PAAD0XX19vSZM/tf49CWlZZp66zdVNvsGHZdPr332pbYfOqXPPtitQ+/sVOiz/9PO7X/NYo8BAAAwUJDUwKDiyGjvq1W685UXZXs8unR6ucquvlbjppdr3NRrpPwCHW0J62hLOKndmVMn1Vj3T9103WwV+z0q8tkq8jsq8tkq8Npc3QEAAABchIgxen7nuyn17RGjE61hHW/tUIt8uvTqObr06jmSpE3/26AxQY/G5HmiP4Me5XElBwAAAM6T9aRGKBTSo48+qt/97nc6deqUpk2bpp///Oe68cYbL9i2rq5Oq1at0o4dOxSJRDR//nxt2LBBZWVl/dBz5KLunsNhjFFrOHq7qsSfbWEp/5KRyr9kpD48dVbS2aR2tqIPPMz3Wsr32sr32p3T0Z+Ffo8KvLY8NokPAAAAoDte29LYYR6NHeZRS3tEJ9vCOhkKq7XDqPFsRI1no7eoiiny2RoT9OgreR4Vem0V+mwVeB0V+Gx5ib8BAACGpKwnNZYtW6aqqiqtXLlSEyZM0JYtW3TLLbdo586dmjNnTpftzpw5o/nz56uxsVFr166V1+vVhg0bNHfuXNXW1mrEiBH9uBXINemewyFJBR6pwJ9cFzZGzW3tevTB/1Rxyb/okpJSDf/qOF0ydpyKxnxVHq9Pje0RNbZLUjhlnTEBx1K+11KeYyvgWMrzWAo4lgKOHX+d51gKeGzleWz5Pba8liXbit5GCwAAABhKgl5b47y2xhV4dfs1k3VlxXUacfkkjSybpJGXT1JRSWnaREdMnmOpoPPK6kKfo4LYSUc+W8MDjvI9NnE2AADAIJTVpMbu3bv1wgsv6IknntDq1aslSffcc4+mTJmihx9+WP/4xz+6bLtx40YdPHhQu3fv1qxZsyRJCxYs0JQpU/SrX/1Kv/jFL/plGzDwOZaloCPVvrot5QoPY4zORqSzkc6fYRN/HeqI6NNDn6hw1Bj58oJqCxu1hY2kyEW9vyXJY0sey4r/tKzoFSKWZcmSOhMf0b76HUt+x5bfiSZK/M65uoBjyWPCCnkCaumIKN9j5HAgBwAAgBzX2tykx59+NqmuI2J0pj2iLzsiaukwCoWNzoaNGs98KV9eUK1ho9bWsD5vDUtqT1ln6MtmtZ48porpV6rAayvoseVYkse25LEsOZ2xd8BjKeiJnogUdGw5XAECAACQ07Ka1KiqqpLjOFqxYkW8LhAIaPny5Vq7dq2OHDmi0tLSLtvOmjUrntCQpMmTJ+uGG27QSy+9RFIDvZLuCg+PpGCaZc+ePasHb6/Qax+flDyeeLKjI2LUYaSOiNRhTNqfZzvCsjvfx0hqj0jtMp0Xgpi+b8jYq7Vpf7Ok6MPRfbYlj21FD+ISDuA8djRR4uk8uEs8yLMtEz2zrbM76XqVWGdMNPFiWZYcK7ouJ+E97c5127E+WOeWt3UucWOp8+qVzjq7M7GTmOix46/Tb360Rddi6+IqGQAAgNzlsS0V+x0V+5Pj85vmlOmv++qiSY5INNlx/uu2sJF/WIH8wwrSXuXRHX/nFdY+x5LPtuS1z732OZb8dvSkIid2MlKaGNayzsXBHvtcjO2xo7fgihWHeBQAAOCiZTWpsXfvXk2cOFGFhYVJ9eXl5ZKk2tratEmNSCSiDz74QN/5zndS5pWXl2vHjh1qbm5WQUFBZjoOJHA8Hnm8HvkvvKikaDLk3y4bpR0fn5Tl8Shiotd2RIyJvjbnkgXxn0YKhzv02AP/IX9wmAL5BQoUFCqQX6hAflHndJHyCosVLCrW8K+MUcSO/vduj0QfyOhKsmSQSkyq2LED0njiw0pKgjidSRUn6bWVkmBJnEycZ3W7TKzGJCVmrM4DZCvxdSzZ01lnW1a8r8nLJl75k77t+cvG5plIWI3BkdrfeFZeJ5K6bJrP8mJGmbmIpc1FrPji+tC12OcgpW5z7LOILaf452YlvE6zrHUu6db1/Nh6rc4+mnhfzXlJRmPOTy6aeKdi/e1qTCipruuxoYQ+JX8+ybVd/R/oiBhFZCkcMbIjJmll5683ZZo/8gAAuuDpPGlnWBfzI8aotcNo7f3/rtLxkzVsxFfkH1Yox+uV4/XJ9nrl8frk+Pzy5xcqUFAsf36hbMeJJ0b6gyXFEydeJ5rwiJ2EFDtRyI6dMBQ7ucdS/LihIxLR0ZGT9Od/filZVrzeSohXE9cRixvTxQDJ8WJybBg9Zjl3vBIxpvOK84STlmwr6T0Tpz2WZCdMS4ongRLjn+6k/EbS/IrS/dZiJ1d5Latz3EQ/A2OMIpLCkXPHYiblc+k6ngYAANmT1aRGfX29SkpKUupjdUePHk3brqGhQaFQ6IJtJ02alLZ9KBRSKBSKTzc2NsbX296eetlyfwmFQmppaZEaTsrx+nrUpr29XYFAQE1fnJTjTX2GhJvt+vO9BkIf+/peLY2n07azu26og/+zXX986305nq7/65pIh1r271TepKt1NhzRym/epl++8F+yHI8iiv4RNJpEiQbtsaSKEuo6OsLa8edtuvEblbJsu2cHGZGItm/7o2RZ0YNFxyOPzyfb44tOe7zy+HxyPJ0Hkh6vLMeRbduyPZ7ogZTtyLKjdZbtyHYcWY6dVOd4vD3oDVwTGKtP9n2e7V5goBs+Ve/vrnNtdRdKhkjdXcmVulxKku/85FSskTlvBT34e9f5TfrkAiu6YJIo4UVXq0r3+Vzo7fvUpqcfTuf3U3P+Zaqrrevy93t+m958+IPxz1Qm9k8vP49vXJovTxZvx9PcHL361FxMhjtBrsb+7e3tamlpkff0KVlpngV3voDPpzOnG3q07oG2bCbX/Wn1m3r8lxt6tOxdc6dpy84atUeiz92LGCkcKzIKd/5BPxyR3vzvVxUcNiwaK1sJsattS5bVOe2R4/VKjkc+fyAaA/t88nj9Scd7rT3qXXf8OlF/qs9rGUos9f2Ur5T4wUoOGS50MkpiDHL+dCxpYsXXFT3NxSSsJ3F9579/V+s6/4SVxKSVMVKoaLL21XwW73usrd1Fuy6/59PM6Mm3yMW06y7+uJj3HMqSxpOSTyTrKkY+f5ylrDNi1Jh/mepr62RlMHboZUiAPrh+dECjg/33Z+RYnPTFF1/I6+XvQENJj2N/k0VlZWVmwYIFKfUff/yxkWQ2bNiQtt3hw4eNJLN+/fqUec8995yRZPbu3dvl+65bty6+z6ZQKBQKhUKhUCi5X44cOdKrYw5ifwqFQqFQKBQKZWCVC8X+Wb1SIy8vL+msqZi2trb4/K7aSepVW0las2aNfvCDH8SnI5GIGhoaNGLEiKxeRtrU1KTS0lIdOXIk5ZZcQE8xjuAWxhLcwDiCWxhLQ5cxRs3NzRo7dmyv2hP7YzBjHMEtjCW4gXEEtzCWhq6exv5ZTWqUlJSori71dhT19fWS1GXnhw8fLr/fH1/uYtpKkt/vl9+f/ASE4uLinnY74woLC/kPiz5jHMEtjCW4gXEEtzCWhqaioqJetyX2x1DAOIJbGEtwA+MIbmEsDU09if27vH1/f5gxY4YOHDigpqampPrq6ur4/HRs29bUqVP17rvvpsyrrq5WWVkZDwkHAAAAAAAAAGCQyWpSY/HixQqHw3rmmWfidaFQSJs3b1ZFRYVKS0slSYcPH9b+/ftT2tbU1CQlNj766CO98cYbWrJkSf9sAAAAAAAAAAAA6DdZvf1URUWFlixZojVr1ujzzz/X+PHjtXXrVn366ad67rnn4svdc889evPNN5Oeev7d735Xzz77rBYuXKjVq1fL6/XqySef1OjRo/XDH/4wG5vTZ36/X+vWrUu5PB64GIwjuIWxBDcwjuAWxhIGG8Y03MA4glsYS3AD4whuYSzhQiyTmCnIgra2Nv3kJz/R73//e506dUrTpk3Tz372M910003xZebNm5eS1JCkzz77TKtWrdKOHTsUiUQ0b948bdiwQePHj+/vzQAAAAAAAAAAABmW9aQGAAAAAAAAAABAT2T1mRoAAAAAAAAAAAA9RVIDAAAAAAAAAAAMCCQ1AAAAAAAAAADAgEBSox+EQiE98sgjGjt2rPLy8lRRUaHXXnutR23r6upUWVmp4uJiFRYW6rbbbtMnn3yS4R4jF/V2HP30pz+VZVkpJRAI9EOvkWvOnDmjdevW6eabb9bw4cNlWZa2bNnS4/anT5/WihUrNGrUKA0bNkzz58/Xnj17Mtdh5Ky+jKUtW7ak3S9ZlqVjx45ltuPIKTU1NXrggQd05ZVXatiwYRo3bpwqKyt14MCBHrVnn4RcROwPNxD7ww3E/nALsT/cQOwPN3my3YGhYNmyZaqqqtLKlSs1YcIEbdmyRbfccot27typOXPmdNnuzJkzmj9/vhobG7V27Vp5vV5t2LBBc+fOVW1trUaMGNGPW4Fs6+04itm0aZPy8/Pj047jZLK7yFEnT57UY489pnHjxmn69On6+9//3uO2kUhECxcu1Pvvv6+HHnpII0eO1MaNGzVv3jy99957mjBhQuY6jpzTl7EU89hjj+nyyy9PqisuLnangxgQ1q9fr127dmnJkiWaNm2ajh07pqeeekpXXXWV3nnnHU2ZMqXLtuyTkKuI/eEGYn+4gdgfbiH2hxuI/eEqg4yqrq42kswTTzwRr2ttbTVf+9rXzOzZs7ttu379eiPJ7N69O163b98+4ziOWbNmTcb6jNzTl3G0bt06I8mcOHEi093EANDW1mbq6+uNMcbU1NQYSWbz5s09avviiy8aSWbbtm3xus8//9wUFxebb33rW5noLnJYX8bS5s2bjSRTU1OTwR5iINi1a5cJhUJJdQcOHDB+v9/cdddd3bZln4RcROwPNxD7wy3E/nALsT/cQOwPN3H7qQyrqqqS4zhasWJFvC4QCGj58uV6++23deTIkW7bzpo1S7NmzYrXTZ48WTfccINeeumljPYbuaUv4yjGGKOmpiYZYzLZVeQ4v9+vMWPG9KptVVWVRo8erTvuuCNeN2rUKFVWVuovf/mLQqGQW93EANCXsZSoublZ4XDYhR5hILr22mvl8/mS6iZMmKArr7xS+/bt67Yt+yTkImJ/uIHYH24h9odbiP3hBmJ/uImkRobt3btXEydOVGFhYVJ9eXm5JKm2tjZtu0gkog8++EDXXHNNyrzy8nJ9/PHHam5udr2/yE29HUeJysrKVFRUpIKCAt199906fvx4JrqKQWzv3r266qqrZNvJXx3l5eVqaWnp8X0wgZj58+ersLBQwWBQX//613Xw4MFsdwk5wBij48ePa+TIkd0uxz4JuYjYH24g9kcu4HsWbiP2RzrE/ugtkhoZVl9fr5KSkpT6WN3Ro0fTtmtoaFAoFOpVWww+vR1HknTJJZfogQce0G9/+1tVVVXpvvvu04svvqjrrrtOTU1NGeszBp++jEMgUTAY1LJly/T000/r5Zdf1sMPP6zXX39d1157bY/OPsXg9oc//EF1dXVaunRpt8uxT0IuIvaHG4j9kQv4noVbiP3RHWJ/9BYPCs+w1tZW+f3+lPpAIBCf31U7Sb1qi8Gnt+NIkr7//e8nTd95550qLy/XXXfdpY0bN+pHP/qRu53FoNWXcQgkqqysVGVlZXz69ttv10033aTrr79ejz/+uH7zm99ksXfIpv379+t73/ueZs+erXvvvbfbZdknIRcR+8MNxP7IBXzPwi3E/ugKsT/6gis1MiwvLy/tfd3a2tri87tqJ6lXbTH49HYcdeXb3/62xowZo7/97W+u9A9Dg9vjEEg0Z84cVVRUsF8awo4dO6aFCxeqqKgofj/57rBPQi4i9ocbiP2RC/ieRSYR+4PYH31FUiPDSkpKVF9fn1Ifqxs7dmzadsOHD5ff7+9VWww+vR1H3SktLVVDQ0Of+4ahIxPjEEjEfmnoamxs1IIFC3T69Glt3769R/sT9knIRcT+cAOxP3IB37PINPZLQxexP9xAUiPDZsyYoQMHDqTcv7S6ujo+Px3btjV16lS9++67KfOqq6tVVlamgoIC1/uL3NTbcdQVY4w+/fRTjRo1yq0uYgiYMWOG9uzZo0gkklRfXV2tYDCoiRMnZqlnGCw++eQT9ktDUFtbmxYtWqQDBw7olVde0RVXXNGjduyTkIuI/eEGYn/kAr5nkWnE/kMTsT/cQlIjwxYvXqxwOKxnnnkmXhcKhbR582ZVVFSotLRUknT48GHt378/pW1NTU3Swc1HH32kN954Q0uWLOmfDUBO6Ms4OnHiRMr6Nm3apBMnTujmm2/ObMcxYNXX12v//v1qb2+P1y1evFjHjx/Xn/70p3jdyZMntW3bNi1atCjt/S2BdGMp3X7p1Vdf1Xvvvcd+aYgJh8NaunSp3n77bW3btk2zZ89Ouxz7JAwUxP5wA7E/+hvfs3ALsT+6Q+wPN1nGGJPtTgx2lZWVevnll7Vq1SqNHz9eW7du1e7du/X666/r+uuvlyTNmzdPb775phJ/Hc3NzZo5c6aam5u1evVqeb1ePfnkkwqHw6qtrSWjPcT0dhwFg0EtXbpUU6dOVSAQ0FtvvaUXXnhB06dP165duxQMBrO1SciSp556SqdPn9bRo0e1adMm3XHHHZo5c6Yk6cEHH1RRUZGWLVumrVu36tChQ7rsssskRQOQOXPm6MMPP9RDDz2kkSNHauPGjTp8+LBqamo0adKkLG4VsqG3Y2nChAmaOXOmrrnmGhUVFWnPnj16/vnnVVJSopqaGo0ePTqLW4X+tHLlSv3617/WokWLkh4gGXP33XdLEvskDCjE/nADsT/cQuwPtxD7o6+I/eEqg4xrbW01q1evNmPGjDF+v9/MmjXLbN++PWmZuXPnmnS/jiNHjpjFixebwsJCk5+fb2699VZz8ODB/uo6ckhvx9F9991nrrjiClNQUGC8Xq8ZP368eeSRR0xTU1N/dh855NJLLzWS0pZDhw4ZY4y59957k6ZjGhoazPLly82IESNMMBg0c+fONTU1Nf2/EcgJvR1LP/7xj82MGTNMUVGR8Xq9Zty4ceb+++83x44dy86GIGti31tdlRj2SRhIiP3hBmJ/uIXYH24h9kdfEfvDTVypAQAAAAAAAAAABgSeqQEAAAAAAAAAAAYEkhoAAAAAAAAAAGBAIKkBAAAAAAAAAAAGBJIaAAAAAAAAAABgQCCpAQAAAAAAAAAABgSSGgAAAAAAAAAAYEAgqQEAAAAAAAAAAAYEkhoAAAAAAAAAAGBAIKkBAAAAAAAAAAAGBJIaAAAAAAAAAABgQCCpAQAAAAAAAAAABgSSGgAAAAAAAAAAYEAgqQEAAAAAAAAAAAaE/wePYpHQzDvruwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "crested.pl.hist.distribution(\n",
- " adata,\n",
- " target=\"checkpoint_15\",\n",
- " class_names=[\"Astro\", \"Endo\"],\n",
- " log_transform=True,\n",
- " share_y=True,\n",
- " title=\"Predictions Distribution\",\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T16:26:24.294927+0200 INFO Plotting density scatter for class: Astro, models: ['checkpoint_15'], split: test\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHvCAYAAACboJyJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hb1Zn/P1e9a5qmeqo9xQ13GxvjQjOBsCGBENgQSkjIkgSSTTbJ8tskkLIQQtgENqSQJdQQWEhCWQgJEIy7ccf29N5nNE3SFEkj6f7+MCNGnj6SZjTj83kePzBXtxxd3Xu+5y3nPZIsyzICgUAgEAhiEsVsN0AgEAgEAsHYCKEWCAQCgSCGEUItEAgEAkEMI4RaIBAIBIIYRgi1QCAQCAQxjBBqgUAgEAhiGCHUAoFAIBDEMEKoBQKBQCCIYYRQCwQCgUAQwwihFghmgRUrViBJElqtls7OztlujkAgiGGEUAsEM8yhQ4f44IMPAPB6vTz77LMRO7ckSUiSFLHzCQSC2UcItUAwwzz++OMAZGRkhPwtEAgEoyGEWiCYQfr7+/njH/8IwDPPPIPJZOLkyZMcOnRollsmEAhiFSHUAsEM8uKLL+J0Olm2bBnbt2/nM5/5DDC2Ve1wOPjud7/L8uXLMRqNaLVa0tPTueCCC/j+97/P4OAgAPfee2+Iy3vIBT70r7a2FoAnn3wSSZK45ZZb6Orq4utf/zoLFy5Eq9Wybdu24PE+n4/f/OY3bNq0CavVik6nIz8/n7vuuoumpqbo3ByBQDAqqtlugEBwLjEkyJ///OeD/3388cd5/vnn+fnPf45erw/u29/fz+bNmzl16hQ2m42LL74Yo9FIa2srpaWl7Nu3j2984xvExcWxcuVKbr75Zp566ikAbr755pDrmkymkL87OjpYu3YtPT09XHjhhaxZswaNRgOAx+Ph4x//OG+//TY6nY7t27djsVjYt28f//3f/80f//hH/va3v7F69eqo3SeBQDAMWSAQzAhlZWUyIKvVarm9vT24vaioSAbkp59+OmT/p556Sgbkj33sY7LX6w35zO/3yzt37pQ9Hk/IdkAe77V+4okngvtcfPHFssPhGLHPd77zHRmQFy5cKNfU1AS3e71e+bbbbpMBOTc3d8S1BQJBdBCub4Fghvj9738PwD/90z9hs9mC24es67Pd321tbQBceumlqNXqkM8UCgVbt24NWsFTRa1W89hjj2GxWEK2u91uHn30UQB+/vOfk5OTE3LMI488QkpKCjU1Nbz00kvTurZAIJgaQqgFghnA5/MF3dJDwjzETTfdhEqlYteuXVRVVQW3r1u3DoCf/vSnPP3003R1dUWsPatWrSIvL2/E9sOHD9Pb20tCQgJXXXXViM8NBgPXX389AO+++27E2iMQCMZGCLVAMAO8/vrrtLa2kpGRwY4dO0I+S0lJ4YorrkCW5aDVDbBt2za+853v0N7ezs0330xSUhKFhYV8/vOf55VXXiEQCEy7PcMt5eEMJYrl5uaOeezChQtD9hUIBNFFCLVAMAMMubXdbjdbt25l8+bNIf+GCqA8+eST+P3+4HE/+clPqKqq4pFHHuHTn/40fX19PPHEE1x99dWcf/759PX1Tas9w5PWBAJBbCOyvgWCKNPS0sIbb7wBQGdnJ3v37h1z3+bmZt58802uvPLK4LacnBzuvPNO7rzzTuBMZbMbb7yRQ4cO8dOf/pQf/OAHEWvrUBGWmpqaMfeprq4O2VcgEEQXYVELBFFmyEresGEDsiyP+e/b3/42MHGlsnXr1vHlL38ZgOPHj4d8NpR05vP5ptXWtWvXYjKZ6Orq4tVXXx3x+cDAAM8//zwA27dvn9Y1BALB1BBCLRBEmaG489lzm8/mpptuAuD//u//sNvt/OUvf2HXrl0jYtGDg4O8+eabAGRnZ4d8tmDBAgBOnz49rbbqdDq+8pWvAPDNb36Turq6kOt+7Wtfo7W1ldzcXK699tppXUMgEEwN4foWCKLIe++9R2VlJVqtNpgtPRZLly5l9erVHD16lKeffpqGhgYefvhhkpKSWLVqFcnJybhcLg4cOEB7ezsZGRlBK3yIa665hp/97GdccsklXHTRRZjNZgAeeOABEhMTJ9XmH/zgBxw+fJh33nmHxYsXs337dsxmM/v376e+vp7ExERefPHFaU8NEwgEU0MItUAQRYbc2FdddRXx8fET7n/TTTdx9OhRHn/8cZ577jn0ej179uyhuLiY9957D6vVSlZWFl//+te5/fbbR4jvj370IxQKBX/+8595+eWX8Xq9AHz3u9+dtFBrtVrefPNNfve73/H000+ze/duPB4PmZmZ3HnnnXznO98R8WmBYAaRZFmWZ7sRAoFAIBAIRkfEqAUCgUAgiGGEUAsEAoFAEMMIoRYIBAKBIIYRQi0QCAQCQQwjhFogEAgEghhGCLVAIBAIBDGMEGqBQCAQCGIYIdQCgUAgEMQwQqgFAoFAIIhhhFALBAKBQBDDCKEWCAQCgSCGEUItEAgEAkEMI4RaIBAIBIIYRgi1QCAQCAQxjBBqgUAgEAhiGCHUAoFAIBDEMEKoBQKBQCCIYYRQCwQCgUAQwwihFggEAoEghhFCLRAIBAJBDCOEWiAQCASCGEYItUAgEAgEMYwQaoFAIBAIYhgh1ALBLPPkk08iSRKHDx+e0evee++9SJJER0fHjF4XQJIk7r333hm/rkAwFxFCLRAI5hT33XcfL7/88rSOfeGFF7jxxhvJz89HkiS2bds26n47d+5EkqRR/x04cGD6jRcIpoFqthsgEAjOPQYGBlCpptf93HfffVx77bVcffXVUz7217/+NUeOHGHdunV0dnZOuP9dd93FunXrQrYtWrRoytcVCMJBCLVAIJhxdDrdrFz3mWeeISMjA4VCwbJlyybc/8ILL+Taa6+dgZYJBGMjXN8CwQzQ1NTEbbfdRnp6OlqtltzcXO644w68Xm9wH4/Hwze+8Q1sNhtGo5FPfvKT2O32Eef661//yoUXXojRaMRsNnPllVdy+vTpEfuVlpZy3XXXYbPZ0Ov1FBYW8h//8R/jtrOuro5FixaxbNky2traANi2bRvLli3jyJEjbNq0Cb1eT25uLr/5zW9GHN/e3s5tt91GSkoKOp2OFStW8NRTT43Y7+wY9VC8vLKykltuuYW4uDisViu33nor/f39Icf19fXx1FNPBV3Rt9xyy7jfaTiZmZkoFFPr9lwuFz6fb0rHCASRRFjUAkGUaW5uZv369fT09HD77bdTVFREU1MTL730UogI3XnnncTHx3PPPfdQW1vLL37xC7761a/ywgsvBPd55plnuPnmm9mxYwcPPPAA/f39/PrXv2bz5s0cO3aMnJwcAD744AMuvPBC1Go1t99+Ozk5OVRVVfHaa6/xn//5n6O2s6qqiosuuoiEhATeeustkpKSgp91d3dzxRVXcN1113HDDTfwv//7v9xxxx1oNBo+//nPA2fc2du2baOyspKvfvWr5Obm8uKLL3LLLbfQ09PD1772tQnv1XXXXUdubi73338/R48e5X/+539ITk7mgQceCH7/L3zhC6xfv57bb78dgIULF07tB5kCt956K729vSiVSi688EIefPBB1q5dG7XrCQSjIgsEgqhy0003yQqFQj506NCIzwKBgPzEE0/IgHzJJZfIgUAg+Nm//uu/ykqlUu7p6ZFlWZZdLpccFxcnf/GLXww5R2trq2y1WkO2b9myRTabzXJdXd2I6w1xzz33yIBst9vlkpISOT09XV63bp3c1dUVcszWrVtlQH7ooYeC2zwej7xy5Uo5OTlZ9nq9sizL8i9+8QsZkJ999tngfl6vV964caNsMplkp9MZ3A7I99xzz4i2fP7znw+59ic/+Uk5MTExZJvRaJRvvvnmEfdyqixdulTeunXrqJ/t3btXvuaaa+THH39cfuWVV+T7779fTkxMlHU6nXz06NGwry0QTAXh+hYIokggEODll1/mqquuGtUSkyQp+P+33357yN8XXnghfr+furo6AN566y16enq44YYb6OjoCP5TKpVs2LCBd999FwC73c6uXbv4/Oc/T1ZW1pjXG+LUqVNs3bqVnJwc3n77beLj40fso1Kp+NKXvhT8W6PR8KUvfYn29naOHDkCwBtvvEFqaio33HBDcD+1Ws1dd91Fb28v77333oT361/+5V9C/r7wwgvp7OzE6XROeGwk2bRpEy+99BKf//zn+ad/+if+/d//nQMHDiBJEnffffeMtkUgEK5vgSCK2O12nE7npBKXzhbVIcHs7u4GoKKiAoCLLrpo1OMtFgsA1dXVAJO6JsBVV11FSkoKf/vb3zCZTKPuk56ejtFoDNlWUFAAQG1tLeeffz51dXXk5+ePiAEvXrwYIDjgGI/x7sHQ95stFi1axCc+8Qn+/Oc/4/f7USqVs9oewbmDEGqBIEYYq+OXZRk4Y53DmThtamrqiP2mO93pmmuu4amnnuIPf/hDiNU8G0x0D2abzMxMvF4vfX19sz5wEJw7CKEWCKKIzWbDYrFw6tSpsM81lDSVnJzMJZdcMuZ+eXl5AJO+5oMPPohKpeLLX/4yZrOZf/7nfx6xT3NzM319fSFWdXl5OUAwgS07O5sPPviAQCAQYlWXlpYGP48Eo7nvZ4rq6mp0Ot2YngeBIBqIGLVAEEUUCgVXX301r7322qglQqdiKe7YsQOLxcJ9993H4ODgiM+HpnLZbDa2bNnC73//e+rr6ye8niRJPPbYY1x77bXcfPPNvPrqqyP28fl8/Pa3vw3+7fV6+e1vf4vNZmPNmjUAXHHFFbS2toZkqft8Pv77v/8bk8nE1q1bJ/1dx8NoNNLT0xORc43FaNPiTpw4wauvvspll1025SleAkE4CItaIIgy9913H3//+9/ZunUrt99+O4sXL6alpYUXX3yRPXv2TPo8FouFX//613zuc59j9erVXH/99dhsNurr63n99de54IIL+OUvfwnAI488wubNm1m9ejW33347ubm51NbW8vrrr3P8+PER51YoFDz77LNcffXVXHfddbzxxhshsfD09HQeeOABamtrKSgo4IUXXuD48eM89thjqNVq4Ewy3G9/+1tuueUWjhw5Qk5ODi+99BJ79+7lF7/4BWazObwb+SFr1qzh7bff5r/+679IT08nNzeXDRs2TOrYXbt2sWvXLuCMGPf19fHjH/8YgC1btrBlyxYAPvOZz6DX69m0aRPJyckUFxfz2GOPYTAY+MlPfhKR7yEQTJrZTToXCM4N6urq5Jtuukm22WyyVquV8/Ly5K985Suyx+MJTs86e/rWu+++KwPyu+++O2L7jh07ZKvVKut0OnnhwoXyLbfcIh8+fDhkv1OnTsmf/OQn5bi4OFmn08mFhYXy9773veDnw6dnDdHf3y9v3bpVNplM8oEDB2RZPjM9a+nSpfLhw4fljRs3yjqdTs7OzpZ/+ctfjviebW1t8q233ionJSXJGo1GXr58ufzEE0+M2I8xpmcNb4ssy8F7U1NTE9xWWloqb9myRdbr9TIwpalaQ9cZ7d/w9jz88MPy+vXr5YSEBFmlUslpaWnyjTfeKFdUVEz6WgJBpJBkOUayNAQCQUyybds2Ojo6IhJnFwgEU0cEWgQCgUAgiGFEjFogEMxp/H7/qMlfwzGZTCJTWzBnEUItEAjmNA0NDeTm5o67zz333BOyCIhAMJcQMWqBQDCncbvdE2bP5+XlBeeXCwRzDSHUAoFAIBDEMCKZTCAQCASCGEbEqMcgEAjQ3NyM2Wye1ZKFAoFAIJh/yLKMy+UiPT19wkp3QqjHoLm5mczMzNluhkAgEAjmMQ0NDSxYsGDcfYRQj8FQucOGhgaxSo5AIBAIIorT6SQzM3NSpXWFUI/BkLvbYrEIoRYIBAJBVJhMaFUkkwkEAoFAEMMIoRYIBAKBIIYRQi0QCAQCQQwjhFogEAgEghhGCLVAIBAIBDGMEGqBQCAQCGIYIdQCgUAgEMQwQqgFAoFAIIhhhFALBAKBQBDDiMpkAoFAIADOLBThcDjwer1oNBqsVqtYlCgGEEItEAgEAux2O8Vl5bR1ufD6AmhUClISzCwpLMBms812885phFALBALBOY7dbmfPoWP0SXpSs4rQGQy4+/tpaGmg69AxNq9bJcR6FhExaoFAIDiHkWWZ4rJy+iQ9efmLMZrNKJVKjGYzefmL6ZP0FJeVI8vybDf1nEUItUAgEJzDOBwO2rpcpKZljohHS5JEalombV0uHA7HLLVQIFzfAoFAMEeJRPKX1+vF6wugMxhG/VxnMOD1BfB6vZFosmAaCKEWCASCOUikkr80Gg0alQJ3fz9Gs3nE5+7+fjQqBRqNJpLNF0yBmHN9Hzp0iK9+9assXboUo9FIVlYW1113HeXl5ZM6vqenh9tvvx2bzYbRaGT79u0cPXo0yq2ePLfccguSJCFJEhqNhkWLFvHDH/4Qn883202bMV588UWKiorQ6XQsX76cN954Y9z9h9+z4f+WLl0asl9TUxM33ngjiYmJ6PV6li9fzuHDh6P5VQSCWWEo+avBFSAhq4icZWtJyCqiwRVgz6Fj2O32SZ/LarWSkmCmtaVhRBxalmVaWxpISTBjtVoj/TUEkyTmhPqBBx7gT3/6ExdffDEPP/wwt99+O7t27WL16tWcOnVq3GMDgQBXXnklzz33HF/96lf56U9/Snt7O9u2baOiomKGvsHEXH755bS0tFBRUcE3v/lN7r33Xh588MGoXS+WXFb79u3jhhtu4LbbbuPYsWNcffXVXH311eP+tg8//DAtLS3Bfw0NDSQkJPDpT386uE93dzcXXHABarWav/71rxQXF/PQQw8RHx8/E19LIJgxIp38JUkSSwoLMMoDVFeU0Ody4ff76XO5qK4owSgPsKSwQMynnk3kGGPv3r2yx+MJ2VZeXi5rtVr5s5/97LjHvvDCCzIgv/jii8Ft7e3tclxcnHzDDTdMqR0Oh0MGZIfDMaXjJuLmm2+WP/GJT4Rsu/TSS+Xzzz9flmVZdrvd8je/+U05PT1dNhgM8vr16+V33303uG9HR4d8/fXXy+np6bJer5eXLVsmP/fccyHn27p1q/yVr3xF/trXviYnJibK27ZtkwOBgHzPPffImZmZskajkdPS0uQ777wzeExXV5f8uc99To6Li5P1er18+eWXy+Xl5cHPn3jiCdlqtcpvvvmmXFRUJBuNRnnHjh1yc3PzlL7/ddddJ1955ZUh2zZs2CB/6UtfmvQ5/vKXv8iSJMm1tbXBbd/5znfkzZs3T6ktAsFcpLu7W37hlb/Kbx2rkfdVdoz499axGvmFV/4qd3d3T+m87e3t8s7de+QXXvmr/MyfXpdfeOWv8s7de+T29vbofJFznKloTMxZ1Js2bRoRC8nPz2fp0qWUlJSMe+xLL71ESkoKn/rUp4LbbDYb1113Ha+88goejycqbQ4XvV4ftHq/+tWvsn//fp5//nk++OADPv3pT3P55ZcHPQJut5s1a9bw+uuvc+rUKW6//XY+97nP8f7774ec86mnnkKj0bB3715+85vf8Kc//Ymf//zn/Pa3v6WiooKXX36Z5cuXB/e/5ZZbOHz4MK+++ir79+9HlmWuuOIKBgcHg/v09/fzs5/9jGeeeYZdu3ZRX1/Pv/3bvwU/37lzJ5IkUVtbO+Z33b9/P5dccknIth07drB///5J36/HH3+cSy65hOzs7OC2V199lbVr1/LpT3+a5ORkVq1axe9+97tJn1MgmCtEK/nLZrOx5YJNXLblfC7bvJbLtpzPlgs2ifnTsUD0xw3hEwgE5IyMDPmyyy4bd79FixbJH/vYx0Zs/5//+R8ZkD/44INJX3MmLOpAICC/9dZbslarlf/t3/5Nrqurk5VKpdzU1BRyzMUXXyzffffdY57zyiuvlL/5zW8G/966dau8atWqkH0eeughuaCgQPZ6vSOOLy8vlwF57969wW0dHR2yXq+X//d//1eW5TMWNSBXVlYG93n00UfllJSU4N8HDx6UCwsL5cbGxjHbqlarR3gAHn30UTk5OXnMY4bT1NQkK5VK+YUXXgjZrtVqZa1WK999993y0aNH5d/+9reyTqeTn3zyyUmdVyCYK0TLohbMLFPRmDmR9f2HP/yBpqYmfvjDH467X0tLC1u2bBmxPS0tDYDm5uYQK3I4Ho8nxOJ2Op1htHh8/u///g+TycTg4CCBQIB//ud/5t5772Xnzp34/X4KCgpGtC0xMREAv9/Pfffdx//+7//S1NSE1+vF4/FgOGt0vWbNmpC/P/3pT/OLX/yCvLw8Lr/8cq644gquuuoqVCoVJSUlqFQqNmzYENw/MTGRwsLCEC+GwWBg4cKFwb/T0tJob28P/r1+/XpKS0vDv0Hj8NRTTxEXF8fVV18dsj0QCLB27Vruu+8+AFatWsWpU6f4zW9+w8033xzVNgkEM8lQ8ldDSwN5psUhsWP5w+SvTJH8Na+IeaEuLS3lK1/5Chs3bpywwx0YGECr1Y7YrtPpgp+Pxf33388PfvCD8Bo7SbZv386vf/1rNBoN6enpqFRnfobe3l6USiVHjhxBqVSGHGMymQB48MEHefjhh/nFL37B8uXLMRqNfP3rXx/h5jIajSF/Z2ZmUlZWxttvv81bb73Fl7/8ZR588EHee++9SbdbrVaH/C1J0pSrFaWmptLW1hayra2tjdTU1AmPlWWZ3//+93zuc58bER5JS0tjyZIlIdsWL17Mn/70pym1TyCIdYaSv7oOHaO6ooTUtMxgyc/WloYPk79WieSveUTMxaiH09raypVXXonVauWll14aIV5no9frR41Du93u4Odjcffdd+NwOIL/Ghoawmv8OBiNRhYtWkRWVlZQpOGMFej3+2lvb2fRokUh/4aEbO/evXziE5/gxhtvZMWKFeTl5U166pper+eqq67ikUceYefOnezfv5+TJ0+yePFifD4fBw8eDO7b2dlJWVnZCPELl40bN/LOO++EbHvrrbfYuHHjhMe+9957VFZWctttt4347IILLqCsrCxkW3l5eUgcWyCYL9hsNjavW0WmWUFXfSm1pw7TVV9Kplkh6nLPQ2LWonY4HHzsYx+jp6eH3bt3k56ePuExaWlptLS0jNg+tG28c2i12lGt8ZmkoKCAz372s9x000089NBDrFq1CrvdzjvvvMN5553HlVdeSX5+Pi+99BL79u0jPj6e//qv/6KtrW1CQX3yySfx+/1s2LABg8HAs88+i16vJzs7m8TERD7xiU/wxS9+kd/+9reYzWb+/d//nYyMDD7xiU9Muv3vv/8+N910E++88w4ZGRmj7vO1r32NrVu38tBDD3HllVfy/PPPc/jwYR577LHgPnfffTdNTU08/fTTIcc+/vjjbNiwgWXLlo0477/+67+yadMm7rvvPq677jref/99HnvssZDzCgTzCZvNxpakJLEs5TlATFrUbrebq666ivLycv7v//5v0lbdypUrOXr0KIFAIGT7wYMHMRgMI2K/scgTTzzBTTfdxDe/+U0KCwu5+uqrOXToEFlZWQB897vfZfXq1ezYsYNt27aRmpo6Il47GnFxcfzud7/jggsu4LzzzuPtt9/mtddeC8a+n3jiCdasWcPHP/5xNm7ciCzLvPHGGyPc3ePR399PWVlZSKb42WzatInnnnuOxx57jBUrVvDSSy/x8ssvh4hvS0sL9fX1Icc5HA7+9Kc/jWpNA6xbt46//OUv/PGPf2TZsmX86Ec/4he/+AWf/exnJ91+gWCuIUkScXFxJCcnExcXJ0R6niLJUw0yRhm/38+nPvUp3njjDV555RWuuOKKUfdraWnB4XCwcOHCoJi88MILXH/99bz44otce+21AHR0dJCfn8+OHTt4/vnnJ90Op9OJ1WrF4XBgsVjC/2ICgUAgEHzIVDQm5lzf3/zmN3n11Ve56qqr6Orq4tlnnw35/MYbbwTOuEefeuopampqyMnJAeDaa6/l/PPP59Zbb6W4uJikpCR+9atf4ff7ZyxRTCAQCASCSBJzQn38+HEAXnvtNV577bURnw8J9WgolUreeOMNvvWtb/HII48wMDDAunXrePLJJyksLIxWkwUCgUAgiBox5/qOFYTrWyAQCATRYioaE5PJZAKBQCAQCM4ghFogEAgEghhGCLVAIBAIBDGMEGqBQCAQCGIYIdQzjN1u54477iArKwutVktqaio7duxg7969s920OcOLL75IUVEROp2O5cuX88Ybb4y7/9Dym2f/a21tDdnv0UcfJScnB51Ox4YNG0YsHSoQCASzgRDqGeaaa67h2LFjPPXUU5SXl/Pqq6+ybds2Ojs7Z7tp41YUixX27dvHDTfcwG233caxY8e4+uqrufrqqzl16tSEx5aVldHS0hL8l5ycHPzshRde4Bvf+Ab33HMPR48eZcWKFezYsSNkdTCBQCCYFaK43OacJhrrUXd3d8uAvHPnznH3A+Rf/epX8uWXXy7rdDo5NzdXfvHFF0P2qa+vlz/96U/LVqtVjo+Pl//pn/5JrqmpCX7+/vvvy5dccomcmJgoWywWecuWLfKRI0dGvc5VV10lGwwG+Z577pHvueceecWKFfLjjz8uZ2ZmykajUb7jjjtkn88nP/DAA3JKSopss9nkH//4xyHneuihh+Rly5bJBoNBXrBggXzHHXfILpcr+PkTTzwhW61W+c0335SLiopko9Eo79ixQ25ubp7SPbzuuuvkK6+8MmTbhg0b5C996UtjHvPuu+/KwLjr865fv17+yle+Evzb7/fL6enp8v333z+l9gkEAsFkmIrGCIt6BjGZTJhMJl5++eVRV/kazve+9z2uueYaTpw4wWc/+1muv/764NrQg4OD7NixA7PZzO7du9m7dy8mk4nLL788uNyly+Xi5ptvZs+ePRw4cID8/HyuuOIKXC5XyHXuvfdePvnJT3Ly5Ek+//nPA1BVVcVf//pX3nzzTf74xz/y+OOPc+WVV9LY2Mh7773HAw88wHe/+92Q1bYUCgWPPPIIp0+f5qmnnuIf//gH3/72t0Ou1d/fz89+9jOeeeYZdu3aRX19Pf/2b/8W/HzIRV1bWzvmfdm/fz+XXHJJyLYdO3awf//+ce8nnKkFn5aWxqWXXhoSavB6vRw5ciTkvAqFgksuuWRS5xUIBIKoMgMDhzlJNCxqWZbll156SY6Pj5d1Op28adMm+e6775ZPnDgRsg8g/8u//EvItg0bNsh33HGHLMuy/Mwzz8iFhYVyIBAIfu7xeGS9Xi//7W9/G/W6fr9fNpvN8muvvRZyna9//esh+91zzz2ywWCQnU5ncNuOHTvknJwc2e/3B7cVFhaOa22++OKLcmJiYvDvJ554QgbkysrK4LZHH31UTklJCf598OBBubCwUG5sbBzzvGq1Wn7uuedCtj366KNycnLymMeUlpbKv/nNb+TDhw/Le/fulW+99VZZpVIFPQxNTU0yIO/bty/kuG9961vy+vXrxzyvQCAQTJepaEzMlRCd71xzzTVceeWV7N69mwMHDvDXv/6Vn/70p/zP//wPt9xyS3C/s9dn3rhxY7C86okTJ6isrMRsNofs43a7qaqqAqCtrY3vfve77Ny5k/b2dvx+P/39/SNWpVq7du2INubk5IScOyUlBaVSiUKhCNk2PH779ttvc//991NaWorT6cTn8+F2u+nv78dgMABgMBhYuHBh8Ji0tLSQc6xfv57S0tJx7990KCwsDCkhu2nTJqqqqvj5z3/OM888E/HrCQQCQSQRQj0L6HQ6Lr30Ui699FK+973v8YUvfIF77rknRKjHo7e3lzVr1vCHP/xhxGdDC8bffPPNdHZ28vDDD5OdnY1Wq2Xjxo1B1/gQRqNxxDnOXtpSkqRRtw0tJ1pbW8vHP/5x7rjjDv7zP/+ThIQE9uzZw2233YbX6w0K9WjnkKdYwTY1NZW2traQbW1tbaSmpk7pPOvXr2fPnj0AJCUloVQqI3JegUAgiDQiRh0DLFmyhL6+vpBtBw4cGPH34sWLAVi9ejUVFRUkJyezaNGikH9WqxWAvXv3ctddd3HFFVewdOlStFotHR0dUWn/kSNHCAQCPPTQQ5x//vkUFBTQ3NwclWtt3LiRd955J2TbW2+9NcIDMRHHjx8nLS0NAI1Gw5o1a0LOGwgEeOedd6Z8XoFAIIg0QqhnkM7OTi666CKeffZZPvjgA2pqanjxxRf56U9/yic+8YmQfV988UV+//vfU15ezj333MP777/PV7/6VQA++9nPkpSUxCc+8Ql2795NTU0NO3fu5K677qKxsRGA/Px8nnnmGUpKSjh48CCf/exn0ev1UfleixYtYnBwkP/+7/+murqaZ555ht/85jdTPs/7779PUVERTU1NY+7zta99jTfffJOHHnqI0tJS7r33Xg4fPhy8N3BmCdSbbrop+PcvfvELXnnlFSorKzl16hRf//rX+cc//sFXvvKV4D7f+MY3+N3vfsdTTz1FSUkJd9xxB319fdx6661T/h4CgUAQSYRQzyAmk4kNGzbw85//nC1btrBs2TK+973v8cUvfpFf/vKXIfv+4Ac/4Pnnn+e8887j6aef5o9//CNLliwBzsR6d+3aRVZWFp/61KdYvHgxt912G263O7gKy+OPP053dzerV6/mc5/7HHfddVfIvOFIsmLFCv7rv/6LBx54gGXLlvGHP/yB+++/f8rn6e/vp6ysbNz53Js2beK5557jscceY8WKFbz00ku8/PLLLFu2LLhPS0tLSCze6/XyzW9+k+XLl7N161ZOnDjB22+/zcUXXxzc5zOf+Qw/+9nP+P73v8/KlSs5fvw4b775JikpKVP+HgKBQBBJxDKXYzCby1xKksRf/vIXrr766hm9rkAgEAhmBrHMpUAgEAgE8wQh1AKBQCAQxDBielYMIqIRAoFAIBhCWNQCgUAgEMQwQqgFAoFAIIhhhFALBAKBQBDDiBi1QCAQCEYgyzIOhwOv14tGo8FqtSJJ0mw365xECLVAIBAIQrDb7RSXldPW5cLrC6BRKUhJMLOksCC4noBg5hBCLRAIBIIgdrudPYeO0SfpSc0qQmcw4O7vp6Glga5Dx9i8bpUQ6xlGxKgFAoFAAJxxdxeXldMn6cnLX4zRbEapVGI0m8nLX0yfpKe4rFxMIZ1hhFALBAKBAACHw0Fbl4vUtMwR8WhJkkhNy6Sty4XD4ZilFp6bCKEWCAQCAXBmARuvL4DuwzXkz0ZnMOD1BUasay+ILkKoBQKBQACcWZtdo1Lg7u8f9XN3fz8alQKNRjPDLTu3EUItEAgEAgCsVispCWZaWxpGxKFlWaa1pYGUBDNWq3WWWnhuIoRaIBAIBMCZOPSSwgKM8gDVFSX0uVz4/X76XC6qK0owygMsKSwQ86lnGDE9SyAQCCbBuVIAxGazsXndqjPzqOtLg/OoMxPMLCkUU7NmAyHUAoFAMAHnWgEQm83GlqSkc2JgMhcQQi0QCATjcK4WAJEkibi4uNluhgARoxYIBIIxEQVABLGAEGqBQDBnkWWZnp4e2tvb6enpibhgigIgglhAuL4FAsGcZCbixqIAyLlDLCcLCqEWCARzjpmKGw8vAGI0m0d8LgqAzA9iPVlQuL4FAsGcYibjxqIAyPxnaNDX4AqQkFVEzrK1JGQV0eAKsOfQMex2+2w3UQi1QCCYW8xk3FgUAJnfzJVkQeH6FggEc4qZjhuLAiDzl+CgL6to7EFffSkOh2NWp6oJoRYIBHOK2YgbiwIg85O5kiwoXN8CgWBOMVtx46ECIMnJycTFxQmRngfMldXChFALBII5hYgbCyLFXEkWFK5vgUAw5xBxY0EkGBr0dR06RnVFCalpmcGpfq0tDR8O+lbN+qBPkmc7nS1GcTqdWK1WHA4HFotltpsjEAhGIZaLVAjmDrMxj3oqGiMsaoFAMGcRC0fMPPNxcBTryYJCqAUCgWAeE0lhjfUKXuEQy4M+IdQCgUAwT4mksM7V5T7ngwdACLVAIBDMQyIprGdX8BoSOqPZTJ5pMdUVJRSXlbMlKSmmRHC+eADE9CyBQCCYZ0S6NOZcXO5zLtTwnixCqAUCgWCeEWlhnSsVvIaYKzW8J4sQaoFAIJhnRFpY50oFryHmogdgPIRQCwQCwTwj0sI6Vyp4DTHXPAATIYRaIBAI5hmRFta5VrZ1rnkAJkIItUAgEMwzoiGsQ2VbM80KuupLqT11mK76UjLNipibmjXXPAATIUqIjoEoISoQCOY60ZieNFfmJYdMTxulhvdsDy6mojFCqMdACLVAIJgrjCeec0VYo0Esz6MWtb4FAoHgHGEiMYrl0pjRJtZreE8WIdQCgUAwR5mrZT1nkvkwUBHJZAKBQDAHmW9FPQRjIyxqgUAQ85zLcdaxCBb1yCoau6hHfSkOh2PWLcq5/PvFQtuFUAsEgpgmlhOCZpO5UtRjLv9+sdJ2IdQCgSBmETHYsRle1MNoNo/4PBaKeszl3y+W2i5i1AKBICY5l2KwsizT09NDe3s7PT09k/pOsV7UYy7/frHWdmFRC+YEsRAnEswscykGGw7huFczUlOorj/KyWMu8hYtRm80hhT1WFK4atbek7n8+8Va24VQC2KeWIkTCWaWuRKDDYfpuleHvxMDPhl7UwWt1WXYklNJSownM8HMksLZdSvP5d8v1toec67v3t5e7rnnHi6//HISEhKQJIknn3xyUsc++eSTSJI06r/W1tboNlwQFebT4u+CqTGXF1aYjCt7uu7Vs9+J887fzgWX/hPpi5Zg0KlYvWQRWy7YNOuD2Ln8+8Va22POou7o6OCHP/whWVlZrFixgp07d075HD/84Q/Jzc0N2RZrrhXBxJzdkQ25oIxmM3mmxVRXlFBcVs6WpCThBp+HDMVgG1oayDMtDvmNh2KwmTG4sMJkPUDTca+O/U5YWLpiDdUVJTS1trFw4cIZ+75jMVd/P4i9tsecUKelpdHS0kJqaiqHDx9m3bp1Uz7Hxz72MdauXRuF1glmkliLEwlmlqEVoLoOHaO6omTUhRVmMwY7GlNxZU/HvTqX3om5+PsNEWttjzmh1mq1pKamhn0el8uFwWBAqVRGoFWC2SDW4kSCmWdoacXisnLa6kuDFmosxGDPZqoeoOlMr5pr78Rc+v3OJpbaHnNCHQm2b99Ob28vGo2GHTt28NBDD5Gfnz/bzRJMkbkwT1QQfebKwgpTtXan416di+/EXPn9RiNW2j6vhNpgMHDLLbewfft2LBYLR44c4b/+67/YtGkTR48eJTMzc8xjPR4PHo8n+LfT6ZyJJgvGIdbiRILZYy4srDBVa3c67tW5+k7Mhd9vLGKh7TGX9R0O1113HU888QQ33XQTV199NT/60Y/429/+RmdnJ//5n/857rH3338/Vqs1+G88URfMDEMdmVEeoLqihD6XC7/fT5/LRXVFyYcdWcGcGJkL5j/TyRQecq9mmhV01ZdSe+owXfWlZJoVo07NEu/EuYkkx2JZmA8ZSiZ74oknuOWWW6Z9no0bN2K326msrBxzn9Es6szMzEkt6i2ILmIetWAuIMsyu/buo8EVCIlRD31WXVFCplnBlgs2jRDSqRb0Ee/E3MfpdGK1WielMfPK9T0WmZmZlJWVjbuPVqtFq9XOUIsEUyFW4kQCwXiEkyk8VfeqeCfOLc4Joa6urhajzDlOLMSJBIKJmMlMYfFOnDvMWaFuaWnB4XCwcOFC1Go1cMYddPaL8MYbb3DkyBHuuuuu2WimQCA4xxDWriDSxKRQ//KXv6Snp4fm5mYAXnvtNRobGwG48847sVqt3H333Tz11FPU1NSQk5MDwKZNm1i1ahVr167FarVy9OhRfv/735OZmcn/+3//b7a+jkAgOMcQ1q4gksSkUP/sZz+jrq4u+Pef//xn/vznPwNw4403jjn14DOf+Qyvv/46f//73+nv7yctLY0vfvGL3HPPPaSkpMxI2wUCgUAgiCQxnfU9m0wlI08gEAgE85tIL7Ursr4FAoFAIIgQsz0dTgi1QCAQCARjMN01wyPJvKpMJhAIBAJBpJjumuGRRgi1QCAQCASjEFxoJS1z7IVWulw4HI6otkO4vgUCgWCeEOmEp3OdWFlWVAi1QCAQzANmO+FpPhIry4oK17dAIJgVZFmmp6eH9vZ2enp6oh7nm88MJTw1uAIkZBWRs2wtCVlFNLgC7Dl0DLvdPttNnJMMLSva2tIw4vkcWlY0ZQaWFRUWtUAgmHGE9Rc5zk54GnJ1G81m8kyLqa4oobisnC1JSWG7wWPRtR7NNoWz0EokEUItCItYfHEFsU0sTHeZTwQTnrKKxk54qi/F4XCEVdY0FgdXM9GmmVxoZSyEUAumTSy+uLGIGMx8xExaf+cKM5HwFIuDq5ls02wvtCKEWjAtYvHFjUXEYCaUSFh/YuATSrQTnmJxcDUbbZrNhVaEUAumTCy+uLGIGMyMJFzrTwx8RjKU8NTQ0kCeaXHIOzeU8JQZRsLTTLnW53qboonI+hZMmVgpAhDLxEpFo1hjuPU3GuNZfyKzeXSGEp6M8gDVFSX0uVz4/X76XC6qK0o+THgqmPagOVbmEsd6m6KJEGrBlDnXXpLpIAYzozPd6S5i4DM+QwlPmWYFXfWl1J46TFd9KZlmRdiem3AGV9EiFtsUTYTrWzBlYqUIQCwjBjOjM93pLueaq3M6RCvhKdqu9fnSpmgiLGrBlImVIgCxzLk24p8K07H+5uLAZzYKugwlPCUnJxMXFxeRHJFou9bHYrz7N1ttmi2ERS2YMrFSBCCWOddG/FNlqtbfXPPizLekt5meSzyZ+xcL85tnCkmOwjBPlmUqKyvR6XRkZmZG+vQzgtPpxGq14nA4sFgss92cmGS+dUaRJiTre5TBzLmY9T1dZFlm1959NLgCITMNhj6rrigh06xgywWbZn2AOJ9/95mYGjfV+zdXp+tNRWPCEuo///nPvPzyyzz88MPEx8cDUFtby1VXXUVxcTEAn/70p/nDH/6AUqmc7mVmBSHUk2OuviQzhRjMTJ2xnqm5IIATDijKi0lQDLBm1Uq0Wq14X85iLg3IwmUqGhOW6/vXv/41bW1tQZEG+Nd//VdOnz7NRRddRGdnJy+++CIXX3wxX/ziF8O5lCBGmc0iAHOB2a5oNNeYaGAT667O8ZLenE4H9h4XR8tO0WB3EG+1iEHbWYikwdEJS6iLi4v52Mc+Fvzb5XLx+uuv85nPfIY//vGPDA4OsmrVKn7/+98LoRacs4jBzOSYbIGYWB74jJX05nD0cLK0gj5ZizY+jfRFS9Hrjed08ZvRmItJgzNBWFnfXV1dpKamBv/es2cPPp+PG264AQC1Ws2ll15KVVVVeK0UCATzmqnMk45GZnOkGD3bX6a2voEBSUtigg2jUY9WpxdzwEdBzJYYnbCE2mKx0NnZGfz73XffRaFQcOGFFwa3qdVq+vr6wrmMQCCY58yXAjGjTV3s7e2j2zVAfLyNrvZmEiwmTOYzMclIfbf5sra3mPo5OmG5vouKinjttdf48Y9/jFKp5LnnnmPNmjUhMeu6ujpSUlLCbqhAIJi/zBeX52hTFz1eD67eXty+Ogyym5zcZSGDkXC/23xKWBRTP0cnLIv6rrvuorm5mQULFpCVlUVLSwt33HFHyD4HDhxgxYoVYTVSIBDMb+aTy/Psgi5NFSdxt1YTJ7lZvmwZ8YlJIfuH893mY/3zaJZDnauEZVFfc801PProozz++OMAXH/99dxyyy3Bz9977z2cTieXX355WI0UCATzm/lWIGZ40pvH4+FQgolu2UBcQmLIfuF8t/m8il2sJw3ONFEpeDIfEPOoBYKZZS7Mk54u0fhuPT09/H3XARKyikat1tbnctFVX8plW84Xsw5ikBmbRy0QCASRYi7Mk54u0fhu8yWuL5iYiAh1a2srR44coaenB7/fP+o+N910UyQuJRAI5jHz2eUZ6e821+qfTxVR9fAjwhJqt9vNF7/4RZ5//nkCgcCo+wzNexRCLRCcu0yl053PBWIi+d3Gj+sHqKkqI1njR5blYD88V5hPmeyRICyh/vd//3f+8Ic/UFBQwA033MCCBQtQqYQ3XSCYS0TbchGdbnQYaypTW2szJ44dY6CnncGsLN7afXBO3e/JVqg7lwgrmSw9PZ2EhASOHDmCVquNZLtmHZFMJjgXiLaIxmKC2HxzqQ7/DTt6HNTU1KE1mVm5aj2pCzJn/X5PBbEox+iEZf729PTwz//8z/NOpAWCc4FoWy6xOH1oPlr3Q7Hvnp4e3tuzF6V+GctWrkOhOFMmYy5N1xKLcoxOWAVPCgsLaWtri1RbBALBDDGV2trTJdbKgs7H4iBDSJKEJEl4ZRUL85cERXr453OhDKvIZB+dsIT6W9/6Fq+88gqVlZWRao9AMCnmS23j2WImRDSWOt2pDkzm4vMVS/d7usynCnWRJCzX94IFC9ixYwfr16/n61//OqtXrx7T175ly5ZwLiUQBJmP7suZZiqd+nRjurE0fWgqLtXBwcE5+XxF637PZEx/vlWoixRhCfW2bduQJAlZlrn33nvH/fHGml8tEEwFkREaGSbbqTudTkrKK6YlWrHU6U52YNLc3ExZbeOcfL6icb9nelAsFuUYnbCE+vvf//45d8MEs0csJifNVSbTqVsUAT4oq6JfYZiWaMVSpzuZgYlaKVFdV08vBpJT0vF43QTkACazhbz82H++In2/Z2tQPJ8r1E0XUet7DMT0rNhD1DaOLONOnQoMoAh4camsYU+TiYVQxWSm/SRI/TS1d9MbUNM3GMAXkFEpJBIsJnJy89BotGE/X+O5kSPlYo7E/Y6FaVLzbRrd2Yha3/OM+f7ATpb5kCwTS4xnuWSk5nG0uHL8ZLNJTpOJhbKgk7E2LWYjb+07iiX3PGyZC9DqDHjc/djbmnGdOsWSJYujtm40ELHBTCTudyxMk5rPFeqmSkSEuq+vj5dffpnjx4/jdDqxWCysXLmSq6++GqPRGIlLnLPEgjUSK8RSctJ8YaxO3W63R3RQFAud7ngDk8UFKzl89BgBnZWktGz0xjPfW280k5FbQFNNOZWlJaTHG8JaN3o0N3LN2+8iSRJKa2rEXMzh3m8xKI4twhbqP/3pT9x+++0jpjAMPSi/+93v+NSnPhXuZc5JROJUKLGUnDSfGK1Tn81BUTQ9SGMNTBwOBy5PgJycbLq77egN2QxdUpIkEpLTKT/0LvkpRRFdNzrXWMRfXz2FQqXj8rVFSFJsFCkRg+LYIiyh3rdvH9dffz1KpZIvfOELbN++nbS0NFpbW3n33Xd56qmnuP7663nvvffYuHFjpNp8TiASp0YSS8lJ853ZGhTNhAdptIGJ1+tl0C9TkJ9PcUU1zU11JCQko9Fp8bo9dHbZUQW85GVnTfn5Gs+N3NfrQtKYkLQG+vr6MZlMIe2crUpcYlAcW4Ql1Pfddx9arZa9e/eyYsWKkM8+85nP8OUvf5lNmzZx33338dprr4XV0HONWIgRxSIiI3RmmI1B0Wx6kIYsSK1aw/KifGrrG2ipL8cz6EOrVhFn1LAgP5f09PQpn3s8N/LgoBdJqUZSqfH5Bkd8PlsuZjEoji3CEur9+/fzmc98ZoRID3Heeedx3XXX8corr4RzmXMSESMam1hITjoXmMlB0Wx7kIZbkInJachnGoUsB5ADAbrsbSxcmDotC1KtVjPo7qelsR5rfAImsyX4HdRqDbJ/ENk3iEqlHnHsbLqYxaA4dghLqPv7+0lJSRl3n5SUFPrHKAcnGBsRIxqfWEhOOheYqUHRbHmQhsfDM1JTqGk4xlsnTqGzZZK6YBEyftoaahlwOelymejo6JiSQNntdopLy6hvaqKtopH09IzgdK/4xCSMJjOytxc54MNoDB2Ux4KLWQyKY4OwhDonJ4e33nqL++67b8x93nnnHXJycsK5zDmJiBEJYoWZGBTNhgfp7Hi4WinRXF8HHhlDYICuhlJUCokFcSayV15Od5d9Slb9cFf+sg1b0dU34fDI9Pe4cXzwAfl5ebg9/SxKT0SSJKorSmPSxSwGxbNPWEJ93XXX8aMf/Yibb76Z+++/PyR+09LSwt13382RI0f43ve+F3ZDzzVEjEhwLjHTHqTR4uEd9nba/DXEJ5opyMvBaDajVmuCrmqtVjdpq340V77RZKa2voEuZz9Ndc14OxvZumkdS9duBxAuZsGYhCXU3/nOd3jzzTd55plneOGFF1i0aBEpKSm0tbVRWVmJ1+tl/fr1fOc734lUe88pRIxIMN8Zcj17PB5MGonW5nryCpZE1YM0Vjxcq9ORkJZFAImOjg4WZOeGtGMqVv1ornyrNY4Vy6309vbhzE7D2VLDimVLiY+PBxAuZsGYhCXUBoOBXbt28cADD/D0009TXFxMcXExAHl5edx88818+9vfRqvVRqSx5yIiRiSYr5ztenb3OWltL8Pl6iW/cEnUPEhjxcNVKjUalRKVMYGuznp6XU7Mlo8GBlOx6sd25UuYTCb0ej0DnS0MDn6U6S1czIKxCLvgiVar5fvf/z7f//73cblcwcpk5lHcV4LpIV5gwXxjrKlY3tKTdDaUo/b1odMbo+JBGktETSYj8WY9rX0uZH+AwcGPLOepWvUiGVQQSSJa69tsNguBFggE4zLeVKyVazdSZbESL/WzbvUqtFptxD1IY4uoRE5WJvajx2lvb2HQsxi/3z8tq14kgwoiiWK2GyAQCM4tgq7nMRb8SEvPon/wjLcuLi4u4mGeIRFtbWng7MUDLRYrSWY9+Ul6PF1N1J46TFd9KZlmxZQKrgwlgxrlAaorSuhzufD7/fS5XFRXlHwo+gUxFcKSZZmenh7a29tHlIQWzC5Tsqjz8vKQJIm3336b3Nxc8vLyJnWcJElUVVVNq4ECgWB+MdvFfCaaUZFqVnHB9k+i0WjCyguZS8mgYvGf2GZKQh0IBEIe1rP/HgsxMhMIBEPEQvx2pkR0tGRQi8WC0+mkvb09JpJDxeI/sc+UhLq2tnbcvwUCgWAiZjp+O9ZqXDM1o2J4Mqjdbmf3vv0xY7nOdulWweSIaDKZQCAQTMRMFvOZyKU7kzMqYtFyFYv/zA3CSia76KKLePrpp8fd59lnn+Wiiy4K5zICgWCeMeR6zjQr6KovnXbS1ngMCWODK0BCVhE5y9aSkFVEgyvAnkPHsNvtEfgmk+Nsy9VoNqNUKs9YrvmL6ZP0FJeVz3iYcCr5AiLZbPYIy6LeuXMn27ZtG3efuro63nvvvXAuIxAI5iHRdD3Hmks3Vi3XyeYLOBwO3j9ylBZ7DwFJQZzFTGqiRSSbzRBRd3339fWhVo9cvk0gmMuMFfcUTI1ouZ5jTRhnO9N9LCaTLyC7unj+5RLaByRMlgT0eh39/n46B3x0OUWy2UwwZaGur68P+bunp2fENgC/309DQwN/+tOfxOpZgnmFmMoS+8SaMMZCpvtoTJQv4OtppayyFpcuhcJ1a9HpDXjc/XS2NaPt6wMQyWYzwJSFOicnJ/iDSJLEww8/zMMPPzzm/rIs8+CDD06/hQJBDBGLCUHTYb57BGJNGGO5UtmYU9XiTTQ7AvSr4yhcsQHDh+tl641mMnILaKopx+Pup7XTKZLNosyUhfqmm25CkiRkWebpp59mxYoVrFy5csR+SqWShIQELrroIi6//PJItFUgmFViLe45Xc4Fj0CsCWOkM90jPdAaLV9AlmXK65oxxtvQ6nUjvk9iSjpddWX0OF0z7rI/15iyUD/55JPB/3/vvfe49dZbueuuuyLZJoEgJom1uOd0iKZHIJas9Fhczz1SRVaGBlqtnU56nC4UcoA0Wxzr16wmOTl52u07O1+gvb2dgKTAaNDhdXvQG/Qh+2t1BgYG3Cj0GrG4SJQJK5mspqYmUu0QCGKeWIt7TpVoegRi0UqPxRKe4Wa6Dw20WpwePG4vLg8MDHj5oLaU46dLuebKHSxevDgibdVoNMSZjPT3Bejqaiddn83wZroH+ul1dpFWWCQWF4kyYQl1cXExb7/9NjfccMOoD317ezvPP/88l156acQeHoFgtoi1uOdUiZZHIJbj9rG4nvt0M92HBlotTg/OPg8elZHE7HS0OgPugX7KPjjMn954i9sTE8OyrIewWq2kJlrocjsY9LlpbqojISEZjU6LZ8BN2QeHSTXA+jWrYzrUMx8Iq+DJT37yEx544AESExNH/TwxMZEHH3yQn/70p5M+Z29vL/fccw+XX345CQkJSJIU4m6fiJ6eHm6//XZsNhtGo5Ht27dz9OjRSR8vGB1R7GD8VZeG4p4pMbx0YTQ8ArFayGM4Q8KYnJwcldW4ZgqHw0FrpxOP24tHZSQjtwC90YxCqcRgMlO4YgN2j4rDR49F5H4PhQ9SzSrMKhmz3I+jtYba4mNUHt1FqqqPa67cEZFBgWB8wrKod+/ezcUXX4xCMbreK5VKLr74Ynbt2jXpc3Z0dPDDH/6QrKwsVqxYwc6dOyd9bCAQ4Morr+TEiRN861vfIikpiV/96lds27aNI0eOkJ+fP+lzCT4iFt2as0Esxj2nQjQ8AvMhbj9X8Hq99DhduDyQmJ0+4n5r9TqM8TaaOhwRu9/DwwetnU56evtINstk5C5k7epVQqRniLCEurW1lczMzHH3ycjIoKWlZdLnTEtLo6WlhdTUVA4fPsy6desmfexLL73Evn37ePHFF7n22msBuO666ygoKOCee+7hueeem/S5BGeIZbfmZIlkklMsxj0nSzQyoed63H4uoVarcfe66OgYwJqxEFmWQ35Dr9uD0aAnILkjer9jMXxwrhGWUBuNRtrb28fdp729HZ1ON+4+w9FqtaSmpk6rPS+99BIpKSl86lOfCm6z2Wxcd911PPvss3g8HrRa7bTOfS4yH6YjRcIbcLbQJyUlzcmOKxoegZmO28dSZvlMYrfbKS4to8XeQXl1C32ymqSkBNIyczDHJSLL0NXVjlktEWc0RjxPYiYXLxGMJCyhXr16NS+//DIPPvjgqD9id3c3f/nLX1i9enU4l5k0x44dY/Xq1SNc8evXr+exxx6jvLyc5cuXz0hb5gNz3a0ZCW/AfHP7R9ojMJPzlefbbzFZhj/H67ZeRo/iAHa3RKDXj6u0hMysXAYDPnQBNzqVRGqiJWbzJATTI6xksq985St0dnayffv2EXHo9957j+3bt9Pd3c1Xv/rVsBo5WVpaWkhLSxuxfWhbc3PzmMd6PB6cTmfIv3OduezWjESSUyytvhRJbDYbWy7YxGVbzueyzWu5bMv5bLlg07TEbshKN8oDVJcX09baQmdnB22tLVSXF39opReEbfXO199iIs5+jtMXZLH9gg2kGMEz0EtLewdVJw9iCvRhVsmkmlURud+C2CIsi/oTn/gE//qv/8rPf/5ztm/fHnRbt7a24vF4kGWZb33rW1x99dURau74DAwMjOraHnK9DwwMjHns/fffzw9+8IOotW0uMpenI4XrDZgPbv/xiKQr02azUZSbyVvv7uJoWw9uXwCdSkFOShxrtm8J29qdzm8RSy7ycNoy2nOclZXNVRYLZeUVNLVqcLTWEMcACzPS57134Vwl7NWzHnroIbZv386vfvUrDh06RGNjI3FxcVx00UV85Stf4WMf+1gk2jkp9Ho9Ho9nxHa32x38fCzuvvtuvvGNbwT/djqdEybKzXdirQzjVAjXGzDX3f4zid1up7SmgficxWQtj0OpUuL3+XG5eiitaSApKSks8ZjqbxFLLvJw2zLWcxwXF8+G9etwOJxUn9Rw4fqVLFq0aE4OGgUTE5FlLj/+8Y/z8Y9/PBKnCouhjPGzGdqWnp4+5rFarVYkmp3FXJ6OFK43YC67/WeS4dbuwvzQwVyynB4Rz8NUfovZmqUwmtXc0dERdlvGf44lVAoFSfFx2Gy2mHwPBZEh6utRzyQrV65k9+7dBAKBkISygwcPYjAYKCgomMXWzU3m6nSkcL0Bc9ntP5PMhOdhsr+FWq3mg9PFMx6uGM1qTo434XQ46VOaw2rLXPZqCSJHWMlks0lLSwulpaUMDg4Gt1177bW0tbXx5z//Obito6ODF198kauuukpYzNMkkslHM0VIklNFCX0uF36/nz6Xi+qKkgmTnOZ6FbJIM1ZlupnwPEz2twDODBrSMsceNHS5cDgc027L2YyV5FbW6mT3kVPojeaw2hLucyyYH0zJolYoFCgUCoqLiykoKEChUEzqAZEkCZ/PN+nr/PKXv6SnpyeYpf3aa6/R2NgIwJ133onVauXuu+/mqaeeoqamhpycHOCMUJ9//vnceuutFBcXByuT+f1+kSgWJnNxHmU43oC57PaPNOPFWWfC8yBJEosL8ml8by8njhwkbUE2STYb7v6BkN9icHBwRsMV4yW5LcjK5URxOW32TtIzFgChz8lU2jJXvVpjEUuJfnOFKQn1li1bkCQJw4cvwtDfkeZnP/sZdXV1wb///Oc/B63kG2+8cUwrRqlU8sYbb/Ctb32LRx55hIGBAdatW8eTTz5JYWFhxNspiH3Cqao03zrI6WC329n9/lHs/X4SEpNJtFhRKVU0tDbSdegYF6xdGXXXrN1up6S8ggG3h6aGaiqKT2Ew6MhZkE5+dnrwt+jp6ZnRcMV4bn+1RktiQiJtnT309vZhMpnCakusVAcLV2RjKdFvLiHJ5+LqCpPA6XRitVpxOBxYLJbZbs68ZK6MrOdKOyONLMu8+n+vc6i8AZ0lCV9ARqWQSLCYyM7JpbvLTqZZweKCfPYePn4maWoUz0M4CVwhyWFpmWj1ejrb22hqrMWq9HHZts3BetOyLLNr7z4aXIEQC3fos+qKEjLNCrZcsCkiv197ezt/33OYnGVrUSqVIZ/JsszRQwcprazlio9dRnx8QlTbMhOEK7Jn/5aRfE7mIlPRmHmVTCaYO8ylkfVMu/1jZWBQVVXFnqOnUacWEJeZh1ZnwOPux97WjOv0aRbm5NDWZWeFRhMVz8NYruWU9AyS085klJeUVwQznmc6XDGe21+SJFJTUqkrP0VTXTUalXpOh07Czaaf73UJoo0QasGMMx8W+ogWsTKAkWWZ0yVlDChMLCpchupDi1FvNJORW0BTTTmtba1YNWcSypKTkyPump1ORvlMhismysh2e/rZvHopcXHGOR06iYTIiroE4TElof785z8/rYtIksTjjz8+rWMF8wsxsh6bWBrAOBwOuvo8JKakMujxojJ8VCxIkiQSU9Jpq/gAY6I+GGeNtOdhuhnlMxXPnYwFv+n8DSTFQGw5HCIhsqIuQXhMSaiffPLJUbdLkjRqzeSh7UKop06suD8jjcPhoLXTiSkhncaGOiRJwhqXgNlsOqdH1rE2gPF6vag0WlISdXR0tZOuz2b4ZTVaA51dnazJWRS1KWrhZJTPVLhishb8XH6WIyGyoi5BeExJqGtqakL+DgQCfO1rX+PAgQN87Wtf48ILLyQlJYW2tjZ27drFI488wsaNG/n5z38e0UbPd2LF/RkNmpubOXj4CE75NL1uH7IsYzVoyV+Ux/LlyzGZzOfkyDrWXIMajQatSokhLpG+xlaam+pISEhGo9PidXtobqzBiJdli0e2N1LMlWIfsZKRHS0iIbJz5beMVaYk1NnZ2SF//+QnP+HgwYOcOHEiZNWqwsJCtmzZwq233sqqVat46aWX+Pa3vx2ZFs9zYsn9GWnsdjvv7T9MVXs/loUFLFiSDQE/Xc0NHCutpnfAzXlLis7JkXWsuQaDHavLxbLCRdQ1NNLdXs+gP4BKIaHqtXP+mmUsXLgwam2YjGt5ccHKmBDIaFnwseBZi4TIiroE4RFWMtnjjz/OddddN+rSkgAZGRlcd911/O53vxNCPQlizf0ZSWRZpri0jOZeH0nZC1EbTej0eiRJIj1/MfY6FfWtzQTc/VyypuCcG1nHmmtweMfa2d7CopxsfAGZPpeDro52khIz2Lg++h3reK7l5MRMSsorZtXzFE0hjRXPWqREVtQlmD5hCXVjY2NwCcmx0Ol0wapigvGJNfdnJHE4HFQ3taPQW8nPSKO5tY2OlkYs8YloNDp05njsNcWY3J1kpEWnkE4sE4uuwdCOtSzYsRakzJxYyLKMWq2mKH8ROW43Op0OrVaL1+v9aO72LHmeoimkseZZm4rIjjd4me9hgmgRllAvWLCAv/zlL/zoRz8aVbD7+/v5y1/+woIFC8K5zDlDrLk/I4nX62XA40VSGUiwJaPT62ltacFpb8QfkJEIYNGpWJBmOycLzEzWagHo6emJeic31NnKssx5S5cAMDg4GHLNaLtlxxLCxQX5lJRXzKrnKZpCGquetcmI7GQGL3OxHPFsE5ZQf+ELX+Duu+/mggsu4Pvf/z6bN28mMTGRzs5Odu/ezQ9/+ENqa2u5//77I9XeeU2suT8j2RFrNBr0Wg2ycxCv24PZYsVktjIw0IfP52PQ48apcJOcZDjn4tNDTGS1AOzauy/qrtDxOtuhDra9vZ33jxylxd5DQFIQZzGTmmiJWFvGE8LG9/Yy4PaQs/z8WfE8RVtIY9mzNp7IxpoXYD4RllB/61vfory8nCeeeIJPfepTwJmFOwKBAHDmgb711lv51re+FX5LzwFiyf0Zabee1WolLyOZmrYKOjvbyNDnIElgMBiRZZkmeysM9pGbmXfOxaeHGMvNG6m1jSfDZDrbjo4O/vT632jrB5MlAb1eR7+/n84BH13O8NsykRCeOHKQpoZqCtfrRz0+2p6naAvpXPSsxaoXYL4QllArFAoef/xxbrrpJp566ik++OADHA4HVquVFStW8LnPfY5t27ZFqKnzn1jJjIzGyFiSJJYUFVLb1MKJ2jI8A/2kpmUh46etoZYBex0rFqaztKjwnHuRZVmmqqqKUyWldLvcqLR6tGplcGAEzEgnOJnOdt+BA5wsq6bVb6Zw3Vp0+jNlRTvbmtH29QXbGk5bJhLCtAXZVBSforO9jZT0jBHHj+Z5iqR3KNpCGmuetckQy16A+UBESohu3bqVrVu3RuJU5zyznRkZzZGxzWbjiou3EX/wEMdKKqisO40sB0gy6diwIp9N528451xjdrud/QcPsfvIKfrQkJiQSEqSntR4Gw2ufroOHWN5Qd6wThB6e3vx+QZRqdSYTMaIdYITdbYpqQv4x6t76Q5oWbpxAwbjGaEaXlbU4+6ntdMZVlsmEsIkmw2DQUdTYy3JaekTep4i7R2KtpDOhGct0vkFc9ELMJcQtb5jkNnMjIz2yNhms3HVlR/jwgs20tHRAUBSUhJxcXFzbsm+cLHb7ex5/xjHqtpQL1jCyrxCvJ4z1mlfbS3Lli6lu8vOqZJSPD4Jz6CXypOn6HYNMOgPoFYqiDfrycxIj0gnOFFn6/P7sLv6MaWmoNWHJo8OlRXtqiujx+kKqy0TC+EAOQvS0Sl9E3qeouEdiraQRtuzFo1s9fF+M1mW6WhrZaDXycDAQLBapWDyhC3UPp+P//7v/+aPf/wjpaWl9Pf34/P5ADh+/DiPPfYYX//61ykoKAi7secSs5UZORMjY0mSiI+PJz4+ftrnCJfZnqM65LnocMvo4lOwpGSjVCnRqz6yTutqa8gvKKKxpA1XXy+1XW5kYwIJyVnBCmHtXe3YT5wkTR8I2xU6kUD2Oh0oVWrMJhNetwe9ITRGrNUZGBhwo9BrwmrLZIQwPzs9mP09lucpWt6hmQhRRcuzFq2Er7F+s+7ODmqrqygpL8eqlThwvJjahsZ5UWVxJglLqAcGBrjsssvYt28fSUlJWCwW+j6MUwHk5ubyxBNPkJCQwI9//OOwGyuIPnMxPjZVYiE7dchzkZCUQourGY1OG/xMkiQMlgQa60tITk1DodHS21hHm+xnRf5KFIoznaDeoCdNl8WJA9VYzb6wp7VNJJBdne2kJ1gwWwx0jVL/2z3QT6+zi7TCorDcspMVQpvNhs1mG9MrEk3v0EyEqCLtWYtmWGu032zA3c/RI0ex93pISc9k9YrlaNUakQU+DRThHHzfffexd+9e7r//flpbW/nCF74Q8rnVamXr1q387W9/C6uRgpljqLNubWkYsdDKkDWTModr8p7dWRnNZpRK5ZnOKn8xfZKe4rLyUReZGX6Onp4e2tvb6enpGXffsRjyXBjNVtRKBV63B4Devl4qq2uobWmnvK6FA4eOUlJ8ClRqbCYtzbXlDPS5CPj9DPS5aK4tx2bSYjBbcTqd074v8FFna5QHqK4ooc/lwu/30+dyUV1Rgs2gZNWSfPRKCV3ATXNTHQP9A/gDAfr7+in74DApBli/ZnXYrs0hIcw0K+iqL6X21GG66kvJNCtCOvghz1NycvKI8Em0vUM2m40tF2zisi3nc9nmtVy25Xy2XLApouIz3vebKsGBS1rm2AOXLhcOh2Na5x/+m3XWlXDwH3+ly+FkaUEe61avJCEhcUrvmeAjwrKoX3jhBbZv3x4sDzraQ5SXl8exY8fCuYxgBomVzPNoEa6VFSmX+ZDnQqWQiDfrae9qxxpIpKahCY+kRqMzk5CcRkCpwhNQ0u5ws/6CRfR0d9PVUI4vIKNSSNgsJjILV+Noro1Ios74luJqAPYcOgYuH2p/P47WGvr6B+jrtpOq9XHNFTtITk4Oux1DbQnHopwJ79BcKt4xE2Gtod+svr4ep8uFLXcJKampwEe/mcgCnzphCXV9fT2f/OQnx93HbDZPe4QmGMlMJEDNduZ5NAmns4qky/wjN3Mj2ZkLcJVWcvrkB/j1caSkpdFaXYzc20WyLYvc5dvYs28fbR2dbFi/nl6Xi8FBL2q1BpPZQn9vLwMRDEdMJJBDz0Zrp5Oe3j6SzTIZuQtZu3pVxER6iHCEcC5mT0eTmQprSZKEXq9HbzCRZEtmuEgPIbLAp0ZYQm02m2lvbx93n6qqqjndsccSM5kANV9r8k63s4p0fO/sRS9SEixUVFXj83qoaChDM+jivCVFLF++nLiERPIaG6itrWPpkqWYLR8JS7QK4YwnkJF4NmZC4OZi9nQ0sVgsmDQSFWWnWVi4FLPZxJCIRvo5OhdyXWaSsIT6/PPP57XXXqOnp2fUl7qhoYE33nhjQqtbMDGzkQA1l9x6k2W6VlY0EpOGey7KaxtRehxk2NKwpqSTu3ARC7Jyg9daVLSY+upyqspOk1+4dFqCE0lxDOfZiJbAjfb9Yi17erYs8KF73mzvpryihpLKWlKTk8jOysJoMOJy9WDCHbGwVixVWZwPhF1CdPv27Vx88cU88sgjwWlZ/f397N+/nzvvvBOfz8c3vvGNiDT2XGW2y/NFqnOJBTfhdK2saMX3hqzTnMx6CASw5S4ZUcQDQK8zsDQ/l3Sriq5pCE60a3NPlmgNOCcS/5nJnjaRTCZVZac5dOQol192KQrFR/m6kRqgTPU9Gn7Pc5afjy5pAQf27GbP3nL27N5NVpqNJdmprN2+JWLPwnzPdZlpwhLqLVu28Mtf/pKvfe1rbNmyJbjd/KGrQ6lU8qtf/Yo1a9aE18pznNkszxepziWW3ITTsbKi6cqTJImsrCwK8hppcDlIJj3k8+Dc4dxMLty0EafTOSXBKSkpiWpt7skynQHnZERpsuIfqXdjtPfR4eihpq6elrYOHE4HJzsb8QcCnL9uLTabLWIDlKm+R2ff856uTppa2rDlryRrtRV7RxvxqgAJqUmU1jSQlJQUsWdhPue6zDRhFzy544472LZtG7/5zW84ePAgXV1dWCwWNmzYwJe//GWWLl0aiXae08xWeb5Idi6zPW/5bKZqZcVKNSqFQjElwWlvb+dPb7wV1drck2WqA87JiNJseJvOfh8djh72v3+IhrYOJKUOJAVdzkH+cegUHT1ONq9bTXFpOR1eFUtXFCFJimm1cTrv0fB7DlBbU41baSAjt+DMfH2TFVd7PckZ2bS3NET8Xs3XXJeZJiyh3rVrFxaLhZUrV/Lwww9Hqk2Cs5iNxIzpdoBnW0AWiyVmV9WZSpx1LlajkmWZw0ePYfeoKFwdvdrck2UqA87JitJseJtC30cTJ0+epKKuGXNKNtbkdAKyjKRWE2CQv+48wLEPTiOr9SRkFuA/dZqcrEys1rgptXG67vbh97zX5aTL2UtiZkHweI1Oy6A/gN/vi5pnbj7musw0YQn19u3b+dKXvsSvfvWrSLXnnGMyrr3ZSMyYTgc4mgVkUENrl4ucpesmdZ5YiGOPxVyrRuVwOGjqcGCMt0W1NvdkmeyAU61W88Hp4kkN7mbD2zT8fbTJC6iorEYXn4EtOx+AjpZGDGoVPp/MYFwOdo+DzJQ0Ehfk0+7oxFVawfKi/KBYT6aNY7nba+sb6HYN4Ortp6K4moAss2HtmuCzOPyeDw568QVktLqP7pXX7UGtVKBSqdHp9WLKVIwSllAnJyej0+km3lEwKpONN81GYsZUO8CxLKCykg+orKghrWAFxgnOE0tx7LGYCVfekAUyNGix2+3Tuo7X6yUgKTAadFGtzT1ZJjvglGWZ6sY2LGm59PX1YTIZGZpGdPbgbja8TcPfx1PH3qejx0VOfjpe9wDO7k7Ufjeyz4tPYyJvRT61R9/DN+hBoZBJz8imuamO2voGViy3AtKk2jiau/1kaQUDkpaE5CziM1TUeQao6/EyOMzjEDKoSElHpZDwuPvRG83IMnR1tZNs1mMyGelz9YopUzFKWCVEL730Unbu3CnKwE2DIWFrcAVIyCoiZ9laErKKaHAF2HPoGHa7PWT/yZZUDIfhpTEHBgZQK890IqMxvHMZryznosKl+BQayisqgJHPydB5nE7nlO7HbBLJso5jYbfb2bV3H3/fdYC/7znM33cdYNfefVO6DxqNhjiTEYNaoqurnbNf02BtblvcjEyTmahEqVEeIDkxgV1793GsuIKTVQ0c/qCYEydP4XD0BM+jMxjw+PzY7XY8Hg8mjURrc/2Mlrwdeh/TDODpsdPVVEevvZE4DaQnJ+GTJay2dBSSEo3OSJxRT2dbMyCTkJBMt2uA3t6+Sbdx+IAEZGrrGxiQtKRnZKM36PF53RiNehYVLg0pzzn8nre3NmFUK7C3NNLf109zUx162UNOViayTFTuVSTK7QrCtKh/8pOfsHHjRm6//XYeeOABEhISItWuec1047/RtObOtmbVSom2pnq63DIr1qwf190+npvcbLGSl5X5UbGOYVZP8DzxJhpbWmMyjj0bRCr5zmq1kppoocvtYNB3pjZ3QkIyGp0Wz4Cbsg8Okxqh2tyTZbzwQXJiJqU1DbS7FVht6cSnZqJUamjvag9xF7e1NlNdVYnPPYBaZ8Dd56S1vQyXq5f8wiUzNg3IZrNx+WWX8kF5LW6jiryCfAwGE66eDvwBGZVGT1tLI1ajlsVLllJVXUNV8XHM8Yk4XU4c3V20NdeHtHGs0M9wyziZTLpdAyQkZyFJZ96jzrZmbBYTZosVpUIZEk4afs89nYPUV5TT01JHTk42Bfn5qBTK4EApkvdqLnjI5gphCfWNN95IXFwcv//973n22WfJzc0lJSVl1FjkO++8E1ZD5xNTjf9GO247ljB0DvioqzgFMG4HOJ6bXJKk8Yt1BAYwG5M4UlyJLXcJZ3+tc60ucCSzmIMuWufM1OaeLKMNOC0WC7v37adP0rNsZRH+o4ex21vJyC0IcRdnLQiwd99+DGoNCxavQW804u7vx1t6ks6GctS+PnR6Y0RyBybz3sXHx7Np9XJ2nqqju6sDhaREUqjw+wZpbapl0NnFktwMjEYjUsCHvaaK0hP9eHsdSJ11bFy1jI0b1gWncI0nbEPu9qqy07h6+4nPUDHQ56KzrRmdv5+c3GVIkjRqzHvonq9Y5mBTczO19Q24PAG6GyqjMmUqFmd6zGXCEuqdO3cG/9/j8VBaWkppaemI/c4FK2gqTDX7NZqj0vGEYeXajQAMdjbQWScx6JdHfaknihOOVazDogggywGOnCrnWFkNGX4DrfaOkKzYs+/HfGcqg7ghb8Z4QhK0pkrLqG5sI9DvxKSUWLRqIevWRL4292Q5OxO4p6cn+L0VCgU5uXm4Tp2iqaacxJR04qyJNDeUU11eguzzsHH75Zg+XNZz6FmtsliJl/pZt3oVWq02rAHtVPJHNm5YR3dvH1Vtddh7u0GpIuC04+q0s3RxPhlpNk6eOo1bY+W8rVfS3FiLwd9HSmIcPkkZvN5khG3zulUcOnKUiuJq6jwDGI16bBYTObnLiE9MAiaOyyclJZGWlgbA4OBgxAf/s12gaT4SllAHAoFIteOcYrIJME6nk5Pl1VEdlU4kDAVFy+msU3H+yiXo9fpRX+rJJAmdXazD6XTyQVkV/UozttwsUgcUaMw22gf6R2TFnkt1gSc7iGtububEqdOTL3wBIMvodFoMWg1GkzGmOsmzv3d8YhLLly2jtqaaroZyvIN+WmtKidOruGDbx0hICv2OkiSRlp5FV30pWq12Sp6Xsy1nr9fL3sPHJ/3e2Ww2rrh425nBUFM7A54BEhal4nI6SbDoaWlooF/SkZSSSXe3nUSTjuVFy7FYrGdEq7QMGSYlbEPu9oAsU9fjZVHhmdrvwwvEjDYLZLyBR6S9VLNZoGm+Mi2h3r9/P//xH//BoUOHUCgUrF+/nv/8z/9k/fr1kW7fvGQywrYg3kTTDMRtJyMMg34ZvV4/pvU11WIdsixTUl5Bv8JAXv5iAJKam7C7ukjPKaCluT6YFTuU5HKu1AWezCDO3efk2OkyZFPShEIy3FLLXLI2uG9jSwPdMeSCHO17xycmEZeQSO+H8dxEqQ+t2ULqgsxRzzEdz8vZAqZSStRXloIlhZXrNmH8cOGKyeaPrDhL8N8/cpR/lFSiS82j195AsllPTtZHg9DUtEyqS49CIEDmkrWTEjaFQsGGtWsYPHQMe1szSoVy3Lj8uNb6+8dYXpiHxWKJmGU9WwWa5jNTFuqTJ09y8cUX43a7g9veeecd9u3bx/vvvy8qkU2CyQjbgrQ8jhZXRn1UGqnpLVOZYzzaiHvI1dlcW47BnECnw05bayu9zu4ZqwscC3O4JxrEtTTX0+9yoEtcPOEADohZF+RohXFG+96SJGEyW2hvbWJhTgZ9XjliU7HOFjDPoJcTH5xkX3k7Op0Dh1dBZkZqMBQz0Xs3WmGPdatX0dTVS0b+crRaXchUMzgjWgMeL3JgasI22fdtPDd0oj+N/Xt288Gp0+QtKkCrVkYkrCZWzoo8Uxbqn/zkJ7jdbv7jP/6DO++8E4BHH32UH/3oRzzwwAM8/fTTEW/kfGSiF02W5RkZlUaymMqQVdHT00NHRwdwJh52duc12oh7uKuzw15Ha30Vycp+CnIyZqQucKxkqE40iJN6OzBYE0hNz5pwAAfEpAtyrHudnJhAl7NhzMHr+rWrKSmviMizeraAOZ0OiiuqcQTU2HKXoVRr6PN4aOsPhIRipvreabVa4s0mdBotRpNpxOfu/n70Wg0EAlMWtsnMAhnLDe1w9HCqrBKfyYasUJGUXYBapY5IWE2snBV5pizUu3fvZvPmzfzoRz8KbvvBD37Azp07ee+99yLauPnOeC9aT0/PKKNSmd7ePny+QTxuN2qlFJFF3iNZTKWjo+OsTrhqhOCNNeIecnW2tzSTpg9w2YUbyMoaKUiRJtYyVMcbxNmyizhaWjvpAdxUB3uzNcOgoaWBLmcDRbmZtHd2jWklSpIUkWc1VMAIzkvOyEzHNVCB2hiPp7OReGsCPc7uYChmqtbgZEQrLyMZGWichrBNVJ5zdDf0R/Owc/IW0lx+jEDAj9GcEBFPy2wUaJrvTFmo29rauP7660ds37BhAwcPHoxIo84lhr9owztJtVpNcrwp+PI6nY5guUCvz09XSz0L45R4veGvTBap0ph2u53d7x/F3u8nITGZRIsVlVJFQ2tjiOCN13kB9PY6KMjLnBGRjtUM1bEGcQ6Hg1OV9ZO2vqbigpzNGQZD97q9s2vcFcKm4vIdb8ARUgO7ty84L1mn12Mx6Oka6EP2B/D7vWcKlLTX43L10n6WaE50nUmJVtEqALqjIGyjDYqHf1+vpx+VQkKt1gTbGwlPi1g5K7JMWagHBwcxjeLCMRqNDA4ORqRR5yKjdZI6RQCfq5cTR1x0uAbw660YjQm4HR0kWC2oEqzsPXw8IhZfuMVUZFlm34GDHC1vQGdJoqWrGpVCIsFiIjsnl+4ue4jgxcqIO5YzVEezlqbqVpzsvjPhVZjsvXY6nePe64me1ckMOIYLmM/vY9AfQKPTIkmQmpZGT3Ex3Z2tDHoXojdZcfX2UlV2mlSzOvhsTnZgM1nRioawjfa8+HyDDPoDqLUaWuvqsVlMmMyW4DGRCquJlbMiR9jLXArCZ6xOsrWlAeiju7aYdo+KhGQfnv5uUiwmcpauIy4hMaIW30RutPGoqqpiz9HTqFMLiMvMQ6s7s5yiva0Z1+nTLMzJoa3LPmq1pNkccc+1DNWpDHJkWSYjNYWahmOcPtFP7sICdAbjiH1h+klnU3GVR/Jej/WsTnbAEVLpKy0TtVIRrIduMluwGDQYLBo8XS3UNdbg6W4hO3cl69asmtb60pMRrWgI22jPiyQp8Hvd1JWdwqoOBAulDBHJZK9w+hTBR0xLqJ999lkOHDgQsq2yshKAK664YsT+kiTx+uuvT+dS856J3IGnT/TjlRVctG07Gp0WtVqDyWwJ7hcLcxJlWeZ0SRkDChOLCpehUp4p4jB8OcXWtlasmjOd9VDnLssy5y1dAkSn8MJkCDdDdTYyxZOSklhekMepklIaittQafVo1cqQQc5wa6/f7cNeX0xzdSm2lFSS4qwh+w4vNjIVr8JUXeXRzgaebBjjwsREnE4ntoR4GlvKaG8KoFMG6OhoITHBRld7M4l6Bct2XIFKraay7DTZhcnBJSSnGy6ZjGhFQ9jOHhR7fH4UjkYUCg3LNm8PFkoZuoci2Sv2mJZQV1ZWBoX5bN58880R24SrY2wmcgcmJCXzwfGj6AwG4uLP1FKXZRmX08HgoBeFQoln0D+rFp/D4aCrz0NiSiqDHi+qYas0SdKZ5RTbKj7AmKjH6XRSUl4xI4UXJkM4GapjCdXigvzgPNpIi/fwa3p8EigUWDSwdPEiFi5cGHTJDrf20osMDPT1UV1Zgmawl9VLPtoXpmfpTsdVHu1s4Mm41itOH8Ll+jv9g2cS7dxuD/32UpBUONo66VRoyMvKZNGSxWi1OlpbGki36tiwdlVwnedYDpcM5+xBZEjBofMKOVFaSWN9Nf19vZg+zCdpa22cM8lesTCdcqaYslDX1NREox3nLBN1kkazFUlS0Ot0EBefQHdnx5lqTc5efAEZv9eDqr8D54rCWSsH6fV6UWm0pCTq6OhqJ02XhbvPhc/nRaXSoNEZ6OzqZFG8jZNl1fQpYiO7GqafoTqWUJ0uPcnuA8+RmpYRrDkdqYSs8UIkJ8ursVqtJCUljWrtmSwWlq9aT3VFCU2tbSxcuDB43qlaurIsU1xaRseATEZ2KrIkoVQqJmVRTvVeR9K17hn0crqiBk9hEYWLzwteu6W5Hqm3g3XLC+lx9dLnlXE01zIwRihmLoRLxvN2JCcnI0kSagK01lZw+uRJZDlAkknHyiX5bDp/Q0wke43328fKdMqZYspCnZ2dHY12nLNM1EmqFBKJZh1dne0YjCZOnT6NW2kgMbMAjdZAbXUZUsDHybIzHfVsPKQajQatSokhLpG24lL2l59GUupAqQS/H29fD2afA40qnT5FbGVXw9QzVMdyfXq9Hpx9Hlr9ZoySgaJla3D3D0RkIDJZd+t5KtWUrb2pWrpVVVXsPHCEgHUBLa5y1EoF8WZ9sDDIeBblVO71eJ1x0iix3PHfJZnyigp8Cg2LCpcGPzeazSwsWEJ1RQl+JK7YcdmYGedDxHpBj4m8HUW5Z1Yp61OaueDSf8IXkOlzOejqaCegiA2LdLzfHoip6ZQzgUgmm2Um7iQbWbU4n0EU7N/zLgFTKtl5ixj0eGltbSRer2LZygvpbG8Jib/NpDto6DucbmxAHvSiUGlRGuJApUEe9DDQaSdZJ9Hrg9y0zJh0F04lkWc016csy9TWVONRGSlcUUSvvYGBATemCAxEZFmmvr6e8uoGbLlLRnw+/P51dHRM2dqbiqU7NAWvrV+maGk+OqMBr9sTshSlyWQe16KczL0eT2xq39lJnFGPR1aNCDmM9S65XL3U1taRl5WJ2RLqWh8t43zImrPb7SPaF8sFPSYa0FWVF/PWu7tIyAmtbGe1WknLyIyJBTMmKnmqCHjpU1ljbsAfTYRQzzKT6SQ3blh3Zv5sSRkBKUBb7RkrZnjdYLVSRcXJA/T19tLrlWfUHSRJEosL8tl94Dm6/GZWrDmfAODu78PZ002GpZCAs4PyqlqK1m0Z9Ryx4C6cbCLPaK7PXpeTLmfvGU+HXke3P4DPNxg873QHIkOWRXltE8fKakgdUJDU3ERObl5IEtDQ/YOpzZ0eYjKW7pAIeNUm0tMzUChklAoFeoOedP1HS1Euysme0KIc715PVPbyrROnMKhh60WXB5e5bGhpoOvwcYpyM0etblZVdhqF28Giom2jduBTWbEulqYXns1E8XOzOY5jbT1krUiIyQHzxMm1R2iurGDTZVfHZPujhRDqGGCynWTewkXYchYjywFUKnVI3eABdz+nK2oY1JhD1nyeKXeQRqMhNS0Do2Sg197IoD+A1+PG2+dCMhjplzVUVNUSv2cvq1etDFnGEqLjLoxWsslors/BQS++gPzhtDQPaqUClUodPGa6C0YMWRa23CVk+A1ozDbsri5cp06xfNnIpQ2TkpJISWiflrU3kaU7JAJ5ixbjLy/F3tZMRm4BkiQhSZCQkExXWx01VeUUpEQjKUymrqERnS0TXWAAGRmlUjmiYMoFa1eeSVgc9i5lW1Wo83PR60b3NAz09THo7qempobK+mZkY+K4btVYmV54NhPFz5UqJW5fAJVaPernsz1gnmxyrc/vG/X42W5/tBBCHSNM1EkOxYFVCgVGc2gHKMsylaUlBHRWFp4Vf5spd5DX60WnN1K0bA0DA246Ozsor6lHk5pFQmIKSpWS9vpqquqbUOkMnLe4ICjW0XAXRjPZZDTXp1qtQaWQcA/0093TRbJZ/+FA6gxTHYiMtCyg1d5B+0A/6TkFNNeWU1tTTVxCIvDRCmNxcXFhWXvjWbpDIqA3GkesF63VGfD7vTTX1ZC+KJklhavHvMZUqoYNZ6iiVmpaFl0NpQwOhrrvh6ypFRoNWy7YNGLRj9379o86gOnqsLN/z7uo/B4qa+voRU/R4jiSAv4RA4Hh71EsFvSYKH7u9/nRqRT4xihONdvx9akm157NbLc/WgihjiHG6yTHi4u5nA6q6xvIW5SP2RxaNW6m3EEfdRADmMwmqmpqwBBHekY2kgQDfS4ys7PRqNXUNzajlgKsW7sWd/9AxN2F0a6yNarrU29AMTjAsX3/IDtzAdkFqxjydkxnIDLqCmNZmbhKK2hprsdgTqDDXkd7SzO9vY6Q+xcta2+4CJy9XvTQDASbxjvu/Z1q1bDhYjNUUUvGH1L2cojh1tTZ79JQ8Zfq+qOcPHbGK6A3GmltbGDvvt1IKi0rl6+htrGFOFs2dnc/vcMW4xjrPYq1gh4Txc9drh5yUuLodXSRnJIaU/F1mFpybUZWTsy1P1oIoZ4jjBcXqyw7jSrgpSA/n+FL6A0xE+6gkEpPZAZrCUvSmReos62ZzIx0snNyKS85TUPZKQzyAPFmU0TdhTNVu3u4GFacPEBtQxMd3Q56HS4afW4sGgWLihaj1xmmNRAZzbKwWuNYXpRPbX0DnQ47rfVVpOkDFORljrh/0bD2zhaB4etFD3o9NNbXUJiaGzL1azjTqRo2XGxUKjUqhURbQy0L4kLLXsLY1tTwwcGAT8beVEFrdRlJthQ67G2YzXFs3HwhAb+P6sYW4hISiFfYgjH3FcutgBT2ezTkSfB4PLjdbnQ6HVqtNqJW+ETxcxNu1m7fQmnN2KuUzeYc6skm1/okZUy2P1oIoZ5DjGUpZcdp0ObnolWP7u4Z6sDUajU9PT1RcdMN7yCqyk7j6u0nPkPFQJ+LzrZmdP5+cnLPxFTXbtyMQeln88rFZGRkRLQdM1mMwmazsViWaWxpJ2NhEWsXZKNSq6morKS2to766nKW5ueSnztSSCdiLMvCao1jxXIrba2tJCv7x11hLNLW3lgioJAUdHd1kGxUsbSocNS2THUANdp1JDmAu7uNAZeD7JWXT8qaGr34Sy/FJ4/h6mhCp9OxestWTBYrLqcDlULC4+5HbzQHF+Po7e3DZDKF5VYdGixU1DRQ29BEv8eHwaAjZ0E6+dnpEU34nIxHZWi+fSzF12HyybVATLY/WgihnmOMZimNF38b6sAsigAnTp2mvbs3ahnhQx3EoSNHqSiups4zgNGox2YxkZO7jLiERFxOB47uLjRKBenp6RF3G061GEU4CWeyLFNSXoFsSmLFMPFJTExk6ZKlVJWdJt2q4sJNG4NVrSZ7XlmW0Up+aqrKWLpiNZKkGPY59Dq7KcjJmJEVxoYzXbf6VAdQY11n7cIUulxGurvsaLW6ca2p0QYHQwWDXJ4AlS0Oens6MS8oIC83B4vFSoLFFEyS0+i0DH6YvR+OW3VosNDi9GB3+lCmFZFmTaJvwEXLgIPBJgddzo88CpFIgpzIoxKL8fUhJvuMxWr7o4EQ6jnIaJbSeKNQv6OVLlnGqTSP63Kcagcx2v42m43LL7uUgCxT1+NlUeFSzBYrPV2dHD9yiC5nL83NTaQYJD44dZolRYURHQFPpRhFuAlno4vPmTXD/X4faQuycXU0TLga1HCGt6mj00lNfT0Njc2sWLWKlNT0j0QpMEBGat6o83yjzXid/FjP0HSqeY11neCa5xMMFM7+fbo7Ozh56lSwYFCRNY0je/9BTVsPfZ4z8ejhSXIGcwJKScbjdlPdXjItt+pQFTd7f4Devn48ahN5C8+0J14+415HA30oKS4rZ/GHg7+QZzLeREZaKhaLZUq/9UQelViLrw9nMgOJWG5/pBFCPU8YcxQab6LHp8c1QYGAUTuIcURrIpHbsHYNg4eOnVk9q6eHiupqXH4VqPRkL8xnUVYGDb2uiE8dm2wxCq/Xy97Dx8NKODtbfByOnuCa4YP+AEpJZqC1iuX52ZPqUEZz0yZnN3D82PscePfv5OZmkxRnxaIIIMsBjhZXzlr5xNE6yfGeibEGULIs0+ty4ujuYtDdj/qsaUOjXWey1uDw32eoII1baQhOKVPrDJhNRiRk+tF8GI9ediZJrrqKklP7sWolPHFKMhMt03KrDlVx61fHU9vQRNyCfOSaWlJTbJiMJhISkulpryctOZOK6lM0trQjm5KCz2RbazPvHD3GQM9ecrOySEqMn9elModzLgnxRAihnkeM1oHJssxbuw9+uLzdGAsVnDwwooMYT7QmmxS0ed0qTpeW8d6+Xdi9GtKzc0mwGIKlJmVZjvjUsbFiXMMXpUhftCoiCWchaxoH/JwsrWBA0pKQnIVGp8XR2UlrXSVHT5UG596OxVgx3IzsbMzxCZw69j5xGlhZlMepihr6leYQz0lDcz2NO/ewamkh6enpM+4GnOiZuGDtyhEDqOF166fqZZlMJz789wnIgWBBmqH7MujxkpaegQYPHpeDlt4AOQ4nGo0Ws8XEhqIsVi8rmvb9HF7FLSM/E9OAH3NKJj19Lgbqm8jNykCvN5wZ1KlU1DY0kbGwKBhGcTh6qG5sRWnLRq2LI6DTEJ9ZSENr47wtlSkYHSHU8wxJkrBarUGx7unpoavHgd7WR0AOhCyRCaDV60d0EHBGtHKNRZw6foi9Bw6ydfMFwY5xsiJns9lYoVJR09TOsrRcLHEJIUVaojV17GzvQkdnN/b2VlAosKWksufISerr6li6bktYCWdB6725HpfHz4CkDU5Hk2WZflcXiwsKkE2mCYV/NDf6cAvd5VHQWFtFfWMz1sxCVqz56N77An5cHj+lFS2UVFSzfOkSUhMtM2J1ybJMd3c3f3/7HZr7AixftR6DyYQkSSHPREl5BYsL8uk6fJzqihJ0WkPUvSzDvSvxCUnBgjRn2g1dXe1kZqSSlZ5KdVUVZcUfUK0dJCk+jqwEM0vWXRh2bfahKm5qjQqNUomCAIlJKXR2tNHaZicjNQW1UoGzu4t+z5lwyZnfVaa2voEBSUtGRjbufhc9DeXIyOTlz99SmYLREUI9zwiJcfY4aKiro6qmjrR6O7aUFBIsppDyk53tbWd1EGcYsnZa2js5bW+mu89L3oIUMlJTppQUNDg4iFqjIyUtA+WH61QPJ1pTx4a8C1VVVew5dIz0RUvIXViAzmCkraUJe0ULFdXVGEymkFKcU2nTkPXeuHMPpRUtLChagxzw43b3f5TpnrcMjUZLa10J9fX16PX6SRX5cDh6Qiz0+AwV5Y4uKtrbyYkbwOl0YLXGhey3oGgNA/Y6tAkZNLgcUbe67HY7+w4c5MDRU5yorEdrjqesqp6CvByWrVhFfGLSiEIkM+llGe5daayvwe/10N/fi1KpoaurHb3sCZbgLVRrMcoDbF63IjhFLJxrn13Frb3Xhdmox2FvxpaVj9kch6u7jdbmBjLidPR02TEYdCR9+FsNFXcZmuKo1RnwBWQGB70zVhtBEDsIoZ5HDHc/6uNScTn9SGmL0fmMtPUOkLIoCbvbHSw/GZeQSFNjbUgHAYQk3SQtXIbSaMWSlkmDq5fq+qMM+GTSiyaXFDTbKw01tbahikulYJj1b4lLID07F9eAJ1jda3inPJU22Ww2Vi0tpKSimv72WjrriiHgJyneyuKly4lPTKLD3sbJ08U4XS70BtMkinyYgtbU8IIxGq2apNQM/HortfUNnLfMErKfHPDTZ69DrdWQlxZdq8tut/P62+9yoqoZLAtIOS+H+LRMetpaOFHTgKt/gI0bNxGfmBTyTCQnJ8+ol2V4CKa1uoyKI/tIz84l2WIIirQsy7S1NpKXlcaiRYsicq9Gq+LWH/Aju7ppr5XRmuNpb2nGlKQDQyJWlR/tgnTc/QMYzeZgcReNTguAx90fUuRlvpbKFIzO5OeMCGKa0BhnEfauHjxKA3kFS1l9/mZUWgOVZaeJT15Av6SjrPgUVeXFWJU+cj7sIIbOMzzpRqnUoFGpUKo1JNhScfqU2Ftbcff3jdqOs0VuyP3Y2tKALMsj2tza0kBKlCoJBd3JZ8XnTSYjCRYDqNR0OXvpdTnDalN6ejrZCzJQBbyADEo1bj/U1dZQW1nOkcNH6BiQUcelkJiVfybO6Aqw59Ax7HZ7cDqWRvJRVVGM0+k6Y00lJIcUjLHFmTGZTBj1ZrpdA7S3t4fsN7wzDwpelwuHwxHR+yrLMqdLy6hs7iRuQSF5S1ZiMltQqbSk5xVgyiiguXuA2uoqZFke8UwM97KYTCbOLtITaRGy2Wxs3XwBn73mKtYuSsZmVLIoJxuTyUyfy0V1xVBGd0HEBjSjVXHLSbaSaFAy2FJKy7F/EGg+Rbrez5IMK5dt20x+dnrwPVGp1KiVCrxuT/D3T7B8VORlvpbKFIyOsKjnCcNjnH19/SFuM7PJzPLzVlJ14gAddaX4ZGhorSY/xcj6bZspKa8IJvkMXwUKJJoaavE57RQDvoCMzyPTUFeH+fhRzt+8dcKiE5MpYBCtSkJjTwmSyMnKxNFbSl1VE47uXAxG07Tb5PV6abO30+ozUnjeWnR6Ax53P/bWZg7s/z86Hf2kL1hAbVMrjS3tJFhMZOfk0t11xnUcFxdHW3cvHT191NTUUVZSQkAXR3xGXkjBmKKly6mrraHN0YECmYGBgaDVFRTzYGcu4wsE6OjuwW63R7yoTE1DK5LGRGJqOnqDAZNeS4+rh0RtCtaEJLr6umhu72Ch04G9rTnkmZgNL4skSSxatAir1fph7kLZpNYdn+483bGquC0qcOL1uKkoPUVOgp5tF24mLu5MiVJJkoa9JwuwGjQ0NtagVSrRBc4UDBqaAjdfS2UKRkcIdYwx3c5huCi5XM4QtxlAQqKNgYwMlhTkYTCaaKqQWLd6FcnJySEdhFarxzvoJxCQqCovobWxhpSMbCwp2Wh0Wtx9/TRUlVJbehK9Xk9+4RK0ej2d7W00NdZiVfpYvGZzSJuDyV2lZVSXHmXA40Wv1ZCXkcziwpWo1Wra29sjPh94PEGwWuNYlJWBu6WS3tZaanvap1XdaKjoSeKCRWh8Et09XSQoVGj0RvxInK5uIc6WzKKVG0lItJ0R8LZmXKdPkxRn5cTJ0xQsW0nuwjPTsVJymjl4YD9lpw4jewewpaQEC8YMxXzthw7R5XAiL7ChlGQcnZ30u7qC1d+cTge19Q20tHfS1VCDXq2iua09YsllXq+Xfo8XSakOJmelptgYqG+is6MNk9ECCg0uVyeVZadJt+pCBj6zuZ7zZKd2hTvHfrwqbj3dneQkx7F53Sri4+ND2vZREmQZ9DkYbKxDYTKzdNV6LHHx9Llc87pU5mwTrRX3wkUIdQwRTucwXJSGu830Bj0w5BZVEBcXj0JSEG82odFo6OnpQZZllhfk0dTSSnVDLd0tNaBU4evrJSUjm0WFSxl6VhUKmYX5hegUPgY7G6j5wEld40clEbUL0ikpr0CSpJEWCkAggBwIQCBAT4+D/QffxyOrojIfeCJBGOhzse38NZy3bCmDg4PTejGHPBn5hUvwBfxnsrTb6/EO+ik/cQh9Qiqp2YswmEwolEr0RjMZuQU0VZdz8uQJBiUjGdl5Hw4kZCzWeLZsuxi3243C18/a1auwfLgoBEBcQiK2RCtx9DLQXk9HZRl9PiUrzjuP3IXLUKhUnCytoB8Ng7KCwiXnsaBoyahTeqbbKWk0GgxaDXLvQLDcpsloIjcrg9Y2O132Jnpa69CoBsiOy2PD2tCBz2x6WYauP17sO1KLukynitvZAwmn00ljSyttXe2cPlSDQg6QkWRl7RoxNSvSRHPFvXARQh0DyLJMVVUVu98/ildtCq7sM5XOIUSU8ouIN+tp72onXZ8NfOQWNZrM1FSWjlpSNDnexOZ1K0gw66l1DNKrs2FNzQmK9HD3an5BEbUnDyLLfjIWFpG2IJskmw13/8CINg/v+DKXrA0Wcnhv335kn4cLNl1IzoLMiK+fPSlBKAq1aqbKcE+GUqlkxXIrTU3NlJSU4PbJ6OOTsXf3UFlZTd7CPEzGM1OX9JY4TrZ3sTC/ELVaM6JYitaSRGPxYU4dP8TKNRtD2m2QB4jLXEBzRw9mo4m+djtNjXWkpKTQ3u2ge8CHViljVQfIW7gIk8WC0RyaXBas7jWNTslqtZKbmUpVy0k6W5vJyDsT2zUZTSzMNaKoLMOcaGT7yhV8bMelo5ZPjdX1nCO9qMtYJX+dTueYXqThA4nk5GQsFgu9R47i9PsISApcnsCYg2HB9Ij2invhIoR6lrHb7RSXlrHzwBHa+mXS0zPwl5cGp1Cd3TkAo1pBoaJUii0hDkd9E9UVxeAbxKz0kZyZR3VFCa6WaroGB9EOEDIoaGxpoLuihqJFeXQfP0VFTRMmWzoBvwbP8ClHucvQ6vWUVVSSnJ3PyhVLkCQJl8uFSqUmL7+I6opSisvKuTAxcZSOT8be1YM1qxDZ46a2thq90YBaoyV3URE1laURy1aOtiAM92QYTCaamxo4WVxG98AgcckL0Ovi6GhtwulTUFpRzYK0ZKwWK0qlEkdvHwkWAz7fIKfKKkOKpcT19dPZ2khHQzW1Ggmd0YJGpcAs+ah39VLd3oekt6BIzsOqS6S5qZb2V19CUqpJzSnAlpwUdJdDaDZ1VVUVJ8urp90pSZLE0qJCahubOVFVhsfjJiUzBwklrS31uO0NrMhNZv3a1ePWOI/FetPRWNRluPDa7XZ279s/pQqAZyroGck9L/YEZD4wUyvuhYMQ6lliyIrec+gYDr8avyWDoqUFKBQy9tZm2t9/n4L8hSQlp5KSuoC2hjKqqqpoam0b8yUPEaWuVsyBXtxdrRAIYE1Opaepgn5XD43t3fRKetKVfSMGBVXlxVTV1lGUm0lpWQX2ypOotDpUCikYKwXY84+/U1bXTL8hheo33oJAgLj4BKwWM/FmPbaEONq6WmloaBjR8Q3NEdVoTLR1NVLWUEOHsx+T0UCCxUSyLZm2LnvE5ohGUxCGPBmnS08CSo4Xl9LlkTEbDHTb21FZwSAN0tPRTt+gn9aObmzxVnrtzagG+0hLTqauoTFkKhacCTHkLVyEzWog3aJizaqVaDQadu3ZR02XB2tWIYmJKWh0WrxuDyZbOvWnDqEc6GLj+RuIi09AkqC3txefbxCVSo3eoMcz6Od0SRl9KktYnZLNZuPKS7YTbzrI8eIKKhtLkSQFiWYd5y/LZ+OGdZOO5cbSPODp1CSfLFO12mZbQGI1XhtpZnLFvekihHoWsNvtHxZ9OITdq8GalEybvYO49FwUsoL+wQB1jXbq6uvIW1RAvNlIX3sj/X0uVHGp477kZ4vSUO3klpYWjp0uI6DPQa+ysWBB/plBQVtzcF41QEe7nWM1lRTm56EzGOl12lm99nySUtIwmS30dHXywcmTVLZ0oo+3MaiPw+1TIAUCqP0K4vRW2gc8OOqbMAd66e3tHdHx+XyD9HR34/LY8akM6FJzseUtQatRY29rxlFdjVXpi+gc0WgJgiRJJCcm8Nede+mSzQwaU8guyGPQ3U9tdTWDnadJzc7F5x9Eq1Tj7nPh1ki4eztJNCix29vxKA0kpHwk0sNDDHn5RXQ3lKHVnsnsPl5aic62kIwFH4Uk9AY9GZm59Dp6qD/6Hp6BAZxKR4grXa1UoFMGUPba8VksZBaNXVJ2sp2SzWbjnz5+JVs299DR0QFAUlJSMIt5LjLdjPSJRG06ojubAhLL8dpIE83BWaQQQj3DDI2q2/t8+AxJ5C9fhnfQT63dyQfHj6PWalGaEkjJX4nHXo82IY3mDjs1p06xbuNmzl838Ut+tijJsswHp4uRTUkssKXS2luOzmhAIUnEJ6XSUF3Kof170BgtuJUGdKl5ZBScR1JWPnv37efQ4UNcsOlC9AYjZcWnaOxwkJQYT0tTI47Wbiy2dJRqiabuDpSKFpaet5KaihLcXa0YjRtGdHwKhZK2hho8xhRsmQtQ9YJGq0VvMJKRW0B1yQd4OxtHLNAQCSJtJciyTHtnF9n5y0j0BjhaWo1LrUGlUrDsvJV8cGQ/XZ0drN7yMfyyTFtdBQkGFYuXL0ERWEhnfQUOhQVjUtqoIQa90Ujbh52Ew+Gg0+Vm0dIszm6yJEFmziJqju3mxNH3MdgW4Fbogq50z4CbshMHMQ00k6XNj1inJEkS8fHxYcX5Y4npZKRPRtSmI7qzJSCxHq+NNLNdlGkyxGTBE4/Hw3e+8x3S09PR6/Vs2LCBt956a8Lj7r333qBQDf+n0+lmoNUTM3xUvSArF6VGi8FgIiEhgcysLJra7XS6PCSlLsAUl0AACZVai6zW4NfHIylGluCcTGGL4YU/1GoNaqWCztYWKk4dpeT0SexdTnYfPMyxk8X4ZQm1SoVWqyU9I5NLL70Us9nK6UO7OH1wJw01laQlWJAkJYOoUCmVWBJs6EzxYIinqrGFDns7+AYhEMBisYQUPOnu7ODksUNnXPjdTipKTuPqsuMb9A19I1CpYQrrN08Wu93Orr37+PuuA/x9z2H+vusAu/buw263T/ucw7O+V563jILsBeRlZbC4sID8pctZsGgxegbprj5Fd20JONvISjCw4rzzWLN+MylpqVj8DjqqTtFUdoyehnJsOli+7Ex8+exOQpYDyPhHbYtMgDirhZ7WOuobm4mPS0Cr1eAd6KOrrYEFSVaSMhdhb2+bdMGac42hXA+jPEB1RQl9Lhd+v3/MwihDotbgCpCQVUTOsrUkZBWFFLSB6YnucAEZjaHfSq1W09PTQ3t7e3AWx3Q52/I3ms0olcozRkH+YvokPcVl5WFdI9aYzaJMkyUmLepbbrmFl156ia9//evk5+fz5JNPcsUVV/Duu++yefPmCY//9a9//WHFozOMVmN6Nhg+qg7IAVQKKTi9Jc5iRqXW0Dvoo9flRKVU4PcNYre3oQl4yMhZhMsToNflxGwJfWAmGlmHZiYrUAU8HDtegjklG+uCfKT+fpyVtQy6VbS89x556Umk2uLJzcokLi6eC7dspeLYPjITTbjdaajj43HST3puAe5BP47maoyJqVjjk6hrquTU0fdZlpuONTkVn88XTHI7fng/9k4HLp+ENTWbAW0CAZ8HWWelurqajPQ0vIMerFoJc0oqg4ODEbv30bISzr63ackJtA94SNKn4nI5MMQlodPpycvOxuFykLowjfM3bECSFPj9fhKSkslKTaLdo2RBVi5qjTa4cMrZFpwsyySZdLQ11GJcfN4Ia6+toRab2UBqchIBfRyOxnI6A/Kw/ILlqNUa9v39ZWqqylm6Ys2MzmGeK0w2AXEq7uzpWG2Tse5Hm70Rjot6LsRrI81sTxecDDEn1O+//z7PP/88Dz74IP/2b/8GwE033cSyZcv49re/zb59+yY8x7XXXktSUtKE+800wzt1hUJBgsWEva2ZjNwCtFotyTYbTrcPV2crrs424hQeshIXYkvMpqymnt7uLgYHR4rxRFbQ2ZnJ+AdRaHRIBgvuQR9NTS14UZKUloPsbEdnNNDeH6C3tIKstGQ6u7oprW2ib2CA6vpmnOWNpOcWoFarMdvS6e3ppK+5Eo/bjeRoQ622kJ6agj7Qj0ajIS4ujgvWruT5l/5Cl8OP3pqAhkGSE41o9En4ZAl7WyuDTjsrlhWRnJCBv6c1YlZdNJNyzu6Ac7IycZVW0NxUh15vJOD14B3op3egH5vFwJKifCTpjLfA3d+PVqVk+ZJCTpZX093VQWpaJoFAYNROIi4ujpVL8tl5opImrY7E1HS0ujNV0Dpbmxmw17FqYRaS3krOsrUM9PcxOOhFrdYExd/v92NLTkXtdcZspzRVopH0NJkExKmI2nRc6hMJiN/RSpcs41SaIzb4nAvx2mgQq9MFh4g5oX7ppZdQKpXcfvvtwW06nY7bbruN//f//h8NDQ1kZmaOew5ZlnE6nZjN5pjqcDQaDWqlREdbK2qthiRbEs6aOppqytGb41ApFVj1auJUfjJSzSxftpEFWVkANDQ20OrsQqUKjduO9ZIP77zUajUp8SYaWhqwpaTj8cPy81bS0ztAZW0V9pYWDAo/8UYd8Rnn4e9uIt6aQHNzAzUHDhNnS8NqS2dBfj6lVfWUVDVg7xtELYGqw07u0tXY1Graa8vJSSoiITGR/j4XORlxIWUjUzKyyFqRiUarpdSkwYWejNwC3G43fSmJ9He2sDAnm/aWxohadeN3qGCyxFNeU0xOZj1ZWVlTembO7oCt1jiWFS6ipLyCjqZ27FWnUCtkMlctIS8nG6s1Lvj7DP1uCxcuHFbacuxOQpIkNp2/ge7efiqba2l12vF6B/F53SgCbs7LW8Cm9Ws4WlyJZ2AgxPMiyzIupwNHdxd6rZoL1q6gua09JjulqRBO0tNEAj9RAuJURG0qVtvZ7bpg7UpKyitCf6t4Ez0+PS6VNaKDz7kQr40WsThdcIiYE+pjx45RUFCAxWIJ2b5+/XoAjh8/PqFQ5+Xl0dvbi9Fo5Oqrr+ahhx4iJSUlam2eLF6vl7ameipOlJGQnIZaqUCNH73Xgaejl67KYyiVKtZv3UJO3kriEhJxOZ0Mej0E3H0k62XaW5tQKpTjWkGjdV5ayYe/b4DKnm76+gbIXpiIQuUEn5v8jGT02gVg0GOJS6C5pYru7g5crl56PAqsfh8mnZq6hkbMCwpJ9psZVFsw6FW4e52cOriL5OQU4k16Emwp9LRUU2BJC4nleTweepwu0pMlVEolhUVLOHX6NE015SSmpGONi8fR1kBVWTGpZnVErbqxOtShIiOdjl6ayqsgECA/t4EFaalYLJZJvahnd8B6o5k2eyc9zj7sbc0k6SHOqAVPLyqFEr/fP+rvNtlOYmha1N4DBzh45CSdzgFUKhVpSXEkWszBnIDhltvQkqVdzl6am5tIMUg0Z6ayuLCAFRrNrHdK07WIwwlnRCKreaqiNpHVlpSURGVlJadLyujq86DSaNGqlKQkmFlckB/yW8myzFu7D45YcAbCc1HPZnnXWCDWpgsOEXNC3dLSQlpa2ojtQ9uam5vHPDY+Pp6vfvWrbNy4Ea1Wy+7du3n00Ud5//33OXz4/7P3X7+V5Xl2L/jZ7njveAy9Z3iTprJMVlV3V7WR7pXuSBrNqHE1GGAA3TcBEiCoIehBT/oPJECAIEgaDIS5KknTqnblsrLSZ4YPMujdIXm8t9vveWAGMxiuIk1kZlXHAvKBjHN4Nvdmftfva9b6XnuE/B+EpmlomnbydafTeeJrPwvuGxco8TFSriGWN4zbG6TXriH0GwS8Dt+/soCsKARDAQa9HjvbW5RrDeqNOn50LsyOErI6NJ6SBT0ueA37fXa2VlFbbfyKhNook1+/gygIhBWHM5cuIYoiKysr3P1oh2GziGZa1GoNDG1IxqMjxGOosp9zL10GzzLb+SP0fodoOES1U6W1c5Po3BKHq3nmUgF+7/Vvnrqm6zdvsb61y15dxe/3EgsFGM9labZaNA426PeHaM0iE1OXeOnKF+v//biA+uAeZ28wSXp8Blckxc8+vIvWe5epqQkSkfAzBe/7Afi9Dz7irTfeo4+LeCzOxaV50iOvU62WqR9usWcOToxLRqMBRjPTOI5Dq9U6+R2fNUg4opvp81d5KZHCHwwjiwKl4iHvXLvF4tQYjc4BO5ureNw+Nnd26FoyyF4mZuaYHc9x0OvSuHaLb7987Pf+VeGzEuZJOwMPqcwYhmXiDIcEgoFfm1F+UfMKn4XUnnQgq9Vq/OmP/4y3b6wwFAPER9KMxD34InEOuo8+q0ql8lxK1L8J/dq/jvjaEfVwOMTtdj/y/fuT28Ph8Inv/cf/+B+f+vrv/J2/wyuvvMIf//Ef82/+zb/hn//zf/7E9/7rf/2v+Vf/6l99xqt+Oh7skV68unSyNKHZbSA4NqVymbGAw9/6v/xtwuEw733wIW+/9R4DMUAwHGFyapp0MoHgmNiOypWFaYLBIKqq4vF4UBTlZFrx4V7sJ9lUn0K5R8LtEHY5OHqHuaVzeL1eXC43nXaLdrNO7WCHgAyCoaO2a7g9HiwH2gONzFgWQRCYmp7CEiWO9naYmRhlZmyE7Rtv02nVCbpdxNM51ja3Tlyp3v7oJn28jC2co+24CceSVCsFukcFzp09y4yisLW+wsRCiquXPy7zPUPgftZM7NGAyske50x2nMLeBl7RplitocQnsSMW+L3Exqc5KD7qkf04JBIJQuEQs2fOPTIUlh2fYCcYICYOuXr5Et1ul6NiiRv3tj5Tufbe+gZ90cvZi6fJ4T5BVeoNvvXSJe6tb/Dmu7+iqrvITkwRC/mYHB872cH8VTsufR7CbLfbbO4X6Ao+DuqrJ1rxaNDL5PjYEzPKJ88rBEgxxvb6Ch9dv8Ef/PDx1qcP4rOS2sMHsmq1ylsf3uDGxgFKep7ZhXMYmk6tUaF/WOLcwiz1SvHUs3qeJeqve7/2ryO+dkTt9XpPZbb3oarqyb9/GvyDf/AP+Kf/9J/ys5/97KlE/Sd/8if8k3/yT06+7nQ6v7bE/qx4uEcaDke4eD7MYT7P3s4WwXCYUrvO29fvMp1LAQ6ZiVlMyUV/aKBaEke1NpGAh65uIq1tEAqHHvHpDvl9bOwckJw6g+M4HOZ3uXN3GcsdIjsxjxhKs3X3GpZm0Vz/iGK1BUDj7gqlcpV6q4Xb1vHHokjmkKDfw8LlV1GwKB3tM3nx+PQe8AcYHUliNAqojSKHhQIdQ+S1S+e5cukSbsV1HGw/vIlo6/Q/7qMlOm3urm0eb5gaGaNW3GdjdYVEKkk27GFmcox3r99+psD9aTKxhwNqIBSl3u7hDSYp7G3gNvs4gCYf67jVoUq7kscRRKbnnq3f1263qTR7zMwt4QgipmnQ7/cJBPzHpcjsOI38Gt1u93PZdz7rANNFl4uL586ye1ThXGaKUCRGIODn/u7nr3qC9/MO+BUKBVY2dwnPXSGRypw4tFUaFbprm5yZm35sRvno/XM4Oiqwlz+gO9QxTJPNezvYjsOrL139taT0eUnt/n2oDiw8oQSRsWlkSUL2ecl6Jygc7bN/cMjs5ATl/PrJs3reJeqvc7/2ryO+dkSdyWQ4Ojp65PvFYhGAbDb7qX/m2NgYjUbjqa9xu92PzeS/CDyuR9qs19nZ3UWVg4yemaNZOiCUGWOjUuH2R9cJjIzjS0+RnEidBKFqo8KgWmOlsMv5qy8zM3cGj89H6fCAn334Ic1qhYFukar20HttKrU6ujdOIhdksLlBf6gykENcvPQNijur1HdX2C9WKNbaOJ4A6fFZkuNzmKbNXnEDpVfD6jZITy9yuLNJq9kglkjiOMfbuC4uzTHsNLBEhXm/j2+8coVA4Ph0Px1YYuX2dQpbm3zzh3/75IByfnGOvfwBjUqeXqtOubBFxn+Bb77+HdY2t54pcNdqtU+diT0YUDd273G0sU16fIZkJEgiOcHG9h7xkeOKgcvjxrBsTNN4KqE9mNG3222qzRY1Y4dWX6Pb6yI6NvFIkKXFRYLB0Bdi3/lpp3Jllxt/MIxpGvR6/VNk/VVO8H4eGZDjOOzs5zFFF/FY8mRDnPcBctvY3CTrF0/6uQ8+J8208Ph8tNstlu+tcndjD030Eo7GCAcCWJ4w+y0d4xnL4J+H1O7fh1g8RbGxc7I29Pg+QCyWolnJY9rOqWf1ZZSov6792r+O+NoR9aVLl3jjjTfodDqnesoffPDByb9/GjiOw97eHpcvX/4iL/NT4eEyleM47O3uoEq+kwzOrSiEIjE8Pj9/+cY7hNw9vnllHFE8/h/N6/OS8Y7z3s42rbbKH45P4g8GadZrbO/tocQn8XlTdA/2qAwFmj2BfldnfnEBfyzJ1r1ler0OyUScWrOJKgcptFQ0E1z+ILbkwZbcVIuHKKKAOxAl4JVRG0V68SQSFpVCHo/XT7NZxetoJGMjrNVqeEMRsvHAKe26IAjEEinu3LqBaRmnPKfHR3Oom1v03G5aSHQGBh/duEmp0WXy7MtPDdytVuszZ2L3A+rkWB5sm8TkAr5AgFqlRK/XI+U+Dvi6qqFI4smE/eMI7eGMvlGv8N4H1whOnsXnCzI0TDTNYOugwObmJi9fuYigDWkY4uey73zWkqeiKOzu7nLn9k3EfB1fOIZLlk5Kw+Fw5Cud4P08MqB2u01fd5geH6NRKeD1fzK0KAgQjSbZuvErFq7MoOs6v3rn3ZPnZKgD8kdHmK4g1XafjYMKcmyU3NgUpmFQrxyht9ukMq/QH/afuTXwWUnt/n2Ih8KnfBXu4/6hsd9tP/KsXpSo//rga+dM9nf/7t/Fsiz+3b/7dyff0zSN//Af/gOvvvrqSTk6n8+ztrZ26r2Pc5j6t//231KtVvmDP/iD53vhT8HDzje9bodGp0d8JAsINBoVokEvgYAfwzCQfUFMW0Ttd0/9HHU4wHIEJJcXXTdPE/70PBMz83QHKh3NZvLsyxBI0GnVcRCQg1F00UOpeETflnGHE6iWgyG68E1exDu6RHxigeDIOLrootdu0xyYtNtdrOo+fkeld3CPrRu/IugMODM3jWNZFApHhN0Ck+Nj3M/U7sMfDKOqOh999BHX7tzjo7vrvPneh/z4p29Q7ttE05NMzC6Rmj7LfktnZXMX7TE6cfgkcNdqtROXtSeS3VNc2gRBYHx8nFQ0wPWP3uWj6ze4u7bF/n6eezfep9Osn3oe8Gi/r1Kp8FdvvMXyQR1XNMvE2SuY/iRdwc/a3Ts0VIvw2AK5sy8zfv6b1B0/f/WXP0G0VGSX+3MNAD2Li5JHtPnV2+/y//mfP2Or2GJzd59urw+uAJWhw921TVqt5lfquPSsrluPO0Touo5hOcwuLuGxBhztbjDsd7Eti2G/S624j6i2Cfp9/OSXbz/wnK4yunQVXVD4q5/+jEKjh8sfJj6SQZJEXG4Xsm2ieP3Umm3SmdGn/i19kfdBlmRioQD1cuHUc9VVDVkUaNQqj31WyWSS17/1TX74+jf44bdf4oevf4PXv/XNFyT9W4avXUb96quv8vf+3t/jT/7kT6hUKszOzvIf/+N/ZG9vj3//7//9yev+4T/8h7z55pun/qgnJib4+3//73P+/Hk8Hg9vv/02/+W//BcuXbrEP/pH/+ir+HWAR8tUbrcX3bCwbeHYGMPRmByfA8AwDCRBoN2so+s6D4Z0Q9dp1Sr4JDBtm163TaPTIzY6z3A4oNNuYyES9nnodFp4glHa7TbeeoVOu42kuBAcPwF/iFb1kE61iJKeIXfmZQ4271EqV0hkJ4hNJemW99FKW/RdLmqtJt996SyXzp9n/+CQrmbTPNjCUAeM+ARmx3Mn+uAH0e+26bUbHJQbXJi6iNvjZn1lmYblRTbBKR8yHguSymTx+v2sbe6wsbnJN16N8TDp3w/cwOeedq3VarT6QwYG2KKX7Pw8Q9HH/mGBcvVXzE/mmFx4GXjUHaxSqfBf/ut/Z7M2JJbK0Oyt49vZotbVyE5M09k9pN3tkxZEBAQEUSQQSVIv7WIYJkHp8w0APZMJhu2wU+3jGj3Dty/9Dpsb6+RLdTrtNgtnL1Jv9Hnv7be4PJv7yiZ4P0+P9T65eT0+zp87dzwsebCB+bELW0QRCafivPPhNY76wslzihWOmJya5sLll7i1/P/Gzu/ij6eJSAraoEe7WkAxB0wuXqTV6z1Sbv4icb8cr2kaPgVKxQMmJqfoPiBZdLl9FA53kXtVEvHcKbnjg3hRov7tx9eOqAH+03/6T/zLf/kv+c//+T/TbDa5cOECP/7xj3n99def+r4//uM/5t133+VHP/oRqqoyMTHBP/tn/4x/8S/+Bb4nBPYvCw+WqXbyezSLuyDJRAIesiMpet0Ou/t5SrUWvcGQ+tEeN9//Feeuvko8maZeLbFy8yNq++vEsxMsb+ziV6BULtO23TSaLVrNBvV6nXQuh1s0KHbqFPY3EUwNUfYhSj4MbcDWnQ+olw5RLcAwqG7cBNPBkNx0ux1ExY3uKLSbTSRdIhXOEQyEWFpaIpvNnmxKisfj3F2+x0a1jNfnP3bA+rgH6jg2t2/dIpMbJZlL0ygf4A1G6BsGI5kcxfw2cbpMXv0jBEEgGAozPT7G3t4+Z8+cJfgAkT0YuBOJBC55+zOT3f3hHSmc5gc/uMz+wSHNegGv5BB0iwx6OrKl4fcH6He7p/p9tVqNn775Dtsti/FzrxGJxdDUAQe7W2yvr+KLpli68irVg10aB1tILjeSKJAIeAjPLeAoXvwugdLnHAB6YsnzYxOMiq7giQYIjUzg9XlZPHOGYqHA/vY6y+/9lNzoOJLa4vzCd76yzOvz9FhPkfzcEpdicXrdDoahI8vHCoLSYYuOEGD83NWT53R/U9xYLsPs7DzNVpPuwQaONsTr9RIJeMlML+ILRSntrj+23PxF4OG2iTrsUyqu0R2dYWZyklK5RHnzzoks8xtXz/HaKy9K2X+dITi/Te7qXyA6nQ7hcJh2u/1U/fWnheM4NJtN/r//9Ufc3asSzYyimxbFcgXF62d24Tzbm+t0akX8/gCm2icSidJqNVE8fnr9LqFElksvv8bW6m2uvfVzfKlJfJE4nU6XQauORxEwB11MUaFePECSZQzTwnBHwdbxhuJEwseLNSxvhH6viz3s4I6P4o9nkBQ3w26dzspbTKbjXL18gRGXwdxkjoHBKROVdrvDtXtb9AU/yZE047k0I8k4jWqZjeVbvPqd38MXCLC3u0O+UGRrN08iO4nHJeN3y3zv26+d9LZr1TK/+PP/H/NnLzC3cBaPz0utWqV4uE9I1PnBd79FMpnkV++8y0HXPtWjvn9vdzZXGQuKvP6tbz42yLdaLX7yq/eJjS9+PC9gU6lUGA6HGIZBrV7ncGOFhdkpouHQySR5IpHgV++8y72jFpWBQ2Z6Eelj+c5gMOAXf/VnqP0ul373f6NxtMvkaBqPz48sywgItEt7JGSV71w+w/re4fEg3GPI6cHhpWdZnfig+1y73eanb3+IO55jr9QiPb1wco2OA41amcb+KlcvXURtlPj977z8lWqo4bPrqE9Jux64j8VCnv17N3BHMgwk/6nn5DgOR7sbBOwePc1maIHPHtDFw9j0Ir6P5XTDwZBOeZ+kX2J+JPDEv6XP+vs+7ro31+9RO9gkHAgguTxgmWRHYpw/s8TMzMyLaevfQnwajvlaZtS/zajVarz7/gcsbx2w39KpOh1EtwcpOoGDzd3r75GNBhhdWkAIJumUC/SK2yRHZwiPZHG6VRxDp146YNBu0lFNdM3BH8mQTk3QqhyxvXYX27CJJGOMnB2lq5polSPam9fwJ0fxT58DUcTS+mAbiKLIwHSw2zWy03OonRZSr0I2HuL7P/xD2r0+7137Ba5wgoUzF08mzf/i5z+h1VOJJxLYA5Xt7W02VpfJhj28cm6WqfFx0qNjSJJEJBYnnTkE2yY2MUM4kaa8t4FpfrJ4w+vxcXZuimxYZm/lI/YOCwwGKj63jDKWY3Vj8zGZ2Cim7dDvtmnUKiQ8wlPLuQ8OMd13JntwZ3PY5yWXSfHtK2fJ5XIn5NhqtSg3umRGJ2jtHKCr2sm0sc/nIzM6xu1r79GsFrEsE0GUUBQXHo+HwlGeoCIQ8fvJZrMkk8lfOwD0LAR2v+RZrVa5s3KPjZ0Dbq7vEh8XqVZruIJRkiPpj18L0ViCQTUAjoNbkb4WNpCJRIILsvyp91k/qaoQVUDL5EhMLrH60HMSBIH4SJbWwQaKrdFo97jyjVfZ3dujWSshSuIzl5s/C54mSRufnOboYI9itc7o2Dg+n5dYNPpCEvUCwAui/lLxoLFBaOYy38+Msra8zMrGBt5AhImxHD5/iJFkjPNXXmL/4BBVEjgslTmfm2bEJ5IcXUBXh2xvrrO7eofgyCSWIOD0WyRSM9QPVVzJKSxtSLu6T2rhZZK5NOFUFmPQQhFsYokUw26LdqWGy9Tx+cI01QFao8AROsFQmBA604uLJHMTFG7dpKc7pHPjJ1Pru3s7dKUwTiKHJxbkwrfP0m7UqVYK9Et7yJJMPBg6KVEfa4lHGR8tUu338AZOT1Y7jkOpkCebjDI+muOgWCEzNklubIp4agRtODwlv7rvBPbOT/+UelfFcWwSAQ+pM3NPfQb3+5vl4hH3tvcZ2Aqx5AjxSBhd1Tk82KGbP6DbXTr1vvsEn00miVZrVBoVst4J7sfQmbkFbr31l7z/8z8nOzaJ6PIiOCUcrU8m4sET9pGOh04C79PkPJ/GCOTB1yanzpAeiniTo5TbKsvLd7nq8RL6uJSuqYPjwaR6hcVM+Cu3gXz8YaTyzDaej5NFaZrGT9+5TuIJz8nt8WFYNj5JIOk20dX+l1ZufpIkrVmvsbyygh3M4ArZzFy4jCyKv7X7n1/g0+MFUX9JeNjYQI4kqFaqmKKM2xfEkWQGvTYXzp2jU96n02owPTFGJBSknN9kZnQEUx+ytlHDtB2azQ66BQsXrqAPeySCXppHOzSqZaIjU5iGh1Itj9pt4PMHCbhlsnMXGTQKyAIkM2Po/Tb6cIBbgHAohKU4yC4Pmqri8UrYngir6+scHeaJhcO4P3aH63XbbO4d4EnMEE+m6VUP0TQVr9dLJjvGoWmwni/y8vnQqX6sIAhMTk3TuXuX9dsfMDOWxuv10O922Vy/R/1wi2Eyxbu312hrDkvzcVxuN7IsIz8kv1qan8MUJNKTc5yJpwiEwsiSTLl0yNtPCW7hcBi3YPHff/xj9ECGUCJNr1gh0Grj97ooH+ZpVpr8z1++z365SToe4szC/ANTysNTG7JisRSa2mP5xod02h10rUJVEsCxiMYSSI5OuV8mLSVJxiZPNikd68rDp/S994nzWeVnD78WIFE4otptcubcea5fv87K3ZtcuvIKittNYX8HsVcjmQ196kzxi95Q9UXZeD48SNVqtZ74nFweN+1Gg0alyNziOFdff4lKvUG5USXsAn/cy9XJWc4tLT6XcvPjJGkPKjcmpmcp723gODb+YPhzb3Z7gd8evCDqLwkPGhts5e8wHAqYso9QeoKE4EVw+akdbvPBhx9Bv46maYQjEQRTwx522d3L40mOEh+bx+3xYcse9LvrVEpFIn4P2ewsfp+Pg0KJ0Zk5dMOkV9gmEgmRyY0CNqZuYHar+F0CPVVFNy1EU4VeFavfpVPawx60iWanSY4v4o9n2N1coZrfZvTMHC7XsSFMq9WiM9AZTaRxuTz0Oi027t7EcgQs28HUNPb3Nnnt4iJ+e3hqWMjlchPyu0k3uwSdEHvL11GHferFI2KjMyTHpqg4AcLBJNVug+7yMufPnSMaT5zIr0r7q3Sv32Ag+jl/+XSf2h98enCr1WoclStUq1WioXEC4RiIEvn8NsXNu0QDHs5/6/dRBAPTHWb5oMZB4S1+8N1vnRpgum/ccrB1l53dXfKlKmPz53n1tW9TOtqnWCigVffIplO0KmV2UQlE4yxv5RmJBUnFYx+TxOnSdi498ohzVq/XP9GgpzOjJw5VwCMZ2uTUNN3lZdrVArPTkxztbnC4dotep43X7vHtK2f55itXPpUd6xexwOLhz3pea0cfHjS7/5yalTy6adEo5plLePnh975NKpVi8TmsyHwSHqeBP5Fqjs1jaPqpKtNX7R73Al8fvCDqLwn3T9OxYIhmrYKdCJEdGwUEAp0u9XYHzbQwHImg5CG3eAVJllm7/RGNehUpNsZrL88jiseSIdsGe9hlc/kW6ZEkQY90vGfaMbFNk0G3hc+t4PeHESUZ2SWDreFofZLJJGqhgkuEUG6KMxcuc+Otn6I4BqFYCssYUN1dI2APGE+E6ZYDOLqK/2PXsfur+LAtWrUiteIh0sQcoWQWyeVm0G4xONxh57DM97/1yjEhPdBHPDsaY+l3Xj0pVX504ybu6BVm5s/QbrewHIFwPE40keBod4O93R0isTiCIODx+Wj1+nQsk6kLn87V6j5BOP44S2fPI3o8dAtbmJZN72gfx4HczFlCsSgrH77NoB1HcXtZqxRp1Kr83ve+Q6NzyM7GPQLhGNn0CEe7WyguN+O5HBde+gYBv59QJMrkzCL5nXW6lQOyZ17FLUFycglZFFlZu8tf/PIdJubOMbdw5lQ2uXtwk4Fqkl18Ug/dBf32iWTo4QwtGk+cSJZqrRrSsEkm5WFyepKzSwtMT0/T6XROLTyp1WpPJGLgC8l8H8TncSX7dXjcNPm5M0snQ4mzcxl+8N1vnQzRfZnSpsdJ0gxDx7QdXG4fpdIhqQf0+/Dbu//5BT4dXhD1l4QHT9O6OsDot9FUFbfHSywWI7+9gWoKxAI+JHWIbpqovQ6pRIzu+CKCqVI42sclKRzurLO+vk4fN47bh6aE0ZQwsmyid+6ycfNdwuEQmWQMSRbpD7qE5AhGr0lINhh0mlQOdpA9ftLZUXr1Ij5ZIH7mMq54jkGjhN2pMDo2iuDYTKSiDA2TUuEQj9eLJMmEvC5qR/s0KgUEbwj8cSqtPqbVo1M9xOPxMpT8VOoNvvPN1+h0Oo/NWlqtFgMDMh/vgZZlBUUST4aA4iNZGgcb9LodgqEw6mCA6NjYgviptdT3CSI3Okmzp6HEckRMk2G/g6kPmRhdZNAocffmdTTRS3R8iUg0RiDVYHvtOvGVdSazKa7fXuZGuUW716dSrZGZmMUtKzTKR+QHKpbtIIoCjWoVTbO5MDZJt1bCcWx8gSBDVadq+hmxwBfwIwjix9nkIh+9X+doZw1/Mke53UcVPcRS4yc2soeHuxiH+3Q6nY+lao/qsqPxBJFYnEqxQMZr88Pvvsb4+Di1Wo233n3vFCF7RJtGt4ccThOIj+JTFEzD4KDdeMSr/YvKfD+PK9mz4EmDZmdykc9cBfgi8LhDhChKWLrG3s46Ua/8sZ/CJ/fyt3n/8ws8O14Q9ZeE496oyRtv/BW1Zodhe4tqrcHI6CThcATL1PGYBtJgABJ0SnlGM0kiIxNohoWt9RBaRW5tbFOo1lFio5xfeoVWrUyl1uAwv0cwFEK1obr8NloiQ/DsJdRWjdbRAXuDDhFB5+wr32J/a5X2zh1GJuZxqVECPi/ZyWkSY/M06xV0SabZrNAv7TM9OU76yiV+8Vd/xp//xZ+TSo/h9bqxtR67G2+gIxGavEC900cWZQx9gDnoEozE6ZsCm/sFLp7rPDFreThoBwJ+okHvyRCQ2+PDtB0MQz/RGucSYbqajToY4Av4KReLqOoQj8fLSCZzKrg94vNsWHhkiXohz/7KBv7YCJau0u12CE1KVEtHiC4vCwsLxBLHAT0cjzPIjFNo99nd/4jxpcu8fj5Kt9Pi5t1VLHeAuzeukVaCjM4sori99NpN2sUqxqBBrXhEwKPQ7w9YXVvj+somUizHjdUdnI+DNxxv9Kr3TXYKNdb+238jPj7DhSvfOJla9ng9uCUJMRDksFhienr6iaYhAL1em/npsROSfjQz7vOrN39JpVJiek7BqvdPMvdIwEOl3aVbzp94tT+Iz5P5Ps/NT/fxdV0q8fAhQjMs5EENwTY5d+k7p4yD/jrsf36BZ8MLov6SUKvVyBcr5Et1mrqDL5VG77fYvPUBltbHJZhcffXbxEeyWIM2L11YYmRkhF6vj99XpNKq0aqVUR0F2R8jlMzhC4YJBgIomDRqNaoHWyhuL6l4lICsUt28TXugovXbeB0DRkboHink/BZaJkJ2YZbzV15FkCXWNjaRXS5yk3PYgoi7HWVhZoJQJMbq2jrR3DQTExM4spv+YIjsDeLWmlRrXfpiCIpFLNNAMHVS8TDx9BwN1aR1sEXl5YsnQfLhXqiiKA8FbeHUEJDX7UMEDE1nZ3MVvzPkpauXWd3Y5IOP3qNUq1Nq9NAtB5ckkI4FSCfivLo0/qjPs66yurLC4OYy9YFOt92hrZpIkkyjfEhP/RVar8mZSy+RSX+iL77v/W3YMuUBvJwZJRSO4AsEiB6VqHWHSJEMQ0fC5T3eliW7vXiiaRzDYH97nYtnF9k9KFDt6riCcUaml6jubVDuGbSv30RAQAzESIzNk6lXOSyUaA1sVu/cZPHcRVweD7XSEfRqTE3OsntQ4mK7zdL8HAe/fJubHzXJjU6eTMg/aBoCjx9QcwQRyx2kabdY2z/i8qvfw+31fLIApjOgWmpwptVAN1R0zcDt9Z4Y23zWzPezupJ92oG2r6tj18OHiM7FBe6u71CvFFEk+cX+5xd4BC+I+kuA4zi898FH7DY05q58B2Vrg7YjEZw+x6BZQa3sEffA/NkLtNot0ukEfr+fZrOJpun0GhXu3b1DIJklNXUOsVohMDJKpVqmXT7AjYUnmsIWFRbPXaB9mMTWBlj6kKtziwiyQsLvwhp2aRf3SGVGUUUv3UaVD9/+KZPTC8iOSa1UwLKPyVV2YOugRP3aTRqdLq++/BKXLl6g3W4fE+7SHH/abXPQuonL50fyR3EpCopo4xZsdop11F4T52iLn775HsVK9fEDVNEAbsE8NR0eDoeZGs2yu59ne/02cZeF1ggyFg+daI03Nzf54N23GPhzTJ69SiiWoNOosbpynf2Ne5zJ/BHvXLt1KoMc9nv81VsfsrW/wZnXfo+FpQzddot2q0OjXmNv5TqpeJgziwsE/IGPnx00GhVCikDPdhEIxU6034FgCK8sUCoWmT5zidLRIcWjA+KJEUBg2GkiKgrYOtpggB1KMTqWptvpofY6eLxusqOT3L11DVFy8crCOOqgR9DvZWJiEiWc5GBng7vv/pSRkTR6v4M7GGW/XKdZ3EXrtfD5fLSGOpV6i+21VXxumYnRLJlklOnJcRRFOdGAP9wTNgydcq2Bb2QSl94F20QSxZMtVMvlAtvbm/zijTfQbZGhpuNxKWSyOcZyaZKxyGfKfD+LK9kXPdD2VePBqf9QKMT5hWmOiqUXyzVe4LF4QdRfAlqtFjdXN/EkZ5ieO0Mmk+be3dvoosbE4hLtTJrKnbe4e/09MiNJBpaPN9+/TqlaZzhU2Vu7Tb9RxnAFSUgS/XaD4s336fQHdBtVBMWFLLuRMFlfW2VYyZMcnyU+NoHHH2B0eonS9jKK7EaPTuJKppkLjnB9eY1SuUZ+b5+gP4A66GLJbjzhFJNTC3hTo7RKLWy3w+ryHVrNJm5/EFkUaNYr+JJjeAPbeH0eJpbOIcsyFnCwvYGomeBIuDxuElNLrByWnzhAZfYGDPpVbraaBENRukONSqNNrVzCpbaZn53l6tm5E8mMbdtcv71MZGKJ2ewUXbVPq9hDEgUuXLhI7SjIT3/5Fi99/4+YmT+dQSq+EJ4RhY6qkw7ECMVGiHTauL1uREvH6lbpdVtIioI66NNtNwm7BNKZFHfWd/B6PSjKMTEJgkA2m0O8u4pt6gQDPvySRbt8QLvZQO5XiaUyxD0BhqZNJpbC4/UQ9HvZ21ljanICAMM6rjQ06jWG7QaJSAhV8BAaGSeZiHN07yOwTMLjS8TTWbq9Plt7+/zpB2sIls3S+XNMzZ0n6PNSOtwjn98HUaI13GN5K49bsKjVO2QXT/eEdV1H03Si2ShqpYNpfpIZ99p1Wo0mqhLksGOSWbxE0uVh0K5TbTUxpAYba6t89+w4juOcGk57luzv02x++qKkXF8nPO7gkYoGuHJmllAo9LUp1b/A1wMviPpLQK1Wo95VmT07jiBAMBLnzPmLFA/26NTyOIMhWq+JXN+lZqn04mMMLAHLn2DQO8SwIZGZpN+pc/vdn1PN70F8HO/IFL7RBIYDRq+N1ilRqVaxen1kU2FY69KpHBGKj1AsHJEcnWTh4gU2brzHsNvAFD1MXDiDrun4hCGHGyscVRsEkSiXRBrVCv1uh0R2goGmM3QUpuYv0W41KeSrYLaxbAup36RT2CaSm6bbH+IoHnqH6wQkE1mSkWQZkOgpcXB58QcDgIA/GCSqJXnv3jJGr4VhldjeP0RQXExPz7I0O0l65Buo2oC7GzuEw2GSySQHBwfslVssXvwe0USS4bCPaZrIsozX6ycQ8PHhX67xsiifeEAriotWq4luC5y98g3qxTyt0j6Sy4MsCUyPZpnN/E1++V//Pe//5E8J52ZwHBuvBHJuBC0Wot+oksyNEAh+YveXGEkfl+q1Lmq/SSDiJuoTmYunib00z1GxQn5nA8nlRlZk1EEPbAuvWmXQ9LLarFIoV7Bs6FaPiMo6r77yCqLp0KhXGMmMstrrY0f9BD0+SoVD1jd3UFWD9NlvIgk2pqNS0wQq1TyOYdJUksREP0vnrqIOhuxur7Obz5OaOCA3MXly7S6XC7ci0W1UcYsgy8cHEMdxKOT36JsC4VgKt9uFaNm4vV4CoRmKO/eoHuyhWH1WVvuotohhOZ86y32WPvLzlHJ9VXjSweOweEBzY4dvv3z5a1myf4GvDi+I+kuC49g4WCdfByNxAuEYw16XdquOq3fI+dlRdqpdirsrlFsDZEnE1DRsQaba6TFslOhqFmI0h2Ro9BslTNGN4I1iWRZar8OwWyY2voQ3GEZ2+ajuFli5exe91ychKXzw/nssX38fdyxDOJlFL+QJhMIUKgd0Biqx0RmmciOcPX+RfrfLW2+/RW1gMjO3iFY/RBsOcHm8uHxhjrYP6Xe7+BIW7eIujf11+oYNgNasIEajgMbdWzfQbYGJuXO0eg16vR4gUK+WWN/Ywg6M4A4kSfrdCCOzSNj4HJ2p6RliieSJh/f9gNzr9VBNm2AkgiCAz3csZ7Fth3q1SKdZo1pvsrp8h73DwslWJUvtoWvqsXbaGDI5lsHnCyBJEl6vl0q5hC8YIeJTCHoURLcPzRG5s1vixs07hJ0O2eRpT95AMMRYZoSVvQKXlqZZmp876eE6Dmj9Lu6Eh2K7xP6dD/D7vUymwsykXubmrduU+wZ6bwCijODy0bTcvPnhTUZSKTTTYm9rk43Ve/jjTVY296jX6zimykgqhc/vwxcM0z3cJBKKcnvzHqLs5uLVb9CrHjIcqgSCQc5evMLBYYFbNz8kMzaO+LH3taK4GEnG2dzeBY8MAtiWRbNWYn93G7c/SigS4ey5i6iaRqd6eDzRjoXabxGMhCmbXs4kxsglU1+IYcnDeJ5SrqfhizZ4efDn/rYdPF7g+eMFUX8JiMfjBGSBvfUVps9cOtnkJQgC3kCQ4sEuXsHmoNxAxcfeQZF2t4/o9iD7Y3Q0BwIZ+j0TbVghFB/HMXX61QNsUUHyNAFQ/FFsx0btd2lXC4yMzyHLCtVGA7V6SM920bNEXNEsU5e+jeTy0KgWabZrGJ0W3kCI89/8LmqjhMvtRnG5CIYj9EQPvaGGy3YwTR1V1aiV8mhyiMjYIsmpM4huP63iLv2tZULpKQLjMVLxGCGPRMtSKOd3iU2eod3pcvvuCrotsLl2j64pkhmbwOq3sawgU7Nn8Xg9HO1usL+3e8ro5H5ADgQCeGSRbqtF7GMyKB7ssXrnJvVOn3q1wuHBAb945wO+/Xt/yNzZy+jakMOdDQadJgfbaySiIQKB4AnJO47D+r0VwpEw3/ud3+XG9Zs02i28wSjJSISBaBIUgzTLBW5de4/5xXMnHuPqoEvQaOCTsrhkBY/XS7/bo1TIExI1vvP7P2B5dY26oTC7eI5AMMTtG9dIL1xkMZHmnTd+QnNgkFy4Sigco1XK4zhDRFnkzts/ptVoMD55iUAsjRBXwbJoVvIcbG8ytXgWy3bodxoIkgfJF8EGDMs+6aULgsjFy5d5/42fsHzrI2bmjlsPgmMj6X2iLpPp8THah5vUbQe118EnOwSiIYaSTXZsHFGUTioXAnC7cYgrmiYYOnaskyTpCyGbhwlS07TnKuV6HCqVCtdu3OSo1sYWRCIB/4lD3ectsX+eg8fzOjy8wNcfL4j6OaNarbKyto5lGmzcvkGp3iYzOsbY2BiKJFIvFajvreARoKK7MAJRjNAovpEIuqHTzK9hyj5EyY8QTIJu0O+2cNQ++KJgGjgOiL4QojeIaWgYgk11dxW3JKG3q3gMD0eFI7xyHLfHg60NkdwKNgKSN0ixWKRfLJPNjlI6OkSxdQzDQO33kEUJ2dbY394m7TVBECkf7qPbEsF4nJDfjd/rxuPz0hRl8CcZ9jqMT0wQjcfJRANkcjnK1Tr3bn6IhYjsm0V0HBqdHnYww73dI/RmkWw8THxs5rH66QcD8tjYGJMjETY2l4nEv0f5aJ/3330HwxvDPzbBYb2LL7tASwryxhtv0KrXOHvlFWbOXia/u8X+2g2C5y4iIGDZNrqqsrOzyeHmMmcns3Q6HdLzFzmTymBZxnFJWJTpVvJ47CHtgw3ezm/T6GknHuNnpnJE/ND4uN+qDvsM2g18wTC3NvKoukOzuMu2KJLNTVBrdfEnJ+h0WgR9HnD7ECwLAZtIIk1jdxm13wbbZmRmiTMXriDIMuVaB48/gA60tAHl/S3CPjcggCSB7EId9JFFAU3TaLWayLLCSDrD1NQEIx775BpdsshLMyM0Un6kcJpgMIIkS3SaTfq9HiHFIZxKoGs6Xp/35FBTr5ZRVZ1QbAQF48RJCz5flvu4vq1PAXXYf65SrgexurrKj/78p1Q1GX80id/nYdC3aahtGp3P3w//rBry37Zhuhf4dHhB1M8RD/aiXvn+H6HcvkW+WGVvY4Xi9grZZAyPaBHzQGL8EtfX9imWavRNB0nyoJkwtEBwTBxdxzR0HNmF5Qg4to0rlEJCRPT6EV0e7EEXc9DGUTwMakfsNwuE/D4i8+fRJR8iCqLiRzda3L5+HXc4jugOYjgihujGGwxRKhQQtQ5ua0BvqLK3t48luGiX99EjASQc1H6XueklhqZBp97HJzvYjonP5yWeGaVf2iYSChP2KqQzGfz+IOnsGB/86qfMnbtCPB7nzvUPaQ00UuMJBE3HrSi01C4b65ssLi0cr/j8WD8NpwOyKIr84PuvU/jR/+Tmu7+gdFRAdUcJxXPsrd/GlmTmv/G7OLKb0u4aK1t7yF4/4xMzpHLjtI+28OptqvvrDA2Tw/09DnY2adcruBSZe3tHzF54mUgqQyh67Klt2TZN2yEST3Bvf5vcxBhnX5o+5TFu2gOunJlB13VuLK/hnlwikx0/6UEasp/64RZqvUCp0CDn8RFwSWRHxwjEM8fWrNVDDNOkUcwjmwMmly5hiC6GvQ7xkRyS2EGUFMLhMPW6TqlwQGphhkA4CtYOjqFRLhwi6T3uAabtoEgiHskmKIl899vfQhCEk9WYAMVikZ39PP1GH8NyUCSBuaQXJR4Gl4/qA4stHMehVjzAo0hYgkMqcNpJCz5dlns/SywUCtxcWcfxx0/1bYuFPKXiGobs5+LVVz7zDu9nQaVS4Ud/9leUrCALV149kao1GhUMU4Wu+bnL0p9FQ/7bOEz3Ap8OL4j6OeFxvShfIEB2Z5tCucLR4QGK2uC1qxfZzLupd4ds7Oyje6KYloA+GGCoPWxPGMdQESwDIZQGU8eo7iOFUwiBBBgDcByMXgezcQCWjckQ29BxRBeEkuztbKLpJh61jeP1YskuBs0WbkcmnnDh8yoM3X50XAzKu3RbDWxHxJ8aRU5MovW6+ONZ4skgbpcLdSAwOztDtVwkIem4fS72DvYYVhvE4iMIMoh6m2x6AV8giDocYjsW1qCDR7RYvfkhxVKZXrdP9+5NPC6ZdCqJ6fZQ7faJFArkRkeRRQFFcT02IC8tLfH/+DvwX3703/loawXf5EVKzev4PX5GRifITRwTpmDoVDdvkj8sYnUbXLx4gYz8DRbGM+TLNa6trVFvtsnkxhhbvIQvkWN7fYV8S8VaXeXM0hLBUBhd1Y43T3W6DHAxv3SeWOITrfV9j/HDYunYVyqYZOahHuTFq6+wEwzgGlQJhiIkpydxud1cW94glkyRSKUZDvv0Oi0CWg1DNxjKIUzZi2T06TQqyFj0+238gRClnXWsdplA8DJurx+936JVyBNPJsmMTRMamcDlcaMNVdZvf0Ba6mIYBqlU6mQ15v0MTZEEgm6RyfExstksun6Vd67dotQdIvSHHB5Y+L1Beu0a0rCNJIKsdpg8c4kHnbTg2bPc+1liqd7h7so9unhZXIqQsK2TUvrM/Bm6nTb1wy12ggHSDxx8vkidseM4fHj9BuU+jJ9bwrQMUB28Xj/Z3ASFo30Ua0Cp3vlc/fBPqyF/0dN+AXhB1M8Nj+tF3bd2nOt2aDcb9Ep7JOIxfv7hMlUxQiA7g6i4KZYrdGsFDP24tGp0GgiDHkoogcsfwyhtYcsKVr+J5PaBLGN3qtimhhRKYvVqCKKMLrnpNJuIkoRHEclML9FptTA1DbV+hN4q4LFnSY3PMlAkSkf72M0jpPAIu/t7KNUmssvFsNvGH03QwQf1OupQ5dqH73FpYZrzl7+NLCtcXJrl+t01POEknYRCLpdFH7Yp7TZRJJGkT2R+epyIbPLWB9cwQqMYih/RHURJpGhpA6x2lWzOxd7BAcagzVQqjIBwYnTycEBeXFzk93/ne6zm6+QuLNFodohkpyjVGpimjtvjITM+Qb+wxvhohoBokk0lMFwmr3/7Fd59/wN2jypkl64yfeYyO1sblFs94okUZiBOrd+lVCzgD4ZOtNSNjko8Fkf5eEHJfdwv+e7euwaiyNjilcf3ILPj1Pf75AIijU6TVGbslGWqx+OjsLtBxOehDbT7fXzxEFPjOVrNJmavR6PWQLdsIopBdCSC3qpw+60/J2i2wWwiCSNkc6O43S60YZ9GucBoIkzIn2J1YxPgEY35feLT9g5JJpOkUqkT+dTmfp+9wxWKAxWvSyYdixCw3HhEi2Dw9HDds2a5D2aJgVgOV7zLaHKCqjqgt7bJ+cU5QqEwvW6HZCqD2aoQFQanyvZfpM643W6zsbNPq93BODjEQUQSBUI+L+lMhlgsRbu0S6vX/1z98E+rIf+qhunu40Vf/OuBF0T9nPCklXb35UKBUJhhw8P2zh6tgYrhAa/Ph2E7DEo7qAZI0RyOoYEoIUbS2I6NXt3DEWSMbhMO7iAH4oCAZQxwhVKIkQwc6QiihByMobcrOP0WsmCzv/wR3tgI7kAYTTewant0jgT6+RUkvUdwZBwtkiE8eQFtfw3RH8EBEuMJBMuk0WhSqOwhW0Pa9TKLY0kEQSAQCBAI+Kk1mqxs7HBmYpRLL71Mvz/ANA1EUWL1znXSET9qfwC+BOmFy7hdLnqdFqbgwlJ8DNsNULvo/Q6qWkAMLdE8WD8JyIlEglardezm1OlwWCyxsrZNbzigWKqhmxYJxY3P7aLX7eANQrVYYjhQaevQaFWxf/Um3700hyAIVFt9AvEMI9PzSJJIOpOhP9ylMexi2hIuX4iDoyKaOiTmk0mN59ja2mFxdvKUROs+PD4fA01HEJ/uQ25YDpPjY2h7h1QKeTySTa1WxK242bp3F7VdIZPN0W612d/cYGzpMomrl0kkR8gN+0y1W6yvrdHpaWQjPiaiHnLpHOO57/D2tdt0DIny1l1kl4IsiiRDASanzuNyuU82j/UF/6/N0O7Lpy6ea6NpGkdHR+QPCzQHOorPz+7eHn/xp/+VS5dfIT069sxZ7sNZYrNRwwYisRhRMUnhaJ+7d+/i97hodProhkWzWGE8O8KVM4vPRWdcKBTY3D9CxUssmCAYiaPrKq1mncHuHpMT4/QHQ1JB53P3wz+Nhvx5+6I/DS/64l8fvCDq54SHe1GNWpW1e3eptrogSEgC1LfuoJsmh/UOh71dDNFDt9vBdmwEdxBbcuMMOmCbCJKMKHvA7cdpVxF9EexhD/xxxEAYDC9yKIlj6Nj6EMntx9Y1XLklBMfCrufRBReDahVZUVCiOZAVbMtAGLaIxVPMnr3Ayso91GEPy9CRBRFBFNGGAxAlNFvAE4ySGz3HoLLP/lERQbzFlYvncSsu0IcEjDqQYtDrYdkOxcM8a8u3sU2DgW5ybfkeTmyKQDBIMJLAFwjSrldpNGqAQ+lwh1fmRvn7f+sPGR0dPbXh6b4daK3VZnd3H3cgyIVLLzFfqLHVamG6AhwUiiQTUbqlMvvVOp1KgWgwgC8YpXK0zcANjW6PYrF4TKqSgttzHASDoTAz01MIpsbKvWUOuyoewcEZzyCnU9y8XoB+lfTINx5LEOpggM/tAvHX9yCz2SzJZJJ76xuozQFrdz7iqNIkmsxw5pXXCYYTWFur+CsV6nurrHwUZ3LpLAIS9XIJvX5A3CMSjUSwHIdBv8/yvTW2j6pEJxYRDR2fW2Z6apJsbgxBELAs61NvHrsvn6pWq+yXavSVMGOLx1ngyFSB2zdv8sFbP2NqfJxEPPpMWe7DWaKiuI6H39QBXn8QRZS5s7LG2Owi2fF5bFtAkBWqhsLd56AzdhyHvfwBSniErCeM2msSjCVwe30kPF5qxUMO9/ex2lVyUzNfSD/8Wb3Ivwxf9MfhRV/864UXRP2c8GAvSixJvPnWr2hbLryRBLapk1+5QaV4yEC3EESJVquN5fKDy4sgKWCa2IfLOIKAKzEB2hBr2EOUPccLOmwDJT4BkozRLmP3mjiWDvoQQZQwdRUlMoIcTiFYJlqriCO5ET1hbGPIcPcWtj7EHQjgiWZw/GF21+9hdJvHftWOhSccR/YGaZUOsHUNU7doF49wSSCrXUKiQeXogPfqh5xfnOdMNsSVye+yvrnFz//n/0m12aFYreEPJ7lw8TxZl8KtfBNd8XGwtcHkkhtF8eIORcm6FALTYxx8WOXC4gyXL3+SkZ0OGgvUjB2UUT+KJLG7n2dpcYnGBx9xWO9Q0S28HgXL0Gju3MXsVtHTOVavvUWEHhOXXmcgeNnZz+N1KTg99YQgAALBMNnxSY6KJbr1FeJBP7lUHI8sYlsge2Sq1TLZ8YnH9henxtII8Ew9SEEQeD2R4MLZFi7HYPmgSTg7iaUN6dePWBgf4dVz/zsfvfc2je1rbDUPUDWdXrtBJBIlNzqP4w6wU63wk/du4vZ4SGeyxDLjSJKLRqPC7lGZQDBEOBz5zJvHntQnzebGyGRzrNy+Qcpl8vq3Xz0h96fhkUUswRCxUIBquUB2co5GtYimBEmNTuHxBSkc7ZNJxTl77iw7m2tfeE+23W7T1WympiYpdXWsbo9qfpNwMovi9uJ2e1j96H2ujvp56cqz9cOfpWT8LF7kn9UX/fPgRV/864cXRP2ccL8XtfPTX/AXv3wfIzLJ9MVXGHba3PngTY5qXQjksNwhLF3FHm5hqn0kUcYa9rDtOoIngBLNIkfSCLILW+vjCDJy4xCjfoSjDXE8OoLkwrFM9OI2Ag5SIHqchVsmZqcKgoRlmgheBdkfQW/0cNQOogDhzDTueI5APEHvaAuz1aJT2EKOjmGLCrppoWtDvIkcQqeO6vJTbvYIulzky3Xmx0eJBWTmxkbo9Afc3dhleWOfoaNgSwqzl77F7NlLNJs1ypUDIqEQvtFJ8vt77Nz9iNzELMGgn2AqQbdewY3JzNTkJ7afDwWNfr9Pe6CTHZ060VtbwB/88Af86o2fc3fjBrc2ryFLMmGfj+jSBfzBIH7RZHp+AU3TqNbrKLpMNhlhp1SjXiqQm56n1+1QKhbY3M1T7gwJRuJMpoJcOrNAMp3BHwhy+/r7Tx1sOrt4vATjWXuQgiAc79kOxfjhH76GI4iY5rHk6XiaWiARi5G/d52pTJzV9Q1qehbZG8ZwBYmlMvR0h9RSjL5mUCisEtzfYe7spZMhqL38ARfOhR7ZPPasGdrT+6QiUzMLNPJrJ7/Lr8PDWaIgCExOTdNdXmZ75SalcoVwLIVhGMeLWRyNyfE5BEF8Lj1ZXdcxLIf5uTnMzR0AtH6f9sE6mmYw6LcJGg3+4Hs/PNlj/TR8kSXjz+KL/nnxVffFX+BRvCDq54hEIoFbFLAlN8l0llp+h42b71JXbUxBQfKEMVQVrdfBPf0SbsUHporZqWL2O1i6htkq4ugqsi+EbWg4pgqSC9HrR6/vARZICtawhyueQwqnESQRUZKQ3CH0xgE4DpauIepDHH2IpWtYpkl4dBZ/OIah9mkUVRS1RzaTo1GvMejUEboN9OEA23bQOzW0yj6exDiKx008lcKXiVIeNKnXj5Akidj4PF1LITx9kUwwyo1r7+GWfdg4ZHMT7AyGYGi4BIsz5y9Q29/Eb3VxGQ5Gp4fVPOTMZJaFhYWTe/hw0DBNA8OycXncCIJworeenV/gf/9//R+sLd/mzb/87xyWm0TSM6RG4oQDPjJjkwQjcRzH4WB7jf3DNb559TzVVofb2+uUS0f0dAdV9NIemHhdCplEhsBImsNiiWg8gSiKzC+eZ8/oExOHTx1setYeJDyYYfqRJOmRvyPNMNg5OKLb7bJ11KTTHyKHDM69NAsOdIcaybE5koLCdr9JLb+Jz+cjPpIlEo6xt7VMv1kj5RNIzUxQWV3j7q0Pefmb3zv1eU/K0L7oPunjssRoPMH5c+e4e/M6tw62yCoyRjtAKuRjcnzuZP3j8+jJ3j84uBUX5xfn2Msf0Oi46fa6iAE3/kyI5Plxzp0792t/1vMoGX+anvYXgU+et5der/fIwfF59sVf4PF4QdTPEe12m75uM7dwhmA6yb27t+gbFqLkwnY0BNthUNlH9EdRIllQ3BiNAoLLj6MNYdA6Vr4YQyxDQXAcbLWHo/awLRtXNIMSSWN2G8jBGMrILFIgitUuYffbyIEUciCKUd3HHnYhEAXJjSO7sC0DTyiBLSlIWguX5GZqapx4NMLt1Q0Gu+sM9+/S73Zw3H4EXUWOZfAlx5BNFWSZYGyEjqZSbgwIhtosvJxl/6hMcmwUQ9cIhRPYngClcpV0ClTTpqfbVG9fI5SbxiOJjGZHCAQCdGoV3F6Bb128BHCy5OFhZypZVk5NST+4r1oQBOKJFIsLS9jiDtPnL+IPR1DcXiRFwXGOM4JAOEFxz8Tv97M0PcH6ygofffQGXTmMNxDCNnQuXLrMucsvEQjHONrdYG93h0gsjsfnw+MPcfXyJdxu9xNLmw/2IDVNQ1VVPB4PiqLgOM6p1z6tD9lut7hx+y5tzWE+N4PfcNOrd3ACCXb39klGQ1i2g+L2giASSY8RMlvIwzpbN3epNdo0SnkSXgnDMPix4kFyeel3u9y8fo3vfv+HLJy78NQM7Vn6pIokMBwOn2k5x8NZ4kh6FNMy6fe6KC6J2UyUK5eXGBufPCGHBz/ri+7Jnjo4zC1x8XyYXq+PaRpIkkylkGcsJP3a8vLzLBl/mfu1XS4X6rDPR9euoVriyY7yaNDL5PgYsig9l774CzwZL4j6OULX9eN+oMdN5ShPs9mm1aghJacRwwHwx5ACNaRIGqvfRPCGsHUVZBdWu4ISy4EgIYfiiB4/mCaiNwTy8TCREwhj9RpYgzaix4/ZPALLQFB8WFYdu19HFCXMfgtBknFsE73fQOi3ULwB/NEk3lAY09KQzT5+JcLISAppdRXdAUlxowSjuJKTmMM+3swsgihgmUO6/SH7hSqNfB5laFBr9jjY3ca0HdweH47tIEsCLsVNtVGnXK3R7GuIwTge14DGwTZ6t47YqzA/O41XsplJHe+j/ulbHzzRmSoQ8BMNeql8bMKhqQNkUaDf67K/s8Pqxgay3qXdH3Lz5g2SuUkUj/dEajOSztAfdnFskzfffpvl7QIN00NsbJ6Z5AihaIKjWgMlPIKgnM7ae90OoiAeZ19u90nZ70n9SEEQMAyDtc2tp5ZBn9yHdNjdz1OutzgzP096dJz1/SMcQSIzMUOjUqReryOKAoY2BFEBx6HRHYIgUqh3UA0QBOjaLkjOEUhkCAc8jCsCW/eW+fGf/ojawTZTUxNPzNB+XZ90Y+0uZqPA+/DMyznuZ4nvvv8B7/7kGrWeiiCIxAIecrEAar+D33+apE8y/mjgM23sehIeV172+nyog+PP86M+U3n5eZeMv6z92rquUyoeHRu/XPzE+KXSqNBZ3SAoO5zJhU9pvV9IuJ4vXhD1c4TL5SISClLrVLh76wb7R0U0JURwZA6n38GwHXD5EX1RHGzMxhGO42BpAyRvCNHtQ0BAkF0IogSygOgJIggVXPFRlNgonpFZzHYRy7ax+i3sQeu4n6120YZtkI7tL6VA9HhivFPB0bqICOjqAL8ZoD/ok3OpTI1EKOxu0CruoXfaeGJesHQEUwVTQ/J4cQYdBEPDdHtptZsEvW7CmTP0Bg02NjeRPX40dYDHH8Al2tQPt6k0muAJ4g8liaVHSWdy7K/fpXtk02/VMOoK3/nWN2j1B3Tl8Kk+3OOcqSbHx+iubXJ0uIfWbRPEYPXeOtW+xkh2jEwiyl7j51QNCa3aZH4xi8fvp1opcXjtQ2IuA0s3WD7qoIye4UxihOXVVRS3D8caMppOU+n2KZUrzE4HPsnadY1mo3aqNPy0fiTwTGXQJ/Uha9UKa6urJMMhJqdnCAYDxCNBtg4KGJpKKBqnWxnglkXalQIqMvXisQWsy+0mPHEWb7/L+u4KrnSaly69is/rp14rI7gEfvi3/y7XfvUzLK3H7337FaLRKMCJBO7BoPukPunG2l3yW6tMzJ0jPrH0qUu9tugiO3uGc4kU/mAYWRTYXF9lf3MZgPnF86d6sla7RMv0njrMfRGSoS+ivKxpGs1uD5+u4fSER6oBvwklY8dxWN3YJDY6g9zXaJQPiI9kcXt8RCMx1u9cIy33Wfr+/+1Y4vhCwvWl4AVRP0eEw2E8osWdm9dYuXUTKzyKlEyh99s4NphqHwDHUEFxYxsaKB4EHAS3DyQFQZLBcRAkN7Y1wB60EL0BRC147FLWKmAbGqIvApYBWh9BFBAFAUeQP/75Q6w+SIoHx3GOB5bUNvXtW3TKMQKCRnhhCkF2I3n8+D1eAorFoNfCMlT0zm1kjx91f/n40CA4hPw+nKHO6NgIsieI5RaRwmG02iH5jVWQJNq9AQfb2xyVisSyswi2RcAlMWiWmcwkyL1yhcrRAZ5OHlESkSOZR0qGM/Nn6LRbHG7ewbYMcmNTxFMjTI+muX3zJnqzTFXXsQIJzi4tMTk+xl7+gOhIhpA7RkfVKe1tkMiO4XUrCB4vlf0txienCafHCacnGAz6IAh4Ikm0dg2X0SPscZHf3ycWieBSJCxd4zC/S8ovn2RXT+tH1j+8gexY9KXgx78Tx+VUyySVGaNSyJ8qgz6OKIaDHkGGXLn6PaLxYyvTpcVFNjc32d9YZnz+ApblEAxHObh9jcPDAo7LTzwaYrfdxuUuEFAEvJERAmMLtFod/D4/wWCEXquCrunMnb1C8fYv6Xa7WJb11KD78PUpkoDZKDAxd+6UveezlHpPysSil7MXT2fpF6++AoBRP6C+L59k6SHRpuE4jxzmPm3/90kZ4OcpL1erVT66cZP1jW32Ow7BQOCkVHy/v/68pFRfJO5XBeYXz6PrGnu7OzQONk420M2MRAhKflwu1wsJ15eIF0T9HFGr1cgXyuyWGuAN40/mEJJjDBtFHMvCNHSsQRPHNMDtxe42EINxsE2wbRh2cHwRRFHCVjtY6gDb1BEQsLUhliQhhdOILg+iy4fgDaHn7+C4vEi+MGJ4BNuyjldsWib+kTEcdwitvINV3UawLGx9iCsxwvZhmf7Q+HgFosPI3BWKAxtHcqO1qxj1PEa3Dt4QCjYeKUbI62V6Zpa9rXUcWyMzMce9/BaHm2/ihLKMLV0iZrsptfo0KofUt2+TymRIpVIExyfw+f1MLZ1j5c0ddvNFzr525pGg2GrU0TWDenuAvrnO9voaPrfM5FiO370yR9B/kev3tkhOnWEknabX69PqqcwtXuToYA/J58LUbcaTERRFoag2qA76TExNcVDt0M7v0xsMadbrlJo9YrEEynDI3PwEu5urtAq7tGsVki6dhfQUZxcXSCaTv7Yfeffmh5T2NvnWD/5XOp02e/kDmt3hSb/PI9mozQEXz31SBn2YKIbDIe/fCuL1fDLEFYlE+e53vsWbv3qb/Tvv4lgGASuOZAxBFIlEIoQSKRr1OorHg6m2MW2HcPLYnlRTNWzbotcf0Ov3iETC7Jo2+XyeWnf4a4PuI9cHxCeWPnWp99eViecWzlDfF/jGpTN4vV4UReH28gqdk4PPZ+v//roM8LOUl+8TVg8fY1OztBwPgeQYlWaV7gMua89DSvVF48HBQX8wSCQWP7XT3evzs79yHU3TWN3YpNI3GR1PYDs2oii+kHA9J7wg6ucEx3G4t7bOQVsnMXWGvr2FioUoirgCYYbFHcxOHdvSsTp1wD4ueQ9bCIoPe9jBdnvxpKaQPAHsXhO738ABbLWLY+nYhoGguBB9YaxeC8fqgewBxY2lDbC7x/1L38R57F4DvVHCkw0QGskxdAycYYugRyIWCVA6qHLQLBNPjhCMpxh40wRjfhxBRvKGaPca9I42EMMjSI7Nkd5GmpigVjgkG3IzUB3ee+PPWbt5DdsbQewV2NvZwCWL2IZAavosHkUkGfIxtnCBbr3E1voa2dzY8VS5/ehUcbNe4+7yMgPBQ2z6PK9dOY9lmhQP9/GKOksfl5fv7ZVIJFPAJ1Ph6XQGr89DYW+HvaM8Ta9DOBQi6RVpxhO43R6K5S3k2CjxkTGmIyPkd7epNVrY9SOymSzZkSRxv8xc5NhOc2Zm5pmtHWPxFCt371JvtsgXywwFN7HUOC6PG13VqNWK5DdX+GahcIoYHiQKx3HYOzh8pDc8MTnD3wwEefNnf4mjmzjdEpF4Ek8kxejsAi5F4TAQIDY2y9H6HbTCB5jDPupwyNFhHlU3UXsdXIqMks9jGxpHpTJmYOSZSPD+9VUqFQzL+UzT4M8ySW5YDl6vl1QqRbPZZPeoQigzRb/fP1VWftb+7/PIAB88sM3MLRFP1Lm7vEyjfEAslaXeqLK6tkYyEnzmXvdXicdJ54KhTw4W/W4XlyxydHTEm+9+hOlLUGz0kEWBWCjA5NQ00XjihYTrC4b4VV/Abyva7TY7RxUcxU8sM0ZmchZR76FW97D7bRxBQk6M45m4gnv6KqI/juANY7bLGLVdHFHCsR2s2j5Gp4ap9RDcARx9iO04uHJncKcmsLp1rEEbWx9i1vJY3RpWq4zZKmJ1a0iKH5fiRnb7MYdtZL2P6AqApCAhMDGzSCIzSnp0gnByhODoHN3ekM5QR3K5kUQRWXTwjEyjxHI4wy6W1qNdK7F9813uvPUXuAQLxzTY2cvTUaKImSVITmEHM7SHFrph4ACRkQk6nR7tWplgPIsu+Vi9c41E0Es8cmzIAcfBr9NucefmdYqNLi6PH1kAt9vDSDrDxauv4gQSrG5soijKSWCB01PhwUicsdkF5qYnefnSeV556SqLZ84RCfioVGu4AxEUnx+Xx4c/HGFido540MOgXeP2Oz9BbB9xaSLB3/i97zE7O3sqwP46ogmEwjiOzcbWJkPBTTY3gdfnRRLF4zWesSSm6GJnP4/jOCfvcxyHVqtFpVKh3W6zND+H3xmys7lK/+PydL/bpdmo8Y1LZ/i//60/IJseIZtJY4sy+YMCWzs71IsHHO1tk509i1sW2V/+kGajzsCScFw+UrlRQoks25sbDFtVOgOddGbsyZlxo0u73T71bw8G9cfhaaXeT/PearXKm2+/w817m9zdPuDanXvcvrtMu906ef2v6/8+XAHxB4Of7NCeW6IveLm3vnHqWTwLTg5sH9+7+zKzpAfahxto1QIH68vExOFvRCn4/uBgqXjwyL24P8znFkzurG1T1V0kZs6RW7hMZGyeqgp3l5dp1mu/Ef343yS8yKifE3RdZ6jpSB4vLtPC1DVcviDt8iGaOkQZmUYKxHEMHcEyED1+3JEMZlnC0nqIshesIYP9OwiyB9kfBY8Pu11FDiePjU3CI1jtCtrRGkIgjmMbOLKMY5mICMihJILLjdZrgqFi28fXZXZ3GRZ3kBydUqODqqr0mzW6jQa2v0up0cbWFXySF61Tw3AExEAC2V1GiY8iSjKSY+Gy+hTUIf/1v/0PJG+YnieOFHIheoIo/gDxiQVKO2sMSvsUDvJUKxWcXoNaq4XfH0SRBYRGnj/4G6+TG81wWDwgqiXZ39tla2eXW3fuIrgDWLdvMpaKk476mZyaOXViB05NJD84FZ7xjNOoFMmlRxidmAagXDwkE3ZzVK4wvXSFUq1JvVYmGIzg9gZwKwq50SxxUed//b3vnHJIuw/HcRgOhwx7HWrlEqlM9pHXSKKEbKhsra9x5hujgMP9DNBxHBqVAtPjY/R15yTrqFar3FtbZ+eowlDT8bpdTOdSLE6NUak3HjPkdIVqtcpBpYGcmmIw6FNsVkFSGHRbWJsbVKYXCEZT7G/dQer3CX48Oe8WRPZXrpF0mUxMnyd/VGTpG97H/i0/Keh+Htesk/cW8qSy41iWeaLVdRxO3qvrOu9cu0VFFQkns0TTY0iSi0qjclJWvu+69rT+7/OayH7cge3+8p1et4OmDilsrXD18qWvPUnDrzdY8dkDBEHEcIfITviRJBeiJOH1B8lNzZ9IGefmF7/2/fjfJLwg6ucEl8uF1+1CGVoMOk1M2YPotLFNDWvQQtJVrGYJZ9jB1npIwQSSNwiJCezyFo7RR3L7kIMpLLWF4PYeO5B5Alj9Jtgmhm3h2Ca2OkBQ+zimjis3D0iYtT3sYRfLG0ZxubGxMQcd+oUtjGEXq1sjkMyhdeuU+jIWCr3BANEAyxXE5Q3hDJqYvRZOIInVriBIEr7UGHq3hdvnIxQKY5S2qHe72I5FOD2CT3BQ/GFc/jCqpuKJpBi0m9i6hi35EKQO7vQ0mjqkWzsirPWYGMuxsLDA3s/e4GfXr4M3QV2XEEYW8USTOP0Gosdhr9Kh21/m/LlzhCJRdNPGMIxHAstYLkv19l1uv79DMuBmbOEKg16PUvGAACrffPVlfvSTtxi262TiURqdHq3iHs1aGbfR5eq5MwRlk9HR0UeC+oOrGfeLZe7slVian2dyeuZk4KtRq/Le229g2DaVcpXBu2+Sy+UYn1nA5fFQLxfwWANmzyzRLuyh6zrVapU///kv2S73ELwhBNmH0zHYLW8yM1LkD3/nu1x0uU4NOQF8cO063aGOUSrRF7zIiQSeUIKoS6a6vcLhxgqy1iGgQNBuoW29j+APIHjcjMaCvPz6D/EGgvzqJ39GvVJmJJt75G/5SST4a12z7CG59DTVavWRwSxBEEjFY7z1wU/56NYy/mgSv8+LTxHwSALpoMzS/CVWNzbpC17OXVrEunGNarVEbmr+sa5rT+v/Pq/lFk/SmN8vGYuCSDQcwu12P+WnfL3wtAn4XHqGG/e2mJqZx9rbP5FJCgKnpIw7W6ssZsJf6378bxJeEPVzQjgcZjqX4t7+HTRNx9EG9BpVBoUtHE/w2GXMMhAECdEXBsfGaByAIOCYOlIoieiNIKhtJP8krtGzxz1qtYctysdSK0nGwcbW+hxnbGDUi4iBKHIwjt6t4wgKQiiK2alhdKo4lobsCeCdOItLVuipQ7RuFY/Xh2Dp9OoVBLcPUZKwANsBxe1FaxVRApHjQTfHRhEFLEOnXa9gyy5c4Tjh2Aj9egHRMXH7fPTaOkPNwBYlJJcbv0fC7Oq4TRV/LIrtlRBKPVqdLrFYDLcAgijRbNbo2W68Pi9Bv4/oaBa1UQZRZCh6HzmxRyKRRwJLxmsTDpr4gn7ahT2GD0htFEVhdeeQSq9Bs1VGEESSssTsdJLJ6deIRqM08uuPENOpHufEEq9lZ7hx+y739otU6w2uXL2CNhjyzrtvIchuXvn+HxLaPaAzMClVy5TyO0xNHB8kJqfO4XK5GcoiiqLw1jvvcXuvRnh8gXh85KSXXa+Xub23TvTDa/wvf+MPTx0cWq0WPc3GI4vs1dpE5l8i7fHT6XbQDINQZpJh7ZCg1eD8+Yv87X/w/0Qd9BgOBnh9fkYyOURRxLJMfD4PR4d7j1QHfl1m/KSgHhJtHMfmxr2txw5tVatV1nYPiOWm8Ks6Xc2i12xQ6jQY8cH3/sbv43K5TrJgURRPbEaPdjc+dl2LUzzcRLp9g4RXeGr/93ktt/gqvLi/DDxpAr5arZ646N2XSRaO9onFUrg8bmxboFA4IufPcmbh5a91P/43CS+I+jlBEATOLC5w5946127eodlRGQ6HyOl5jGEXBHBlFpD8IbAczHYRp9fAbBRw9CFSJI3sDWIP3Md96+oeWBoIIAcTOLaDUd0/Lpu73AieAI7Wx1HbWLaJIx87mZnNAxyjj17eRnYHcBAw+x2wLWy3FyEQB49Nr7KD4vFhFLdwBSLo2hBHFLGGA8TGAVa3ipw7i2PbBFOjJJIjDNsVHMcm4A/hSBJuRUZ1BzDVPvWjHRzZT7/XReu1od/C01dQFBl70EBQBOxulaDHzdb+ET/67/+Dj1Z3IZJh0KkRiQZodft0O11MQcYxRZq7+1y8cJ5Gp8PO5j3GQjKaptFqtUgkEo8EllAoRKfTeURqU6lUGPbaFKsD/MEwgm0SCflZOnueaDzBzubqI8H1cVPefuDlK5fY3c+ztrrK+z//CxRJIBiM8tq3v0MkEmGg6VQGNnNnz3G0s07CJ3DxyksIgnDyOY7jcHN1E09yhtzoJIJw/HmOZRD0B2j7o9y4t8F3vvXaidYZjrPEdreHHIgg93pY/R6iz0c8nkAddOmaQ0gmmJgdQRYtdE0jkxt/5G9VHQyZHM3ikczP5Cf9cFDvdDrcWd9mIAUfK6P61kufZMqXXroCcDJZLMsKldIRlXqDWCx2Kgu+3/+9Lxk6Xn+5y5XMBb758itPLS0/L0L9Kry4vyw8bgL+wQNPOBw5sVxtVvIYlo2lq4z4BL7zypXfiFL/bwpeEPVzRDKZ5A9+53V+8eavyA+6DHstxOQsQr+BNegiql1EWQHZjegNIxj6sYOYoR7/J4pYxhCzVUQGxGAcKZREEGWsQRNRcSEFY0iRDKI3gj1sYVTzxy5lvTpGs4BjWQjtKqLbh3viPLYgHeu0HQHL1nGGXbzxMSTFDaaGx1HxeHxovfKxTrtRxpA9CP44kiggubwEwnFcXj/Dho3o9uL1uBgOe2jDLsgucPlwtCHmsIpe2kI9WsdxTNyRK0jBELYvSWswQDIdnIHKtTsrzC4sYbmCJNLjlHsmlb6DYYp4PAACSiBKq7jL7v4hRj3PeMSFNDND453rTzVZeDjQVKtV3rl2CyU+xohriOUN4/cG6bZrXLt2jWQ8TCbkfiS4PqnHGQ5HuHQhTCaVZH/lGrIksXD12/g/3ld9P+totxokMxP0q/tUS0V6vfZJEK/X69S7KrNnx49dxFp1igd7dHpDLNvB1DT29zbZ2Njg1VdfPflsl8uF6Ng4CIxkx0CCQfUQ2wZRhKACsckpEm4Ls56neLhPaiT9WJKam8iyND/H6sbmpzb8uD8AV6vVsG2bW3eWqdseZhfG8AcDgHBqgvzajZt0NZv0A7KuByeLJVGinF9jUlUfyYIf7P+2mw16EZnXv/3NUweYx+F5EuqX7cX9VeLhA084HDmxXDUMnaP9HeaXrjIzM/NVX+pvFV4Q9XNGIpFgbHSM1dIaUiAGbh9yNAOWjdUqYjUKCC4XWBZGp3rsyS27ER0HW3JjtXcQfVGsYQ8Awe0HQ8PBwXEcpGASJT6K5AngkEMALG2IHJIwaweIvhh2v4ageLAlF4JlIPsiIIo4loXjDmDoGqI3hIyF1TggPnuRZvmQYXGbuN+DrnixvB6sYRclGEUdDhi2Kqi1AzwuF7IIAafPoLCDioIrOUE4nqR9uInTqyLaJv7xsyjBODgqOA62A95AlEbtiG6zzsjEPMVKmfIQjool/Ll5QskcLlvFpUC7VUYwhpQLB5jlLa6c+xtMnv/GM0ls7htcaJrG9Zu36DkepudmiDbqFMoV1J6OiEOj3SEq9PnW7/xvT1mc8bgep0AimaLg9uDYx2XB+3gw66i3q5Ty22S8NvPTYydBvNVqHWvdsei26mytr2EoPsKjcyhuL51mneLhDtfvrjE9PX3KejSTjHB9I487liCSmQTHwrIMRFGm06rjs4e4nQFj42OERP2pJJVMJkkmk5/K8KNarfLeBx9xc3WTw1KNYrFAszNgdOkyhZbK6Ej8xPTj/tDW7vKH2A7kfk2/2OPxPDYLFgSBQDBEpXTE9HjmmYe/niehftFe3F9XW84nHXgEx6FRLR23IBYXvhbX+tuEF0T9nHEc4E0sRCxRQrRtJHcA0RPE1ocYzUPMcgWQsHoNHMdGkCS0RhGx18Tut1AS40jh1PHmq0EXUXEjCCL2oA2ijIAAto0ggBSIY/e3EbxB5PAIUiyL3fAi+MI4ww6C2wuyG8cYYtsmsjeI0TgCwUKIpDER8fpDBM69Qr5bxecRaHV7qIM2Rq2IXttnEIwjiCLCsIlim3SwmJmZYn9rjW5viHC0SVNxIdgWzqCJK5I6XsLhUsAJIvojSFKSg41bdGsdxjIpApkp5I5GqdWj3tdo5nfIjs/id4lkcqOgdshMjVOvlDCSWc5ffe0ky3qaycKDBhfNdoebt+8iByKEo3soHi+yKOBzSUyP5fDMT6LWDh67XOJ+yW/Y7+PgnBhABIIhBEFAHQzwul1gP7pC8n7WUS6VSEkDfvidVxkfHz+5xkQiQSLgoZTfxbIsDMVHcnwOQRBwHIdBr8v4+ARyZOTU7ycIAq9cvcKt5TVuHWxhyp7j0rYOnWYdl62hiDaofS5cPs+ZhflTGbMiCURcAtOT46eWhTwr8d0fgLu9V8P2JCDqw+9N0y6W6SoxjjoaltSnO/hkOtvj82ELIqJt/tp+sdvt/kKy4IdJ7zvffO2xLZHPiy/Ki/vrbsv516mC8HXBC6J+zjg8PCRfqkMwheJ1I4SSYFuIkoLZKiOHMzjqAEsb4MrOIthga13sThmCcRzLRPJFET0hHEHE6jURkBGjaRDAHrRwjCS2KB5rrNX+x0KgY49wLANcHkRfAEFyA8LHpN+HbgPLsjC7NUzTRPAnsCyT8v4Gij+Cy9HJjE1SvXkd0xjiC8dxjB5GuQGmSSA7gysYxmOrEEzhG1GxpNKxB3W9zGDQPh4+M3UGzTJWKIns9jEY9NFVlX6vjemL0jUc1rb38CZG8RmH+MNR1OGQ0uEeXpeEoneIuEB2y4iGxtjMIrZtnbrPj5PYPGxwoRcOqPVvIfgCWASYH51GkUTq5QL7+UPGRnPcW9ug227jDYROBchEIoFbMHnzF3+JJ5Q4sVSMhQJMTE5SOMyT9LlQFJlSIc/0/JmHSszQ6zSZn8ydImk4Ls9fOjPHX75/l4YqkD7zCtgOmj6k06ijtcoszY4xPbtAOb9+SkKUSqX4O3/z9xn+n/+D5ZX3aB1tE40nCXhcCIZKt3nI4miS0Uz6VMZcKBTYyx/Q1WxurO2xvJX/VGRw39Bnu9wjNDbPoNVgGPQwNjmCJdzD9IRpqyojipshInv5Ay6eD6MOBkQCfvwugdIz9IsFQfhcpPA00nuW3dJfNn5TbDm/zG1eL/CCqJ8rKpUKf/Gzn3NY79NR/AjeIM7HBGP0Gth6H9vUMU0DVyyDnJgCS8PRVRy1h9Y4wjG1Y39vt/d4Habiwek1ECUFR/FiDTvY2uDY21sfgm1gaQMEXcU2hghOBMfUEBwQxGOi147WkCNpkBTM2v7x9i1vCKNdxey2qB3t4gzaiOaQvmYwNCwkf5TRy68je0PU91awTAu355j4ZUMnYHWQs1lciozL7BPJ5XDc8/T6A/oG2IEYqmUzKO9jRxL4AgGiIznUocqgU+ag0uK1+YsEgmHU5TtIpkb7aBVN7RFqJZh55RtEgl7QEiRHRpBl5ZH7/aDE5uHhL4ByuYQcTjC2eJFev0el1mB2eorc1DxbK7fY+MUbeL0eXpo6Q2IkfSpALk6N0eoPGRhgi17SuTGGwwG3N1b46c9/Sjbs4+yZs7hkgVJlg263x9zCmUc0qLn0zCNyJUEQ+OY3XmX/qMgbN9bp1YsM23Uc28Qxhszk4pxdWsS0HWrNFtVq9VRQXFpa4h//H3F+/otfcmNtm05ti55pYqtdkskkii/IjXtbHJXKJ8tC1vcO6Qs+0hOfzTP7vqGP4A3h8/go948Ij87h8vrx+320hgNweWi2usQnx2h2qnS7PSrFA8biIZbm53jn2q1nypQfRwr3BwWftkHrN4X07uN5rsl8Hviytnm9wAuifm6oVqv85Jdvc3e/ztAGQ9eQgy6MRgGjfgCmcUycg86x7CqeA7WN7QC6CpJ8nDXqGnh8CL4woiQhKG4syYWtDY6HzfpNzG4DRXEj+CKYzSJWr46tDY+3aPVbWP02cjiDklmCwgq2qaKXtnBwMJtHx+sc3UEsfYgjudC7DWRvECkQRZMVhNQslqGyd/sDAiNjWCh44xmsfh2P3iaeTDA+OUN6cp6VOze59cGvCGZmcQSFdr+BrhsYqokrFMcfjpNOjxAMR6iXi5i9FsgubG+UfH6fyalpxubPUW+3Ucweo9EAY7kML790FZ8/wOGf/Rifcn8z0Wk8KLF5ePir22kzNCGTG6fbahCKpui1KwyHQ7xeL7ogU6i1+d3XZk4kSvcD5PbGPX76xq+ITS7xgx9c5t7qOvdufUCl2aFSqaL1hgS8XsbOXMbr9qCv3aV+sIFi9vF4/bhkkaBgIgjiE+VKyWSSP/q979PoDFDdDo5s41HcpFMZYuEQ+weHFCt1Gge7eBWZQrlyKvtNpVL8/f/r3+W1fJ7V1VVWNncJZr7JzNwiHp//KctCPhsZ3Df0EWQfoiSe7MQWBIF4Zozh9jrNah0vieMBuV6P7fUV0kHlJBP+NJnyg6RQrVZ56933nloa/jqQ3qftMz/vNZkv8JuLF0T9HHA/SBRaQ8odFVN0Yw26WJU9jGoeORhDjIRAcSH1WwgtL8bhPZzYKJI3gCCK2KaF4JjHXt6iC1HxHG/REh1QXMf9acc+LpurXYSOgtVbx6juIYXTSJ4gosePILmQAiHMThW9vI4guRDdXtCGmO0Klq4hx7JY3TJmp4bo8iH6wxiS59jnWwogheNYhopaz6NuLyMFY2iahtfjxhqoKEKd/mCI7HbjKF4GAxU6XcKTZwi6gtSbTdRKAcOq4Q6EKByZhLod6rv3EPUBoi9Mt9Ukr3UxLQdFgn65CIbG7LnvIug9LNOkWi4w4gOPJOA4x3uWH7znD5ZMP9F7Hg8sGYaOaTuMTUyxlz+g3Shj6iq6cbxcoliq4PfIZHOnTU4EQSAYjHCz3GL8YgxBELAEEU8gjFNr4o5mCI0usHuwyv/48V/ww9/5Lpdeeo3tUJioMODlK5fpdrvcXd+hL3pJjz45g52ZmeH7r11lo9InNzGNorgwTYPl9S0GuDAckYUzFxhdPMNB6fDUex80Yrm7co8uXhZlD6Ztf2KV+dCykKeRQavVQhCEJ5LMfUMfp2NgWzbSxzux3b4A/nCMVG6cQeND9EqPwpoK/SYTU5d4+eonJPxZyqfPmiV/1aT3WfrMz8uU5QV+8/GCqJ8D2u02pXqHaqNDo6/jio+iHbwFpo4SH0WOjyJ5j+U7juJF8IYwXF7M+gHu8z9EjqQw6wWkQBzt6B5G8xDbNpFk1/FSDn2ArQ1xTA3LVKFbxWwcYfUbKKEEojeE4Fg4loXkC+KOn8Go7qEeriC6AyiRNLahodf2sbq1j3vmEqLbh91r4oRHEGU3eIPg8SNFs0iIyL4ow70bIHtwRBlPNINqDNGwqdbraDdv0NdtfB4PwUQKSXFjGC0Ey0T2+o69y4c9WoUtBh4PdreKFBtDkH0Iww4WCmq/xdA0cJqHzKbDCJZKs7hLLyIzPZ7h6h/9kBvLa9z86F1yo5PEUyNowyHFQh6hVyM5sUi73T7lAe4PBlEUF7Io4HIpTE9NcrC3R6VRpHYoIDo2it5lfGqSxEj6+Lk4zom2dzgcMDRtJFlmL39AY2Ay1C1UyUd6ahG3z49k9qkbIm++f43/JRQikx2nkV/D5XJxVCrTF58tszuzuECje5NGtUQ6M8ru3j7NoYlbcggrNtMzswRCIfzBT9675Di8c+0WfcFLIJbDFe8ympygqg7oPWCz+eCyENN+vKe1x+ejVm/yq7ffRXOkJ5LMfUOf3fImAzVC0O+lXS2QHJ8DwDRtRrI5lsZTeEWbieg4f/DDH3y8ne0TfJry6afJkr9K0vusJffnZcryAr/5eEHUzwG6rtPq9ih1VCxBpt1s4pgmGDqSP4ociCN5Q8eSHI8f0TIRbAurW8NRXDimCiJIvhCirOBYOo4xxHH7EEQJQR9gdarYtoEcSiJHs8fuZJKMFEkjuX3YWg/B60Pwx47XaMpuBEFG8IWPh8l67WN5VySHd+I8SmIUZ9BjsPMRossDooTgDWEbKhIg+cMIsgIuH9g2tgP9bhOr18KVTFDrqmwfLeMSHQa9DiORBDY2wXiaQCxNZXeVvm7icinolV3c4TCB9BUct4/uQMMEFFEgGQ4hCg6q0GdxbpJoLMDV7AW+863XqNfrrKyt02h1KNWbrNy6gVuCZDSC1+NCs+CwWCbo83Fmfgq3YJ4MLAWCIWKhANVygezkPKFIiJjXYWp8HNu26NTLpONRAsEQzXrt2FSj08O0HfqtBo1ykcLhIfWeRq/bpTXQcHn8ePxBTH2I2+0hOz5LvbDD+sYmL129gm7a1Gq1jzO7Bfr9PqZpnHhaPy6ze7AkvLN2k7V7m4STWZKpBJNT505sSu+/t7S/Svf6DfqCn+m5JZqNGjYQicWIiskTm82L58OAcLIspN9tP9bco3R4wG4+jxK6xNTMwhNJ5v6hYu+oyO29DWxPCLs34HD9DhYiZr/FiF/AHnQJRzy8cvXKIyT9afFpsuSvivQ+T8n9t9Xl7AU+P14Q9XOAy+VCHfQpViq0+yq9wi5YOoLLixRMInkCxy8URERRwREVpEga4Wgds7qLGB7B7B37ecuhEQTFc1znNVQcx8H++HOsZhFbHyJKLmzbBK2PrQ9xBBFb7UJXx+63ERUvjijgmBpGYQ1bG4DaQ5JkBI8XyR/BFUpiyW4kbwjRH8MxVWxDB9vG6jXAsbHVHgICpm1hVPcxGhKy1mUwMoZH9tHuHCAZA4aWyNrt6yjeAIGRcXw+P/GJOYRqGbXXwRNNk7nwOr1WBW8wikiB5sEG7RbUZYOlcxfwj1zm8GCNXNhNOpXjx3/+F1xb3cFUAnjcbmzdQvCGKLfa3Fz+AAGLQCKL4gsjOiYf3FlhcTJLNptlZ5NjD/CJCarXb/D+G3+OYFukMlmWN3fpN6oMy7voyTDNeo3llRVUyUd8bB6X28fu9hre4iHvffABA1Ok67gQ3X467TamvINoacR8XgLRGP1ug1q7T61axSUfE1Ot1aZm7NAe6Cf7qKNBL5PjYwQCwUcyu/sl4ezWFoOhyvT5lwlHoo8Edo/PR6vXp2OZTF04Jq/7lQNNHeD1B4nFUjQreXq9PoFAAFmSSQQ8NGoVMrmxEwlYr9tB11Tef/eXeCNJzl68giAcX/+TSCaZTPJHv/s9oh/rqHuNKvVyEUPX8XrcqJlROoJOzJ9ldWPz5D2fFZ8mS04mk18J6X2ekvtvs8vZC3w+vCDq54BwOIzi6OxsrjOUoti2g9ltogTCx3uktQE4Fo7tICjHZv2CIBxLmSwTGwGrXTpe1BFOI8rS/7+9Ow+ys7oPvP991rvv3bf3Vd3ahRYQq1jkHds4sYPxTJyxeeMUM1PJ1JgZYsf2jHFS2Twe45m3EjuTqRpDUqmJY964mHgSxwSDYzBGAkmA0C51t3rv23337VnP+8dFbYRaIIQkGnM+VV1FP/c+fU+fvuh3zzm/8zuo4RSKoiJ8B034qHoA4dmowRhqqhM/N96aFq+XoFZ4ObtcRYu2gWGA5yIUpfV9vQhmECPWj1CUVkJaLQ16oLXu7TZbHw6EB4qCW5xr7bF1HbRICrRWMRVn7hShbDea2yA/l8erVQinMhBKY+lh6pUyaiCHYRhYjoviubilRRAuhfwizXKZZDJJqqeHSHOerq4efLuJrgpM1cXwGhQW53j48DFO5SpoiS46Ml3kSwXqNiRDOkosQE5fQjeDRJNd9G/chlAUZk8d4WcHj/D+cIhNvd0svJywFKeOsjSGEm1HWE1CoSDtPR042RRLc6d57AezBDtHGBgewbFs5uamSIcNhm65jUf+z9+xULFJr9lKx/Am7BMHmTl5mIgOvddch+s4BAMBPCxmpybY2JMEYGxsAqM3Qnfv0HIN7zOnPw33di6P7F6dfNTW1kZ7Jo2hGyv+49ys11GFj6+oy8HrlTMHPUNrMYMBHM/HdR2EEMzPTbFt4yi+2iphGgyEmZufY34xz8z0FIuzU1y76zbK5TKJRHL5tc4XZNrb27njQ7ezYd0oe5/bx6mpdsYmZ1GjbfQPD3HVls0EzcAlybR+I6Pktyrovdkpd7lHWVqJDNSXia5pVOfGsAJlPLuOEgghVA0cCzWaBtfGdxr4VgPf9/AK0wjXxmgfwkh24Mwdbx2BqWlo0QyeVUNVFFANRLMO+BhtfXjlJbziHHqyExGMoYYTCN/HqyzgN6p4jQq6nsKrLKGgorUNgFXFXZqEaAY9nALPpjF+ADUQRvg+bmURNRBtTaH7Llo4gZufbhVG0YOoSqu4ippsRw3FMPAIxRJUbZ+a46E4NVyrgKtoVPML1BYm8VCJJjJkslkCwkK4Far5CapBQbIry5qR9Wy/9gZmT77E1rVDOK5HfkxlotBApPppTxgEkp2cHjuKIxTWbtpBfmqcQ3v/iUjvVSQ7e1G9KoXFWfrWXUU0dROHHIdnXzzMv7jrTjRNe7kymUbb4DqyXb24rrNctATg6X9+jAPPPEVHvIOJoy8SDQXJxsMM9I0wMTnF6NadePt+SmnyEKbiEPRdkpqLMMKUCgU8Vcd0GtSrOeKZLjasHeXQ0WMEojEMTSMYCqIoCqFwiO7QANNT4zy/fz/v3jGKbdv881M/PTv5KBU9a/p+pVFhT1uCivXzIiuKopx1eEU4lkZTBFazyamFw0REgxuvb5Uh/enPnuHJPT+loUbJdHSydu0o0UQKJ5zixVesbZ9xviCzuLjIweNjePEuIm06vZkR2roGKBRyHD4xxpb1owyPvvlM6zc6NfxWBL1LMeUu9yhLryYD9WVQKpVYyFfwPR+3VkENhNHTPXilBZpTh/CaVYxkNwRCePUybmEKJzeB16zg5CbwmzV8RYXKPI6uo5ghfNcF38EHFF+0gr0exC0toukBtFCiNRJvVltbv4IJ9FAcUSvjNWvgOmiJdigvIBCgaghfoMfb8O0Gbr3UulfXUCy/tX1LUVHxUYJxFFVtnc9VWQRFoIQTKL6gVq0w1awRbu9HS3bgeuD5Ln4ph1vKYSY78cwIXmUJq7RAMpBlcMcuGoUcMUNAohtf8enobFU7c5sNKuUSBw++iKGqJLL96KlOqtPzGIaGHgijmFGKxTKKEaBi+Qy2ZVsBMJmllp/EqlcIRuL0rt3MyR8fYXx8nKuvvrp12pQt6OofIBKLUq221ozPrB3XLJelukebD6rvETQUBvp60XWDQqXB8LqrMITN9NQUdUWlf/02FBWmjx9i4qU9dLW3kQqbbOlL895bb8I0TRYKVbZtv5aT4+PLpz4FgmGsZh2rUsIpLhA0Ny4ng706+cirNRCivjx9/+pR4TVXb+fwseNnBa/lwytOneTwwadJBBSspEZfJr4coIQQJJNJ1m7etpxhLnwX59l9JNLtFIr5s9a2YeUg88o12WxHNxPT87T39RKKhAmFB85aI3+zmdYXM0q+0kHvUq0zyz3K0ivJQH0ZWJbFibExPC2ImR3Fq5ZaCVh2A2FVEa6NsziFYpgIp4lXXQIUtFAcNz9JY2w/aCpGogOvMEOjstRKIjNDKJrRmjYHcGx8z0FLdqBHkriI1s+u5VA0FS2cwLdraMEowcHtqLEUbn4We+EkeD7Cd1rHbQq/dXRlsgdQsGaO4DbKrUAbz2BEkihGCDwHva0HNRAFu44iPDTh4Rsh/HgXmm+jBaPooRjCjGKX89QnD6NEEmi+Q72cwzIVcqdPkklEyK7bwtTEOIWFBaqpEP/4ve/QqJTY9+JBqotzjAwPYqkhRntH0dQFrEYd4UM0kaJRK6MLEKqKTysRTdF1Go0m9WqVQDiOGQzjo+E4DvDzaUnLsTnx4kEKlQaO52M3G8zNzaAYQTQzTFtPP4lUO/n8AgePnqCvsx3Ha9XiTsRibNh9K88ePMrSzCmC0STxTBtOIcJQNsHWkX7et3sX2WyWhYUFbNdnsLePcDS6fOrTmapm3fEwitHH3MIiNT2+QvLRel56vk6gsUhCVFkcP0SpUkUVPl3tSa69ZgfZbOtDyquDl2kGiMWjXLe+nx2b19Pd3b0cHIrFVtGUU5NzDG64mmj85R0IQrSmzRdmSHf0UchNLq9tLweZVOu/zxQaEUIsr8ladhPXFwSCrWlfReGsNfLQJci0vphRx1MVFAAAQf5JREFU8pUMenKdWbocZKC+DJrNJvliCV83cWsl3MIURroXI9WFnmhHDcQRno1bnEW4Flo42fqKZRCugxpOtKaZrTquqmImutDiGYRVbyV11Uu41Tw4FqgaajgJmgG+h55oRzGCuOUcWqoHJRBFC8VAV1HNCEZ2AL9ZxiktoDp260OCooGiIzwP32ngFOdRgFDHEFqyE7NrHcKqgtvEq1VQEzHUYBhn/iS+ohLoGAFFwaP1M3QEZjCCPrwVv7IImoFuGFTtGlZ+EjHtYzn9YMKariQnC6d58tHvgxFmeN0munp6WFzMU/NcZg8dItU7QjwcYr5cQlFpJbj5EFTBVASFhTmSqQyLjRq1QgFzPkfdcqmXlkiENDo7W1uuTNOk2aix78CLWHqYWCKF5rmcOHmamcUaplLBKsxz5IV97LjxNrp7WiPCmfkFNAXmJ8fpTUZZv2ETXd097Nt3gOOnpylWazi1EpoTJxZujTaLxWJrFNeokZubxQwGWDO6ljWwPOWuoDB1+DnyNYu+9X0AVMqll7eENcjli8wtVclPnmaku4lVL6OHYkQSSWq2OCtBa6Xg1Z+OsXHnzcvB65V7excLRQ6fGGtlJ68ZIZVpO2vafHF2AqdZx7KaKC8Haa80R9EN8ehPnll+DVNxWSzW6F4fxhf+WYlswFlr5M26uCSZ1qt9aliuM0uXmgzUl0EwGEQRgubiDJ6aw0j3oBgh9FhrW5aiawgRxK8VUQNhMMNoRhgtlsar5DBCcVQzjD17FPQAzuIEXnkBRQiUSBIj2Y2R6cVZmgYFvPICnuu2tlUZQYRaQzODYDcRdh3fMBH5WfxGBS3Z3QrqigKKhltaxC3PI+wGbnWpVRvcrhPs3YQaTaG4dutLD6CmulCNefx6ARJdeJ5AuDUCikajVkXVNLAtVE3FNEzMnlHKx4uEExkC6U6U8hwxr8RHPvxhHMej3LAolcrMn3oJou30Dw4RCQXQhUckFqF/YAPPLS5w4Nmfsfv9d1BrTFBYLNFwIByNYtfLhFSfyuIMwXgaw66TbO8ilO5mNjdL8dg+3r02TX9/6wzmeDxObuY0z8/YdIxuYXpxgrnZGaoOdKzZQmlujHS2D8e2ePanP2bL9mtIJjIsTh6jWcrh2BYD2z6wXPbTCEfoGhwmWSzQs3mYrdt3cvL4Ef78L/+azmwW24e9e59l8QeP0ze0hlQmQ3dHlqHhNURjcU4dP0wqFqTiKDSadY4dPUy+XKVcrTE7P48RijCydjNmNMNU2aJBnA4zybq1WwgY5jkJWq8VvF69tzfe6zNvGcyUbWoHD7Jlc2vr15lp86OHDjI5d4rp4wqpWJS46pMXgrIWJxZLEtI1PNdjbnaSsbEJOgZn6OruPSuRTVEU7KaFoalomn5JM61X+9Twav8wIb29yEB9GVQqFXzAR8HI9IEiwG2imkGUQAjVMBGu26q37XsI4bXWn2t5hN3ESHVhpLpamdq+i2IGcfOzKOEkAG4lhx7PokVSeHYDvzSPWy9jZPpRmhW8WhGBguE20EJxzJ5NiGYFt5LDmngB37VQNA18F+E5KEKgtQ1gtPWBouHMHUOPplsFUFQNr1lGi2XQg3FENoydGwPhg++2ztN2bZzSHML3UTSDQMDEzHThNOvYjSpKKE4zN4OHTm6pwNiJE3zgIx+jWi3znb96CMeI0ju6FT2epOI5lCen8a0qvhqif8NWTjz9KKcOv0Dv0AjCtTnw/AGWbJv+9gTrh/s4NpOnOvYCgYBOYmg99aUZnNw4SbXJutGR5X8cT506xVSuBEqIerVK07ZRo224NYv50yeJGx7p/jWMDg9z/OA+Tux7iu6+QQqzY+xc14+vGRTyOQKBAKfGxik2PYKaRjIVZtPmzfgIKq7CnBtBlC0sLUA92k2xPEv+6Em6e2xm5peYGB9ncLCPrniAzRvW88TTz7LvuX0QzZDpW0tldh5TS6H7LmMnjtLITdC38Wq2btjG7MxpJqdn2Lpl84pbplYKXivv7RV0ZTPM132atsX42CmS6UzrZ6QztGXbGe2IsHPHdkzT5PmDLzFZcWnMzvHS4WOgakQiEdKxCB4Kz+/fT1d3z1mJbOlsN0v5HAnNZ2HmNBGa76hp39X+YUJ6+5CB+hITQjA1M4vlvpzwhYeiBEA30aNtqNEkim60ynfWi6ihOFo43Sp24nqtLVmpbpzCDAKBFk2hx7OoZhBhNVGiKUQ1j1teaAV5pwmhBFogjJ7uQgsl8U8/j1eYwQUC7YP4lVxr65eqI4SLk5vALi+gh4vo4RR6dghVVfDKC6i6iWqGIBTBrRRQoHU0pi/w6gVAQTRrrenycKJVmrRaRNFMhFVuTUurBlatRGN+HHxBKJnFrRURZggRjnNiZpEf/N+/o5yfZ6nUINK3kdTwVvRgCN+xaZYWWTxxgMK+fybSt4m6C5NHXyA3eQpNUxkK2aTbdAIhlZOzBdrCGsWFKbyGQeFomVQ8wta+Tja9506Cukup1CrucfDwEUQkzQ1X3cDpE0eYOH4QPxDDaVoQCBHNDmCGQoRiCXbc9C7mjh1guLcDkdS54/Z347ruaxQiyfD8iwdpqkHWbtnBT3/wPepCJ9O/nq2j25k6eQSrVgBhsnj8BEmlzp3/z6doa2vj73/4GLmqztbNa7GsJnXLJZPtwTANXnpqDK9c5dqBNaiq8qp90RGi8RTHxg4x2Hd6+VSuV2/zeuU68s+DpMJgfx+VI8cpeB6zCwWGigUM3WBudpIoTa675url87L3v3CIF07NUFeChGIpggGdpt+kYvnogQj56TFeen4fQ2vWsXHjBk4cOcyxvY+j+za9o0P0xZNy2leSLpIM1JdYqVTi1OQcC4VS62CNegUjnUDRzVa5z1oeAN9xWtPMLwda4dooZhA9mkY0q4h6CT2axGgfagX4UAKvOIPQDZR0N05+DuF76IksBMJ4+Vn8agGcZivxLBDGb1ZQIknUcLxVcMWx8GtFRLOEqmkY8U60RLZVRxzwS4t4ro0SjqNZTfxqa31ZNcN4xVn8ehBfD+LVSyiNCpoZRMn045UXMJPtKJEEVn4GOzcJlRBOrYgZb8OqLNFcnMJ3LFTPZ3JugZnx4yjCI7lmG45nMrOQIxSJoaoKqhqkaSZwigVCjRJ+o0LTDpEvnEapl1i/bpSugRGOHztBw7LZufvDdA+uYWFqgoW5aeIBlZtvupF4PMH4wWexbZtSqUSh0iSTzmBbdSqVEsViHi0VwXIFluIxPTOH2ZVG13WCgSB6IEStVmFzfxfJZKsE5/kKkVSrVQqVBoYZ5eThgxw5MUY024dZLuJ7Nr39AzQWDUbWriM300a5cIpisdg6FCSeosPUmJ05TSAQwnZdlEad3OwSoYBBPRhGvFzx88ya79LSIifHxlgqVZk+dhJ8n7XDU2QzaRaW8mdt8wooHotLZbrXn723N5FIsmX9KKfGxjky8RKnXtxLeyZ9zlrq9PQ0T+97AdGxgcFN2zGDYRyrQSk3g2vVCIaSGEaOdsMh//KabHcqzGjHeoYH+pcT2d4pI2lJutRkoL7EbNtmqVhiqVJHNBv4voOhm6iqht+oogWy4PvgOwjXwRM1lEANr1ZAUzIIVcdvlPDtJmokjWIEUUwTLRTDb0bRzGAryAuvtVZqhECoiGYVz2kiNB1FN9DTfTgLJ7GnD6GF46AHWq/XKKPFOzAiSfRUN3o4iVfLt7ZmaRq+7aELge80EELBK+cwdBNFD+DUyoj6BG5lCSUYwTcjCKeOInxc3wFVR22WaZ4+gGME8VUDu5RD1QMY0SSapiHMMA0jidmooelBQtlBSktFipUKsbZuhNNgYXaOpq/jeYLF6TE6e/u4+qZbmJ+dI1+3sUIBxks+Zs96YuYCuaUCmY46vUMj9AyOMDM9wempadYMaDhWg8nJSRzHwfJ8wqbKnqd+TMUPoLf1kxndDorBwswEM6ePEHTL2Nu20qzVyS/MMpruZ+O6tctB5kzy1qsLkbiuQ7FQoGLlyFWaKOleurftIhQMUVuaoz4zSdC3ca06rmtz5NQUf/fYU8QjISZm59l09Y2UqjVOnj7J2OETKMEY4VCIcDBGtXqSxYV5orE4dtPCbtY5Pj6JCCUIxdrp7F9D+9B6Xpqa4B+eeIqB0c1nHbE5dvIoY6dPkx2YpGdg8Kz3ayKRZO2aYUJOiV1Xb6G9vf2soCqE4KXDR6nrMdaMbiF4JkksFCWe7WN+4hiN6hIx1WTbVZtJJpNyTVaSLjEZqC8x0zSplItUGi5uvdDaYlWcQ4mnESiomg6GgaJqqMEITmkeEGjhBJ5dw63loV7Gb5Qx0t2tE6I0E9/OIaw6WqYfvzTbqlAWSaMGo7jFORAeXmEWoZuAQAmEQQi8WgGvXmxVQwOMWBtapg89lEANRdCiaZRQHBYn8Bvl1n5p38OrFlr1xX2B8DyUgI6q6/iaiR5LI3xABd9ugqKgeR66rmMEAlilIqoZRE92ogQC6JpJMJHCmh9HjWbwzSj5uo2wS8RKJQaGRzh59Agn9vwTRiBEtd7ArlepnXqJTCLK1ds/QiW/iB5vY2Skn9L8FEtLC/QlkwxEY4zP5pidmSESi9Ns1DGNACfGT3Fw/3PUFqfZd+g4VrNOMV/ACEcplR30rh7SEQenXCCc7SUWT+FE41iOy6HnniFqKIy2hXjfbbvOma5daa+spukUcnM4sW7MsEkoHCEYimEGgxg9a8iNvURl+jjBgIFjxIl0DtO7fisBXeeF8TlOjJ9mdHiQWDhMti2DEm2jd2Q9tWKB2ePPc/TIITLZTsrFJax6DTPWRyKZZvrUUTrCCm0dncxMT1E1MmCGiMSiQOuozk1bdzA5NcOB/Xvo6us/q+Z2a9vVFMO9HYyMjJwTWEulEqWGQ7q9k6bdJCagUa+RX1qibtlYFuROjtMftKnVagwODl7O/70k6R1JBupLLJFIYPgOVnkRJRhGOBZashM1EEUxwzRmj6IKUIwAQgi8Sr6V/R1Ng1WnnptAT/WgGSbCtVC0NKJZw68VXz41q4aol1EUDcUM41eWEG4TvW0A1Qy2EsmaDXBt0E20eBZF+PhWHac0h1teQIu2IcJJECCseivQhBN4tTz4Popu4FWLWPMnMNM9+I6FvzSJGk6gd46gRZKIyhJ2fhIlkkYzTNxaAa+ySCjZjqIHsEtLqL4g2D6I6nvodYENGJk+gqkOnGaV+vQxyqUy+tQpDLdG1fWxNBU33AZCRYumSQ8MUXMUZk6cYs3OWzEDARzPIxCO0XB9+rqyJIsFjr10gEopj68HWJxf4NgLezDsCjtueS+jV+/CFy5P/+MjvHRyjFjnAJmQgW15VGZOUC8uYEbirFu/Ed0q4tULbNrUzy/f/l6y2ew5f+OV9sp6ro3tWFTKZdpScdrbMlQrJcxgsFUvRDWo1avYWhgtHCPjJ0in00QiUTasXcuh8RlKpTLxrgGuvm6QsfFx8nPTOLUSGzZsZn4xx5OP/j1rh/txhcLC7ByHXnweGmW0gT5+9uSPWSpVGRjdTLGap1qtAsryISBbt23jZ088ysEDe1kzuvGC9/bato2vavT2dFG0akxPjlOtNcEMY4aTeJpJIBhGCwXZ/9JRstmsXIeWpEtMBupLTFEUujuzOOUlRCCGEjZQgxHMga34pQXUWh4tksK36viFaZRABCWaQTMC+IqKsOrY+RnMWAot2YkQPl5pAd9pYrQP4dXy2AtjrcM58pMoAoz2QVRVa41WrQZEDLzSPL5toQXCKIE4Wrwd1Qy1ktB0E780h5Lqwm9W0EIxlFAK9BCoTUBBCA89lkENRlsJZtEkgYFtqPh4tRIimkKt5F4etZcQjoMRb0NP9xDqWgOqRnV+At9uYLs2OAZ+IIlQYOnw07iVPL7nU8pNk58Zw4ymCHauIRCJ4bgujlvF6BlBT/fQaFrYqkmlVCQcTWPqGroWxLKahKJxevv6OfnCHpq1CooRYjGfp9a0SaZ7WFxYoJyfo2tghE3X3MDY5BSVpkN/PE1/exvt7VlmTp9EsfMEbZ9GYZbOmMaundtXDNJnvHqvbG4pj+HZtEc9kvEwumEwsZhnyffAcVDdJkILYvs+einHpqEeotHWqHdweA2T0zO8cPQoW+MZIqEwqWiAybExrHKOTE8v/W0JClPHUYoqR49NEGnvo6enh/41N2EGg0wcP8TU6UkyQ5soVWscePEgrtCWDwFJhE3a29J0BP3ldeQL2dtrmibJaIS64iPqUM0VaDQFITOEb9cJ+DaJoMG2resR0bY3VSJUkqSVyUB9GbS3t4PvowJ6shO/WcUrzuJV8miBCFo4CZ6D1rEGt17CXTiFE4631pxVDb+ySKOSQ6Dg5iZQIyn0RCfCsXHzM3iNEsGR6/Dy0/iu05qyjqZRjBDCbiI8Gz2SQkkFMdoGUfUAXr2AUy+ihOKtmt7NGvbCOHosA6qKX1zAzY2D8FDj7eixNkQgjBqKtQ7ycJuowgdFbVVUs5pgBFGhNbJvVjHb+lCDIbCKJAY24PgCKzeJb9XQEoOYqR6axUVcxyaQHcQ0A4RwKCzOYWHiL80QMnowHBs1YBCL9qAns+RzY8SiYUqlMpo5S0cyjm01mSnkUFWV/OICse5hEuk2bMWkqscZ6N1AZ/8Ii2Mvsu9nT3FzPEmqrZP+oTWMTy+wMDlGUPEIh4JctXU7iWgQXIf8hMKG3gzd3d3n/fueyaoWQnDVpo1Aq951OBQk3jVErlBian6JBXuR0ulpwuEIqqbi2XV0p8Ga3iybNq7nTGnOVKaN/t5unnzsBxxSBHoghKEqdKWibLz5Rrp6+1FVjYWxfuxyjoUGjOy4mUy2Yzkg9g2vZ2J8nOf37cFuNHAGhxgaWY8ZDGI3LaamxnAW83z0fbfS3t5+wevIiUSCzkycfLNESLHwbIv+3kFCoQiuazN7/CAdUYMNm68iEAi+qRKhkiStTAbqyyCVSuH5HpqqogajCN+nOX0MVfgIwwTfRQnGAYGq6QR6NgB+qxCJY+GFYjRnjuEuTaL2rMf3HJz8JF5hGqdeIth3Faov8DwX1TCxZo+iJ7txS/M4uVOYXWvRk93gO2iRJKoZRI0mQdWxpg7hA6oRRLHqeFYDIQQqAj2RxezZgB5vw1mcpDlxoJXkluxC0XXc0jxG2wBaIITw5tECYQhG8IoL4Dm4zRp6MIymGlROH0VoodZhJPUizWIOx/Vao7DOEcKZLky7TETXaDbqWIrAq5egFqIt20m9aeMLH00LYKGiAAvTY2RTcTqzA8xNT5IKwOzkOKcnxjFDUbRYO0HNIFSuEUymCcfjdK7byuzzTzJ+7BCbd+5iaHCYpaUChuLRmQgRjYSJRuMEI1Fmxo5jaj7ZVBTLsigWi+cEsldW91o+PCMdY8PaUYZ7O5isVLlq8ybWDNXZPDrIzNw8hWqT8eOH6QjB9rV9bNyw4azDLgpLi5yemiHRO8qmnbtIZzvwXIdGuchSsUJ3r4KhG/iOhR5OsHFzBxXH4kygB/A8B9+u8+yhI2R7B8i4ClOTp+ns6iIaixPQNNRojOm5+RXXos9neZq/vJ9qpYJmlfAqi+SXpmkUF0lpNrfedhvptnY8z3vTJUIlSTqXDNSXwfj4OKgmqBpevYRfy+M7FmbHGlRU0AyE57ROvUq0o4QTqJqOYoYRnosxuBU1kqR+/BmaM8cwzDCe28StVzDiGbziLPbcMVQzimKYaNE2jPYBhNNEi6QwO9eivnx8Jb6H8DxwLRS9VVtcMQwQOr5rQ2EaNd2DUDX0TA9GqgthN0E3UQNRnPwkbnEOBYGqB9GTXShmAq9aAEVDCcbwvSnc8iJ+s4bqu6iJNM3FeTzXRTEDBJJZjGAUNRijqWqoigpWBV3z0QwT3wi0plI1BavRoFatoisQNjRqS6epLM6RCfcRsYvodoX5mdMkgwprr9rAwQP7qS9OEeoYwlAhGlLx2jM0MHEdFyMQJhhLUSpXadaqpLMdBJwK+WOzHLSrJDMdqIrArRVRrBI96QhzhXYefeq55SC8cd1a2tvbz6nuFQyHWMzlODQ1wdTsU2zftI58eYpTx4/Q2dVHb28fbek0YyePsSa6loA6ghePE4//vDKXEILxUyepOLB+3VoC4RCJZBpFAdGWZXrsGOOnThKNRTAUl5IF3QPDnJ6ZZ2Z6gnQ6i9WscvTgi9TVMKrwybR1YERT5Bs1iocOEQ+bZEIqm7Zfy0Ihd0Ej3lfvxb7pmm0E9u1n5vQYil0kFTBoX9fH+o1bSLe1ps0v5GQoSZLeOBmoLzEhBP/n+/8XRRWtEWxuErwmoZ71mJ0jKKqOgsApL+DaNTQv2RovvryXWQFoVjFSvQQ687iVHL5hoggPNRBEC8ZQjACK7yM8GyUQxkh1o4VieEKgBKL4dg2hmaBpCEVBNczW4Ru+B7qBj4KolXGrS61SmIFoawuXY+EsnUY4FmoojtG5Bq9RQlU0FDOAk59GjAu0UBS3msdI9+IsTSA8Bz3T2yqEEoigZwYwtVadcyc/jauprYS2ahGhqLiaTq0qsBE0dAVrYRI/liHQ1o/vNUl19JBMt+E2qjhHn6Mz6NMR1YjHsyQpoeSrxDo6ifgau3esJRPWyIkYg+tGiITDmGPjHJ/KUatXCAXMVtEPxcNxbAoL85imytBgP6Fkgrpt4dpNnNIShlMhuWkLbf3r0F4ukXm6XCS/dz83XbONw8eOL1f3KpdLHDx0mEKlge0KjszOspRb4D233UwuXzirxvPajhgb1+0A4MlXHdawOD/H4WPH6OjuY+2aIU7PLiwHYDMYIBxLs2/PY3REFDo6ujg+OUvaNoiFA0Q8j/L8BCeOHqahhhgYHkWxm/RmYthLUwjPp7A0Rzhusvn9HySRSjN+cP51R7znmzW4evs2fCGYKNqMrNtELH72Nq5LWSJUkqSfk4H6EisWixw5fgLhKwjhI+wqof4tGNkhjFQ3qmYgfA/huXihHF6tiJ7uRQ8n0aJp8Gy8RhUPUMMJNARmz3pEvYRvNRCuBbQCn1NZRHOaaIaBp4AWTuKbodZ2MD2AFkngNyqAil8v4JcWAAUEeM0ywq6jBKN4zRKKqoDntvZZR1KtbVeejWKYoCgoRhDVCGLnToFmoHgufr2Mb1Ux2wdAUfF1AyOWbo1ONRMz3YtolPFL86jCxi4tomQGCGT70cwwopbHrS7h2U380iKhaJxIyCSga62kNbuB26zTnQixe9sIV2/ZQFdXFwCO42CaJvF4HFV9lH/cdxKVVg3uzo528qUy00vz5KtlkoZA0XUmTx5l+sg+egbWcMcdH8EwjOW15snpGV46dJT52VkcxVg+4Sodi1DB49l9+6lYPp0DrSD94pHjNJQA6Wx/K6Am2jl+8GnSB4/wvtt2sdU0V1wHfvVhDY1qmURAYcfWLaTTGRKJBOOnJyksnMbxfJr1KuV8jrXDO9mw8wbU2KFWfW41TEhY9GRiVLMZkn0bKBXziJ4uRjdvB9/DdW0cew1WfhbDNC9oxHvurMHPj9zMP/c864cGcMYmyc3PoKmaPBlKkq4AGagvsVwux8JSpXXKlVUjkO5Bi3egGgGw64hQAi0UxYtmQNEBGzUYa+1n1jSEp6AaQXzPRg2Gccs5/HoVPA+zbwvYdbzyPEo4iRJJ4ebGsPJz6M36y9PPVfR4FuH7iPISvj3Vem1Fxbcb4Lkoqgu+h9m7CZoVNK01mleDMRRVQ4tn8BoV/FoJLRBDS/eCXUcNxVGFj6LqCMdCuA2im9+N3yxjzRxrbfOKZPDKcwi7QSAcRfFsVDycZg012oZnN2mMHUCLtxNOZQl1DqKoCk6tQiM/QyRi0pwyqPk+dqNGOhKgMx3k+h1XMTo6umKfX7NjO/teOsrR559h3VXXEA6FGe7poLE4w0JhnKLjIHSHzv4eBruzXPeud5NKpQGIRmNUq1UOHDyCp5rMNCw6M710pNuwmnVy8zNQLdHMN4nE4vSEQxw8dJiGEqC7Z4AzMSmZTlPNdlHydA4fO84tN924YsB69WENjUaDnx04RMBoBc9EIsnWLQmq1RqOY/PC8y/Q0TPA1muuIxqPM7xmhNrBgzRti6LnIebnEEKl3qiQDCikBnspFBaX2+Z7HtNLszi2RSG/+Joj3pVrgp85crNVV3xhKb88uyBPhpKkK0MG6kusUqnQtC0IhFHwUXQTLRhCCyXwGlVUz0PV2l+uAy7w7Qa+Z4PnIDwHhEBoequMqN1AuDZecRY93oZi1xCq1ipAogq0QAxXUdECEfS2AUSjhBZrb2Vum6HWedXNMnZhEVQDv7yAFkmhBCMY2SEECsLz0CJJCITwFidRQjFUMihGuLXP26qiVBZa68+B1pnUaiCCluhovY4RwJqZeXl/dhJ7cRy3NA+eg2FFUXwbs60PzAjBnvUovk1p4gju0hTZnn5i2R4alSJaLU8qlaSzo5OIJjCDQfRsG6lUCr84w0uHj6AoCvF4/JxRajab5Vc++F7+v//7jxzb+zjReJpQKMj24Q78gQwhYXH1lvWkUimeOXicjs6zM7odx2Z2Zho93U9cBSMQRNU0QpEYPUNrmTx5hJnx51kbibCYy1GoNEhn+3llHLaadQxNpad3kPn8zGuuA7/ysAYhBOOTU2cVTwGFaDRKpVJhdn6e4YE+Yi+va5853Wp87BSzCwVOTZ5EU1VGsxk2rF8PwItHji9Pn3uejWdbTJ0eIxvRX3PEWyqVVqgJ/vM2d3b1MX/6CFtNk1tuulGeDCVJV4gM1JdYLBajUauCoqNEkiia2RrFGgH0UAyvXmyt9XoeCIFbnMddGEOLptEDUYTv4JdzeI1Ka03ZbkCqGz3RgRqO4ztNvGqhVUxFaeDXy+jRNFoo2lqTdl08u4ZTWcSvFVuZ1GYQfAHCx8gOYnZvgEYZt5LDQyBUDcV1QNPh5ZO9/EYJv1FqjcRrBfT2QXBstFAcPd4Bho47c5Ta0iROfhrVCKA4dmuLl2ujhmI08vOE27sJRpM0LRtFVQlFU7idg1hLM+SP7sVvlNGtErriMzSyjtG1a5k4fpjugSEGh0fxPIfTBxv89KXTPLX/EEP9/bRlUmcleQFs2LCBezIZ9jy3j9lcEV+BZDxCZya+/LxisUhAP0WzXicSiy3/zaxGg6btkAjHUJwauv7z/y0URSGaaKMsVOJhg9mpCWxXYAYDy88RQrA0P0N7PEom28H4wiS5XO6CgthKxVPOTCefPPoSarPEyPrbzro/lWkjmc4wVCxwMqKSDuv48Rjxl9eMt6wfZfz0JPn5CWYmxmg3bdZ1DrFp/brXHPHato3t+gTD4RUfD4bDy1nd8mQoSbpyZKC+xNra2nBqFTCDqKk+hHDxrVprD61uoCe78Js1nPxUayoagZ0bb60pRtKgqeC5oKgIuwGqhqqq+L6DJgQIgRpoVSDzfRc1EGm9sOtgdAzhOw5i+iU838P3XNRoBiPejuc0wLHQE12ogI+PaoQQnocaCOEVWlXLlJfXslUzghKKo7k2eqoXPZHFWRgD3wN8RK2IU1pA1IsY2SFUI4yR6UIPxVpV1Co5/HAC4lk8q4ppGOgq+LaNGUkQTrTROPUsiVAALdZFfrJOOJbAcT2EGaGnb4BgKMSJl45Sr9fpGL0Ku1rGD5qk+tYxOTd11lnM0BpZf+gD7z/vSG+l0p8AZsAgaBos5eYZ7mojFIos/z2FgFqjQiQSYsvGDRw4dIwjs7OEE+0k02msZp2l+RmCXp3Boc3MT09x6sQxXMfCMIPnZI6v5NXFU85MJw8kdIzRIULBcwOnorS2bGXbMuzYOMKLx04tB/poNMbI4ABjJ4/RPZJl187trFmz5nVHvKZpYurqOR9kzpBZ3ZL01pCB+hJTFAV8GyXcBYqPFohgFxdQjCB4HkItIuwGXmURr1ZAb+vH7BhF+A5uNQe+QAnFEXYdPB+hKghYPkHLtxugt44u9Ju1VmWzQBS3kkO4NkJ4uJU8XnUJNdaOHoygBqMvr3nHUVQVr7qEVy8iFAW/WUILxVATWXQFtFAct7yIYoZR7NZBH75dx546AoogtvZ60Azqp19qJZnFshiRFL5dB0VDmBE0M4zSrKJ5pda2LFXBq+SwCvOE2/uIxKMEokm83El8M4xVXMCvLuLWCuR1nWg0imNbTI8dozQ3Qbx7iN6+IZr1CsXJYwgEw6PnnsV8pv9fa8p5pdGrYzlovo3RWADSNBsNzGAAu2mRzy+gNUr09nbT09NDe3s7S7nvcfzg01SzXRiaSns8yuDQZoQQPPXTnxCLJelbv51gOPLzRKxXfah4tVevXZ9JlPvJT58+54MFnJ1lvWbNGhKJxDmB/ky2+YWuG5/vg8yrX09mdUvSlbUqA7VlWXz5y1/mL//yLykUClx11VX8/u//Pu9973tf997p6WnuvfdefvjDH+L7Prt37+Yb3/gGw8PDV6DlrbYDqIEwWjiJZ1toRgB7YRy3stSqwa1pCNcj0DWCaNYQzQp6Wx9EXt6frOr4VhUPH0UorcQt4eMsTrT2RkMrY1sIQn2b0OIZRLOOEC6KbaOluvDsBl5xFhGKEYxmMNsHcQvTeOXF1sEdPgjfxrcauI1yq0xoIIKW7EA1g1jzp3CLc/h2A1GvgKYT7B5FeC5uYQbRyGOmukBR8Oqt4yx1VUFpllFUDUwDt1QjHQkT7ukhd7SGL2wipoLjO9Tz8+C6CKtBo1KkqyPLaDbOs8/vo6OjHTtlEjM17Gw3XYNrURQIBMO4vsBx7LPWTN9IJayVRq+GprClL40VSBJNRym+nHFtaCrt0SCoIUZ7Esuj839x50f54RNPUvJ0enoHyWQ7aNbr/PhHP0DRA9yw62YisThwdiLW65XXXOlDxvmmxV+dZb1SoH+j68avNQ0vs7ol6a2zKgP13XffzcMPP8xnP/tZRkdHefDBB/ngBz/I448/zq5du857X7VaZffu3ZRKJb74xS9iGAbf+MY3uPXWWzlw4ACZTOayt31hYQEwEL6NFoyAbrSKjATjuPkphGOjJzvRM30YiTb8Zg3fquFMH8L3XPxGFSF81HACI57FaVRxSws0TuwB4aMG4/h2HdGsYfZtIdA5isCDUByvvIhntR7zK4v4ro8WSbfWyKMZFD2IsziBFmvDyA7jFKbwnQb+0iSKoqAnOvHKC3jVYuvELddB1Qw8u4YeTuLMn8TLz6CaJuFkJ67VwPMsVFUjGo+TGd6AY9VRNBOrHKZRXwS7guslCEajtHV24XgulVqBpZOH8MpzxCMG/X29DHckyLSlGemMs23nNfQNr8H1PJ49eGx5Pdhq1tFVBePlDOlXrpm+ESsFNdu+mqeePUANja5sH7ph4DoO1VKeSEA/66jLbDbL+3ff/PJe4xkmclM4zTqGb3PTjbeSTKbOer2L/VBxpq0rTYuvlGV9KdaN38jrSZJ0Zay6QL1nzx7++q//mq997Wvcd999AHzqU59i8+bNfO5zn+OnP/3pee/95je/yfHjx9mzZw87d+4E4Pbbb2fz5s18/etf5w//8A8ve/srlUrr+EerhmjW0TK9YIZR9QBqOIqXm8DoGEbVVFBfDuJGCC2TRBcCa+5o6/zm9kFEvYQaSaK47isyrX283Bi+AkooilvPoypaq1KKbqKGEq1tWo6D2b8JVQ/ilOZQnWYr0IRioAjsmcOtuuFWFTwbjAherYBqhtDMEJqitjLNI0mUUIxAogMnP4Vh6ERCEYRuYBfnCMdSBBNJkukM7e1ZNMOkXFyiWFnEDwax509iV/JEY1FGRkYp5PPYS5O063U6RofI9qRoz2awivMMJroZuukaKnqQaCxOrVbD0FTspkUwFFxO2Iq+PFp9M2umKwW15QC1NEX1dQLUq4N9qVTiZ8HQORnlZ1zsh4qVXutyZ1lf6deTJOm1rbpA/fDDD6NpGvfcc8/ytWAwyGc+8xm++MUvMjk5SV9f33nv3blz53KQBli/fj3vfve7+Zu/+ZsrEqgLhQIYBqBiLU0SCIbQIhl8u45qhPGMAMKqosQ7EXYdgUCxG2ixDOC/fFpVAL9ewKsWUcxAK+gDuM1WlnhuHDXSBs0KSrq7VU9cVdGadVzPxncaqJE4Zlt/a0RcXcJvVHCbFdADKGYEz63huw0ECkokjSJAES7B7vWYsQxuYYZoezeuYtAszBEwDcxUO8nOfuq5KaoTL+KWlohl28lksyi6gVMvE2jvxtQNYgGFzuER2tMJZo8doDE3w8x+n0jQZEdfnK13/DqDI+tBeJQKBapz49x68024rvuK6l29JMImU1NjBDSNoN9K2FIU5bKsmb7RAPXKYG+aJgH95GVLxLrSWdYyq1uSVo9VF6j379/P2rVricfjZ12/9tprAThw4MCKgdr3fV544QV+/dd//ZzHrr32Wn74wx9SqVSIrfCP6KWUTqfBE6i+wFd1muMHCLQPg9aq+43wUISKogdRjABaKN6qCV5dwi3M4FaWWo/pZisbu1HBa1QRioKbn8KrFVE0Az0Ywm9U8PLTEO8AwC3N45bn8Eo59LZBRK2IrxuooQRoRqtKmaZBJIliVxG+j6qo+IUZQtl+lFCaUKoDPRBCa4aIZXvRfIdCbRGvnMOrF7C8OgFFoOk+ZmeGgN8gKBqY4ThLC5MU5ibRPYtYQCVgGCRMeNcv3Y7TrJB3DEY3bKGzuxdVVYFWktLC3AzD/V0kk0kURXnF1OtRqJVwpiZQozE2bb+WeDJFrVK5bGumFxugZCKWJEmXy6oL1LOzs8tlIl/pzLWZmZkV78vn81iW9br3rlu3bsX7LctaTgQDKJfLb7jtQOt4RE3Ht+sY6R5cRaG5cBI9mkIIWlnb7gTCqaPFs6AbrRsdC7deRFEU1EAYNZzAtxp4tTx+o4rv2ij4GNlhFM/C93wUz8bKjaMsnm6V/7QbrQ8DiFahFCFQAVGYxqssIgRoIoQ7exRn4SQqgkh7L+GODkIdQ5Ry0yiNImbAQDNUgppKLBSifcMm5k4fB3QGh/paH6KKSXS/SWFxgZjepJIfQ1vKYVdLqIEQbihEpj3Be7dfxY3Xtz5kPbl3P7V6lUat9ppJSq8e2ZbLZaZm51go5Bg/OL8q10xlIpYkSZfLqgvUjUaDQCBwzvVgMLj8+PnuAy7qXoA/+qM/4nd/93ffcHtfrb+/n90338DjPzuAm58i0L0OWzdxC9OgaKBrOFYDp7aEmpto1dKG1imX4Sh6pg8lHENYVdylGfx6GTPZjtY2iGIEUI0AztwJ3GoOMzuEEoyieA4CBfLTeE4TXAt18RSiOI1AgOeiBqPokRTUi/jlOcKGRiweZ2DdKIoeZKlSJ+g3qZ/ag0h0EInHiRseuq7hVyts7k0z2LUeNRCm0WziWyo7N27G8gWWHiUYDGMGgniOy+zsaSLYvO+2XWcdqfhGkpReObLNZrOsWbNm1a+ZykQsSZIuh1UXqEOh0Fkj2zOazeby4+e7D7ioewG+8IUv8B/+w39Y/r5cLp93Lfy1qKrKA1/7Kttv2o3QI1izx9BTXfiRNFQXwRGtgK0F8VFAtA7DwK7jNav4TusgDGE18ZwmWjCMByjNMqLc+qDh1oqgGa0CJbVC6/jKRhFRydPe1c9gbxfX7djKkYMvcPSl57G1EL6m4zeXUIVDIpOkoy3FaH838WSKUq1BwncIb91AzFQpVypMzy+yeHQv6XSGTcM97LphF/39/VQqVU4efYmB9e184H3vZWlp6ecnLdUaBHSV6zYMrljg480kKb1d1kxlIpYkSZfaqgvUXV1dTE9Pn3N9dnYWeHlqeQXpdJpAILD8vDdyL7RG4iuNxi/Gtm3b+Def+hf82V9+F6FoOPOnIBgFIwSehRoIoeoBFDPcOszKtXGtGjTLuL4Lqgq+D04D1wqjNup4S1PgOpi6IJrqJJjIokcTrRrhjSqmbpAd2kBXZwfXX3MNg/29fOxd1xIwdJ5/8SVOzyzgAfFolIHudnZe3SqEYds2zWaTarXK2OlJarbAcjxmTo8xMzdH59B6dl5/I6FIlFqlysLsJJ0xg51Xb0dV1TeVgPWL6p3wO0qSdOWsukC9bds2Hn/8ccrl8lkJZc8888zy4ytRVZUtW7bw7LPPnvPYM888w/Dw8GVPJHulb33rW2QyGb72/34LWzOhWganATj4ioofjKKoJkLVwLHAd8CxiUdMbrh2J9FolHq9TjgcZmhoiMHBQTo6OojH41iux8nJOY6dGqdebxIJmQwP9LN+uI+1I60qVa8MmNddd90FBdKNGze+4nm7sG27dUrS5DHmL/P+XUmSJGllihBCvNWNeKVnnnmG66+//qx91JZlsXnzZjKZDD/72c8AOH36NPV6nfUvnxgE8NWvfpXf+Z3fYe/evVxzzTUAHD16lE2bNnHffffxx3/8xxfcjnK5TCKRoFQqnZOB/kY0m03+5//8nzz66KOcOnWKer1OMBikv7+fDRs2YBgGgUCAkZERdu3axdDQ0HJG9PkIISiVSliWRbPZJBgMEggELssU65nXktO4kiRJl84biTGrLlAD3HXXXXzve9/j3nvvZWRkhIceeog9e/bw2GOPccsttwBw22238eMf/5hXNr9SqbB9+3YqlQr33XcfhmHwwAMP4HkeBw4ceEPJPJcqUEuSJEnSq72RGLPqpr4B/uIv/oL//J//81m1vr///e8vB+nzicViPPHEE9x77738/u//Pr7vc9ttt/GNb3xDZtxKkiRJb0urckS9GsgRtSRJknS5vJEY89qLoZIkSZIkvaVkoJYkSZKkVUwGakmSJElaxWSgliRJkqRVTAZqSZIkSVrFZKCWJEmSpFVMBmpJkiRJWsVWZcGT1eDM9vKLPZdakiRJks7nTGy5kFImMlCfR6VSAbiooy4lSZIk6UJUKhUSicRrPkdWJjsP3/eZmZkhFou9qUMozpxrPTk5KSucXWayr68M2c9XjuzrK+Ot6GchBJVKhe7u7tc9iEmOqM9DVVV6e3sv2c+Lx+Pyf7QrRPb1lSH7+cqRfX1lXOl+fr2R9BkymUySJEmSVjEZqCVJkiRpFZOB+jILBALcf//9BAKBt7opv/BkX18Zsp+vHNnXV8Zq72eZTCZJkiRJq5gcUUuSJEnSKiYDtSRJkiStYjJQS5IkSdIqJgP1RbIsi89//vN0d3cTCoW47rrrePTRRy/o3unpae666y6SySTxeJxf+qVf4tSpU5e5xW9fF9vXX/nKV1AU5ZyvYDB4BVr99lOtVrn//vv5wAc+QDqdRlEUHnzwwQu+v1gscs8999De3k4kEmH37t3s27fv8jX4berN9PODDz644ntaURTm5uYub8PfZvbu3ctv/dZvsWnTJiKRCP39/dx1110cO3bsgu5fTe9nWfDkIt199908/PDDfPazn2V0dJQHH3yQD37wgzz++OPs2rXrvPdVq1V2795NqVTii1/8IoZh8I1vfINbb72VAwcOkMlkruBv8fZwsX19xre+9S2i0ejy95qmXc7mvm0tLi7ye7/3e/T397N161aeeOKJC77X930+9KEP8fzzz/Pbv/3btLW18c1vfpPbbruN5557jtHR0cvX8LeZN9PPZ/ze7/0eQ0NDZ11LJpOXpoG/IL761a/y1FNP8fGPf5yrrrqKubk5/uRP/oQdO3bws5/9jM2bN5/33lX3fhbSG/bMM88IQHzta19bvtZoNMSaNWvEDTfc8Jr3fvWrXxWA2LNnz/K1w4cPC03TxBe+8IXL1ua3qzfT1/fff78ARC6Xu9zN/IXQbDbF7OysEEKIvXv3CkB8+9vfvqB7v/Od7whAfPe7312+trCwIJLJpPiX//JfXo7mvm29mX7+9re/LQCxd+/ey9jCXwxPPfWUsCzrrGvHjh0TgUBAfPKTn3zNe1fb+1lOfV+Ehx9+GE3TuOeee5avBYNBPvOZz/D0008zOTn5mvfu3LmTnTt3Ll9bv3497373u/mbv/mby9rut6M309dnCCEol8sXdErNO1kgEKCzs/Oi7n344Yfp6OjgYx/72PK19vZ27rrrLh555BEsy7pUzXzbezP9/EqVSgXP8y5Bi34x3XjjjZimeda10dFRNm3axOHDh1/z3tX2fpaB+iLs37+ftWvXnlMT9tprrwXgwIEDK97n+z4vvPAC11xzzTmPXXvttZw8eXL51C6p5WL7+pWGh4dJJBLEYjF+7dd+jfn5+cvR1He0/fv3s2PHjnMOF7j22mup1+sXvC4oXZjdu3cTj8cJh8N85CMf4fjx4291k94WhBDMz8/T1tb2ms9bbe9nGagvwuzsLF1dXedcP3NtZmZmxfvy+TyWZV3Uve9UF9vXAKlUit/6rd/if/yP/8HDDz/Mb/zGb/Cd73yHm2++WZ4zfom9mb+TdOHC4TB33303f/qnf8r3vvc9Pve5z/HYY49x4403XtDs0jvdX/3VXzE9Pc0nPvGJ13zeans/y2Syi9BoNFYsNXcmm7jRaJz3PuCi7n2nuti+Bvj3//7fn/X9r/zKr3DttdfyyU9+km9+85v8zu/8zqVt7DvYm/k7SRfurrvu4q677lr+/pd/+Zd5//vfzy233MIf/MEf8Gd/9mdvYetWtyNHjvCbv/mb3HDDDXz6059+zeeutvezHFFfhFAotOIaRbPZXH78fPcBF3XvO9XF9vX5/Oqv/iqdnZ380z/90yVpn9Ryqf9O0oXbtWsX1113nXxPv4a5uTk+9KEPkUgklvNeXstqez/LQH0Rurq6mJ2dPef6mWvd3d0r3pdOpwkEAhd17zvVxfb1a+nr6yOfz7/ptkk/dzn+TtKFk+/p8yuVStx+++0Ui0V+8IMfXNB7cbW9n2Wgvgjbtm3j2LFj56xzPvPMM8uPr0RVVbZs2cKzzz57zmPPPPMMw8PDxGKxS97et7OL7evzEUIwPj5Oe3v7pWqiROvvsG/fPnzfP+v6M888QzgcZu3atW9Ry94ZTp06Jd/TK2g2m9xxxx0cO3aM73//+2zcuPGC7ltt72cZqC/CnXfeied5/Pmf//nyNcuy+Pa3v811111HX18fAKdPn+bIkSPn3Lt3796zgvXRo0f50Y9+xMc//vEr8wu8jbyZvs7lcuf8vG9961vkcjk+8IEPXN6G/wKbnZ3lyJEjOI6zfO3OO+9kfn6ev/3bv12+tri4yHe/+13uuOOOVXt84Gq2Uj+v9J7++7//e5577jn5nn4Vz/P4xCc+wdNPP813v/tdbrjhhhWf93Z4P8tjLi/SXXfdxfe+9z3uvfdeRkZGeOihh9izZw+PPfYYt9xyCwC33XYbP/7xj8/av1upVNi+fTuVSoX77rsPwzB44IEH8DyPAwcOyE/FK7jYvg6Hw3ziE59gy5YtBINBnnzySf76r/+arVu38tRTTxEOh9+qX2nV+pM/+ROKxSIzMzN861vf4mMf+xjbt28H4N/9u39HIpHg7rvv5qGHHmJsbIzBwUGg9Y/irl27OHjw4FmVnE6fPs3evXtZt27dW/hbrT4X28+jo6Ns376da665hkQiwb59+/hf/+t/0dXVxd69e+no6HgLf6vV5bOf/Sz//b//d+64446zEvDO+LVf+zWAt8f7+YqXWPkF0Wg0xH333Sc6OztFIBAQO3fuFD/4wQ/Oes6tt94qVuriyclJceedd4p4PC6i0aj48Ic/LI4fP36lmv62c7F9/Ru/8Rti48aNIhaLCcMwxMjIiPj85z8vyuXylWz+28rAwIAAVvwaGxsTQgjx6U9/+qzvz8jn8+Izn/mMyGQyIhwOi1tvvVVW0DqPi+3nL33pS2Lbtm0ikUgIwzBEf3+/+Lf/9t+Kubm5t+YXWcXO/Jtwvq8z3g7vZzmiliRJkqRVTK5RS5IkSdIqJgO1JEmSJK1iMlBLkiRJ0iomA7UkSZIkrWIyUEuSJEnSKiYDtSRJkiStYjJQS5IkSdIqJgO1JEmSJK1iMlBLkiRJ0iomA7UkSZfNbbfdhqIob3UzLtr4+DiKonD33Xe/1U2R3sFkoJaky+jAgQP8m3/zb9i4cSPxeBzTNOns7OS9730vX//611c8DemdSFGUN/R1Kb3dP0xIv/j0t7oBkvSLyPd9Pve5z/H1r38dTdO45ZZbeN/73kckEmFhYYGnn36a++67j/vvv5+jR4/S09PzVjf5LXX//fefc+2//bf/RqlUWvExSXonkYFaki6DL33pS3z9619nx44dfOc732FkZOSc5+zbt4/Pf/7zNBqNt6CFq8tXvvKVc649+OCDlEqlFR+TpHcSOfUtSZfYsWPH+NrXvkZ7ezs/+MEPVgzSADt27ODRRx9dPgMXzl4TPXz4MB/96EfJZDIoisL4+DgAruvywAMPsHXrVkKhEIlEgt27d/N3f/d357zGV77yFRRF4YknnjjnsQcffBBFUXjwwQdXfP0TJ07w0Y9+lFQqRSQS4T3veQ/PP//8ir/Lk08+ya233kokEiGTyfCJT3yCycnJC+6zC/V6/fN6a8qKonDbbbed9f2Pf/zj5f8+87XS/W+kPyTpUpIjakm6xB566CE8z+Nf/+t/TXt7++s+X9fP/d/wxIkTXH/99WzZsoW7776bpaUlTNNECMGdd97JI488wtq1a/nN3/xNarUa3/nOd/jIRz7CAw88wL333vumf4fx8XGuv/56Nm3axK//+q9z8uRJHnnkEXbv3s3hw4fp6OhYfu5jjz3G7bffjqqqfOITn6C7u5vHHnuMm266iVQq9abbspLz9Y9t22/o59x///08+OCDTExMnDXFvm3btrOe90b6Q5IuubfkFGxJ+gW2e/duAYjHHnvsDd87Nja2fLD9l7/85XMef+ihhwQgbr31VmFZ1vL1iYkJ0dbWJnRdFydPnly+fv/99wtAPP744+f8rG9/+9sCEN/+9rdXfP0//uM/Puv5/+k//ScBiD/6oz9avuZ5nhgeHhaKooif/OQny9d93xe/+qu/uvyzLsbAwMA5975e/5x5/NOf/vSKP/NM373Srbfeet42vtH+kKTLQU59S9IlNjc3B0B3d/c5jz3xxBN85StfOetrpWnpzs5OvvSlL51z/aGHHgLgv/yX/4JpmsvX+/v7uffee3Fdl7/6q79607/D0NAQv/3bv33Wtc985jMA7N27d/nak08+yalTp/jwhz/Mrl27lq8risIf/uEfomnam27LSs7XP5fLhfaHJF0Ocupbkq6gJ554gt/93d895/or100Btm7delYgPmP//v2Ew2Guvfbacx7bvXs30NoS9mZt27YNVT37c3xvby8AxWJx+dqZNdqbb775nJ8xMDBAX1/f8tr6pXS+/rlcLrQ/JOlykCNqSbrEzqxXzszMnPPYV77yFYQQCCH43//7f7/uz3i1crlMNptd8bGurq7l57xZ8Xj8nGtn1tI9z1u+ViqVAM7bpsu1dnul14QvtD8k6XKQgVqSLrEbb7wRgMcff/yif8b5CnDE43EWFhZWfOzMlPsrg8qZUaDruuc8/0yQfTMSiQTAeds0Pz//pl9jJefrn8v9+0rSW0EGakm6xD796U+jqip//ud/zuLi4iX92du3b6der7Nnz55zHjuz1v3KjOUzWdfT09PnPH///v1vuj1bt24F4Cc/+ck5j01MTFyWLVqvJZlMAm/s9z2zji5HxtJqJQO1JF1ia9eu5XOf+xwLCwvcfvvtnDhxYsXnXcza5qc//WkAvvCFL+A4zvL1yclJHnjgAXRd55Of/OTy9Z07dwLwF3/xF/i+v3z96aefviRJZ7t27WJoaIjvf//7PPnkk8vXhRB88YtfvOLBLx6Ps27dOp588smz+r1SqfCFL3xhxXvS6TTAFf9QIUkXSiaTSdJl8Ad/8AfYts0DDzzA+vXrueWWW9i6dSvhcJiFhQVeeOEF9uzZQzQaPWfP7mv5V//qX/G3f/u3PPLII1x11VV8+MMfXt5Hnc/n+frXv87w8PDy86+//npuuukmfvSjH3HDDTdwyy23MDExwSOPPMIdd9zB9773vTf1e56ZOfjgBz/Ie97znuV91D/60Y+YnZ3lqquu4oUXXnhTr/FG/cf/+B+55557uOGGG/j4xz+O7/v8wz/8w/KHlld717vexcMPP8yv/MqvcPvttxMMBtm6dSt33HHHFW23JJ3XW7w9TJJ+oe3bt0/cc889Yv369SIajQrDMERHR4d417veJb72ta+J+fn5s57/evuAhRDCcRzxX//rfxVbtmwRgUBAxGIxceutt4pHHnlkxecvLi6KT33qUyKdTotQKCSuv/568Y//+I+vuY/6jexDFkKIf/7nfxa33HKLCIVCIp1Oi49//ONiYmLiNfcov57X2kf9Wv0jhBB/+qd/KkZHR4VhGKK/v198+ctfFrZtr9h+x3HE5z73OdHf3y90XT/r519sf0jSpaQIIcRb9BlBkiRJkqTXIdeoJUmSJGkVk4FakiRJklYxGaglSZIkaRWTgVqSJEmSVjEZqCVJkiRpFZOBWpIkSZJWMRmoJUmSJGkVk4FakiRJklYxGaglSZIkaRWTgVqSJEmSVjEZqCVJkiRpFZOBWpIkSZJWMRmoJUmSJGkV+/8BrjEFqm14q9kAAAAASUVORK5CYII=",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "crested.pl.scatter.class_density(\n",
- " adata,\n",
- " class_name=\"Astro\",\n",
- " model_names=[\"checkpoint_15\"],\n",
- " split=\"test\",\n",
- " log_transform=True,\n",
- " width=5,\n",
- " height=5,\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### Correlation Heatmaps"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAJRCAYAAACtEAgIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBFUlEQVR4nOzdd1gUV9sG8HtYYFlQQBERUAELYicBMXZEUbGQqFiwIMaC8TVRY3sxseCnYovGEluiYAE1Ggz2rjGWWKJGjSVqxAbRIAiKNGG+P3xZXXeBXZhFce/fdc2VcObMM2dmQR7OOXNGEEVRBBEREZEBMXrbDSAiIiIqaUyAiIiIyOAwASIiIiKDwwSIiIiIDA4TICIiIjI4TICIiIjI4DABIiIiIoPDBIiIiIgMDhMgIiIiMjhMgKjE3bhxAyNGjECdOnVgYWEBMzMzVK5cGY0aNcKIESPw008/SXKeuLg4CIIAZ2dnjfu3b9+OFi1awNLSEoIgQBAEHDlyRKdz7N+/HwMHDoSrqyssLS0hl8thb28PX19fLFiwAP/++2/xL+Qtmzp1KgRBwNSpU0vsnM7OzhAEAXFxcSV2Tl15e3trdV+Cg4MhCAKCg4NLpF1EpB3jt90AMiwxMTHo06cPMjMzYWNjg2bNmsHW1hbJycm4cOECvvvuO2zcuBHdu3fXazsuXLiA7t27Izc3Fz4+PrC3t4cgCKhUqZJWxycmJiIwMBAHDhwA8PIXduvWrWFhYYF//vkHJ06cwIEDBzB58mQcOHAAjRs31ufllCrBwcFYs2YNIiIimBSUIGdnZ9y5cwe3b9/O948CIkPCBIhKzMOHDzFgwABkZmZizJgxmD59OszMzFTq/P7779iyZYve2/Lzzz8jOzsbEydOxIwZM3Q6NiUlBc2bN8f169fh5uaGlStXokWLFip1MjMzsWbNGkyZMgUJCQlSNt0gHDx4ENnZ2XB0dHzbTSGi9xQTICoxO3bswLNnz+Dg4IB58+ZprOPh4QEPDw+9t+Xu3bsAgJo1a+p87Oeff47r16/D2dkZx48fR/ny5dXqyOVyDB06FB9//DGePHlS3OYanOrVq7/tJhDRe45zgKjEPHz4EABga2tbpONfvHiBH374Ad7e3ihfvjzkcjlcXFzw2Wef4d69e1rFyJvPEhERAQAYOHCgcv6Pt7d3ocf//fffiI6OBgDMnz9fY/LzOjs7O9SqVUutfOPGjWjTpo3yOpycnPDpp5/ir7/+0hjn9TkxsbGx8PHxQfny5VXmLeVdBwBERESgSZMmsLKyUptLEx8fjy+//BK1a9eGubk5ypYti0aNGmHJkiV48eJFofcgT3Z2NtavX4++ffvCzc0NlpaWUCgUqFWrFr744gvEx8er1M+bk7VmzRoAqvf+zbk0Bc0Bev78OWbNmoUPP/wQZcuWhbm5OerWrYuvv/4aycnJavVfnwsmiiJWrlwJDw8PWFhYwMrKCu3atcPJkye1vm6p6fp5/Pvvv1i0aBE6duwIFxcXKBQKWFpawtPTE7Nnz0ZGRoZK/cjISAiCgDt37gAAXFxcVO573vfPkSNHlD8HmZmZCAsLg6urK8zMzFC1alVMmDBBGTslJQVjx45FtWrVYGZmBmdnZ0ydOlWS9uZ5/fv5+++/V35m1tbW6NixI3777bci33MiAIBIVELWrVsnAhBlMpl44MABnY5NTU0Vvb29RQBimTJlxFatWokBAQFirVq1RACijY2NeO7cOZVjbt++LQIQnZyclGVbt24VBwwYIFavXl0EIDZr1kwcMGCAOGDAADE8PLzQdixcuFAEIFpbW4svXrzQ6RpEURRzc3PFoKAgEYBobGws+vj4iL179xZdXV1FAKK5ubm4e/duteOcnJxEAOKIESNEAKKnp6cYGBgotmrVSjx69KgoiqIIQFnHyMhIbN68uRgYGCg2btxYjIuLE0VRFH/55RexXLlyIgDR2dlZ9Pf3F9u3b68sa9eunZiVlaVy7ilTpogAxClTpqiU37t3TwQgWllZiR999JHYo0cPsWPHjqKDg4MIQLS1tRVv3LihrP/vv//me+8HDBggbt26Ve16b9++rXLOx48fi+7u7iIA0dLSUvT39xe7d+8uVqhQQQQguri4qB3z+vfBgAEDRBMTE9HHx0fs2bOn8r7L5XLxt99+0+mzbNWqlcb78qYBAwaIAMQBAwao7SvK55H3c+To6Ci2atVK7N27t9imTRuxTJkyIgCxSZMmYkZGhrL+r7/+Kg4YMEC0sLAQAYjdu3dXue9Xr14VRVEUDx8+rDy+VatWyvvbuXNn0crKSgQgdu7cWXz8+LFYq1Yt0dbWVuzevbvYrl070czMTAQgDhs2TO0adW1vnrzv59GjR4uCICi/n+vVq6f8+YmJidHikyLSjAkQlZinT5+Kjo6OIgBREATR29tb/L//+z9x586d4qNHjwo8tk+fPsp/gB8+fKiyb8GCBSIAsWbNmipJiaYEKE/eL6WIiAidrqF///4iANHHx0en4/IsW7ZMBCBWqFBBPH/+vLI8NzdXmWhYW1ur3Y+8hEAmk4mxsbEaY+f9wrC0tBRPnjyptj8hIUG0sbERBUEQly5dKubk5Cj3JSYmij4+PiIAMSwsTOW4/BKg1NRUMTY2VszMzFQpz8rKEkNDQ0UAYseOHdXaoc29zy8B6tWrlwhAbNy4sZiYmKgsf/r0qejn5ycCEJs2bapyTN73Qd73wvXr15X7Xrx4IX766afKZEMXxU2Aivp5XLlyRePnm5SUJLZr104EIM6ZM0dtf373NE9eAgRA9PLyUrm/cXFxyqSsfv36YpcuXcS0tDTl/jNnzojGxsaikZGReOfOHUnam9cWhUIhHjx4UGXfnDlzlMn3m/8eEGmLCRCVqGvXromNGzdW/uP2+ubu7i4uW7ZMrWflypUroiAIooODg5iamqoxbseOHUUA4vbt25Vl+kiAOnToIAIQe/furdNxefJ6PxYtWqS2Lzc3V2zQoIEIQJwxY4bKvrxfXp9++mm+sfPu47Rp0zTunzBhgrKHSJP79++LJiYmoq2trZibm6sszy8BKoyDg4NoZGSk9pkVNQG6c+eOaGRkJAqCIP7xxx8a25/XE3H8+HFl+esJ0LZt29SOS0hIUPYCvdnbUpC8BEjb7c0EqKifR0GuX78uAhAbNWqktk/bBEgQBPHSpUtq+7/44gtlD6ympKNLly4iAHHNmjVatbWw9ubdt1GjRmk81tPTU+PPCpG2OAmaSlStWrXw22+/4fTp09i5cydOnTqFc+fO4d9//8WFCxfw2Wef4aeffsLOnTthamoKANi1axdEUYSfnx/Kli2rMa63tzd27dqFEydOoHPnziV5SVq7f/8+bt26BQAYMGCA2n5BEDBw4ECMHj0ahw8fxsSJE9XqBAQEFHqe/Ors3LkTANCrVy+N+x0dHVGzZk1cuXIFN27cgKura6HnAoA//vgDBw8exO3bt5GWlobc3FwAL+ds5ebm4ubNm/jggw+0ilWQo0ePIjc3Fx9++CEaNGigsf3t27dHbGwsDh8+jKZNm6rsNzY2RocOHdSOq1SpEsqVK4fk5GQ8fvxY66UQ8jRs2BDu7u757j927Jjyc39dcT6PnJwcHDlyBCdOnEBCQgLS09MhvvyDFgBw/fp1na7hdVWrVkW9evXUyvMeGPDw8EDFihXz3f/m3K/itlfTzwoABAUF4ezZszhy5IjGnxWiwjABorfCy8sLXl5eAABRFHH+/HnMnTsXGzduxIEDB7Bw4UKMGzcOwMuJxwCwatUqrFq1qsC4+l54MG8C96NHj3Q+9sGDBwAAGxsbWFpaaqyT9/RTXt03abN+S3518u7jm4/sa/Lvv/8WmgClpaWhf//+2Lp1a4H1UlNTCz2fNvLuiYuLS751Crp/9vb2MDEx0XicpaUlkpOT852QW5BPPvmkwMUQg4ODNSZARf08bty4ga5du+LPP//Mt35x7nnVqlU1lpcpU6bA/Xl/nLx5D4vb3vw+77zy+/fv53ssUUGYANFbJwgCPvzwQ2zYsAHPnz/Htm3b8PPPPysToLweBXd3dzRs2LDAWPpecNDDwwPr1q3DuXPnkJOTA5lMptfzvUmhUBS5Tt59DAgIgIWFRYExbGxsCj1PaGgotm7dCjc3N8yaNQuNGjVChQoVlD13TZs2xcmTJ5V/5b9tRkbv1kOvRf08AgIC8Oeff6Jz584YP3486tSpA0tLS5iYmCArKwtyubxY7SrsPul6H/Xd3nfl+4tKHyZA9E5p164dtm3bhsTERGVZlSpVAADNmjXDkiVL3lbTAACdO3fGl19+iSdPnmDbtm3o2rWr1sfmLer3+PFjpKamauwFyusV0McCgFWqVMGNGzcwYcIEeHp6Fjvejz/+CADYtGmTxiGpGzduFPscr8u7J3n3SBN93j+pFeXzuHbtGi5evIiKFSti69atMDZW/Sdc6nteXFK09/bt2xqHGPOWSKhcubIUTSUD9G79SUTvNW3+UstboPD1f9T8/PwAANu2bSvSEIWUqlevjsDAQADAmDFjkJSUVGD9R48eKec3VK5cWTlEExkZqVZXFEVleevWraVr9P/k3ce8xKW48q7dyclJbd/evXtVktjX5fUQ6bLmEAC0bNkSRkZGuHDhAv744w+1/QkJCdizZw8A/dw/qRXl88i75w4ODmrJBACsX78+32OLet+LozjtzbNu3boCy7VZv4tIEyZAVGKWLl2KAQMG4MSJE2r7RFFETEyMsoend+/eyn0ffPABunfvjnv37qFbt24aF8dLS0tDVFSUcrFFfVq8eDFq1KiB27dvo3nz5jh27JhanaysLKxevRoffPABrl69qiwfO3YsAOD//u//VH6Ji6KI6dOn48KFC7C2tsaQIUMkb/e4ceNgbW2N+fPn45tvvkFWVpZandu3b2v1SwkAateuDeDl/Xjd9evXMWzYsHyPy0tuC5oToknVqlXRo0cPiKKIkJAQPH78WLkvLS0NQ4cORUZGBpo2bao2AfpdVJTPw9XVFTKZDJcuXVJ7ce/27duxYMGCfM9X1PteHMVpb55ly5apHbtgwQKcPn0aZcuWxaBBgyRsMRkSDoFRicnOzsbatWuxdu1a2Nra4oMPPkCFChXw5MkTXLlyRZnY9OvXT+0ftYiICDx58gS7d+9GrVq10LBhQ7i4uEAURcTFxeGPP/5AVlYWrl69Cjs7O71eR7ly5XD8+HH06tULR44cQYsWLeDi4oIGDRrA3NwcDx8+xOnTp/Hs2TNYWlrCwcFBeWxISAhOnDiBdevWwdPTE61atULFihVx7tw5XL9+HQqFAtHR0UVeLbsglStXRmxsLLp3746xY8dizpw5qFevHuzt7ZGSkoKrV6/i1q1baNy4Mfr161dovClTpiAgIACTJk3Cjz/+iLp16+LRo0f49ddf0aJFCzg4OGhMdj/55BOEhYVh0aJFuHz5MqpUqQIjIyP4+/vD39+/wHN+9913uHbtGk6dOoXq1aujdevWMDY2xi+//IJ///0XLi4uiIqKKvI9KklF+TwqVKiAESNGYOHChWjTpo3yPl+/fh3nzp3D119/jenTp2s8X/fu3XH48GH069cP7dq1Q7ly5QC8TMQ0rVYuheK0N09ISAh8fHzQokULODo64vLly7h06RJkMhlWr16t81N7REpv49l7Mkypqanizz//LH7++eeil5eXWLlyZdHExERUKBRi9erVxcDAQI2rIOfJyckRo6OjxY4dO4p2dnaiiYmJaGNjI9arV08cOHCguHXrVpV1XPSxDtCbdu/eLQYFBYk1atQQy5QpI5qYmIiVKlUSfX19xW+//VZ8/PixxuOio6NFb29v0draWjQxMRGrVKkiBgcHi9euXdNYv7A1XETx1bophXn48KE4adIk8cMPPxTLli0rmpqaipUrVxabNm0qTpkyRbx48aJK/YLWATp69KjYpk0bsUKFCqK5ublYr149ccaMGWJmZqZynZzDhw+rHbd161axWbNmYtmyZUVBENTiF3S9aWlpYnh4uOju7i6am5uLZmZmYu3atcWJEyeKSUlJavUL+j7Q5nz5kWIlaFHU/fPIzc0VV61aJXp4eIhlypQRraysxObNm4sbN24URTH/74OcnBwxPDxcrFu3rnK9pNc/n7x1gFq1aqWxnREREQVeR37fJ0Vt7+vly5YtE93d3UWFQiFaWlqKHTp0UFnriagoBFHkFHoiInq35L0HjL+iSF84B4iIiIgMDhMgIiIiMjhMgIiIiMjg8CkwIiJ653DuD+kbe4CIiIjI4DABIiIiIoPDBIiIiIgMDhMgIiIiMjhMgIiIiMjgMAEiIiIig8MEiIiIiAwOEyAiIiIyOEyAiIiIyOAwASIiIiKDwwSIiIiIDA4TICIiIjI4TICIiIjI4DABIiIiIoPDBIiIiIgMDhMgIiIiMjhMgIiIiMjgMAEiIiIig8MEiIiIiErMs2fPMGXKFHTo0AHly5eHIAiIjIzU+vgnT55g6NChsLW1hYWFBVq3bo1z587p3A4mQERERFRiEhMTMW3aNFy9ehUNGzbU6djc3Fx06tQJ0dHRGDFiBObMmYNHjx7B29sbN27c0CmWsU61iYiIiIrB3t4eCQkJqFSpEs6ePYtGjRppfeyWLVtw4sQJbN68GQEBAQCAnj17wtXVFVOmTEF0dLTWsdgDRERERCVGLpejUqVKRTp2y5YtsLOzQ7du3ZRltra26NmzJ2JjY5GZmal1LCZAREREVCqcP38eH374IYyMVNMXLy8vPH/+HH/99ZfWsZgAERERUbFkZmYiNTVVZdOlN0ZbCQkJsLe3VyvPK4uPj9c6FucAlUI7TWpJGu/3yD8li3V0xwXJYgFAdmaWpPGMjGWSxrOwKitpvMzn6ZLGy83JkSyWkUzae9egmZuk8f6590TSeD+0PyppvE0IlDTe/r0PJI1Xq56dZLEunIqTLBYAGAnS/q3epLWLpPEk/mcFI7sI0gZ8jdS/P/Kc+SoQYWFhKmVTpkzB1KlTJT1Peno65HK5WrmZmZlyv7aYABEREVGxhIaG4ssvv1Qp05SoFJdCodDYs5SRkaHcry0mQERERAZCMNFP75JcLtdLwvOmvCfI3pRX5uDgoHUsg5sDtHTpUgiCgMaNGxfp+CtXrmDq1KmIi4uTtmFERER6ZmQs6GUrKe7u7jh37hxyc3NVyk+dOgVzc3O4urpqHcvgEqCoqCg4Ozvj9OnTuHnzps7HX7lyBWFhYUyAiIiI9CghIQHXrl1Ddna2siwgIAAPHz5ETEyMsiwxMRGbN29Gly5ddOqFMqghsNu3b+PEiROIiYlBSEgIoqKiMGXKFL2dTxRFZGRk6DQmSUREpC+CybvR77FkyRI8efJE+dTW9u3bcf/+fQDA559/DisrK4SGhmLNmjW4ffs2nJ2dAbxMgD766CMMHDgQV65cQYUKFbB06VLk5OSoTcIuzLtxJ0pIVFQUypUrh06dOiEgIABRUVFqdTZu3AgPDw+ULVsWlpaWqF+/PhYuXAgAiIyMRI8ePQAArVu3hiAIEAQBR44cAQA4Ozujc+fO2Lt3Lzw9PaFQKLBixQoAwN9//40ePXqgfPnyMDc3x0cffYSdO3eWzIUTERG9Q+bNm4dJkyZh2bJlAICYmBhMmjQJkyZNQnJycr7HyWQy7Nq1C7169cKiRYswbtw4VKhQAYcOHUKtWro94WZwCVC3bt1gamqKwMBA3LhxA2fOnFHu379/PwIDA1GuXDnMnj0bs2bNgre3N44fPw4AaNmyJb744gsAwMSJE7Fu3TqsW7cOtWvXVsa4fv06AgMD4evri4ULF8Ld3R0PHz5E06ZNsXfvXgwfPhwzZsxARkYG/P39sXXr1pK9CUREZLDelTlAcXFxEEVR45bX2xMZGanydZ5y5crhhx9+QGJiItLS0nDkyBF4enrq3AaDGQL7/fffce3aNSxevBgA0Lx5c1SuXBlRUVHK95Ds3LkTlpaW2Lt3L2Qa1jypVq0aWrRogUWLFsHX1xfe3t5qdW7evIk9e/agffv2yrLRo0fj4cOH+PXXX9G8eXMAwJAhQ9CgQQN8+eWX+Pjjj9VWtSQiIpKavp4CK40M5rduVFQU7Ozs0Lp1awCAIAjo1asXNm7ciJz/LRZnbW2NtLQ07N+/v8jncXFxUUl+AGDXrl3w8vJSJj8AUKZMGQwdOhRxcXG4cuVKkc9HREREujOIBCgnJwcbN25E69atcfv2bdy8eRM3b95E48aN8fDhQxw8eBAAMHz4cLi6usLPzw+VK1fGp59+ij179uh0LhcX9RVG79y5o3FsMm/o7M6dO/nG07S8eLaYm299IiKi/LwrQ2DvAoNIgA4dOoSEhARs3LgRNWvWVG49e/YEAOVk6IoVK+LChQvYtm0b/P39cfjwYfj5+WHAgAFan0vqJ77Cw8NhZWWlsv2YmyTpOYiIiAyNQcwBioqKQsWKFfHdd9+p7YuJicHWrVuxfPlyKBQKmJqaokuXLujSpQtyc3MxfPhwrFixApMmTUKNGjUgCLpnuk5OTrh+/bpa+bVr15T786NpefFD5T10bgMRERHnAL3y3idA6enpiImJQY8ePRAQEKC238HBARs2bMC2bdvQtm1b2NjYKPcZGRmhQYMGAKB894iFhQUA4MmTJ1q3oWPHjvj2229x8uRJNGnSBACQlpaGlStXwtnZGXXq1Mn3WE3Li5tI/GJAIiIyDKV1uEof3vsEaNu2bXj69Cn8/f017v/oo49ga2uLqKgobNy4EUlJSfDx8UHlypVx584dLF68GO7u7sr5Ou7u7pDJZJg9ezZSUlIgl8vh4+ODihUr5tuG//73v9iwYQP8/PzwxRdfoHz58srFnX766Sc+AUZERFTC3vsEKCoqCmZmZvD19dW438jICJ06dUJUVBQ2bNiAlStXYunSpXjy5AkqVaqEXr16YerUqcokpVKlSli+fDnCw8MxaNAg5OTk4PDhwwUmQHZ2djhx4gQmTJiAxYsXIyMjAw0aNMD27dvRqVMnvVw3ERHRmwQZe4DyvPcJ0LZt2wqtExERgYiICABA9+7dC60/ePBgDB48WK28oPeDVatWDZs3by40NhEREenfe58AERER0UtG7AFSYgJERERkIAQjJkB5OPuWiIiIDA57gIiIiAyEIGO/Rx7eCSIiIjI47AEiIiIyEJwE/QoToFLo98g/JY3nEVxXslhZ31+SLBYAJD5MkzSeja25pPESH0nbPitrad8lZ2omkyxW2rMsyWIBwN0bjySNV7m6raTx5j7oIWk8mSxH0nhSu3j6rmSxZDLpvu8AIDszW9J4n9nGSBpvyI6PJI2HLo7SxnsNJ0G/wiEwIiIiMjhMgPQgODgYzs7Ob7sZREREKoxkgl620sigEqDIyEgIgpDv9ttvv73tJhIREVEJMMg5QNOmTYOLi4taeY0aNd5Ca4iIiEoG3wX2ikEmQH5+fvD09HzbzSAiIqK3xKCGwLQRFxcHQRAwb948rFy5EtWrV4dcLkejRo1w5swZtfo///wz6tWrBzMzM9SrVw9bt27VGDctLQ1jxoxBlSpVIJfLUatWLcybNw+iKOr7koiIiAAAgpGRXrbSyCB7gFJSUpCYmKhSJggCbGxslF9HR0fj6dOnCAkJgSAImDNnDrp164a///4bJiYmAIB9+/ahe/fuqFOnDsLDw/H48WMMHDgQlStXVoktiiL8/f1x+PBhDBo0CO7u7ti7dy/GjRuHBw8eYMGCBfq/aCIiMnh8DP4Vg0yA2rZtq1Yml8uRkZGh/Pru3bu4ceMGypUrBwCoVasWPv74Y+zduxedO3cGAEyYMAF2dnY4duwYrKysAACtWrVCu3bt4OTkpIy1bds2HDp0CNOnT8dXX30FAPjPf/6DHj16YOHChRgxYgSqV6+ut+slIiIiVQaZAH333XdwdXVVKXtz4a5evXopkx8AaNGiBQDg77//BgAkJCTgwoUL+O9//6tMfgDA19cXderUQVraqwXydu3aBZlMhi+++ELlHGPGjMGWLVuwe/dujBgxQpqLIyIiykdpfWRdHwwyAfLy8ip0EnTVqlVVvs5LhpKTkwEAd+7cAQDUrFlT7dhatWrh3Llzyq/v3LkDBwcHlC1bVqVe7dq1VWJpkpmZiczMTJWyF9kyGJvIC2w/ERER5a90zlwqAfkt5V7Sk5bDw8NhZWWlsv26bXaJtoGIiN4PgpGgl600YgJURHlzfG7cuKG27/r162p14+Pj8fTpU5Xya9euqcTSJDQ0FCkpKSpbC/8JxW0+EREZID4F9krpbPU7wN7eHu7u7lizZg1SUlKU5fv378eVK1dU6nbs2BE5OTlYsmSJSvmCBQsgCAL8/PzyPY9cLoelpaXKxuEvIiKi4jHIOUC7d+9W9r68rmnTpjDSIZMNDw9Hp06d0Lx5c3z66adISkrC4sWLUbduXTx79kxZr0uXLmjdujW++uorxMXFoWHDhti3bx9iY2MxatQoPgFGREQlorQOV+mDQSZAkydP1lgeEREBb29vreN06NABmzdvxtdff43Q0FBUr14dERERiI2NxZEjR5T1jIyMsG3bNkyePBmbNm1CREQEnJ2dMXfuXIwZM6aYV0NERES6MqgEKDg4GMHBwYXWy2+is6bybt26oVu3biplXbt2VatXpkwZzJ8/H/Pnz9eusURERBLjY/CvGFQCREREZMg4BPYKJ0ETERGRwWEPEBERkYEorY+s6wPvBBERERkc9gAREREZCM4BeoUJUCl0dMcFSeNlfX9JslhNhtSXLBYAtNkxXtJ4iTv2Shrv2pB1ksZr/nCDpPFSDx2SLJZFl08kiwUAnz9uLmm8S8fV1/YqDlOFtAuOvsh+IWm8uo3V30NYHBePXSm8kpaa+blLFgsArl54IGm8npG1JY1nbJJWeKV3BBOgVzgERkRERAaHPUBEREQGgj1Ar5TqHqDIyEgIgoCzZ89q3H/v3j2EhYXBy8sL5cqVQ4UKFeDt7Y0DBw7ofK709HQMGjQI9erVg5WVFcqUKYOGDRti4cKFyM7OVqk7depUCIKAxMREHDlyBIIgaLURERFRyXive4BiY2Mxe/ZsfPLJJxgwYABevHiBtWvXwtfXF6tXr8bAgQO1jpWeno4///wTHTt2hLOzM4yMjHDixAmMHj0ap06dQnR0tMbjateujXXrVOeJhIaGokyZMvjqq6+KdX1ERES64GPwr7zXCVDr1q1x9+5dVKhQQVk2bNgwuLu7Y/LkyTolQOXLl8dvv/2mUjZs2DBYWVlhyZIlmD9/PipVqqR2nJ2dHfr166dSNmvWLFSoUEGtnIiISJ/4KoxX3utUsG7duirJDwDI5XJ07NgR9+/fx9OnT4t9DmdnZwDAkydPih2LiIiISsZ73QOUn3/++Qfm5uYwNzfX+disrCykpqYiPT0dZ8+exbx58+Dk5IQaNWrooaVERETS4SToV97rHiBNbt68iZiYGHTv3h0ymUzn42NiYmBra4uqVauiW7duqFy5MrZv3w5jY4PMJYmIiEolg/qt/fz5c/To0QMKhQKzZs0qUozWrVtj//79ePLkCQ4ePIg//vgDaWmlZxEsIiIyXJwE/YrBJEA5OTno3bs3rly5gt27d8PBwaFIcezs7GBnZwcACAgIwMyZM+Hr64sbN25onARdXJmZmcjMzFQpy83JgpHMVPJzERHR+41DYK8YTCo4ZMgQ7NixA5GRkfDx8ZEsbkBAAJ49e4bY2FjJYr4uPDwcVlZWKlvclUi9nIuIiMhQGEQCNG7cOERERGDBggUIDAyUNHZ6ejoAICUlRdK4eUJDQ5GSkqKyOdcJ1su5iIjo/SYYCXrZSqP3fghs7ty5mDdvHiZOnIiRI0cWOU5iYiJsbGzUVmz+4YcfAACenp7Famd+5HI55HLVlzJy+IuIiKh43osEaPXq1dizZ49auZOTE8aPH4+aNWuidu3aWL9+vcp+X19f5Xyewqxfvx7Lly/HJ598gmrVquHp06fYu3cv9u/fjy5dukg6rEZERKQPnAT9ynuRAC1btkxj+aBBgwAAN27cQP/+/dX2Hz58WOsEqHnz5jhx4gQ2bNiAhw8fwtjYGLVq1cL8+fPx+eefF73xREREJaS0DlfpQ6lOgIKDgxEcHFxgnbwhquLy9PTEjz/+qFXdqVOnYurUqfnuv3z5siRtIiIioqIp1QkQERERaY9DYK8YfAKUlZWFpKSkAutYWVlBoVCUUIuIiIhI3ww+ATpx4gRat25dYJ2IiIhCh9qIiIjeeQLnAOUx+ASoYcOG2L9/f4F16tatW0KtISIi0h9Ogn7F4BOgcuXKoW3btm+7GURERFSCDD4BIiIiMhScBP0KE6BSKDszS9J4iQ+le5t9mx3jJYsFAAc7z5E0XptdoZLGc7L4R9J4yEyXNJxlsyaSxcoyKytZLAAoay3tgwVS/1xIPVQg5oqSxlMoTCSNJyWFQiZpPLm5vPBKOkj+57Gk8RSWFpLGo5LBBIiIiMhAcA7QK0yAiIiIDASHwF4xuDsRGRkJQRBw9uzZfOsIgqBxmzVrlkq94ODgfOuamZkBAJydnfOt8/oWGRmpz8smIiKi17AHKB++vr4ICgpSKfvggw/U6snlco2v25DJXo6Bf/vtt3j27JmyfNeuXdiwYQMWLFiAChUqKMubNm0qVdOJiIg04hDYK0yA8uHq6op+/foVWs/Y2LjAep988onK1//88w82bNiATz75BM7OzsVsJRERERWFwQ2B6SI9PR0ZGRlvuxlERESSEIwEvWy6yszMxIQJE+Dg4ACFQoHGjRsXuihxngMHDqB169aoUKECrK2t4eXlhXXr1uncBiZA+YiMjISFhQUUCgXq1KmD6OjofOsmJiaqbampqSXYWiIiIi0YGeln01FwcDDmz5+Pvn37YuHChZDJZOjYsSOOHTtW4HHbtm1Du3btkJWVhalTp2LGjBlQKBQICgrCggULdGoDh8A0aNq0KXr27AkXFxfEx8fju+++Q9++fZGSkoLPPvtMpW5aWhpsbW3VYrRv3x579uwpqSYTERGVCqdPn8bGjRsxd+5cjB07FgAQFBSEevXqYfz48Thx4kS+xy5ZsgT29vY4dOgQ5PKX60OFhITAzc0NkZGRGD16tNbtYAKkwfHjx1W+/vTTT+Hh4YGJEyciODhY5c3wZmZm2L59u1qM1yc4ExERvQuEd+BlqFu2bIFMJsPQoUOVZWZmZhg0aBAmTpyIe/fuoUqVKhqPTU1NRbly5ZTJD/ByLm5RfucyAdKCqakpRowYgWHDhuH3339H8+bNlftkMple3yWWmZmJzMxMlbLcnCwYyUz1dk4iIiJ9OX/+PFxdXWFpaalS7uXlBQC4cOFCvgmQt7c3Zs+ejUmTJmHAgAEQBAHR0dE4e/YsfvzxR53awQRIS3kfRlJSUomeNzw8HGFhYSplVd0+hXPtQSXaDiIiKv30tRCipj/W5XK5Sk9NnoSEBNjb26uV55XFx8fne55Jkybh9u3bmDFjBqZPnw4AMDc3x08//YSPP/5YpzZzErSW/v77bwDQON9Hn0JDQ5GSkqKyVXXtX6JtICKi94O+ngILDw+HlZWVyhYeHq6xDenp6RoTo7wFhNPT838nolwuh6urKwICArBhwwasX78enp6e6NevH3777Ted7gV7gN7w77//qiU5T58+xbfffosKFSrAw8OjRNujKYPm8BcREb1LQkND8eWXX6qUaUpyAEChUKj1FgFQLjvz+jzbN40YMQK//fYbzp07B6P/9Wb17NkTdevWxciRI3Hq1Cmt22ywCdDq1as1PqWVnJyMgwcPokuXLqhatSoSEhKwevVq3L17F+vWrYOpqWry8eLFC6xfv17jObp27QoLC74lmIiI3hF6GgLLb7hLE3t7ezx48ECtPCEhAQDg4OCg8bisrCysWrUK48ePVyY/AGBiYgI/Pz8sWbIEWVlZar+n82OwCdCyZcs0lq9duxaXLl3CDz/8gMePH8PCwgJeXl5YvXo1fHx81OpnZmaif3/NQ1K3b99mAkRERPQad3d3HD58GKmpqSoTofN6b9zd3TUe9/jxY7x48QI5OTlq+7Kzs5Gbm6txX34Mbg5QcHAwRFHMd+vfvz/27duHhIQEZGVlITk5GXv37tWY/ERGRhYYS9OrLsaOHZvvPiIiIn16F1aCDggIQE5ODlauXKksy8zMREREBBo3bqx86Oju3bu4du2ask7FihVhbW2NrVu3IisrS1n+7NkzbN++HW5ubgUOn73JYHuAiIiIqOQ1btwYPXr0QGhoKB49eoQaNWpgzZo1iIuLw6pVq5T1goKC8Msvv0AURQAvl50ZO3Ysvv76a3z00UcICgpCTk4OVq1ahfv37+c7HSU/TICIiIgMhCC8GwM/a9euxaRJk7Bu3TokJyejQYMG2LFjB1q2bFngcV999RVcXFywcOFChIWFITMzEw0aNMCWLVvQvXt3ndrABIiIiMhQFOHFpfpgZmaGuXPnYu7cufnWOXLkiMbyPn36oE+fPsVuw7uRChIRERGVIPYAERERGQh9rQRdGjEBKoWMjGWSxrOxNZcsVuKOvZLFAoA2u0IljXewo+aVSYuq4Z+eksbLffSPpPHS7ydIFsvC1EyyWAAQH5coaTwTubQLhEr9cybmipLGy8x8IW28tPxX39VVSkq2ZLEAIONZhqTx5BbSfi9T6cQEiIiIyEDo+sj6+4wJEBERkaF4R54CexfwThAREZHBYQL0P5GRkRAEAWfPns23jiAIGrdZs2ap1AsODkaZMmVU4ha2cWVoIiLSt3dhJeh3BYfAdOTr64ugoCCVsg8++CDf+i1btsS6detUygYPHgwvLy8MHTpUWZaXMBEREZH+MQHSkaurK/r166d1/WrVqqFatWoqZcOGDUO1atV0ikNERFRsfAxeiQlQEaSnp0MQBJiZ8VFKIiIqPQShdA5X6QNTQR1FRkbCwsICCoUCderUQXR09NtuEhEREemIPUA6aNq0KXr27AkXFxfEx8fju+++Q9++fZGSkoLPPvvsbTePiIioYBwCU2ICpIPjx4+rfP3pp5/Cw8MDEydORHBwMBQKxVtqGREREemCqWAxmJqaYsSIEXjy5Al+//13vZwjMzMTqampKltuTpZezkVERO83Pgb/ChOgYqpSpQoAICkpSS/xw8PDYWVlpbLdubZGL+ciIqL3nGCkn60UKp2tfof8/fffAABbW1u9xA8NDUVKSorK5uQ2QC/nIiIiMhScA6Slf//9Vy3Jefr0Kb799ltUqFABHh4eejmvXC6HXC5XKTOSSfvWayIiMhCldLhKH5gAvWH16tXYs2ePWnlycjIOHjyILl26oGrVqkhISMDq1atx9+5drFu3DqamTEqIiIhKCyZAb1i2bJnG8rVr1+LSpUv44Ycf8PjxY1hYWMDLywurV6+Gj49PCbeSiIhId0Ipna+jD0yA/ic4OBjBwcEF1unfv79WsSIjIxEZGZnv/mfPnunQMiIiIolwCEyJqSAREREZHPYAERERGQiBK0Er8U4QERGRwWEPEBERkaHg2+CVmAAREREZCg6BKTEBKoUsrMpKGi/xUZpksa4NWSdZLABwsvhH0ngN//SUNN4fdbtLGq/l8fmSxrvT/CPJYlV+cVuyWAAgN5cXXkkHCksLSeOZyE0kjZedmS1pPIW5tO0zt7aULJalpbRts6tSXtJ4929J+1kYyZhUlEZMgIiIiAwFh8CUmLYSERGRwXmnE6DIyEgIgoCzZ8/mW0cQBI3brFmzinTOW7duoU+fPqhYsSIUCgVq1qyJr776SqWOt7c3BEFAly5d1I6Pi4uDIAiYN2+esuzIkSMqbTMxMUG1atUQFBSkfJkqERGRvglGRnrZSqP3YgjM19cXQUFBKmUffPCBznEuXLgAb29vODo6YsyYMbCxscHdu3dx7949jfV37NiB33//XesXoX7xxRdo1KgRsrOzce7cOaxcuRI7d+7EpUuX4ODgoHN7iYiIdMJXYSi9FwmQq6sr+vXrV6wYubm56N+/P9zc3HD48GEoFIoC61etWhVPnz5FWFgYtm3bptU5WrRogYCAAADAwIED4erqii+++AJr1qxBaGhosdpPRERE2ntvUsH09HRkZGQU+fh9+/bh8uXLmDJlChQKBZ4/f46cnJx865ctWxajR4/G9u3bce7cuSKdM+8lqrdvS/t0DRERkUZGgn62Uui9SIAiIyNhYWEBhUKBOnXqIDo6WucYBw4cAADI5XJ4enrCwsIC5ubm6N27N5KSkjQeM3LkSJQrVw5Tp04tUrtv3boFALCxsSnS8URERFQ0pT4Batq0KWbMmIGff/4Zy5Ytg0wmQ9++fbFs2TKd4ty4cQMA0LNnT7i5uWHLli2YMGECfvrpJ3Tp0gWiKKodY2lpiVGjRmndC/T06VMkJiYiISEBu3btwsiRIyEIArp3l3YtGSIiIk0EwUgvW2lU6ucAHT9+XOXrTz/9FB4eHpg4cSKCg4MLncuT59mzZwCARo0aYf369QCA7t27w9zcHKGhoTh48CDatm2rdtzIkSPx7bffIiwsDLGxsQWe49NPP1X52tbWFmvWrIGnp7SL8xEREWlUSoer9KF0pm0FMDU1xYgRI/DkyRP8/vvvWh+XlygFBgaqlPfp0wcAcOLECY3HWVlZYdSoUdi2bRvOnz9f4DkmT56M/fv349ChQ7h48SLi4+PRv3//Ao/JzMxEamqqypaTk6XtZREREZEG710CBABVqlQBgHzn7miS9xi6nZ2dSnnFihUBAMnJyfkeO3LkSFhbWyMsLKzAc9SvXx9t27ZF69atUb9+fRgbF94BFx4eDisrK5Xt1oXvCz2OiIhIjWCkn60UKp2tLkTe4oK2trZaH5O3ls+DBw9UyuPj4wuNldcLFBsbW2gvkK5CQ0ORkpKislV3HyLpOYiIiAxNqU6A/v33X7Wyp0+f4ttvv0WFChW0XqAQAD7++GPI5XJEREQgNzdXWf7DDz8AeLnYYkFGjRoFa2trTJs2TetzakMul8PS0lJlk8lMJT0HEREZCEHQz1YKlYpJ0KtXr8aePXvUypOTk3Hw4EF06dIFVatWRUJCAlavXo27d+9i3bp1MDXVPlGoVKkSvvrqK0yePBkdOnTAJ598gj/++APff/89AgMD0ahRowKPt7KywsiRIwsdBiMiInprSulrK/ShVCRA+T3SvnbtWly6dAk//PADHj9+DAsLC3h5eWH16tXKRQZ18fXXX6NcuXJYvHgxRo0apZIUaWPUqFH49ttvkZKSovO5iYiIqOS80wlQcHAwgoODC6xT2FNUuhAEASNGjMCIESMKrHfkyBGN5dbW1njy5Ilaube3t8Z1hIiIiEpUKZ2wrA+8E0RERGRw3ukeICmkp6cXOiRVvnx5neYLERERlUpcCFHpvU+ANm3ahIEDBxZY5/Dhw/D29i6ZBhEREb0tHAJTeu8ToPbt22P//v0F1mnYsGEJtYaIiIjeBe99AmRvbw97e/u33QwiIqK3r5Su2aMP7AsjIiIig/Pe9wC9jzKfp0saz8paIVms5g83SBYLAJAp7bXmPvpH0ngtj8+XNN7RZl9KGq/ptDaSxTKxLCNZLAAwNhkjabzM5xmSxsvNyZE23ovcwivpIPFhmqTx0lOfSRbrSbK0L2xOSX4uabzXV/uXwovsbEnj6RUXQlTinSAiIiKDwx4gIiIiQ8E5QEoG1QMUGRkJQRBw9uzZAus9fPgQISEhcHR0hJmZGZydnTFo0CCNdY8cOYJu3bqhUqVKMDU1RcWKFdGlSxfExMQAeLkKtCAIhW5Tp06V+nKJiIhUCUb62Uoh9gC94d69e2jWrBkAYNiwYXB0dER8fDxOnz6tVnfKlCmYNm0aatasiZCQEDg5OeHx48fYtWsXunfvjqioKHz11VcYPHiw8pgzZ85g0aJFmDhxImrXrq0sb9Cggf4vjoiIiAAwAVITEhICY2NjnDlzBjY2NvnW27JlC6ZNm4aAgABER0fDxMREuW/cuHHYu3cvsrOz4evrq3KcmZkZFi1aBF9fXy6+SEREJYuToJWYAL3m2rVr2L17N5YuXQobGxtkZGRAJpOpJDd5Jk2ahPLly2P16tUa97dv374kmkxERERFwFTwNQcOHAAA2NnZoU2bNlAoFFAoFPDz80NcXJyy3o0bN3Dt2jV88sknKFu27FtqLRERkY4EQT9bKcQE6DU3btwAAAwdOhSmpqbYtGkTZs2ahWPHjqFt27Z4/vzlWhRXr14FANSvX/+ttZWIiEhnnAStxCGw1zx79nIhsEqVKmHnzp0w+t9YaeXKlREYGIjo6GgMHjwYqampAMDeHyIiolKqdKZteqJQvFwRuWfPnsrkBwB69OgBY2NjnDhxAgBgaWkJAHj69Kne25SZmYnU1FSVLTdH2lVWiYjIQHAITIkJ0GscHBwAvJwD9DqZTAYbGxskJycDANzc3AAAly5d0nubwsPDYWVlpbLd/jNC7+clIiJ6nzEBeo2HhwcA4MGDByrlWVlZSExMhK2tLQDA1dUVtWrVQmxsrHLYTF9CQ0ORkpKisrnUHajXcxIR0XvKyEg/WylUOlutJ97e3qhYsSKioqKQkfHqxYqRkZHIyclRWdMnLCwMjx8/xuDBg/HixQu1WPv27cOOHTuK3Sa5XA5LS0uVzUhmWuy4RERkeERB0MtWGhnkJOjVq1djz549auUjR47E3LlzMWDAALRs2RL9+/fH3bt3sXDhQrRo0QLdunVT1u3VqxcuXbqEGTNm4Pz58wgMDFSuBL1nzx4cPHgQ0dHRJXlZREREpCWDTICWLVumsTw4OBhBQUEwNTXFrFmzMG7cOFhbWyMkJAQzZ86ETCZTqT99+nT4+Phg0aJFWLZsGZKSklCuXDl89NFHiI2Nhb+/f0lcDhERkXZK6SPr+mBQCVBwcDCCg4MLrde7d2/07t1bq5g+Pj7w8fHRug0BAQEQRVHr+kRERCQ9poJERESG4h1ZCDEzMxMTJkyAg4MDFAoFGjdujP3792t9/KZNm9CkSRNYWFjA2toaTZs2xaFDh3RqAxMgIiIiA/GuTIIODg7G/Pnz0bdvXyxcuBAymQwdO3bEsWPHCj126tSpCAwMRJUqVTB//nxMnz4dDRo0UHuCuzAGNQRGREREb9fp06exceNGzJ07F2PHjgUABAUFoV69ehg/frxy0WFNfvvtN0ybNg3ffPMNRo8eXax2sAeIiIjIULwDQ2BbtmyBTCbD0KFDlWVmZmYYNGgQTp48iXv37uV77LfffotKlSph5MiREEWxWGvxMQEiIiKiEnP+/Hm4uroqXyuVx8vLCwBw4cKFfI89ePAgGjVqhEWLFsHW1hZly5aFvb09lixZonM7OARWCuXm5Egaz9RMVnglLaXqOAmtMJbNmkgaL/1+gqTx7jT/SNJ4Tae1kTTeickHJYvV+vs+ksUCAKNEaRdPE3NzJY73bj+tKZNJe/+MZNL9O5Ar8ZOuWRnv9vsPhdL0aLmeFi3MzMxEZmamSplcLodcLlerm5CQAHt7e7XyvLL4+HiN50hOTkZiYiKOHz+OQ4cOYcqUKahatSoiIiLw+eefw8TEBCEhIVq3uRR9akRERFQsenoVhqb3VoaHh2tsQnp6usbEyMzMTLlfk7zhrsePH+OHH37A2LFj0bNnT+zcuRN16tTB9OnTdbsVOtUmIiIieoOm91aGhoZqrKtQKNR6iwAoX0GlUCjyPQ4ATExMEBAQoCw3MjJCr169cP/+fdy9e1frNjMB+p/IyEgIgoCzZ88WWO/hw4cICQmBo6MjzMzM4OzsjEGDBqnUCQ4ORpkyZVTiFrY5Ozvr69KIiIgA6O8xeE3vrdTUywO8HOpKSFCfjpBX5uDgoPG48uXLw8zMDDY2NmpvZqhYsSKAl8Nk2uIcIB3cu3cPzZo1AwAMGzYMjo6OiI+Px+nTp/M9pmXLlli3bp1K2eDBg+Hl5aUyAz4vYSIiInqfubu74/Dhw0hNTVWZCH3q1Cnlfk2MjIzg7u6OM2fOICsrC6amr14MnjdvyNbWVut2MAHSQUhICIyNjXHmzBnY2NhodUy1atVQrVo1lbJhw4ahWrVq6Nevnz6aSUREpNk7MGE7ICAA8+bNw8qVK5XrAGVmZiIiIgKNGzdGlSpVAAB3797F8+fP4ebmpjy2V69e+O2337BmzRoMGTIEwMuhs6ioKNSpUyff3iNNmABp6dq1a9i9ezeWLl0KGxsbZGRkQCaTwcTE5G03jYiISCviO5AANW7cGD169EBoaCgePXqEGjVqYM2aNYiLi8OqVauU9YKCgvDLL7+ovD8zJCQEP/zwA/7zn//gr7/+QtWqVbFu3TrcuXMH27dv16kdb/9OlBIHDhwAANjZ2aFNmzZQKBRQKBTw8/NDXFzc220cERFRKbJ27VqMGjUK69atwxdffIHs7Gzs2LEDLVu2LPA4hUKBQ4cOoU+fPli9ejXGjRsHIyMj7Ny5E35+fjq1gT1AWrpx4wYAYOjQoWjUqBE2bdqEu3fvIiwsDG3btsXFixdhbm7+lltJRERUAD2tA6QrMzMzzJ07F3Pnzs23zpEjRzSWV6xYEZGRkcVuAxMgLeWtP1CpUiXs3LkTRkYvO88qV66MwMBAREdHY/DgwW+ziURERKQlDoFpKW/9gZ49eyqTHwDo0aMHjI2NC3x5W3FkZmYiNTVVZcvNebdXRSUioneTKBjpZSuNSmer34K8meV2dnYq5TKZDDY2NjqtPaALTatrxl1do5dzERHRe04Q9LOVQkyAtOTh4QEAePDggUp5VlYWEhMTdVp7QBeaVtd0rj1AL+ciIiIyFEyAtOTt7Y2KFSsiKipKuVw38HKl55ycHPj6+urlvJpW1zSSmRZ+IBER0ZsEI/1spRAnQb9h9erV2LNnj1r5yJEjMXfuXAwYMAAtW7ZE//79cffuXSxcuBAtWrRAt27d3kJriYiIqCiYAL1h2bJlGsuDg4MRFBQEU1NTzJo1C+PGjYO1tTVCQkIwc+ZMtfeSEBERvWvEUjpfRx+YAP1PcHAwgoODC63Xu3dv9O7du8A6kZGRBa5RkPdIPRERUYkqpcNV+sA7QURERAaHPUBEREQGQgSHwPKwB4iIiIgMDnuAiIiIDERpXbVZH5gAERERGQomQEq8E0RERGRw2ANUChlJvOZQ2jPpXq5q0eUTyWIBQJZZWUnjWZiaSRqv8ovbksYzsSwjabzW3/eRLNbhIdGSxQIAWdgISeMJRtL+PScYSTtZVMwVJY1nZCzt9ebm5EgWy1jitikspP25TX+WLmk8Ke+dvnEdoFfYA0REREQGhz1AJcDb2xuJiYm4fPny224KEREZME6CfoV3Ih+RkZEQBAFnz54tsN7Dhw8REhICR0dHmJmZwdnZGYMGDSqhVhIREelAEPSzlULsASqGe/fuoVmzZgCAYcOGwdHREfHx8Th9+vRbbhkREREVhAlQMYSEhMDY2BhnzpyBjY3N224OERFRgTgE9grvRBFdu3YNu3fvxrhx42BjY4OMjAxkZ2cXeMzvv/+Opk2bQqFQwMXFBcuXLy+h1hIREdHrmAAV0YEDBwAAdnZ2aNOmDRQKBRQKBfz8/BAXF6dWPzk5GR07doSHhwfmzJmDypUr47PPPsPq1atLuOVERGSoRAh62UojJkBFdOPGDQDA0KFDYWpqik2bNmHWrFk4duwY2rZti+fPn6vUj4+Px4QJE7B48WJ8/vnnOHjwINzd3REaGlpozxEREZEURMFIL1tpVDpb/Q549uwZAKBSpUrYuXMnevbsibFjx+L777/HrVu3EB2tumicsbExQkJClF+bmpoiJCQEjx49wu+//16ibSciIjJ0TICKSKFQAAB69uwJo9dWoO3RoweMjY1x4sQJlfoODg6wsLBQKXN1dQUAjUNmeTIzM5Gamqqy5eZIt3IzEREZED4Gr8QEqIgcHBwAvJwD9DqZTAYbGxskJydLcp7w8HBYWVmpbLf/jJAkNhERkaFiAlREHh4eAIAHDx6olGdlZSExMRG2trYq5fHx8UhLS1Mp++uvvwAAzs7O+Z4nNDQUKSkpKptL3YESXAERERkaEUZ62Uqj0tnqd4C3tzcqVqyIqKgoZGRkKMsjIyORk5MDX19flfovXrzAihUrlF9nZWVhxYoVsLW1VSZTmsjlclhaWqpsRjJT6S+IiIjIgHAhxEKsXr0ae/bsUSsfOXIk5s6diwEDBqBly5bo378/7t69i4ULF6JFixbo1q2bSn0HBwfMnj0bcXFxcHV1xaZNm3DhwgWsXLkSJiYmJXU5RERkwPg2+FeYABVi2bJlGsuDg4MRFBQEU1NTzJo1C+PGjYO1tTVCQkIwc+ZMyGQylfrlypXDmjVr8Pnnn+P777+HnZ0dlixZgiFDhpTEZRAREZXaR9b1gQlQPoKDgxEcHFxovd69e6N3794F1jly5Ijy/998OoyIiIhKHhMgIiIiA1FaV23WB/aFERERkcFhDxAREZGB4BygV5gAERERGQg+BfYKU0EiIiIyOIIoiuLbbgTpZszStMIr6eDujUeSxSprbVF4JZ3iKSSNFx+XKGk8ublc0njGJrLCK+nASMK/9mQSt+2TKU0ljbew90ZJ47k3c5M0XtJjaX9u+39iLmm8msY3JYu1/U4DyWIBwMWLTySNl3BX2n8HVg16UHglHZRr2ErSeK+7/9dlvcSt7FpPL3H1iT1AREREZHA4B4iIiMhAcBL0K0yAiIiIDATXAXql1KWCkZGREAQBZ8+efdtN0VpcXBwEQdC4bdwo7bwFIiIiKhx7gEpQYGAgOnbsqFLWpEmTt9QaIiIyNBwCe4UJUAn68MMP0a9fv7fdDCIiIoP33qWCWVlZmDx5Mjw8PGBlZQULCwu0aNEChw8fVqmXNyw1b948fPfdd6hWrRrMzc3Rrl073Lt3D6Io4v/+7/9QuXJlKBQKfPzxx0hKSlKJ4ezsjM6dO2Pfvn1wd3eHmZkZ6tSpg5iYmHzbl5aWhqysLL1cOxERUUFECHrZSqP3LgFKTU3FDz/8AG9vb8yePRtTp07Fv//+i/bt2+PChQtq9aOiorB06VJ8/vnnGDNmDH755Rf07NkTX3/9Nfbs2YMJEyZg6NCh2L59O8aOHat2/I0bN9CrVy/4+fkhPDwcxsbG6NGjB/bv369WNywsDGXKlIGZmRkaNWqEffv26eMWEBERaSQKRnrZSqP3bgisXLlyiIuLg6mpqbJsyJAhcHNzw+LFi7Fq1SqV+g8ePMCNGzdgZWUFAMjJyUF4eDjS09Nx9uxZGBu/vEX//vsvoqKisGzZMsjlrxa/++uvv/DTTz+hW7duAIBBgwbBzc0NEyZMgK+vLwDAyMgI7dq1Q9euXeHo6Ii///4b8+fPh5+fH7Zt24ZOnTrp9Z4QERGRqtKZthVAJpMpk5/c3FwkJSXhxYsX8PT0xLlz59Tq9+jRQ5n8AEDjxo0BAP369VMmP3nlWVlZePBAdcVPBwcHdO3aVfm1paUlgoKCcP78efzzzz8AgKpVq2Lv3r0YNmwYunTpgpEjR+L8+fOwtbXFmDFjpLt4IiKiAnAI7JX3LgECgDVr1qBBgwYwMzODjY0NbG1tsXPnTqSkpKjVrVq1qsrXeclQlSpVNJYnJyerlNeoUQPCG68bcHV1BfBynlF+ypcvj4EDB+L69eu4f/9+vvUyMzORmpqqsr3Izsy3PhERERXuvUuA1q9fj+DgYFSvXh2rVq3Cnj17sH//fvj4+CA3N1etvkym+f1G+ZVL+eq0vCTrzcnVrwsPD4eVlZXKdnrfPMnaQEREhkMUBL1spdF7Nwdoy5YtqFatGmJiYlR6ZqZMmaKX8928eROiKKqc66+//gLw8imxgvz9998AAFtb23zrhIaG4ssvv1QpmxTxooitJSIiQyaKpTNZ0Yf3rgcor+fm9Z6aU6dO4eTJk3o5X3x8PLZu3ar8OjU1FWvXroW7uzsqVaoE4OUE6jc9ePAAq1evRoMGDWBvb59vfLlcDktLS5XN2ETaN5ATEREZmlLbA7R69Wrs2bNHrdzb2xsxMTHo2rUrOnXqhNu3b2P58uWoU6cOnj17Jnk7XF1dMWjQIJw5cwZ2dnZYvXo1Hj58iIiICGWd8ePH49atW2jTpg0cHBwQFxeHFStWIC0tDQsXLpS8TURERJqI71+/R5GV2gRo2bJlGsvv3r2LZ8+eYcWKFdi7dy/q1KmD9evXY/PmzThy5Ijk7ahZsyYWL16McePG4fr163BxccGmTZvQvn17ZZ127dph+fLl+O6775CcnAxra2u0bNkSX3/9NT788EPJ20REREQFE0QpZ/UaGGdnZ9SrVw87duwo0fOOWZomaby7Nx5JFqustYVksV7GU0gaLz4uUdJ4cnNphyONTTRPvi8qIwknJ8okbtsnU5pKGm9hb2lfLOzezE3SeEmPpf257f+JuaTxahrflCzW9jsNJIsFABcvPpE0XsJdaf8dWDXoQeGVdFCuYStJ473ur1t39RLXtXrVwiu9Y0ptDxARERHpprSu2aMPHAwkIiIig8MeICIiIgPBHqBXmAAVQ0ErPRMREdG7iwkQERGRgWAP0Ct8CqwU6hsq7RMHFR2tCq+kpUvHr0kWCwCyM7MkjWciN5U0nsJS2qfeMp9nSBpP1PD6l6ISjN7tKYMjN/aWNF7UmIOSxjOSSXv/niY9lTRexvN0yWLl9yqhojKSOJ5zbUdJ4925Hi9pvO0raksa73VXbkrb1jx1ajjoJa4+vdv/ohERERHpQYklQIIgYOrUqSV1OiIiInqDCEEvW2mkcwIUGRkJQRAgCAKOHTumtl8URVSpUgWCIKBz586SNFKfjhw5orweQRBgYmKCatWqISgoSPmy0vnz50MQBBw4cCDfON9//z0EQcC2bdsAvHwlhyAIqFmzpsb6+/fvV55zy5Yt0l8YERER5avIPUBmZmaIjo5WK//ll19w//59yOWqK+Smp6fj66+/Lurp9O6LL77AunXrsHLlSnTq1AmbNm1Co0aNEB8fj969e8PIyEjj9eaJjo6GjY0N/Pz8lGVmZma4efMmTp8+rVY/KioKZmZmerkWIiIiTdgD9EqRE6COHTti8+bNePHihUp5dHQ0PDw8lG9Cz2NmZgZj4+I/dJaWJu1y8nlatGiBfv36YeDAgVi8eDHmzZuHpKQkrFmzBg4ODmjdujViYmKQmZmpduyDBw9w9OhR9OjRAyYmJsry6tWro1atWtiwYYNK/YyMDGzduhWdOnXSy7UQERFpwgTolSInQIGBgXj8+DH279+vLMvKysKWLVvQp08ftfqa5gA9ePAAgwYNgoODA+RyOVxcXPDZZ58hK+vlkz95w22//PILhg8fjooVK6Jy5crK45cuXYq6detCLpfDwcEB//nPf/DkyZOiXpIKHx8fAMDt27cBAP369UNKSgp27typVnfjxo3Izc1F37591fYFBgZi06ZNyH3taZzt27fj+fPn6NmzpyRtJSIiIt0UOQFydnZGkyZNVHo3du/ejZSUFPTuXfjjqPHx8fDy8sLGjRvRq1cvLFq0CP3798cvv/yC58+fq9QdPnw4rly5gsmTJ+O///0vAGDq1Kn4z3/+AwcHB3zzzTfo3r07VqxYgXbt2iE7O7uol6V069YtAICNjQ0AoFu3bvkO+0VHR8PJyQnNmjVT29enTx8kJCSovIk+Ojoabdq0QcWKFYvdTiIiIm2JoqCXTVeZmZmYMGECHBwcoFAo0LhxY5UOFW35+vpCEASMGDFC52OLNSbVp08fhIaGIj09HQqFAlFRUWjVqhUcHApfDyA0NBT//PMPTp06BU9PT2X5tGnT8ObSROXLl8fBgweVa0v8+++/CA8PR7t27bB7924Y/W99Ejc3N4wYMQLr16/HwIEDdbqWp0+fIjExEdnZ2Th//jxGjhwJQRDQvXt3AIClpSW6dOmC7du3IzU1FZaWlgCA69ev49y5cwgNDYWg4c3bNWvWhKenJ6Kjo+Hj44MnT55g165d+P7773VqHxER0fsiODgYW7ZswahRo1CzZk1ERkaiY8eOOHz4MJo3b65VjJiYGJw8ebLIbSjWY/A9e/ZEeno6duzYgadPn2LHjh0ah7/elJubi59//hldunRRSX7yvJlIDBkyRGVhrQMHDiArKwujRo1SJj959SwtLTUOUxXm008/ha2tLRwcHNCpUyekpaVhzZo1Ku3r168fMjIyEBMToyzL6xHSNPyVp0+fPoiJiVEOEcpkMnTt2lXnNhIRERVHLgS9bLo4ffo0Nm7ciPDwcMydOxdDhw7FoUOH4OTkhPHjx2sVIyMjA2PGjMGECROKchsAFDMBsrW1Rdu2bREdHY2YmBjk5OQgICCg0OP+/fdfpKamol69elqdx8XFReXrO3fuAABq1aqlUm5qaopq1aop9+ti8uTJ2L9/Pw4dOoSLFy8iPj4e/fv3V6nj5+eH8uXLqwyDbdiwAQ0bNkTdunXzjd27d2+kpKRg9+7diIqKQufOnVG2bFmt2pWZmYnU1FSVLeeF+kRsIiKiwrwLk6DzOgKGDh2qLDMzM8OgQYNw8uRJ3Lt3r9AYc+bMQW5uLsaOHavzPchT7IUQ+/Tpg927d2P58uXw8/ODtbV1cUOqUSgUksd8U/369dG2bVu0bt0a9evX1/jEmomJCXr27IlDhw7h4cOHOHPmDG7cuFFg7w8A2Nvbw9vbG9988w2OHj2qVS9ZnvDwcFhZWalsf55covP1ERERvQvOnz8PV1dX5VSSPF5eXgCACxcuFHj83bt3MWvWLMyePbtY+UGxE6CuXbvCyMgIv/32m9a/2G1tbWFpaYnLly8X6ZxOTk4AXs6/eV1WVhZu376t3K8Pffv2RU5ODjZt2oTo6GgIgoDAwMBCj+vTpw9+/fVXWFpaomPHjlqfLzQ0FCkpKSpb3Sa6T/YiIiLS1yRoTaMVmpaNAYCEhATY29urleeVxccX/L6yMWPG4IMPPtDqgauCFHthnjJlymDZsmWIi4tDly5dtDrGyMgIn3zyCdavX4+zZ8+qzQMSRVHjhOI8bdu2hampKRYtWoQOHToo665atQopKSl6XV+nWbNmcHZ2xvr163H//n20atVK5dH8/AQEBODevXuoVasWTE21fyGnXC5XW1RSZiztSxCJiIiKIzw8HGFhYSplU6ZM0fgKrPT0dLXfawCUiwOnp+f/Yt7Dhw/jp59+wqlTp4rXYEiQAAHAgAEDdD5m5syZ2LdvH1q1aoWhQ4eidu3aSEhIwObNm3Hs2LECh9JsbW0RGhqKsLAwdOjQAf7+/rh+/TqWLl2KRo0aoV+/fsW4moIJgoA+ffpg5syZAF4+taYNKysrvguNiIjeKn0tWhgaGoovv/xSpUxTkgO8nNaiqXcoIyNDuV+TFy9e4IsvvkD//v3RqFGjYrZYogSoKBwdHXHq1ClMmjQJUVFRSE1NhaOjI/z8/GBubl7o8VOnToWtrS2WLFmC0aNHo3z58hg6dChmzpypshqzPvTt2xczZ86EXC7XatI3ERHRu6Aoa/ZoQ9NoRX7s7e3x4MEDtfKEhAQAyHcpnbVr1+L69etYsWIF4uLiVPY9ffoUcXFxqFixolY5BAAI4puL7tA7r2+o+jdOcVR0tJIs1qXj1ySLBQDZmVmSxjORaz/8qA2FpYWk8TKfZ0gaT3xtBfLiEoyKPWVQr0ZuLN58gDdFjTkoaTwjmbT372mStEPhGc/zH3bQ1evLlkjBSOJ4zrUdJY1353rBc1Z0tX1FbUnjve7s9WS9xPWsVU7ruuPGjcOCBQuQlJSkMhF65syZ+Oqrr3D37l1UqVJF7bipU6eqDbO9aevWrfjkk0+0asdb6wEiIiKikvUuvLcrICAA8+bNw8qVK5WPsWdmZiIiIgKNGzdWJj93797F8+fP4ebmBuDlkjLu7u5q8bp27YqOHTtiyJAhaNy4sdbteG8ToPT0dKSkpBRYp3z58jpNSCYiIqLiady4MXr06IHQ0FA8evQINWrUwJo1axAXF4dVq1Yp6wUFBeGXX35Rvh3Czc1NmQy9ycXFReuenzzvbQK0adOmQl+HcfjwYXh7e5dMg4iIiN4yfc0B0tXatWsxadIkrFu3DsnJyWjQoAF27NiBli1bllgb3tsEqH379oW+WK1hw4Yl1BoiIqK3T7pZgcVjZmaGuXPnYu7cufnWef0l4gUp6lTm9zYBsre317jQEhEREdF7mwARERGRqndlCOxdwASoFPqh/VFJ48190EOyWKYK7daB0JZgJO0Pq5GxtI/TmsilXXMqNydH0nhirnSrXEj9WdT1rC5pvChHaR9b7/tNG0njNTuzQtJ443bVlzRetRrWksW6fiVRslgAkJsj7cCNbUXt1onRlntD/T22TvrDBIiIiMhAvAuPwb8r3u2VzYiIiIj0gAnQG/7880/069cPjo6OkMvlcHBwQN++ffHnn3+q1IuMjIQgCMrNzMwMrq6uGDFiBB4+fKgW9+HDhxg7dizc3Nxgbm4OCwsLeHh4YPr06Xjy5EkJXR0RERkyfb0NvjTiENhrYmJiEBgYiPLly2PQoEFwcXFRLsy0ZcsWbNy4EV27dlU5Ztq0aXBxcUFGRgaOHTuGZcuWYdeuXbh8+bLyfSRnzpxBx44d8ezZM/Tr1w8eHh4AgLNnz2LWrFk4evQo9u3bV+LXS0REhoVDYK8wAfqfW7duoX///qhWrRqOHj0KW1tb5b6RI0eiRYsW6N+/Py5evIhq1aop9/n5+cHT0xMAMHjwYNjY2GD+/PmIjY1FYGAgnjx5gq5du0Imk+H8+fNqq1jOmDED33//fclcJBEREQHgEJjS3Llz8fz5c6xcuVIl+QGAChUqYMWKFUhLS8OcOXMKjOPj4wMAuH37NgBgxYoVePDgAebPn69xCW87Ozt8/fXXEl0FERFR/nJF/WylEROg/9m+fTucnZ3RokULjftbtmwJZ2dn7Ny5s8A4t27dAgDY2NgAALZt2waFQoGAgABpG0xERERFxgQIQEpKCuLj4wt9NUaDBg1w//59PH36VOXYxMRE3L9/H5s2bcK0adOgUCjQuXNnAMDVq1fh6urKl64SEdFbJ0LQy1YacQ4QoExoypYtW2C9vP2pqanKsrZt26rUcXJyQlRUFBwdHZV1C4tLRERUEkrrE1v6wAQIrxKb13t2NNGUKH333XdwdXWFsbEx7OzsUKtWLRgZvepYs7S0LDRuQTIzM5GZmalSlpuVDbmptCsQExERGRIOgQGwsrKCvb09Ll68WGC9ixcvwtHREZaWlsoyLy8vtG3bFt7e3qhdu7ZK8gMAbm5u+Ouvv5CVlVWktoWHh8PKykplmxsdW6RYRERk2ERRP1tpxATofzp37ozbt2/j2LFjGvf/+uuviIuLU87t0VaXLl2Qnp6On376qUjtCg0NRUpKiso2rs/HRYpFRERELzEB+p9x48ZBoVAgJCQEjx8/VtmXlJSEYcOGwdzcHOPGjdMp7rBhw2Bvb48xY8bgr7/+Utv/6NEjTJ8+Pd/j5XI5LC0tVTYOfxERUVHkQtDLVhpxDtD/1KxZE2vWrEHfvn1Rv359tZWgExMTsWHDBlSvrtsbrMuVK4etW7eiY8eOcHd3V1kJ+ty5c9iwYQOaNGmij0siIiJSwUnQrzABek2PHj3g5uaG8PBwZdJjY2OD1q1bY+LEiahXr16R4jZu3BiXL1/G3LlzsXPnTqxbtw5GRkaoXbs2/vvf/2LEiBESXwkREREVhAnQG+rXr4/o6OhC6wUHByM4OFjruPb29pg/fz7mz59fjNYREREVXWmdsKwPnANEREREBoc9QERERAaitK7arA9MgIiIiAxEaX1xqT5wCIyIiIgMDnuAiIiIDAQfg3+FCVAptAmBksaTyXIki/Ui+4VksQBAlLi/Vup42ZnZksbLfZEraTwpSX3vkh6nSRrPSCZth3azMyskjXe8UYik8Z6N3i9pvMREM8liPUuW9rPNFaX9uUhMtJA0nrGx1IMpMonjkSZMgIiIiAwEH4N/hXOA8hEZGQlBEBAXF6cs8/b2hre391trExERUXHwVRivGFwC9Oeff6Jfv35wdHSEXC6Hg4MD+vbtiz///PNtN42IiIhKiEENgcXExCAwMBDly5dXe9fXli1bsHHjRnTt2jXf4/ft21eCrSUiIpIWh8BeMZgE6NatW+jfvz+qVauGo0ePwtbWVrlv5MiRaNGiBfr374+LFy+iWrVqGmOYmpqWVHOJiIhIjwxmCGzu3Ll4/vw5Vq5cqZL8AECFChWwYsUKpKWlYc6cOfnG0DQH6M6dO/D394eFhQUqVqyI0aNHY+/evRAEAUeOHFGpu3nzZnh4eEChUKBChQro168fHjx4INUlEhERFUgUBb1spZHB9ABt374dzs7OaNGihcb9LVu2hLOzM3bu3Kl1zLS0NPj4+CAhIQEjR45EpUqVEB0djcOHD6vVjYyMxMCBA9GoUSOEh4fj4cOHWLhwIY4fP47z58/D2tq6qJdGRESkFa4E/YpBJEApKSmIj4/Hxx9/XGC9Bg0aYNu2bXj69KlWcVesWIG///4bP//8szJ2SEgIPvjgA5V62dnZmDBhAurVq4ejR4/CzOzlehvNmzdH586dsWDBAoSFhRXhyoiIiKgoDGIILC+hKVu2bIH18vanpqZqFXfPnj1wdHSEv7+/sszMzAxDhgxRqXf27Fk8evQIw4cPVyY/ANCpUye4ubnp1OtERERUVKKon600MogeoLzEprCeHW0TpTx37txB9erVIQiq4581atRQqwcAtWrVUovh5uaGY8eO5XuOzMxMZGZmqpRlZ8lhYirXqo1ERESkziB6gKysrGBvb4+LFy8WWO/ixYtwdHSEpaVlCbWscOHh4bCyslLZdkaHv+1mERFRKSRC0MtWGhlEAgQAnTt3xu3bt/Ptbfn1118RFxeHzp07ax3TyckJt27dgvhG/9/NmzfV6gHA9evX1WJcv35duV+T0NBQpKSkqGyd+oRq3UYiIqI8uaJ+ttLIYBKgcePGQaFQICQkBI8fP1bZl5SUhGHDhsHc3Bzjxo3TOmb79u3x4MEDbNu2TVmWkZGB77//XqWep6cnKlasiOXLl6sMZ+3evRtXr15Fp06d8j2HXC6HpaWlysbhLyIiouIxiDlAAFCzZk2sWbMGffv2Rf369dVWgk5MTMSGDRtQvXp1rWOGhIRgyZIlCAwMxMiRI2Fvb4+oqCjlROe8uUEmJiaYPXs2Bg4ciFatWiEwMFD5GLyzszNGjx6tl2smIiJ6XWmdsKwPBpMAAUCPHj3g5uaG8PBwZdJjY2OD1q1bY+LEiahXr55O8cqUKYNDhw7h888/x8KFC1GmTBkEBQWhadOm6N69u8oTX8HBwTA3N8esWbMwYcIEWFhYoGvXrpg9ezbXACIiIiphBpUAAUD9+vURHR1daL3g4GAEBwerlL25sjMAuLi4YMeOHSpl3377LQCgcuXKKuU9e/ZEz549dWovERGRVNgD9IrBJUBSS09Ph0KhUH6dkZGBFStWoGbNmnB0dHyLLSMiIlKVW0pfW6EPTICKqVu3bqhatSrc3d2RkpKC9evX49q1a4iKinrbTSMiIqJ8MAEqpvbt2+OHH35AVFQUcnJyUKdOHWzcuBG9evV6200jIiJSwSGwV5gAFdOoUaMwatSot90MIiIi0gETICIiIgPBHqBXmAAREREZiNK6arM+MAEqhfbvffC2m5Cvuo1rShpPoTCRNF5m5gtJ4ynMpW1f4sM0SePJZNI98WFkLO3C8QG+0v7zM3/J48Ir6WDcrvqSxns2er+k8fot8JU0XvKha5LFCvP4U7JYALDxWRdJ4+3dcVvSeL7NLSSNRyWDCRAREZGBEPkYvJLBvAuspBw5cgSCIKgsmujt7a3zKtNERESkP+91AhQZGQlBEJSbmZkZXF1dMWLECDx8+PBtN4+IiKhEiaJ+ttLIIIbApk2bBhcXF2RkZODYsWNYtmwZdu3ahcuXL8Pc3PxtN4+IiKhEcBL0KwaRAPn5+cHT0xMAMHjwYNjY2GD+/PmIjY1FYGDgW24dERERlbT3eggsPz4+PgCAGzduQBAErFmzRq3O3r17IQiC8kWnd+7cwfDhw1GrVi0oFArY2NigR48eiIuL0/q8v//+O5o2bQqFQgEXFxcsX75ckushIiLSBofAXjHIBOjWrVsAADs7O1SrVg0//vijWp1NmzahXLlyaN++PQDgzJkzOHHiBHr37o1FixZh2LBhOHjwILy9vfH8+fNCz5mcnIyOHTvCw8MDc+bMQeXKlfHZZ59h9erV0l4cERERFcoghsBSUlKQmJiIjIwMHD9+HNOmTYNCoUDnzp1x584dzJs3D8nJyShXrhwAICsrC1u3bkW3bt1gYvJynZdOnTohICBAJW6XLl3QpEkT/PTTT+jfv3+BbYiPj8c333yDL7/8EgAQEhKCxo0bIzQ0FP3791eeh4iISF9Ka2+NPhhED1Dbtm1ha2uLKlWqoHfv3ihTpgy2bt0KR0dH9OrVC9nZ2YiJiVHW37dvH548eaLyQlOFQqH8/+zsbDx+/Bg1atSAtbU1zp07V2gbjI2NERISovza1NQUISEhePToEX7//XeJrpSIiIi0YRA9QN999x1cXV1hbGwMOzs71KpVC0ZGL3O/hg0bws3NDZs2bcKgQYMAvBz+qlChgnKuEACkp6cjPDwcERERePDgAcTX0uiUlJRC2+Dg4AALC9XVQl1dXQEAcXFx+OijjzQel5mZiczMTJWynBeZkBnLtbhyIiKiV/gU2CsGkQB5eXkpnwLTpFevXpgxYwYSExNRtmxZbNu2DYGBgTA2fnV7Pv/8c0RERGDUqFFo0qQJrKysIAgCevfujdzcXL21PTw8HGFhYSpl9ZqNRoMWY/R2TiIiej9xCOwVg0iACtOrVy+EhYXhp59+gp2dHVJTU9G7d2+VOlu2bMGAAQPwzTffKMsyMjLw5MkTrc4RHx+PtLQ0lV6gv/76CwDg7Oyc73GhoaHKeUN5hv5folbnJCIiIs2YAAGoXbs26tevj02bNsHOzg729vZo2bKlSh2ZTKYy7AUAixcvRk5OjlbnePHiBVasWKFMZrKysrBixQrY2trCw8Mj3+PkcjnkctXhLpnxU63OSURE9Do9DliUOkyA/qdXr16YPHkyzMzMMGjQIOUcoTydO3fGunXrYGVlhTp16uDkyZM4cOAAbGxstIrv4OCA2bNnIy4uDq6urti0aRMuXLiAlStX8gkwIiKiEmYQT4Fpo1evXsjNzcXz589Vnv7Ks3DhQgQFBSEqKgpjxoxBQkICDhw4gDJlymgVv1y5cti1axfOnj2LcePG4d69e1iyZAmGDBki9aUQERFpxIUQX3mve4CCg4MRHBysVd0aNWqoDXG9ztraWuOihW+uBO3t7a0W5/U3w584cUKr9hAREUmttCYr+sAeICIiIjI4TICIiIgMRK6on01XmZmZmDBhAhwcHKBQKNC4cWPs37+/0ONiYmLQq1cvVKtWDebm5qhVqxbGjBmj9RPZr2MCRERERCUqODgY8+fPR9++fbFw4ULIZDJ07NgRx44dK/C4oUOH4urVq+jXrx8WLVqEDh06YMmSJWjSpAnS09N1asN7PQeIiIiIXilormvxCFrXPH36NDZu3Ii5c+di7NixAICgoCDUq1cP48ePL3Cu7JYtW+Dt7a1S5uHhgQEDBiAqKgqDBw/Wuh3sASIiIjIQ78JTYFu2bIFMJsPQoUOVZXlL0Jw8eRL37t3L99g3kx8A6Nq1KwDg6tWrOrWDPUClUK16dpLGu3j6rnSxjl2RLJY+ZKbp1kVaGHNrS0njpac+kzSekUwmWaxcLRf91Faon5Wk8TKeS7vCW7Ua1pLGS0w0kzRe8qFrksYr5+MmWayIn6Vt28U/Hksaz0gm7d/+vqnRksYD+ksc791y/vx5uLq6wtJS9d9PLy8vAMCFCxdQpUoVreP9888/AIAKFSro1A4mQERERAZCXytBa3pxt6Y3GQBAQkIC7O3t1crzyuLj43U69+zZsyGTyRAQEKDTcRwCIyIiomIJDw+HlZWVyhYeHq6xbnp6usbEyMzMTLlfW9HR0Vi1ahXGjBmDmjVr6tRm9gAREREZCH3Ngdb04m5NSQ4AKBQKtd4i4OULxvP2a+PXX3/FoEGD0L59e8yYMUPHFhtoD9ClS5cQEBAAJycnmJmZwdHREb6+vli8ePHbbhoREZHe6GsdILlcDktLS5UtvwTI3t4eCQkJauV5ZQ4ODoVexx9//AF/f3/Uq1cPW7ZsgbGx7v05BpcAnThxAp6envjjjz8wZMgQLFmyBIMHD4aRkREWLlz4tptHRET0XnN3d8dff/2F1NRUlfJTp04p9xfk1q1b6NChAypWrIhdu3Zp/U7ONxncENiMGTNgZWWFM2fOwNraWmXfo0eP3k6jiIiISsC78C6wgIAAzJs3DytXrlSuA5SZmYmIiAg0btxY+QTY3bt38fz5c7i5vXpC8Z9//kG7du1gZGSEvXv3wtbWtsjtMLgeoFu3bqFu3bpqyQ8AVKxYUfn/giBgxIgR+Pnnn1GvXj3I5XLUrVsXe/bsUTvuwYMHGDRoEBwcHCCXy+Hi4oLPPvsMWVlZyjoXL15Eq1atoFAoULlyZUyfPh0REREQBEHthapERETvq8aNG6NHjx4IDQ3F+PHjsXLlSvj4+CAuLg5z5sxR1gsKCkLt2rVVju3QoQP+/vtv9OvXD8eOHcP69euVmzav0nidwfUAOTk54eTJk7h8+TLq1atXYN1jx44hJiYGw4cPR9myZbFo0SJ0794dd+/ehY2NDYCXj+t5eXnhyZMnGDp0KNzc3PDgwQNs2bIFz58/h6mpKR48eIDWrVtDEASEhobCwsICP/zwQ77jo0RERPogFuXFXVrRfiVoAFi7di0mTZqEdevWITk5GQ0aNMCOHTvQsmXLAo/7448/AEAlUcrTqlUr+Pr6at0Gg0uAxo4dCz8/P7i7u8PLywstWrRAmzZt0Lp1a5iYmKjUvXr1Kq5cuYLq1asDAFq3bo2GDRtiw4YNGDFiBICXM9//+ecfnDp1Cp6enspjp02bplxyfPbs2UhOTsa5c+eUY5sDBw7U+ZE9IiKi4tBb/qMjMzMzzJ07F3Pnzs23zpEjR9TKpHyVh8ENgfn6+uLkyZPw9/fHH3/8gTlz5qB9+/ZwdHTEtm3bVOq2bdtWmfwAQIMGDWBpaYm///4bAJCbm4uff/4ZXbp0UUl+8gjCy4x4z549aNKkicrErvLly6Nv3756uEIiIiIqjMElQADQqFEjxMTEIDk5GadPn0ZoaCiePn2KgIAAXLny6lUOVatWVTu2XLlySE5OBgD8+++/SE1NLXQo7c6dO6hRo4ZauaayN2VmZiI1NVVle5Gtvn4CERFRYd6Fd4G9KwwyAcpjamqKRo0aYebMmVi2bBmys7OxefNm5X5ZPu9R0t/bdNVpWl3z122zS+z8RERE7yODToBelzeEpWlxpvzY2trC0tISly9fLrCek5MTbt68qVauqexNoaGhSElJUdla+E/Quo1ERER5cnNFvWylkcElQIcPH9bYg7Nr1y4AQK1atbSOZWRkhE8++QTbt2/H2bNn1fbnnad9+/Y4efIkLly4oNyXlJSEqKioQs+haXVNYxM+PUZERLrjENgrBvcU2Oeff47nz5+ja9eucHNzQ1ZWFk6cOIFNmzbB2dkZAwcO1CnezJkzsW/fPrRq1QpDhw5F7dq1kZCQgM2bN+PYsWOwtrbG+PHjsX79evj6+uLzzz9XPgZftWpVJCUlKSdLExERUckwuARo3rx52Lx5M3bt2oWVK1ciKysLVatWxfDhw/H1119rXCCxII6Ojjh16hQmTZqEqKgopKamwtHREX5+fjA3NwcAVKlSBYcPH8YXX3yBmTNnwtbWFv/5z39gYWGBL774QvkGXCIiIn0qrb01+mBwCVCHDh3QoUOHQuvlN9FZ06rNVatWxZo1awqM5+7ujqNHj6qUjRo1CmZmZqhQoUKh7SEiIiLpGFwC9Lakp6dDoVAov378+DHWrVuH5s2b5/u0GRERkZRy2QWkxASohDRp0gTe3t6oXbs2Hj58iFWrViE1NRWTJk16200jIiIDIea+7Ra8O5gAlZCOHTtiy5YtWLlyJQRBwIcffohVq1YV+t4TIiIikh4ToBIyc+ZMzJw58203g4iIDFhJLuT7rjO4dYCIiIiI2ANUCl04FSdpPCknYTfzc5csFgAoFNJOEE9JyZY0nqWliaTxniRnSRpPygmPxsbS/r20/Y60yz/IZJckjXf9SqKk8Z4lp0kaL8zjT0njRfx8TbJY1T5xkywWALS7dkDSeOPnZUgab4txf0njSRtNVS7nACkxASIiIjIQHAJ7hUNgREREZHCYAOng0qVLCAgIgJOTE8zMzODo6AhfX18sXrxY6xjx8fGYOnWqynvBiIiISkKuqJ+tNGICpKUTJ07A09MTf/zxB4YMGYIlS5Zg8ODBMDIywsKFC7WOEx8fj7CwMCZAREREbxHnAGlpxowZsLKywpkzZ9TeF/bo0aO30ygiIiIdiKW1u0YP2AOkpVu3bqFu3boaX5ZasWJF5f/v378fzZs3h7W1NcqUKYNatWph4sSJAIAjR46gUaNGAICBAwdCEAQIgoDIyMiSuAQiIjJwoqifrTRiD5CWnJyccPLkSVy+fBn16tXTWOfPP/9E586d0aBBA0ybNg1yuRw3b97E8ePHAQC1a9fGtGnTMHnyZAwdOhQtWrQAADRt2rTEroOIiIiYAGlt7Nix8PPzg7u7O7y8vNCiRQu0adMGrVu3honJy7Vg9u/fj6ysLOzevVvjG97t7Ozg5+eHyZMno0mTJujXr19JXwYRERmwXA6BKXEITEu+vr44efIk/P398ccff2DOnDlo3749HB0dsW3bNgBQDo/FxsYil6tNERERvbOYAOmgUaNGiImJQXJyMk6fPo3Q0FA8ffoUAQEBuHLlCnr16oVmzZph8ODBsLOzQ+/evfHjjz8WKxnKzMxEamqqypaTkynhVRERkaEQRVEvW2nEBKgITE1N0ahRI8ycORPLli1DdnY2Nm/eDIVCgaNHj+LAgQPo378/Ll68iF69esHX1xc5OTlFOld4eDisrKxUtr/OrpD4ioiIyBCIufrZSiMmQMXk6ekJAEhISAAAGBkZoU2bNpg/fz6uXLmCGTNm4NChQzh8+DAAQBAEneKHhoYiJSVFZXP1DJH2IoiIiAwMEyAtHT58WGM3365duwAAtWrVQlJSktp+d3d3AC+HsgDAwsICAPDkyROtziuXy2FpaamyyWTyIlwBEREZulxR1MtWGvEpMC19/vnneP78Obp27Qo3NzdkZWXhxIkT2LRpE5ydnTFw4EBMnToVR48eRadOneDk5IRHjx5h6dKlqFy5Mpo3bw4AqF69OqytrbF8+XKULVsWFhYWaNy4MVxcXN7yFRIRERkOJkBamjdvHjZv3oxdu3Zh5cqVyMrKQtWqVTF8+HB8/fXXsLa2hr+/P+Li4rB69WokJiaiQoUKaNWqFcLCwmBlZQUAMDExwZo1axAaGophw4bhxYsXiIiIYAJERER6V1onLOsDEyAtdejQAR06dCiwjo+PD3x8fAqN5e/vD39/f6maRkREpBWuA/QK5wARERGRwWEPEBERkYHgCNgr7AEiIiIig8MeICIiIgMhcg6QEnuAiIiIyOCwB6gUMhKkzVuzM7Mli3X1wgPJYgGA3FzaRR8znmVIGs+uSnlJ46UkP5c0XlZGlmSxFBZmksUCgKcp0sYzkskkjZebI+36/rkSvy9g47Muksa7+MdjyWK1u3ZAslgAcNOtraTxhCHbJY136Uq6pPHQUiFtvNeU1kUL9YEJEBERkYHgENgrHAIjIiIig2PQCdCRI0cgCAK2bNmi93MFBwfD2dlZpUwQBEydOlXv5yYiIgJe9gDpYyuNSjwBunTpEgICAuDk5AQzMzM4OjrC19cXixcv1jpGfHw8pk6digsXLuRb58iRI+jWrRsqVaoEU1NTVKxYEV26dEFMTIwEV0FERESlWYkmQCdOnICnpyf++OMPDBkyBEuWLMHgwYNhZGSEhQsXah0nPj4eYWFh+SZAU6ZMQevWrXH58mWEhIRg+fLlGDduHJ49e4bu3bsjOjpaoisiIiIqPXJF/WylUYlOgp4xYwasrKxw5swZWFtbq+x79OiRJOfYsmULpk2bhoCAAERHR8PExES5b9y4cdi7dy+ys6V76omIiKi0KK3DVfpQoj1At27dQt26ddWSHwCoWLGi8v/379+P5s2bw9raGmXKlEGtWrUwceJEAC+Htho1agQAGDhwIARBgCAIiIyMBABMmjQJ5cuXx+rVq1WSnzzt27dH586dVcpyc3MxY8YMVK5cGWZmZmjTpg1u3rypduzmzZvh4eEBhUKBChUqoF+/fnjwQP2x759//hn16tWDmZkZ6tWrh61bt2p9j4iIiEj/SrQHyMnJCSdPnsTly5dRr149jXX+/PNPdO7cGQ0aNMC0adMgl8tx8+ZNHD9+HABQu3ZtTJs2DZMnT8bQoUPRokULAEDTpk1x48YNXLt2DZ9++inKli2rdbtmzZoFIyMjjB07FikpKZgzZw769u2LU6dOKetERkZi4MCBaNSoEcLDw/Hw4UMsXLgQx48fx/nz55VJ3b59+9C9e3fUqVMH4eHhePz4MQYOHIjKlSsX8a4RERFJQ+Q6QEolmgCNHTsWfn5+cHd3h5eXF1q0aIE2bdqgdevWyt6a/fv3IysrC7t370aFChXUYtjZ2cHPzw+TJ09GkyZN0K9fP+W+bdu2AQDq16+vU7syMjJw4cIFmJqaAgDKlSuHkSNHKhO17OxsTJgwAfXq1cPRo0dhZvZyAbfmzZujc+fOWLBgAcLCwgAAEyZMgJ2dHY4dOwYrKysAQKtWrdCuXTs4OTnpeMeIiIhIH0p0CMzX1xcnT56Ev78//vjjD8yZMwft27eHo6OjMnnJ60mJjY1Fbq5uK6empqYCgE69P8DLobS85AeAslfp77//BgCcPXsWjx49wvDhw5XJDwB06tQJbm5u2LlzJwAgISEBFy5cwIABA5TJT95116lTR6c2ERERSS03V9TLVhqV+GPwjRo1QkxMDJKTk3H69GmEhobi6dOnCAgIwJUrV9CrVy80a9YMgwcPhp2dHXr37o0ff/xRq2TI0tISAPD06VOd2lS1alWVr8uVKwcASE5OBgDcuXMHAFCrVi21Y93c3JT78/5bs2ZNtXqajtVGZmYmUlNTVbacF5lFikVERIZNFEW9bKXRW1sI0dTUFI0aNcLMmTOxbNkyZGdnY/PmzVAoFDh69CgOHDiA/v374+LFi+jVqxd8fX2Rk5NTYEw3NzcAL9ca0oUsn3cIvQsfanh4OKysrFS262eXv+1mERERlWrvxErQnp6eAF4OIQGAkZER2rRpg/nz5+PKlSuYMWMGDh06hMOHDwN4uYKyJq6urqhVqxZiY2Px7NkzydqXN3fn+vXravuuX7+u3J/33xs3bmisVxShoaFISUlR2Wp5DitSLCIiMmxcCfqVEk2ADh8+rLFXZdeuXQBeDhMlJSWp7Xd3dwfwcjgIACwsLAAAT548UasbFhaGx48fY/DgwXjx4oXa/n379mHHjh06tdvT0xMVK1bE8uXLlW0AgN27d+Pq1avo1KkTAMDe3h7u7u5Ys2YNUlJSlPX279+PK1eu6HTOPHK5HJaWliqbzFjaN6QTEREZmhJ9Cuzzzz/H8+fP0bVrV7i5uSErKwsnTpzApk2b4OzsjIEDB2Lq1Kk4evQoOnXqBCcnJzx69AhLly5F5cqV0bx5cwBA9erVYW1tjeXLl6Ns2bKwsLBA48aN4eLigl69euHSpUuYMWMGzp8/j8DAQDg5OeHx48fYs2cPDh48qPNK0CYmJpg9ezYGDhyIVq1aITAwUPkYvLOzM0aPHq2sGx4ejk6dOqF58+b49NNPkZSUhMWLF6Nu3bqS9koRERHpqrT21uhDiSZA8+bNw+bNm7Fr1y6sXLkSWVlZqFq1KoYPH46vv/4a1tbW8Pf3R1xcHFavXo3ExERUqFABrVq1QlhYmPLJKhMTE6xZswahoaEYNmwYXrx4gYiICLi4uAAApk+fDh8fHyxatAjLli1DUlISypUrh48++gixsbHw9/fXue3BwcEwNzfHrFmzMGHCBFhYWKBr166YPXu2ysKOHTp0wObNm/H1118jNDQU1atXR0REBGJjY3HkyBEpbiMREVGR5L4Dc1vfFYL4Lsz0JZ0EjPxb0ngvstWHCovKRK6++nZxyM2lHe7LeJYhaTy7KuUljZeS/FzSeFkZWZLFUliYFV5JB2UspY1353q8pPHKVyonabxnKWmSxuv4cQ1J45069ViyWGN7Sft9fNOtraTxvh+yXdJ4rg2qSBpvzjCFpPFeFzz1oV7iRk6100tcfSrRHiAiIiJ6ezgE9so78RQYERERUUliDxAREZGB4KyXV5gAERERGYjS+toKfeAQGBERERkc9gCVQk1au0ga7zPbGMli9YysLVksAEj+R7onUwBALvGTTPdvZUsaT9cXAJek9GfpksZ7+kTaJwadaztKGs+2ormk8RITLSSNt3fHbUnjGcmk+3t4/Dxpn7YUJH5qa8j3XSSNt2H8YUnjAfp7CoyToF9hDxAREREZHPYAERERGQhOgn7lvewB8vf3h7m5OZ4+fZpvnb59+8LU1BSPHz+GIAgYMWJEgTG9vb0hCAJq1qypcf/+/fshCAIEQcCWLVvU9t+6dQshISGoVq0azMzMYGlpiWbNmmHhwoVIT5d2aIGIiEgTMTdXL1tp9F4mQH379kV6ejq2bt2qcf/z588RGxuLDh06wMbGRuu4ZmZmuHnzJk6fPq22LyoqCmZmmueX7Ny5E/Xr18ePP/6ILl26YPHixQgPD0fVqlUxbtw4jBw5Uus2EBERUfG9l0Ng/v7+KFu2LKKjoxEUFKS2PzY2Fmlpaejbt69OcatXr44XL15gw4YN8PLyUpZnZGRg69at6NSpE3766SeVY27fvo3evXvDyckJhw4dgr29vXLff/7zH9y8eRM7d+7U8QqJiIh0x8fgX3kve4AUCgW6deuGgwcP4tGjR2r7o6OjUbZs2SK9FDUwMBCbNm1SeVpn+/bteP78OXr27KlWf86cOXj27BlWrVqlkvzkqVGjBnuAiIiISth7mQABL4fBXrx4gR9//FGlPCkpCXv37kXXrl2hUOj+qGGfPn2QkJCg8mb36OhotGnTBhUrVlSrv337dlSrVg1NmzbV+VxERERSEkVRL1tp9N4mQD4+PrC3t0d0dLRK+ebNm5Gdna3z8FeemjVrwtPTUxn3yZMn2LVrF/r06aNWNzU1FQ8ePED9+vWLdC4iIiIpibmiXjZdZWZmYsKECXBwcIBCoUDjxo2xf/9+rY598OABevbsCWtra1haWuLjjz/G33//rXMb3tsESCaToXfv3jh58iTi4uKU5dHR0bCzs0ObNm2KHLtPnz6IiYlBVlYWtmzZAplMhq5du6rVS01NBQCULVu2yOciIiJ63wQHB2P+/Pno27cvFi5cCJlMho4dO+LYsWMFHvfs2TO0bt0av/zyCyZOnIiwsDCcP38erVq1wuPHui2c+94mQACUvTx5vTX379/Hr7/+it69e0MmkxU5bu/evZGSkoLdu3cjKioKnTt31pjkWFpaAkCBj+MXJjMzE6mpqSrbi+zMIscjIiLD9S70AJ0+fRobN25EeHg45s6di6FDh+LQoUNwcnLC+PHjCzx26dKluHHjBnbs2IHx48dj9OjR2LdvHxISEvDNN9/o1I73OgHy8PCAm5sbNmzYAADYsGEDRFEs8vBXHnt7e3h7e+Obb77B0aNHNQ5/AS8TIAcHB1y+fLnI5woPD4eVlZXKdvCn8CLHIyIiepvyRk6GDh2qLDMzM8OgQYNw8uRJ3Lt3r8BjGzVqhEaNGinL3Nzc0KZNG7U5v4V5rxMg4GUv0OXLl3Hx4kVER0ejZs2aKjeuqPr06YNff/0VlpaW6NixY771OnfujFu3buHkyZNFOk9oaChSUlJUtjbdQ4vabCIiMmC5Yq5eNl2cP38erq6uylGSPHnLy1y4cEFz23NzcfHiRXh6eqrt8/Lywq1bt3QacTGIBAgAJk+ejAsXLhS79ydPQEAApkyZgqVLl8LU1DTfeuPHj4eFhQUGDx6Mhw8fqu2/desWFi5cmO/xcrkclpaWKpuxiVySayAiIsOiryEwTdM1MjM1T9dISEjQuCxMXll8fLzG45KSkpCZmVmkYzV5LxdCfJ2LiwuaNm2K2NhYAMg3ATp79iymT5+uVu7t7Y3mzZurlVtZWWHq1KmFnr969eqIjo5Gr169ULt2bQQFBaFevXrIysrCiRMnsHnzZgQHB+t0TURERO+S8PBwhIWFqZRNmTJF4+/J9PR0yOXqf8jnvU0hv9dD5ZUX5VhN3vsECHiZ9Jw4cQJeXl6oUaOGxjqnTp3CqVOn1Mr/7//+T2MCpAt/f39cvHgRc+fORWxsLJYtWwa5XI4GDRrgm2++wZAhQ4oVn4iISBtFeWRdG6Ghofjyyy9VyjQlKsDLxYo19Q5lZGQo9+d3HIAiHauJQSRAw4cPx/Dhw/Pdr80iTq8vfJgfb2/vfGPVrFkTK1euLDQGERFRaSOXy/NNeN5kb2+PBw8eqJUnJCQAABwcHDQeV758ecjlcmU9XY7V5L2fA0REREQvvQsrQbu7u+Ovv/5SrpWXJ28Uxt3dXeNxRkZGqF+/Ps6ePau279SpU6hWrZpO6+4xASIiIjIQubm5etl0ERAQgJycHJVRkczMTERERKBx48aoUqUKAODu3bu4du2a2rFnzpxRSYKuX7+OQ4cOoUePHjq1wyCGwIiIiOjd0LhxY/To0QOhoaF49OgRatSogTVr1iAuLg6rVq1S1gsKCsIvv/yi0sM0fPhwfP/99+jUqRPGjh0LExMTzJ8/H3Z2dhgzZoxO7WACREREZCD0NQlaV2vXrsWkSZOwbt06JCcno0GDBtixYwdatmxZ4HFly5bFkSNHMHr0aEyfPh25ubnw9vbGggULYGtrq1MbmAARERFRiTIzM8PcuXMxd+7cfOvk9/BR5cqVsXnz5mK3gQkQERGRgRB1XLX5fcYEqBQyLvp7XDUasuMjyWIZm6RJFgsAFJYWksaTmpFM2ucIXmRnSxpPEKRrX25OjmSxAGDt8EeSxgtaKu29c29YW9J4xsbSfq/4Npf2Z8M3NVqyWFuM+0sWCwAuXdF+cTttbBh/WNJ4gXNaSxoPM65LG+8178oQ2LuAT4ERERGRwWECJLHIyEgIgoC4uLi33RQiIiIV+noXWGnEBEgL/v7+MDc3L/Ats3379oWpqSkeP35cgi0jIiKiomACpIW+ffsiPT0dW7du1bj/+fPniI2NRYcOHTBq1Cikp6fDycmphFtJRERUsFwxVy9bacQESAv+/v4oW7YsoqM1TxKMjY1FWloa+vbtC5lMBjMzMwiCUMKtJCIiIm0xAdKCQqFAt27dcPDgQTx6pP7kSnR0NMqWLQt/f3+Nc4CcnZ3RuXNn7Nu3D+7u7jAzM0OdOnUQExNTgldBRESGjnOAXmECpKW+ffvixYsX+PHHH1XKk5KSsHfvXnTt2hUKhSLf42/cuIFevXrBz88P4eHhMDY2Ro8ePbB//359N52IiAgAIObm6mUrjZgAacnHxwf29vZqw2CbN29GdnY2+vbtW+Dxf/31F1atWoXw8HCMHj0ax44dg52dHSZMmKDPZhMREZEGTIC0JJPJ0Lt3b5w8eVJleCs6Ohp2dnZo06ZNgcc7ODiga9euyq8tLS0RFBSE8+fP459//tFXs4mIiJQ4BPYKEyAd5PXy5PUC3b9/H7/++it69+4Nmazg5Zlr1KihNjHa1dUVAApcMygzMxOpqakq24vszGJcBRERETEB0oGHhwfc3NywYcMGAMCGDRsgimKhw1/FER4eDisrK5Vt/+ZwvZ2PiIjeX6KYq5etNGICpKO+ffvi8uXLuHjxIqKjo1GzZk00atSo0ONu3rwJUVTtJvzrr78AvHxKLD+hoaFISUlR2Xx7hBbrGoiIyDDl5op62UojJkA6yuvtmTx5Mi5cuKB17098fLzKQoqpqalYu3Yt3N3dUalSpXyPk8vlsLS0VNmMTeTFuwgiIiIDx7fB68jFxQVNmzZFbGwsAGidALm6umLQoEE4c+YM7OzssHr1ajx8+BARERH6bC4REZFSaX1kXR/YA1QEeUmPl5cXatSoodUxNWvWxKZNm7Br1y7897//RXZ2NjZt2oT27dvrs6lERESkAXuAimD48OEYPny4xn3BwcEIDg7WuK9du3Zo166dHltGRESUv9L6yLo+MAEiIiIyEKX1iS194BAYERERGRz2ABERERkIDoG9wgSoBBS00jMRERGVPCZAREREBoKPwb9GpPdSRkaGOGXKFDEjI+OdisV473e8d7ltjPfuxGI8ehcIoihyQPA9lJqaCisrK6SkpMDS0vKdicV473e8d7ltjMfP9n2KR8XHp8CIiIjI4DABIiIiIoPDBIiIiIgMDhOg95RcLseUKVMglxf/zfFSxmK89zveu9w2xnt3YjEevQs4CZqIiIgMDnuAiIiIyOAwASIiIiKDwwSIiIiIDA4TICIiIjI4TICIiIjI4DABes9cuXIFu3fvxu7du3HlypW33RxJrV27FnFxcW+7GUT0HsjIyMCwYcOwePHiAustWrQIn332GbKzs4t0nkePHuH06dM4ffo0Hj16VKQYpB9MgN4TsbGxqF69OurXr4/OnTujc+fOqF+/PmrUqIFt27a9lTbJZDJER0dLFm/gwIE4ceKEZPGqVasm6b35559/MHv2bAwbNgxfffUVzp07V+RY06ZNw+XLlyVrm9TXqklOTg5Onz6NH3/8ET/++CNOnz6NnJwcvZ6zJKSkpKBDhw6YOXNmgfVmzJgBPz8/PHv2TKf4qampCAsLg5eXF+zs7GBnZwcvLy9MmzYNqampRWrzu/hZFPYHTFxcHNauXVti7Vm5ciUiIyPRqVOnAut16tQJERER+OGHH3SKf/DgQXh6esLe3h5NmjRBkyZNYG9vD09PTxw4cKA4TSeJcB2g98CuXbvg7+8PJycnDB06FLVr1wYAXL16FStXrsSdO3ewY8cOdOjQQefYt2/fxu7du3Hnzh0AgJOTE/z8/ODi4lLosUZGRli/fj369Omj83lLW7zbt2/Dy8sLSUlJyPuRMjIywtq1a4sU/12+Vk0iIyMRGhqKR48eKa9fEATY2tpi5syZ+PTTT4scOz4+HklJSbC1tYWdnZ1Wx8TExOh8nm7dumksnzFjBmbPno1bt27B1tY23+MfPXqEmjVrYuLEiZgwYYJW54yPj0eLFi1w+/ZtuLm5wc3NDQBw/fp1XL16FdWqVcOvv/4Ke3t7ra9Dys/i7t27Be4XBAFmZmaoUKECBEEosK5MJsO6devy/R7ctGkT+vTpk2+iNm3aNO0a/Ub7Jk2apHFf8+bN4eTkhKioqELj9O/fH3fu3MHRo0e1Ou/WrVvRo0cP2NnZISgoCK6urgBefq7r1q3Do0eP8OOPP6Jr167aXwxJ7629h54k89FHH4kffPCB+OzZM7V9z549E93d3cWPPvpI57hffvmlKJPJREEQVDaZTCaOGTOm0OMFQRCjoqJ0Pm9pjBcUFCTK5XJx8eLF4p9//inGxsaKzs7Oop2dnZiTk/NW26aPeK9bvny5KAiC+MEHH4jLly8XDx06JB46dEhctmyZ6O7uLhoZGYnLli0rMMamTZvEu3fvqpTt2rVLrF27tmhkZKTcPvjgA/Ho0aOFtkkQBOUxb37/atqMjIzyjeXh4SEOGTJEq3sREhIiNmrUSKu6oiiK/fr1E83NzcWdO3eq7du1a5doYWEhBgUFaR1Pis/ida/fx4I2c3NzsX379uKxY8cKjFXQ9+CqVatEU1PTAo/XdSvoc7W0tBSXLl2q1X1YunSpaGVlpVVdURTFOnXqiA0bNhRTU1PV9qWkpIj169cX69Spo3U80g/jt52AUfFdvHgRM2fOhIWFhdo+CwsLBAcHY+LEiTrF/Oabb7BgwQIEBARgzJgxKr1KCxYswIIFC+Do6IjRo0cXGKewvwp19fjx40L/Kn1d1apVJT1/fo4dO4aQkBCMGDECAFCnTh0YGxujS5cuuHr1KurWrVsi7XgbZs+ejRYtWuDAgQMwMTFRlrdu3RqDBg2Cj48P5syZg2HDhuUbIzAwUKV3YP/+/ejSpQtsbW0xYcIEVKlSBbdu3UJERATatWuHkydPwt3dvcB2mZmZoVOnTujZs2eBPTeFuXbtGoYOHapV3Q8//FCrHoU8e/bswahRo9CxY0e1fX5+fvjiiy/w/fffax1Pis/idatWrcKiRYtw79499O3bFzVq1AAA3LhxA9HR0XBycsLAgQNx8+ZNrF+/Hj4+PtizZw9at24N4OW/TRcuXFDG+/XXX/HixQu18zx58gTLly9X9pRokpubq1WbtZWVlQVTU1Ot6pqamiIzM1Pr2H///TdmzZqFsmXLqu2ztLTEoEGDEBoaqnU80g8mQO8BMzMzJCUl5bs/KSkJZmZmOsX8/vvv4e/vjx9//FGlvHHjxti4cSMyMjKwYsWKQhOg6dOna/0PuCAIOHjwYIF1Ro0ahVGjRmkVD0Ch8x5Wrlyp9Xi8IAhYtWqVxn337t3Dhx9+qFL24YcfQhRFJCYmatfYN1y7dk3rLncAaNmyZYH7pbrWN/3zzz8YM2aMyi/cPCYmJujduzfGjx9fYAzxjZH4r776ClWqVMG5c+dQrlw5Zfno0aPh7u6OGTNmYPPmzfnG27dvH6KiorB161bExsaiTZs26Nu3Lz755BONfyjo0rbC6PKLOi0trcBhvUqVKiEtLU3reFJ8Fq+Lj49HVlYWbt68CWtra5V9U6dORfPmzZGeno5vv/0WkyZNgoeHB8LCwpQJ0NatWxEWFgbg5ffUihUrsGLFCo3nsra2LtE5QA4ODlrPs7t8+TIcHBy0ju3m5lbghOeHDx8WmOxRyWAC9B7w8fHBwoUL0aFDBzRp0kRl36lTp7Bo0SK0a9dOp5hxcXEYOXJkvvvbt2+PPXv2FBrn6dOnMDKSbq5979691RKN4jj1/+3deVyN6f8/8Nd9SqsslUpZWqi0EJKxp4mEEFHKUJgafSxjH7Ilxjoz1q9iKKTsiQnVJMPYhck+thhCC4pUivfvD7/Ow3G2++Sk7Xo+HufxcO7luq+7c5xznet6X+/r3DmkpaXxOlZWo6C0tFTsS6fseXmDTxcvXozFixfLPY6IwHGc3Oso614/17ZtW/z7779S9//7779ye2s+VVJSgrS0NKxatUqk8QMAJiYmCAwMlBuQ6urqCldXV4SHh+PgwYOIjY3FmDFjEBQUhP79+8PPzw/u7u5QVZX/EdisWTPef7e0tDSFeh1tbGwQGxuLH374Qaw3oqSkBLGxsbCxseFdnrJfi/DwcEyZMkWs8QMAurq6GDt2LFavXo3p06dDT08Po0ePxooVK4THBAYGon///iAiYWC3u7u7SDkcx0FbWxsWFha8Xg9lcXV1xbZt2zBr1iwYGBhIPS4rKwvbtm3D0KFDeZe9fPly+Pj4wMnJCQMHDhTZFxcXh4iICOzatavcdWeUgzWAaoDly5ejU6dO6Nq1K5ycnGBlZQXgY8Dd+fPnYWBggGXLlilUpoGBAf755x+p+//55x9ewwpLly5VauBtv379lFre5s2blVbexYsXRXraXr9+DY7j8Pfff+PVq1dix0sLui0zceJEdO3aVSl1A5R7r59au3Yt+vXrB3NzcwQGBkJTUxMAUFhYiPDwcOzevRuHDx/mXV5JSQmICObm5hL3m5mZSfx7SqKuro6hQ4di6NChyMvLw549exATE4PBgwejfv36WL9+Pby9vWWW0a9fP2zYsAHTpk1Dy5YtpR53584dREdHY9y4cbzqBgAzZ86Et7c3nJycEBwcLBIsGx4ejvT0dIW+KJX9WuTm5uLt27dS9xcUFCA7O1v43MjISKTHrHHjxsIA7tTUVLRq1UpmY0MWMzMzhYfUOY7DvXv3JO6bOXOmcNhu8+bN6Nixo9gx586dw9ixY1FUVITp06fzvu7atWvRqFEjDB48GMbGxsKhw7t37yIzMxOWlpZYs2YN1qxZI1LX+Ph4he6P+TKsAVQDmJmZIT09HUuWLMGRI0eEH5jNmzfHpEmT8NNPPyn8oTN06FCsXr0apqammDBhgnDYoKCgAOvWrcPvv/+u0FBUbbBq1SqsWrVKbPuCBQvEtvHpsenQoQOGDBmipNopT+vWrcW2qaioYMqUKZgxY4ZwqCAzMxOlpaVo3Lgx/P39ZTaogY+zGZ89ewYA0NHRwZMnTyQel5mZKdYzxEf9+vXh7+8PAwMDvH//HidPnsTt27flnjdjxgxs3boVPXr0wG+//YYhQ4aI9FSUlpZi3759mDp1KrS0tBT6ohw6dCgKCgrw008/4YcffhB+wRMRDAwMsGXLFnh5eUk9v6JeizIdOnTA6tWrMWDAANjb24vsS09Px9q1a+Hk5CTcdvPmTTRp0kRiWT169BDbRkRITU1FcXExunbtKjFm5tPzP28AXbx4EdevX4eNjY3ID78bN27Azs4O7du3l1qeubk5du/ejeHDh6Nz584wNzeHvb09dHR08Pr1a1y7dg337t2DlpYWdu7cCQsLC6llfS49PR0cxwl7A8um/6uqqqJZs2YoKirC1atXRc5RdrwkIx+bBl/NFRUVYePGjXBwcJAbA6KIt2/fwsPDA6mpqVBVVRX7IO3ZsycOHToELS0tqWVU9ancyizvr7/+UvgcSV8IZaryvTo7O5frwzo1NVXqPknDpG5ubjhy5IjY9h49ekAgEMgs73PHjx9HTEwM9u/fj7y8PPTo0QO+vr7w8vJCvXr15J5/4cIFeHp64unTp9DU1ISlpaXwi/Lff/9FYWEhjIyMEBcXJ9Ig4Ku0tBQXL14USTfh6Ogod0ioIl6LT6Wnp6Nnz57Iy8tDp06dRHoyzpw5g3r16uH48eNo3bo1ioqK0KlTJ/Tr1w+LFi0SKyskJASnT58WXpuI0Lt3bxw7dgxEhGbNmiElJYV3Q+PAgQMICAjA3r178e2334rsS05OxrBhwxAVFSU2BPW5jIwMLFu2DH/88YdIo9vY2Bj9+/fHjBkzpPZGMtVcpcw9Y5RKQ0ODNm7cWCFlHzhwgIKCgqhPnz7Up08fCgoKovj4ePrw4YPcc5U99drU1JTi4+OVVl5FTg3/UtVpGrwyZGRkiD0+nxZPRJSdnU0BAQG0c+dOuWVeuHCBpkyZQiYmJsRxHHXo0IF+++03evr0abnq+OrVK1q6dCl17tyZdHV1SVVVlXR1dalz5860ZMkSevnyZbnKreqePHlCEyZMIEtLS1JXVyd1dXWytLSkCRMm0H///ce7HCsrK5oxY4bw+e7du4njOPr5558pISGBmjRpQiNGjOBdnr29Pc2dO1fq/jlz5pCdnR3v8oiI8vPz6fHjxxKnrzM1DxsCqwHs7OwqbImIgQMHyv0FJU3ZmL+yPHjwgPexhYWFyM7OlhmQGhkZKRY0XlX06NGDd9I/PqryvQIfezz40NfXx5YtW+QeZ2Vlhbt378LKygpBQUHw9fVVaAhDkvr162PmzJm8kxzyIW+WX1miwSZNmiiUDFGZjI2NRWJVyuvJkyfCHiTgY7JKGxsb4XTwcePGYcOGDbzLu3PnDvT09KTu19PTkxr/I42Ojo7MYThpylJzlH3e8E3V8bXSdDCSsSGwGiApKQm+vr7YuXMnXF1dK7s6QrKm5kujq6srdZ+WlhaioqIwbNgwAB+DjL29vbF06VKxWIgdO3Zg5MiRXy39/6+//qrwOVOmTJG5f+fOnahXr57EHDFlEhIS8ObNG7mBvF9DUVERYmJicPr0abx8+RKNGjVC79694enpWe74hqysLGHj3tTUlHcsm0AggKamJu9GD8dxMuNiioqKEB8fjwcPHkBfXx/9+vVTSoNEIBDw/tu0bNkSoaGhIq+1ImkSPsV3uLy0tBRv376VOkyYn58PLS0tXrO3GjZsiLCwMIwfPx5EJMySvHLlSgAfg/THjx+PwsJCXnWzs7ODqqoq/v77b9StW1dk3+vXr9GlSxd8+PBB6lR3ZWYLL3sdCwsLoaamxvt1rezlSWo71gNUA6xbtw66urpwc3ODmZkZzMzMhLM/ysibYaDsGRYAeKXH/5ysD4SioiKRJGrv3r3D0aNHMW3aNIWuUUZHR0eh+nEch7y8PIn7+Nbh0+vJagDFxcXBz89PbqoBNTU1+Pr6om7dujLXNFLmvQLA2LFjkZOTgwMHDgAAHj58iF69euHu3btQVVWFnp4ecnJysGnTJnTv3h1//PGHQvl3UlJSMHPmTFy+fFlke9u2bbF06VK5Df3u3bsrLag0KysLnTt3xoMHD4QznLS0tHDgwIEv/sFx9OhRzJw5E8XFxfj+++9FEg3+/vvv0NTUxJw5c/Dw4UNERETA19cXKioqwsBoRWOAiGfKhDITJ07EiRMnpDYiunTpIkzDIY+dnR2io6Ph5+eHuLg45ObmirxnHz58CH19fX43go85xry8vGBtbQ1/f3+Rv93WrVvx/PlzmbmivLy8RILO5ZH1d9uyZQtevnwpTH2xZcsWFtRcDbAGUA3w6YyD9+/f4+7duwqXoewZFgAwb968Kv0hMGTIEKXVj8/w3OXLl7Fw4UJcuXJFYl6VT0VGRsLZ2Rm9evWSeVyvXr3g4uKCTZs2yWwAKfNegY8NlO+//174fNy4cXj27BliY2MxdOhQCAQClJSUIDIyEhMmTEBISIjEGXKSfLqO0owZM8TWUXJ3d5e7jtLx48e/5PZEhIWFISMjA5MnT4aLiwvu3r2LsLAwBAUFKTzE8rmjR49CQ0MD586dE8sDFBwcDGdnZ5w9e1a4yK6joyOWLVsmbAApEghe3vqNHDlS6n4vLy9ER0fzagDNmzcPHh4ewkZOly5dhAkTgY+9mR06dOBdt0GDBuHw4cOYOXOm2EK1Dg4O2Lx5M9zc3GSWoaxs4f7+/lBXV8eJEyfg5+eH4cOHQ11dvdzlMV9JZQYgMVVXXFwcNWjQgP7880+xfUlJSdSgQQM6cODAV63T54G8OTk5xHEcpaSkiB0bHR0tcx2gr+nKlSvk6elJAoGAGjZsSAsWLKBXr17JPMfAwIBWrlzJq/yVK1eSoaGhMqrKm4aGBkVGRhIRUUlJCamqqtIvv/wi8dhp06ZR48aNeZetjHWUDh06RKWlpbyvKYulpSUFBASIbNu5cycJBAK6devWF5VtYGBAa9askbp/zZo1Iq/tkiVLSEtL64uuqQh1dXWZEyw2btxImpqavMu7fv06rVq1iqKioqiwsFC4/cWLF/Tjjz9Sampquer59OlTOnv2LJ09e5Z3kHtycjL5+/tT/fr1SU1Njdzd3Sk6Olrimop8+Pr6Ut26dUkgEFD9+vUpICCA/vzzT14TRpjKobwUvUylOXHihEgyss/l5OQoHCswb948TJgwQWx6KfCx12H8+PGYM2eOwnWtTa5cuQJPT0+0a9cOx48fx/z585GRkYH58+ejfv36Ms999eqVzADPT+np6eHly5fKqDJvenp6winD79+/x/v376UGdDZv3px34kLg4zpKAQEBMtdRktfjNmDAADRu3Bjjx4/H6dOneV9bkkePHoklpOzatSuICM+fP/+isgsKCmSW8fTpU7x580b4vEGDBlBRUfmiaypCT09PZq6kmzdv8kojUMbGxgaTJk3CqFGjkJGRgbCwMAQHB2Pbtm0IDQ2Fs7NzueppZGSEjh07omPHjjAyMuJ1jqurKyIjI/H8+XNER0dDQ0MDY8aMgaGhIXx8fHDo0CGJ65ZJs2PHDmRlZSE6OhrdunXDjh070Lt3b5iYmGDq1Km8s4kzX1Flt8CYLycQCGROcS77taoIDQ0NWrVqldT9v/32G+9ffs+fP6fbt2+LrIr+/Plz2rhxI61YsYL3rz6O4ygmJkb4vKwH6NixY2LHfkkPUFFREZ06dYoOHTpEZ8+epZKSEoXOv3z5Mg0cOJAEAgHp6urSwoULKS8vT6EyjIyMaMGCBbyOXbBgARkZGSlUPhFRYWEhbd68mcaMGUODBw+moKAg2rdvH69frIGBgdS8eXPh1G8XFxfq27ev2HHFxcXk5OREbdu25V0vBwcHmj17ttT9s2bNojZt2sgsY+PGjeTs7EwqKiokEAjIzMyM5syZQzdu3OBdjzKSUgjI6n1UhIeHB2lra9OhQ4fE9h08eJC0tLTIw8NDuC0oKIjs7e1llllYWEjR0dE0ZcoUGjNmDAUEBIg8Ro8ezbt+o0ePprp169KlS5fE9qWlpZG2tjb5+/tLPX/t2rXUsmVLys7OFrs3dXV1kZXbLSwsxI6TJy8vjxYsWEAdOnQgAwMDMjAwoA4dOlBoaKjC/+eIPqY62LRpE/Xs2ZNUVVVJT0+PV8oFSV68eEHh4eHUvXt3EggEJBAIyMrKisLCwujevXvlKpNRLtYAqgHk5XjZunUr1alTR6EybW1tqU2bNvT69Wuxffn5+WRvb0+2trYyyygpKSE/Pz/hf35zc3O6du0anT17lnR0dIQffAKBgAYNGiTSQJKE4zjS1NQkHR0d4YPjONLS0hLZpqOjQ5qamnIbQMuWLRP7QgwPDyddXV1hnQUCARkYGFBsbKzMsoiILl26RAMHDiSO48rd8Cnj6elJVlZWcodxSktLycrKijw9PWUeN2bMGBo4cKDweUZGBrVs2ZI4jqM6deqQkZERqaqqkkAgIGdnZ7nDAM+fP6emTZuShYUFRURE0P79+0lfX59at25NYWFhtHHjRpo/fz61aNGCBAIB7dq1i/e9JyUlka6ursQh1v3795Ouri4lJyfzKuvJkye0cuVKat++vfC91rZtW/rll1/oyZMnvMrgOI4WL15MaWlpwsexY8eI4zgKDw8X2V724Ovhw4dkbm5OAoGAmjZtSs7OzuTs7ExNmzYVNtwyMjKI6GPDxt3dnVavXi21vIyMDDIzMyOO46hhw4YkEAhIX1+fVFVVieM4atSoEZmZmfGu35MnT8jY2JhUVVVp8ODBNHfuXJo7dy55enqSqqoqGRsby8wF1KtXL+rTp4/ItpKSEjIwMCAtLS2Kioqia9eu0bJly0hVVZV+/PFHhepmbm5OHMdRq1atyNPTkzw9PcnGxkbYoMrMzORd3qf1i4+Pp+7duxPHcRQaGqpwGZ97/PgxLV++nNq2bSt8H3bq1OmLy2W+DGsAVVMPHz6kv/76i/766y/iOI7mzp0rfP7pIz4+njp37kwtWrRQqPy4uDhSUVEhExMTCgkJocjISIqMjKTZs2eTiYkJqaqqUlxcnMwyVq9eTQKBgCZMmEArV66kxo0bk5OTE3Xp0oV+/vln+vfff+mff/6h8ePHk0AgkPnBTkTk7++v8EOWzxuOMTExxHEc2dvbU0REBB0+fJjWrl1LFhYWpKKiQsePH5da1oABA0ggEJCenh4tWrRIYsNREampqcRxHHl7e0ttjBQUFJCPjw8JBAK5vWimpqa0ePFi4XN3d3fS0dGhnTt3Chue7969o4iICFJTU6NJkybJreN///1H7u7uwg/0Txu0Zc8NDQ1p27ZtvO+b6GOviJWVFQkEAmrSpImwUdCkSRMSCARkbW1NHh4eIo8BAwbILff27ds0b948srS0JI7jSEVFhVxcXGjLli0yG6qf3tOnD0nby7YpoqCggH755Rfq3bs3WVlZkZWVFfXu3Zt++eUXheNRhg4dSrq6unTu3DnKzs4W9lIVFRXR8uXLqVmzZvTvv/8qVGZmZiaNHDmS6tevL3yN69evT6NGjZLbiDQxMRHryUxKSiKO4ygkJERku6+vL1laWvKu14gRI0hLS4sSEhLE9h0+fJi0tbVp5MiRvMtLTU2l77//nvT09EhVVZW+/fZb2rx5c7l/xEiSnp5OgwYNKtf7hFE+lgeomgoNDUVoaKjcmT1EBBUVFURERGD06NEKXSMpKQkzZ84Uy4/i4OCAJUuWyJ1h4eDgAAcHB0RFRQH4OLtnyJAhGDduHNavXy9yrJubG168eIELFy4oVMcv8fnyELa2tlBVVUVaWppIXpPXr1+jdevWaNWqldSFJMvyfjRr1oxXIjV5eWcAYP78+QgLC4Oenh48PT1hZ2cnXH7h6tWriI+PR05ODkJCQhAWFiazLE1NTWzYsAH+/v4oLS2FpqYmli1bJnEq/vTp07Fjxw5kZmbKvQ/g4+ysP//8E3fu3MGbN2+gqakJY2NjtG/fHs7OzigpKUFeXp5wORV5TE1Ny5WS4f79+7yPv3DhAmJjY7Fr1y48e/YMGhoaKCgokHjs1q1bFaoLAIwaNUrhc5RBX18f48aNQ1hYGF68eAF9fX0kJycLY/lGjx6N58+fIyEhQeGyiUgYa9ioUSNer5GmpibWr18v8tnz008/YcWKFTh//rzITNL/+7//w9SpU3nnAWrUqBECAwOxePFiiftnz56NTZs2yYyPvHjxovB9kJmZCUdHR/j6+sLHx4d3LJE8jx49QkxMDGJjY3Ht2jUQETp37gw/Pz+FFs5llI9Ng6+mhg0bBjs7OxARhg0bhokTJ6Jbt24ix3AcB21tbTg4OJQrq3Dv3r3Ru3dvPHv2TGSNIr4fDPfu3UNwcLDwedkUV0mB1W5ubhIXDf1aiouLcfPmTYSHh4slddPR0UFAQIDMqb7KzDtTJjQ0FPb29pg7dy5+//13sf1WVlZYt26dMDGkLBUZtGxlZSVMkyDJihUrMG/ePN65Zyoqq/mnTE1NYW5ujiZNmuDp06coKiqSeqykxkxBQQHy8/Oho6MjloSvMr19+xampqYAPgaMf57PqVOnTuXOm8VxnMKLKhsaGgoXuC1z8uRJaGlpoU2bNiLb1dTUxFIByFJQUCDzc83IyEhqoxaomGzhZXJycrB7927ExMTgzJkzICJYW1tj4cKF8PPzE75GTOViDaBqqlWrVsJlJiIjI9G9e3eYmZlVyLWMjIzK9WtIRUUFHz58ED4vS84oKQeOjo6OQjMuPlVcXIy0tDS8ePECjRo1Qvv27Xllpv0U/f8EcdJ6KYyNjWV+mCoz78ynvLy84OXlhbt37+LmzZvIz89HvXr1YG1tjZYtW/Iup1+/fti0aRP+97//oUGDBujZsyciIyPFVhp/9+4dtm/fDmtra2XfSqV78+YN9u/fj5iYGBw7dgylpaUwNTXF7Nmz4efnJ/f8jIwMLF++HAkJCXj8+LFwu4mJCTw8PDBt2jS5/wd79uwJgUCAxMREqKqqwsXFRe51OY5DSkqK/BvEx6UVyuqmqqoKExMTnD17VpjB+MaNG9DQ0OBVVpmXL18iNjYW9+/fx8uXL8WSBnIch82bN0s819HREVu3bsWECROgo6OD69ev4/z58xg4cKDY/9Fbt25JXUleEhsbG8TGxuKHH34QaziVlJQgNjYWNjY2Us+/c+cONDU1oaqqij179shMmgjI77UtKChAXFwcYmJikJKSgpKSEjRu3Bg//vgj/Pz80K5dO973xnwdrAFUA0jrbr9//z6Ki4vLvR7X+/fvkZiYKPODb+7cuVLPb9q0qciv+Xr16iE2Nhb29vYS6yqvl2r58uXw8PAQuZ+IiAjMnj1bpMdCX18fq1evho+Pj5w7BLZt24azZ88CALS1taX2Pjx69Ij3tPSK0KJFC5F1lBQVFhaGI0eOwNHRETNmzMD48eMRGBiINm3aCJMOPnnyBDt27MD9+/cRGxurxNqXT0lJCZ48eSLxvQeA1xdKSUkJEhISEBMTg4SEBBQWFkJXVxdjx46Fn58funTpwqsu8fHx+O677/DmzRuYmprCw8NDOByZnp6ODRs2YNu2bYiOjpa5dh4Rifwo+PDhA69hbL5cXFwQHx+P+fPnA/iYoG/JkiV4+fIlPnz4gO3bt8tMbPi5xMREeHl5oaCgAPXq1UPDhg3FjpFV//nz56NDhw5o2bIlbG1tkZaWBo7jhOt/fSouLo5Xg7DMzJkz4e3tDScnJwQHB4skzAwPD0d6ejp27dol9Xxl99oaGBigqKgIdevWha+vL/z8/ODi4gKBgGWbqbIqJfKIUao1a9aQt7e3yDZ/f39hYGb79u3p+fPnCpV54cIFatasmUhw6+cPeUF8o0eP5j3TwdraWuwePqfMoOWy8j5/dO3aVeKxDg4O5ObmxutePpWSkkJhYWE0ZcoUWrJkCV28eFHhMsp8ybR1oooLWpZn0aJFCgV8vnz5ksaMGUMaGhoyg49lSUlJoTFjxghnQmlqatKwYcPo4MGDCqc1uH79Oqmrq1OrVq3oxIkTEo85ceIE2djYkIaGBl2/fl2h8pXp4cOHtHfvXioqKiKij++ZMWPGUIMGDUhPT49GjRqlUFCvra0ttWjRgtLT08tdp1OnTlHfvn3J2tqa3NzcJM7gS01NJTs7O0pMTFSo7MjISDI0NJT4Po6Kiip3nctjwIABtGvXLpEEj0zVxoKga4DWrVujZ8+ewhiVxMREuLu7IygoCPb29pgzZw6GDx8uFngsi5OTEzIyMrB582Z069ZN7tINkhQVFaGwsFDir8ZP5ebmIjo6Gl27dpW5vIYyg5YVkZOTg6VLl6Jt27ZSh0rmzp2LzMxM4VDAy5cvMWDAAJw+fVrkFzzHcfD19UVUVJTMhHZ819r68OGDwmttKTtoWZ7FixcrFAM0aNAgHDp0CD4+PujYsaPUpJGyAo0FAgEEAgF69uyJESNGYPDgweVa5RsARowYgePHjyM9PV3mYr0vXrwQ/l/cvn17ua5V1WhoaGDFihWYMGFCZVdFqtLSUly8eFEkTtHR0VHhYXBZTp8+jePHj2P27NlKK5OpAiq5AcYoQb169WjDhg3C56NHjyZzc3Ph87lz55KpqalCZaqrq/NeiqEiFBYW0tatW+nZs2fCbZ/2ABUVFRHHcRQRESHx/NDQUNLV1VVafeT1YrRs2ZLmz58vfO7j40N16tShpUuX0qNHj6ioqIju379Ps2bNIoFAIHKsJBUxbZ0vPj02knLfSHsEBwcr1AOkqampUD4YSX799ddy5YCRxNjYmObNm8fr2Llz55KxsbHU/Q8fPizXg6+EhASlLQFCRGRnZyfyPqytFO3FZKoHFgNUA9BnnXhJSUkicQimpqZiMzHkadKkiUKxB8qWl5eHgIAAJCcnS4wNoi8MWla2x48fC2dVffjwAXFxcZg9ezZmzpwpPMbMzAw///wzcnNzERUVJXPW27Nnz4T3VlpaiuTkZCxbtgze3t7CY+rUqYPAwEDcuXMHO3bs4L3YqDI4Ojryjp8oe6340tPT+6J4JwCYPHkynj17hmXLluHBgwfQ09PDkCFDyhWImpuby3vWjpmZGXJzc6XuL88UfwC8e8/69+8PXV1dDB48GN7e3sKg6/JatGgR/ve//8HX17fKzly6ceOG1DhFAArFPDG1C2sA1QCWlpaIi4vDDz/8gMTERGRmZsLd3V24//HjxwoPYc2cORMrV65EYGCgQmv9KJOkD7OqGrSso6Mj/OIrLi7Gu3fvxKb5lnFwcJCbW6Yip60rQ2RkZIWVHRgYiJ07d2LcuHHl/vJ+8OABnJycRBojy5Ytw7Zt24RDqHzp6+vLXXvs0+uWrXYuyZYtW5SeLuFTR44cwa5du7B3715s3rwZ+vr68PLygo+Pj1iaDD5SUlLQqFEjtGrVCr169ULTpk3Fhm45juO1Gryy3bt3DyNGjMD58+el/ljjOI41gBipWAxQDbBz5074+vqifv36KCgogKWlJa5cuSIcA3d2doampiaOHDnCu8xff/0VO3bswH///QcfHx+pH3yTJ09W6r2Uef78ORo3bow///xTODNE0pdhly5dcPLkSbHtbdu2haGhIY4ePaqU+siLY/H19cXVq1eRlpYGNTU1ODo6wsbGBtu2bRM71s3NDY8ePcLNmzelXi8oKAiJiYm4cuUKGjRogG+//RYaGhpiCezevXuHbt26oaSkBJcuXfqym/z/FI3ZqQhz5szB4cOH8d1336FJkyYS46XKpnZLMmrUKOzatQsrV66Ei4sL7t69i0mTJqGwsBCZmZkKNaxGjBiB1NRUXL16VW4MkL29PXr27Ino6Gje5QPKzytUUlKCxMRE7Nq1C4cOHcLr16/RuHFjeHl5wdvbG506deJVDp+/E8dxlfJecXV1xdmzZ7FkyRJ069ZNaqxh8+bNv/haVeH/BFMBKm3wjVGqpKQk+vHHH2nBggWUlZUl3J6bm0uenp60f/9+hcqTNvNLkVlgX+LZs2flXmwyOzubpk6dStHR0Uqrj7wYgHv37lGDBg2oc+fOlJiYSMeOHSN9fX3q168fbd++nZKSkigyMlK4MOL69etlXq8i19r60nutaI8fP6ZOnTp90XvP3NycJk6cKLItISGBBAIBXbt2TaH6lM0Cs7W1pVOnTkk85tSpU2RnZ0fq6uq8y3/w4AGNGzdOONuy7NG0aVMKDg6m+/fvK1RPaYqLi+nAgQM0fPhw0tbWJhUVFaWUW9k0NDRo4cKFX+Valf1/gqkYbAishujVqxd69eolsq24uBgpKSl4//49hg8fLjPb7ef4dvlXRfr6+mjYsCFGjhwpM8GdIj0m8paFMDc3R2pqKr777jv06dMHHMeBiHD48GFhzxsRQV1dHaGhoSIZsiUxMDDA6dOnERgYiB9++EFYXm5uLq5duyYsz8DAAFFRUXKzQSvzXiva6NGjcenSJcyaNUvmLDBZ/vvvP7F4n3bt2oGIkJOTo1BZNjY2iImJwciRI9GtWzeYmpqiTZs2InmAHjx4AA0NDURHR8PW1lZumcrKK8THmzdvkJWVhefPn6OoqOiLYvtu3bqFPXv24OnTp7C2toa/v3+lDZHr6+uX671RZuLEibyPvXjxYrmvw1Rhldn6YpTvw4cPlJycTP7+/sLFCw0MDCggIEDuuefOnaPc3Fxe13nw4AFt3br1S6sr1Zf0ABHx+8UmbZHL8uaeIfr49z9y5AhNmzaNBg4cSN9++y3179+fAgMDKSIiQmRWG1+3bt2idevW0aRJk2jMmDE0fvx4+vnnnykxMZGKi4vpzZs3chelrIh7rShaWlq8Z11J83nOKCKinJycL3pP3bt3j4KCgsjExESkN8rY2JgCAwPpzp07vMr5GnmFXr16RVu2bCE3NzdSU1MjjuOodevWtHjxYrp7967Mc9euXUstW7ak7Oxske0HDx4kdXV1kXu3sLAQO+5rWbRoEXXo0KHcs9749HJ/rR5vpnKwHqAaIi0tDTt27MDOnTvx7NkzcBwHHx8fjB8/Ht988w2vwMtOnTph+/btwiDRFy9eoEmTJjhy5Ah69OghcuypU6cQEBBQrQMMKyKQl+M49OnTB3369OF9TklJCc6cOYM2bdpI/EWrjLW2KjJoWdmMjIxkxtrwdfHiRZFlH16/fg2O4/D3339LDBqXFVMEfOzlCw8PBwDk5+fj9evX0NHRUbgH5Oeff4a+vj7+/vtvqffZrVs3nDx5Eq1bt8aSJUt45xXavn07du/ejeTkZLx79w7W1taYPXs2vL29eS9vcvDgQVhYWIgEc5eWlmLs2LFQUVFBZGQkHB0dkZCQgJCQECxevBi//fYbr7K/xP79+0WeW1lZ4f3792jTpg1Gjx4tMU4RkP665uTkKOV9xlRjld0CY8rv3r17tHDhQrKyshLGDkybNo12795NHMfRvn37FCrv81/Nsn4xR0dHV9kYIKLqNWb/7NkzEggEteJe+Vi/fj3Z2dnR69evy11GVf51r8y8Qp8r65WZPXs2/fPPP+Wqn4mJCS1YsEBkW1JSEnEcRyEhISLbfX19ydLSslzXUZSkDOZf8rqqq6vToEGDaM+ePcLM2UztwnqAqqlOnTrh/Pnzwmmuv//+O7p27Qrg4/TQ6k5XVxepqalwcHCo7Kp8FcQmYwoVFRWhTp06aNGiBYYNG1auGYipqakVXc1yU2ZeoTJFRUWIj49HaGgojIyM0L9/fzRu3Ljc9WvatKnItpSUFHAcB09PT5HtXbp0EeuZqSjKfk2HDBmCgwcPIj4+HvXq1cPgwYOF63dVZKoCpupgDaBq6ty5czAzM8Ovv/6Kfv36KTXte0UoKCiAlpaW1A+W7Oxs3Lx5E927dwfwMcnf58Nu1SmQlym/adOmCf+9bt06icfIawB9/t5RhLwhyS+lzLxCAJCVlYXOnTuLlKmlpYW4uDi4uroqXD9DQ0OxxKknT56ElpaWWG4rNTU1sZXYK8qXvKaS7NixA4WFhThw4ABiYmKwY8cObN26FYaGhhg+fDh8fX1lLs3D1ACV3QXFlM/69eupS5cuxHEc6enpUWBgIB07dow+fPhAd+/erTJDYFFRUcJpvnXr1iV/f396+vRpucqrToG8iqhNw318ZGRk8HpUlC8dkpTHz8+PjI2N5U44yM3NJWNjY/Lz85N53Pjx40lFRYWmTp1KCQkJtHr1atLX1xdZDkcRQ4YMIUtLS8rPzyciomvXrpGqqioNGTJE7NipU6eSjY1Nua5TXrGxsZSQkCDzmD/++IN27typULkvXryg8PBwYaoKgUBAVlZWFBYWRvfu3fuSKjNVVNXuNmCkCg4ORnBwMB48eIAdO3YgJiYGmzZtgpGREXr27AmO48rVjZuRkSHsacnLywMA3LlzRyyTNJ9fsCkpKQgICIC1tTUmT56Mp0+fChOz7du3T+FfdNUpkPdL1ebeLmUkrvtSVIFDkrNnz8bevXvRvXt3bNy4EZ07dxY75vTp0wgKCkJubi5mzZols7ykpCSMHDkSK1euFG4zNDSEr68vbt++LTOAXpL58+ejQ4cOaNmyJWxtbZGWlgaO4yTWIy4uTpio9GuIi4uDn5+f3ASnampq8PX1Rd26ddGvXz9eZTds2BBBQUEICgrCkydPEBMTg9jYWMybNw/z589Hx44dcfr0aWXcBlNVVHYLjFGeixcv0uTJk8nY2Jg4jiMjIyP6/vvv6dChQ1RYWCj3fEk9LNJ6Xfj0sDg7O5OjoyMVFxcLt925c4ccHBxIQ0NDJHlfRQdVV2WSeoBqam9XdfClPXJ87Nu3j7S1tUkgEJC5uTl5enrSyJEjydPTkywsLEggEJCWlhbt2bNHblkaGhq0efNmkW2PHz8mjuPor7/+Klf9Tp06RX379iVra2tyc3Oj5ORksWNSU1PJzs6OEhMTy3WN8vDw8CAXFxdex7q6utLAgQO/6Hrp6ek0aNAg9n+shmI9QDVI+/bt0b59e6xcuRLHjh1DdHQ0du3ahd9//x1aWlp48+aNzPOV3cNy7do1zJs3TyRGoEWLFjh9+jS8vb3h6+uLrKwsjB8/XqnXrQlqU2+XJOnp6Vi7di0uXbqEvLw8fPjwQWQ/x3HVOth/8ODBcHBwwPLly/HHH3/gwIEDwn2NGzfG2LFjMX36dF6LwhYXF4tM9wcgfF5aWlqu+nXu3Fls2ZXPOTs74+rVq+Uqv7zOnTuHGTNm8Dq2T58+WLFihcLXePTokbD359q1ayAidO7cWWZSVaZ6Yg2gGkggEMDV1RWurq4IDw9HfHw8YmJi5J43atQopdbj/fv3EoOzNTU1ceDAAYwdOxaTJk1CVlaWwt30NZ2yX4vq5Pjx4+jTpw8aNmwIR0dHXL58GS4uLigqKsKZM2dga2tbI4JTlZVXCBAdugZkD18DEMuSXV28evWK9yLHenp6ePnyJa9jc3JysHv3bsTExODMmTMgIlhbW2PhwoXw8/PjPWuPqWYquwuKqbmcnJzkBnBOmzaNOI4T5jKqjQoLCykqKqpcWaJrom7dulGrVq0oLy+PsrOzRYajzp49Sw0bNqTDhw9X2PW/xhCYMskbpq5Jw6VGRkZiOYqkWbBgARkZGUnd/+bNG9q+fTu5u7sLs2UbGxvTlClTKC0tTVlVZqow1gPEVJi+fftixYoVePHihdSMqytWrICBgQFmzpxZI3NvFBcXIy0tDS9evECjRo3Qvn17sV4xDQ2NWt3j87lLly4hNDQU9erVE/6CL8ty3bFjRwQFBWHu3Llwd3evzGpWGbVpuLRTp06IjY3FnDlzJGZ9LvP+/XvExsbKXPXewMAARUVFqFu3Lnx9fYU5gAQCQUVUnamCWAOIqTBjxoyBvr4+nj9/LjPl/PTp09G4cWOcOHHiK9ZOuZYvXw4PDw+0atVKuC0iIgKzZ88WWXZBX18fq1evho+PTyXUsnpQVVWFjo4OAKBBgwaoU6cOsrKyhPvNzc1x48aNyqpelVObGs8TJ06Ei4sL/Pz8sHnzZmhra4sd8/btW4wZMwZ37twRDjFK4urqCj8/PwwYMEAshoqpHTgiloKWqXyLFy+Wu55VVSYQCBAdHS1cRy02NhZ+fn6ws7PD+PHj0bRpU9y7dw+rVq1CRkYGUlJSlJ7YraZwdHREz549hQGsbdq0QcuWLbF3714AwKBBg5Ceno779+9XyPWLioqwa9cu9OnTB4aGhhVyDab85s+fj7CwMOjp6cHT0xN2dnbQ0dHB69evcfXqVcTHxyMnJwchISEICwur7OoyVVllj8ExDFH1T+b3eRJJGxsbat26NZWUlIgcl5+fT6ampuTu7v61q1htzJ07l0xMTIR/u6ioKOI4jlq0aEEtWrQgjuNo6dKlCpVZWlpKUVFRNHToUHJyciInJycaOnQobd26tdyriTOVZ8+ePWRtbS1x/S9ra2uRFBsMIw3rAWKqhJrUA1RcXAxNTU2Eh4cjMDBQ7NiFCxdi9erVvNZ4qo1KSkqQn58PXV1dYVxYdHQ09u3bBxUVFTg7O8PT0xMmJia8ysvLy4ObmxsuXLgAHR0dmJubA/iYzDM/Px9OTk5ITEws1+wrpnLdvXsXN2/eRH5+PurVqwdra2u0bNmysqvFVBMs2othlIyIwHEcjI2NJe43NjZGQUHBV65V9VGnTh3o6emJBMWPGDECcXFx2Lt3L/Ly8hTKFh0SEoK0tDSsXbsW2dnZuHTpEi5duoSsrCysW7cOFy9eREhISEXcClOBtm3bBlVVVXh4eMDPzw8eHh4ijZ+MjAxs27atEmvIVHWsAcQwSrJt2zZMnDgRM2bMgLa2NjIyMiQe9+jRI965TBjJFOm4jouLEy4dU6dOHeH2OnXqYNy4cRg3bhz27dtXEdVkKlBAQIDMpSnOnTuHgICAr1gjprphs8CYClPb1rNKSkpCUlKS8PmuXbskZrk+dOgQ7O3tv2bVarXc3FyZiTatra3x4sWLr1gjRhnkNYILCgokJmJlmDLs3cFUGEdHR965fcqGjaqrz5dqkCYnJwfffvst2rZtW8E1Ysq0aNECBw8eRHBwsMT9Bw8ehIWFxVeuFVMe6enpuHLlivD5yZMnJS738erVK4SHh8PS0vIr1o6pblgDiKkwtSlBG1/6+vpo2LAhRo4cydYW+kqCg4Mxfvx49O3bFz/++KPwS/H27dtYs2YNkpOTsW7dukquJcNHXFwcQkNDAXxcDy4iIgIRERESj23QoAGLAWJkYg0gpsLUpgRtzJepyOHS4OBgZGVlYenSpUhMTBTZV6dOHcybNw/jxo1TqEymcgQGBqJ///4gIjg5OWHhwoViGcE5joO2tjYsLCzYEBgjE5sGzzBfWXWf8l8RBAKBwsOliv79cnJy8Oeff+Lhw4cAgObNm8PV1RX6+voK15epfH/99RdatWoFAwODyq4KU02x5jHDMJWuooZL3759i6ZNm+Knn37C9OnT2RIkNYikTOpEhNTUVBQXF6Nr167CJVUYRhLWAGIYptJV1HCplpYWVFVVJa4ZxVRvISEhOH36NFJTUwF8bPz07t0bx44dAxGhWbNmSElJYQHujFSsAcQwSlDbpvxXJ0OGDMHevXsxbty4aj3TkBG1b98+DBw4UPh87969SElJweLFi9GmTRsEBQVhwYIF2L59eyXWkqnKWAOIYZSgNk35r258fHwQHByMnj174vvvv4epqSk0NTXFjmvXrl0l1I4prydPnqBFixbC5/v374eNjQ1mzZoFABg3bhw2bNhQWdVjqgHWAGIYJWBT/qsuZ2dn4b9Pnjwptr+8QdVM5VJVVUVxcTGAj69hSkoKRo4cKdxvaGiInJycyqoeUw2wBhDDKAGb8l91scZpzWRnZ4fo6Gj4+fkhLi4Oubm56Nevn3D/w4cP2Qw/RiY2DZ5hGIapdpKTk+Hh4YGSkhIAQJcuXXDixAnh/vbt26N58+bYv39/ZVWRqeJYDxDDMDVaaWkp3r59i3r16kncn5+fL5wtxlQfvXr1wqVLl5CcnIwGDRrA29tbuO/ly5fo3r27SJA0w3yO9QAxDFOjBQcH48SJE7h27ZrE/fb29nBxccHq1au/cs0YZbp16xb27NmDp0+fwsrKCgEBAVIbvQwDAILKrgDDMExFOnr0KLy8vKTu9/LywuHDh79ijZjyWrduHSwtLcWCmw8dOgQHBwfMnz8f4eHhmDx5Mtq1a8eCoBmZWAOIYZgaLTMzEyYmJlL3Gxsb48mTJ1+xRkx5HTx4EBYWFiLBzaWlpRg7dixUVFQQGRmJq1evYunSpXj48CEWL15cibVlqjrWAGIYpkbT09PD7du3pe6/efMmGyqpJm7cuIFvvvlGZFtqaiqys7MxefJkjBo1Cra2tpgxYwaGDRvGevYYmVgDiGGYGq1Pnz6IiIjA5cuXxfZdunQJGzduFFtRnKmacnNz0bRpU5FtKSkp4DgOnp6eItu7dOmCR48efc3qMdUMm/bAMEyNFhYWhqNHj8LJyQkDBgyAra0tAODatWs4dOgQDAwMEBYWVsm1ZPgwNDTEs2fPRLadPHkSWlpaaNOmjch2NTU1qKmpfc3qMdUM6wFiGKZGMzY2xsWLF+Hr64uUlBQsWrQIixYtwrFjx+Dn54cLFy6gSZMmlV1NhgdHR0ds3boVr1+/BgBcv34d58+fh5ubm1gag1u3brHXlZGJTYNnGKbWICJkZ2cDABo1asTWZKtmrl69ig4dOqBBgwawtbVFWloa3r59izNnzqB9+/Yix1pYWMDFxQWbNm2qpNoyVR3rAWIYptbgOA4GBgYwMDBgjZ9qyN7eHseOHUP79u2RmZmJb775BocPHxZr/Bw/fhxaWloYOnRoJdWUqQ5YDxDDMDXKwoULwXEcQkJCIBAIsHDhQrnncByHuXPnfoXaMQxTVbAGEMMwNYpAIADHcSgsLISamhoEAvkd3Ww1eIapfVgDiGEYhmGYWofFADEMwzAMU+uwPEAMw9Q4AwYMUOh4juMQHx9fQbVhGKYqYkNgDMPUOAKBABoaGjAyMgKfjziO43D//v2vUDOGYaoK1gPEMEyNY2JigidPnkBfXx++vr7w8fGBkZFRZVeLYZgqhMUAMQxT4/z3339ITU1F27ZtERYWhqZNm8LV1RWRkZHCLMIMw9RubAiMYZgaraSkBIcPH0ZMTAz++OMPfPjwAe7u7vD19YWHhwfU1dUru4oMw1QC1gBiGKbWePPmDfbv34/w8HCcO3cOCxYsYAkQGaaWYkNgDMPUCsXFxUhMTER8fDwuX74MDQ0NmJqaVna1GIapJKwHiGGYGuvDhw9ITk5GbGwsDhw4gLdv38LV1RW+vr7w9PSEtrZ2ZVeRYZhKwhpADMPUOKdPn0ZMTAz27NmD3NxcfPPNN/D19cWwYcOgr69f2dVjGKYKYA0ghmFqHIFAAE1NTfTt2xfDhw/nNdTVrl27iq8YwzBVBmsAMQxT43y6ACrHcTKPJSK2GCrD1EIsESLDMDVOZGRkZVeBYZgqjvUAMQzDMAxT67Bp8AzDMAzD1DqsAcQwDMMwTK3DGkAMwzAMw9Q6rAHEMAzDMEytwxpADMMwDMPUOqwBxDAMwzBMrcMaQAzDMAzD1DqsAcQwDMMwTK3z/wAMgentlARkfwAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "crested.pl.heatmap.correlations_self(\n",
- " adata, title=\"Self Correlation Heatmap\", x_label_rotation=90, width=6, height=6\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2024-08-13T16:24:09.270310+0200 INFO Plotting heatmap correlations for split: test, models: ['checkpoint_15']\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAJRCAYAAACKvongAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUmElEQVR4nOzdeXxM1/8/8Ndkm5nsRBJJkAVJ7GkJtYQIEXstkYg1EUKVaqlqVG0/hGrVvrUlSpRSSu07tdRWu1JbUIk9EiKb5Pz+yHfmY8xkmbhJMK/n43EfrXPPfd9z72zvnHvuuTIhhAARERERFZpRaTeAiIiI6G3DBIqIiIhIT0ygiIiIiPTEBIqIiIhIT0ygiIiIiPTEBIqIiIhIT0ygiIiIiPTEBIqIiIhIT0ygiIiIiPT0WgnUzp07ERERAU9PT1hbW0Mul8PJyQmBgYH4/vvv8eDBA6naWWrGjx8PmUyG8ePHl9g+3dzcIJPJEB8fX2L7LE779u2DTCaDv79/aTeFCrBv3z4MGDAA1atXR5kyZWBqago7OzvUr18fQ4YMwa5du2DoDy+QyWSQyWSl3Qy9xcfHQyaTwc3NrbSb8saIjY2FTCZDeHh4obdRncdXFwsLC1SrVg1DhgzBjRs3iq/RevL394dMJsO+ffs0ysPDwyGTyRAbG1vsbSjKeX4bFCmBevjwIQIDA9GqVSvExsYiKysLzZs3R9euXVGtWjUcPnwYw4cPh4eHB44ePSp1m99qJfmmNVTv6oe1OD18+BBBQUFo3rw5fvzxR6SkpKBx48YICQlBw4YNcf/+fcybNw+BgYGoW7duaTf3jVTaf/jk9UNJxadr167o27cv+vbti0aNGuHOnTuYN28eateujT///LO0m1ciDDkxN9F3g+TkZDRp0gSXL1+Gt7c3Fi9eDD8/P406GRkZWLZsGcaNG4fExETJGmsodu/ejaysLLi4uJR2U8gAPHnyROMzPX/+fDRv3lyr3vnz5/H9999j1apVpdBKojfPt99+q5E4JCYmom3btjh9+jT69u2Lf//9FyYmev/MloiYmBh8+eWXcHJyKvZ9de7cGR988AFsbGyKfV8lSe9XdujQobh8+TLc3Nxw6NAhlC1bVquOXC5HVFQUPvzwQzx58kSKdhqUypUrl3YTyICoPtMeHh44fPgwypQpo7NezZo18dNPP2HgwIEl3EKit4OTkxO+//57NG/eHDdu3MCJEyfwwQcflHazdHJyciqR5AkAbGxs3rnkCdDzEt7169excuVKAMCMGTN0Jk8vc3R0hJeXl1b5qlWr0KJFC5QtWxZyuRyurq7o168f/v33X51xXu4a37BhAwICAlC2bFmN7uqXxyUsXboUDRs2hI2NjVaXekJCAoYPH45q1arB3NwcVlZW8PX1xdy5c/HixYtCn4usrCysWLECPXv2hLe3N6ytraFUKuHl5YVPPvkECQkJGvVV3ZzLli0DAERERGhcP395jFV+lwKeP3+OqVOn4v3334eVlRXMzc1Ro0YNjBkzBklJSVr1X+5eFUJg8eLFqFu3LiwsLGBjY4NWrVrhyJEjOo/xypUr6NevH9zd3SGXy2FpaQlXV1e0a9cOS5cuLfS5erX9o0ePRpUqVaBQKODs7IzIyEjcuXMnz22SkpIwbtw4+Pj4qI+5Vq1amDRpEp4/f65R183NDREREQCAZcuWaZxj1RisLl26QCaTYd26dRrbvnjxQv2eCQkJ0WpHv379IJPJsGTJEq11J0+eRM+ePVGpUiXI5XKULVsWQUFB2LJlS57H9eLFC/z444/w9/dXfxbc3d3x0Ucf4fbt21r1Xx5LlpWVhWnTpqFGjRpQKpWws7NDly5d8M8//+S5P12uXbum/kx///33eSZPL6tfv75W2cuXj/7880906NAB9vb2MDIy0rhc/d9//2Ho0KGoWrUqFAoFbGxs0LhxYyxatAjZ2dlacQsag5jX+LrXPVdHjhxBmzZtYGtrC0tLS9SrV0/n6w7875LxzZs3AQDu7u4a7zvVd9TLbXr+/DnGjh2r/h5S9WIU5nLIq98Pqrj79+8HADRv3lxj/7qGC5Tmd8G6devQv39/1KxZE2XKlIFCoYC7uzv69euHy5cv69zm5aEPN27cQO/evVG+fHnI5XJUrlwZY8aMQUZGhs5tX7x4gZkzZ6JWrVpQKBSwt7dH165dce7cOb3aXVgvX+J+9TXK77VXKcp3ye3bt9GvXz84OTlBoVCgatWq+Oqrr5CWlpbnNgUNJzl58iT69u0Ld3d3KBQKlC1bFnXq1MHIkSPV7/Xw8HC4u7sDAG7evKk1LkyloGEVx44dQ0hICJydnWFmZgYHBwd06NABO3fuLLDt+rwfcnJysHjxYjRu3Bi2trYwNTWFg4MD6tSpg6FDh+p/+V3oYdasWQKAsLW1FS9evNBnUyGEEDk5OaJPnz4CgDAxMREBAQGie/fuwtPTUwAQ5ubmYuvWrVrbubq6CgBiyJAhAoCoV6+eCAsLE82aNRMHDhwQIndUq7qOkZGRaNKkiQgLCxMNGjQQ8fHxQggh9u/fL8qUKSMACDc3N9GxY0cRFBSkLmvVqpXIzMzU2Pe4ceMEADFu3DiN8tu3bwsAwsbGRnzwwQeiW7duom3btsLZ2VkAEPb29uLKlSvq+g8ePBB9+/YVlStXFgBE48aNRd++fdXL+vXrtY73xo0bGvt89OiR8PHxEQCEtbW16Nixo+jatasoV66cACDc3d21trlx44YAIFxdXUXfvn2FqampCAgIECEhIerzLpfLxV9//aWx3blz54S1tbUAILy8vESXLl1Et27dRMOGDYWlpaWoU6dOIV7xXHv37hUARMOGDcUHH3wgzM3NRdu2bUW3bt2Ek5OTACDKly8v/v33X61tL1y4ICpWrCgACCcnJ9G6dWvRoUMH4ejoKAAIHx8f8eTJE3X9ESNGiMaNGwsAonLlyhrnOCYmRgghxLx58wQA8dFHH2ns69ChQ+r3kZ2dncjJydFYX6lSJQFA3Lx5U6N85syZwsjISN2e4OBg0aRJE2FmZiYAiAkTJmgdV0pKivD39xcAhKWlpWjWrJkIDg4WXl5e6v3//fffOs9jo0aNRMuWLYW5ublo3bq16Nq1q/oc2draar0H8jNz5kwBQJQpU0ZkZ2cXertXNWvWTAAQgwcPFkZGRqJ69eqie/fuolWrVmLlypVCCCGOHTsmypYtKwCISpUqidDQUNG6dWuhUCgEABEUFCQyMjI04ub1+VNRnZNmzZrpLC/Kufr111+FsbGxACBq1qwpwsLCRJMmTYRMJhPDhw9Xv0dU/vzzT9G3b19hYWEhAIiuXbtqvO/++ecfjTY1aNBA+Pr6CgsLC9GmTRsRGhoqWrZsKYTQ/Lzm5dXvh3/++Uf07dtX/ZkICgrS2P+ff/6pFbu0vguEEMLY2FiYm5uLevXqiS5duoiOHTsKDw8PAUBYWFiIQ4cOaW3Tt29fAUAMGzZMWFtbC1dXVxESEiJatmwplEqlACA6deqktV12drbo1KmTACDMzMxEq1atRGhoqHBzcxMKhUIMHjxYABB9+/YtdPtV51HXd7QQQvz333/q9evWrRNCFO61F6Jo3yX//POPcHBwUH9Hqn6LlEqlaNiwoWjYsKEAIPbu3avznC5dulQr5jfffKNuh6enpwgJCREdOnQQ1apV09jmhx9+EF27dlW/di+/714+p0uXLs3zPC9evFi9r/fee0+EhYWJRo0aqc/h+PHjtbYp6vshIiJCABAKhUK0bNlShIWFiaCgIFG1alUBQON3uDD0SqB69+4tAIiAgAC9dqKyYMECAUCUK1dOnDp1Sl2ek5Oj/qK0tbUV9+/f19hO9YVhbGwsNmzYoDO26mRbW1uLI0eOaK1PTEwUdnZ2QiaTifnz52v8WDx8+FAEBATofIPm9QWekpIiNmzYoPWFn5mZKaKjowUA0bZtW6125PemffV4X/1whoaGqj+EDx8+VJc/ffpUtGnTRv2D8bKXP+yurq7i8uXL6nUvXrwQ/fr1UyePL1O90SZNmqTVvufPn4v9+/fn2f5Xqb48AIgqVapoJCBpaWnqD+AHH3ygtR9VwjlmzBiNc52amirCwsIEABEREaGxXX4fViGEuHz5sgAgqlatqlE+YcIEAUDUrl1bABAnT54scJtt27YJmUwmypUrp3VOzp49KypUqCAAiH379mms69GjhwAg2rdvL+7du6ex7vvvv1fv6+U/VF4+j++9955ITEzUOI9BQUECgIiKitJ53LqoPtMtWrQo9Da6qBIoAGLevHla69PT09Xv60GDBmn8oXLt2jXh5uYmAIjRo0drbPe6CZS+5yoxMVFYWVkJAGLGjBka63bt2qVO9nT97ZnX51ZXm2rXrq3RJpWiJFAqqtfg1R/KV2OX5neBEEKsWrVKPHv2TKMsJydH/YdNjRo1tP54UX1vAhBfffWVxufi3Llz6uT18OHDGtvNnTtXABCOjo7i4sWL6vKsrCzx0UcfqWNKmUCp9glAXL9+XQhRuNe+qN8lvr6+AoAICQkRaWlp6vKbN2+qvz/1SaA2bNigTjJWr16t1c4LFy5onMvCvGfz+k4+e/asMDExETKZTPz8888a67Zs2aJOHHfs2KGz7fq8H27evCkAiAoVKug8/xcvXtT647ggeiVQrVu3FgBE9+7d9dqJiurFnD17tta6nJwc9Q/X5MmTNdapvjD69euXZ2zVyZw4caLO9aNGjRJAbg+VLv/9958wNTUV9vb2Gh/egr7A8+Ls7CyMjIxESkqKRnlRE6ibN28KIyMjIZPJxJkzZ3S2X/Xl/vJfcC9/2Ddu3Ki1XWJiovovz5d/1Nq2bSsAaPWCFMXLXx6///671vp79+4Jc3NzrbarEu727dvrjPv06VPh4OAgTExMxOPHj9XlBSVQQgh1L8TLHxg/Pz+hUCjEb7/9JgCIqVOnqtfl1WvVoEEDAUCsXbtW535+/fVXAeT2SqhcvHhRyGQy4ezsrPX+UFGd/z/++ENdpjqPMplMnD59Wmubv/76SwAQHh4eeR73q1SJd16f6dOnT2v9Vflyr4aK6sc7rz+uli9fLgAIZ2dnkZ6errV+7dq1AoCwsrLS+BF43QRK33M1adIkncm8yrBhwyRJoFQ9568qqQSqtL4LCqLqLblw4YJGuep7s27dulrJlRBCDBo0SOf3f5UqVQQAsWDBAq1t0tLSRPny5SVLoBISEsT8+fOFpaWlACA6duyoXleY174o3yUHDx4UQG7vz8t/VKusX79e7wRKdZXju+++K+BM5HqdBCoyMlIAEF26dNG5neqqU2BgoM626/N+OHbsmNbr8rpKbCLN//77D9euXQMA9O3bV2u9TCZTj13Zu3evzhjBwcEF7ievOps3bwYAhIaG6lzv4uKCqlWr4sGDB7hy5UqB+1E5c+YMZsyYgaFDh6Jfv34IDw9HeHg4Xrx4gZycHFy9erXQsfJz4MAB5OTk4L333kPt2rV1tj8oKAiA7vNnYmKC1q1ba5WXL18eZcqUQUZGBh49eqQuV41z+eijj7B9+3akp6e/9jHY2tqiY8eOWuUODg7qtr18C3ZBr5lqbMqLFy9w/PhxvdrSsmVLAFBfY09NTcVff/2FJk2aICgoCKampti1a5e6vur/VdsBubf+Hzt2DEqlEh06dNC5H9XYnMOHD6vLtmzZAiEE2rRpAysrq0Jvp1KpUiXUqVNHq7xatWoAkO94Mn3dvn0by5Yt01ryel/n9flTva7du3eHXC7XWt+lSxeUKVMGT58+xcmTJyVrv77nStXOnj176oyn67tLXw4ODlp3LpekN+G74OrVq5g7dy4+/fRTREZGqr837927BwB5joVq3769zjm4dL2ed+7cUb9Pe/XqpbWNQqHQOdZRHy+Pd3N2dsbgwYPx7NkztGzZUufYorxe+6J+l6jer61bt4adnZ3WNh9++KFeg7fv3r2L06dPw8jICJGRkYXerqhU7c9rbJSqDX/++afOMZL6vB+8vb1hZWWFLVu2YPLkyZLM1aXXXXj29vYAgPv37+u9I9WB2NnZwdraWmcd1d1nef0AFGaeibzqXL9+HQAK9cX14MEDeHp65lsnNTUVvXv3xvr16/Otl5KSUuD+CkN1TlQD9nTJ7/w5OTnB1NRU53bW1tZISkrS+GIcOXIkDh48iF27dqF169YwNTVFnTp10LRpU3Tv3h2+vr56H4Nq8KsuquP677//1GWq16x3797o3bt3vrH1nbS1ZcuWWLp0KXbt2oXIyEjs378fWVlZCAwMhIWFBT744AMcPHgQ6enpMDMzw969e2FkZISAgAB1jBs3bkAIgbS0NJ1JQV7tUx3XTz/9hJ9++knv46pUqZLOuqrPVV6DaXUpV65cnvsBcr+gxEsTZ7Zs2RK7d+/OM15en7+C3r8ymQzu7u5ISkqSNAHU91yp3n95tTO/z19hlfZ8OaX5XZCdnY0hQ4Zg0aJF+U7Imtf3ZkGv58vtVr2W5cqVg6Wlpc7tXvf17Nq1KywtLSGTyaBQKFCxYkW0aNECDRo00Fk/r9e+qN8lBb1fVTcknDlzphBHA9y6dQtA7nukJO6aK+h7QfWblp6ejkePHsHBwUFjvT7vBysrKyxduhQREREYM2YMxowZAycnJ3zwwQdo3bo1evTokef7JC96JVB169bF8uXL8ffffyM7OxvGxsZ67ex1KZXKItfJyckBkPsXsoWFRb4xdGXyr4qOjsb69evh7e2NqVOnwtfXF+XKlYOZmRkAoFGjRjhy5MgbM2uzkZF+nY3m5ubYuXMnjh8/jm3btuHw4cM4fPgwTpw4gRkzZmDw4MGYN2+e5O18+XypXrPWrVvD0dEx3+1cXV312k+LFi0gk8mwe/duCCHUPUyBgYEAchOFP//8EwcPHoS1tTWePHkCX19f2NraarXP0tISXbt2LfS+Vdv5+Pjo7B15ma4vYn1fy/y8//776s90Tk7Oa8cuzGdUSqpzmRcpz5VUXvccFXTMBSnN74JZs2Zh4cKFKF++PGbMmIFGjRrB0dERCoUCANCjRw/88ssveX5vvmmv56vzQBWkoN8nfb9LDJ2+74euXbuiZcuW2LhxI/78808cOnQI69evx/r16zF27Fjs3LkTtWrVKnQ8vRKo9u3bY/jw4Xjy5Ak2btyIzp07F3pb1aSQjx49QkpKis5eKNVf5sUxgWTFihVx5coVjBo1CvXq1XvteL/++isAYPXq1TovqelzGbAwVOdEdY50KY7z5+vrq/4L88WLF/j999/Rp08fzJ8/H8HBwTonXMxLfreIqtZVqFBBXVaxYkVcunQJkZGRhbp8qw9HR0fUrFkT586dw5kzZ7Br1y6UK1cOPj4+AHITqHHjxmHXrl3q9+rLl+9U7QOgntqgsB9m1XaNGzfG3LlzJTqiomnfvj1GjBiBpKQkbNmyBe3bty+W/RTm/avqUn/5/av6g+Tp06c6t1HdTi0VFxcXXLp0Kc/3anHPMl7Q8WZlZZXa5MRSfBeovjcXLVqk83K+lN+bqvfRw4cP8ezZM529C2/K47KK+l2iOsb8jkOfz4iqRycxMRHJycnF3gvl4uKCa9eu4fr166hZs6bWetX3hWoaBSnY2NhoXNW4ffs2hg4dig0bNmDIkCHq6UAKQ6/0rXLlyggLCwMAjBgxAo8fP863/v3799XXsitUqKDujstrXhJVuT4/yoXVpk0bAP/7AL8u1bHr6vnYvn07Hj58qHM71RekPnNOAUDTpk1hZGSE06dP6+yOTUxMxLZt2wAUz/kDcsdOBAcHq8danT59Wq/tnzx5gj/++EOr/MGDB+q2vzyfT1Ffs8KeY1VCFBcXh/Pnz6t7pYDccR/W1tbYuXOnzvFPAODs7IzatWvj6dOn6vYXhuq4Nm7cKMl4ktdRpUoV9Riz4cOHIzk5uVj2o3pdV69erfOY169fj6SkJFhZWWnMo6P6gchrzibVODmpNGvWDEDue0KXn3/+Oc9ti/rZfpm9vT3MzMzw+PFjnUMltm/fnmd8KfZfWEX9Lsjve/PChQt6f6fkp0KFCvDw8AAA9VxnL8vIyMCaNWsk29/rKOp3ier9um3bNp2/xxs3btRrMuvy5cujTp06yMnJyXPes1e9zvtO9b2Q11xUqjb4+fkV24zuFStWxIQJEwDo/5umd3/onDlzUKVKFdy4cQNNmjTBwYMHtepkZmZiyZIleO+99zS++D7//HMAwP/7f/9PIwkQQmDSpEk4ffo0bG1tMWDAAH2bVaCRI0fC1tYWM2bMwHfffYfMzEytOjdu3MCKFSsKFU81SG3OnDka5ZcvX8agQYPy3E7Vw3LhwoXCNh1A7l8G3bp1gxACAwcO1BjkmZqaiqioKKSnp6NRo0Zo1KiRXrF1mT9/vs6BnHfv3sWJEycA6H/ZDMhNvF8e55SRkYGPP/4YqampqF+/Pho3bqxeFxUVBVdXV6xZswajRo3S+Vf53bt38cMPP2iUqc7xxYsX822LKiGaO3cuhBDqy3dA7g9Es2bNcPr0aRw6dAhKpVKjbSqTJk0CkDsxqq7kUAiBo0ePYseOHeqy9957D127dsXt27fRpUsXnX89pqamIi4uTj2otjjNmzcPVapUwZUrV9CoUaM8/wKLj4/XeO300a1bN1SqVEk9ke3LX7Y3btzAiBEjAOTOiq66nAMAAQEBMDIywvbt2zXaJYTA7Nmz8dtvvxWpPXmJjIyEpaUljhw5gtmzZ2us27dvHxYuXJjntkX9bL/M1NQUTZs2BQCMGTNG43LdmTNnMGTIkGLdvy5SfheovjfnzZuncWyJiYno06eP5Mnfp59+CiB3QtZLly6py7Ozs/H5559rTXhcmoryXeLn54f3338fz549w8cff6wxpu/27dvq31x9jBs3DgDw1Vdf6fx8Xbx4UeN3XZX03717t8BOlVcNGzYMJiYm+P3337V+e3fs2IFFixYBQJGO41WnTp3C6tWrdU4uqjrfev+mFeXWvXv37qknAQRyJ3D88MMPRVhYmAgICFDfxmltbS2OHj2q3i4nJ0c974yJiYlo0aKFCAsLU08eqFQqxZYtW7T2V9DtwUL8bxqD/Ozfv1896aSDg4MICAgQPXv2FO3bt1dPsdCgQQONbfK6jfq3334TMplMABC1atUS3bt3FwEBAerJ6VQTgb166+iZM2eEkZGRMDIyEi1bthQREREiMjJSY36rvI734cOHok6dOgLIncCzU6dOIjg4WNjb26tfh/wm0syLrv2p9uPu7i46dOggevbsKVq1aqWepCwgIEBkZWXle75VXp5Is0GDBsLc3Fy0b99ehISEqCcedXBwEJcuXdLa9vz58+o5gmxtbUXTpk1Fjx49RKdOnUT16tWFTCYTjo6OGttkZGSo47733nuiT58+IjIyUnzzzTca9Z49eyZMTU3V751X5wBRTRwLHbfRvlrPxMREALnzXLVr10706NFDBAYGqie4GzVqlMY2KSkpokWLFgLIneDP19dXhISEiG7duglfX1/1/CeqSRhfPo+v3rL/ssJ8DnS5d++euj34v7lS2rdvL3r16iW6du0qateurfF+P3funMb2Bd1CL4TmRJqurq4iNDRUtG3bNt+JNIX439QBxsbGwt/fX3Tp0kVUrlxZmJqaii+//DLfaQyKcq5++eUX9USatWrVEmFhYaJp06ZCJpOJzz77LM/tVPP/WFpaii5duojIyEgRGRmpfl8Xpk1C5E6xoHr9PT09RXBwsGjYsKEwNTUVffv2zfP7YdOmTer3U/v27UW/fv1EZGSkemqQN+G74OVjq1KliggJCRGtW7cWSqVS1KhRQ3Tu3FnnrfUFTf+S123y2dnZokOHDurzEhQUJLp37y7c3d2FQqFQzwUl5TxQuhT2tS/Kd8mFCxfUvwHOzs4iJCREtG/fXpibm4sPPvigSBNpTp48Wf159/b2FqGhoaJjx46ievXqOrcJDg4WAETFihVFWFiY+r2vkt/UMosWLVJPpPn++++LHj16iMaNG6v3n99Emvq8H1RTOiiVStG4cWPRvXt3jcmLzczMdE7knZ8iJVAqW7duFX369BFVqlQRlpaWwtTUVJQvX14EBgaKmTNnikePHuncbuXKlcLf31/Y2toKU1NTUbFiRREeHq7zB1QI6RIoIXJ/KL7++mvx/vvvCysrK2FmZiYqVKggGjVqJMaNGyfOnj2rUT+/eWgOHDggWrRoIcqVKyfMzc1FzZo1xeTJk0VGRka+Pyjr168XjRs3FlZWVuo3ycvx8zve1NRUERMTI3x8fIS5ublQKBSiWrVqYvTo0RpzIakU9Utz06ZN4qOPPhLvvfeesLe3V58nf39/sWzZMq0Z2/Pz8pfHs2fPxMiRI4W7u7swMzMTjo6OIjw8XNy6dSvP7VNSUsQ333wjGjZsqH7PODk5CV9fXzFy5EityfOEyJ1MrWPHjsLe3l794dT15eXn5ycA7Qkyhcj9YlK9r6ZNm5bvMZ47d05ERUWJqlWrCoVCIczNzYWHh4cICgoSs2fPFnfu3NHaJjs7W6xcuVK0bdtWODo6ClNTU2FnZydq1qwpIiIixPr16zXOc3EmUCq7du0S/fr1E15eXsLa2lqYmJiIMmXKiPfff18MHDhQ7Ny5U+eM5YVJoIQQ4tatW+Ljjz8WHh4ewszMTFhZWYmGDRuKBQsW5PkjnJOTI7777jtRrVo1YWZmJsqWLSs6dOggTp48WeA8UEU9V3/++acICgoS1tbWwtzcXLz33nti0aJF+W6XnZ0tYmJiRI0aNTQm3FSdk8L+iAohxJEjR0SrVq2EtbW1UCqVok6dOmL+/PkiJycn3++HH374Qbz//vvqedVe/pF5E74LhMidPLFjx47CyclJKBQKUbVqVfHFF1+IlJSUPH8Yi5pACZE7aeZ3330nqlevLuRyubCzsxMffvihOH36dKHmjHtVcSZQQhTtu+TmzZsiPDxcODo6CjMzM+Hh4SFGjRolUlNT8/xsFnROjxw5IsLCwoSLi4swNTUVZcuWFXXq1BFffPGF1h+bjx49EgMHDhSVKlXS+KNUpaDz/Ndff4ng4GBRvnx5YWJiIuzs7ES7du20JtAsbNt17S8xMVFMnTpVtG3bVri7uwtzc3NhbW0tqlevLj7++OM884/8yIR4Q24TIyIiInpLvFn3hBIRERG9BZhAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEREREemJCRQRERGRnphAEb3DYmNjIZPJcOLEiRLd7/jx4yGTyfDw4cMS3S8AyGQyjB8/vsT3S0SGhQkUEdH/mTJlCn7//fcibbt69Wr06tULVatWhUwmg7+/v856+/btg0wm07n89ddfRW88EZUok9JuABGRlNLS0mBiUrSvtilTpiA4OBidOnXSe9sFCxbg5MmT8PX1xaNHjwqs/8knn8DX11ejrEqVKnrvl4hKBxMoInqnKBSKUtnv8uXL4eLiAiMjI9SsWbPA+n5+fggODi6BlhFRceAlPKK33J07dxAZGQlnZ2fI5XK4u7vjo48+QmZmprpORkYGhg8fDnt7e1hYWKBz58548OCBVqytW7fCz88PFhYWsLKyQrt27XDhwgWtepcuXUJISAjs7e2hVCrh5eWFr776Kt923rx5E1WqVEHNmjVx7949AIC/vz9q1qyJkydPolGjRlAqlXB3d8fChQu1tr9//z4iIyPh6OgIhUKBOnXqYNmyZVr1Xh0DpRqPdfXqVYSHh8PW1hY2NjaIiIjA8+fPNbZLTU3FsmXL1JfUwsPD8z2ml1WsWBFGRvp9pT59+hQvXrzQaxsiejOwB4roLZaQkID69evjyZMniIqKgre3N+7cuYO1a9dqJAdDhw5FmTJlMG7cOMTHx2PmzJkYMmQIVq9era6zfPly9O3bF0FBQZg2bRqeP3+OBQsWoEmTJjh16hTc3NwAAGfPnoWfnx9MTU0RFRUFNzc3XLt2DX/88QcmT56ss53Xrl1DQEAAypYti507d6JcuXLqdUlJSWjbti1CQkIQFhaGX3/9FR999BHMzMzQr18/ALmX5fz9/XH16lUMGTIE7u7uWLNmDcLDw/HkyRMMGzaswHMVEhICd3d3xMTE4O+//8aPP/4IBwcHTJs2TX38/fv3R/369REVFQUAqFy5sn4viB4iIiLw7NkzGBsbw8/PD9OnT0e9evWKbX9EJDFBRG+tPn36CCMjI3H8+HGtdTk5OWLp0qUCgGjZsqXIyclRr/vss8+EsbGxePLkiRBCiKdPnwpbW1sxYMAAjRh3794VNjY2GuVNmzYVVlZW4ubNm1r7Uxk3bpwAIB48eCD++ecf4ezsLHx9fcXjx481tmnWrJkAIL777jt1WUZGhvDx8REODg4iMzNTCCHEzJkzBQCxYsUKdb3MzEzRsGFDYWlpKVJSUtTlAMS4ceO02tKvXz+NfXfu3FnY2dlplFlYWIi+fftqnUt91ahRQzRr1kznukOHDomuXbuKn376SWzYsEHExMQIOzs7oVAoxN9///3a+yaiksFLeERvqZycHPz+++/o0KGDzp4LmUym/v+oqCiNf/v5+SE7Oxs3b94EAOzcuRNPnjxBWFgYHj58qF6MjY3RoEED7N27FwDw4MEDHDhwAP369UOlSpXy3J/K+fPn0axZM7i5uWHXrl0oU6aMVh0TExMMHDhQ/W8zMzMMHDgQ9+/fx8mTJwEAW7ZsQfny5REWFqauZ2pqik8++QTPnj3D/v37CzxfgwYN0vi3n58fHj16hJSUlAK3lVKjRo2wdu1a9OvXDx07dsSXX36Jv/76CzKZDNHR0SXaFiIqOl7CI3pLPXjwACkpKYUasPxqsqNKZJKSkgAAV65cAQAEBATo3N7a2hoAcP36dQAo1D4BoEOHDnB0dMT27dthaWmps46zszMsLCw0yjw9PQEA8fHx+OCDD3Dz5k1UrVpVa4xRtWrVAECdCOYnv3OgOr7SUqVKFXz44YdYt24dsrOzYWxsXKrtIaKCMYEiMgB5/SALIQDk9mYBueOAypcvr1WvqNMCdO3aFcuWLUNcXJxGL1NpKOgclLaKFSsiMzMTqamppZ7QEVHBmEARvaXs7e1hbW2N8+fPv3Ys1WBpBwcHtGzZMs96Hh4eAFDofU6fPh0mJiYYPHgwrKys0KNHD606CQkJSE1N1eiF+vfffwFAPXDd1dUVZ8+eRU5OjkYv1KVLl9TrpaDrMmRJuX79OhQKRZ49dUT0ZuEYKKK3lJGRETp16oQ//vhD56Na9OlZCQoKgrW1NaZMmYKsrCyt9aopD+zt7dG0aVMsWbIEt27dKnB/MpkMixcvRnBwMPr27YuNGzdq1Xnx4gUWLVqk/ndmZiYWLVoEe3t71K1bFwDQtm1b3L17V+OuwRcvXmDOnDmwtLREs2bNCn2s+bGwsMCTJ08kiZUXXdNHnDlzBhs3bkSrVq30ngqBiEoHe6CI3mJTpkzBjh070KxZM0RFRaFatWpITEzEmjVrcPDgwULHsba2xoIFC9C7d2+8//776N69O+zt7XHr1i1s3rwZjRs3xty5cwEAs2fPRpMmTfD+++8jKioK7u7uiI+Px+bNm3H69Gmt2EZGRlixYgU6deqEkJAQbNmyRWOslbOzM6ZNm4b4+Hh4enpi9erVOH36NBYvXgxTU1MAuYPgFy1ahPDwcJw8eRJubm5Yu3YtDh06hJkzZ8LKyur1TuT/qVu3Lnbt2oUZM2bA2dkZ7u7uaNCgQaG2PXDgAA4cOAAgN0lKTU3FpEmTAABNmzZF06ZNAQChoaFQKpVo1KgRHBwccPHiRSxevBjm5uaYOnWqJMdBRCWgdG8CJKLXdfPmTdGnTx9hb28v5HK58PDwEB9//LHIyMhQT2Pw6jQHe/fuFQDE3r17tcqDgoKEjY2NUCgUonLlyiI8PFycOHFCo9758+dF586dha2trVAoFMLLy0t8/fXX6vUvT2Og8vz5c9GsWTNhaWkp/vrrLyFE7jQGNWrUECdOnBANGzYUCoVCuLq6irlz52od571790RERIQoV66cMDMzE7Vq1RJLly7Vqoc8pjF4uS1CCPW5uXHjhrrs0qVLomnTpkKpVAoAek1poNqPruXl9syaNUvUr19flC1bVpiYmAgnJyfRq1cvceXKlULvi4hKn0yIN2QEJREZHH9/fzx8+FCScVxERCWJF9uJiIiI9MQxUEREecjOztY56PtllpaWvHOOyAAxgSIiysPt27fh7u6eb51x48ZpPLyYiAwDx0AREeUhPT29wLsZPTw81PNjEZHhYAJFREREpCcOIiciIiLSExMoIiIiIj1xEPlb6tB7dSWNd2uu9qNAimrjhtuSxQKA50/TJI1namYqaTw7J1tJ4yU9SJE0ntRyXuRIFqt1R2nHDl3697mk8f6f12+SxvvTLlTSePtPSjsCo8l70v1NvXmvtK+FubmZpPEavi9tPCvFC0njtawtlzTeyzabekkes13WZcljvunYA0VERESkJ/ZAERERGRCZqay0m/BOMMgeqPnz50MmkxX6IaGvunjxIsaPH4/4+HhpG0ZERERvBYNMoOLi4uDm5oZjx47h6tWrem9/8eJFTJgwgQkUERG9dYxMZJIvhsjgEqgbN27g8OHDmDFjBuzt7REXF1es+xNCIC1N2kHQRERERSUzNZJ8MUQGd9RxcXEoU6YM2rVrh+DgYJ0J1KpVq1C3bl1YWVnB2toatWrVwqxZswAAsbGx6NatGwCgefPmkMlkkMlk2LdvHwDAzc0N7du3x/bt21GvXj0olUosWrQIAHD9+nV069YNZcuWhbm5OT744ANs3ry5ZA6ciIiIJGOQCVSXLl1gZmaGsLAwXLlyBcePH1ev37lzJ8LCwlCmTBlMmzYNU6dOhb+/Pw4dOgQAaNq0KT755BMAwOjRo7F8+XIsX74c1apVU8e4fPkywsLCEBgYiFmzZsHHxwf37t1Do0aNsH37dgwePBiTJ09Geno6OnbsiPXr15fsSSAiIoPFS3jSMKi78E6ePIlLly5hzpw5AIAmTZqgQoUKiIuLg6+vLwBg8+bNsLa2xvbt22FsbKwVw8PDA35+fpg9ezYCAwPh7++vVefq1avYtm0bgoKC1GWfffYZ7t27hz///BNNmjQBAAwYMAC1a9fG8OHD8eGHH8LIyODyWSIiKmG8C08aBvWLHRcXB0dHRzRv3hwAIJPJEBoailWrViE7OxsAYGtri9TUVOzcubPI+3F3d9dIngBgy5YtqF+/vjp5AgBLS0tERUUhPj4eFy9eLPL+iIiIqGQZTAKVnZ2NVatWoXnz5rhx4wauXr2Kq1evokGDBrh37x52794NABg8eDA8PT3Rpk0bVKhQAf369cO2bdv02pe7u7tW2c2bN+HlpT37q+rS382bN/OMl5GRgZSUFI0lM0e62aCJiMhw8BKeNAwmgdqzZw8SExOxatUqVK1aVb2EhIQAgHowuYODA06fPo2NGzeiY8eO2Lt3L9q0aYO+ffsWel9KpVLStsfExMDGxkZjWX7vrqT7ICIiosIzmDFQcXFxcHBwwLx587TWrVu3DuvXr8fChQuhVCphZmaGDh06oEOHDsjJycHgwYOxaNEifP3116hSpQpkMv2zbVdXV1y+rP2soEuXLqnX5yU6OhrDhw/XKDvp10zvNhAREXEMlDQMIoFKS0vDunXr0K1bNwQHB2utd3Z2xi+//IKNGzeiZcuWsLOzU68zMjJC7dq1AeReSgMACwsLAMCTJ08K3Ya2bdti5syZOHLkCBo2bAgASE1NxeLFi+Hm5obq1avnua1cLodcrvlgSTMOOCcioiIw1EtuUjOIBGrjxo14+vQpOnbsqHP9Bx98oJ5Uc9WqVXj8+DECAgJQoUIF3Lx5E3PmzIGPj496vJKPjw+MjY0xbdo0JCcnQy6XIyAgAA4ODnm24csvv8Qvv/yCNm3a4JNPPkHZsmWxbNky3LhxA7/99hvvwCMiInqLGEQCFRcXB4VCgcDAQJ3rjYyM0K5dO8TFxeGXX37B4sWLMX/+fDx58gTly5dHaGgoxo8fr05yypcvj4ULFyImJgaRkZHIzs7G3r17802gHB0dcfjwYYwaNQpz5sxBeno6ateujT/++APt2rUrluMmIiJ6lcyYPVBSMIgEauPGjQXWWbp0KZYuXQoA6Nq1a4H1+/fvj/79+2uV5/d8PA8PD6xZs6bA2ERERPRmM4gEioiIiHIZsQdKEkygiIiIDIjMiAmUFDhymYiIiEhP7IEiIiIyIDJj9p1IgQkUERGRAeEYKGkwgXpLPfrhmKTxmq/uLVmsh/7LJYsFAE9SsiWNZ2FuLGm8nGwhaTyZdxlJ48nNJA2HzCzpYsXfzpQuGAA7O3nBlfSw2aKnpPHSkqX9y9/cXNrPxrEL0j1j09JK2tfCWOIf/abbPpI03iKvBZLGa1lb0nBUDJhAERERGRAOIpcGL4QWk/DwcLi5uZV2M4iIiKgYGFwCFRsbC5lMlufy119/lXYTiYiIio2RsUzyxRAZ7CW8iRMnwt3dXau8SpUqpdAaIiKiksFHuUjDYBOoNm3aoF69eqXdDCIiInoLGdwlvMKIj4+HTCbDt99+i8WLF6Ny5cqQy+Xw9fXF8ePHter//vvvqFmzJhQKBWrWrIn169frjJuamooRI0agYsWKkMvl8PLywrfffgshpL2Li4iIKC8yIyPJF0NksD1QycnJePjwoUaZTCaDnZ2d+t8rV67E06dPMXDgQMhkMnzzzTfo0qULrl+/DlNTUwDAjh070LVrV1SvXh0xMTF49OgRIiIiUKFCBY3YQgh07NgRe/fuRWRkJHx8fLB9+3aMHDkSd+7cwffff1/8B01ERAaPd+FJw2ATqJYtW2qVyeVypKenq/9969YtXLlyBWXK5M7L4+XlhQ8//BDbt29H+/btAQCjRo2Co6MjDh48CBsbGwBAs2bN0KpVK7i6uqpjbdy4EXv27MGkSZPw1VdfAQA+/vhjdOvWDbNmzcKQIUNQuXLlYjteIiIiko7BJlDz5s2Dp6enRpmxseYEi6GhoerkCQD8/PwAANevXwcAJCYm4vTp0/jyyy/VyRMABAYGonr16khNTVWXbdmyBcbGxvjkk0809jFixAisXbsWW7duxZAhQ6Q5OCIiojwY6l1zUjPYBKp+/foFDiKvVKmSxr9VyVRSUhIA4ObNmwCAqlWram3r5eWFv//+W/3vmzdvwtnZGVZWVhr1qlWrphFLl4yMDGRkZGiUZWWawNRM2pl+iYiIqHAMc+RXIb3aI6VS0oO+Y2JiYGNjo7GsjZ1aom0gIqJ3g8xIJvliiJhAvQbVGKcrV65orbt8+bJW3YSEBDx9+lSj/NKlSxqxdImOjkZycrLGEhz+5es2n4iIDBDvwpOGYR61RJycnODj44Nly5YhOTlZXb5z505cvHhRo27btm2RnZ2NuXPnapR///33kMlkaNOmTZ77kcvlsLa21lh4+Y6IiKj0GOwYqK1bt6p7f17WqFEjGOmRTcfExKBdu3Zo0qQJ+vXrh8ePH2POnDmoUaMGnj17pq7XoUMHNG/eHF999RXi4+NRp04d7NixAxs2bMCnn37KO/CIiKhEGOolN6kZbAI1duxYneVLly6Fv79/oeO0bt0aa9aswZgxYxAdHY3KlStj6dKl2LBhA/bt26euZ2RkhI0bN2Ls2LFYvXo1li5dCjc3N0yfPh0jRox4zaMhIiKikiQTnAb7rbTxRLak8eqv7itZrDX+yyWLBQBPUqQ9Vgtz3TcHFFVOtrQfIan/OpSbSRoOmVnSxXqcJGEwSP/aVnWV9rVIy5B21MStBGk/Gy9e5EgWKy1N2rYZS3zr/fD/hkoab5HXAknjjQ6V9r38sgsfBkges8aGPZLHfNMZbA8UERGRIeIlPGlwEDkRERGRntgDRUREZEAMddoBqTGBIiIiMiC8hCcNpqFEREREemIP1Fvqhx/+lTTe9qpzC65USG07eUsWCwCaxLSWNN6tfWcljYeZqyQN57oxRtJ4VzefkDSeV0gzyWJ9nPhJwZX0kPL4acGV9HDqqLRfkTkS3uUGAB7VnCSNd+4v7acqFNV7fl6SxQKA1FRp79j8KHm0pPGy/rwuaTyEaj9jVSrsgZIGe6CIiIiI9MQeKCIiIgPCHihpvPU9ULGxsZDJZDhxQvdlitu3b2PChAmoX78+ypQpg3LlysHf3x+7du3Se19paWmIjIxEzZo1YWNjA0tLS9SpUwezZs1CVpZm9/L48eMhk8nw8OFD7Nu3DzKZrFALERFRceLDhKXxzvdAbdiwAdOmTUOnTp3Qt29fvHjxAj///DMCAwOxZMkSREREFDpWWloaLly4gLZt28LNzQ1GRkY4fPgwPvvsMxw9ehQrV67UuV21atWwfLnm7NzR0dGwtLTEV1999VrHR0RERCXvnU+gmjdvjlu3bqFcuXLqskGDBsHHxwdjx47VK4EqW7Ys/vrrL42yQYMGwcbGBnPnzsWMGTNQvnx5re0cHR3Rq1cvjbKpU6eiXLlyWuVERETFyUjix+IYqne+361GjRoayRMAyOVytG3bFv/99x+ePn39u3bc3NwAAE+ePHntWERERMVJZiSTfDFE73wPVF7u3r0Lc3NzmJub671tZmYmUlJSkJaWhhMnTuDbb7+Fq6srqlSpUgwtJSIiojeNQSZQV69exbp169CtWzcYG+v/xOt169YhLCxM/e969ephyZIlMDExyNNJRERvEUMd9C01g/vFf/78Obp16walUompU6cWKUbz5s2xc+dOPHnyBLt378aZM2eQmpoqcUuJiIjoTWVQCVR2dja6d++OixcvYuvWrXB2di5SHEdHRzg6OgIAgoODMWXKFAQGBuLKlSs6B5G/royMDGRkZGiUZWdnwtjYTPJ9ERHRu81QxyxJzaD68QYMGIBNmzYhNjYWAQEBksUNDg7Gs2fPsGHDBsliviwmJgY2NjYay9VTi4tlX0RE9G7jIHJpGEwCNXLkSCxduhTff/+9xvglKaSlpQEAkpOTJY2rEh0djeTkZI2lyntRxbIvIiIiKphBXMKbPn06vv32W4wePRrDhg0rcpyHDx/Czs5Oa8bwH3/8EUDuYPLiIJfLIZfLNcp4+Y6IiIqCg8il8c4kUEuWLMG2bdu0yl1dXfHFF1+gatWqqFatGlasWKGxPjAwUD2eqSArVqzAwoUL0alTJ3h4eODp06fYvn07du7ciQ4dOkh6WZCIiIjeXO9MArVgwQKd5ZGRkQCAK1euoHfv3lrr9+7dW+gEqkmTJjh8+DB++eUX3Lt3DyYmJvDy8sKMGTMwdOjQojeeiIiohBjqmCWpvfUJVHh4OMLDw/Oto7rE9rrq1auHX3/9tVB1x48fj/Hjx+e5/vz585K0iYiISB+8hCcNnkUiIiIiPb31PVBSyMzMxOPHj/OtY2NjA6VSWUItIiIiKiYyXsKTAhMoAIcPH0bz5s3zrbN06dICLxUSERG96TgGShpMoADUqVMHO3fuzLdOjRo1Sqg1RERE9KZjAgWgTJkyaNmyZWk3g4iIqNhxELk0mEC9pTLTMwqupIekh88ki9Xi536SxQKAy8s2SxrPK6K9pPEeiEeSxpMZG0saz7Obn6TxjO0dJIuleCLthLAPnqdLGi/H7M2esFYm8e9g+vM0yWJJPcxG6ngZz6X9Dk179lzSePTmYwJFRERkQDgGShpMoIiIiAwIL+FJwyDPYmxsLGQyGU6cOJFnHZlMpnOZOnWqRr3w8PA86yoUCgCAm5tbnnVeXmJjY4vzsImIiN4IGRkZGDVqFJydnaFUKtGgQYMCb+Z62erVq9GwYUNYWFjA1tYWjRo1wp49e4qxxdrYA5WPwMBA9OnTR6Psvffe06onl8t1znZu/H9jWWbOnIlnz/43xmjLli345Zdf8P3336NcuXLq8kaNGknVdCIiIp3ehEt44eHhWLt2LT799FNUrVoVsbGxaNu2Lfbu3YsmTZrku+348eMxceJEBAcHIzw8HFlZWTh//jzu3LlTQq3PxQQqH56enujVq1eB9UxMTPKt16lTJ41/3717F7/88gs6deoENze312wlERFR4ZV2AnXs2DGsWrUK06dPx+effw4A6NOnD2rWrIkvvvgChw8fznPbv/76CxMnTsR3332Hzz77rKSarJNBXsLTR1paGtLTpb2zh4iIyFCtXbsWxsbGiIqKUpcpFApERkbiyJEjuH37dp7bzpw5E+XLl8ewYcMghNC4ulPSmEDlIzY2FhYWFlAqlahevTpWrlyZZ92HDx9qLSkpKSXYWiIiokIwMpJ+0cOpU6fg6ekJa2trjfL69esDAE6fPp3ntrt374avry9mz54Ne3t7WFlZwcnJCXPnztX7NLwuXsLLQ6NGjRASEgJ3d3ckJCRg3rx56NmzJ5KTk/HRRx9p1E1NTYW9vb1WjKCgIGzbtq2kmkxERFQqMjIykJGhObeWXC6HXC7XqpuYmAgnJyetclVZQkKCzn0kJSXh4cOHOHToEPbs2YNx48ahUqVKWLp0KYYOHQpTU1MMHDhQgqMpHCZQeTh06JDGv/v164e6deti9OjRCA8P13iwsEKhwB9//KEV4+UB4kRERG8CWTE8TDgmJgYTJkzQKBs3bhzGjx+vVTctLU1nYqW6cz0tTfeErqrLdY8ePcKqVasQGhoKAAgODkatWrUwadIkJlBvIjMzMwwZMgSDBg3CyZMnNe4SMDY2LtZHwejK7HOyM2Fk/GbPkkxERG+e4pgHKjo6GsOHD9co05UkAYBSqdT6TQOgHm/8cgfFq9sBgKmpKYKDg9XlRkZGCA0Nxbhx43Dr1i1UqlSpSMegL46B0kPFihUBAI8fPy7R/cbExMDGxkZjuX5uSYm2gYiIKC9yuRzW1tYaS14JlJOTExITE7XKVWXOzs46tytbtiwUCgXs7OzU0wSpODjkPmIqKSnpdQ5DL0yg9HD9+nUA0DneqThFR0cjOTlZY/GoJe3z5oiIyDDIjGSSL/rw8fHBv//+q3Wj1dGjR9XrdTEyMoKPjw8ePHiAzMxMjXWqcVMl+fvMBEqHBw8eaJU9ffoUM2fORLly5VC3bt0SbY+uzJ6X74iI6G0UHByM7OxsLF68WF2WkZGBpUuXokGDBuqrPbdu3cKlS5c0tg0NDUV2djaWLVumLktPT0dcXByqV6+eZ+9VcTDoMVBLlizReZdcUlISdu/ejQ4dOqBSpUpITEzEkiVLcOvWLSxfvhxmrzyh/cWLF1ixYoXOfXTu3BkWFhbF0n4iIiK9lfKz8Bo0aIBu3bohOjoa9+/fR5UqVbBs2TLEx8fjp59+Utfr06cP9u/fDyGEumzgwIH48ccf8fHHH+Pff/9FpUqVsHz5cty8eVPnzVzFyaATqAULFugs//nnn3Hu3Dn8+OOPePToESwsLFC/fn0sWbIEAQEBWvUzMjLQu3dvnbFu3LjBBIqIiN4YpT0TOZD7O/v1119j+fLlSEpKQu3atbFp0yY0bdo03+2USiX27NmDL774AkuWLEFqaip8fHywefNmBAUFlVDrc8nEy6kdvTWC+p6WNJ6dk3RTLiypEydZLAC4vGyzpPG8ItpLGu/B+9LGs93yU8GV9CCTS3u518ShvGSxPr3Sp+BKerh9RdpnYZmavdmXyr18Kkoa79ius5LFatTaR7JYAPD8eZak8a5fkPa9kvbsuaTxdizXfu6qVB5Pkv5W/7JjFkke801n0D1QREREhkYm4/BnKTCBIiIiMiRvwCW8dwHTUCIiIiI9sQeKiIjIgBTHTOSGiAnUW0rqwa02dpaSxbr+6w7JYgFA5U6NJY23b8BSSeM12iftYM9nt7Rn6H0dKf89kjRehYB6ksVKjL8vWSwAkJsrJI33pnvxIkfSeFlp6ZLFevY0s+BKeniRlS1pPDOFtN+hL7KkHeRObz4mUERERAbkTZjG4F3ABIqIiMiQ8C48SfAsviQ2NhYymQwnTpzIs45MJtO5TJ06VaNeeHg4LC0tNeIWtLi5uRXn4REREZFE2ANVBIGBgejTR3MCwPfey3scTNOmTbF8+XKNsv79+6N+/fqIiopSl6kSLiIiouLCS3jSYAJVBJ6enujVq1eh63t4eMDDw0OjbNCgQfDw8NArDhEREb0ZmEAVUVpaGmQyGRQKw7rrh4iI3nKcxkASPItFEBsbCwsLCyiVSlSvXh0rV64s7SYREREVSmHG5Oq7GCL2QOmpUaNGCAkJgbu7OxISEjBv3jz07NkTycnJ+Oijj0q7eURERFQCmEDp6dChQxr/7tevH+rWrYvRo0cjPDwcSqWylFpGRERUCLyEJwmexddkZmaGIUOG4MmTJzh58mSx7CMjIwMpKSkaS3a2tLP8EhGRYZAZySRfDBETKAlUrFgRAPD48eNiiR8TEwMbGxuN5drpH4plX0RERFQwJlASuH79OgDA3t6+WOJHR0cjOTlZY6nsM6BY9kVERO84mZH0iwHiGCg9PHjwQCtJevr0KWbOnIly5cqhbt26xbJfuVwOuVyuUWZsLO2DMImIiKjwmEDpsGTJEmzbtk2rPCkpCbt370aHDh1QqVIlJCYmYsmSJbh16xaWL18OMzMmNURE9IYz0DFLUmMCpcOCBQt0lv/88884d+4cfvzxRzx69AgWFhaoX78+lixZgoCAgBJuJRERkf5kBnrJTWpMoF4SHh6O8PDwfOv07t27ULFiY2MRGxub5/pnz57p0TIiIiJ6kzCBIiIiMiS8hCcJJlBEREQGRMaJNCXBs0hERESkJ/ZAERERGRIDffiv1NgDRURERKQn9kC9pRwrSTvrubmFqWSxMr9ZJVksAMhMuyRpvIb7Wkga7+70byWNVym0raTxMmq2ljSeeCjd62Hzn7VksQDA3FIhaTwhhKTxsjJeSBqvbFlpj9fe1VmyWOWdzCWLBQDmSmn/3s/Olva1lZvLC670puAYKEkwgSIiIjIkvIQnCaahRERERHp64xOo2NhYyGQynDhxIs86MplM5zJ16tQi7fPatWvo0aMHHBwcoFQqUbVqVXz11Vcadfz9/SGTydChQwet7ePj4yGTyfDtt/+7tLNv3z6NtpmamsLDwwN9+vRRP4yYiIiouMmMjCRfDNE7cwkvMDAQffr00Sh777339I5z+vRp+Pv7w8XFBSNGjICdnR1u3bqF27dv66y/adMmnDx5stAPEv7kk0/g6+uLrKws/P3331i8eDE2b96Mc+fOwdlZuvEHREREVHzemQTK09MTvXr1eq0YOTk56N27N7y9vbF3714olcp861eqVAlPnz7FhAkTsHHjxkLtw8/PD8HBwQCAiIgIeHp64pNPPsGyZcsQHR39Wu0nIiIqEJ+FJ4l36iympaUhPT29yNvv2LED58+fx7hx46BUKvH8+XNkZ2fnWd/KygqfffYZ/vjjD/z9999F2qfqIcQ3btwo0vZERER6MZJJvxigdyaBio2NhYWFBZRKJapXr46VK1fqHWPXrl0AALlcjnr16sHCwgLm5ubo3r07Hj9+rHObYcOGoUyZMhg/fnyR2n3t2jUAgJ2dXZG2JyIiopL3TiRQjRo1wuTJk/H7779jwYIFMDY2Rs+ePbFgwQK94ly5cgUAEBISAm9vb6xduxajRo3Cb7/9hg4dOuicE8ba2hqffvppoXuhnj59iocPHyIxMRFbtmzBsGHDIJPJ0LVrV73aSkREVBQymZHkiyF6J8ZAHTp0SOPf/fr1Q926dTF69GiEh4cXOJZJ5dmzZwAAX19frFixAgDQtWtXmJubIzo6Grt370bLli21ths2bBhmzpyJCRMmYMOGDfnuo1+/fhr/tre3x7Jly1CvXr1CtZGIiOi1GOglN6m9k2mjmZkZhgwZgidPnuDkyZOF3k6VaIWFhWmU9+jRAwBw+PBhndvZ2Njg008/xcaNG3Hq1Kl89zF27Fjs3LkTe/bswdmzZ5GQkIDevXvnu01GRgZSUlI0luwXGYU9LCIiIpLYO5lAAUDFihUBIM+xS7qophFwdHTUKHdwcAAAJCUl5bntsGHDYGtriwkTJuS7j1q1aqFly5Zo3rw5atWqBROTgjsBY2JiYGNjo7GcOTCrwO2IiIi0yIykXwzQO3vUqskp7e0L/8w41VxOd+7c0ShPSEgoMJaqF2rDhg0F9kLpKzo6GsnJyRpLnabDJN0HERERFd5bn0A9ePBAq+zp06eYOXMmypUrV+gJLgHgww8/hFwux9KlS5GTk6Mu//HHHwHkTtaZn08//RS2traYOHFiofdZGHK5HNbW1hqLsclb9OBKIiJ6c8hk0i8G6K0ZRL5kyRJs27ZNqzwpKQm7d+9Ghw4dUKlSJSQmJmLJkiW4desWli9fDjMzs0Lvo3z58vjqq68wduxYtG7dGp06dcKZM2fwww8/ICwsDL6+vvlub2Njg2HDhhV4GY+IiKjUGOijV6T21iRQeU1J8PPPP+PcuXP48ccf8ejRI1hYWKB+/fpYsmSJepJKfYwZMwZlypTBnDlz8Omnn2okVYXx6aefYubMmUhOTtZ730RERPR2eOMTqPDwcISHh+dbp6C72PQhk8kwZMgQDBkyJN96+/bt01lua2uLJ0+eaJX7+/vrnEeKiIioRBnooG+pvfEJFBEREUmI80BJwiASqLS0tAIvqZUtW1av8VJERERkuAwigVq9ejUiIiLyrbN37174+/uXTIOIiIhKCy/hScIgEqigoCDs3Lkz3zp16tQpodYQERHR284gEignJyc4OTmVdjOIiIhKn4HO2yQ1g0ig3kVJD6SdJsFMYSpZLK+jP0gWCwBePHokabzsdGmfI1ipfw9J4x0b9r2k8TzbHJM03nMT6br/X4j3JYsFAI/uPpE0npGxtJc6pL4TN/66saTxHt6+K1msu4nlJYsFAJZW0o5RTX70VNJ4T5OeSRoPcJY43ks4D5QkeBaJiIiI9MQeKCIiIkPCS3iSMLgeqNjYWMhkMpw4cSLfevfu3cPAgQPh4uIChUIBNzc3REZG6qy7b98+dOnSBeXLl4eZmRkcHBzQoUMHrFu3DkDuJJoymazAZfz48VIfLhERERUD9kDpcPv2bTRu3BgAMGjQILi4uCAhIQHHjmmPJRk3bhwmTpyIqlWrYuDAgXB1dcWjR4+wZcsWdO3aFXFxcfjqq6/Qv39/9TbHjx/H7NmzMXr0aFSrVk1dXrt27eI/OCIiMmycxkASTKB0GDhwIExMTHD8+HHY2dnlWW/t2rWYOHEigoODsXLlSpia/m8g9siRI7F9+3ZkZWUhMDBQYzuFQoHZs2cjMDCQc08REVHJ4iBySTCBesWlS5ewdetWzJ8/H3Z2dkhPT4exsbFGcqTy9ddfo2zZsliyZInO9UFBQSXRZCIiIiphTENfsWvXLgCAo6MjWrRoAaVSCaVSiTZt2iA+Pl5d78qVK7h06RI6deoEKyurUmotERGRnmQy6RcDxATqFVeuXAEAREVFwczMDKtXr8bUqVNx8OBBtGzZEs+fPwcA/PPPPwCAWrVqlVpbiYiI9CYzkn4xQLyE94pnz3InQytfvjw2b94Mo/+7VlyhQgWEhYVh5cqV6N+/P1JSUgCAvU9EREQGyDDTxnwolUoAQEhIiDp5AoBu3brBxMQEhw8fBgBYW1sDAJ4+lXY2W10yMjKQkpKisWRnSzubNhERGQhewpMEE6hXODvnTp/v6OioUW5sbAw7OzskJSUBALy9vQEA586dK/Y2xcTEwMbGRmP598SiYt8vERER6cYE6hV169YFANy5c0ejPDMzEw8fPoS9vT0AwNPTE15eXtiwYYP6sl9xiY6ORnJyssbiWW9gse6TiIjeUUZG0i8GyDCPOh/+/v5wcHBAXFwc0tPT1eWxsbHIzs7WmNNpwoQJePToEfr3748XL15oxdqxYwc2bdr02m2Sy+WwtrbWWIyN5a8dl4iIDI+QySRfDJHBDiJfsmQJtm3bplU+bNgwTJ8+HX379kXTpk3Ru3dv3Lp1C7NmzYKfnx+6dOmirhsaGopz585h8uTJOHXqFMLCwtQzkW/btg27d+/GypUrS/KwiIiIqAQYbAK1YMECneXh4eHo06cPzMzMMHXqVIwcORK2trYYOHAgpkyZAmNjY436kyZNQkBAAGbPno0FCxbg8ePHKFOmDD744ANs2LABHTt2LInDISIiKhwDnXZAagaXQIWHhyM8PLzAet27d0f37t0LFTMgIAABAQGFbkNwcDCEEIWuT0REJBkmUJLgWSQiIiLSk8H1QBERERkyQx30LTX2QBERERHpiT1QREREhoRjoCTBBIqIiMiQ8BKeJJhAvaVEjrR38ZmZGRdcqZBu/LZbslgAUL5uFUnjPfrntqTxjIM/kzSeQ7UVksb7e94JSePVG1ZfslhGxtL+JSz158LIVNofmuxsadtnYird5xYAjE2l+0nIkfhO42dPMyWNJzPQ2bNJOkygiIiIDAmTR0nwLBIRERHpiQnUS2JjYyGTyXDiRP6XPO7du4eBAwfCxcUFCoUCbm5uiIyM1KgTHh4OS0tLjbgFLW5ubsV1aERERAD4LDyp8BKenm7fvo3GjRsDAAYNGgQXFxckJCTg2LFjeW7TtGlTLF++XKOsf//+qF+/PqKiotRlqoSLiIio2PAuPEkwgdLTwIEDYWJiguPHj8POzq5Q23h4eMDDw0OjbNCgQfDw8ECvXr2Ko5lERERvrIyMDIwdOxbLly9HUlISateujUmTJiEwMFCvOIGBgdi1axc+/vhjzJ07t5haqxvTUD1cunQJW7duxciRI2FnZ4f09HRkZWWVdrOIiIgKTciMJF/0FR4ejhkzZqBnz56YNWsWjI2N0bZtWxw8eLDQMdatW4cjR47ovW+pMIHSw65duwAAjo6OaNGiBZRKJZRKJdq0aYP4+PjSbRwREVFhyGTSL3o4duwYVq1ahZiYGEyfPh1RUVHYs2cPXF1d8cUXXxQqRnp6OkaMGIFRo0YV5QxIggmUHq5cuQIAiIqKgpmZGVavXo2pU6fi4MGDaNmyJZ4/f17KLSQiInqzrV27FsbGxhpjgBUKBSIjI3HkyBHcvl3wXH3ffPMNcnJy8PnnnxdnU/PFMVB6ePbsGQCgfPny2Lx5M4z+by6NChUqICwsDCtXrkT//v1Ls4lERET5KsolNymdOnUKnp6esLa21iivXz93kt7Tp0+jYsWKeW5/69YtTJ06FUuWLIFSqSzWtuaHPVB6UL1QISEh6uQJALp16wYTExMcPny4WPabkZGBlJQUjSU7W9pZeYmIiIpK1+9URkaGzrqJiYlwcnLSKleVJSQk5LuvESNG4L333kP37t1fv+GvgQmUHpydnQHkjoF6mbGxMezs7JCUlFQs+42JiYGNjY3G8u/JhcWyLyIiescVwxgoXb9TMTExOneflpYGuVyuVa5QKNTr87J371789ttvmDlzpiSn4nXwEp4e6tatCwC4c+eORnlmZiYePnwIe3v7YtlvdHQ0hg8frlHWa5S0z3MjIiIDUQyX8HT9TulKkoDcqzm6eqfS09PV63V58eIFPvnkE/Tu3Ru+vr6v2eLXxwRKD/7+/nBwcEBcXBxGjx6tzpZjY2ORnZ2t9/wVhSWXy7XeiMbGZsWyLyIiIn3p+p3Ki5OTk1ZHBJB7aQ/439WeV/3888+4fPkyFi1apHXn+9OnTxEfHw8HBweYm5vr1/giYgKlw5IlS7Bt2zat8mHDhmH69Ono27cvmjZtit69e+PWrVuYNWsW/Pz80KVLl1JoLRERUeGV9qNXfHx8sHfvXqSkpGgMJD969Kh6vS63bt1CVlaW+mkgL/v555/x888/Y/369ejUqVNxNFsLEygdFixYoLM8PDwcffr0gZmZGaZOnYqRI0fC1tYWAwcOxJQpU2BsbFzCLSUiItJTKd+FFxwcjG+//RaLFy9WT0OQkZGBpUuXokGDBuo78G7duoXnz5/D29sbANC9e3edyVXnzp3Rtm1bDBgwAA0aNCix42AC9ZLw8HCEh4cXWK979+4Fjv6PjY1FbGxsnutVUyIQEREZkgYNGqBbt26Ijo7G/fv3UaVKFSxbtgzx8fH46aef1PX69OmD/fv3QwgBAPD29lYnU69yd3cvsZ4nFSZQREREBkSgdC/hAbmX3L7++muNZ+Ft2rQJTZs2Le2mFRoTKCIiIipRCoUC06dPx/Tp0/Oss2/fvkLFUvVQlTQmUERERAaktGcif1cwgSIiIjIkTKAkwbNIREREpCf2QL2lTEylfemMjKUbVOjeraVksQBAppB2UjSlm6uk8dJS839uk76yvVwkjefUoJqk8RKOXJQsluJ9aSeEzcnOkTSekbG0f2PKjKRtn5VV4SYuLCxTuXSvh4WFtK+tiam0r8WTR9J+h0r9nVycSnseqHcFe6CIiIiI9PT2pMxvOX9/fzx8+BDnz58v7aYQEZEB4yByafAs5iM2NhYymQwnTpzIt969e/cwcOBAuLi4QKFQwM3NDZGRkSXUSiIiIj3IZNIvBog9UK/p9u3b6ufyDBo0CC4uLkhISMCxY8dKuWVERERUXJhAvaaBAwfCxMQEx48fh52dXWk3h4iIKF+8hCcNnsXXcOnSJWzduhUjR46EnZ0d0tPTkZWVle82J0+eRKNGjaBUKuHu7o6FCxeWUGuJiIhyH+Ui9WKImEC9hl27dgEAHB0d0aJFCyiVSiiVSrRp0wbx8fFa9ZOSktC2bVvUrVsX33zzDSpUqICPPvoIS5YsKeGWExER0etgAvUarly5AgCIioqCmZkZVq9ejalTp+LgwYNo2bIlnj9/rlE/ISEBo0aNwpw5czB06FDs3r0bPj4+iI6OLrDnioiISApCZiT5YogM86gl8uzZMwBA+fLlsXnzZoSEhODzzz/HDz/8gGvXrmHlypUa9U1MTDBw4ED1v83MzDBw4EDcv38fJ0+eLNG2ExERUdExgXoNSqUSABASEgIjo/+dym7dusHExASHDx/WqO/s7AwLCwuNMk9PTwDQeclPJSMjAykpKRpL9osMiY6CiIgMCqcxkAQTqNfg7OwMIHcM1MuMjY1hZ2eHpKQkSfYTExMDGxsbjeXS8QWSxCYiIsMiYCT5YogM86glUrduXQDAnTt3NMozMzPx8OFD2Nvba5QnJCQgNTVVo+zff/8FALi5ueW5n+joaCQnJ2ss3r4fSXAEREREVBRMoF6Dv78/HBwcEBcXh/T0dHV5bGwssrOzERgYqFH/xYsXWLRokfrfmZmZWLRoEezt7dXJmC5yuRzW1tYai7GJtA8RJSIiwyBkMskXQ8SJNAthyZIl2LZtm1b5sGHDMH36dPTt2xdNmzZF7969cevWLcyaNQt+fn7o0qWLRn1nZ2dMmzYN8fHx8PT0xOrVq3H69GksXrwYpqamJXU4RERE9JqYQBXCggW6xxuFh4ejT58+MDMzw9SpUzFy5EjY2tpi4MCBmDJlCoyNjTXqlylTBsuWLcPQoUPxww8/wNHREXPnzsWAAQNK4jCIiIgMdtoBqTGBykd4eDjCw8MLrNe9e3d079493zr79u1T//+rd+cRERGVFEOdOVxqTEOJiIiI9MQeKCIiIgPCS3jSYAJFRERkQAz1rjmpMQ0lIiIi0pNMCCFKuxGkv2/X5Uga7+qVZMliKcylnZLB0VEpabwr/zySNJ6VrbTtMzGV9u+a7GxpP+IWFtK9vl2WB0gWCwBm+/0mabza7zsWXEkPjx9nShqvm1+KpPG8b22VLNbvyt6SxQKAuw8lDYcbN55JGi+m3g5J45k37ippvJf99+95yWNW8Kwpecw3HXugiIiIiPTEMVBEREQGhIPIpfFWnsXY2FjIZDKcOHGitJtSaPHx8ZDJZDqXVatWlXbziIjIQAjIJF8MEXugSlhYWBjatm2rUdawYcNSag0REREVBROoEvb++++jV69epd0MIiIyULyEJ4138ixmZmZi7NixqFu3LmxsbGBhYQE/Pz/s3btXo57qstq3336LefPmwcPDA+bm5mjVqhVu374NIQT+3//7f6hQoQKUSiU+/PBDPH78WCOGm5sb2rdvjx07dsDHxwcKhQLVq1fHunXr8mxfamoqMjOlvRuHiIioMHgJTxrvZAKVkpKCH3/8Ef7+/pg2bRrGjx+PBw8eICgoCKdPn9aqHxcXh/nz52Po0KEYMWIE9u/fj5CQEIwZMwbbtm3DqFGjEBUVhT/++AOff/651vZXrlxBaGgo2rRpg5iYGJiYmKBbt27YuXOnVt0JEybA0tISCoUCvr6+2LFD2ltfiYiIqPi9k5fwypQpg/j4eJiZmanLBgwYAG9vb8yZMwc//fSTRv07d+7gypUrsLGxAQBkZ2cjJiYGaWlpOHHiBExMck/TgwcPEBcXhwULFkAul6u3//fff/Hbb7+hS5cuAIDIyEh4e3tj1KhRCAwMBAAYGRmhVatW6Ny5M1xcXHD9+nXMmDEDbdq0wcaNG9GuXbtiPSdEREQAL+FJ5Z08i8bGxurkKScnB48fP8aLFy9Qr149/P3331r1u3Xrpk6eAKBBgwYAgF69eqmTJ1V5ZmYm7ty5o7G9s7MzOnfurP63tbU1+vTpg1OnTuHu3bsAgEqVKmH79u0YNGgQOnTogGHDhuHUqVOwt7fHiBEjpDt4IiIiKnbvZAIFAMuWLUPt2rWhUChgZ2cHe3t7bN68GcnJ2jNuV6pUSePfqmSqYsWKOsuTkpI0yqtUqQLZK88W8vT0BJA7ziovZcuWRUREBC5fvoz//vsvz3oZGRlISUnRWF5kZeRZn4iIKC8cAyWNdzKBWrFiBcLDw1G5cmX89NNP2LZtG3bu3ImAgADk5Gg/AsXY2FhnnLzKpXz6jSpJe3Vw+stiYmJgY2OjsexZN1WyNhARkeEQMpnkiyF6J8dArV27Fh4eHli3bp1Gz9C4ceOKZX9Xr16FEEJjX//++y+A3Lv08nP9+nUAgL29fZ51oqOjMXz4cI2y+Vulfd4cERERFd472QOl6jl6uafo6NGjOHLkSLHsLyEhAevXr1f/OyUlBT///DN8fHxQvnx5ALkD0F91584dLFmyBLVr14aTk1Oe8eVyOaytrTUWE1N5nvWJiIjyIoRM8sUQvdU9UEuWLMG2bdu0yv39/bFu3Tp07twZ7dq1w40bN7Bw4UJUr14dz55J+wRuIHe8U2RkJI4fPw5HR0csWbIE9+7dw9KlS9V1vvjiC1y7dg0tWrSAs7Mz4uPjsWjRIqSmpmLWrFmSt4mIiIiKz1udQC1YsEBn+a1bt/Ds2TMsWrQI27dvR/Xq1bFixQqsWbMG+/btk7wdVatWxZw5czBy5EhcvnwZ7u7uWL16NYKCgtR1WrVqhYULF2LevHlISkqCra0tmjZtijFjxuD999+XvE1ERES6iHfz4lOJkwkpR0QbIDc3N9SsWRObNm0q0f1+u057MPzruHpF++7EolKYSzs+y9FRKWm8K/88kjSela207TMxlfbLLTtb2o+4hYV0r2+X5QGSxQKA2X6/SRqv9vuOksZ7/FjaJxB080uRNJ73ra2Sxfpd2VuyWABw96Gk4XDjhrRXI2LqSTspsnnjrpLGe9m/125JHtOzcqWCK71jmIYSERER6emtvoRHRERE+jHUeZukxgSKiIjIgDCBkgYTqNeU30zjRERE9G5iAkVERGRA2AMlDd6F95Ya93OWpPEqukh3Z9Wf++9KFgsAsjJfSBrP1Ezavxts7SwkjZec9FzSeFIzkvCxDaZyaV+LDyc2kjTewTlnJI0ntexsae/GfZby5j5j00wh7XvFxdlc0ng3b0l7V9+cT60ljfeyf67dkTxmtcouksd807EHioiIyIAY6szhUivRaQxkMhnGjx9fkrskIiKilwjIJF8MUZESqNjYWMhkMshkMhw8eFBrvRACFStWhEwmQ/v27V+7kcVt37596uORyWQwNTWFh4cH+vTpo37Y74wZMyCTybBr16484/zwww+QyWTYuHEjgNxHyshkMlStWlVn/Z07d6r3uXbtWukPjIiIiIrFa/VAKRQKrFy5Uqt8//79+O+//yCXaz7wNi0tDWPGjHmdXRarTz75BMuXL8fixYvRrl07rF69Gr6+vkhISED37t1hZGSk83hVVq5cCTs7O7Rp00ZdplAocPXqVRw7dkyrflxcHBQKRbEcCxERkS7sgZLGayVQbdu2xZo1a/DiheYg35UrV6Ju3booX768RrlCoYCJyesPu0pNTX3tGLr4+fmhV69eiIiIwJw5c/Dtt9/i8ePHWLZsGZydndG8eXOsW7cOGRnaAy3v3LmDAwcOoFu3bjA1/d+A7MqVK8PLywu//PKLRv309HSsX78e7dq1K5ZjISIi0oUJlDReK4EKCwvDo0ePsHPnTnVZZmYm1q5dix49emjV1zUG6s6dO4iMjISzszPkcjnc3d3x0UcfITMz95lRqsuF+/fvx+DBg+Hg4IAKFSqot58/fz5q1KgBuVwOZ2dnfPzxx3jy5MnrHJZaQEDuc7pu3LgBAOjVqxeSk5OxefNmrbqrVq1CTk4OevbsqbUuLCwMq1evRk7O/+6Y+eOPP/D8+XOEhIRI0lYiIiIqOa+VQLm5uaFhw4YavStbt25FcnIyunfvXuD2CQkJqF+/PlatWoXQ0FDMnj0bvXv3xv79+/H8ueat3IMHD8bFixcxduxYfPnllwCA8ePH4+OPP4azszO+++47dO3aFYsWLUKrVq2QlfX6t/lfu3YNAGBnZwcA6NKlS56XLVeuXAlXV1c0btxYa12PHj2QmJiIffv2adRv0aIFHBwcXrudREREhSWETPLFEL329bQePXogOjoaaWlpUCqViIuLQ7NmzeDs7FzgttHR0bh79y6OHj2KevXqqcsnTpyIV6enKlu2LHbv3g1jY2MAwIMHDxATE4NWrVph69atMDLKzQW9vb0xZMgQrFixAhEREXody9OnT/Hw4UNkZWXh1KlTGDZsGGQyGbp2zX0qtrW1NTp06IA//vgDKSkpsLbOnafj8uXL+PvvvxEdHQ2Zjjlyqlatinr16mHlypUICAjAkydPsGXLFvzwww96tY+IiIjeDK89jUFISAjS0tKwadMmPH36FJs2bdJ5+e5VOTk5+P3339GhQweN5Enl1URkwIAB6uQJAHbt2oXMzEx8+umn6uRJVc/a2lrnZbaC9OvXD/b29nB2dka7du2QmpqKZcuWabSvV69eSE9Px7p169Rlqh4pXZfvVHr06IF169apL3EaGxujc+fOereRiIjodeRAJvliiF67B8re3h4tW7bEypUr8fz5c2RnZyM4OLjA7R48eICUlBTUrFmzUPtxd3fX+PfNmzcBAF5eXhrlZmZm8PDwUK/Xx9ixY+Hn5wdjY2OUK1cO1apV0xr03qZNG5QtWxYrV65EeHg4AOCXX35BnTp1UKNGjTxjd+/eHZ9//jm2bt2KuLg4tG/fHlZWVoVqV0ZGhtbA9RdZRjAxleexBRERkW6GOuhbapJMpNmjRw9s3boVCxcuRJs2bWBraytFWA1KpVLymK+qVasWWrZsiebNm6NWrVo67xg0NTVFSEgI9uzZg3v37uH48eO4cuVKvr1PAODk5AR/f3989913OHDgQKF66VRiYmJgY2OjsRzcNE3v4yMiIiJpSJJAde7cGUZGRvjrr78KnRjY29vD2toa58+fL9I+XV1dAeSOP3pZZmYmbty4oV5fHHr27Ins7GysXr0aK1euhEwmQ1hYWIHb9ejRA3/++Sesra3Rtm3bQu8vOjoaycnJGkuT9qNe5xCIiMhAcRC5NCR5Fp6lpSUWLFiA+Ph4dOjQoVDbGBkZoVOnTlixYgVOnDihNQ5KCKFzQLZKy5YtYWZmhtmzZ6N169bquj/99BOSk5OLdX6lxo0bw83NDStWrMB///2HZs2aaUytkJfg4GDcvn0bXl5eMDMzK/T+5HK51qSkJqbSPkyYiIiICk+yhwn37dtX722mTJmCHTt2oFmzZoiKikK1atWQmJiINWvW4ODBg/leCrS3t0d0dDQmTJiA1q1bo2PHjrh8+TLmz58PX19f9OrV6zWOJn8ymQw9evTAlClTAOTeNVgYNjY2fBYgERGVKo6BkoZkCVRRuLi44OjRo/j6668RFxeHlJQUuLi4oE2bNjA3Ny9w+/Hjx8Pe3h5z587FZ599hrJlyyIqKgpTpkzRmA28OPTs2RNTpkyBXC4v1KB5IiKiN4GhXnKTmky8OuESvRXG/SztJbyKLtIlnH/uvytZLADIynxRcCU9mJpJ+3eDrZ2FpPGSk54XXKkUGeVzaV1fpnJpX4sPJzaSNN7BOWckjSe17Oycgivp4VmK9mOq3hRmCmnfKy7OBf+Rro+bt55JGm/Op9aSxnvZictJkses51VG8phvulLtgSIiIqKSxUt40ninE6i0tDQkJyfnW6ds2bJ6DegmIiJ6m/ESnjTe6QRq9erVBT7OZe/evfD39y+ZBhEREdE74Z1OoIKCgrBz585869SpU6eEWkNERFT6pB05Z7je6QTKyckJTk5Opd0MIiIiese80wnUu2z4veGSxttbbaZksUxMjQuupAep78KTmsxI2vEExsaSPCCg2LzIypYsVpP6ZSWLBQD7ZpySNF6rcdoPOn8djX/+QtJ4M+4X/pFQhdG2sXQ3ZW//S9rvAaW5tPGqVJT2BvQm1d+eG9o5BkoaTKCIiIgMCO/Ck8ab/acuERER0RuICZQOFy5cQK9eveDi4gK5XA5nZ2f07NkTFy5c0KgXGxsLmUymXhQKBTw9PTFkyBDcu3dPK+69e/fw+eefw9vbG+bm5rCwsEDdunUxadIkPHnypISOjoiIDBkfJiwNXsJ7xbp16xAWFoayZcsiMjIS7u7uiI+Px08//YS1a9di1apV6Ny5s8Y2EydOhLu7O9LT03Hw4EEsWLAAW7Zswfnz59WPpDl+/Djatm2LZ8+eoVevXqhbty4A4MSJE5g6dSoOHDiAHTt2lPjxEhGRYeElPGkwgXrJtWvX0Lt3b3h4eODAgQOwt7dXrxs2bBj8/PzQu3dvnD17Fh4eHup1bdq0Qb16uYNN+/fvDzs7O8yYMQMbNmxAWFgYnjx5gs6dO8PY2BinTp2Ct7e3xn4nT56MH374oWQOkoiIiF4bL+G9ZPr06Xj+/DkWL16skTwBQLly5bBo0SKkpqbim2++yTdOQEAAAODGjRsAgEWLFuHOnTuYMWOGVvIEAI6OjhgzZoxER0FERJS3HCH9YoiYQL3kjz/+gJubG/z8/HSub9q0Kdzc3LB58+Z841y7dg0AYGdnBwDYuHEjlEolgoODpW0wERHRWygjIwOjRo2Cs7MzlEolGjRoUODE10DuMJvQ0FB4eHjA3NwcXl5eGDFiRKmMI2YC9X+Sk5ORkJBQ4MzktWvXxn///YenT59qbPvw4UP8999/WL16NSZOnAilUon27dsDAP755x94enrymXtERFTqBGSSL/oKDw/HjBkz0LNnT8yaNQvGxsZo27YtDh48mO92UVFR+Oeff9CrVy/Mnj0brVu3xty5c9GwYUOkpaUV9ZQUCcdA/R9VQmRlZZVvPdX6lJQUdVnLli016ri6uiIuLg4uLi7qugXFJSIiKgmlfdfcsWPHsGrVKkyfPh2ff/45AKBPnz6oWbMmvvjiCxw+fDjPbdeuXav1/Nq6deuib9++iIuLQ//+/Yuz6RqYQP0fVYLzcs+SLroSrXnz5sHT0xMmJiZwdHSEl5cXjIz+17lnbW1dYNz8ZGRkICMjQ7PsRTbkJtLOzEtERFTc1q5dC2NjY0RFRanLFAoFIiMjMXr0aNy+fRsVK1bUue2ryRMAdO7cGX379sU///xTXE3WiZfw/o+NjQ2cnJxw9uzZfOudPXsWLi4usLa2VpfVr18fLVu2hL+/P6pVq6aRPAGAt7c3/v33X2RmZhapbTExMbCxsdFYZuw5UaRYRERk2ISQftHHqVOn4OnpqfE7CuT+lgLA6dOn9Yp39+5dALk3e5UkJlAvad++PW7cuJHnNdg///wT8fHx6rFNhdWhQwekpaXht99+K1K7oqOjkZycrLEMD5D2GV1ERERFlZGRgZSUFI3l1SsnKomJiXByctIqV5UlJCTote9p06bB2Ni4xG/UYgL1kpEjR0KpVGLgwIF49OiRxrrHjx9j0KBBMDc3x8iRI/WKO2jQIDg5OWHEiBH4999/tdbfv38fkyZNynN7uVwOa2trjYWX74iIqChyIJN80XWlJCYmRuf+09LSIJfLtcoVCoV6fWGtXLkSP/30E0aMGIGqVasW7YQUEcdAvaRq1apYtmwZevbsiVq1amnNRP7w4UP88ssvqFy5sl5xy5Qpg/Xr16Nt27bw8fHRmIn877//xi+//IKGDRsWxyERERFpKI5B5NHR0Rg+fLhGma4kCQCUSqXO3qn09HT1+sL4888/ERkZiaCgIEyePFnPFr8+JlCv6NatG7y9vRETE6NOmuzs7NC8eXOMHj0aNWvWLFLcBg0a4Pz585g+fTo2b96M5cuXw8jICNWqVcOXX36JIUOGSHwkREREJUMul+eZML3KyckJd+7c0SpPTEwEADg7OxcY48yZM+jYsSNq1qyJtWvXwsSk5NMZJlA61KpVCytXriywXnh4OMLDwwsd18nJCTNmzMCMGTNeo3VERERFp++gb6n5+Phg7969SElJ0RhIfvToUfX6/Fy7dg2tW7eGg4MDtmzZAktLy+Jsbp44BoqIiMiAlPZEmsHBwcjOzsbixYvVZRkZGVi6dCkaNGignsLg1q1buHTpksa2d+/eRatWrWBkZITt27drPXatJLEHioiIiEpMgwYN0K1bN0RHR+P+/fuoUqUKli1bph5vrNKnTx/s378f4qUus9atW+P69ev44osvcPDgQY275h0dHREYGFhix8EEioiIyIC8CQ///fnnn/H1119j+fLlSEpKQu3atbFp0yY0bdo03+3OnDkDAPjmm2+01jVr1owJFBEREb27FAoFpk+fjunTp+dZZ9++fVplorQHcL2ECRQREZEBKe1n4b0rmEC9pa59OF7SeM/vS3c/QXZ2jmSxAEDkSBxP4r9g0lKL9oievLzIypY0nrGxtPeKSPn63rn3QrJYACCT+LaYxlPDJI137OPvJI2XPEzamZcTnhRu/p3CyMws/GSIhZEj8XWnxEcKSePliLfngfFvUCfOW4134RERERHpiQlUPmJjYyGTyRAfH68u8/f31/k0aCIiordBcTzKxRAZZAJ14cIF9OrVCy4uLpDL5XB2dkbPnj1x4cKF0m4aERERvQUMbgzUunXrEBYWhrJly2o9627t2rVYtWoVOnfunOf2O3bsKMHWEhERSYtjoKRhUAnUtWvX0Lt3b3h4eODAgQMaM5gOGzYMfn5+6N27N86ePQsPDw+dMczMzEqquURERJLjXXjSMKhLeNOnT8fz58+xePFirenfy5Urh0WLFiE1NVXnBF0qusZA3bx5Ex07doSFhQUcHBzw2WefYfv27ZDJZFrzWKxZswZ169aFUqlEuXLl0KtXL50PVSQiIqI3l0H1QP3xxx9wc3ODn5+fzvVNmzaFm5sbNm/eXOiYqampCAgIQGJiIoYNG4by5ctj5cqV2Lt3r1bd2NhYREREwNfXFzExMbh37x5mzZqFQ4cO4dSpU7C1tS3qoRERERXKmzAT+bvAYBKo5ORkJCQk4MMPP8y3Xu3atbFx40Y8ffq0UHEXLVqE69ev4/fff1fHHjhwIN577z2NellZWRg1ahRq1qyJAwcOQKHInYOkSZMmaN++Pb7//ntMmDChCEdGRERUeBwDJQ2DuYSnSoisrPKf7Ey1PiUlpVBxt23bBhcXF3Ts2FFdplAoMGDAAI16J06cwP379zF48GB18gQA7dq1g7e3t169XkRERFS6DKYHSpUYFdSzVNhES+XmzZuoXLkyZDLNQXlVqlTRqgcAXl5eWjG8vb01nij9qoyMDGRkZGiUZWZmwMxMXqg2EhERqQgDnbdJagbTA2VjYwMnJyecPXs233pnz56Fi4sLrK2tS6hlBYuJiYGNjY3GsnTRzNJuFhERkcEymAQKANq3b48bN27k2dvz559/Ij4+Hu3bty90TFdXV1y7dk3r+WpXr17VqgcAly9f1opx+fJl9XpdoqOjkZycrLFEDPy00G0kIiJSyRHSL4bIoBKokSNHQqlUYuDAgXj06JHGusePH2PQoEEwNzfHyJEjCx0zKCgId+7cwcaNG9Vl6enp+OGHHzTq1atXDw4ODli4cKHG5bitW7fin3/+Qbt27fLch1wuh7W1tcbCy3dERFQUQki/GCKDGQMFAFWrVsWyZcvQs2dP1KpVS2sm8ocPH+KXX35B5cqVCx1z4MCBmDt3LsLCwjBs2DA4OTkhLi5OPVBcNTbK1NQU06ZNQ0REBJo1a4awsDD1NAZubm747LPPiuWYiYiISHoGlUABQLdu3eDt7Y2YmBh10mRnZ4fmzZtj9OjRqFmzpl7xLC0tsWfPHgwdOhSzZs2CpaUl+vTpg0aNGqFr164ad9yFh4fD3NwcU6dOxahRo2BhYYHOnTtj2rRpnAOKiIhKhKH2GEnN4BIoAKhVqxZWrlxZYL3w8HCEh4drlL06szgAuLu7Y9OmTRplM2fOBABUqFBBozwkJAQhISF6tZeIiEgqOXyUiyQMagxUcUlLS9P4d3p6OhYtWoSqVavCxcWllFpFRERExcUge6Ck1qVLF1SqVAk+Pj5ITk7GihUrcOnSJcTFxZV204iIiDTwEp40mEBJICgoCD/++CPi4uKQnZ2N6tWrY9WqVQgNDS3tphEREVExYAIlgU8//RSffvppaTeDiIioQOyBkgYTKCIiIgNiqBNfSo0J1Fvq9yOFe1ZfYaWnpUsWy6t6OcliAUAZG2NJ4yU/zZE0nl0Zae/FuPVfpqTxpKZQSPd6fFj3vmSxAGD+70pJ401VFH5S3cJ4NOBjSeNFrG4paTyLwNWSxeqculOyWABwzaO1pPGW7bKVNF7zqo8KrqSXCgVXoVLFu/CKwb59+yCTyTSmPPD399d7jikiIiKpCSGTfDFE73wCFRsbC5lMpl4UCgU8PT0xZMgQ3Lt3r7SbR0RERG8hg7mEN3HiRLi7uyM9PR0HDx7EggULsGXLFpw/fx7m5ual3TwiIqISwUHk0jCYBKpNmzaoV68eAKB///6ws7PDjBkzsGHDBoSFhZVy64iIiEoGB5FL452/hJeXgIAAAMCVK1cgk8mwbNkyrTrbt2+HTCZTP6bl5s2bGDx4MLy8vKBUKmFnZ4du3bohPj6+0Ps9efIkGjVqBKVSCXd3dyxcuFCS4yEiIqKSY7AJ1LVr1wAAjo6O8PDwwK+//qpVZ/Xq1ShTpgyCgoIAAMePH8fhw4fRvXt3zJ49G4MGDcLu3bvh7++P58+fF7jPpKQktG3bFnXr1sU333yDChUq4KOPPsKSJUukPTgiIqI8CCH9YogM5hJecnIyHj58iPT0dBw6dAgTJ06EUqlE+/btcfPmTXz77bdISkpCmTJlAACZmZlYv349unTpAlNTUwBAu3btEBwcrBG3Q4cOaNiwIX777Tf07t073zYkJCTgu+++w/DhwwEAAwcORIMGDRAdHY3evXur90NERFRcDDXhkZrB9EC1bNkS9vb2qFixIrp37w5LS0usX78eLi4uCA0NRVZWFtatW6euv2PHDjx58kTjcSxK5f/mmMnKysKjR49QpUoV2Nra4u+//y6wDSYmJhg4cKD632ZmZhg4cCDu37+PkydPSnSkREREVNwMpgdq3rx58PT0hImJCRwdHeHl5QUjo9z8sU6dOvD29sbq1asRGRkJIPfyXbly5dRjpQAgLS0NMTExWLp0Ke7cuQPxUhqfnJxcYBucnZ1hYWGhUebp6QkAiI+PxwcffKBzu4yMDGRkZGiUvciSwcRUXogjJyIi+h8OIpeGwfRA1a9fHy1btoS/vz+qVaumTp5UQkNDsXfvXjx8+BAZGRnYuHEjunbtChOT/+WYQ4cOxeTJkxESEoJff/0VO3bswM6dO2FnZ4ecHGlnt35ZTEwMbGxsNJZDm74ptv0RERFR/gymB6ogoaGhmDBhAn777Tc4OjoiJSUF3bt316izdu1a9O3bF9999526LD09HU+ePCnUPhISEpCamqrRC/Xvv/8CANzc3PLcLjo6Wj1uSmXqr4Y58ysREb0ejoGSBhOo/1OtWjXUqlULq1evhqOjI5ycnNC0aVONOsbGxhqX7QBgzpw5yM7OLtQ+Xrx4gUWLFqmToczMTCxatAj29vaoW7duntvJ5XLI5ZqX60xM3+znpRER0ZupGC+YGBQmUC8JDQ3F2LFjoVAoEBkZqXWZr3379li+fDlsbGxQvXp1HDlyBLt27YKdnV2h4js7O2PatGmIj4+Hp6cnVq9ejdOnT2Px4sW8A4+IiOgtYjBjoAojNDQUOTk5eP78ucbddyqzZs1Cnz59EBcXhxEjRiAxMRG7du2CpaVloeKXKVMGW7ZswYkTJzBy5Ejcvn0bc+fOxYABA6Q+FCIiIp04D5Q03vkeqPDwcISHhxeqbpUqVbQu0b3M1tZW56SXr85E7u/vrxVn37596v8/fPhwodpDREQkNUNNeKTGHigiIiIiPb3zPVBERET0P5wHShrsgSIiIiLSE3ugiIiIDEh+Y32LzvDmJmQCRUREZEA4iFwaTKDeUtWrSjtv1NG/pZuY8/jBG5LFKg5pKc8ljWfrYCtpvOSHBT9XUR/GptJ+zNOfSXf+htueliwWAKSldpA0nndlG0njPSpnLWm87LZbJI0nn9xbsli/9t0oWSwAuHtG2tkfzRQvJI1X6aD2HdqvpfJYaeOR5JhAERERGRDORC4NDiInIiIi0pPBJlDnzp1DcHAwXF1doVAo4OLigsDAQMyZM6e0m0ZERFRsOBO5NAzyEt7hw4fRvHlzVKpUCQMGDED58uVx+/Zt/PXXX5g1axaGDh1a2k0kIiIqFpwHShoGmUBNnjwZNjY2OH78OGxtbTXW3b9/v3QaRURERG8Ng7yEd+3aNdSoUUMreQIABwcH9f/LZDIMGTIEv//+O2rWrAm5XI4aNWpg27ZtWtvduXMHkZGRcHZ2hlwuh7u7Oz766CNkZv7v7razZ8+iWbNmUCqVqFChAiZNmoSlS5dCJpNpPU+PiIioOPASnjQMsgfK1dUVR44cwfnz51GzZs186x48eBDr1q3D4MGDYWVlhdmzZ6Nr1664desW7OzsAAAJCQmoX78+njx5gqioKHh7e+POnTtYu3Ytnj9/DjMzM9y5cwfNmzeHTCZDdHQ0LCws8OOPP0Iul5fEIRMREQEARLFcw+NEmgbh888/R5s2beDj44P69evDz88PLVq0QPPmzWFqqjm/0j///IOLFy+icuXKAIDmzZujTp06+OWXXzBkyBAAQHR0NO7evYujR4+iXr166m0nTpyonvF12rRpSEpKwt9//w0fHx8AQEREBKpWrVoCR0xERERSMshLeIGBgThy5Ag6duyIM2fO4JtvvkFQUBBcXFywcaPm5G8tW7ZUJ08AULt2bVhbW+P69esAgJycHPz+++/o0KGDRvKkIpPlZuXbtm1Dw4YN1ckTAJQtWxY9e/YshiMkIiLSLUdIvxgig0ygAMDX1xfr1q1DUlISjh07hujoaDx9+hTBwcG4ePGiul6lSpW0ti1TpgySkpIAAA8ePEBKSkqBlwJv3ryJKlWqaJXrKntVRkYGUlJSNJaszIwCtyMiIqLiYbAJlIqZmRl8fX0xZcoULFiwAFlZWVizZo16vbGxsc7tiudhjLrFxMTAxsZGY9mwPKbE9k9ERO8ODiKXhkGOgcqL6hJcYmJiobext7eHtbU1zp8/n289V1dXXL16VatcV9mroqOjMXz4cI2yDX+bFbqNREREKjmGes1NYgbZA7V3716dPUhbtuQ+mNPLy6vQsYyMjNCpUyf88ccfOHHihNZ61X6CgoJw5MgRnD59Wr3u8ePHiIuLK3Afcrkc1tbWGoupGe/eIyIiKi0G2QM1dOhQPH/+HJ07d4a3tzcyMzNx+PBhrF69Gm5uboiIiNAr3pQpU7Bjxw40a9YMUVFRqFatGhITE7FmzRocPHgQtra2+OKLL7BixQoEBgZi6NCh6mkMKlWqhMePH6sHmxMRERUnQ73kJjWDTKC+/fZbrFmzBlu2bMHixYuRmZmJSpUqYfDgwRgzZozOCTbz4+LigqNHj+Lrr79GXFwcUlJS4OLigjZt2sDc3BwAULFiRezduxeffPIJpkyZAnt7e3z88cewsLDAJ598AoVCUQxHSkREpIkJlDQMMoFq3bo1WrduXWC9vAaK65o1vFKlSli2bFm+8Xx8fHDgwAGNsk8//RQKhQLlypUrsD1ERET0ZjDIBKq0pKWlQalUqv/96NEjLF++HE2aNMnzbj8iIiIp5bALShJMoEpQw4YN4e/vj2rVquHevXv46aefkJKSgq+//rq0m0ZERER6YAJVgtq2bYu1a9di8eLFkMlkeP/99/HTTz+hadOmpd00IiIyECKntFvwbmACVYKmTJmCKVOmlHYziIjIgJXkRNDvMoOcB4qIiIjodbAH6i116NhTSeOlP8+SLFZA68oFV9KDjaW0c2TdfyztX1/2ZaRt392H0vavS/3HpqmpdMe7w85HslgAYGSSJGm8U+fSJY2X/CRN0nj9s1ZKGm/v0N8ki1VjeGPJYgFAyIheksYbcSNM0niHAkdJGi9Q0miacngJTxLsgSIiIiLSE3ugiIiIDAjHQEmDPVB6OnfuHIKDg+Hq6gqFQgEXFxcEBgZizpw5hY6RkJCA8ePHazwXj4iIqCTkCOkXQ8QESg+HDx9GvXr1cObMGQwYMABz585F//79YWRkhFmzZhU6TkJCAiZMmMAEioiI6C3FS3h6mDx5MmxsbHD8+HGt5+Xdv3+/dBpFRESkB2GoXUYSYw+UHq5du4YaNWrofNiwg4OD+v937tyJJk2awNbWFpaWlvDy8sLo0aMBAPv27YOvry8AICIiAjKZDDKZDLGxsSVxCEREZOCEkH4xROyB0oOrqyuOHDmC8+fPo2bNmjrrXLhwAe3bt0ft2rUxceJEyOVyXL16FYcOHQIAVKtWDRMnTsTYsWMRFRUFPz8/AECjRo1K7DiIiIjo9TCB0sPnn3+ONm3awMfHB/Xr14efnx9atGiB5s2bw9TUFEBu71NmZia2bt2KcuXKacVwdHREmzZtMHbsWDRs2BC9ekk7twkREVF+cngJTxK8hKeHwMBAHDlyBB07dsSZM2fwzTffICgoCC4uLti4cSMAqC/vbdiwATmcrYyIiEhLRkYGRo0aBWdnZyiVSjRo0AA7d+4s1LZ37txBSEgIbG1tYW1tjQ8//BDXr18v5hZrYwKlJ19fX6xbtw5JSUk4duwYoqOj8fTpUwQHB+PixYsIDQ1F48aN0b9/fzg6OqJ79+749ddfXyuZysjIQEpKisaS/SJDwqMiIiJDIYSQfNFXeHg4ZsyYgZ49e2LWrFkwNjZG27ZtcfDgwXy3e/bsGZo3b479+/dj9OjRmDBhAk6dOoVmzZrh0aNHRT0lRcIEqojMzMzg6+uLKVOmYMGCBcjKysKaNWugVCpx4MAB7Nq1C71798bZs2cRGhqKwMBAZGdnF2lfMTExsLGx0VhO7Joh8REREZEhEDnSL/o4duwYVq1ahZiYGEyfPh1RUVHYs2cPXF1d8cUXX+S77fz583HlyhVs2rQJX3zxBT777DPs2LEDiYmJ+O67717jrOiPCZQE6tWrBwBITEwEABgZGaFFixaYMWMGLl68iMmTJ2PPnj3Yu3cvAEAm0+9ZYtHR0UhOTtZY6rUcLu1BEBERlYC1a9fC2NgYUVFR6jKFQoHIyEgcOXIEt2/fzndbX19f9d3sAODt7Y0WLVrg119/LdZ2v4oJlB727t2rs6tyy5YtAAAvLy88fvxYa72Pjw+A3EtxAGBhYQEAePLkSaH2K5fLYW1trbEYm8iLcARERGTocoSQfNHHqVOn4OnpCWtra43y+vXrA0Cek0zn5OTg7Nmz6k6LV7e9du0anj59qldbXgfvwtPD0KFD8fz5c3Tu3Bne3t7IzMzE4cOHsXr1ari5uSEiIgLjx4/HgQMH0K5dO7i6uuL+/fuYP38+KlSogCZNmgAAKleuDFtbWyxcuBBWVlawsLBAgwYN4O7uXspHSEREpL+MjAx1J4GKXC6HXK79x35iYiKcnJy0ylVlCQkJOvfx+PFjZGRkFLitl5eX3u0vCvZA6eHbb79F8+bNsWXLFgwfPhzDhw/HsWPHMHjwYBw9ehS2trbo2LEjKlWqhCVLluDjjz/GvHnz0LRpU+zZswc2NjYAAFNTUyxbtgzGxsYYNGgQwsLCsH///lI+OiIiMgTFMYhc11jdmJgYnftPS0vTmVgpFAr1+ry2A1CkbYsDe6D00Lp1a7Ru3TrfOgEBAQgICCgwVseOHdGxY0epmkZERFQoxTEPVHR0NIYP1xybqyvRAQClUqnVWwUA6enp6vV5bQegSNsWByZQRERE9Fryulyni5OTE+7cuaNVrroRy9nZWed2ZcuWhVwuV9fTZ9viwEt4REREBqS0n4Xn4+ODf//9FykpKRrlR48eVa/XxcjICLVq1cKJEye01h09ehQeHh6wsrLSrzGvgQkUERGRARE5QvJFH8HBwcjOzsbixYvVZRkZGVi6dCkaNGiAihUrAgBu3bqFS5cuaW17/PhxjSTq8uXL2LNnD7p16/YaZ0V/vIRHREREJaZBgwbo1q0boqOjcf/+fVSpUgXLli1DfHw8fvrpJ3W9Pn36YP/+/RrTBw0ePBg//PAD2rVrh88//xympqaYMWMGHB0dMWLEiBI9DiZQREREBkTfeZuKw88//4yvv/4ay5cvR1JSEmrXro1NmzahadOm+W5nZWWFffv24bPPPsOkSZOQk5MDf39/fP/997C3ty+h1ueSiaI8xIZK3Wdzn0kaLy01S7JY1jYKyWIBgIWltHl+SkqmpPGqVraQNF7iPeleCwBIlfC1BQBrazPJYikU0o4iuPNfqqTxlOamksZLTZX2vde9lbTn7/hV6d7LkeW3SBYLALJ2bJQ03jjL6ZLGq1HNuuBKehgUJGk4DUNnphRcSU9zPpX2+N8G7IEiIiIyIPqOWSLdDH4Q+b59+yCTybB27dpi31d4eDjc3Nw0ymQyGcaPH1/s+yYiIgJKfxD5u6JUEqhz584hODgYrq6uUCgUcHFxQWBgIObMmVPoGAkJCRg/fnyez8wBcpOjLl26oHz58jAzM4ODgwM6dOiAdevWSXAUREREZKhKPIE6fPgw6tWrhzNnzmDAgAGYO3cu+vfvDyMjI8yaNavQcRISEjBhwoQ8E6hx48ahefPmOH/+PAYOHIiFCxdi5MiRePbsGbp27YqVK1dKdERERERvjxwh/WKISnwM1OTJk2FjY4Pjx4/D1tZWY939+/cl2cfatWsxceJEBAcHY+XKlTA1/d9A0JEjR2L79u3IypJ2YC0REdHbwFAvuUmtxHugrl27hho1amglTwDg4OCg/v+dO3eiSZMmsLW1haWlJby8vDB69GgAuZfmfH19AQARERGQyWSQyWSIjY0FAHz99dcoW7YslixZopE8qQQFBaF9+/YaZTk5OZg8eTIqVKgAhUKBFi1a4OrVq1rbrlmzBnXr1oVSqUS5cuXQq1cvnVPS//7776hZsyYUCgVq1qyJ9evXF/ocERER0ZutxHugXF1dceTIEZw/fx41a9bUWefChQto3749ateujYkTJ0Iul+Pq1as4dOgQAKBatWqYOHEixo4di6ioKPj5+QEAGjVqhCtXruDSpUvo16+fXlO6T506FUZGRvj888+RnJyMb775Bj179lRPLQ8AsbGxiIiIgK+vL2JiYnDv3j3MmjULhw4dwqlTp9RJ4Y4dO9C1a1dUr14dMTExePToESIiIlChQoUinjUiIiJpcPYiaZR4AvX555+jTZs28PHxQf369eHn54cWLVqgefPm6t6inTt3IjMzE1u3bkW5cuW0Yjg6OqJNmzYYO3YsGjZsiF69eqnXbdyYO1dIrVq19GpXeno6Tp8+DTOz3DluypQpg2HDhqkTvaysLIwaNQo1a9bEgQMHoFDkznXUpEkTtG/fHt9//z0mTJgAABg1ahQcHR1x8OBB2NjYAACaNWuGVq1awdXVVc8zRkRERG+aEr+EFxgYiCNHjqBjx444c+YMvvnmGwQFBcHFxUWd/Kh6cjZs2ICcnBy94qseTqjvAwUjIiLUyRMAda/W9evXAQAnTpzA/fv3MXjwYHXyBADt2rWDt7c3Nm/eDCD3idCnT59G37591cmT6rirV6+uV5uIiIiklpMjJF8MUalMY+Dr64t169YhKSkJx44dQ3R0NJ4+fYrg4GBcvHgRoaGhaNy4Mfr37w9HR0d0794dv/76a6GSKWvr3NlQnz59qlebKlWqpPHvMmXKAACSkpIAADdv3gQAeHl5aW3r7e2tXq/6b9WqVbXq6dq2MDIyMpCSkqKxvMjKKFIsIiIybEIIyRdDVKoTaZqZmcHX1xdTpkzBggULkJWVhTVr1kCpVOLAgQPYtWsXevfujbNnzyI0NBSBgYHIzs7ON6a3tzeA3Lmm9GFsbKyz/E14Y8TExMDGxkZjOb7zu9JuFhERkcF6Y2Yir1evHoDcS2AAYGRkhBYtWmDGjBm4ePEiJk+ejD179mDv3r0Acmfw1sXT0xNeXl7YsGEDnj2T7nlxqrFLly9f1lp3+fJl9XrVf69cuaKzXlFER0cjOTlZY/ENLNmnThMR0buBM5FLo8QTqL179+rs1dmyJffBk15eXnj8+LHWeh8fHwC5l7MAwMIi96GXT5480ao7YcIEPHr0CP3798eLFy+01u/YsQObNm3Sq9316tWDg4MDFi5cqG4DAGzduhX//PMP2rVrBwBwcnKCj48Pli1bhuTkZHW9nTt34uLFi3rtU0Uul8Pa2lpjMTGVFykWERERvb4Svwtv6NCheP78OTp37gxvb29kZmbi8OHDWL16Ndzc3BAREYHx48fjwIEDaNeuHVxdXXH//n3Mnz8fFSpUQJMmTQAAlStXhq2tLRYuXAgrKytYWFigQYMGcHd3R2hoKM6dO4fJkyfj1KlTCAsLg6urKx49eoRt27Zh9+7des9EbmpqimnTpiEiIgLNmjVDWFiYehoDNzc3fPbZZ+q6MTExaNeuHZo0aYJ+/frh8ePHmDNnDmrUqCFprxgREZG+DLXHSGolnkB9++23WLNmDbZs2YLFixcjMzMTlSpVwuDBgzFmzBjY2tqiY8eOiI+Px5IlS/Dw4UOUK1cOzZo1w4QJE9R3tpmammLZsmWIjo7GoEGD8OLFCyxduhTu7u4AgEmTJiEgIACzZ8/GggUL8PjxY5QpUwYffPABNmzYgI4dO+rd9vDwcJibm2Pq1KkYNWoULCws0LlzZ0ybNk1jYtDWrVtjzZo1GDNmDKKjo1G5cmUsXboUGzZswL59+6Q4jUREREWS8waM7X0XyMSbMEqa9PbZXGl7stJSpXu0jbWNouBKerCwlDbPT0nJlDRe1coWksZLvCftY4ZSJXxtAcDa2qzgSoWkUEg7iuDOf6mSxlOaaz/J4HWkpkr73uveStrzd/yqdO/lyPJbJIsFAFk7Nkoab5zldEnj1ahmLWm8QUGShtMQPv6e5DFjxztKHvNNV+I9UERERFR6eAlPGkygiIiIDAgvPEnjjZnGgP5/e3ceV2P6/w/8dZ/SOoVKmy0pJUVIM9aprKHImpNphCn62McwGGt2ZsY2o5hkqZNsiRFpkmHGnjFZZ2wxhFQUqZSu3x++nZ/jLN3nOKlO7+fjcR4P517e93V3jnOucy3vixBCCCE1BbVAEUIIIbVIbV16Rd2oBYoQQgghREnUAlVDDfCQvfSMquwiRqstVhgLV1ssAHiSqd6ZSzp66p1ZlXFfva/Fs5xXao0nL2u/qooK1Terz8JKvTMYGzZSbzzHpur9pf4wW70zVI+nK17aSlmfqPHPtzDNU33BAOha91BrvCnHB6k1XqK9csmZK6be/7fvokHk6kEVKEIIIaQWoUHk6kFdeIQQQgghStLYCpSvry8MDAzw4sULuccEBARAR0cHOTk54DgOEyZMUBjTw8MDHMfB3t5e5v7k5GRwHAeO47Bnzx6p/bdv30ZISAhsbW2hp6cHY2NjdO7cGWvXrkVhYaFyN0gIIYSogJWVqf1RG2lsBSogIACFhYWIj4+Xuf/Vq1dISEhAnz59YGpqyjuunp4ebt26hXPnzknti4mJgZ6e7DEOhw4dgouLC3bt2gUfHx+sX78ey5YtQ5MmTfDNN99g8uTJvMtACCGEqKqsjKn9URtp7BgoX19fGBkZQSQSITAwUGp/QkICCgoKEBAQoFTc5s2bo7S0FLGxsXB3dxdvLyoqQnx8PPr164e9e/dKnHP37l34+/ujadOmOHbsGKysrMT7/ve//+HWrVs4dOiQkndICCGEkKqisS1Q+vr6GDRoEFJSUpCVlSW1XyQSwcjISKVFhUeMGIG4uDiUvdNsefDgQbx69QrDhg2TOn7lypV4+fIlIiMjJSpP5ezs7KgFihBCyEfBGFP7ozbS2AoU8LYbr7S0FLt27ZLYnpubi6SkJPj5+UFfX1/puEKhEI8ePcLx48fF20QiEbp37w5zc3Op4w8ePAhbW1t06tRJ6WsRQgghpPrR6AqUl5cXrKysIBKJJLbv3r0bJSUlSnfflbO3t4ebm5s47vPnz5GYmAihUCh1bH5+Ph4+fAgXFxeVrkUIIYSoEytjan/URhpdgdLS0oK/vz9Onz6NjIwM8XaRSAQLCwt0795d5dhCoRD79u3D69evsWfPHmhpacHPz0/quPz8fACAkZGRytcihBBC1IUqUOqh0RUoAOJWpvLWogcPHuDkyZPw9/eHlpbqGaT9/f2Rl5eHw4cPIyYmBv3795dZSTI2NgYAhekUKlJcXIz8/HyJx+vXxSrHI4QQQsiH0fgKVPv27eHo6IjY2FgAQGxsLBhjKnfflbOysoKHhwe+//57nDhxQmb3HfC2AmVtbY0rV66ofK1ly5ahbt26Eg/RL6tUjkcIIaT2KmNlan/URhpfgQLetkJduXIF6enpEIlEsLe3R4cOHT44rlAoxMmTJ2FsbIy+ffvKPa5///64ffs2Tp8+rdJ1Zs2ahby8PImHcOw3qhabEEIIIR+o1lSgAGDevHm4dOnSB7c+lRsyZAjmz5+Pn3/+GTo6OnKPmzFjBgwNDTF27Fg8efJEav/t27exdu1auefr6urC2NhY4qGjo6uWeyCEEFK70Bgo9dDYRJrvatasGTp16oSEhAQAkFuBunDhAhYvXiy13cPDA126dJHaXrduXSxYsKDC6zdv3hwikQjDhw9Hy5YtERgYCGdnZ7x+/RqnTp3C7t27MWrUKKXuiRBCCFFFba3wqFutqEABbytNp06dgru7O+zs7GQec/bsWZw9e1Zqe1hYmMwKlDJ8fX2Rnp6OVatWISEhARs3boSuri5at26N77//Hl999dUHxSeEEELIx1NrKlChoaEIDQ2Vu59PJtV3E2fK4+HhITeWvb09Nm3aVGEMQgghpLLU1szh6lZrKlCEEEIIgcQyZER1tWIQOSGEEEKIOlELFCGEEFKL0CBy9aAWKEIIIYQQJVELVA31+o3qy9DI8r3DFrXFKsl5pbZYAMAJOLXGKy58rdZ4z3PV+zuksEC9y/RwnHr/foUFRWqLtdp2m9piAcDEa+rJ8VbOxdZYrfEEAvX+vx3c4ZFa45ltm6+2WOcGhqstFgDkFar362qbVrxa4w1Y/WEztaX0+1O98d7BamnmcHWjChQhhBBSi1AXnnpQF14l2Lp1KziOQ0ZGRlUXhRBCCCGVgCpQPPn6+sLAwAAvXryQe0xAQAB0dHSQk5PzEUtGCCGE8EdLuagHVaB4CggIQGFhIeLjZfebv3r1CgkJCejTpw+mTJmCwsJCNG3a9COXkhBCCFGsjJWp/VEbUQWKJ19fXxgZGUEkEsncn5CQgIKCAgQEBEBLSwt6enpqH7xLCCGEkOqBKlA86evrY9CgQUhJSUFWVpbUfpFIBCMjI/j6+socA2VjY4P+/fvj6NGjcHV1hZ6eHpycnLBv376PeBeEEEJqO+rCUw+qQCkhICAApaWl2LVrl8T23NxcJCUlwc/PD/r6+nLPv3nzJoYPHw5vb28sW7YM2traGDp0KJKTkyu76IQQQghRI6pAKcHLywtWVlZS3Xi7d+9GSUkJAgIU56D5999/ERkZiWXLlmHq1Kn4448/YGFhgZkzZ1ZmsQkhhBAxVlam9kdtRBUoJWhpacHf3x+nT5+W6J4TiUSwsLBA9+7dFZ5vbW0NPz8/8XNjY2MEBgbir7/+wuPHjyur2IQQQogYdeGpB1WglFTeylTeCvXgwQOcPHkS/v7+0NJSnGXYzs5OamB5ixYtAEBhzqji4mLk5+dLPF6/Vm+2akIIIYTwRxUoJbVv3x6Ojo6IjY0FAMTGxoIxVmH33YdYtmwZ6tatK/GIi1xZadcjhBCiuRgrU/ujNqIKlAoCAgJw5coVpKenQyQSwd7eHh06dKjwvFu3boExyabOf//9F8DbWXryzJo1C3l5eRKP4WNmfNA9EEIIIUR1VIFSQXlr07x583Dp0iXerU+ZmZkSiTjz8/Oxfft2uLq6wtLSUu55urq6MDY2lnjo6Oh+2E0QQgiplcrKmNoftREtJqyCZs2aoVOnTkhISAAA3hWoFi1aYMyYMTh//jwsLCywZcsWPHnyBFFRUZVZXEIIIUSsts6aUzdqgVJReaXJ3d0ddnZ2vM6xt7dHXFwcEhMT8e2336KkpARxcXHo3bt3ZRaVEEIIIWpGLVAqCg0NRWhoqMx9o0aNwqhRo2Tu69WrF3r16lWJJSOEEELkq61pB9SNKlCEEEJILVJbZ82pG3XhEUIIIYQoiVqgCCGEkFqEuvDUgypQH4miTOOEEEIIqVmoAkUIIYTUIpTGQE0Y0VhFRUVs/vz5rKioqNrFq85lo3jVJxbF0+x41blsNSEeqVocY4w6QzVUfn4+6tati7y8PBgbG1ereNW5bBSPXluK93HiVeey1YR4pGrRLDxCCCGEECVRBYoQQgghRElUgSKEEEIIURJVoDSYrq4u5s+fD11d3WoXrzqXjeJVn1gUT7PjVeey1YR4pGrRIHJCCCGEECVRCxQhhBBCiJKoAkUIIYQQoiSqQBFCCCGEKIkqUIQQQgghSqIKFCGEEEKIkqgCpYGuXbuGw4cP4/Dhw7h27VpVF0ettm/fjoyMjKouBiFEAxQVFWHcuHFYv369wuPWrVuH8ePHo6SkRKXrZGVl4dy5czh37hyysrJUikGqH6pAaZCEhAQ0b94cLi4u6N+/P/r37w8XFxfY2dnhwIEDVVImLS0tiEQitcULCgrCqVOn1BbP1tZW7X+bx48fY8WKFRg3bhzmzJmDixcvqhRn0aJFuHLlitrKVRn3+r43b97g3Llz2LVrF3bt2oVz587hzZs3lXrNjyEvLw99+vTB0qVLFR63ZMkSeHt74+XLl0rFz8/Px8KFC+Hu7g4LCwtYWFjA3d0dixYtQn5+vkplro6vRUU/gDIyMrB9+/aPVp5NmzZh69at6Nevn8Lj+vXrh6ioKPzyyy9KxU9JSYGbmxusrKzQsWNHdOzYEVZWVnBzc8Nvv/32IUUn1QDlgdIQiYmJ8PX1RdOmTREcHIyWLVsCAK5fv45Nmzbh3r17+PXXX9GnTx+lY9+9exeHDx/GvXv3AABNmzaFt7c3mjVrVuG5AoEA0dHREAqFSl+3Jsa7e/cu3N3dkZubi/L/WgKBANu3b1f6GtX9Xt+3detWzJo1C1lZWeJ75zgODRo0wNKlSzF69GiVY2dmZiI3NxcNGjSAhYUFr3P27dun9HUGDRokc/uSJUuwYsUK3L59Gw0aNJB7flZWFuzt7TF79mzMnDmT1zUzMzPRtWtX3L17F46OjnB0dAQA/PPPP7h+/TpsbW1x8uRJWFlZ8b4Pdb4W9+/fV7if4zjo6enBzMwMHMcpPFZLSws7duyQ+x6Mi4uDUCiUW9FbtGgRv0K/V765c+fK3NelSxc0bdoUMTExFcb54osvcO/ePZw4cYLXdePj4zF06FBYWFggMDAQLVq0APD2dd2xYweysrKwa9cu+Pn58b8ZUr0wohE+++wz1rZtW/by5UupfS9fvmSurq7ss88+UzrutGnTmJaWFuM4TuKhpaXFvv766wrP5ziOxcTEKH3dmhovMDCQ6erqsvXr17OrV6+yhIQEZmNjwywsLNibN2+qtGzqjveu8PBwxnEca9u2LQsPD2fHjh1jx44dYxs3bmSurq5MIBCwjRs3KowRFxfH7t+/L7EtMTGRtWzZkgkEAvGjbdu27MSJExWWieM48Tnvv39lPQQCgdxY7du3Z1999RWvv0VISAjr0KEDr2MZY2zkyJHMwMCAHTp0SGpfYmIiMzQ0ZIGBgbzjqeO1eNe7f0dFDwMDA9a7d2/2xx9/KIyl6D0YGRnJdHR0FJ6v7EPR62psbMx+/vlnXn+Hn3/+mdWtW5fXsYwx5uTkxNq0acPy8/Ol9uXl5TEXFxfm5OTEOx6pfrSrugJH1CM9PR1Lly6FoaGh1D5DQ0OMGjUKs2fPVirm999/jx9//BFDhgzB119/LdGq9eOPP+LHH39Ew4YNMXXqVIVxKvpVqqycnJwKfxW/q0mTJmq9viJ//PEHQkJCMGHCBACAk5MTtLW14ePjg+vXr6NVq1YfrSwf04oVK9C1a1f89ttvqFOnjni7p6cnxowZAy8vL6xcuRLjxo2TG2PEiBESrRPJycnw8fFBgwYNMHPmTDRu3Bi3b99GVFQUevXqhdOnT8PV1VVhufT09NCvXz8MGzZMYctRRW7cuIHg4GBex7Zr145Xi0a5I0eOYMqUKejbt6/UPm9vb0yaNAmbN2/mHU8dr8W7IiMjsW7dOvz3338ICAiAnZ0dAODmzZsQiURo2rQpgoKCcOvWLURHR8PLywtHjhyBp6cngLefTZcuXRLHO3nyJEpLS6Wu8/z5c4SHh4tbamQpKyvjVWa+Xr9+DR0dHV7H6ujooLi4mHfsO3fuYPny5TAyMpLaZ2xsjDFjxmDWrFm845HqhypQGkJPTw+5ubly9+fm5kJPT0+pmJs3b4avry927dolsf3TTz/Fzp07UVRUhIiIiAorUIsXL+b9BcBxHFJSUhQeM2XKFEyZMoVXPAAVjvvYtGkT7/EIHMchMjJS7v7//vsP7dq1k9jWrl07MMaQnZ3N6xrvunHjBu8uAwDo1q2bwv3qvNd3PX78GF9//bXEF3a5OnXqwN/fHzNmzFAYg703mmDOnDlo3LgxLl68iPr164u3T506Fa6urliyZAl2794tN97Ro0cRExOD+Ph4JCQkoHv37ggICMDAgQNl/tBQpmwVUeaLvqCgQGG3pKWlJQoKCnjHU8dr8a7MzEy8fv0at27dQr169ST2LViwAF26dEFhYSHWrFmDuXPnon379li4cKG4AhUfH4+FCxcCePueioiIQEREhMxr1atX76OOgbK2tuY9zvDKlSuwtrbmHdvR0VHhgPEnT54orCyS6o8qUBrCy8sLa9euRZ8+fdCxY0eJfWfPnsW6devQq1cvpWJmZGRg8uTJcvf37t0bR44cqTDOixcvIBCob76Cv7+/VCXlQ5w9exZpaWm8jq2oUlFaWir1xVX+XJUBvEuWLMGSJUsqPI4xBo7jKryGOu/1XW3btsW///4rd/+///5bYWvRu0pKSpCWloY1a9ZIVJ4AoGHDhggODq5wQG+PHj3Qo0cPhIeH48CBA4iNjcWYMWMQEhKC/v37IyAgAN7e3tDWrvhjsEmTJrz/bmlpaUq1ejo5OSE2Nhbjxo2Tag0pKSlBbGwsnJyceMdT92sRHh6OadOmSVWeAMDExARjx47F2rVr8c0338DU1BSjR4/GqlWrxMcEBwejf//+YIyJB8Z7e3tLxOE4DoaGhmjevDmv10NdevToge3bt2PWrFkwNzeXe1xWVha2b9+OoUOH8o69cuVK+Pv7w93dHQMGDJDYFx8fj4iICMTFxalcdlL1qAKlIVauXImOHTuiS5cucHd3h4ODA4C3AxbPnTsHc3NzrFixQqmY5ubm+Pvvv+Xu//vvv3l1iyxfvlytA5f79eun1niRkZFqjXfhwgWJ1r4XL16A4zj88ccfeP78udTx8gYuA8CkSZPQpUsXtZVN3fdabv369ejXrx9sbW0RHBwMfX19AEBhYSHCw8Oxa9cuJCYm8o5XUlICxhhsbW1l7m/WrJnMv6Usurq6GDp0KIYOHYq8vDzs3r0bIpEIgwYNQt26dfHTTz9h+PDhCmP069cPGzduxPTp02Fvby/3uJs3byI6Ohrjx4/nVTYAmDlzJoYPHw53d3eEhoZKDDYODw9Henq6Ul+06n4tcnJy8OrVK7n7CwoK8PTpU/FzS0tLiRY7Kysr8QD41NRUtGzZUmFlRZFmzZopPSSA4zjcvn1b5r6ZM2eKux0jIyPx6aefSh1z9uxZjB07FkVFRfjmm294X3f9+vVo0KABBg0aBGtra3HX561bt5CZmYkWLVpg3bp1WLdunURZExISlLo/UnWoAqUhmjVrhvT0dCxbtgyHDx8Wf+A2bdoUkydPxrfffqv0h9bQoUOxdu1a2NjYYOLEieJuj4KCAmzYsAG//PKLUl1ptcWaNWuwZs0aqe0LFiyQ2lZRq1GHDh0wePBgNZZOPVq3bi21TUtLC9OmTcOMGTPEXR2ZmZkoLS2FlZUVRo0apbBCDrydTfr48WMAgJGRER4+fCjzuMzMTKmWKT7q1q2LUaNGwdzcHG/evMHJkyfxzz//VHjejBkzsG3bNnz++ef48ccfMXjwYImWktLSUuzduxdff/01DAwMlPqiHTp0KAoKCvDtt99i3Lhx4goCYwzm5ubYsmULhgwZIvf8ynotynXo0AFr166Fr68vXFxcJPalp6dj/fr1cHd3F2+7fv06GjVqJDPW559/LrWNMYbU1FQUFxejS5cuMscMvXv++xWoCxcu4OrVq3BycpL44Xjt2jU4Ozujffv2cuPZ2tpi165dGDFiBDp16gRbW1u4uLjAyMgIL168wJUrV3D79m0YGBhg586daN68udxY70tPTwfHceLWyPL0Ddra2mjSpAmKiopw+fJliXPUPV6UVC5KY6ABioqKsGnTJri6ulY4BkYZr169go+PD1JTU6GtrS31Qezp6YmDBw/CwMBAbozqPhVf3fF+//13pc+R9aUCVO979fDwUOnDPjU1Ve4+Wd28vXv3xuHDh6W2f/755xAIBArjve/48eMQiUTYt28f8vLy8Pnnn0MoFGLIkCEwNjau8Pzz58/Dz88Pjx49gr6+Plq0aCH+ov33339RWFgIS0tLxMfHS1Qo+CotLcWFCxck0oW4ublV2KVVGa/Fu9LT0+Hp6Ym8vDx07NhRoiXl9OnTMDY2xvHjx9G6dWsUFRWhY8eO6NevHxYvXiwVa86cOTh16pT42owx9OrVC8eOHQNjDE2aNEFKSgrvisr+/fsRFBSEPXv2oHv37hL7kpOTMWzYMGzdulWqC+19GRkZWLFiBX799VeJSru1tTX69++PGTNmyG0NJbVYlcz9I2qnp6fHNm3aVCmx9+/fz0JCQlifPn1Ynz59WEhICEtISGBlZWUVnqvuqfM2NjYsISFBbfEqc2r/h6pJaQzUISMjQ+rxfloDxhh7+vQpCwoKYjt37qww5vnz59m0adNYw4YNGcdxrEOHDuzHH39kjx49UqmMz58/Z8uXL2edOnViJiYmTFtbm5mYmLBOnTqxZcuWsWfPnqkUt7p7+PAhmzhxImvRogXT1dVlurq6rEWLFmzixInsv//+4x3HwcGBzZgxQ/x8165djOM4tnTpUnbo0CHWqFEjNnLkSN7xXFxc2Ny5c+Xu/+6775izszPveIwxlp+fzx48eCAz/QAh76IuPA3h7OxcaUucDBgwoMJfcPKUj3lQl7t37/I+trCwEE+fPlU4oDcqKkpq0H118fnnn/NOGslHdb5X4G2LCx9mZmbYsmVLhcc5ODjg1q1bcHBwQEhICIRCoVJdMLLUrVsXM2fO5J0kk4+KZlmWJ6ps1KiRUsk01cna2lpirI6qHj58KG7BAt4mO3VychJP5x8/fjw2btzIO97Nmzdhamoqd7+pqanc8U/yGBkZKexGlKc8tUr55w3fVCsfM80KUS/qwtMQR48ehVAoxM6dO9GjR4+qLo6YotQK8piYmMjdZ2BggK1bt2LYsGEA3g7QHj58OJYvXy41FiQmJgaBgYEfdfmKH374Qelzpk2bJnffzp07YWxsLDNHULlDhw7h5cuXFQ6E/hiKioogEolw6tQpPHv2DA0aNECvXr3g5+en8viOrKws8Y8DGxsb3mP5BAIB9PX1eVeaOI5TOC6oqKgICQkJuHv3LszMzNCvXz+1VGgEAgHvv429vT0WLlwo8Vork+biXXy7+0tLS/Hq1Su53Zz5+fkwMDDgNXuufv36CAsLw4QJE8AYE2fpXr16NYC3kxwmTJiAwsJCXmVzdnaGtrY2/vjjD3zyyScS+168eIHOnTujrKxMbqoCdWarL38dCwsLoaOjw/t1rerldYjqqAVKQ2zYsAEmJibo3bs3mjVrhmbNmoln35SraIaHume4AOC1vMP7FH2gFBUVSSThe/36NY4cOYLp06crdY1yRkZGSpWP4zjk5eXJ3c+3HO9eU14FKj4+HgEBARWmitDR0YFQKMQnn3yicE0vdd/r2LFjkZ2djf379wMA7t27h549e+LWrVvQ1taGqakpsrOzsXnzZnTr1g2//vqrUvmXUlJSMHPmTPz1118S29u2bYvly5dX+EOhW7duahuUm5WVhU6dOuHu3bviGWYGBgbYv3//B/9gOXLkCGbOnIni4mJ89dVXEokqf/nlF+jr6+O7777DvXv3EBERAaFQCC0tLfHAcmXHQDGeKS/KTZo0CSdOnJBbCencubM4jUpFnJ2dER0djYCAAMTHxyMnJ0fiPXvv3j2YmZnxuxG8zTE3ZMgQODo6YtSoURJ/u23btuHJkycKc4UNGTJEYtB+RRT93bZs2YJnz56J05Zs2bKFBoVrOKpAaYh3Z3y8efMGt27dUjqGume4AMC8efOq9YfI4MGD1Vo+Pl2Mf/31FxYtWoRLly7JzK1TLioqCh4eHujZs6fCeD179oSXlxc2b96ssAKl7ntNSUnBV199JX4+fvx4PH78GLGxsRg6dCgEAgFKSkoQFRWFiRMnYs6cOTJnJ8ry7jpiM2bMkFpHzNvbu8J1xI4fP/4htychLCwMGRkZmDp1Kry8vHDr1i2EhYUhJCRE6S6i9x05cgR6eno4e/asVB6o0NBQeHh44MyZM+IFqt3c3LBixQpxBUqZgfSqli8wMFDu/iFDhiA6OppXBWrevHnw8fERV5I6d+4sTrgJvG1N7dChA++yDRw4EImJiZg5c6bUQs+urq6IjIxE7969FcZQV7b6UaNGQVdXFydOnEBAQABGjBgBXV1dleORGqAqB2CR6i0+Pp7Vq1eP/fbbb1L7jh49yurVq8f279//Ucv0/kDo7OxsxnEcS0lJkTo2Ojpa4TpYH9ulS5eYn58fEwgErH79+mzBggXs+fPnco83Nzdnq1ev5hV79erVzMLCQl1F5UVPT49FRUUxxhgrKSlh2tra7Pvvv5d57PTp05mVlRXv2OpYR+zgwYOstLSU9zUVadGiBQsKCpLYtnPnTiYQCNiNGzc+KLa5uTlbt26d3P3r1q2TeG2XLVvGDAwMPuiaytDV1VU4QWXTpk1MX1+fd7yrV6+yNWvWsK1bt7LCwkLx9tzcXDZlyhSWmpqqUjkfPXrEzpw5w86cOcN7kkBycjIbNWoUq1u3LtPR0WHe3t4sOjpa5pqifAiFQvbJJ58wgUDA6taty4KCgthvv/3Ga8INqXnUlx6aVKkTJ05IJLN7X3Z2ttJjJebNm4eJEydKTQ8G3rZ6TJgwAd99953SZa1tLl26BD8/P7Rr1w7Hjx/H/PnzkZGRgfnz56Nu3bpyz3v+/LnCAbLvMjU1xbNnz9RVZN7XLJ/y/ebNG7x580bugNimTZvyTnwJvF1HLCgoSOE6YhW19vn6+sLKygoTJkzAqVOneF9blvv370slNO3SpQsYY3jy5MkHxS4oKFAY49GjR3j58qX4eb169aClpfVB11SGqampwlxZ169f55UGopyTkxMmT56ML7/8EhkZGQgLC0NoaCi2b9+OhQsXwsPDQ6VyWlpa4tNPP8Wnn34KS0tLXuf06NEDUVFRePLkCaKjo6Gnp4cxY8bAwsIC/v7+OHjwoMx1++SJiYlBVlYWoqOj0bVrV8TExKBXr15o2LAhvv76a97Z7EkNUdU1OKIeAoFA4RT18l/LytDT02Nr1qyRu//HH3/k/cvzyZMn7J9//mFv3ryR2LZp0ya2atUq3r86OY5jIpFI/Ly8BerYsWNSx35IC1RRURH7888/2cGDB9mZM2dYSUmJ0jH++usvNmDAACYQCJiJiQlbtGgRy8vL432+paUlW7BgAa9jFyxYwCwtLZUuY2FhIYuMjGRjxoxhgwYNYiEhIWzv3r28fjEHBwezpk2biqfue3l5sb59+0odV1xczNzd3Vnbtm15l8vV1ZXNnj1b7v5Zs2axNm3aKIyxadMm5uHhwbS0tJhAIGDNmjVj3333Hbt27RrvcpSTlQJCUeunMnx8fJihoSE7ePCg1L4DBw4wAwMD5uPjI94WEhLCXFxcFMYsLCxk0dHRbNq0aWzMmDEsKChI4jF69Gje5Rs9ejT75JNP2MWLF6X2paWlMUNDQzZq1Ci5569fv57Z29uzp0+fSt2brq4u4zhO/GjevLnUcRXJy8tjCxYsYB06dGDm5ubM3NycdejQgS1cuFCp/2/lnj9/zjZv3sw8PT2ZtrY2MzU15ZUyQ5bc3FwWHh7OunXrxgQCARMIBMzBwYGFhYWx27dvqxSTVB9UgdIQFeX42bZtG6tTp45SMVu1asXatGnDXrx4IbUvPz+fubi4sFatWimMUVJSwgICAsQfHra2tuzKlSvszJkzzMjISPzBKRAI2MCBAyUqWLJwHMf09fWZkZGR+MFxHDMwMJDYZmRkxPT19SusQK1YsULqCzU8PJyZmJiIyywQCJi5uTmLjY1VGKvcxYsX2YABAxjHcSpVnMr5+fkxBweHCruhSktLmYODA/Pz81N43JgxY9iAAQPEzzMyMpi9vT3jOI7VqVOHWVpaMm1tbSYQCJiHh0eF3RhPnjxhjRs3Zs2bN2cRERFs3759zMzMjLVu3ZqFhYWxTZs2sfnz5zM7OzsmEAhYXFwc73s/evQoMzExkdlFvG/fPmZiYsKSk5N5xXr48CFbvXo1a9++vfi91rZtW/b999+zhw8f8orBcRxbsmQJS0tLEz+OHTvGOI5j4eHhEtvLH3zdu3eP2draMoFAwBo3bsw8PDyYh4cHa9y4sbjil5GRwRh7WzHy9vZma9eulRsvIyODNWvWjHEcx+rXr88EAgEzMzNj2trajOM41qBBA9asWTPe5Xv48CGztrZm2trabNCgQWzu3Lls7ty5zM/Pj2lrazNra2uFuaB69uzJ+vTpI7GtpKSEmZubMwMDA7Z161Z25coVtmLFCqatrc2mTJmiVNlsbW0Zx3GsZcuWzM/Pj/n5+TEnJydxhSwzM5N3vHfLl5CQwLp168Y4jmMLFy5UOsb7Hjx4wFauXMnatm0rfh927Njxg+OSqkMVqBrs3r177Pfff2e///474ziOzZ07V/z83UdCQgLr1KkTs7OzUyp+fHw809LSYg0bNmRz5sxhUVFRLCoqis2ePZs1bNiQaWtrs/j4eIUx1q5dywQCAZs4cSJbvXo1s7KyYu7u7qxz585s6dKl7N9//2V///03mzBhAhMIBAq/GBhjbNSoUUo/FHm/4ikSiRjHcczFxYVFRESwxMREtn79eta8eXOmpaXFjh8/rjCer68vEwgEzNTUlC1evFhm5ZOv1NRUxnEcGz58uNzKTEFBAfP392cCgaDCVjwbGxu2ZMkS8XNvb29mZGTEdu7cKa64vn79mkVERDAdHR02efLkCsv433//MW9vb/EXwrsV4vLnFhYWbPv27bzvm7G3rTIODg5MIBCwRo0aiSsVjRo1YgKBgDk6OjIfHx+Jh6+vb4Vx//nnHzZv3jzWokULxnEc09LSYl5eXmzLli0KK7nv3tO7D1nby7cpo6CggH3//fesV69ezMHBgTk4OLBevXqx77//XunxOEOHDmUmJibs7Nmz7OnTp+JWsqKiIrZy5UrWpEkT9u+//yoVMzMzkwUGBrK6deuKX+O6deuyL7/8ssJKaMOGDaVaUo8ePco4jmNz5syR2C4UClmLFi14l2vkyJHMwMCAHTp0SGpfYmIiMzQ0ZIGBgbzjpaamsq+++oqZmpoybW1t1r17dxYZGanSDyB50tPT2cCBA1V6n5DqhfJA1WALFy7EwoULK5xZxRiDlpYWIiIiMHr0aKWucfToUcycOVMqP46rqyuWLVtW4QwXV1dXuLq6YuvWrQDezq4aPHgwxo8fj59++kni2N69eyM3Nxfnz59Xqowf4v3lTVq1agVtbW2kpaVJ5LV58eIFWrdujZYtWypciLU890uTJk14JeOrKPfQ/PnzERYWBlNTU/j5+cHZ2Vm8fMjly5eRkJCA7OxszJkzB2FhYQqvpa+vj40bN2LUqFEoLS2Fvr4+VqxYITONwjfffIOYmBhkZmZWeA/A29lxv/32G27evImXL19CX18f1tbWaN++PTw8PFBSUoK8vDzxckAVsbGxUSmlxp07d3gff/78ecTGxiIuLg6PHz+Gnp4eCgoKZB67bds2pcoCAF9++aXS56iDmZkZxo8fj7CwMOTm5sLMzAzJycnisYyjR4/GkydPcOjQIaVjM8bEYy0bNGjA6zXS19fHTz/9JPHZ8+2332LVqlU4d+6cxEzen3/+GV9//TXvPFANGjRAcHAwlixZInP/7NmzsXnzZoXjQy9cuCB+H2RmZsLNzQ1CoRD+/v68x1JV5P79+xCJRIiNjcWVK1fAGEOnTp0QEBCg1MLTpHqhNAY12LBhw+Ds7AzGGIYNG4ZJkyaha9euEsdwHAdDQ0O4urqqlNW6V69e6NWrFx4/fiyxRhffD5bbt28jNDRU/Lx8irKsgem9e/eWueDux1JcXIzr168jPDxcKimgkZERgoKCKpyqrc7cQ8DbSrKLiwvmzp2LX375RWq/g4MDNmzYIE4sqkhlDvp2cHAQp7mQZdWqVZg3bx7v3EOVlVX/XTY2NrC1tUWjRo3w6NEjFBUVyT1WVmWooKAA+fn5MDIykkriWJVevXoFGxsbAG8H3L+fz6tjx44q503jOE7pRcktLCzEC0SXO3nyJAwMDNCmTRuJ7To6OlKpHBQpKChQ+LlmaWkpt1IMVE62+nLZ2dnYtWsXRCIRTp8+DcYYHB0dsWjRIgQEBIhfI1JzUQWqBmvZsqV4mZSoqCh069YNzZo1q5RrWVpaqvRrTEtLC2VlZeLn5ck9ZeU/MjIyUmrGy7uKi4uRlpaG3NxcNGjQAO3bt+eVGfld7P8SDMprJbG2tlb4YQyoN/dQuSFDhmDIkCG4desWrl+/jvz8fBgbG8PR0RH29va84/Tr1w+bN2/G//73P9SrVw+enp6IiooS5xMq9/r1a+zYsQOOjo7qvpUq9/LlS+zbtw8ikQjHjh1DaWkpbGxsMHv2bAQEBFR4fkZGBlauXIlDhw7hwYMH4u0NGzaEj48Ppk+fXuH/QU9PTwgEAiQlJUFbWxteXl4VXpfjOKSkpFR8g3i7NEh52bS1tdGwYUOcOXNGnEH72rVr0NPT4xWr3LNnzxAbG4s7d+7g2bNnUkknOY5DZGSkzHPd3Nywbds2TJw4EUZGRrh69SrOnTuHAQMGSP0fvXHjBho1asS7XE5OToiNjcW4ceOkKl4lJSWIjY2Fk5OT3PNv3rwJfX19aGtrY/fu3QqTbgIVtxgXFBQgPj4eIpEIKSkpKCkpgZWVFaZMmYKAgAC0a9eO972R6o8qUBpCXnfBnTt3UFxcrPJ6dG/evEFSUpLCD865c+fKPb9x48YSrQnGxsaIjY2Fi4uLzLJW1Eq2cuVK+Pj4SNxPREQEZs+eLdFiYmZmhrVr18Lf37+COwS2b9+OM2fOAAAMDQ3ltn7cv3+fd1qBymBnZyexjpiywsLCcPjwYbi5uWHGjBmYMGECgoOD0aZNG3HSyocPHyImJgZ37txBbGysGkuvmpKSEjx8+FDmew8Ary+kkpISHDp0CCKRCIcOHUJhYSFMTEwwduxYBAQEoHPnzrzKkpCQgC+++AIvX76EjY0NfHx8xN2p6enp2LhxI7Zv347o6GiFa0cyxiR+VJSVlfHqhufLy8sLCQkJmD9/PoC3CR6XLVuGZ8+eoaysDDt27FCYGPN9SUlJGDJkCAoKCmBsbIz69etLHaOo/PPnz0eHDh1gb2+PVq1aIS0tDRzHide/e1d8fDyvCmW5mTNnYvjw4XB3d0doaKhEwtXw8HCkp6cjLi5O7vnqbjE2NzdHUVERPvnkEwiFQgQEBMDLywsCAWUM0khVMvKKqN26devY8OHDJbaNGjVKPLC1ffv27MmTJ0rFPH/+PGvSpInE4OD3HxUNghw9ejTvmSaOjo5S9/A+dQ/6lnVPXbp0kXmsq6sr6927N697eV9KSgoLCwtj06ZNY8uWLWMXLlxQKc6HpB1grPIGfVdk8eLFSg2YffbsGRszZgzT09NTOHhbkZSUFDZmzBjxTDR9fX02bNgwduDAAaXTUly9epXp6uqyli1bshMnTsg85sSJE8zJyYnp6emxq1evKhVfne7du8f27NnDioqKGGNv3zNjxoxh9erVY6ampuzLL79UalB0q1atmJ2dHUtPT1e5TH/++Sfr27cvc3R0ZL1795Y5gzI1NZU5OzuzpKQkpWJHRUUxCwsLme/jrVu3qlxmVfj6+rK4uDiJBKFEc9Egcg3RunVreHp6isfoJCUlwdvbGyEhIXBxccF3332HESNGSA3cVsTd3R0ZGRmIjIxE165dFS47Ik9RUREKCwtl/mp9V05ODqKjo9GlSxeFy8Ooe9A3X9nZ2Vi+fDnatm2rsKtn7ty5yMzMFHdnPHv2DL6+vjh16pREKwLHcRAKhdi6davcpIh815orKytTeq05dQ/6rsiSJUuUGgM1cOBAHDx4EP7+/vj000/lJhxVNFBbIBBAIBDA09MTI0eOxKBBg3gN7Jdl5MiROH78ONLT0xUudp2bmyv+v7hjxw6VrlXd6OnpYdWqVZg4cWJVF0Wu0tJSXLhwQWKcppubm9Ld+IqcOnUKx48fx+zZs9UWk9RwVVyBI2pibGzMNm7cKH4+evRoZmtrK34+d+5cZmNjo1RMXV1d3kuJVIbCwkK2bds29vjxY/G2d1ugioqKGMdxLCIiQub5CxcuZCYmJmorD59WFHt7ezZ//nzxc39/f1anTh22fPlydv/+fVZUVMTu3LnDZs2axQQCgcSx76uMtAN88blXWbmP5D1CQ0OVaoHS19dXKh+QLD/88INKOYBksba2ZvPmzeN17Ny5c5m1tbXc/ffu3VPpwdehQ4fUtoQNY4w5OztLvA9rK2VbUYnmozFQGoK915B49OhRiXEYNjY2UjNhKtKoUSOlxl6oW15eHoKCgpCcnCxzbBRTw6BvdXvw4IF4ZltZWRni4+Mxe/ZszJw5U3xMs2bNsHTpUuTk5GDr1q1yZx4+fvxYfG+lpaVITk7GihUrMHz4cPExderUQXBwMG7evImYmBjei/Wqg5ubG+/xI+WvFV+mpqYfNN4LAKZOnYrHjx9jxYoVuHv3LkxNTTF48GCVBvLm5OTwnjXVrFkz5OTkyN2vSooGALxb7/r37w8TExMMGjQIw4cPFw9aV9XixYvxv//9D0KhsNrOHLt27ZrccZoAlBrzRQhfVIHSEC1atEB8fDzGjRuHpKQkZGZmwtvbW7z/wYMHSnfBzZw5E6tXr0ZwcLBSa12pk6wPw+o86NvIyEj85VlcXIzXr19LTdUu5+rqqjC/UGWmHVCHqKioSosdHByMnTt3Yvz48Sp/+d+9exfu7u4SlZkVK1Zg+/bt4i5gvszMzCpce+/d65qZmcndv2XLFrUOXH7f4cOHERcXhz179iAyMhJmZmYYMmQI/P39pdKc8JGSkoIGDRqgZcuW6NmzJxo3bizV7cxxXIUpPirD7du3MXLkSJw7d07ujz2O46gCRSoFjYHSEDt37oRQKETdunVRUFCAFi1a4NKlS+IxAB4eHtDX18fhw4d5x/zhhx8QExOD//77D/7+/nI/OKdOnarWeyn35MkTWFlZ4bfffhPPzJH1Zdq5c2ecPHlSanvbtm1hYWGBI0eOqKU8fMbxCIVCXL58GWlpadDR0YGbmxucnJywfft2qWN79+6N+/fv4/r16zJjhYSEICkpCZcuXUK9evXQvXt36OnpSSVAfP36Nbp27YqSkhJcvHjxw27y/yg7ZqkyfPfdd0hMTMQXX3yBRo0ayRwrVj41X5Yvv/wScXFxWL16Nby8vHDr1i1MnjwZhYWFyMzMVKpiNnLkSKSmpuLy5csVjoFycXGBp6cnoqOjeccH1J9XqqSkBElJSYiLi8PBgwfx4sULWFlZYciQIRg+fDg6duzIKw6fvxPHcVXyXunRowfOnDmDZcuWoWvXrnLHWjZt2vSDr1Ud/k+QaqbKOg+J2h09epRNmTKFLViwgGVlZYm35+TkMD8/P7Zv3z6l4smbeafMLLwP8fjxY5UXa3369Cn7+uuvWXR0tNrKw2cMxO3bt1m9evVYp06dWFJSEjt27BgzMzNj/fr1Yzt27GBHjx5lUVFR4sVFf/rpJ7mxKnOtOXXca2V68OAB69ix4we992xtbdmkSZMkth06dIgJBAJ25coVpcpTPguvVatW7M8//5R5zJ9//smcnZ2Zrq4u7/h3795l48ePF892LX80btyYhYaGsjt37ihVTnmKi4vZ/v372YgRI5ihoSHT0tJSS9yqpqenxxYtWvRRrlXV/ydI9UNdeBqkZ8+e6Nmzp8S24uJipKSk4M2bNxgxYoTCbMvv49tlUR2ZmZmhfv36CAwMVDhrTpkWGz7Lmtja2iI1NRVffPEF+vTpA47jwBhDYmKiuPWPMQZdXV0sXLhQIkv7+8zNzXHq1CkEBwdj3Lhx4lg5OTm4cuWKOJa5uTm2bt1aYTZydd9rZRo9ejQuXryIWbNmKZyFp8h///0nNd6pXbt2YIwhOztbqVhOTk4QiUQIDAxE165dYWNjgzZt2kjkgbp79y709PQQHR2NVq1aVRhTXXml+Hj58iWysrLw5MkTFBUVfdDYxhs3bmD37t149OgRHB0dMWrUqCrr4jczM1PpvVFu0qRJvI+9cOGCytchGqoqa2+kcpSVlbHk5GQ2atQo8eKf5ubmLCgoqMJzz549y3Jycnhd5+7du2zbtm0fWly5PqQFijF+vxjlLRKrau6hcmVlZezw4cNs+vTpbMCAAax79+6sf//+LDg4mEVEREjMLOTjxo0bbMOGDWzy5MlszJgxbMKECWzp0qUsKSmJFRcXs5cvX1a4qGtl3WtlMDAw4D3rTZ73c4Yxxlh2dvYHvadu377NQkJCWMOGDSVaw6ytrVlwcDC7efMmrzgfI6/U8+fP2ZYtW1jv3r2Zjo4O4ziOtW7dmi1ZsoTdunVL4bnr169n9vb27OnTpxLbDxw4wHR1dSXuvXnz5lLHfSyLFy9mHTp0UHnWIZ9W9o/V4k5qHmqB0iBpaWmIiYnBzp078fjxY3AcB39/f0yYMAGfffYZr4GrHTt2xI4dO8SDbHNzc9GoUSMcPnwYn3/+ucSxf/75J4KCgmr0AM3KGgjNcRz69OmDPn368D6npKQEp0+fRps2baR+VatjrbnKHPStbpaWlgrHGvF14cIFiWVLXrx4AY7j8Mcff8gcdK9oTBXwtoUxPDwcAJCfn48XL17AyMhI6RaYpUuXwszMDH/88Yfc++zatStOnjyJ1q1bY9myZbzzSu3YsQO7du1CcnIyXr9+DUdHR8yePRvDhw/nvTzPgQMH0Lx5c4nB8KWlpRg7diy0tLQQFRUFNzc3HDp0CHPmzMGSJUvw448/8or9Ifbt2yfx3MHBAW/evEGbNm0wevRomeM0Afmva3Z2tlreZ6SWquoaHPkwt2/fZosWLWIODg7isRPTp09nu3btYhzHsb179yoV7/1f7Yp+sUdHR1fbMVCM1bwxC48fP2YCgUCl+61p91qRn376iTk7O7MXL16oHKM6ty6oM6/U+8pbhWbPns3+/vtvlcrXsGFDtmDBAoltR48eZRzHsTlz5khsFwqFrEWLFipdR1myMuh/yOuqq6vLBg4cyHbv3i3O3E4IX9QCVYN17NgR586dE09T/uWXX9ClSxcAb6f31nQmJiZITU2Fq6trVRflo2E0KRbA2wz2derUgZ2dHYYNG6bSDNDU1NTKLqbK1JlXqlxRURESEhKwcOFCWFpaon///rCyslK5fI0bN5bYlpKSAo7j4OfnJ7G9c+fOUi1DlUXdr+ngwYNx4MABJCQkwNjYGIMGDRKvX1eZqSaIZqAKVA129uxZNGvWDD/88AP69eun1mULKkNBQQEMDAzkfjA9ffoU169fR7du3QC8TRL5frdhTRoITVQ3ffp08b83bNgg85iKKlDvv3eUoag7VR3UmVcKALKystCpUyeJmAYGBoiPj0ePHj2ULp+FhYVU4t2TJ0/CwMBAKq+Zjo4OdHR0lL6GKj7kNZUlJiYGhYWF2L9/P0QiEWJiYrBt2zZYWFhgxIgREAqFCpeWIrVb9f7GJQpt2LABIpEIfn5+MDExweDBg+Hv7w8PD4+qLpqEbdu2Yd68eXjw4AEMDAwwZMgQLFu2DJaWlhLHHT16FIGBgQrH8VRm9mtSfVT1DNDc3Fx4enoiOTlZnINMnTw8PBAZGYkpU6ZUmFcqMjISnp6eCuOFhYUhIyMDU6dOFee8CgsLQ0hIiEqt0W5ubti2bRsmTpwIIyMjXL16FefOncOAAQOkfqjduHEDjRo1UvoaH2Lnzp0wNjZG37595R5z6NAhvHz5UiJzvyz6+voYMWIERowYgWfPnmHXrl0QiURYs2YN1qxZA3t7e4wcORJCoRC2trbqvhVSg1EFqgYLDQ1FaGgo7t69i5iYGIhEImzevBmWlpbw9PQEx3EqVSAyMjLELT15eXkAgJs3b0plMufzJZeSkoKgoCA4Ojpi6tSpePTokTix3969e5X+RVmTBkJ/qNrc2qaOxIcfqjK7U2fPno09e/agW7du2LRpEzp16iR1zKlTpxASEoKcnBzMmjVLYbzyHx+rV68Wb7OwsIBQKMQ///yjcAKCLPPnz0eHDh1gb2+PVq1aIS0tDRzHySxHfHx8pVQy5YmPj0dAQECFCXJ1dHQgFArxySefoF+/frxi169fHyEhIQgJCcHDhw8hEokQGxuLefPmYf78+fj0009x6tQpddwG0QRVPAaLqNmFCxfY1KlTmbW1NeM4jllaWrKvvvqKHTx4kBUWFlZ4vqyp7vKmv/MZeOvh4cHc3NxYcXGxeNvNmzeZq6sr09PTk0j+WNmD0qu79wfN16S0A5rmQycw8LF3715maGjIBAIBs7W1ZX5+fiwwMJD5+fmx5s2bM4FAwAwMDNju3bsrjKWnp8ciIyMltj148IBxHMd+//13lcr3559/sr59+zJHR0fWu3dvlpycLHVMamoqc3Z2ZklJSSpdQxU+Pj7My8uL17E9evRgAwYM+KDrpaens4EDB9L/MSKFWqA0TPv27dG+fXusXr0ax44dQ3R0NOLi4vDLL7/AwMAAL1++VHi+ult4rly5gnnz5kmMkbCzs8OpU6cwfPhwCIVCZGVlYcKECWq9riaoTa1tsqSnp2P9+vW4ePEi8vLyUFZWJrGf47gaPVli0KBBcHV1xcqVK/Hrr79i//794n1WVlYYO3YsvvnmG16LKhcXF0ukawAgfl5aWqpS+Tp16iS1bND7PDw8cPnyZZXiq+rs2bOYMWMGr2P79OmDVatWKX2N+/fvi1ufrly5AsYYOnXqpDApL6l9qAKloQQCAXr06IEePXogPDwcCQkJEIlEFZ735ZdfqrUcb968kTm4XV9fH/v378fYsWMxefJkZGVlKd3NoOnU/VrUJMePH0efPn1Qv359uLm54a+//oKXlxeKiopw+vRptGrVSiMG96orrxQg2fUOKO5+ByCVpb2meP78Oe9Fwk1NTfHs2TNex2ZnZ4vHP50+fRqMMTg6OmLRokUICAjgPWuS1CJV3QRGNJu7uzsLCAhQeMz06dMZx3HiXFa1VWFhIdu6davSWco1UdeuXVnLli1ZXl4ee/r0qUR32pkzZ1j9+vVZYmJipV3/Y3ThqVNF3eya1N1raWkplaNKngULFjBLS0u5+1++fMl27NjBvL29xdnara2t2bRp01haWpq6ikw0FLVAkUrVt29frFq1Crm5uXJnG61atQrm5uaYOXOmxs6aKy4uRlpaGnJzc9GgQQO0b99eqmVOT0+vVrc6vevixYtYuHAhjI2NxS0I5bMzP/30U4SEhGDu3Lnw9vauymJWG7Wpu7djx46IjY3Fd999JzPreLk3b94gNjYWHTt2lHuMubk5ioqK8Mknn0AoFIpzQAkEgsooOtEwVIEilWrMmDEwMzPDkydPFE7X/uabb2BlZYUTJ058xNKp38qVK+Hj44OWLVuKt0VERGD27NkSS4eYmZlh7dq18Pf3r4JSVn/a2towMjICANSrVw916tRBVlaWeL+trS2uXbtWVcWrdmpTxXvSpEnw8vJCQEAAIiMjYWhoKHXMq1evMGbMGNy8eVPcRSpLjx49EBAQAF9fX6kxZIRUhGOMUh+T6mHJkiUVrudW3QkEAkRHR4vXEoyNjUVAQACcnZ0xYcIENG7cGLdv38aaNWuQkZGBlJQUtScH1ARubm7w9PQUDwBu06YN7O3tsWfPHgDAwIEDkZ6ejjt37lTK9YuKihAXF4c+ffrAwsKiUq5BVDd//nyEhYXB1NQUfn5+cHZ2hpGREV68eIHLly8jISEB2dnZmDNnDsLCwqq6uERTVXUfIiHlNGE9t/fXEnRycmKtW7dmJSUlEsfl5+czGxsb5u3t/bGLWCPMnTuXNWzYUPx327p1K+M4jtnZ2TE7OzvGcRxbvny5UjFLS0vZ1q1b2dChQ5m7uztzd3dnQ4cOZdu2bWOlpaWVcRukEu3evZs5OjrKXP/O0dFRIkUKIZWBWqBItaFpLVDFxcXQ19dHeHg4goODpY5dtGgR1q5dy2uds9qmpKQE+fn5MDExEY+Li46Oxt69e6GlpQUPDw/4+fmhYcOGvOLl5eWhd+/eOH/+PIyMjMQZpe/evYv8/Hy4u7sjKSlJpdlvpGrdunUL169fR35+PoyNjeHo6Ah7e/uqLhapBWikHCGVhP3fUjLW1tYy91tbW6OgoOAjl6pmqFOnDkxNTSUmFYwcORLx8fHYs2cP8vLylMpWPmfOHKSlpWH9+vV4+vQpLl68iIsXLyIrKwsbNmzAhQsXMGfOnMq4FVKJtm/fDm1tbfj4+CAgIAA+Pj4SlaeMjAxs3769CktINBlVoAhRs+3bt2PSpEmYMWMGDA0NkZGRIfO4+/fv885nQ6Qp03geHx8vXvqoTp064u116tTB+PHjMX78eOzdu7cyikkqUVBQkMKlVc6ePYugoKCPWCJSm9AsPFKpauN6bkePHsXRo0fFz+Pi4mRmWj948CBcXFw+ZtFqrZycHIWJWh0dHZGbm/sRS0TUoaJKdEFBgcxEvoSoA72zSKVyc3PjndupvMurJnt/uRF5srOz0b17d7Rt27aSS0SAt8sHHThwAKGhoTL3HzhwAM2bN//IpSKqSE9Px6VLl8TPT548KXO5mufPnyM8PBwtWrT4iKUjtQlVoEilqk0J/pRhZmaG+vXrIzAwkNbX+ghCQ0MxYcIE9O3bF1OmTBF/qf7zzz9Yt24dkpOTsWHDhiouJeEjPj4eCxcuBPB2PcSIiAhERETIPLZevXo0BopUGqpAkUpVmxL8kQ9Tmd29oaGhyMrKwvLly5GUlCSxr06dOpg3bx7Gjx+vVExSNYKDg9G/f38wxuDu7o5FixZJZaTnOA6GhoZo3rw5deGRSkNpDAipIpqQtkGdBAKB0t29yv7tsrOz8dtvv+HevXsAgKZNm6JHjx4wMzNTuryk6v3+++9o2bIlzM3Nq7oopBaiqjkhpFqorO7eV69eoXHjxvj222/xzTff0PI5GkRWFn/GGFJTU1FcXIwuXbqIlwQiRN2oAkUIqRYqq7vXwMAA2traMtdMIzXbnDlzcOrUKaSmpgJ4W3nq1asXjh07BsYYmjRpgpSUFJogQCoFVaAIUaPamLahJhg8eDD27NmD8ePH1/iZnuT/27t3LwYMGCB+vmfPHqSkpGDJkiVo06YNQkJCsGDBAuzYsaMKS0k0FVWgCFGj2pa2oabw9/dHaGgoPD098dVXX8HGxgb6+vpSx7Vr164KSkdU9fDhQ9jZ2Ymf79u3D05OTpg1axYAYPz48di4cWNVFY9oOKpAEaJGlLahevLw8BD/++TJk1L7VR2UTqqWtrY2iouLAbx9DVNSUhAYGCjeb2Fhgezs7KoqHtFwVIEiRI0obUP1RBVbzeTs7Izo6GgEBAQgPj4eOTk56Nevn3j/vXv3aIYlqTSUxoAQQkiNlJycDB8fH5SUlAAAOnfujBMnToj3t2/fHk2bNsW+ffuqqohEg1ELFCFE45WWluLVq1cwNjaWuT8/P188W4/UHD179sTFixeRnJyMevXqYfjw4eJ9z549Q7du3SQGmROiTtQCRQjReKGhoThx4gSuXLkic7+Liwu8vLywdu3aj1wyok43btzA7t278ejRIzg4OCAoKEhupZmQDyWo6gIQQkhlO3LkCIYMGSJ3/5AhQ5CYmPgRS0RUtWHDBrRo0UJqcPjBgwfh6uqK+fPnIzw8HFOnTkW7du1oEDmpNFSBIoRovMzMTDRs2FDufmtrazx8+PAjloio6sCBA2jevLnE4PDS0lKMHTsWWlpaiIqKwuXLl7F8+XLcu3cPS5YsqcLSEk1GFShCiMYzNTXFP//8I3f/9evXqaunhrh27Ro+++wziW2pqal4+vQppk6dii+//BKtWrXCjBkzMGzYMGpZJJWGKlCEEI3Xp08fRERE4K+//pLad/HiRWzatAne3t5VUDKirJycHDRu3FhiW0pKCjiOg5+fn8T2zp074/79+x+zeKQWoSknhBCNFxYWhiNHjsDd3R2+vr5o1aoVAODKlSs4ePAgzM3NERYWVsWlJHxYWFjg8ePHEttOnjwJAwMDtGnTRmK7jo4OdHR0PmbxSC1CLVCEEI1nbW2NCxcuQCgUIiUlBYsXL8bixYtx7NgxBAQE4Pz582jUqFFVF5Pw4Obmhm3btuHFixcAgKtXr+LcuXPo3bu3VBqKGzdu0OtKKg2lMSCE1CqMMTx9+hQA0KBBA1qPsIa5fPkyOnTogHr16qFVq1ZIS0vDq1evcPr0abRv317i2ObNm8PLywubN2+uotISTUYtUISQWoXjOJibm8Pc3JwqTzWQi4sLjh07hvbt2yMzMxOfffYZEhMTpSpPx48fh4GBAYYOHVpFJSWajlqgCCEaZ9GiReA4DnPmzIFAIMCiRYsqPIfjOMydO/cjlI4QogmoAkUI0TgCgQAcx6GwsBA6OjoQCCpubOc4Dm/evPkIpSOEaAKqQBFCCCGEKInGQBFCCCGEKInyQBFCNJKvr69Sx3Mch4SEhEoqDSFE01AXHiFEIwkEAujp6cHS0hJ8PuY4jsOdO3c+QskIIZqAWqAIIRqpYcOGePjwIczMzCAUCuHv7w9LS8uqLhYhREPQGChCiEb677//kJqairZt2yIsLAyNGzdGjx49EBUVJc5iTQghqqIuPEKIxispKUFiYiJEIhF+/fVXlJWVwdvbG0KhED4+PtDV1a3qIhJCahiqQBFCapWXL19i3759CA8Px9mzZ7FgwQJKoEkIURp14RFCao3i4mIkJSUhISEBf/31F/T09GBjY1PVxSKE1EDUAkUI0WhlZWVITk5GbGws9u/fj1evXqFHjx4QCoXw8/ODoaFhVReREFIDUQWKEKKRTp06BZFIhN27dyMnJwefffYZhEIhhg0bBjMzs6ouHiGkhqMKFCFEIwkEAujr66Nv374YMWIEr666du3aVX7BCCEagSpQhBCN9O4CwhzHKTyWMUaLCRNClEKJNAkhGikqKqqqi0AI0WDUAkUIIYQQoiRKY0AIIYQQoiSqQBFCCCGEKIkqUIQQQgghSqIKFCGEEEKIkqgCRQghhBCiJKpAEUIIIYQoiSpQhBBCCCFKogoUIYQQQoiS/h/N8ZJBVpSz9QAAAABJRU5ErkJggg==",
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "crested.pl.heatmap.correlations_predictions(\n",
- " adata,\n",
- " split=\"test\",\n",
- " title=\"Correlations between Groundtruths and Predictions\",\n",
- " x_label_rotation=90,\n",
- " width=6,\n",
- " height=6,\n",
- ")"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.11.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/docs/tutorials/model_training_and_eval.ipynb b/docs/tutorials/model_training_and_eval.ipynb
index 05193281..959dbb4e 100644
--- a/docs/tutorials/model_training_and_eval.ipynb
+++ b/docs/tutorials/model_training_and_eval.ipynb
@@ -32,11 +32,16 @@
"source": [
"# Feel free to ignore this, necessary for my own setup\n",
"import os\n",
- "os.environ[\"PATH\"] = \"/data/projects/c04/cbd-saerts/nkemp/tools:\" + os.environ[\"PATH\"]\n",
"import sys\n",
- "sys.path.insert(0, '/home/VIB.LOCAL/niklas.kempynck/.conda/envs/crested/lib/python3.11/site-packages')\n",
- "sys.path.insert(0,'/data/projects/c04/cbd-saerts/nkemp/software/CREsted/src')\n",
- "sys.path.insert(0, '/data/projects/c04/cbd-saerts/nkemp/tools/')"
+ "\n",
+ "os.environ[\"PATH\"] = \"/data/projects/c04/cbd-saerts/nkemp/tools:\" + os.environ[\"PATH\"]\n",
+ "\n",
+ "sys.path.insert(\n",
+ " 0,\n",
+ " \"/home/VIB.LOCAL/niklas.kempynck/.conda/envs/crested/lib/python3.11/site-packages\",\n",
+ ")\n",
+ "sys.path.insert(0, \"/data/projects/c04/cbd-saerts/nkemp/software/CREsted/src\")\n",
+ "sys.path.insert(0, \"/data/projects/c04/cbd-saerts/nkemp/tools/\")"
]
},
{
@@ -48,10 +53,10 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2024-10-01 15:38:52.543881: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
- "2024-10-01 15:38:52.590499: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
+ "2024-10-09 14:34:29.606108: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n",
+ "2024-10-09 14:34:29.645116: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
"To enable the following instructions: AVX2 AVX512F AVX512_VNNI AVX512_BF16 AVX512_FP16 AVX_VNNI AMX_TILE AMX_INT8 AMX_BF16 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
- "2024-10-01 15:38:55.580591: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
+ "2024-10-09 14:34:32.865724: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
]
}
],
@@ -87,9 +92,11 @@
"metadata": {},
"outputs": [],
"source": [
- "bigwigs_folder='/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/bigwigs/bws/'\n",
- "regions_file = \"/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/consensus_peaks_inputs.bed\"\n",
- "chromsizes_file = '/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/mm.chrom.sizes'"
+ "bigwigs_folder = \"/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/bigwigs/bws/\"\n",
+ "regions_file = (\n",
+ " \"/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/consensus_peaks_inputs.bed\"\n",
+ ")\n",
+ "chromsizes_file = \"/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/mm.chrom.sizes\""
]
},
{
@@ -111,7 +118,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-30T13:01:59.749114+0200 INFO Extracting values from 19 bigWig files...\n"
+ "2024-10-09T14:34:54.305843+0200 INFO Extracting values from 19 bigWig files...\n"
]
},
{
@@ -345,7 +352,9 @@
"outputs": [],
"source": [
"crested.pp.change_regions_width(\n",
- " adata, 2114,chromsizes_file='/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/mm.chrom.sizes'\n",
+ " adata,\n",
+ " 2114,\n",
+ " chromsizes_file=\"/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/mm.chrom.sizes\",\n",
") # change the adata width of the regions to 2114bp"
]
},
@@ -369,8 +378,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-30T13:02:39.721561+0200 INFO Filtering on top k Gini scores...\n",
- "2024-09-30T13:02:45.443483+0200 INFO Added normalization weights to adata.obsm['weights']...\n"
+ "2024-10-09T14:35:30.673088+0200 INFO Filtering on top k Gini scores...\n",
+ "2024-10-09T14:35:34.107825+0200 INFO Added normalization weights to adata.obsm['weights']...\n"
]
},
{
@@ -487,7 +496,7 @@
" \n",
" \n",
"\n",
- "47959 rows × 4 columns
\n",
+ "47958 rows × 4 columns
\n",
""
],
"text/plain": [
@@ -505,7 +514,7 @@
"chr5:76587680-76589794 chr5 76587680 76589794 train\n",
"chr9:65523082-65525196 chr9 65523082 65525196 test\n",
"\n",
- "[47959 rows x 4 columns]"
+ "[47958 rows x 4 columns]"
]
},
"execution_count": 7,
@@ -514,7 +523,9 @@
}
],
"source": [
- "crested.pp.normalize_peaks(adata, top_k_percent=0.03) # The top_k_percent parameters can be tuned based on potential bias towards cell types. If some weights are overcompensating too much, consider increasing the top_k_percent. Default is 0.01"
+ "crested.pp.normalize_peaks(\n",
+ " adata, top_k_percent=0.03\n",
+ ") # The top_k_percent parameters can be tuned based on potential bias towards cell types. If some weights are overcompensating too much, consider increasing the top_k_percent. Default is 0.01"
]
},
{
@@ -526,7 +537,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 8,
"metadata": {},
"outputs": [
{
@@ -611,14 +622,14 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-26T14:41:29.333831+0200 WARNING Chromsizes file not provided when shifting. Will not check if shifted regions are within chromosomes\n"
+ "2024-10-09T14:35:34.327199+0200 WARNING Chromsizes file not provided when shifting. Will not check if shifted regions are within chromosomes\n"
]
}
],
@@ -646,20 +657,22 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "2024-09-25 13:23:44.193365: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1928] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 78790 MB memory: -> device: 0, name: NVIDIA H100 80GB HBM3, pci bus id: 0000:55:00.0, compute capability: 9.0\n"
+ "2024-10-09 14:35:35.492463: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1928] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 78790 MB memory: -> device: 0, name: NVIDIA H100 80GB HBM3, pci bus id: 0000:68:00.0, compute capability: 9.0\n"
]
}
],
"source": [
"# Load chrombpnet architecture for a dataset with 2114bp regions and 19 cell types\n",
- "model_architecture = crested.tl.zoo.chrombpnet(seq_len=2114, num_classes=len(list(adata.obs_names)))"
+ "model_architecture = crested.tl.zoo.chrombpnet(\n",
+ " seq_len=2114, num_classes=len(list(adata.obs_names))\n",
+ ")"
]
},
{
@@ -675,22 +688,22 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "TaskConfig(optimizer=, loss=, metrics=[, , , , , , ])\n"
+ "TaskConfig(optimizer=, loss=, metrics=[, , , , , , ])\n"
]
}
],
"source": [
"# Load the default configuration for training a peak regression model\n",
- "from crested.tl import default_configs, TaskConfig\n",
- "\n",
- "config = default_configs(\"peak_regression\") # or \"topic_classification\" for topic classification\n",
+ "config = crested.tl.default_configs(\n",
+ " \"peak_regression\"\n",
+ ") # or \"topic_classification\" for topic classification\n",
"print(config)\n",
"\n",
"# If you want to change some small parameters to an existing config, you can do it like this\n",
@@ -707,37 +720,35 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "TaskConfig(optimizer=, loss=, metrics=[, , , , , , ])\n"
+ "TaskConfig(optimizer=, loss=, metrics=[, , , , , , ])\n"
]
}
],
"source": [
"# Create your own configuration\n",
"# I recommend trying this for peak regression with a weighted cosine mse log loss function\n",
- "from crested.tl import default_configs, TaskConfig\n",
- "\n",
"import keras\n",
"\n",
"optimizer = keras.optimizers.Adam(learning_rate=1e-3)\n",
"loss = crested.tl.losses.CosineMSELogLoss(max_weight=100)\n",
"metrics = [\n",
- " keras.metrics.MeanAbsoluteError(),\n",
- " keras.metrics.MeanSquaredError(),\n",
- " keras.metrics.CosineSimilarity(axis=1),\n",
- " crested.tl.metrics.PearsonCorrelation(),\n",
- " crested.tl.metrics.ConcordanceCorrelationCoefficient(),\n",
- " crested.tl.metrics.PearsonCorrelationLog(),\n",
- " crested.tl.metrics.ZeroPenaltyMetric(),\n",
+ " keras.metrics.MeanAbsoluteError(),\n",
+ " keras.metrics.MeanSquaredError(),\n",
+ " keras.metrics.CosineSimilarity(axis=1),\n",
+ " crested.tl.metrics.PearsonCorrelation(),\n",
+ " crested.tl.metrics.ConcordanceCorrelationCoefficient(),\n",
+ " crested.tl.metrics.PearsonCorrelationLog(),\n",
+ " crested.tl.metrics.ZeroPenaltyMetric(),\n",
"]\n",
- " \n",
- "alternative_config = TaskConfig(optimizer, loss, metrics)\n",
+ "\n",
+ "alternative_config = crested.tl.TaskConfig(optimizer, loss, metrics)\n",
"print(alternative_config)"
]
},
@@ -760,7 +771,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
@@ -771,7 +782,7 @@
" config=alternative_config,\n",
" project_name=\"mouse_biccn\", # change to your liking\n",
" run_name=\"dyn_log_loss\", # change to your liking\n",
- " logger='wandb', # or 'wandb', 'tensorboard'\n",
+ " logger=\"wandb\", # or 'wandb', 'tensorboard'\n",
")"
]
},
@@ -817,14 +828,14 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-30T13:02:54.779289+0200 INFO After specificity filtering, kept 88835 out of 546993 regions.\n"
+ "2024-10-09T14:35:41.937474+0200 INFO After specificity filtering, kept 88835 out of 546993 regions.\n"
]
},
{
@@ -836,13 +847,15 @@
" obsm: 'weights'"
]
},
- "execution_count": 8,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "crested.pp.filter_regions_on_specificity(adata, gini_std_threshold=1.0) # All regions with a Gini index 1 std above the mean across all regions will be kept\n",
+ "crested.pp.filter_regions_on_specificity(\n",
+ " adata, gini_std_threshold=1.0\n",
+ ") # All regions with a Gini index 1 std above the mean across all regions will be kept\n",
"adata"
]
},
@@ -864,14 +877,14 @@
},
{
"cell_type": "code",
- "execution_count": 106,
+ "execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-25T14:18:02.963100+0200 WARNING Chromsizes file not provided when shifting. Will not check if shifted regions are within chromosomes\n"
+ "2024-10-09T14:35:42.021323+0200 WARNING Chromsizes file not provided when shifting. Will not check if shifted regions are within chromosomes\n"
]
}
],
@@ -880,60 +893,61 @@
" adata,\n",
" genome_file=genome_file,\n",
" batch_size=64, # Recommended to go for a smaller batch size than in the pretrained model\n",
- " max_stochastic_shift=3, \n",
- " always_reverse_complement=True, \n",
+ " max_stochastic_shift=3,\n",
+ " always_reverse_complement=True,\n",
")"
]
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# First load the pretrained model on all peaks\n",
"import keras\n",
- "model_architecture=keras.models.load_model('deeppeak_benchmarking/dyn_log_loss/checkpoints/18.keras', compile=False)"
+ "\n",
+ "model_architecture = keras.models.load_model(\n",
+ " \"deeppeak_benchmarking/dyn_log_loss/checkpoints/18.keras\", compile=False\n",
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "TaskConfig(optimizer=, loss=, metrics=[, , , , , , ])\n"
+ "TaskConfig(optimizer=, loss=, metrics=[, , , , , , ])\n"
]
}
],
"source": [
"# Use the same config you used for the pretrained model. EXCEPT THE LEARNING RATE, make sure that is lower than it was on the epoch you select the model from.\n",
- "from crested.tl import default_configs, TaskConfig\n",
- "\n",
"import keras\n",
"\n",
- "optimizer = keras.optimizers.Adam(learning_rate=1e-4) # Lower LR!\n",
+ "optimizer = keras.optimizers.Adam(learning_rate=1e-4) # Lower LR!\n",
"loss = crested.tl.losses.CosineMSELogLoss(max_weight=100)\n",
"metrics = [\n",
- " keras.metrics.MeanAbsoluteError(),\n",
- " keras.metrics.MeanSquaredError(),\n",
- " keras.metrics.CosineSimilarity(axis=1),\n",
- " crested.tl.metrics.PearsonCorrelation(),\n",
- " crested.tl.metrics.ConcordanceCorrelationCoefficient(),\n",
- " crested.tl.metrics.PearsonCorrelationLog(),\n",
- " crested.tl.metrics.ZeroPenaltyMetric(),\n",
+ " keras.metrics.MeanAbsoluteError(),\n",
+ " keras.metrics.MeanSquaredError(),\n",
+ " keras.metrics.CosineSimilarity(axis=1),\n",
+ " crested.tl.metrics.PearsonCorrelation(),\n",
+ " crested.tl.metrics.ConcordanceCorrelationCoefficient(),\n",
+ " crested.tl.metrics.PearsonCorrelationLog(),\n",
+ " crested.tl.metrics.ZeroPenaltyMetric(),\n",
"]\n",
- " \n",
- "alternative_config = TaskConfig(optimizer, loss, metrics)\n",
+ "\n",
+ "alternative_config = crested.tl.TaskConfig(optimizer, loss, metrics)\n",
"print(alternative_config)"
]
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
@@ -944,7 +958,7 @@
" config=alternative_config,\n",
" project_name=\"mouse_biccn\", # change to your liking\n",
" run_name=\"dyn_log_loss_FT\", # change to your liking\n",
- " logger='wandb', # or 'wandb', 'tensorboard'\n",
+ " logger=\"wandb\", # or 'wandb', 'tensorboard'\n",
")"
]
},
@@ -972,7 +986,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
@@ -990,23 +1004,15 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 21,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "2024-10-01 15:39:09.336900: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1928] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 78790 MB memory: -> device: 0, name: NVIDIA H100 80GB HBM3, pci bus id: 0000:55:00.0, compute capability: 9.0\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# load an existing model\n",
"evaluator = crested.tl.Crested(data=datamodule)\n",
"\n",
"evaluator.load_model(\n",
- " \"deeppeak_benchmarking/dyn_log_loss_TL/checkpoints/01.keras\", # Load your model\n",
+ " \"deeppeak_benchmarking/dyn_log_loss_TL/checkpoints/01.keras\", # Load your model\n",
" compile=True,\n",
")"
]
@@ -1021,7 +1027,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 22,
"metadata": {},
"outputs": [
{
@@ -1029,24 +1035,24 @@
"output_type": "stream",
"text": [
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
- "I0000 00:00:1727789951.120449 3739484 service.cc:145] XLA service 0x7f4530006040 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
- "I0000 00:00:1727789951.120484 3739484 service.cc:153] StreamExecutor device (0): NVIDIA H100 80GB HBM3, Compute Capability 9.0\n",
- "2024-10-01 15:39:11.147396: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
- "2024-10-01 15:39:11.272221: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:465] Loaded cuDNN version 8907\n"
+ "I0000 00:00:1728477344.361151 665810 service.cc:145] XLA service 0x7f0b64017970 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
+ "I0000 00:00:1728477344.361176 665810 service.cc:153] StreamExecutor device (0): NVIDIA H100 80GB HBM3, Compute Capability 9.0\n",
+ "2024-10-09 14:35:44.390616: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
+ "2024-10-09 14:35:44.514826: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:465] Loaded cuDNN version 8907\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m 3/31\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 59ms/step - concordance_correlation_coefficient: 0.6900 - cosine_similarity: 0.8519 - loss: 0.2898 - mean_absolute_error: 0.1821 - mean_squared_error: 0.1373 - pearson_correlation: 0.7178 - pearson_correlation_log: 0.7053 - zero_penalty_metric: 1185.4198"
+ "\u001b[1m 3/31\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m1s\u001b[0m 59ms/step - concordance_correlation_coefficient: 0.6900 - cosine_similarity: 0.8519 - loss: 0.2898 - mean_absolute_error: 0.1821 - mean_squared_error: 0.1373 - pearson_correlation: 0.7178 - pearson_correlation_log: 0.7053 - zero_penalty_metric: 1185.4197"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "I0000 00:00:1727789960.332699 3739484 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n"
+ "I0000 00:00:1728477353.565676 665810 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n"
]
},
{
@@ -1061,9 +1067,9 @@
"output_type": "stream",
"text": [
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
- "I0000 00:00:1727789962.601327 3739589 asm_compiler.cc:369] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_574', 64 bytes spill stores, 64 bytes spill loads\n",
+ "I0000 00:00:1728477355.805278 665910 asm_compiler.cc:369] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_574', 64 bytes spill stores, 64 bytes spill loads\n",
"\n",
- "I0000 00:00:1727789962.966940 3739582 asm_compiler.cc:369] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_574', 12 bytes spill stores, 12 bytes spill loads\n",
+ "I0000 00:00:1728477355.943902 665901 asm_compiler.cc:369] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_574', 12 bytes spill stores, 12 bytes spill loads\n",
"\n"
]
},
@@ -1071,15 +1077,8 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m31/31\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 365ms/step - concordance_correlation_coefficient: 0.7083 - cosine_similarity: 0.8608 - loss: 0.2679 - mean_absolute_error: 0.1789 - mean_squared_error: 0.1375 - pearson_correlation: 0.7292 - pearson_correlation_log: 0.7288 - zero_penalty_metric: 1154.3245\n",
- "2024-10-01T15:39:31.347008+0200 INFO Test concordance_correlation_coefficient: 0.7149\n",
- "2024-10-01T15:39:31.347520+0200 INFO Test cosine_similarity: 0.8572\n",
- "2024-10-01T15:39:31.347728+0200 INFO Test loss: 0.2746\n",
- "2024-10-01T15:39:31.347912+0200 INFO Test mean_absolute_error: 0.1842\n",
- "2024-10-01T15:39:31.348085+0200 INFO Test mean_squared_error: 0.1440\n",
- "2024-10-01T15:39:31.348450+0200 INFO Test pearson_correlation: 0.7359\n",
- "2024-10-01T15:39:31.348629+0200 INFO Test pearson_correlation_log: 0.7267\n",
- "2024-10-01T15:39:31.348781+0200 INFO Test zero_penalty_metric: 1129.3738\n"
+ "\u001b[1m31/31\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 363ms/step - concordance_correlation_coefficient: 0.7083 - cosine_similarity: 0.8608 - loss: 0.2679 - mean_absolute_error: 0.1789 - mean_squared_error: 0.1375 - pearson_correlation: 0.7292 - pearson_correlation_log: 0.7288 - zero_penalty_metric: 1154.3245\n",
+ "2024-10-09T14:36:04.505906+0200 INFO Test concordance_correlation_coefficient: 0.7149\n"
]
}
],
@@ -1103,7 +1102,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 23,
"metadata": {},
"outputs": [
{
@@ -1111,7 +1110,7 @@
"output_type": "stream",
"text": [
"\u001b[1m348/348\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 58ms/step\n",
- "2024-10-01T15:39:52.425900+0200 INFO Adding predictions to anndata.layers[biccn_model].\n"
+ "2024-10-09T14:36:25.588753+0200 INFO Adding predictions to anndata.layers[biccn_model].\n"
]
}
],
@@ -1124,7 +1123,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 24,
"metadata": {},
"outputs": [
{
@@ -1133,7 +1132,7 @@
"Layers with keys: biccn_model"
]
},
- "execution_count": 7,
+ "execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
@@ -1172,7 +1171,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 25,
"metadata": {},
"outputs": [
{
@@ -1310,20 +1309,20 @@
"[7932 rows x 4 columns]"
]
},
- "execution_count": 8,
+ "execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Define a dataframe with test set regions\n",
- "test_df = adata.var[adata.var['split']=='test']\n",
+ "test_df = adata.var[adata.var[\"split\"] == \"test\"]\n",
"test_df"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 26,
"metadata": {},
"outputs": [
{
@@ -1331,7 +1330,7 @@
"output_type": "stream",
"text": [
"chr18:3968712-3970826\n",
- "2024-10-01T15:39:52.480301+0200 INFO Plotting bar plots for region: chr18:3968712-3970826, models: ['biccn_model']\n"
+ "2024-10-09T14:36:25.621762+0200 INFO Plotting bar plots for region: chr18:3968712-3970826, models: ['biccn_model']\n"
]
},
{
@@ -1351,9 +1350,7 @@
"idx = 22\n",
"region = test_df.index[idx]\n",
"print(region)\n",
- "crested.pl.bar.region_predictions(\n",
- " adata, region, title=\"Predictions vs Ground Truth\"\n",
- ")"
+ "crested.pl.bar.region_predictions(adata, region, title=\"Predictions vs Ground Truth\")"
]
},
{
@@ -1365,33 +1362,34 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 842ms/step\n"
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 837ms/step\n"
]
}
],
"source": [
"from pysam import FastaFile\n",
+ "\n",
"genome = FastaFile(genome_file)\n",
"\n",
- "chrom = 'chr3'#'chr18'\n",
- "start = 72535878-807#61107770\n",
- "end = 72536378+807#61109884\n",
+ "chrom = \"chr3\" #'chr18'\n",
+ "start = 72535878 - 807 # 61107770\n",
+ "end = 72536378 + 807 # 61109884\n",
"\n",
- "sequence = genome.fetch(chrom,start, end).upper()\n",
+ "sequence = genome.fetch(chrom, start, end).upper()\n",
"\n",
"prediction = evaluator.predict_sequence(sequence)"
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 28,
"metadata": {},
"outputs": [
{
@@ -1406,8 +1404,7 @@
}
],
"source": [
- "from crested.pl.bar import prediction_bar\n",
- "prediction_bar(prediction, classes=list(adata.obs_names))"
+ "crested.pl.bar.prediction(prediction, classes=list(adata.obs_names))"
]
},
{
@@ -1417,13 +1414,20 @@
"#### Prediction on gene locus"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can also score a gene locus by using a sliding window over a predefined genomic range. We can compare those predictions then to the bigwig we did the predictions for, to see if the profile matches the CREsted predictions. "
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
- "chrom = 'chr4'\n",
+ "chrom = \"chr4\"\n",
"start = 91209533\n",
"end = 91374781\n",
"\n",
@@ -1431,27 +1435,27 @@
" chr_name=chrom,\n",
" gene_start=start,\n",
" gene_end=end,\n",
- " class_name='Sst',\n",
- " strand='-',\n",
+ " class_name=\"Sst\",\n",
+ " strand=\"-\",\n",
" upstream=50000,\n",
" downstream=10000,\n",
- " step_size=100\n",
+ " step_size=100,\n",
")"
]
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
- "bigwig = '/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/bigwigs/bws/Sst.bw'\n",
- "bw_values, midpoints = crested.tl.extract_bigwig_values_per_bp(bigwig, coordinates)"
+ "bigwig = \"/home/VIB.LOCAL/niklas.kempynck/nkemp/mouse/biccn/bigwigs/bws/Sst.bw\"\n",
+ "bw_values, midpoints = crested.utils.extract_bigwig_values_per_bp(bigwig, coordinates)"
]
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 32,
"metadata": {},
"outputs": [
{
@@ -1466,7 +1470,14 @@
}
],
"source": [
- "crested.pl.hist.locus_scoring(scores, coordinates, (min_loc,max_loc), gene_start=start,gene_end=end, title='CREsted prediction around Elavl2 gene locus for Sst', bigwig_values=bw_values, bigwig_midpoints=midpoints\n",
+ "crested.pl.hist.locus_scoring(\n",
+ " scores,\n",
+ " (min_loc, max_loc),\n",
+ " gene_start=start,\n",
+ " gene_end=end,\n",
+ " title=\"CREsted prediction around Elavl2 gene locus for Sst\",\n",
+ " bigwig_values=bw_values,\n",
+ " bigwig_midpoints=midpoints,\n",
")"
]
},
@@ -1493,7 +1504,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 33,
"metadata": {},
"outputs": [
{
@@ -1502,7 +1513,7 @@
"Layers with keys: biccn_model"
]
},
- "execution_count": 25,
+ "execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
@@ -1513,19 +1524,19 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-30T13:05:23.842418+0200 INFO Plotting density scatter for class: L2_3IT, models: ['biccn_model'], split: test\n"
+ "2024-10-09T14:39:11.357010+0200 INFO Plotting density scatter for class: L2_3IT, models: ['biccn_model'], split: test\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHvCAYAAACboJyJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5idZZ3w/3lO7+dMOdN7pmdSCS0gBKSXRWRFUVEE/b3i7rqry7prBRWXFZdd14K+rpQovCpSBJVeEhJCQjop03s/bU7v5zy/P4Y5zElmkplkkkzC/bmuuZLzlPu5n1Oe7/3tkizLMgKBQCAQCBYlilM9AYFAIBAIBLMjBLVAIBAIBIsYIagFAoFAIFjECEEtEAgEAsEiRghqgUAgEAgWMUJQCwQCgUCwiBGCWiAQCASCRYwQ1AKBQCAQLGKEoBYIBAKBYBEjBLVAIBAIBIsYIagFggWiqqoKSZJ49NFHj3psR0cH9913H1dccQVFRUWo1Wpyc3O55JJLeOSRR0in08c9n66uLr71rW9x+eWXU11djdFoRK/XU19fz5e+9CW6u7tnPO/RRx9FkiSqqqoy2yRJmvffunXrjvseBAIBqE71BASCDxqpVIqGhobM67KyMlauXMnAwAAbNmxgw4YN/P73v+fZZ59Fp9Md83U2bNjAD37wAyRJoqCggIaGBkKhEH19ffziF7/g0Ucf5ZlnnuHKK6886lgXXHDBYdt8Ph/79++fdf+yZcuOee4CgeB9hKAWCE4ysixjs9n4+7//ez73uc9RU1OT2ffEE09w22238fLLL/Otb32L//zP/zzm6yxfvpzHH3+cyy+/HLvdntnucrn4h3/4B37/+9/z6U9/moGBAfR6/RHH2rx582HbNmzYwCWXXDLrfoFAsDAI07dAcJJRKpX09PTw/e9/P0tIA9x8883cfffdADz88MPHZQI/55xz+OQnP5klpAHy8/NZv349OTk5uFwuIWQFgkWOENQCwUlGkiRycnJm3X/FFVcAMDExgdPpPCFz0Gg0VFdXAxAOh0/INQQCwcIgBLVAsMiIRqOZ/x/NJH2seDwe2tvbUSqVrFix4oRcQyAQLAxCUAsEi4wnnngCgJaWFiwWy4KOPTExweuvv84111xDKBTiq1/9alZ0t0AgWHyIYDKBYBGxf/9+HnzwQQC+9rWvLciYXq/3MFN7TU0Njz76KJ/97GcX5BoCgeDEITRqgWCR4PV6uemmm4jH41xzzTXceuutCzKuSqXiggsu4IILLqC2tha1Wk1vby+PP/44/f39C3INgUBw4hAatUCwCIjFYnzkIx+ho6ODpUuX8thjjy3Y2CaTKSuy2+12c/fdd/Pzn/+c8847j9bWVmw224JdTyAQLCxCoxYITjHJZJKPf/zjbNy4kaqqKl5++eUjRoUfL3l5efzsZz/juuuuY2xsjJ/97Gcn7FoCgeD4EYJaIDiFyLLM5z73OZ599lmKi4t59dVXKSkpOSnXvvbaawHYtWvXSbmeQCA4NoSgFghOIX//93/PY489Rl5eHq+88gpLliw5addOJpNZ/woEgsWJENQCwSnim9/8Jg8++CBms5kXX3yRpUuXntTr/+lPfwJg5cqVJ/W6AoFgfghBLRCcAv7rv/6Lf//3f0ev1/OXv/yFNWvWLPg1vvzlL/PGG2+QSqWytvf39/PZz36W1157Db1ezx133LHg1xYIBAuHiPoWCBaYf/iHf+Cuu+6adf/TTz+d2W82m/nGN74x67FPPvkkRUVFxzSP5557jp/+9Kfo9Xpqa2vR6XSMjIwwOjpKOp3GbDbz//7f/6OysvKYxhcIBCcHIagFggUmGAwSDAZn3W+xWJBlGQCHw4HD4Zj12OnlROfLT37yE55//nnefvttRkZG8Hq9GI1GVq9ezRVXXMGXvvQlSktLj3l8gUBwcpDkqSeGQCAQCASCRYfwUQsEAoFAsIgRglogEAgEgkWM8FELBKcBH/vYxxgdHZ3Tsddcc80RA9QEAsHphRDUAsFpwPbt2+fcQKO2tvYEz0YgEJxMRDCZQCAQCASLGOGjFggEAoFgESMEtUAgEAgEixghqAUCgUAgWMQIQS0QCAQCwSJGCGqBQCAQCBYxQlALBAKBQLCIEYJaIBAIBIJFjBDUAoFAIBAsYoSgFggEAoFgESMEtUAgEAgEixghqAUCgUAgWMQIQS0QCAQCwSJGCGqBQCAQCBYxQlALBAKBQLCIEYJaIBAIBIJFjBDUAoFAIBAsYoSgFggEAoFgESMEtUAgEAgEixghqAUCgUAgWMQIQS0QLELuueceJEnC5XId8bh169axbt26kzOp05jbbruNqqqqYzpXvMeCU43qVE9AIBAcOw8++OCpnoJAIDjBCEEtEJzGNDc3n+opCASCE4wwfQsEi5jBwUE++tGPYrFYsFqtfPrTn8bpdGb2z2SWjcVifO9736OpqQmdTkdeXh6XXHIJW7ZsyRyTTqf56U9/ysqVK9Hr9dhsNs477zyee+65zDFVVVVcd911vPjii6xevRq9Xk9jYyMPP/zwvO9DkiT+/u//nkceeYSGhgb0ej1r1qxh69atyLLMj370I6qrqzGZTFx66aV0dXUdNsbDDz/MihUr0Ol05ObmcuONN9La2nrYcY8++igNDQ1otVqampr4zW9+M+Oc4vE49957L42NjWi1Wux2O5/73Oey3l+BYDEgNGqBYBFz4403cvPNN/PFL36RAwcO8O1vf5uDBw+ybds21Gr1Yccnk0muvvpqNm3axD/90z9x6aWXkkwm2bp1KwMDA6xduxaY9Nk+9thj3HHHHXzve99Do9Gwa9cu+vr6ssbbu3cv//zP/8y//du/UVhYyK9//WvuuOMOamtrueiii+Z1L3/5y1/YvXs3//Ef/4EkSfzrv/4r1157LZ/97Gfp6enhZz/7GT6fj69+9avcdNNN7NmzB0mSALjvvvv4xje+wS233MJ9992H2+3mnnvu4fzzz2f79u3U1dUBk0L6c5/7HDfccAMPPPAAPp+Pe+65h1gshkLxvl6STqe54YYb2LRpE1/72tdYu3Yt/f393H333axbt44dO3ag1+vndX8CwQlDFggEi467775bBuSvfOUrWdsff/xxGZAfe+wxWZZl+eKLL5YvvvjizP7f/OY3MiD/7//+76xjv/nmmzIgf/Ob3zziHCorK2WdTif39/dntkUiETk3N1f+P//n/8zrfgC5qKhIDgaDmW1/+tOfZEBeuXKlnE6nM9t//OMfy4D87rvvyrIsyxMTE7Jer5evueaarDEHBgZkrVYrf/KTn5RlWZZTqZRcUlIir169Omu8vr4+Wa1Wy5WVlZltv/vd72RAfuqpp7LG3L59uwzIDz74YGbboe+xQHCyEaZvgWAR86lPfSrr9c0334xKpeKNN96Y8fgXXngBnU7H7bffPuuYL7zwAgB/93d/d9Trr1y5koqKisxrnU5HfX09/f39c5l+FpdccglGozHzuqmpCYCrr746ozlP3z51jbfffptIJMJtt92WNV55eTmXXnopr732GgDt7e2MjIzwyU9+Mmu8ysrKjCVhir/85S/YbDauv/56kslk5m/lypUUFRWxYcOGed+fQHCiEIJaIFjEFBUVZb1WqVTk5eXhdrtnPN7pdFJSUpJl5p3pGKVSedjYM5GXl3fYNq1WSyQSOeq5h5Kbm5v1WqPRHHF7NBoFyNxrcXHxYWOWlJRk9k/9O9N9HbptfHwcr9eLRqNBrVZn/Y2NjR01LU4gOJkIH7VAsIgZGxujtLQ08zqZTOJ2u2cUoAB2u53NmzeTTqdnFdZ2u51UKsXY2NiMwm+xMXWvo6Ojh+0bGRkhPz8/67ixsbHDjjt0W35+Pnl5ebz44oszXtNsNh/XnAWChURo1ALBIubxxx/Pev3EE0+QTCZnLcBx9dVXE41GefTRR2cd8+qrrwbgF7/4xUJN84Ry/vnno9freeyxx7K2Dw0N8frrr/PhD38YgIaGBoqLi/nd736HLMuZ4/r7+7Mi3gGuu+463G43qVSKNWvWHPbX0NBw4m9MIJgjQqMWCBYxTz/9NCqVissvvzwT9b1ixQpuvvnmGY+/5ZZbeOSRR/jiF79Ie3s7l1xyCel0mm3bttHU1MQnPvEJPvShD3Hrrbdy7733Mj4+znXXXYdWq2X37t0YDAb+4R/+4STf5ZGx2Wx8+9vf5hvf+Aaf+cxnuOWWW3C73Xz3u99Fp9Nx9913A6BQKPj+97/P5z//eW688Ua+8IUv4PV6ueeeew4zfX/iE5/g8ccf55prruEf//EfOeecc1Cr1QwNDfHGG29www03cOONN56K2xUIDkMIaoFgEfP0009zzz338Itf/AJJkrj++uv58Y9/nPHjHopKpeL555/nvvvu43e/+x0//vGPMZvNrFixgquuuipz3KOPPsrq1at56KGHePTRR9Hr9TQ3N/ONb3zjZN3avPj6179OQUEBP/nJT/jDH/6AXq9n3bp1/Pu//3smNQvgjjvuAOCHP/whH/3oR6mqquIb3/gGGzduzAoQUyqVPPfcc/zP//wPv/3tb7nvvvtQqVSUlZVx8cUXs2zZspN9iwLBrEjydBuRQCAQCASCRYXwUQsEAoFAsIgRpm+BQHDMJJPJI+5XKBRHTBUTCARHR/yCBALBMXNoDvKhf0cqvCIQCOaG0KgFAsExs3379iPun8pxFggEx44IJhMIBAKBYBEjTN8CgUAgECxihOn7OEmn04yMjGA2m7MaAQgEAoFAMBuyLBMIBI5amx+EoD5uRkZGKC8vP9XTEAgEAsFpyODgIGVlZUc8ZtEJ6tdff53HHnuMLVu2MDg4iM1mY82aNXznO9/hrLPOOur5DoeDr33ta/zlL38hHA6zYsUK7r333kw94Om8+uqrfPvb32bv3r0YDAauu+467r//fgoKCuY836ni/YODg1gslrnfqEAgEAg+sPj9fsrLy+fUAGbRCepf/OIXuN1u/vEf/5Hm5macTicPPPAA5513Hi+99BKXXnrprOfGYjE+/OEP4/V6+Z//+R8KCgr4+c9/zlVXXcWrr77KxRdfnDl248aNXH311Vx77bU8++yzOBwO/vVf/5UPf/jD7NixA61WO6f5Tpm7LRaLENQCgUAgmBdzcZkuuqhvh8NxmEYbDAapra2lpaWFV199ddZzH3zwQf7u7/6OLVu2cP755wOTBRlWrFiByWRi27ZtmWPPOeccQqEQe/fuRaWaXK9s2bKFCy64gAcffJA777xzTvP1+/1YrVZ8Pp8Q1AKBQCCYE/ORHYsu6nsms7PJZKK5uZnBwcEjnvvMM8/Q0NCQEdIw2aTg05/+NO+88w7Dw8MADA8Ps337dm699daMkAZYu3Yt9fX1PPPMMwt0NwKBQCAQHB+LTlDPhM/nY9euXSxduvSIx+3fv5/ly5cftn1q24EDBzLHTd9+6LFT+wUCgUAgONUsOh/1TPzd3/0doVCIb37zm0c8zu12k5ube9j2qW1utzvr39mOndo/E7FYjFgslnnt9/uPfgMCgUAgEBwji16j/va3v83jjz/Of//3f88p6vtIjvlD98127JHGuO+++7BarZk/kZolEAgEghPJohbU3/3ud7n33nv5wQ9+wN///d8f9fi8vLwZtWGPxwO8r0Hn5eUBzHrsTJr2FF//+tfx+XyZv6P5zQUCgUAgOB4WraD+7ne/yz333MM999zDN77xjTmds2zZMvbt23fY9qltLS0tWf/OduzU/pnQarWZVCyRkiUQCASCE82iFNTf//73ueeee/jWt77F3XffPefzbrzxRtra2rLSsJLJJI899hjnnnsuJSUlAJSWlnLOOefw2GOPkUqlMsdu3bqV9vZ2PvrRjy7czQgEAoFAcBwsujzqBx54gLvuuourrrpqRiF93nnnAXDHHXewfv16uru7qaysBCYDvc466yz8fj//8R//QUFBAQ8++CB//vOfDyt4smHDBi6//HKuv/56vvSlL+FwOPi3f/s3rFbrvAqeiDxqgUAgEMyX+ciORRf1/ec//xmAF198kRdffPGw/VPrilQqRSqVYvo6Q6vV8tprr/G1r32Nf/iHfyAcDrNy5UpeeOGFLCENsG7dOp5//nm+853vcP3112dKiP7oRz+as5AWCAQCwalHlmV8Ph/xeByNRoPVaj2jmiQtOo36dENo1AKBQHDqcDqdHGzvYNwTIJ5Mo1EpKMw109xQj91uP9XTm5XTWqMWCAQCgWAuOJ1ONm/fTUjSU1TRiM5gIBoOMzg6iGf7bi48e9WiFtZzZVEGkwkEAoFAcCRkWeZgewchSU9NXRNGsxmlUonRbKamromQpOdgewdngtFYCGqBQCAQnHb4fD7GPQGKistnLGZVVFzOuCeAz+c7RTNcOISgFggEAsFpRzweJ55MozMYZtyvMxiIJ9PE4/GTPLOFRwhqgUAgEJx2aDQaNCoF0XB4xv3RcBiNSoFGoznJM1t4hKBepNx2221IkoQkSajVampqarjrrrsIhUKnemonjY0bN3LWWWeh0+moqanhl7/85RGPf/TRRzPv2aF/Docjc9xLL73Eeeedh9lsxm63c9NNN9Hb23uib0cgECwgVquVwlwzY6ODh/mhZVlmbHSQwlwzVqv1FM1w4RCCehFz1VVXMTo6Sk9PD/feey8PPvggd9111wm73mIyEfX29nLNNdfwoQ99iN27d/ONb3yDL3/5yzz11FOznvPxj3+c0dHRrL8rr7ySiy++ONPnvKenhxtuuIFLL72UPXv28NJLL+FyuUQ1OoHgNEOSJJob6jHKEXo6WwkFAqRSKUKBAD2drRjlCM0N9WdEPrUQ1IsYrVZLUVER5eXlfPKTn+RTn/oUf/rTn4DJFeP9999PTU0Ner2eFStW8OSTT2bOTaVS3HHHHVRXV6PX62loaOB//ud/ssa/7bbb+MhHPsJ9991HSUkJ9fX1ADz44IPU1dWh0+koLCzkb//2bzPnxGIxvvzlL1NQUIBOp+PCCy9k+/btmf0bNmxAkiRee+011qxZg8FgYO3atbS3t8/r3n/5y19SUVHBj3/8Y5qamvj85z/P7bffzn/+53/Oeo5er6eoqCjzp1Qqef3117njjjsyx+zatYtUKsW9997LkiVLWL16NXfddRd79+4lkUjMa44CwZmALMt4vV4cDgder/e0ipK22+1cePYqys0KPANt9O3fgWegjXKz4oxJzQKRR31aodfrM8LkW9/6Fk8//TS/+MUvqKur48033+TTn/40drudiy++mHQ6TVlZGU888QT5+fls2bKF/+//+/8oLi7m5ptvzoz52muvYbFYeOWVV5BlmR07dvDlL3+Z3/72t6xduxaPx8OmTZsyx3/ta1/jqaeeYv369VRWVnL//fdz5ZVX0tXVldV17Jvf/CYPPPAAdrudL37xi9x+++289dZbAPT19VFdXc0bb7zBunXrZrzXt99+myuuuCJr25VXXslDDz1EIpFArVYf9f36zW9+g8FgyFporFmzBqVSySOPPMJtt91GMBjkt7/9LVdcccWcxhQIziRO12Ih07Hb7VyUn39GVyZDFhwXPp9PBmSfz7eg4372s5+Vb7jhhszrbdu2yXl5efLNN98sB4NBWafTyVu2bMk654477pBvueWWWcf80pe+JN90001Z1ygsLJRjsVhm21NPPSVbLBbZ7/cfdn4wGJTVarX8+OOPZ7bF43G5pKREvv/++2VZluU33nhDBuRXX301c8xf//pXGZAjkYgsy7I8NDQkNzQ0yNu2bZt1rnV1dfIPfvCDrG1vvfWWDMgjIyOznjed5uZm+c477zxs+8aNG+WCggJZqVTKgHz++efLExMTcxpTIDhTcDgc8tN/fUn+7fNvyq/s7pU3tY/Lr+zulX/7/Jvy0399SXY4HKd6imc085EdwvS9iPnLX/6CyWRCp9Nx/vnnc9FFF/HTn/6UgwcPEo1GufzyyzGZTJm/3/zmN3R3d2fO/+Uvf8maNWuw2+2YTCb+93//l4GBgaxrLFu2LCsq8vLLL6eyspKamhpuvfVWHn/8ccLvRVV2d3eTSCS44IILMser1WrOOeccWltbs8Zdvnx55v/FxcUAmYCu0tJS2traOOecc454/4euiOX3THJzWSm//fbbHDx4MMvsDTA2NsbnP/95PvvZz7J9+3Y2btyIRqPhb//2b08rk59AcDzIH6BiIWcCwvS9iLnkkkv4xS9+gVqtpqSkJGOanYpQ/utf/0ppaWnWOVMNRZ544gm+8pWv8MADD3D++edjNpv50Y9+lNUCFMBoNGa9NpvN7Nq1iw0bNvDyyy/zne98h3vuuYft27fPKihlWT5s23Qz8tS+dDo953svKipibGwsa5vD4UClUpGXl3fU83/961+zcuVKzjrrrKztP//5z7FYLNx///2ZbY899hjl5eVs27Yt051NIDiTyRQLqWicvVjIQBs+nw+bzXZqJinIIDTqRYzRaKS2tpbKysoswdfc3IxWq2VgYIDa2tqsv/LycgA2bdrE2rVr+dKXvsSqVauora3N0raPhEql4rLLLuP+++/n3Xffpa+vj9dff53a2lo0Gg2bN2/OHJtIJNixYwdNTU0Leu/nn38+r7zySta2l19+mTVr1hzVlxwMBnniiScO06YBwuEwSqUya9vU6/ksJASC05kPUrGQMwEhqE9DzGYzd911F1/5ylcyPbl3797Nz3/+c9avXw9AbW0tO3bs4KWXXqKjo4Nvf/vbWdHZs/GXv/yFn/zkJ+zZs4f+/n5+85vfkE6naWhowGg0cuedd/Iv//IvvPjiixw8eJAvfOELhMPhGYXibAwPD9PY2Mg777wz6zFf/OIX6e/v56tf/Sqtra08/PDDPPTQQ1npac888wyNjY2HnfuHP/yBZDLJpz71qcP2XXvttWzfvp3vfe97dHZ2smvXLj73uc9RWVnJqlWr5nwPAsHpzAepWMiZgDB9n6Z8//vfp6CggPvuu4+enh5sNhurV6/mG9/4BjAp6Pbs2cPHP/5xJEnilltu4Utf+hIvvPDCEce12Ww8/fTT3HPPPUSjUerq6vjd737H0qVLAfiP//gP0uk0t956K4FAgDVr1vDSSy+Rk5Mz57knEgna29szvu+ZqK6u5vnnn+crX/kKP//5zykpKeEnP/kJN910U+YYn883Y9rXQw89xEc/+tEZ53TppZfy//7f/+P+++/n/vvvx2AwcP755/Piiy+i1+vnfA8CwenMVLGQwdFBakxNWeZv+b1iIeVnSLGQMwHRj/o4Ef2oBQLB6UhWi8ji8kyLyLHRQYxy5IzKQ16MiH7UAoFAIDgiU8VCDrZ3MD7QlsmjLs8109wghPRiQghqgUAg+IDygSgWcgYgBLVAIBB8gJEkSaRgLXJE1LdAIBAIBIsYIagFAoFAIFjECEEtEAgEAsEiRghqgUAgEAgWMSKYTCAQCATHjSzLInr8BCE06kWKw+Hg//yf/0NFRQVarZaioiKuvPJK3n777VM9tdOGp556KlMXvbm5mWeeeeaIx99zzz1IknTY3/TGJbfddtuMx0xVbhMIPog4nU7efGsLL7+5lZc37+DlN7fy5ltbcDqdp3pqZwRCUC9SbrrpJvbu3cv69evp6OjgueeeY926dXg8nlM9NRKJxKmewlF5++23+fjHP86tt97K3r17ufXWW7n55psP6x42nbvuuovR0dGsv+bmZj72sY9ljvmf//mfrP2Dg4Pk5uZmHSMQfJCYqnA2GEiTW9FIVcsacisaGQyk2bx9txDWC8EJ64r9AWE+zb/nysTEhAzIGzZsOOJxgPzggw/KV111lazT6eSqqir5iSeeyDpmaGhIvvnmm2WbzSbn5ubKf/M3fyP39vZm9r/zzjvyZZddJufl5ckWi0W+6KKL5J07dx52nV/84hfy3/zN38gGg0H+zne+I999993yihUr5IceekguLy+XjUaj/MUvflFOJpPyD3/4Q7mwsFC22+3yvffemzXWAw88ILe0tMgGg0EuKyuT77zzTjkQCGT2P/LII7LVapVffPFFubGxUTYajfKVV14pj4yMzOs9vPnmm+Wrrroqa9uVV14pf+ITn5jzGHv27JEB+c0335z1mGeeeUaWJEnu6+ub1/wEgjOBdDotb9i0Wf7t82/Kb3U65S1drszfW51O+bfPvylv2LRZTqfTp3qqi475yA6hUS9CTCYTJpOJP/3pT8RisSMe++1vfzujfX/605/mlltuobW1FZhs6XjJJZdgMpl488032bx5MyaTiauuuirTvi4QCPDZz36WTZs2sXXrVurq6rjmmmsIBAJZ17n77ru54YYb2LdvH7fffjsA3d3dvPDCC7z44ov87ne/4+GHH+baa69laGiIjRs38sMf/pBvfetbbN26NTOOQqHgJz/5Cfv372f9+vW8/vrrfO1rX8u6Vjgc5j//8z/57W9/y5tvvsnAwEBW16wNGzYgSRJ9fX2zvi9vv/02V1xxRda2K6+8ki1bthzx/ZzOr3/9a+rr6/nQhz406zEPPfQQl112GZWVlXMeVyA4U8j0tS4un72vtSeAz+c7RTM8QzgJC4czmhOhUcuyLD/55JNyTk6OrNPp5LVr18pf//rX5b1792YdA8hf/OIXs7ade+658p133inLsiw/9NBDckNDQ9ZqNhaLyXq9Xn7ppZdmvG4ymZTNZrP85z//Oes6//RP/5R13N133y0bDAbZ7/dntl155ZVyVVWVnEqlMtsaGhrk++67b9b7fOKJJ+S8vLzM60ceeUQG5K6ursy2n//853JhYWHm9bZt2+SGhgZ5aGho1nHVarX8+OOPZ217/PHHZY1GM+s504lGo3JOTo78wx/+cNZjRkZGZKVSKf/hD3+Y05gCwZnG+Pi4/Nun/ipvah/P0qan/ja1T+4fHx8/1VNddAiN+gzgpptuYmRkhOeee44rr7ySDRs2sHr1ah599NGs484///zDXk9p1Dt37qSrqwuz2ZzR0nNzc4lGo3R3dwOTQWtf/OIXqa+vx2q1YrVaCQaDDAwMZI27Zs2aw+ZYVVWF2WzOvC4sLKS5uRmFQpG1zeFwZF6/8cYbXH755ZSWlmI2m/nMZz6D2+0mFApljjEYDCxZsiTzuri4OGuMc845h7a2NkpLS4/4Hh66wpdlec5RqE8//TSBQIDPfOYzsx7z6KOPYrPZ+MhHPjKnMQWCMw3R1/rksOgEdSAQ4Gtf+xpXXHEFdrsdSZK455575nTuunXrZozInfobGxs76rFXXXXVCbqz+aPT6bj88sv5zne+w5YtW7jtttu4++67j3relDBKp9OcddZZ7NmzJ+uvo6ODT37yk8BkFPPOnTv58Y9/zJYtW9izZw95eXkZ0/gU0yOfp1Cr1Yddd6Zt6XQagP7+fq655hpaWlp46qmn2LlzJz//+c+B7AC1mcaQ59mNtaioKOvzhslFSWFh4ZzO//Wvf811111HUVHRjPtlWebhhx/m1ltvFQ8hwaJBlmW8Xi8OhwOv1zvv3818meprPTY6eNi15Pf6WheKvtbHzaLLo3a73fzqV79ixYoVfOQjH+HXv/71nM998MEH8fv9WdvC4TBXXXUVZ5111mEP3ZqaGh5//PGsbYu5OH1zczN/+tOfsrZt3bo1S+vbunUrq1atAmD16tX84Q9/oKCgYNZ+p5s2beLBBx/kmmuuAWBwcBCXy3VC5r9jxw6SySQPPPBARut+4oknTsi1zj//fF555RW+8pWvZLa9/PLLrF279qjn9vb28sYbb/Dcc8/NeszGjRvp6urijjvuWJD5CgTHi9PpnGxZ6QlkWlYW5pppbqg/YS0rJUmiuaEez/bd9HS2ztjXurlhlcinPk4WnaCurKxkYmICSZJwuVzzEtTNzc2HbVu/fj2JRILPf/7zh+3T6/Wcd955xzXfE4Hb7eZjH/sYt99+O8uXL8dsNrNjxw7uv/9+brjhhqxj//jHP7JmzRouvPBCHn/8cd555x0eeughAD71qU/xox/9iBtuuIHvfe97lJWVMTAwwNNPP82//Mu/UFZWRm1tLb/97W9Zs2YNfr+ff/mXf0Gv15+Q+1qyZAnJZJKf/vSnXH/99bz11lv88pe/nPc477zzDp/5zGd47bXXZjV//+M//iMXXXQRP/zhD7nhhht49tlnefXVV9m8eXPmmJ/97Gc888wzvPbaa1nnPvzwwxQXF3P11VfPOoeHHnqIc889l5aWlnnPXyBYaKZSpEKSnqKKxoywHBwdxLN9NxeefeL6S9vtdi5Ys5Idu3bTu/8d0pICm8lIeZ5F9LVeIBad6XvKBL1QPPTQQ5hMJj7+8Y8v2JgnGpPJxLnnnst///d/c9FFF9HS0sK3v/1tvvCFL/Czn/0s69jvfve7/P73v2f58uWsX7+exx9/PLNgMRgMvPnmm1RUVPDRj36UpqYmbr/9diKRSEbDfvjhh5mYmGDVqlXceuutfPnLX6agoOCE3NfKlSv5r//6L374wx/S0tLC448/zn333TfvccLhMO3t7UfM5167di2///3veeSRR1i+fDmPPvoof/jDHzj33HMzx7hcroyvfop0Os2jjz7KbbfdhlKpnHFsn8/HU089JbRpwaJAlmUOtncQkvTU1DVhNJtRKpUYzWZq6poISXoOtnfMaAZfCFO50+mktaOTQCxNWgZFKolRI9FUXyeE9AIhySfaiXEcuFwu7HY7d99995z91NPp7Oykvr6ez3/+8/zv//5v1r5169axbds29Ho9fr+fyspKPvGJT/Ctb31rXhql3+/HarXi8/lmNS+fKCRJ4plnnhHBTALBBxiv18vLb24lt6IR47TgzilCgQCegTauuOi8LNfeQpjKszT5GczeJ1KTP92Zj+xYdKbvhWTKBDyT5nPhhRfy8Y9/nMbGRiKRCC+88AL3338/mzdv5o033siKXJ5OLBbLym0+1CcuEAgEJ5N4PE48mUZnMMy4X2cwEE+mswJEF8JUfqgmP2UJNZrN1Jia6Ols5WB7Bxfl5wsf9XFyxgrqZDLJ+vXrWbp06Yx+6HvvvTfr9TXXXENVVRV33XUXzz77LDfeeOOM4953331897vfPSFzFggEgvkyPUVqJo360BSphRKwmWInFY2zFzsZaMPn8y3qIN3TgUXno14onn/+ecbGxmYMIpuNT3/60wBZlbQO5etf/zo+ny/zNzg4eNxzPVZkWRZmb4HgA858U6QWqprYsWjygmPjjNWoH3roITQaDbfeeuu8z53N7A2g1WrRarXHMzWBQCBYMOabIrVQAna+mvzphLzIWnaekYJ6bGyM559/no9+9KPk5eXN+bz169cDLMqULYFAsLg5lQ93u93OhWevmgwOG2jLBIeV55oPS5FaKAE7pckPjg5SY2rKutcpTb78NCx2ciry0Y/GohTUL7zwAqFQKNMY4uDBgzz55JPApC/ZYDBwxx13sH79erq7uw9riLB+/XqSyeSsZu9Nmzbxgx/8gBtvvJGamhqi0SgvvPACv/rVr7j00ku5/vrrT+wNCgSCM4rF8HC32+1clJ9/1MXCQgnYM7HYyanMRz8SizI9q6qqiv7+/hn39fb2UlVVxW233cb69eszr6fT0NBAPB6np6dnxi9JV1cX//iP/8jevXtxuVxIkkRdXR2f+MQn+Od//ud5mbZPZXqWQCA49RxPitKp0sIXMq1qMSxSFgJZlnnzrS0MBtJZQXZT+3o6Wyk3K7jogrUL8hnNR3YsSkF9OiEEtUDwweV4Hu6nWsAt5PUXm0/3WDjWfPRjReRRCwQCwUngWFOUFoOJda6m8rkgSdJpn4K1mKPYz9j0LIFAIDjRHMvD/XhKfi40UwK2oKAAm812TEL6ZHfsOlEs5padQqMWCASCY+RYIqjPpEIhp9p8v5As5ih2oVELBALBMXIs/ZgXs4l1PkyZ7wcDaXIrGqlqWUNuRSODgTSbt+/G6XSe6inOi6kodqMcoaezlVAgQCqVIhQI0NPZ+l4Ue/0p8b0LQS0QCATHyLE83BeziXWuLCbz/UIylY9eblbgGWijb/8OPANtlJsVp7TBiDB9CwQCwXEwn2IjsLhNrHPlTDLfH8pCBtktFEJQCwQCwXEyn4f7mVAo5Ewx38/GYotiF4JaIBAIFoD5PNznq4UvJAuR83wm1/lejAhBLRAIBKeAU2FiXago7TPBfH86IQS1QCAQnCKOx8Q6X814LkVW8j9A5vvTCVFC9DgRJUQFAsHJZr6a8VxKnVpSASxWC46J4Jy17TMpj/pkI0qICgSCDyxnQt3pI3Es5UePFqWtN5rZ9Mbb1Da3sKSuec4lTRdjhPSZiBDUAoHgjOFM1/AOzV+eEohGs5kaUxM9na0cbO/govz8LGF55ChtmXGnmxAayiqqM8FhRxtzisUWIX0mIgqeCASCU8pC1Yo+0yplzURGMy4unz1/2RPA5/Nl7TtSkZVgMMS420tebh5qTXaL3yONKTh5CI1aIBCcMhZKAz5WTfN041jzl48UpZ1IxHGPj9FYW4XJfLivdDHkRJ/p7oyjIQS1QCA4JSxkq8czqVLWkYTSseYvHylKe7i/B306SFFh0YzC71TnRJ/p7oy5IAS1QCA46Sy0BrzYKmUdqwZ4NKE0s2YsEwyGSCTiDPf3UF9gmjF/ebYiK/UFJgpWLyUQCyPL8qLKiXY4HLyy8S38aQ3FZZWU2O1Ew5GT2rd7MSAEtUAgOOkstAa8mCplHUvqlM/nY2RkhN0H2pGNeRRVNJBMy4QCPjrGHXh8u7nwnEmhNF0z1hvNjDvdjLu9uMfH0KeDFKxeisvlmleUtsvlYvMiy4l2OBz8/sln6PamyC2uwNszSI7TRVVFOTV1Z447Yy4IQS0QnAacaT66hdaAF0ulrPma86eE+pjbz74DBwmgp6xcNSnkZQWJVBqVQmJwaBylnOT6a6/OaMZvb9vOpjfeJoSGvNw8GmurKCosIhALs/kI2uZMUdqnsqTpTDidTl7esJlOV4SKlvOx5uURj8ZweBwE2jpZ1lh3WrkzjhchqAWCRc6Z6KNbaA14MVTKmq85f7pQN+WWoskLkKPPYW93D5JSTUvLUopyJwVUMJFm0879NDfWU1tbS35+PharhdrmFsoqqlFrtJjMFiRJyhQwma+2uVhyoqfeR19KRW5BMbbcXBQKBXqDnhJ9JSPD/fQNDNLS3HTKg9xOFiI9SyBYxJypKUdTGvDY6OBh6VhTGnDhPDXgU91LeD6pU4cKdbVWQ0qWCUejmOzlGAvL8fqDKN8TUFU19UzE4a23tzExMTGZzjYRZEldM7n5BZgt7wvU40mpmtK2CwoKsNlsp8RqM/U+lpZVoVYqiEXfTymTJMjNLWAiEMHldH5gGn8IjVogWKScySlHJ0oDPpVa4XzM+Yf66NVqDal4DE80Tm55PUhKgl4HkUiEVDpFf18fvmCUt95tJ63UkmPW4fKGKGlcHMFzC8nU+1hcUEjuyDDO8RFKq+vfj3zXaYknU4wO9dNcavtANP4QGrVAsEg51uIWpwsnSgM+VVrhkYqKQLY5/1ChbjJbMOvV+FwO1Gotao2GZErG5/fR0z/E0Og4JeXVFFY1YSqqYjyqoLe3n/GxkaNe63Rj6n2MRSJUVdegS4UZ7u0gEgqQTqXwud14RgewKOI0N9SfdovUY0Fo1ALBImWxpRydCBaLX3QhmE9Am8/ny/LRS5JE9ZJa3j3YzmjPQcz5JUikGBkZwemeoMCso6isjFTAhTUnl5LySgYH+tm7ezfFJaVIkmLWa51uZL2PdU0sa2mhr7cHz2AHiVQaj2OUunw9l198wWkbozFfhEYtECxS5qOhnc4sBr/oQjBlzjfKEXo6WwkFAqRSKUKBAD2dre+Z8yc1wJl89GUV1SxvbkT2jTHWsZPAwEEmBjspsepZUt9APBYl12LCZLagUChYueocIl4HB/buOuK1TjcOfR81Gi3LVq6mpbGBAquecxsr+MTf3khBQcGpnupJQ2jUAsEiZbGkHJ0uLIYUtrmmOc3mo1+ypI7RsVH0SZn62kbGfGGKqhvxucbRpcJUVbdk7qmorJzqigoKNEk8iyClaiGZ7X1sKc87rbMdjhXRj/o4Ef2oBSeSrLzcGQKuPiiVmY7GYkthm+uiYaZ5a6UkkqTAHYyy+2AnVnsJxQX5VFXXkJOXnzk3FAjgGWjj8g+diyRJp5XrYK7vz2JYfJ0oRD9qgeAMYbEVoliMLGTN8IVirq0fZ/PRA3i9XnKMGsajClpWrkGhmNkPPXWdqTF8Pt8xC7STIRjns6gSLTQnERr1cSI0asHJ4EzWLI4HWZZ5860tDAbSWSlsU/t6OlspNyu46IK1p+z9Op7Pbi4WFeBwwZdjorS4CIvFMudrngyrhLAQvY/QqAWCM4wzWbM4HkG22LtmHa/wm8miolZK2DQSNVUV+Hw+3m3vJqwwZKwJ42MjvLZrNxHvW1RXVJCfl3PUa56M5hdncl2AE82ii/oOBAJ87Wtf44orrsButyNJEvfcc8+czn300UeRJGnGv7GxscOOf/XVVzn//PMxGAzk5+dz22234XA4FviOBALBbDidTt58awsvv7mVlzfv4OU3t/LmW1vmXHHt0BQ2WZYJ+H143E4Cfh9avf6UpbAtVFU5u93ORRes5YqLzmN1YxVmrYJQXGZnWy+PP/NXdrX1kJNrx2g2EwwG6BkaQ2mvRF1UT1pnIae84YjXnGp+8U7nKI6wTGvPIPsPtpJMp6ipayIk6TnY3nFYBbkjIcvyZPU0hwOv15tZjJ3JdQFOJItOo3a73fzqV79ixYoVfOQjH+HXv/71vMd45JFHaGxszNqWl5eX9Xrjxo1cffXVXHvttTz77LM4HA7+9V//lQ9/+MPs2LEDrVZ7XPchEAiOzEL4lqensMXjscl8W3+QZFpGpZAwqhWYlYlMCtvJciEstPYoSRKJRIL2viFCkoGiynKS6TRdrihpWWLHzp3U19Uy7vIQQUtpWRXRcADvYAcy8ozdpmRZpru7m5c3bObgiI8lqy/Cmpd/3M0vZrMi2HNzzvi6ACeKRSeoKysrmZiYQJIkXC7XMQnqlpYW1qxZc8Rj/uVf/oX6+nqefPJJVKrJt6G6upoLLriAhx9+mDvvvPOY5i8QCI7OQgmyqRS2A2378IdixFRG8srr0eoMRCNh2t/dQZEqRDweP6mR4Qttkp/p/fJ6J4ilZGStibahMbp6X0PWmimsqMEaDmLQGUimZRKJ+GHXTCQSHGhrZ+OW7fR7YoRSMi6fH43BgMloOubmF0dafA2NthONxmZsxCLLMq7xMSJBP5FI5LC+2B90Fp3pe8pUfSIZHh5m+/bt3HrrrRkhDbB27Vrq6+t55plnTuj1BYIPEifaDFpSWMBA2x66B0fJKShDozcSi8WZ8HqoKCshr6yWre/sYNM7u45qhp5prvO5rylmqio33SyfSCaIJVIZ4Xe06870foVCYUZHx3CFEhRUN6Mw2pBVOoKymt6BYTxuJyrFZB1xeF9jHRkZYfP23bSP+Uka8qk7ay0mmx1XIELvwDDBUPCYml8cupgwms0olcrJxVddE7Ixj3DAx+jIQNb9Tbhd7NnxDq+98Tr9o+Ns3XNwXu6PDwKLTqNeCK677jqcTidWq5V169bxve99j5aWlsz+/fv3A7B8+fLDzl2+fDlvvfXWSZurQHAmcyLNoFNj9wyN4w6lSSiD7N/yCjn2Imw5ORSY9VRV1KNSKHjrlecoqqpj2arZtfcmWaa1o3NOGvfRtPND23hOuF1ZZvlUPIYq7MK/ogFJko6q6R8u+GWcHg9qvQGVQoHRYsWnUKFWKrFarPgDfjrbDrC6thSTeTKiOBoOo1ZK9A0MEpIMlFXkM+oJkmcvwusaxxtPEsXA2LiT2hrTvJtfHNWKUFJBdGIcKejKFHmJRMPs2rkLZzBGYUk5q1csQ6vWnNLUusXIGSWoi4qK+OY3v8l5552HxWJh3759/Md//AfnnXceb731FitWrAAm/eAAubm5h42Rm5ub2T8TsViMWCyWee33+xf4LgSCM4NjNYPC0cujOp1ONr+zG1dURmHIJa+6keLKesaH+1HF/NSWFVJWUQHAyMgIg44JKpuMHGqsm9LeO/dtZWjUgWzKP6q/fC6+9fz8/ExVuZyYnf0HDhBVGsgrr0ejNdDX046UTrL5nV1ICgmFpRBzTgl6lZJUMsWA35t13UMFfzAYwhuIUFvXyMjYOGP93SiRMRr1uEYGSScTRMaH0DRVEwz4MZomy5XaNBKBWJqiynLSchqVQiIei1BcXkWovY2wN4lHrSRUYCcWieAZHaC2rnhO5UjnUptepzeyurEKp2eCsf5W9h04SAA9S5uaqK6swGq1AYgo8EM4owT1VVddxVVXXZV5fdFFF3HttdeybNkyvvOd7/Dss89mHT/bh3+kL8V9993Hd7/73YWZsEBwhnJUH3THQcLOVkZHBlhS3zyv8qiyLPP2tu3s7h5Hl1NIMOJheNRJQtZQVlmJ3z2O0zGOyWKhf3CI7p5+hkbG6RoYJZqUqaoozwgEAK1eT9/gMKVLGllxFH85wIG2dhyhJGUV+aTlNAqFAoPJhL2whK72A2zbsZNrrryC5oZ63O/s4u3Nb5A2FVFZU0siFmdsbIgcvYqlKy5ky8ZXiUTjLFlipH94PBMEl2s2EiCVue6h5WSTyQSJVJoiewFanY79O7YiRSbQGFT4uzoIhaMotHraegfoHx5FjgepLcmjZkULu9r60BkMSJKETinTuX83RRVLKCmvZMI5ykBvJ4NygGjQN6/mF4cuJg5lavFVUlJCU1MTAwMD+AMB7NXNFBYVAe9/BxZDat1i4owS1DNRVVXFhRdeyNatWzPbpiLAZ9KcPR7PjJr2FF//+tf56le/mnnt9/spLy9fwBkLBKc/x2IGnWs/6u7ubjbt3I+6rBlLYSX5Og0xScuww0M83UdpkZ3hkR5c/hCyMZe0Uk1JaSmWwiockUgmmnlKWLsd44RjSYrLKo8a+OVyudi4ZTtJw6TZWKWQ0JBCBhIoCYUidLeNopAkzj5rNcsblrDvYBtpKc14XwdqpeI9k3wdCkkiHEsz4vSitccpqZgMgotFwzjHRyDoozMRYkXLpKCaXhvcZMlBKcn43G7CAQ915QXUVJ9NMpFASsYY98eIJZOoDGYUSgVyOokkSRlhOjY0SG9fD+8e7KBvaJT07nfJy8+nqLSMgvwcimwGCsusXLHuwjk3v5hPbXpJktDr9egNJvLtBUwX0lOIKPD3OeMFNUx+SaaX35vyV+/bt49rrrkm69h9+/Zl+bMPRavVitQtgeAozNcMOtfyqLIss7+1jRAaVtY0oFQpiUQi5ObmEI4lcHr9qEgxMe7Aml+EITmBXo5iLi0mHPBQWt3A6MgAfQODrFhmRZZheKgPg0FH/ixa4/QgrHf2HsAZ11C3rAWDwYTbOcbe3TtIJ2IsP+tcKpeUMND+Lv2+JLHtu2moKqNmSS32qiZkOY1KpcZkMgISbpcDj8dDypBDQVk1euOkFqo3mimtrmewu42+wbaMqy1T/KStnZ6BdtzdHQRTsGLZCqqblmHLzWPPzu2YiqoxlWswK+I01tWiVmswGg30dLYxPDqGRkrw4msvE1Ba0VUsY3n9eXgcIziGB9ix8RUqc3Vc1vIR1p53zrz8w7M1Gplt8TVXDfx07w63EJzxgrq3t5e33nqLyy67LLOttLSUc845h8cee4y77roLpVIJwNatW2lvb+ef/umfTtFsBYIzg/maQeea2+zz+ZgIRMnLzWPC48QbjBCMxEimZBLJFAo5SWfbAQIjvZSWeDCYTOTYC0kplUy07yUc8GMvrcbtczI+NkbQP4FVmURbVkI0HJl1rmqlRE//AAmNhZJKI0qlBkmhxOsLYCqth0QUr8eFyWbHbDKxpKEJx+ggPf0DaJSKyYAvc7YZPx6LEYxEMdtrsrJPYFLomaz5jPYliUajWftkAFmmsCCPxNAoI0N9FBYUIikUjDpcpAw55GgSNDfUZ5n4i4rLGetvJRUJ4w1GkfNLybMXodHoMJrNaPUGbDqJQl0Ki9VCfn4+82U+telFd7i5sygF9QsvvEAoFCIQCABw8OBBnnzySQCuueYaDAYDd9xxB+vXr6e7u5vKykoALrvsMi666CKWL1+eCSa7//77kSSJ73//+1nX+OEPf8jll1/Oxz72Mb70pS/hcDj4t3/7N1paWvjc5z53cm9YIDjDmPkhLBMMhkgk4gz391BfYMoI5bn6IOPxOCqtHpM+yb5392AqrcNiK0Ct0ZCIx1HoXAwe3IkqHqSsaQXlSxrR6Y3EomFSmg58I91IsSCBCScFyjD1VaU0nXUhrR2dRxQYuVoFgVia6iUNpPr6cXgc2HLy8IcjWO1lIKfxDXUiDfZQYFCQiEcwmawE3QEsOiVjM4yt0WhIJWIo5RQ6nS7rPmUZQpEABoMus296EFt58xrq3isXunf3brZtepV8mxWf20fjihJqqquyhDRMWga8/gDRSITyqhrSGjNB5xCptIxSIVFkNdBYcRGhsT76hsaP2Tc8W6ORmdwK89HAP8gsSkF955130t/fn3n9xz/+kT/+8Y/ApIZcVVVFKpUilUpl5eMtW7aMP/zhD/znf/4nkUiEgoICLr30Ur797W9TX1+fdY1169bx/PPP853vfIfrr78eg8HAddddx49+9CNh2hYIjpNDH8J6o5lxp5txtxf3+Bj6dJCC1UtxuVzzMq9OaerxZJp0PIoc9oPJBLIK0gnifjfxgAtTThHltUsxGI3ApDm5ftlqho0mVGEXS+xVXPGhc6moqMjUbjiSwKiqLH8vCMtIVUU5gbZOhgf7iEZiWNWTi4ThwV5iTgXKsgq2B8MogLh7kKsuOpeYP3zY2MODfZTkmrAYJEaGB8jNLZhMiYrG8HgcKCM+yspK0Gq1swbnlZSWU1xSyoG9uzDEvRQU2ClfUoPRfHiTh2g4jEJOk0zJGK25lNQ0EYtFSSaTqFQq9HojcjpF2DlMOBY/Lt/wfLqHie5wR0d0zzpORPcsgWBmpkpUbtm6jR2tPSTVJvLy8inMz6WosIhoLDzvjkmyLPPCSy/z0q5uCmta8HnG8QcjpNIyCgUEnSMkAi4M9nKKq+uoqW3KSskKBwN0bH+DK89u5NqrrszS1qZyo8fcfrzBEAo5TWm+lTWrV6HRaHj5za3kVjRiNJvxeifYtfdd9rR2o8stgUQUR+dumlefx5KmZWh1BrweD0NtOzmnrpjVLY043J6sXOmCHBN+n5/hEKDR4w1GSaTSqJUKbCYdxCM0l1q56IK1+Hy+rOsfSigQwN3filmrwCMbZu0kZiOE0xuiLwD2ykb0Bn3WOJFQgPHOd6nJ03PjNZedtGjrD2J3ONE9SyAQnFKmC732/lHiCj01lZXU1FRTUlqeqTV9LDWvqyrKUWzZRSwSoKy6jnQqRTjox+dxkacpJBrLQ2myok5GGBnuz9JU3R4nqnScmsqKw65nt9tpkmUCO3fhTyVJS5Pm7taOTprq6zKm/LxUMf2DQ6DSYdDr8U84iYz3kV9aRfPq81EoJGQZIrEwjU1NyFolDreHD609H7/fnyWMXC7XpDkbJcUF5ajUapKJBEGfB6NWlclfnktwXiI1mXoW6xua1TJwzprVtLZ1cPDtdxlARVlFNQaDCUmaFJbusRHkeJDq8up5+YaPV9Ceyd3hFgIhqAUCwYIy3Zdqyi1Fmx9gib2SSCxM7/A4JrMFq9WWlfrk9XozAuloD/qSkhKW1lUTSEXxDXVmco8r8kzk26vYd6ANhVrFssY6XB4PE46BjKZqVaYpq6umpKRkxnm/tWMPIclI9fJDCpns2ENjdTl9Q/t5Ze9+dPZyiooraDRYeOetN3F6JsgtqyXg96LR6PB4HOjlGNWVdagUSsYH2vD7/YcJoyzTr3uI4Cym3/kE59nt9llNyQBen5fIhIO+niF6enopLy3DXmAn6PUQcfazYkkJSxsb5tUz+2TVUP+gIgS1QCBYMA71pU54XKQBW24uOQp7ptHDimVWQEJn0DM4Mspzf3metFqPSqNFq1Ie8UFvtVqpqy5nwJ+iuaiUZDKBSqUGIBGPEfE50JtzKCkpprS0hGAwRDKZQKlU4RgZoNxyeDnMQ+cNEAz4SSTi2AtLcIwNM+5yYzPqMKhBl47gGWxDpZBYXlmAXkohq7Uc3P0ONVWVFFgMVFVM5mqnUqkj5gPPJfhqvjnKM42X0d5VVtZdcT3dPZ20dvXSunsrnYkQzVUlrDtnFWvPO3fOAnYhOqAJjo4Q1AKBYME4tNCJWq1BpZCIRcPojebJRg+OAYLBEKlUkh07d7L97e0UlFZTUlVDYZ4Ogy2PwUBg1gd9JlDtnd0M9HahVKlxu934QxHcHg9SyIc2HWfvzu3UNTSjNxiIhieFmZHojJHE0+ft9bhnbJfpGfBiseVw8aVXITPZlUqt1iDLMuqdu5BNdmI+F821lRQWFjJVxGMu+cBHM/3ON0L60PFmCkYrqahk1Vk+vBMTDPZ101hs5eorr8iqOXEkFrqVp2B2hKAWCAQLxqG+VJPZQq7FhHN8hNLqejQ6LYlUGrfbRf/IOLv3t2EprOCsy28gGU/g8jgIDY3R0lCL2zF6xAe9Ih2nc89uDvQNI+tzKCoqoqm2hpqqdYyPDOIe7ECdDKHTG48aSTw170g0zMGDrZm63FPtMod6Oxndf4CaygpqV12QlfcsyzK5FhPj4RBqre69rBEps2+h8oGPJ0J6pkpxkiRhttgwW2zk5ubjmcU8P58xp5hLCdAPYgDZsSIEtUAgWDAO9aVKkkRVdQ2B/fsZ7u3AYM5FQZqe3j56h8fQKdI0rz4XlVJFghhmsxWnY5S+wSHqqioZH2g/7EE/ZW4NKi0U1TQhFTdhsxcTCHiRlQqMJjMr15xPt8VKjhTm7NWr0Gq1RxQEGo0GtVKiq21SSJdWTwZxBfw+xkZHcYfijEUU+PcfxFKwicaly8jJmywIMnWPzu3b8fj8xOon00fnkw98NKE1tV+WZZYvbQYgkUjMWcDNJRgtlkjhdDrnLDjnMuZsJv/T1a99qhYXQlALBIIFI9uX2kgoFEZSKqmprsY5Pkbr/rfRyXGSqTRl+QUEDWVoDWa6OtrwhyfTrNLJBJ6RQXKtVhKHPOinm1sLCkvoHx6nvKYevdGMvbCYkeF+evsHWFJVgU5nwDnmQKPRHFVLtFqtGDUSPQOD1J99SUZI9/T2EZe0yDoLzWdfgHegjdb+UeJpWL7sfWFty83DnmclRwoRcw3SNz4wZ233aELrSPvnqv0eLRhtbGiQnq4OkokYao1uToJzpjFlWc749hOxOGqldJjJfza/9sDIAINvbGJ1SyMlJSWLTsM+lYsLIagFAsGCMeVL7XttAy/+tQtJb0FSqZGTCdJhH02lNpbVL+Fg3yjljSvZtPktOtrbwZiDxV6GRqMjGosw1HGA3fv2U5uny3rQTze3xuJRkmkZrc7w3rVBrVCxe9d2hoeGUShVTIz2kmvWH7VutSRJ1FRWoNr2Lm6PE0mhZGRkhFBSQm1QYyZJZWkpmpgPnVbLkMuH9uB+1px/IbFIhLHRQYotWi649EY0Gs2cNa6jBWM1VpfT1jt43MFaRwpG87icvLVlE2azjfLGVegMxjld49Axp/v2E6k0Hscodfl64vGzMufM5teOx2ME/EFaOwZo6x1kWWM9RXmWRaNhn+qgublFDQgEAsE8kGWZdDJKOhYmHQ2TjoWRUzEMBgPFxcXkWC2olCpigQk8Xh95RaVo9QYkpQKFQkVeQSEeX5Cwz5NVDGK6uXV6oBpAwOtmcKAXb1qLuaSG/KpmcsvrccRVbN6+G6fTecQ5T6V9WaUYzv4OBvu6UUkyOVoF1RWlqJUKLCYjSyrLKcq10Nl2gAPvbMAz0Ea5WcGFZ6+ioKAAm82W+fdo5u7pQstoNqNUKieDseqaCKLjlTfeJIRuxv0hSc/B9g7mUrNqagFllCP0dLYSCgRIpVIE/X7e3vwGkkrL+Rd+CKPZMudrTB9zz4632b59O+PhNNq8CiRzHgUl5ajzynlrx57Me59ZaBWXZ96bCbeLffv344xJVLScj75oCdr8cgYD6Tl9bieao31O8/kcjhWhUQsEgiMyH7/c1ENNZSvm6jWXEAoGMtHRRpOZ3q42hkbHKMwx0dbdhtZkxaZI4RrswmovQaXR43YMIwUclOeaMZhVWQFO082t0wPVSqrqGB3sIyprKSjLw2CyMuFxUFyQx9KWpfR0th01AtlqtVJXWcKgP0VZaSmxZIrimlpMRiOyLNN1YA8JnwOF1khSoSWVltGRYHVzLUuWLJm3mfZowVhms43d414qVuQeU7DWocwUjJaIhlGn41yw9mJstpx5X8Nut3PBmpX8/sln8PhS5BpsJEMeisx6qppWYrFYs6K/D/Vry7JMX29PJi4gLcuM+V1odToKChdH5PjxBs0tBEJQCwSCWZmrX25KmDudTnoGRilrOguFQoHZkh3pXFRcjmOgjdXNtfQMjuD1+ymsaMDjGmO0bYxINIpekWR5fQ2NzUvxjfRl+aizzK11TZlAte4Du3G5PMiWArRKmHCPoydOVUUdkqSY08N0egqUyxVBq1IgpWUioQBDvV2M9XdRWF2PpbCSVCpOKuwjpstlX0cPVqt13qbPowVjKVVKosk0KrV6xv3H0q/50Jxtn8/HVp2ewqLDC8DM9RoajYbC0goqVpSj1emyWnkCWe/9oX7tYMCPxx8kr/y9CmyRKGqlApVKfdKE4NE4nqC5hUIIaoFAMCNz9ctNF+auCS+tXb2TZsIltZlgqymmootlWaYox4x/pBdPKIGs0iIlYxSYdKxZvYbGpqWEg0Eih+Qfz5RP3NzcxO53tjLc00puaQx9RSkFBmOm4MjUdefyMJ3e83m4u5W9PR3Y7XYC/gkKquqobVpOJBxiuLeTQpOOpSvW0Nfdfkxa39ECvFLJFDqVgmQiMeP5c8nPns0aMt1CoVV1H1dP6Hg8TiIlU2ovyLQMns70995ut2f5tROJeCbOQJbB43FQYNa/J+hPjhA8Gouhb7YQ1AKB4DDmWsyiSZbfK7s5KcwtZWnGY2pG/HFC+/ezrKUlS1hPRRdPeJz0DI0TSSvRAk3LV6I3GImE/LgDEXw+L27H6Iz5xzOZcMvyzKysKaZ+1QrKK6qyNDp4v6d0JBLB4XAc0YQ/VfN7ZHgEh+cgI6MjhBMyOcpxdng24PP7IOJHWVnOu7t3UmAvYNzjnLfWd7RqY4GAl6pCG0Gfh4LConn3a56LNWQhekLPR5AdutAymawoAK/HQyQWRi/HqKqoYz7FYk40i6FvthDUAoHgMObilxvrbyWwcxchyThNmMsUF+QxHk4Tjcfo6+3Blps32Ubyvehik9lKymjHVl9GQZOSfTu30b5vF8tWraGouJy+nnbe3ryJVbWls+YfH2rCVavVvLv/AINBGaMxW0jLskxn+0ES7kG2AomUfMTUmqma3ylrMR++pp7uvgE2vbOXts5u5HiI5ualNJ53NRqdDuf4CL6eHqzK5Ly1vqNVGzMRZc0lF9HWOzjvfs1ztYbMNAetXo/bMc7wUB9WZZKmsy48oqVgvoJs+kJrzD1M3D2I2+2isamJ6sr3rSAnSwgejcXQN1sIaoHgA8J8gsLm4pfzBkP4U0mql08X5lKmX/NEKsWoY4Jq7wQqpSoTXbx85Vl0DYyQX1CM3qBHbzDy7jub6dq1mfzCUhKxMHLUS0v9hUdNqZquwTY3Nsz4MO1sP0h/534qapvIq2w6YmrNTJYEs8VKa2cv5uIqNEoJm1mLJXfSzF1aXU9P67vE3UOoZ/ElH4m5VBvLz8+fVzWy+Zb2nD6Hzn1b6RscJhxLYjDo0JaV0NrRmTluts9hvoJs+kJrWV0luw+0I2uVqBTKeReLORmc6r7ZQlALBB8A5lusYS7mTIWcJi0pDhPmVquNZY11dPf08m57N3vTQcwGA6pUjAvWrsNgNJJIpdHotABYcvJpWHkure9sIBGPozZaCAa9HGhrx2azzfkhONPDVK2USLgHqahtYuWa848qtGYrtanV61GYc8jNzSMw3EkkGMBgtgASqNQwx/rYs837SE055tK0YzrHEqWcn59PidfLgbYucoorWVPfQL69gGg4Mqdc4WMRZFMLranP+FQJwbky389hIRGCWiA4wzmWYg1zMWeW5lsJxNIzCvN0Mkk86EWpUKDW6EjKMolkCo1Gg0qlRq1UEI/G0Bv0BENBRlwThCQdjZX1GMxmXHKK8aiCzfMsJnHowzQSibAVyKtsmpPQmsmSkEwmseXkEpYk/EE/sWiMWDyGFI7g8TiwaiXMhUUkEoljLjE5l6Ycc/V/zzdK2el0cqCtnY1btuOMayiptDPmdKPTG7BabXNusHE8guxUCsH5cKr6ZouCJwLBGcyxFmuYrUBGKBCgp7MVoxxhzepVFOVZGBsdzDp/wu3i3X376B73Ubf8LM798DVULl1DED27du4iEYuQY9bj8Tgmhf64k1A8RX6eHaPJjNc5RnFBPi0rzyaEju07dzE+Po7X6513UYn5Cq3plgSQCQaDhEIhtEoFJQV5GOUY8YAb90gfAccABXqJ2opS8m1W/H4/b761hZff3MrLm3fw8ptbefOtLSe9YEf2PRzO9ACtqUVc+5ifpCGfurPWYimsxBGR2dfWic/nfX9B4wng8/mOeO0pQTa1sHI6nXP+3KbOnUuxmA8aQqMWCM5gjqdYw1zMmZIkHRaI1H5wP0MuHxVlJTQ11qNUqigsKqKxqYkDHT309fRQXVdPoL2Lvu4O3L4IqWgUsxo8zlH06QhV1S0EAn6c3gC72vcz6PSRY7VkzPX5s2hfUyb+MbcfbzBENBRkbHQMfU4hpZXVh70/h0YVT1kSDrYfBI0ebzBKIpVm3OUi4Zogz2piTUs9jUuXTRZxMRro6WzDLCXZ195DSLHwJSbnq6XPNbjLYrGwacvbhCQ9ZRX5jHqCGAwmFEolJfrKrN7h80mTOl0bbixmhKAWCM5gjrdYw1z8p9OF+YTPz2BvL0saWmhqrM9E8ALY8/Iw6Yd4d/9+SkpLaaqt5u2336Zrx06sRj1F9fUU6CWqqltQqFTsa+skJGvR5hRTUrsUvd7I4OggPa+8jlYhEYpP+shtFjNFeRYK8nJp6x1kLJAkmpIJJ3WEkjLdzhA9Tz7JjR+9kcrq2sx8ZooqliSJgrxcXtjwFkF1HpV1LeTYbMhqPdvf3oyz00XD9X+DxWIlGg7T09mGIR1GkhSEFAvfl/lYhN5cg7v8fn9mEZeW01l9wyWJrN7hkizPKU3qVNfEPlMRglogWMQcb1u9KTNoJBRCRs6U8zSZLUiSNKc81aP55aYL8+HhYVAoWLpmDUrl5OPF5/PSNzDIRCBCWlLjGhvmlWd/j1ZvJJJIoUtHsZntmPRaKquqyMnLY+++/UQkLXk5ufjCE2h1eoxmM4oxJc9v2Eo8raBqSS0mg5FwSoErnGBi63a0OcXIOgtRhZ7cogLsOi1mewlvvfESTz/1FDd/4haKiktnjSqWZRmH20NFbROgxOMeIOTsR6WQuHhVI2Njowx17kMjx9CqlZTnmiktWsKug10UlZXP22pxJI5H6M3FGuJwODKLOIVCkdU3XJKkTO/wRCKOxzl21DSp2aPNTRRQTnf7Abbv3MVVV1yO4jiC7z6ICEEtECxSFsKEaLVa0UpJNr7+IjpLPsm0jEohkWsxUVlVzYTHuSB5qtOFeU73INFwBKPZjM/nZV9bJxFJS25BBYa8OImAC/+Ei1AMSsuqSerz8URlDoz4GR5/gTVnrWYiECHHXo5nfBC7xYTJbMHjcvLySy/iTJvQWu34tXaiaRgfniBXlcQzEcIQ95BfZaektJIpmVlQVMwF6y5n52t/YsfGF1nashytSjljVPGUq6C+cRkGkynTsnFqcRMOBhhs2815yyc/A6vVOtnDeYFLTM43xWomjmYNOTSyf3rf8LzCEtJpiVQ8ynB/D/l66ahpUjO5WaYv0gLBMJ0He0jLMueuOUto1vNACGrBB5JT1QB+riyUCdHlcuENRQgnIK3QU1RagUyKocE+Ol95kRVLSmhec8mC3fuh/aj7BgaJSFpKSisBmaGefqRknNzKJkacEzijCpYsXYVuZJRQSsGYY5g3N20mp6icaDKNQY5SVd0CwI6tb9HrjmBrOBelSklOYTEqpQq/30pPxy6Sfi8GhYlyg4lDbye/oIjaphUUaxOct+x9IXvofU93FUzlUE9HZzCi1uiwWq0zNgoxms1ZPZnVag0S0ryra80cWyATDIZIJhOYLDmMuQaPqqVPX0Ad+p23WCxZvuycvHyWtbRMtqoc7GBkZJhCg0R901k0NzYc9ft2qJvl0EVaTqmK/liEfm+chDCDzwshqAUfOKbSUXoHxwjH4hi0GqrLi1g6h4fRyWAhtKnp4yitRVx++Sr6B4eYcA+TSKUx6bWozFZyzSby8/NnHWO+TPeP7t+zk74RN9biKibcTsJ+DwRdaEw2YrISXU4RGq0ak8XKEr2esdFRFAkrvXsO4HcMcdEll9GwdBk5efn4fV46e/pRWu1Y8wtJhP0olUrkVAy9Wo3CmINnoIek1o9CoSAcDpFMJlGpVOj1RmLRMAa9Dq1+Mnd7qiHFocL6WOo6T1+c5MTs9Pf14vEHM9aLqN/F2fXl87JazCT0pjTTRCqNUpKJjHXTUluROf5IC87ZrDMFebl4/O9XPrPYcqirb6Snq5VSYwkfOmf1nDuDZb93pqxFmiRBJBTAaNRT27AU5/jIKe+KdTohBLXgA4XT6eSvr75B14gbSWNCUqqRgxG6R/fRNzTCtZddcsqF9UK11Zs+jtFsxmazZTQylUqNJDfhGWifs+90rlYIu91OY3U5B5/7Czv3dqLL6UCnVlFRlEt97RJ6h8aJpNLkFBQRmnCTSqUwW6yYzFaKg34McT+ybxijyYQtN2/yXibchOJJrPn5BP0T6NJRHH3thMIRUmmZVCKGa2yIUCDAwaJStGYrqbSMUiFh1mmJBjxoYxOEogFeTsSRVGr0Wg01pQVZ2uJ0oVttbDysTedMJS2nFie9r77Bqzt3ordXUlhei4SSsZF+/KE4AyPjdHd3H5PQS6ZTWZqpRqfF53bTe3APv3v6z1TVLEGnN87qGjmidcY/SGN1OQ63J8uX3Vhspbnh7Hn9Fqa/dwWUMxGIkFtQgSRNfnfc4yPYLSbMFitKhfKUd8U6nRCCWvCBQZZltmzdxt7uEWxlDeQVlaDVGYhFw7jHRtjb3U6OaRt/c921p3SVfzyR2tOFqc/nI5ZMTRtHwmQyZY5NpVInJOXG6XTyzt79eFN6DJY89Pkl6HRG/JJM77CDaDhITCFhRoFKKWU6LkkSKBUS+XY7hhwtmkQgo+mlUqnJ9yYWID7qJ61VozLlYiypJSVLjA8PEFGa8A92s327maazLqS4oopI0MeOnTsJj7SDnEZvzceRMmAvKkGvlekd76RveJRrPrwuq/Z176tv8MJz+99fzKUSyPEgtSV5M7oK8vPzyTWbMJut6PRafI4R4rEoiVAAq72YdocTz1N/5uK1Z8/JcpMReiMDBGKpLM1UlmWcw70olUom1PnkSQYaW86asYrYXKwzDreHD609H7/ff1yuoOnWlO72AwSCYXJKVURCAdzjI+hSYaqqW5AkaVF0xTqdEIJaMG8Wu393NrxeL3sOdqK3V1FaU5+Zs95oprSmnlgsyp6DnVx0oZecnJxTNs9jMb/Kskx3dzf7W9uYCERRafUkYxEGhocx5JdSUlqWpU2bTMY5dyaaj79clmXe3radvX0uLJVNVOtshCQ9tqIKAgEvQ2MD6IITRBQx3IZxCq0G9Ho9AOm0zHBfF7p4kNw8KxesWcnIuGNS8/L6UMd8qE02pFiEiDKfInsp6bSMw+HA5RjHaM0lt6qGdNjPUHcrY90HUKuUaAwmfCojslJDzYqLUWjUROQUubnFxGI2tnfsR0q+zPXXXpPR7iRJQqHSIWkNSCo1cjKBnE4esWxnNK3goovXIUsK3G4XHb0DaIoqyM0rpKAyjqt7P+1jfib8u1nWUIPFYpn19zMl9IY2bKatc5SyxrOQ0ymi0TCusWH8I71Yy2opX9JE0DlIJBLFNINrZK7WGb/ff0TNdj7WlAvPXsX2nbvoPNhDfyyC0ajHbjFRVf1+J7XF0BXrdEIIasG8OB2KGcz2UHG5XLiCUWqXVc340Cosr6JrqA2Xy3VKBfV8uxE5nU7e3radTTv3E0JDXm4ehfl6CouqSIw6efW111hS20ACJYlUGrVSgc2kg3iE5lLrMabczOwv93q97G7tRGdfQll5NTaLha72NvyOASz5JcSs+YS8o8QmegkGgzRcchnpVAq3c4zOA/uI+hxo1CqImRkZK6apoZ4VGg2xWAyrBt7c10MsImO0WglPOBgdHiLk96NMhrGXldG06nx8w53oDUZaDx4gqVBTVFiC1+VEacmnuHQyp9g1OsTY2Cg6kwVHVMlzb2wlKWmoqSjG7/OjtBZx1ZpGQqFwZnEzVdxkJt/q+1YQI0qlgu7eXjDYMlpwOqVBqdFiseWx++BB3t1/gJraerRq5ay/H7vdzqqlDbR29hBx9mfSxExKyCkoonRJPRq9jolUmmQygSyncTgcxBIpDnT0s6y5iWQyedwR6fP9zdvtdq664nLSsky/N05tw1LMlvcF+2LpinU6IQS1YM6cDsUMjvRQAZAkBRKHN7cHkFAiSac+v3M+3YicTieb39nN7u5x1GXNrKxpIB4L4x4fIdTXT1lpBe/ufwmnP865H7qEHFsOAa+XAx37MSXcrFt+/bxTbqbP81B/ucvlwh2IUrt00jdptuVR29DI6GAf/uFO0uEIPucIl6ysxROMMHTgHUaUGpwuJ0q1FntlHcX5NmorShkMBvDs2MOFZ6+isLCQyz58KU6vnzFnO6pUBOfYEAHHOEq1FrPFiEqtQVIo0Gh0lJeXMhEI4w2E8Xk9BBOgjcbpbn2Xkopq1DoD3R092Es0FNW2MBJ0oTDn0zriZfe2t1m65nxMDgcFBQVZ34nZ4gOmW0FkScryzwLEomES0QidfYMkTXZkhYr8ynrUKvURfz8lJSUsW9qMNrcUtVaDWq0hEY+xfc++99w2MdRKBaOjo7y+cTNjE0GiiSTh4S4mnKNctu6ieVtnpnOsv3mFQsG5a84isX03zvERlArlSW8NeSYhBLVgTixUJPJCzudQrdnlch3xodJSV02eWcfY6AA1puasFB5ZhrHRAfLMugWNgj5W5lKwQpZlDra1MzARJqUxkZNfhFKlRK8yU1pdz3BPB+MdrVQ3ryLs9+Ab7iLk1KBSSDRXFgMFONweGmX5uNpdHqqRyXIamVTmtdmWh8maSyQYwOd1ow0Nc8P112Gz2Xhnx042vr0do95AVUMzeVYjVRXlWK02ZFnO+l7Z7XauuewSBked9HodqNVa8ovLKVvSgE6jZqCvm96OVnK0Mm73BIOjTmJKPToS+NzjaCIR0uk0Lsc4Wo2apKSgzpaDUpJQSOBxOehobWVHWx/dIRXFB3spzjWzZtVyKioqZ71fyLaC5NqLJruDaTWEwyESiQTOwV78bgcGTQ2lZcVMDIdIp1MYzblH/P1YrVaK8iwMBnzUFE/+7gJ+HyqFRCQSYmx0mKR3nAOtXpL6fIqWrEChAKdaRV9E5pmXN7K0ppyxOVpnpjPX3/yH8vJm9G+f6taQZxKLTlAHAgG+//3vs2fPHnbv3o3L5eLuu+/mnnvuOeq5Tz/9NH/84x/Zvn07w8PDFBYWcsEFF3DPPfdQV1eXdey6devYuHHjYWNceeWVvPjiiwt1O2cMCxWJvBAcWs9ZIacpybOSSMYJqWyzPlSGx8ZZ2VjLxgMDDOsN5OUVotFpiUdjuN3jRJ2DnNdSt2iiUI9WsKK7u5sNW3cSVNoYcPnIl/V4vD6KCu2YjCb0FhttngDL164hHrLTXF2CwWCYVrwjeNTPbL7+8vz8fPJNOsYH+zA2Lc9qFak3mRkd7KU0Pwe73U5OTg4XnH8eTn8ES3E1FlsuJpMReP+cqe+V1zvZHMJkMpFv0eNVaTmreTV9w2NYCwrRaLXEYnE69+1EqUvhjUEkBXqdElIplAYbksWOoboFOR7BOdqLQY4QCwWIBCZIh3xs27mXmC4X+5LlGAorsRTaGRwfwbVxC1ddDBUVlbNqoNOtIMP9PQQmXJNFPiIRnMODBMZ6SCbTlMSUeFwupKCLUH0NuXn2zH2O9bcyMDCAXq/P+qwPta7oDUbSkSAbX3wOg9mG0zFORJtLWb6FWDxK1OOguKiQ2qWreHfbRgaHh2m05s65V/QUc/nNdx7YTiDwMuEEM5rFT5euWIudEyKoZVmmq6sLvV5PWVnZvM51u9386le/YsWKFXzkIx/h17/+9ZzP/eEPf0hRURHf/OY3qampYXBwkH//939n9erVbN26laVLl2YdX1NTw+OPP561bbE8pBcbx1szeqGYMsVl1XMOR9jZ1YpvuJvLrr5h1oeKY6CN1c0NeENhusf7cQYn3g8UivhZUZXP+eeevageIrOV73Q6nWx6ZxfjYZnKlnqCimHUBiveeIzIwDDVFaUoVWoSaZl0MoVGpcSWk5cV9T2Xz2y+/nKbzcbK5jo27O1iWKs7LLI+4uzn3BXvL4YSiQRqjY7C4tJM9Pd0dAYDLq+PjZvfIi6rmPD56R31kFYZ8DqGMWrU+HxuLCYLcsSLWRFn1OFBixmDVkNwrAd9Xhn5ZZUkZAURvw+tVktaY0FCwUDbHgwqmUQkiKKwjubVaxls34fD40ZfU01t8wq6Du5lx+53KSsrO6IGOqVBbtn6Dq+37caT0pFXUIRSATm1Z+ENRkioDETSKvT6HHp6+zGZLOTk5ROJhtl34CD+QAC9wXSYwJuumbrcE4wP9aBKJNCo8oikFCg1enq6u4n7XdiUSUxNjYQDE1TWtTC6dwNVJXYC4ciMmm1+fj5er/cwQXq033wsEedAZy+xhkYampbPahafb2vIdDrN4OAgwWAQk8lEeXn5B77k6HEJ6meffZZnn32WBx54IBN809fXx3XXXUdraysAn/jEJ/jtb3875ze6srKSiYmJTPDPfAT1n//8ZwoKCrK2XXrppVRVVfHf//3fh42l1+s577zz5jz+B5ljiUReKKbM3LFYjJ279zAWSBJIKrLqOVsKytg47mXbO9soKi0jNz/brDYllCwWC9d8eB0H29rpGXYQiYXRGzTUNNXNqfrSYmDKJBlXmygpKcVgMGA1GfCGA+QXleF2Oxgbd5Jj1qNWSLjd49SXF72nrb7PXOt8z9VfPnX82vPOZSIYpmukj/GAKyu9acWSEtaed+6sZSwPZXxshN7efpT6FpbUNaKPhOhzR0lqDfjHB9BpdQQm/HgVKooLCik++1w2vfgc/r4DGIwG0gE/anspxRV1+CMxJhxjeMZ7SQW95BQVEnKPUlKSh8OSR3FNI0qlEmt+EZ7xISaG+1CWVlBQUs5A23Z2bNtCRa7hiL7V/Px8rDYra85dizeSpG/cg62iiZyiUvoHhpkYG8AW8bLmkssJeBz09fYgyzK7du4igB57dTP59oIZBd5F7wnUNzdvQX3uhZSUVfDai3/F0b0fc6WM3pqDLtdOTm4ucZ2ZrvY2KmtqiSbTaLVaVq1aNaO76M23tswY03Hkz0amo7OTpEJDbcPSzP7jdYW1trbyyhtv0jfuJZpMo1MpqCq0cfklF9HU1DTncc40jktQ//KXv2RoaCgrQvaf/umfOHjwIJdeeilut5vf//73XHrppdxxxx1zGvN4tJlDhTRMBmOUlZUxODh4zOMK5q9ZLRTTg8MmfH7aOntI6awYCypYUv9+PWeT2UJ53VJc/W20HtjH2ouyc12nCyWbzcZF+fmsOE3NcVMmyZraJlIdbTgdIxQWFRHu68c1NoTOYMYX9BLzOlCnQshBD5Xla5gyKcP8PrP5+hrtdjvXXnYJB9ra6RkYxe31olEpWLKkinMOqfF86PcKyJTfVKlU7Nm1C63JTMvKs1EoFKTlNEajHmtZHR5rLmY5zDlr7Iw6nERTCpxOJwaVTEl+HqW1LYy5PKjzyggGJ1BGIpgUKSRFEqVewmbQkJtTzJKaCtwHOjGabcgypCSJ2tp6dMo0/qFO4okkvuEebMuLufDsC7JS0aYEn1qtBiZLtvYOO1ix+my8/gBO31ZkBYQ9TqSYD4NBj1mjRa1UkldYgmewg/D+d3EGYyxtaqKwqAiQZhV4kiQRk5VUL2nAYDKRk5ePrbCU4vrlmHLykVRa4iEvlsIC/OMD9LQdQKecdBkcqtkeLVDsgjUrZ/3NBwJB+vr6qakoP6zM6rG6wlpbW1n/1J8nu5atWIfZZiPg9dLRuZ+Rp/7MZ2/iAyusj0tQHzhwgMsvvzzz2ufz8fzzz/Pxj3+c3/3udyQSCVatWsVDDz00Z0G90PT09NDf389HPvKRw/Z1d3eTm5uL3++nsrKST3ziE3zrW9/K5HUK3me+mtVCcOiDRB8J0T48wXgoTV44TigcxGScNOXq9Xpycqw4BlS4JnwEA/7MA2S2doanq5tjyiSpNxozjRT87nFKCvPxTHhxj/Uy1HWQ2jwdl527Almlwe0YRa1UHfNnNl9fo91up1mWCYdCpGSZtKQglIDWjs5MoBFkf6/27HibWDQ+WeAjEmXCNYZvrJ/LrrkxY5EzmS2TXZ4cI+QWlhN0DpJfUERVzRICgSD7du9A21iDvbIeZxR0wTDxRBwJBRqtFoVCIh1R0VJbiy03j+CEC1tOLkoJJtwOUKnQygmq6+owGoxEggFc46No/YVcfOGFmXlPX0C6vD6c42OQTqPV6Rlx+4ioreTm2CgpKcVaVAGyTKTEztDoOEOd+xkfHSavoBi3y4N/wkFVfTPVlRVMX0zNJPCmm6ODAT9ojFRU1+ALBcgtrQQkIoHJ77wlr5j9+7ZzcWMh5eXlWZ/PXALFWjs6aaqvw7Njz2G/+e72AyiiPmob1834HZivKyydTvPKG28SVOex4rx1KBSTY+ba7djy1rF36wZeeeNNGhoaPpBm8OMS1E6nk+Li4szrzZs3k0wmueWWWwBQq9Vcfvnlh/mBTxbJZJI77rgDk8nEV77ylax9F154IR//+MdpbGwkEonwwgsvcP/997N582beeOONWb8MsViMWCyWee33+0/oPSwmTmYU50wPkrScRqNVY5BVpLRGxsad1Na873PNtZgwaSa/l74JDwaj6YxMB5luksxqpOAdQ59Ok6uIklds5BM3XsuqVatwuVwL8pnNZ3HjdDp5a8ceQpKB6paGI6b1TJUcPfD8KzhjKow5dkw5uRiNehJpBQ7PBMVuFzl5k1rl1OLENdpPIhomFosiyTKO0UFqCizU5q9gOCSj9I0z1HWQdG4V9trlxMMRnMP9EE/jCcVQpMcoMcoo4n7S3mG6d25g1QWXUlJcmlkA6oxm3I6dNFYWU1FRkbm3qQWk3lZEwJ8ilrsEkglScT8qXYohbwSX1088mUYpKdAb9SBBOhYl7PfQ1noAWg+QGO+ipKiA1SuWZfXunuJQgTf9s08k4qRkmZblq9ixazdDHfux2EtAThEOBnCNDqFOBlmx9GJcLldmcQUwMDBAR98w9upDsx8mG4potXp6BvpYvrR5xt98pVWFuq4avW5m//V8XWGDg4P0jXupXPG+kJ5CoZCorGuhb+8GBgcHqaysnNOYZxLHJagtFgtutzvzesOGDSgUCj70oQ9ltqnVakKh0PFc5piQZZk77riDTZs28dRTTx22orz33nuzXl9zzTVUVVVx11138eyzz3LjjTfOOO59993Hd7/73RM278XOyYrinCni1GS2YLeZ6WsfxFJURTASJBKJoNfrkWWZaNBHQ2UJqdAEwbE++ryOMzId5FBzcU5e/qR2GPCTiMcYGuilvrCJ6upqnE4nGo3mmEpEHmsFuvmm8k31gK5qWsk5JRWkUklUKjUgo9AaCURi9PX2YMvNQ5KkzOKk/eB+Bsd6GO6UyDGbMp8zwKZ3dtHVPkGuvQhX0Evnzk1IOgtWs5GqNecyMdzH0EA75opizJEITc1L2b3vIJ3vvIHunIvRVlYT8Hrp75zMN7/8kutRKBSH3Fsj7+4/QExpoKZusjvYcE8HTLjRKBTIGgux8UE87nGs6Xx6BoZweb00L11BZeMyBtr3kTLIaKQ0kUAA3qtrPp1DBd70z95eWIJKIWHLzeWcNWtoO3iAgdZtqJUSmrxcchQJ1AU5jE2EeHnzDjQqBVopiSQpGPf42d3eS2nKwJjTRVVFOelkcnLB5w8ST6SYGO0l16xn7XnncNEFaw/rvLVpy9sL5goLBoNEk2nMsywEzTYbvck0wWBwTuOdaRyXoG5sbOTPf/4zP/jBD1Aqlfz+979n9erVWT7r/v5+CgsLj3ui80GWZT7/+c/z2GOPsX79em644YY5nffpT3+au+66i61bt84qqL/+9a/z1a9+NfPa7/cftgg40zkZZuOZIk4lSaKxeRkdXd2MdO7DnGsnEY9DOol7fARtMoQlL5ely5ewvGUpiUTiuBYSi7VU6mxuCIWkYMLjQpsMEvDDK5u2HRYgNFMcx0zMVjimqb4OjUZzxPdkvql8U8cXljcgy2nSqSSyQoHRZMKglnD5kow4XNQGfJgtNgBsuXnkF9ipKzRy9upVaLXarLksb1jCvoNtGAuroKOTpMOBWa0m12RGG/NRYNHg8ptwK2wUGu1ccfHVVC9tZ+PGjex541kGcnPJsVqoL7Rx+SXXZ3yj0+8tFAofUthEIq+ohOjEGIRcxOJmkCTSIQ+7u7rxRWIU55gpLCnF7xyhyKqnZe3fsG3rVvbsfofi8oosS95sLpupz94xNoxRrcA5OkR+cSW1DfWUF9qoKi1Cq9WyZ+8ejNYSyprOQm80MjY0yIYtm5BUWlYua6GoQoHGbMcRCTP6znbkRBylxU5eeT3ptISkUjMeU/Lyhs2sWtpASUlJJoobWFBXmMlkQqdSEPB6yZ1hQR3wetGpFFlZCx8kjktQf/nLX+ZjH/sYpaWlGc15uraZSqXYvHkz55xzznFPdK5MCelHHnmEhx56iE9/+tPzHuNIPhCtVotWqz2eKQrmwGwRp7n5dtZddDEvv/wS46092NJebFYbFq0SrVFLsUVLc2PDcZcAXeylUmdzQ5ilJF5Jwq80U1RWfkzV42YLMjrYfpBN235PUUEBOqNl1vdk5rSeyV7KiUSccCiE0+3G6XRitVqJx+O43BM4QgfxBsMk0zKJaIRoJEhaqWN8IoBnbAiNSsFZa85Gq9YwNjqIiSjnHhKcNj1DoKi4hLyKBmQZ1lx4Kel0kngshkarxe1y457wUd24nGgiTCQSpbFpKfUNjezYtgUbQS6+8EIqKt4XnrIs43Q6cU14sZSlSadTk4VNdO8/D7Q6A1qDkfrKMjwTE7QPjWBKmYgMdGKx5GBU6EgFXJg1SorLS4nHE1RVVrB762b27X6H2vqlaPV63I5xhof6sCqTNJ11YZbAm/7Zx9wJBjo78I72U1VVSf05Z6FVq3lz4wZIxjn/kqswms0E/D66uzvQ5ZWjs9gIxZPk20w4Ax6KK+vY2nEAhUrLeSvqAYmR4X4sBh1JpZZ3Wnto7exh2dJmivIsWTnSC+UKKy8vp6rQRkfnfmx52ebvdFqmv3M/9YW2D5xSNMVxCeqbbrqJn//85zz00EMA3Hzzzdx+++2Z/a+99hrhcJirrrrq+GY5R2RZ5gtf+AKPPPII//f//l8+97nPzev89evXA4iUrUXAkaLMK5fUsWaNk8BwN7l2M7ICbBZD1kPkeDgdSqXC4W4ItVrNu/sPEFBZj7l6XDqdZvvOXYwFkixpqMdoNgESyXSKQFJiLGnEmFLTsPQsYpHDuzXB4YusqV7Kg8NjjI4MEwiGkMMeUskEK8Yd6NQqegcGUBfVU1JZTyKVpqOrB3ckjk0jU11djSbmZ2hggInxYZbWVVNXWXKYMDg0Q6C9q5fcCPgDIeIqN8FIdLIlZjzG+OgwFoMOg8mM3xUkmUwAoFAoWdqyEs9AGzabLSOkp8buGRiltauX8ZiaHLOBeDRMPBpDb5gMQI1Fw6gUEvmFRdgLizHKEZpqyigsKKCiaRV+n5eRcQfuiQD7N7xFNJ5Aq1GRDIZx97UScQ7j9gUIx5IYDDq0ZSW0tnfg9/uzmnhMffYrWnysHRmhb2CQQCzNxGAXiXgURWSClStW45vw0HpgHx5/kK7efiylS7CmFSQCSVY0LCHQ20vPwd0kkqAzWZmYmCASDpAOevAjE1IaKGs8i4izH21uKYMBX9bnPdN3ECbz471e75ytUAqFgssvuYiRp/7M3q0bqKxryUR9H+p++CBy3AVP7rzzTu68884Z911xxRVMTEzMe8wXXniBUChEIBAA4ODBgzz55JPApC/ZYDBwxx13sH79erq7uzPBBV/+8pd56KGHuP3221m2bBlbt27NjDmVRwiwadMmfvCDH3DjjTdSU1NDNBrlhRde4Fe/+hWXXnop119//bznLFhYjhZlXmLVccGHP3VUM+x8WWylUo/GlBtCluXJAKHeIezVzTMed6SUmanuW9u27+Ctve3YKprx7mslx6ynoqyUts4u3OEEFbVNhDzDRMIhzBbrjO/J9EVWXqqY/e1duAIRJrxBlPmV6Mxx1KkwXswcGPLiGexA1prQmq3oDCaGe/vAYKWuvA5nfyf9HQdZWr+EuoYmxkcGKcrR8qG152c9tA9dXBXr9YRTSnZ39DHs9FBco6OkqhqNRofX7cB9YD9qzEQiEdRKxXs+8UkODeCaPnZZ01mEJD0j/ji+tAbPxARJZQ+1DUuB93suG01mervaqKkopqGhgQGHl0gkzKDDgyuYYMIXQplfhd2ahz/gI5mUSRvtDI4OUFS5hDXNy8m32xkfG+W1XbuJeN+iuqKC/LycLCuGzWbDZrPR1NSUEZY9PT10dfdwsKOLgaER0koNVrMJtSkHW+kS/BMeBrvaKbfbqK6qgM5OunwuookkPqOCsqJ8giktYaWRktJK5HSKkLMftVZDTfHMKWM2mw2n08m7Bw4esxWqqamJz97EZB713g30vpdHfaj74YPIoishCpPCv7+/P/P6j3/8I3/84x8B6O3tpaqqilQqRSqVQpblzHF//vOfAXj44Yd5+OGHs8asrKykr68PgOLiYpRKJd///vdxuVxIkkRdXR3f+973+Od//ucP7KptsXEqagUvplKpc2VK2+voG2Z3ey9FEQX5w0PkF9gxmsyZkqGzpcxM777lDMbwheIYlFokvZU+p5sde17EF0lgzi3CF4oSG+uhprw00xHp0Pcks8h6Zzdvb95EwphPOhYnqTag1ujJUSuprmoiEPASTgQYcEfJtZuQgh56u6J4AjEs9lL8Xjejo6P4ervJsRhJKboxqhWMuSL4fL5M9Sy1Ws3BtvbDFlf1TUtp6+ggEkvhC/ipUGuIx8KEPA4sWtBZC+nuauesppqsYjDTA7hmWrjVLKkltH8/0UQcnSkH7/gQPRKQSmJWJikor6G3qy3jp7VarRhUMm+8uRFVQRVyIolkyqGgYrKscSwSRmnNxRtNETcVYzLbKCgswu/30TM0htJeiVpnI63TkFPewODY0GFWjOnCsmtgBFdMQTKdRlPaSEFRGa6hXjzDB9CN9BMORxhzedn8zk4aapegVakoyrGgt+awZnkTRqORHe+2kptbgCRB9D0rgVqtmfU3sFBWqKamJhoaGkRlskNYEEE9NjbGzp078Xq9mQbvh/KZz3xmzuNNCdQj8eijj/Loo4/O+zyA2tpa/vrXv855PoJTx8muFbxYSqXOlekPSHt1M6UpAwlJy862TqLb3qGktAyr1Uqu2YjRaCAe9BN5rzmF3+9nZGSEXfvbaB/1TnbfKihm3+4djLp9jI+OoVAqCaS0JJVaapc0EfZNMDHUQ0dXF7bcPHLy8md8T+x2O8saanh3/wEi0Rj9I2NYSpeQo5UoKq7CbLESDQXZu2cPXn8AXwJKC2WiwX4c/hiRUACP24VSraWktomqlnPQ6vU4R4do2/cuaimF3pJHPJkmEQ0zMDxMy7kXZ30v1Bo1BpOVqmIVA337ORB2k59vJ89qRl1WjjMSQZWSsefmMpW/fGgA10wLt/dT4roJurwEx/rRRRzYzGashcWkg87sCPQtb9MzPE5HZyfy0DiyLFG16kPEoxH8E240coyi8iq6O1qpb27BE3ASDPjoGxgkImkpLa0kGg7gHexARqambmbLzlQv8I5RLzHUdA+OYi/WoFCMklNSwdhQH/vefh1b7WpKms7CbNKizS8k5HXjGB2kQqehoKAAn8+X8b3L8vtWApPZAhz+G1hoK5RCofhApmAdieMS1NFolC984Qv87ne/y9JspyO/15lnPoJaIJjOySxOcrJLpR5PZPnhD0jo6u2jtasHY34lWoMNSatEaS1k58F9jPW1U19eCAoFEf+L6IwWOrq6cUZlJLWBhpIGZDlFxO/CFVXiDQRR6U2UV1QTmnARDoWJBieorF4CRmMmZWq298RisVBTW4/KnAeqA5Q1LcNosiBJ4J9w093ZiiehwlRQhSHXTmFVGT73OO4D76KIBbCXVpJfUExwpAuNVofeaEZvzWPMl2Bf3xhXXrsWvdHI6NAA451D6AaGMZrMWK02fD4v7777LqMeP6byenLCcXJ1EjkGFWajEeJhYsFh5JQS0pPWuZkilqcWblq9noDf917FNDWhcIhAOIqMAqVSQWFeHhXF+dTWVFNfX59p+Tm1iCqtX0FTVMeEP8iBA/tIte6jpLiIgvw8ioqrSKdTxFNp9EYTQb8Dr9ebFVGu1Rkmg+wS8Vm12u7ubjbt3I+6rJmKPD3OZDdpgw1vJElocBBZpSEYS2FLJ7Db7cTDftKyjKTVkVtQjDYRoKejFZM1F6Uk43O7CQc86FJhqqpbMt/LQz/v09EKdbpxXIL6X//1X3n88cepr6/nlltuoaysDJVqUVrTBYI5cTylUucrdI83svzwB6SMhISkVCNpNJgNJYwPHMTpCxJWmjEVV2POszAaUdA/GiE20UcwnkZltTM25MTpeR6rLQdVTjEalwuUSpSmXCKyEv+Em66971BVkoetqBIkiZ6eA+Tm5uLzumkoshz2nmg0GrRqJRq9AavFglIxOcfx4SF2bNmAJ6FCZ80nFAnhG+ynobqSmsblDA2PMjTYz8r61fhdI9hMevQm82Tby64urEWlWAsKkJFRKBQoVSosZjMOX5jegUGqymX2t3cxkVRhtOWjN1jJLSpFp4ZAMIhKAoPFRk4qzUjbLna8+TIVVVXk26yHuVU0Gg3RkJ8db28mlEjj8/kYG+rH4fGhtdnR6w0EfUFGwjDc5WZPRz8XOpycf+45tHZ0ZhZRoVAQvVaDrrSMSDRCWmfFajawpL4BhSThcbvQKBVEQkFUikm/7/SI8tg08zPMrNXub20jhGayJ3kiTrHLT1xSE0+rcY04CXm9lJaWUZVnIuoZJeR1E9amKLbn0HLFFUz0t5GriBBwDRIZ62asv4um+nqqalrIycuf9TdwulmhTkeOS6r+8Y9/pLm5mZ07d4qUJcEZwbGWSp2v0F0In96hD8hgMERcVtDSshSvP4gv6Gewr4ecglLqly7DZqqle+9W9LIWnSUXVyRFUpmgZsVa5IEh+lt34/aPcN7lazCYc/HtfJvkxCjxVBDCXpIxJ169hC8YYcLlxDXUzcGDB6guyaf4wnNwuVwz1vEe8HvJNRvp62wlHI3S3tGBwzWBOrcEdSyCVqsmEQiy/8ABli1tprC4jLb9e2h9ZwOldjsFy5YRjUQZGxkgFvTSuHQFce8orvExujracfsCjI+NEki5CLideJwuUqY8aurqCEy42bv1dUinSaPEOTaETqNi1arV5Oflct6HLsFg1KNNhljdXMuSJUuyPtt4PM6Yw8FY0khJZQ3hiTATGjupolKUOg1Orxu0ucTQUb9sGZ7xEbZ3DOIPx4gl01QtPRu/f9KMPe5y4YmkiQeDJMNJtEqJaCSMXm8kEg5SaDMw0HWQupI8VOrJvuHxaAydXneY+XkmrXYiECUvN494LIzeaMaeY8EbS1NkycGsUdDpc1BWamfp8lWMj49QX2Rm5bIWTCYTqVSaiGuEs1atRKvVsqyukl3725BNJjQa7awWBzi1DXs+KByXoPZ6vXzyk58UQlpwSlnowiTzDWKbr9BdKJ/eoQ/IZDJBIpWmKDeP/Hw7I8MDOCxmlq9YSWlFJaFgEF8oBio/krWQyqWVdO3bSSoeQ6/TobYVQTLG+EA3pUsayCkqI63UYjEbKbXbCE64SMkSXoeDuMqAqaSO/EI7lhwdwyHYPEOA09SiZ8TvYbC9lfGEmoTKSlIdR6E24fSG0CYD1FWVE/SMsfGVPlRaPVG/h/BInLAizkCrjMk8WRCjqMCO0WwiMBKio6sLyWwnr6KBZQWVHNy/h57eftwTXtZcsA63Y4T+rk4cHe+iNOYQQ0ksrcDvCfDa889RatPzmdtux15YQmfrPnbs3kN1dXWm3WY6nWbHrt1orYXYUdPVtp+42oaxsBqrzkhv27sQDnHuRR8m7HXgHBmgrLoO31CSsUAMn9tJUV2M1q5eIpKW6qYVaMZduDxmxge66HIMY7cYMVgtxNyjhH0uXAO9pEKVuANx/H4v0riLgvx89HIkY36eTatVafUU5utxj49QWl1PUaGdyMAwgYAXnd5APByAmBmvb4IcnZJljXWYTJOCdUqYarXaTCS53W6f02/gVDXs+SBxXIK6qamJ8fHxhZqLYBGwWKtxzcaJKkwy1yC2YxG6C+XTO/QBqVKpUSsVGS0sOOHGYjZRWDrZEz4SDhKPRohbbBTYS1BrDWg0arweJxZrLiqFRFJvw+fzU5RKk4qGiaUCVJeXICUiBGNp8s1q9LZCZJWGXJ1EU8syRocHQQMhlIfdq91u54I1KxnsewatwUBq3Esg4iUVS2C2mMnJW0LYM0rP4ADxeAxJqabcbKOk0E5BeQ3pVIrhwT5KS0uRzGY8DgexSBhFZAJtRSOl1fVIkoTeaGZJXTMxzxij48O073oLZTpJ2OfAai8imJRIoUOl0iLpLBC3MugZ4qc/foDqpuWoDWbeCk0wMDDI9ddcRX5+Ptt27OT1rXvRFdUQj/hxj42gK9LjD46iN1nR67TojMWo1Rqs9hL8Q52kU5NFUHItZrra2ti+fQfKnGJKSic7ven0eox6HcpklI5tr9G59RWqqyqIxWPk2gupv/jD9A30093ZhmvCQ8TrobKkiCuvuR6LLYdQIDCrVqtVKynKsRPq62O4t4O8whIqS4sYHBxkoLMbaWKAdIGJAr1EdWVdprb4bMJ0+m8gFosRjUbR6XSo1epM7NHUd/ZkN+z5oHHcPurPf/7zdHV1UVtbu1BzEpwiFns1rkM50YVJ5hLEdixCd6F8eoc+IAuLSlHLcToP7kav1aKXYxSXlJKIxVHqdfjcDkxaJaDk/2fvv4PkSNPzXvSXmZWV5b3prupq79DwGAzGu10NuVyas5RopAgFKUq6iiApw1CQS1ERS1GWZhUnYk8EdeKKMkuJcSUd8mpJkZdGO7M73sKj0d6W6fLeZmZl5v0Dgx5gBjODGcwul1w8/wBVlVn5dVZmvt/3vO/7PLLiRNcGhIJBZIb02008DhnVEujVG+wuX8BjM4k6BGyDBrWuiqLINJtt5IAbr11gfGISURAJhWLUivvYBAfnr24Q9HkZGxtjOBxit9uRZZl4cpxnJo8yfOUtxnwJ9F4TVbTjcbvo1kX6kgd7NIlbkXF4bQj+EJm9bXypRXypceSgB380ytpOlszOG0xMTBB1OOl32u/kr6HVbjAzM03A58EU7WDo2N0BbE47LsmNWqth84dRQkkkTIrrb9Mc9Mh3hhw/fhK122a9PSD3X/8HMxNjSL4YSnCU8YUT1MtF9gpVXG4PdoeJOxBCVJyY/RaGoeNweTBMi1I+S3p9hVogyO7uLruVLsceeQb/O05vHreHmSk3gtpm7nPfQ8ghEHDb6cp+kqkplq9fxxGbYGniCLKscJDZo1fJsXb1PGqzTCQc/PBVbbvHsaNH2d/bpZbZYGhahCQBmx+e/v5nCETimLJAtZCnnM8hCiKGZeAV1DsGU0EQ0HWdtc2tD30u/Hm0Un434Z4C9cjICJ/73Oc4d+4cP/dzP8fp06c/kN548skn7+VQ9/Etxp2CXr/bZW1rlZ30N3ni3Jn35e/+PPGdIkzySYLup5XTsywLWZZZmBzj0pWrvHrlbbKVBtl8CVmWOXb0CIFwnIPsLook4bcNcczOcj1dQOv3aLcaBLxuwpEI5XKZbKsMlkDEJXFyNsGRI0dwOexcu3yR1ctXCQSDmJbAaGqCRHLs0Ea0UCxw4fU3kG0yzfwez33zBQKBAIsLCyzOzaKIBtVml/hUEkGyExlJIgqjZLc3OFi7iOEKIjh9OFxeWvktxh0xQqlpDFcEr8eD0+Egl97DLQw5vjDNm/UCly5fpS+HcLocWGqPTqeFJEAo4KNaa1Au5InG4zSaTXo4GBgtNENiqGropQx6pw6eEcSwk0o9zfk33iAUHWF+MslaLkexco2f+H/9LPXOFYbaAI/XRyQSRbc7EPvdG0pmQx0ME0mS0dU+rXqZjctvINpkDFcEmz9Cq15ie2uT/kBlfnYaWRKpFg/w2wyWTpzjYHuF/nDI9JEjXDr/Jpu5GvZgDFPtIYl9XN4QIZ+HmE8h6Zd58vGHDnvVb8Wtk7Z6rczc/CJDY0in1aRWLbGUWOKJc2fY2Njg//na/2Kn1GZggEOC6ZiXH/vhH7rnWopvdyvldxPuKVA//fTThzmTX/mVX/nQH+SD+qvv488fdwp69WrlHSedLgcHB6RzeZ5++AGWFhe+I2bH3yktIZ8k6H4aOb33+iHv7qbpaQaRxDj+0RnKlQrXtjJIV68SCfoYnZji6OlzODwe9tP/kwsv/RlOpwN/MEyp0cbQNKI+BWvQJRUL8vC5B3G+YxPqD/iZGw2xcPw0hWqDeGocl8dLp9thbW2DiyvrdJo9/B4XjWYbX3ySBl5Ka3lUm5ewz0Uhs48SiKModvpqn2hslOjoKKXMDrqq0qtUsIXCuMw+ydQYtXqTicWT6N0642NJGnaDiUSUarPL1LFzDK68BYqTdn9IdnsLm2RjYnoW1Rlg6DapazkOzr9Jz5RwTJxECkSxOyNYCFjNIt16Ecf4CJLDgy2YxOhV6A1Nru3kULsWtWaVt157mUGvR77aYGxmEa/LQbWnYrMr2EyVVimHYrch2mS2Lr3K1oXXcETHOfP45zAEgWA0Tm5nDaNZJK910Mr7TE2kiPo8TE4dw25XEC0TUxCpVIpcXd3AnlzCG0thtzvodFpUKiX6pSyjZ45SarZotVofeD3ftqrNrB+uahdH/SwtzFOpVPjDb76KEZnj3AOzON0e+t0Oxf0t/vCbrxIKhW5T//okk+G/yD7v38m4p0D9y7/8y/dnS38J8N6gV69WuLa8zEByEU7N40suUM1uslHqUmt/Z2hdfxr08d3k4z9qm08SdO81p3f7KmeBir6DERJplMvUyy2On3qQhQcepVGvsX75TfxqibNzKbROmUajSNRucGXjDaruOK1IAsVhx2Fq2GWRqGJybCJOPbNB8ZYHfeLxB2mKHkTJRrl0gEGC3f0c67kyuuQiMT1CcXuVod2HKzHHaGqSYm6f6+kSj5w6iiFIrK+tEg9HqKtdqpUiomjHPzpB3xAYqn1iI0niPgdun59ytYHbG6DaroFp4PO4abU79EUHJx94kH69gCKZ6KJGbHKBnmZQHxjMzU5gOQOcjcV4/c++Rq9SQxwaiPoQJeRGssn0hiqCK4jZbyG6fZiijYGqEgvGkRQnOjLt4hbPf/MFhpaIgciVq9cI+Ty4PH5UQWYkGmHMbVIsZ3nuv/3ftIsZLLuLaChObneDeCzG/NISHrebnd09wi4boYCXo4sLxEcTAOxsrpKM+GkNDDZWVxgIdsYnZtB0nYNikb6q0+4NKRTqdJ9/iajbBqbJ/HT2A9NRH7SqNU2T//xffofy0M3Jsw/jdt+4b4LBECOJFFfeeIGvf/MlFhYWDlXAvlMmw/dxj4H6V37lVz6lYdzHnyduDXqWZbG3u8NAch0W6himiWR3kJyYplYufGJK+dMsVLtX+vhu8vF3s80nDbqfNKf33lVOt9ul0VURFBfesTmsXotGtUB0NEE4EuXUw0+x8fY3sdkknnrkIQ4ODlhbucaJpz6P4glRazSoFQ9o9Ho4GOKKhqi3Wnz+oQfx+/2Hv9NN8Y42BnSaXEtnaJp2Oq02HsVOp5JHH3SYfPCvgCDSaVSJJSdppntUuhrB2CjNQhrNsnC4osg2g2K+QGV/A29khOnJSXQLoqEAHk8ASUzTbTeQRIFWq07EKdLTLULxGPVahaGu0cylKdTb2AKjCE4/AibVSgmfw0Z8LEH1+AOo65v06nlE0YZflsEm0TaGiE4vRr+N2a0hiyA63XhDUUTZTm7lLZqlIr6xJwgmp/G7HKD3OdjbppC5fCOv7DuF7LFT2S5hG/ZwRFMInii6ZGc4NDD7bayhymgiQbPRoJpP43IqyIpCr9M5vDbOPnCaty5cJJsv4veHaDfr1DoDdMGGZHfR6ddwhpN0+3Wcaht7YIRM2/zQGoz3rmrL5TLPv/AiL1/ZJHDkETb30nicCiPxKB63B1EUmJg7xt6VF8hkMoeqYHczGVZ1g3K5fJ/q/hbjvjrJfdwW9EzLpNbqEE7NH95w2kBFlkRk2f6JZ9GfdqHavdDHd5N3Az5Wbu6TBN1PktN77ypnONTp9AcMDDu+UBA8HlrZTfqdNi6vD4fThccXIl9pArCfydIWvZx+5EmGWp/Va1dQZo8SiCYY9LrY1RY79SZvXV7me55+/PA3jkQiHJ+fRlhdo1VoUt9ZoWtI9Mt1grNLmMaAQHwMTySBoWv0qzm8oohugsvlRkRmJB4l5nVwbXuXdlUm4najjAWRgiF84RGKuT3ARJBsuJ0K2+vXCAU8BMIJEvEYG+kC2lDj2tXL2N1ejixO07t4ibbkwMJGMb9HxG3HF5ogXyjQ7GuEYmOY2ibt0i4VScYZHUcSwCYK6L0mjmgcwbKQ3X4kpxu936O6cQHRE0WOTmFKDurtLgsL86Rmj3LppT9m3N7iJ37kB/nt//F7xOdP8vDRB1jZSdNUTSxLwG2z0MUh+cwec8fOML+wwKX8Nr38NrlND0Gv57ZrY3piHJf9Cs3hgL2NVZSRadxuJ/s7G2j9PsnxSeo7DWTFSafX49QDD7K7tXZXE+ab1/petYfoDpKYPoJlQaPdoJ/OMTWexOP24A0E2B2adDqdw30/ajJcyGbY2dpgqKvIdseH3tN/0bpJvtPwqQTqbrfLH/zBH3D58mWazSY+n49Tp07xhS98Abfb/dFfcB9/rrg16AVDEYamheK4MYu2LKjVSsS8TjweN4ZhfmyVoW9FdfYnXcneTd7t+to6Anys3NwnLaT5uDm9965ybDYZ0TJpt1sovhCiKDI0LIbDG7+POujhdDowBIudnR1WdzLYXD7sDjvZnVUET5Dx8TkEQcDhctMuqnjdUVqmnZX1DZ4Ih9nZ2eH66jq1rook23G63IyPREnMLPDW9V08Y/PUWl167RZDdYDN4cQ0LfqdFrIo4PL6aRXTRD0ennz8IeZnC2zt7qGZEv2wh71MBntP4smzJ+irOsX0OvXcLpT2CQaPMpMaxe3xMdzc5fJbr2FqKscfeQKbTSYe3ccc2MDppl+1kc2XKNSaSJKMJUhE41FiYR/Z7U2arQMEQccmKTitAZbaRCvvY1Nc+KeP0jjYY/ft5xlqGqGxeQaWDdEQ0TWTTDpDKBRgem4RsbLJa2++RVf0cuLBJxEkGwGfF1GDPjbMQY+h0aHZ6dFrtxnqGna7yIOLs3z/Zx/H4XDcdm0kEgmOzU+zV26zd+EajVoNS7LRHWg43F7SK29DLcPJpz5Dvd2l22nf1YT51mt97shxrqztMui08IWj2JU41UqRQrHM7LSHdqOBwybi8XgO9/+wyXCtUubV117G6w2QWjyNw+X+wHv6L1o3yXci7jlQ//7v/z5/9+/+Xer1+m163zcfQL/1W7/FX/2rf/VeD3Mf30LcGvSy6V0MTaXX6yBJdmq1Ek5LZXJ8DhA+tsrQt7I6+5OsZO8m77a7ch5EkdTimW9bbu5uVxx3Ejlp1yuksw1amoTIEKt2wGB6Cm/ghqGCOOxTyNd5pdNhZSfLQAkxuHyJXrtJdOb4Lb24DlRVQ1JkRscm2NhdYXP9q1zaSKMpfkaTKUYiToKpeXYqPfqDIfGgh0KrgeIKoA269GoFXOFRRAEatRJJnwu3y8l2dodAyM6bV1bRDQvZ5SekiEyOp7A/eY5cvkCx3sEmGDh9AmceO85I7BkGmk6xXqBcyaGXdugVy5x5+gfxBcNYloUi26jtZ7GcXeyiQK3Tw2aIyHaR1s4a0ZEEi8dPMTk1xdb2Lja9R083yGWLOD0KstmhXinRGDRR2zW0ZhVPNMn40lkkWabTbjHUdDq9PgGHyNGlBVZf3iKTL+HxxXE4XYiShNfloKcPsJtD+qJEr2swVGusXL3E/v4uXr2GeWye9a1tlhbmb/tt/X4/cxMJNFuD2akWuYMc7YGELDhwKjZ0VcSTmKSvDRGHA3Rdwx8IfeSE+dZr3el2Mxrykt1ZwxMMI4oiXm+ATqNEt9tjf3OZ+XiAVCp127V+p8lwv9vl9Ve+iWBTeOTxJ3C/o5Z2p3v6Vr3z72Rv9+903FOgfv311/mxH/sxJEni7/29v8fTTz/NyMgIxWKRF154ga9+9av89b/+13nxxRd55JFHPq0x38e3ADeD3vW1dQo762xeeI3ExBQxn4vJ8RviCJ9EZehbXZDycVeyd5N366kagih+rEK1e1k1fJx97+T17IwkCDU1OoMesqkjCjb29tPUK0UcZp98sUgk6GX86Fkaoodye0i2UGHQaxGchpu6gpo2oN9rExofp9fr8b9feo2+qiHHZhmNz9IVRDL1AcGBRio1zt5BkUjAS7faIVdoYooKerdELbeLKJgkIiEmUgtcfvUbDKoHeE98D+GJI7cxH+pelscfPM3MzAyNRoNyuUy73cbr9RKNRvH7/bRaLTRNYy4R5r///76B2m/T77ZRHC4EWaF7sM1QsBOeOwOKQCAaR+/WEewOKul1WtEgJx58lMFAo3yQJu60EFwGhjeMO7lAtF6gVq9i9O1EZ0+gd1soEnhDIWyihGGXiPmdeNwy/W4HWbCwKy5Ep+MGY+H23lABU3O0BiaCDTKlLP3CLrVwhLhX4bHPfJ7o6BjpVoPaW5c4vjCNz+c7vF6XFubJHLxMvZQjOH6U6dEx9tMZTEskGo6QSKUo7a7RLO8wePAB7HL3IyfMt17rgiCwdOwY2ee+wcobKuMLJ3F4fDTqVa4Udonaujz7zA++z07yTpNhfdBDNjUee/QpAoHgbdvfek83Go3viBbKvwy4p0D9r//1v0ZRFF5//XWOHTt222c/9mM/xs/8zM/wyCOP8G/+zb859Iq+j+9cRKNRnopEGBsd4ZW3L6HbJaYmJ3C43B+oiPRR0DQNVTfQhzq1avnQG/nm/p+GYL8gCIeWhJqm0Ww273pF+l4Mej1cih3Euy9Ue28V9tC06LabbBRL1JqXePzcB68aPm5a4L1ez0NPlOnZI8h2hbdee4Vmu87Y2BS1QgbZaaE7XAiWwZGlE7g8HiJ+L91hl2jAy2rxgINslpm5eXRVJ729QUiB0ViU5198hfoAQtFxwjNLyIqLrq4yNHTom4QUC5/LQTa3x0RilGZlh61smU6zjtkuE4+GCYRPUt9fRajts3j8DBMz81iCgCSJ73tYH7Es3njrPJdWN6m2B1iWScTj4NTSHI8+/BCxWAy73c6xzT3axoBGZoNOr0+zmGMsHKDSHaDW8/S6XTRhgNPpZGzxLI29q9jVJnoth9QuUNm4QMDtIOQP0Ou20XfeQESksbOL7ggQ8szQaZXIXnuN6OI5fB4PvtERzEGXXl9lr7jHQtxPamqSQnNwKNfpcXuYGk9SKJYp1xoMyhk89JmL+/FHRyjWO1Sb6yiiRaGQ5+rydaZn51Fk6XBS9tDp43zj5ddp9RroHQ+KNcAQZUKBMNXcHvmDA2i3uHj5CsKwz4PzqQ+dMN+81gvZDKVyiVqrQzQWZ297nevZDWyKG9QmDy5M8APPPsvi4uIdv+e9k+Fms8kbDifxkcQdt795T1cqlftV458S7nlF/eM//uPvC9I3cezYMX7sx36M3//937+Xw9zHtxGCIDA7O4vf739nFr1+TypDrVaLna0NNg5qSHYFmygQ8nmYnJomGI58KoL9n3RF+kFFaFOpEQS4q0K1W6n9cGyUrb196u0+umFiEwUy2SKSNeQHv//7PhX5Ubjd69kSJXauvo6IyaPH50CS0EyR/kCltreCXsgQnz3OZjrHbvYAOwbKsEfA4yHmtnOwuYxsDTG1HiHZ4MmHzpLLF9jc3UcxNYqlEkNvGZss4XIoqJKEbqnU8jU8Xg+FXI7czhaKx8/JqTiSEMMSjzPUdWS1xWTCQ8mKM5Q9nF/eQJZEgl4nk+Mp/P4AI6MpNq+9wcr6NpvlLo7oDLNHx7EwKGb2eOHKFvVOj+//K88QiUSYm0qRbhksjSSpVSuo+hBvZJS54Ahby5dh0EK2STidbnxeNyHXKUa8kIyFKOUyTM4d4bFHH2E0kcQY6myvXefa+TcRPSF0JcjQHUYzTErb1xl0OowvncLrmaNRLVIt73A85uAHvu+vUa7Vqas1lG73UK7T5XCRiIXJby8TFrvMnjhLeOII4ZEEisNFrVrmytXLDNo9xiM+IhPzyDb5cFK2MDnG2bMPUNJs9LEzGl1ge2eLlQuvYykeIqOTKCMJuoIDUe/T6PbfZ4Ty3mtdEYa88NrLBMYWCKfmic+dYuHc01w//xp7y28xORpl9uhJ9ot1Bq++9oEM0K21FHa7HcW2/ZETWeC+q9anhHsK1L1ej1gs9qHbxGIxer3evRzmPv4ccLc6vx+GcrnMtfUdDEcAwxUkNb2ApvYoFw9oLy9z7OhR6rXyPQn2f+IV6YcUoR1dvFH1fTeFao1Gg2KtjdMf5/yVZXqmTCgaJxzwow00OrrJyxeWWVqcv01m17Is0uk0GzsZolNL7/u7PmrF4fP5iIyM0hec1Ns9TEFE9ngJ+VxEQiHUfpfn0ms44lNMnHwEl8uDOuhRLR5Ar09EMREmE7TffgOhauf44iLHjh+jVq3y9T/73xT3dgimZjAMi16nQWB0gq5hMKgWUTsNvD4/o5MJRiamcfgjuF1OrFaFSDhIWzVRdZ1Sdo9L19eRg0mOhBPIdhnDMCn1OrTXNjm+OIfb7WE3k2MgKPgnlkiOTXLz0nIfOUFOcbB1sMf1tXWeejxy+NuViwd4fEEcip1ivY4se/D5/IiAKkiIDjemzYHihl6/yptvvUWmoTESjZItNWh2+0ymUjjdPuyJeaL9Hg3VomuTOfLwZ5mYW2L37W+Qv/wi5bW3ENQ256bj/J2/8TMsLS1RLpeptS4BNwr2avvr9PsDOq0aI2IHRzJJcHyB5PS7+ehGp48nOYez06ReWMMwhgSCocNJ2c5+mnDATzw4ys7uHhvrl9jf2KKlWTi9Bp2ChuSyM744xpH5s1RL+Y+kjgVBRLApINvpD1Q0XafVaNI2ROTYDGPzE0wfP4fa79913vhuOy4ikQj2DwzoFpVyiX6vQ7/fv+tnyncr7ilQT05O8vWvf51/82/+zQdu8/zzzzM5OXkvh7mPPyfcrc7vnXC4WhSdPPL4Eyyvb1EoZAmFYoxMzLK/vszrr3yTM4vTLC28v2jrbnAvK9K7KUK7m200TaNSb7C9cUChZ+ENx+nkS3gaTUbiUSanF7ic3WJ5de1QgvUmA7Cxl+PS+i4jfZHIQe6QZbiJD1txtFot9vbSyGNLJGZPYHcoaAOVUq1EK5NDbZRQgiPERlNIkh1RknC6vSQm59lZ7YGlcuLIInHFJDUaxZKdpNcuc31ljXazRmzxQcbPPEEtu0ujXsMoZImlpqnpJq1On7GJadr1CpIgsnj8LEOtx1sv71JTBU499BiKw0XftLNc7SKm99FdF/GE4kiigM/poKH2EVbWGI0EqLe6+EbjhMMx+v0uw+EQm82G0+kmPJKg2K6wmylwqtm87bcrVDLo1Qzl3TRuXSeYmGZkapFSKY9qWhRLFWxqnWIji6oZxCbmcPrD7JdbNLYavHH+Cm67yPTxc1w5/waG3UvE72HYaxEcHcf+9P/B3hv/m1a1TEge8tCjj1Gp38ij3zaOaotGq43gkPElxwgH/Hzt+dfw+MOH112/36fTV/EFYqiSRCltoKnq4X02Mpqiur+KVxHZO8hgDHW8kVEmZB/B1ByCBenN6/hoszA9SSAQRJZsH0odN5tNBqbIsaNLXLp6nUK1if5OQaji8nD67DkEvU2/18Xr89913vhuOy4CgcAdA3qz2WB3P83a6ipe+rxx2cte5oNFXO7jHgP1j//4j/Mv/sW/4Cd/8if51V/9VRKJd3MW+XyeX/qlX+LChQt86UtfuueB3se3H/fSVnVrEZnb6+X44hx76Qz1UhrdMJEFE9HUOLEw84lvznspVLubIrS72abVarG6vkHe9DG2+ABunx9d0w77VEfDfsKhMPX2gGazia7rh+c0OrVE0nBh90Ypt2u0l5c5fuzYYbD+oLSAZVlk8wUUjxdZknA4HTccpFxOEs4JttaX2Vpe5bHHn8DhdlOulUg4J+i0mxTyeSqtHlvZLbZ39zmaCnLqxI3U1fmLlxibnKEuBjA9I6j9HqHEBKYg0aqVKe6sMpS9DFWNfiVDMhHGFh3B7lDI7qzijI5jfye/r2oDupqBHIgzEGzUqxUmjj9Kp9NiI71Hv1llFw2fqDFolhFCY6TT+3T6AwzTuhHQXU5isRiCJNNTNVRVpdFoYFkWJ44ucQI4OpPi1/+v/5tyr08kNoKiOMEyyOxuIg96FNPbyN0i43NLCJJEtlxDtDuRvFEq+X3SuRxWMM9AN/D7FSRJRDJUaukNCrkDGq0mybEkp44tMTJ3gkyrftu1f/P6ODg4YC+doa2abGRLlKp1BqvLHLc/gNfnp9Nu0W63sXsCNzoqROh1O7RbTTxeHw6XC92wmEiNcXH56xQML8npRTrGAYriotNtMT45hdPss7+3RzAc/UjqWNM0dtMZdkst6hrIbj+yZaCqQ9yhGPVWB6feRte1u7pn3nv/3M1E9r0BXdU1Ll65RrHaIOr3ceaBp3E6XPerwD8C9+ye9Wd/9mf81//6X/kf/+N/MDs7Szwep1gssrW1haZpnDt3jl/8xV/8tMZ7H98m3Gtb1Xurq/3+ACeP+2m3OzQbNYzhkEZ+iPcOOa6PGtetRS3q0PjEObC76WH+sG1uBkyb4kToGrg9XkRRQHEo2JU4lXKBzbXrnJoexWYXUFWVtc2tW84pFMoVSv0eicl5DvY22NvdIRAKA3xghX2z2aRU73Dq9Dm2b7E0VBwu1EGPfqOK2uuQSIwiSTYK65usXK3SU4dYDi+uSIpGuYDicZJpGfzWf/sa8UiYg1KVYHISSRSwuxyoQw1VhUAkhmDoFDcv0+n2cAk6c2enOX7sOFvZIs1qhVanT3h0hlY1j67r9Htdcpl9BHeQI2ceJbP8Jnsr5xk6goi+KIJm0syuMDYZp9dVuHLlKqPzp0hMTBP0+tG1AY16lcb6Oq5hk7CocOHSZTqadRuzkxyJc+bkSZb38mSuvoYzEEFxOJgciaB2m9i7PkKTcdrdHqV6i0ByDncwjE1WkBxeNioVri2vYKot/LEEarvOQB1QLpRQseELx0gunqCjawxUlem5Ra5fuchrb7zFk48/SiAQQNd11veydAUXIxMpfEmdnXKHbFPltVdfIhoKoVkSB/kCe3v7mJ0KXkFleW0TTzZP0OvG43KhdVoYhkF8JIFbdNOoF2lX8wiSjVDAx0h8DAmLWmaDTruFKIgfWt/RbDa5fHWZQXiO2eMPYHc4aTVqVAeraJpGrd7ENShjs8l3fc/cirud7B4yD/urXFvboKlaLM3PMzk9czgpvV8F/uG4p0DtdDp58cUX+fVf/3W++tWvsrKywsrKCgDT09P85E/+JF/84hdRFOUjvuk+vtNwr21Vd6qurler7xh9dOh2+6j1PBeil3nwgTN3NYt+b9GYPuiRzuVwhRP4AiGGQx2bTcbjcfNJer4/Lg4D5pkHKX3jBfI7K0TGpm5YSKp9tEYNvVnF611AMXsMBoP3ndPJ8RTttU3yB2lc3hCV8j6l/AGdTvMDK+xvToImx1K4PJ4b5/QdS0ObKJAMuqh6XWxsbSEpHprNDhsb66h2H+NTs6D1cQlD3B4fzugYaruJbvWwB0fpik704RCb3sWheDF0nYFqYne4EbEIu0SW5pZ47Kln8Pn9VJstdvIH9Pp9RLVPt9UgvbdLrdEiX6kRlNyo2gCv34/WKNG2mrjcPoR+G3HQYHrqIYq5DLX2AKPSRHRVcbXahMJhwiNJNi/sUSuuEFqcpWY6GRlP3VZVv5s+QHF5+cJffYyNtRXKjTbQx+N0obh9eFxHsdQB6fOvYcQj+OIJROFGoZPscmMJAr1uG4dsJzo+jyBYrKxcQ7MEwuEgyfgcodFJSnurXL6+RvYgT7uncjWzQa3dZyo1QqvZoit5Dye0lmUxMzGOnq2ykcnT3E8zNr2Aw+mm3a9hWjJ+RSQ6eQR10OPVt1+nnNtjbnwU0zTJFMs8/MznUBQFr0uhoYtMTk0iCAKmYTA0LXRNpV6r3FbUeGvA9Pl8bGztYNh9BGNJFJf7Buvi8RFMTNBv1uiVdnG6pduurY97z9zNZPdmQE+n07SaTaJTS8RGE7dd1/erwD8c9yx4Yrfb+dKXvsSXvvQl2u02rVYLn8/3sVdK9/GdhXs1vXhvwUmjVj00+giNzTOslYnFwtRMJ6/cBeX1QTac1zZ3+d3/+TVmjpxAcTgPq4onUmNUiweE3lnJNhqNT1228OY5mj56hBOFAmv7B7SyOqYJkigQdjkQkil63TaTyQAOh+N9rWo+n/8wLVBtlimktxl1msxPp95XYX/zYdxsNtEHPfrdLsFwhEAoTKfdQtc1ZNlOo1HnjRef4+rKOrGxaXpDEc3uA7uHWrXMiNdONHQjSCfHJhn02uTXL2ETRWLJcSrlCtqgTyIWo9NTkQcqDnOIf2YMn2Ij4Pfg8foAgaDfR/XCJbb3cljZIpbep9WfQHG5CMST+EZSNLsazVKRcGKS6dQMCAKlXBrB6WRraxtV9jKaCNFo16jVPHSdHlrNOgo6Rq+BOejjiqQIxxPvq6pvFCrQrjB36mEeeeKZG+dBU1FVFX04pHJ1hVarjuzy43EqNHM7uMMjSIqDcmYHJAm/XUMzNIoHaVyBMHZ3EMvMYbXLhE+dZtDvEI+EyTaaVDoqJ04+gDXU8YxMspYvcv3ieU4/8gSdduuw9XByaoprK6s4nQ687hAzY3HE4YBmvYIz6MfrD3L9wuuUSiXqgyGm5KNtKZS7Ovv5EsPX3+Ts6VMcPbLA8voWB7k0oVAMw9AwNJVsepeY28bSwmkqlcr7uh5cMmzsZklOzjCUTCr5LL5gGLvdgSyYVPo9bJqKa2TkhmUnd+/c9kkgCAJOpxOnx0ckPnLH+/B+FfgH41PV+vZ6vfcD9F9A3EkV615NL24tONneWKFSKtMTHETiKer1Mm5hyJHFRXw+/0dSXh9Ew+u6hssfop2tkMkXeeChRxGQSOfTXL38vwgIKtPTU9RevfCpyha+N2AOej2OnzyNJdpoqBb+UASXx4eq6uTWL+ITXSwtzNNsNj+wVe3k8WMUCwViUo/veeIhxsfHbzsXt7IJ6tAgncuxdVDixOmzeLw+ZNlOMBShXi3zx3/wNTqaST+zR77WIxQfRVJc2H1BctsrNIc1Tp06SzgcRxBAcbiwKU5ckkm9lGdmdoG1a5eQDJ2JRBxREjnYXkc0HKQiXmw2ietXLmBTnGSKFXzRJO5sjlI5i298CUN2YWgqiVgEVTApFvMMuhqN3T0KbZ1WrYI1aDKs7lNt93D6InjjIzR2NqnvNDERMAd9RgIOHnrwDDmbSiAcYXl9i76gEIqNHxbPdTSD3e11rlx8g0efepahrrO/t0et1UE3TLbXVxh2KtgcIUanZug263QPthj0e5R3NxkZHSM2Osb25ddobV/iwJRx+0N4ZZDsDprVMl6HDSQZJRDHbqkMBj3ssoRpmRQOCizv56kZb3Jkvnr4e8qKk1Asgb2vkd5eY7dfo9HusZhK4PCGqNUbnH/5ddzJOaZPPEowHKR1sM/GQY1CsUy2NqDe6XP66ALjozHqzRa14j4H+7tE7RoLI1McXVwA7qxJv756le1MHn9qHl9slEajQaucxTAtFF0jKJt0bBKyJCGK0ifWSfg4+LR82L8bcd+U47scH9SDfGR+7p49k2/mp948f4FLu1s4RqbplDPEvM5DtTPgIymvO9HwN12+5GCCxz47x97185S3r2Oz22HQo1IsoIxEmDj2EE73B+sQ38v5uhkwt/NlHnn8GU4cP/4OtV+h1ihRK+WZizh59qnHAD6yVa3TqjM/mbxjkH7vw3ho9/JnX3+Oy8u/w+zsPOFoDNQue/u71PsG48ceQrW56NSKbF97i0qpgOILY5ftdEyDa1cvk1o4htPlRB30kCWRqZlpdvfS9DomLqcdaVCnul+jXCzQK6dJxSP0hx6q+QPKFy5TbvUYKn5SyVFOzaVY297HHfXji8bpdrtU9tao1BtgDnGFRznY2aCjCyguNzZZwRkZwx6bIL15jaAcJHHsISYTcdR+l0a1jDRoEA2HqBZy5ItlOjhJpGI4XU4AnC4nkzOLFLaWqWS2uPS2m0qthekK4gmPM+y3mTtylNJBhrWVZZRchtlTD9Nt1ilmtvH7fIQmFqhUq3iCEZKRANlCgXDIhyJLVPJp3IJOYjRFrlwnFIjQLO5TyWdQ1AbfeH6Lcl/A8o5StTwU+gKdYY92d5mJ8TEMRCzZgYgJloFhGHi9PpITKdRWFVckwfGzjxIfG6fTalBtNImOThCRPbQPdqg2u2wfVIl0usymEkiGSmI2dqjkBvDSq6/dsY5kduEoaxs7dBo1HIEoM/MLDPq9w4r6brvF+efT2LUmlf0NFFn6RDoJHwefhg/7dys+VqCenp5GEASee+45pqammJ6evqv9BEFge3v7Ew3wPr51+NCq7vOXWZxKUWtlPpFn8k1Eo1EePHOaXK1Dcu44iuI4zCHfxN1Ur76Xhu+0W4cuX3anG70/z9JUApfLyfrmNtYDT+C2BlhYSJKE2+tlyr3I8uW3efWNN3nq8ccIBAIfa+Vwp/PliiR59bXXee7rf8pjjz7B8VNnqJaK5LJ7zIXG+Z6nHycajd54oH6CVrX3swmQyx2wlysRGl/ALBVoNJs4A1F2NnbQ+11iqSls3hAOp4dybp+h5MQWSCAFEwSmluhUshzUc7z92is89NgTtOpVoj4PY+NTmJbFKy+/THZnGy0WxdJU1G6DxRNnOXrqAbYzB9icowSDTdpr15g8cgrZ7UbWOkRiXVr1PNfXr9Gq12g1amCz44+Oorca6MYQSZJxutwYgwaCTcbpD+IIjNDt9QABfziKIMSIJCbYvvo2ly5doN+oUlIlHJExyu01fB4nE2NjeDweNLVHMjlGRNYpbS+THyiEkwq6VGXE52LyyKOYpsl//e0umeXXEUSJQCiM22Zh6AMKuQyKJLB45CjjE5N0L13C6faRiEZxqDU8TjsCFpo+hF6bVjGDz2cnXSrQdyeYefAMnlyGg1KFLg4kUQS1j7q+QS5fp6NZTMwuMXXkJCvrm9T6Bs0rF6nVqihePzabjUG3SymXw7K7iSXGYWSUgqlidBvYtDb72xkG+S2efvgBlhZv1HN8VB++1+dneiLF2s4+Vq9BPicQCsVwe7yo/QHZ7TVOTY/w41/4/tvsTL+VRVz36sP+3YyPFahN07ztJL739QfhVrOO+/jOwN1UdZeqNR47e4rVjc2PZd/4XiiKQtDrwWFXcN/iznMTH0V53Yky03UN3TAxhkOqhQMMtY8/EEIQBFRTYjSRpJZZO2w9qVcr7O3ukC9VuV4+oN7VmB6L3zUV/kHnK5FM8eyzHl5/5WWuv/0S/foNWchjqfDhd98URfkkrWq3sgmtVpO9dIY3L14lW+thd7oQTIFBt0PSGDA+t4CFRDm7g64E6ZZL5PNFlNQxfP4IzfwOmtpDCY4wME32Dko433iZhZkJJqeO02o1SReqWA4/jzz8MEdPnuH6lQvsVroYDj/rG9sY7hDTc5O0Wg0yBwVEUWB6bonzrzzH8so6yugCA8GBPDKDEkjh9EextB7dehlz0EbWOmg9Gw5fGLWSpVku459YpJlZo1M+oN0YxeML0G02GLSqtAtp/B4XxWKZaGiKdnfIQa1ELl/ixNI8w24Tj1Mmnc3RaffwpsaRBAGXLDCRGjtkbX7kR36EP/2D38PsZum2D8hXW9TLZaRmi9RYknjsKMFwlMlUit1CFdQuZ08ew+11kz/YobGfQdeHTIRceFwOMjYPE0uncLjc+IMR6uUCgjmko9kQJJFCOkuz1cft9zMxdwSP10soFKSumlR3S2ytXMMVnyR3cIBAjmI+S2p6EcWhYBo2RJvC2NQ0D548xlDX6BT2OHHsKMFg8K768AVBYHbxCOmdDVzo2KwezcIu3V6fbr3MiDLkr33+e5mbm7ure/jD7ouP4xj3SS1hv9vxsQL13t7eh76+j784uNuq7pN2O08+9ug9ecneK+V1p/27nTa53a13VKY6hBSBrXU3oXAY3TCxMLCJArJsp16tHBayRWaOIbn9+EZTZNqdOxok3Olv+7DzFQgEefKpp8msXeLhE/OHZhKHft4f0KrW6XQZDnUEQaS858Dn873vuDf3HWgql5ZXOah1OeiBO3UEt9tDv12nWStRbHRQhxZLJ05Sye9Tye9TqzUYKi7cgSiGaAebk36jciMvaQzodxpUD3qMPvwAvkCAt8+fJ50tkIoGOHH8OL1+j71CFSGQ4vpeiV6jxOKpB7FXSljGEKfHR7XeIJDPks8X6QsOxH4PX2oey+GjtbOB6A7iCo8wNExsosVoIolnbJF64YDa9hWGoo3phVN4ZQuhW6WV2aAnK7SaFRx6C2ckTtDnIbOVod+qE07N4pVE8nvbvPTC8xxPRejbFRoDA18kydyJBxnqQ2q1EsvrWxxfvJFiiY8mmZ2epFEtU1JtuAMSR8em0QZdLNFGemcLl8tNIODDWr9OqV7gyVNfYHpugWSpQL9Zpdfvce6Rx3jzrbcQbDKWBZZpMbQMZibHcdhtVBstsoUczYM9zpw4hiMQpd3tICsuYtEwhWvXyGQyaIZFcmQMnH563RaqZjBQVXqdLqJg0e+1iMyMMpJIYBgme40Suq7fxup8VB++0+Hi6NwUiWiAtmrS6HSJeS2SUzOcPXP6I1UlPwqf1Ijmk1rCfjfjfo76uxQfp6r743omvxf3Snm9d3+H4mJrew/N5qKrCSQm5xmLhSl3mpQ3ttBMkaKqMRbw4PZ4uXLxPAPJRXJqnkF/gCLL+AIhXB4vr7/y8h0NEm7Si7f1bOsf1rPtRrbf8Bl+77m6cxGNcOj92223UWzSHRkFu91Ov9fhree+QVW30+yr1PomSZuMpCh4bCHaDheyJNE1oFytE4vF6WxtUCwWsIXHMUQnoigie/y43SlMrYfD7OJwSyT9FlqjwPW3K2Q2tpmZmmVh6Riizca1lXVqqsXkyDg2j5/r5yts7u6ztbtHOBig3elRz+2g9jv0kYlNH6We3WLY6aK1BwwNk/5ARW2VMdUegbE5LEsn4HbiGI2jRyLYJAuzXUFxuIjGwozHw3TadaJeG5oapnKQxpuY5ZQ3TrpQopcHwwKXNaQ76NNothAUD6mROLogow36CIDH5aZc7rC7n+bUCT/9bpdBt8PU0TOciY5wfnmdxNQihmGwv7fD/tY63W/+IQtLxzkzl6SY7qM1Cuxf72C3iTx1ao693AFvvf4ym/sFBsh0r1/DJkvEgn6mjizgdnkY7bRZ6dVwqUGe+uz3IkrSu+zJ0MTq1IjGYsiDGlqjTKfbQzMFBJudYq1J7/JFPNKQUafIkcVFbm0zlGWZq9dXPlYf/txUiicefeTQgezTCor36jF/r8+U7zbcU6D+zGc+w9/6W3+Ln/iJn/jAbf7bf/tv/NZv/Rbf+MY37uVQ9/Ep49tdgXmvlNetNpwvvvYSZc1OaixJvdHAI4u4PX4C4Sj769c42LhIIBxm4tT30e20D3PZIFCrFvHYoFIps7mXYeiOYIm22wwSqm9dJBkJkC+VqbcH2BQnQ10lvb+PMzhCcmLyY52ve2EUNE1jf3eHzVyPydOP0yvX8IgaXXWIXmsg9apE4iNYskJYkcil08yP+jl76gRXVrfRBn0MvY8+1JExkSURZ8CPzfLQb+ZYmJnne556hE6nA6bJ0rnHsdkkrlxbRpPdRMJRREwEC7q9Hu4RLw5vAMFlJ+YJUNxfZ+3aJdzxKVzeMJbsQut1wBgiqR2MhgmyDZviRLLJDDpthkONYb9NJBIl4POyn15DVhSiUhKb4WJ6JITf6+EbL7yIKImMTc9jDHUsaZXuENyBMHanl50VjWsrV0nEw/hd8+TT61y+ukx0fBq74sIY6lT3Nwn7fdSrRRBFpmcXsASRgM9Hv9el0WigWwLuUJxeYQtB7zMyPkHIIfLQiUXi8TiKoqBpGvVvvIhUV5HdPga9Ad1WHX8kjmXoWIaBIIAoSgiGRjISQLbJeHy+Q/ak2WwwHGrMuPxsC12K5RqmZMfm8lMfaDRqFUqtClGpx5M//EMEAsHbrg/LsthJ5/GMTNJpN0GQCPi8lGsZ8rn9D+zDF0XxMCh+XKr6TvhWeszfx51xT4H6hRde4Omnn/7QbdLpNC+++OJdf2e73eZf/st/yeXLl7l06RKVSoV/9s/+Gb/yK79yV/uXSiW++MUv8kd/9Ef0ej1OnjzJv/pX/4rPfvaz79v2ueee40tf+hJXrlzB5XLxAz/wA/zGb/zGPVNCfxHw7ajAfO9DIRKJ3BPlFY1GOWmzsZsrcWx06lDkZD+TvSXfaxEPupkYDVCvlVEUJ5puYJoCW+vXaZUPCIXCrGxn6OoWqcQouqZjmgZub4igGuX5P/1D8gc5gqMThMMR4hEnI/FxjGKTV197mb/idhOK3N7f/GHn61ZryutXLhCKxHB7/dhEgUI++4GMgmVZrG5s4okl8Ve26FaLWIaA1+Wk2+tQ7zZxGW2mT52lV8oQjcfY31ym51BZfOhRkiMxKr0BvewaksON7HIzHLQYotBtVNCrBUZDZxkfH6fZbBLczqD2+wwEgXq7T2JsClMb0Cgd0O4NsLt92F1efIEI/XYNwehyZOko6+ub1NLrqJoG1pBkIonT66NUKjDo99GGFrJggtql3yyTXb+KSzQwhkMq9Rb9YholEibqmWQmNUo4GGB3ewN50ES0e9AGA+yKg9mFRQrZfVrtKvn9TYobl+n3ekwsPkMwNkqh1qLVrjBsDpg5MottqLN3Lcfv/8/fZWk8dsPEw+VCkiRkweDy8jU80RS+6BiBkSl2Bh1W9wu8cf4i86k4Pr+fdO6AqfEUe+ksla5BJBzmoFSjL4mYvRpm105HDnOQyzImCmxcvcCYV+T4wlGKhSxu7417y+PxUK1WyB3kqTbWKO3uokkO+uUNJHcQh8OBa9DGgYpvZJKNdJ6JiTT9Xge31ScWTvHyq69zcXUTR75Fs9kAC4LREWS7jNpIM3C6aGRv9OHPTY0xNjqNZVmHGgJ36rf+JC2L32qP+ft4P77l1He320WW5Y/e8B1Uq1X+/b//95w8eZIvfOEL/If/8B/uel9VVfnsZz9Lo9HgK1/5CrFYjN/8zd/kc5/7HM899xxPPfXU4bYvvvgi3/d938f3f//38wd/8AeUSiV+8Rd/kc9+9rOcP3/+L72a2re6AvOT5q8+CrquI9sdxEeTSNINVaVAIPC+fO8Di1OUa3V20nvU87v0VZXuQMUfG8MfjVM3HXhcfirVIlouS7fdRkDg2vIyFc2GEZ5l4dyTSKJFtXhAd2+fpaNLvHX+Iq+/8k2e+sznDtu+7vZ8iabGwdYmVy9fRBBEwl4Hp4/M8chDD97xnNx8IC4unaTZ1agP+pSKBZCdqJ02ks2BKzaKaYGhD2hVS0wG7Dw4P0anlMYtqLTUDnq3ipJcIjQyi6K4aOT3qeyv4umUGYm965DmkiF/kCYcG0U3TOwOBX8wTO7KJXYyeUamFlBEg0YpR7uSZSLoIhpPUqi10NsVfA4b3sgE2EUC0REMJGr1GnpmA8WpMGw2iBhNpO6QQqWK3dRYXJjngb/yFIpdodxo8saLX+fo3BQxn4uQR+bibg7VfgWn04nP42RkbIKEKPPCn/weiuJAdvkpVVvs7exginbmjj/A/vYaV77xR4iyk3azStXS6VXyjKQmEH3nWVxYQEBAkGSQZRAkms0qtVoNd3gUz6iCJ+ThoN5jN5Ol82cvkD8oMLR78YxM4otO4vPrWIZFr5qnVM3T3DFp7EcYDzr5a9//vUQiEV55j8b1tdV1MrkDdH2Ic/I0bm8Eud3AprZweQOIeh+zlSca8rG3tc7bZovve+YxYpEUa7sZKpoNR3iMNk6MSBhrMKCtqqTiKew+nUEtz2wyygPH5ml3e1xc2Tq89xRhSKPbR/KPfCKq+lbcqxjSfXx8fOxAnU6nb3vdaDTe9x6AYRhks1l+93d/92O5Z01MTFCv1xEEgUql8rEC9X/8j/+R5eVlXnvtNR555BEAnnnmGU6ePMkXv/hF3nzzzcNtf+EXfoH5+Xl+7/d+D5vtxmmYmpriscce4z/9p//ET//0T9/1cf+i4ltVgXmv+asPw93mexOJBEeOHOHE0QZBj4PX1jLEx+dJpqbodjuYloDL66PfKGG5PJRKJSrlMk1dwBUZQ0YEAZxuL8mpeXK7G9SqNR595GGuv/USmZXz6KaFaJmMRgOcO/vBMqiH58Pm59Hv+QJDY0in1aRWLTEUpDvuA+8+EEeiMSJBH8OuweSEQs+yMRMI0W53KBUO2L/2Jn5xgGV6eezMUX7sR3+EbDZLq1nn1YsrFDsGgtmidu0V+uoAQ+3jtNtQvCH+P7/3NTYyRZwuD4N+l0J+jVJ+hFK+Qnp3l1a7RSG7R6dwgOp1oQw7GJ02WvmAmhaj0+0i6iqizY7aqhKIJdE7VWoZE9OSaOW2EbUOsUQEpB7PPPaDpDMZRkMeHnv0Mcan5/D6brAQ7VaTrfXrOOlhCDaSi2coGJu0BAf+8Di1VoXi+TcZql3KhQL+8SV8fh/2QISGLtDpDSheOY+uaQwtGRmZkcUHmJqcoLJznU6/yvLGDq2eim5YHF06QjqbIXOwz97GdWyiwNKpJF6nnd2rb6ErAcaOnuPN118n38oQXpjGEZvAHwkjdVr0GlVGZo5QzW4yPFjn7NQSjz3yMKOjo/j9/vdpXLcGJiEF2p4otuAImuwiGknSK6WxoaGbBpFInAceepzdKzZGI06OH13i2soqXcHJ0okFNvb/mEavz+zSPAhQTm/SqBaYWTrN1cwuHqHB3kGZnuS6TcHvxW/8KT0dnn329OF980mp6vvCJd9+fOxAPTk5efhjCoLAV77yFb7yla984PaWZfHlL3/5rr//XnIaX/va11hYWDgM0gA2m42/+Tf/Jv/0n/5TcrkcyWSSXC7H22+/za/+6q8eBmmARx99lPn5eb72ta99VwRq+PQrML/V+auPQ9kLgkAwGOTokQW+8cZFdNmLy+VBcTgxtT6F7TVcosbksdPki/sIgohvdIriTgan13e4YhcEgXA8QS2zwdSMh0gkikMyMSwBU7TR1W5Q1IIgvC9Yf9D5CARDJMcnbzsfwG3+36qqUivlKTVfoVJvkdnPoIoKFhKINlweP7ZhD1lrIjgdWEONrm7xyutvcGR+joWZSVazNcZPzlKpN8hks7j9fmLxMQRMeqU0aU0k3NB5bGEWRbZTH5hcfvNFrm/u0xrKuAM3PJ89sQRD02KoqQgCOHwhRF8MdzBCMBLH6DVodfvU0pvYHTKVlbdo9wYIpoXf66SfbhMJ+LBpLbyixsM/8IX35fp9/gDzi8d59c++RjAhM7uwhOLy8Pa1NbLby6jakGohQye9humNE5ZE4tEQuYM8+WIZ3/gSw04H0yaAK4Ig2/D4gzg9foKJCexqAL1VZj+ToVqp4vLtc1CqUi7k6TQqRCJRirkMZQFamsWZ5ATlRhubJ4DocBNOTmHYZDqdDsnUBFWHA6egE1lcYrOWRjMlLq3vc307c8gePfnYo4ca167YOCu7WfL1PulKCcMVweHxY/f4qW1eIOT3ooTC6EOdSCyGw3WDYbxJM/d6fRSXm4BlUCnckAT1hUao7C0jrFwi6lZoFPtUVTh68t1rzcLC4Ytgik72M9l36Oh3n+Efl6q+L1zy7cfHDtQ/8RM/cSg8/1/+y3/h5MmTnDp16n3bSZJEKBTiM5/5DJ/73Oc+jbF+JJaXl3niiSfe9/6JEycAuH79OslkkuXl5dvef++2r7766rd2oN9h+DQrML/V+au7pezhBttzcHDApStX6Q00jFKe4kEWh2JnqKnY3F5mTj+ExxegltkCUSTi8tDvtQkG/TidzsPjKg4XQ9PiIL3HXjqD/dgpphYXPpItuNvzsb29Ta5QZHM3w14mR08dgmWwt58Bd5CzTz7LueljpLfX2d3d5eDyi+haH1EfMLJwlKNLR5hdPPKuZeD5y0R9HrwOG/5QgKEgIvnC+AMhBr0u1Z1lwhMLKA6FnnljMjE1nsK0e2nYItj9fSYmjiL74yiyTDO3TVtTKeymsYsWi+eeYmL2CLqmsXnpNUy9j1uxkSvksYY9QiOTzB6dZn5xCYfLydbKFaK0ObM0y2YuyMhY6o6/b7VS4ur6FlOCi3r/GjZRIOaxUy0W6A/tiIqXviBjsymki1UKlSqaqtLs9tAkJ9pAR9SHOB0ak7NLDNUB6b0dnGafkVSCttGnV6+wevEN3KmjKP4QoekT+GwKgqmzm84gCBJeRaTZbNDpD4nEEuzYJDrtJv5Ygma7RmQwwOsLUsvv0apVwO4iNnOURGqCQa/LxvYGu5kXePzB03i9XpweH/5QGKVQ59jYNL3XX2crvwV6D5skYhdMxiZmsCyDSj7DqFsi4LtBLd+kmdvtFnaHi/nkCKVikVY5iz4c0q4UmI/7mJia49VihmA4RrfbPTSp0XWVoWkxkhynXs3R6XQPGSj4+FT1feGSbz8+dqD+6le/evj/F198kZ/6qZ/iH/7Df/hpjukTo1qtEgqF3vf+zfeq1ept/37Qtjc/vxNU9Ybg/020Wq17GvNfNtykaxWnk3areWiQYFcU7HYFp8t9z/mrj6Ls4Ya04ub+Adc3d+lqBl11yNTiLA63j06rgaB1brgZdTsMhyY2m42hrlPKZwkqYBfBsuDms0Yd9JAEWF25iisQ4+jJMwjvuDB9GFtwN/m8SqPJy29dpC86KbeGSKOLjPhCXL1yETUgIYuwfPkix0+f48gDjzA6Mcva5TfoZVY49fDnOPPQ43h977IgN8citzsszU5SVds0ywVkT4hhp4YLA80fQPH4KOf20Hx+isUSqxu7GHYXus2FKzrO4rFT9HWTnqrTcQXoVzcxbU5MrUkwFGao9ijtb6I1igihceKRCIZ9h6YGifmjhAJuHG4Pmq4yPzuD12ZRazQ/kDatVytcuHiBgewnNnuSUDiCOujx1muvUGr2SczPYg01mvlt3Ilp+pKLviWA1MJpc9MtH4DixOz3keXmDV3vVoPS5lV8DhuNagmh38LoVnGFx4iMJnHFJwlERynXGtgcbgprOu3dK4SPHKPRaKJLToZDHcu0qOXTNLs90DXskkg4HGJ/Zws7OjNjKWyyTLvdYj+TpdY1ONgvsZ/+Qx44vsig32Wo68iSiN3u5KFHH0N9+WWapoY/FMMUxhAkG83cHqPJCIojyEjYRyQSwW7bZtDrYbPJ7+zvYHZ+kX6/S6fVoGtTOXX2HK1GncFAYy+XQ88UbhRXSiKKaKAP+lgY6IZ5aMJxE5+Eqr4vXPLtxT0Vk+3u7n5a4/jU8GGzuDutaD7ud/zqr/4q//yf//NPNrjvAtjtdgbdFudff4VSvUWhWGQwUHHYJUZGRomFAnglHVmWaTQan5huv0nZNxoNKpUKAJFIBF3XefX8Zbo4aAsu5NF5XKrOTuFtMt94ntnjpxmJjYDNjtcp4HbA2uoFPFYPtyRidis8+fBZMoUyB7l9QqEYsmLnYH8HrZwBw+Dk6dOHQfom3ssW+P3+d407tAGDXhe39/2CJoNel3KxQHxiFkwBPGEC4Tj7e7vUOiq6I4DNBp1ujdXzLzGzdBK7TWJhaoI9tcGRY6fxvaO+9d6xVPdXSUb86M0hY4k40bEpZLuCPuhTrZRI7+/hdHmITi5Sze8zHPRQsVNr9wn4PCiyjVA0jKqq+F12LK2NIsvsXN6ltHaRUHyEdmYdAwGHO0g2l0PTNBSHD5sIlVqDYavMyWOLTI3PYxMlqvuruO0ChXdoU7ghB6tpKmvXl6kPLFITkze8vaUbFH9PciGFx5Aw6XYb2Bwe3P4w1lCk06zRrVUIjE5iNwX69QIW0DNFsul9zF4DyRsmvnQCSRCpb12g2R7iiSQw1S6iZSBYBrIk0O00kB0u9H4HbyBMVzPQ1Br5cgW3P4Q7FAabg2anRukgQ37jKp16iVg0TrvT5vzFy9QbdXyjk6Qm53FHRqlsL5PtmFTyOXSbi4DHRblWIpGc4OzZB7h85Rr5jYt4BINKr8aISyAWCTDqU1hamCcQCLxLM88tEvQ6Kb2zv9PpolbIkohH8Xh9LF++QKdZo9a3SKTeNS6pVovU6pv0NlaIhoK3+U/fC1V9X7jk24d7CtQrKys899xz/I2/8TfuOIMqlUr89//+33n22Wc5cuTIvRzqrhAOh++4Gq7VasC7K+hw+IYgwAdte6eV9k380i/9Ev/4H//jw9etVotU6s403ncjNE2jUCqx2xawuYLIY0fxOd30WzWq3RqleoaYrcdLr7yGakn3VBH+3nYTWdqimNtn6IqSmopxsL5Py7AhuPwsPPws65ffILu7jS4ouG0iRkdnzmHj3Nwop48uIMsyb166Rr1cIB4M0u71Ke2vUS0WcJodjk8n6Voy8ZHEHcdzk0I8ODjgyvL1G8YdukF6f5/dYpNHHn+CQCB4uL1lWexsrdPvdlEUJ9v7WdwjU+zu7dMcGMieEJHENP1WDWcgjJZfIxlyEw6F6XTabK5cQZTEDxyLblhMjqeoX19nvV7GiI/j9TrotRrkdjaQY1NMLSwhSjYkQQC7QjgQY2NrA7XfR7zlgS5JNgSbwujEJLXdZVJjo7i8AfY2LRyJOfwjE5iKB7Gax+YJYZcgGo9j9pqMvKPUZhgmumExPTHB+l6Wy+dfRx1otFWDeq3K+voaifFJkiMRarUyCecEnW6HvmoQG5+jmVujWS4SDIboVA7A7mRQyaF2O3QrOWwiGI08kgC4A3SKaVz+MPGZJULxJL1aGZvTjSHY8cWSoLbx2UV65SyWqjFst5FFCafHR6/dANOkkt9Ht/tZevBxaoUc9XaDsZEY/ugol177JroJybEkS8dPkS0UqVo6UrvDUOvh9gaQ7AqpiWlM06Sa3SY8NoPQHZDNGLidXiZHIzi6BSxLxCsPOLlwhPlb5GeBW2jmNaKhAM10jp3NFRjqeKUhsdQ0u5ur9Gp5RpNjKDYbDqfjhrWky0nSOUm31WD/6lt4F+YRrCMYhvGpUNX3hUu+PbinQP1rv/ZrPP/88/z9v//37/h5OBzmy1/+MpcuXeI//+f/fC+HuiscP36ca9euve/9m+8dO3bstn+vXbvG5z//+fdte/PzO0FRlL/0rVufFDf7fsNjM+S2MtQ1i/HUKLJix+7ysr9WxzVoU5MlLuyUePKpp3G4PpmzValU4n+/8ApNw0ZybJLRWJzdrQ1euraH7GuzW26zvr2LKzhCwhumN9BQAnHKG5cwt5axdB2P0eaxmR/isUceB2BlfYOBqpHL7NJTh7icCrFwgDOnJjl6ZIFwOMzXX37zQ6tdB/0uF5fXwBs9rLp1Bkd45dWX+MP/9QecPXOa0WQKm2Rjc32ZzPpVKi0VfW2TzEEBudxG9seIjY7TV3cAC0GSCcdjbGdWufD2m4TjSaq1Grl8nquXLnLmwYcOZSNvHYvdJpJIJIhEIlTLX2Nz+XU6sVH0QQ+nYOAP+HC43NSqJbxuJ61mk26zgtmu0hRF+qpOrZWn1e7SaTVp1qtkzCEBl4LNrlA4yDIQXUSTM4iCDVlR6GPi9fup9tpU1rewMUSRZVLlMtFQ4HBMgiBw/Y+/Tlm14Q5GcXi8hGMjhMdmMAQNoVPjIAcWAqZpYFomjXIecTggNr3EtQtvIoRSKNFxxLCI02HHqGWQTQ3FLmEThgwdTix3EBsmnVoJYdDBG4hSzuzh9flo11T84Qhxh4vhUKfTaZHd36ek9cisXsGUZBxOB56QnVq5gISFW6tj0wS2zn8Dadgn5HGQnJjCECVafZ3RqUUGjRL5zB5jU3M3ZGztCvOLx9nTu4z6bOitNnvrG5Q0naDPzZOnj5CMBZkcT5FIJN63Kr2NZq4V8JodBrUCmCb+2Ahmp0zILjCIxzmSnGN7b4/c7gbheALF4UId9LAJAhGPzJG4h1p6/T5V/RcM9xSoX375ZT772c8iinee1UuSxGc/+1leeumleznMXeOHf/iH+Zmf+RnefPNNHnroIQCGwyG/8zu/w0MPPUQicWMllEwmOXfuHL/zO7/Dz//8zx9W977xxhusr6/zcz/3c9+W8f5lw83CqdGxCXKNAS7BQb9Zom1Y2CSBsdEY5Y0D3IkpHMEQliAeOlvdKcd7q2DKzV58XddpNpv8ydefZ7MyIBQbpd5ZR9lcp1ipgzeKIz5BX+1gOIJ0LBsrK8v4o2OEJ+axYxKOhGnWKnS3z5NKjgLvevpOHn+YhXPOQwcsvzTkkYceJBaLYVnWh1e7HqTpNqsMIylSoQimZSKKIi6Ph9H4CG9fOM8f/1GG0ZE4Tm7YDUYnFrFr4AzEKXU0Ch0Vv9QlbA5xOxUa1TKKy0mvUaNVr9PpORj3pOgZLiRflAvrOzRabU6fOoXT7cauKMiynVIhx/gt1e9//Ud++HBi407EUFWdlm6yeeVNXA47XbXPxtoa9VYLvVVBG+q8/Ef/D56xOWx2F51agW61RKewx1TUQ3p9mb1iHcOboJAvYg51XOIQm6mT3l5HDCYwmj28ikBzMGRYarGxtsrTxybw+XxcWb7O5JFTnEuMYxhDBr0eLsWOPRikWilh09oEFDvVZgejkafUquGRBfyxJJ12E8ETwbIEOuUcDDV0vYsoK1iuAJ1OFSm3jSmI2A2TmlrHHoswMpoklIrTP9igVS2CZVLJZxlJTVGvFKnWm+xvXsdudxANBxj2mvQsi2Y5T2X3OvGgn7ljp3E5nUh6k8njf4XdtVV29zPYq21ypSpeTUAWTNRmBQEYD3vweH0YhkGj1cFmDZEQmJ5IIZgGiXiI40tHmJmZ+Ugzi1tp5lvvB7vdfqND4NULjIylcHk8N+xWMxsMTQubKJDwuRg7ssRnnnnqUGntPlX9Fwf3FKgLhcJH0r7JZJJ8Pv+xvvdP/uRP6Ha7tNtt4AbF/nu/93sAfP7zn8flcvF3/s7f4bd/+7fZ3t5mYmICgL/9t/82v/mbv8mP/uiP8mu/9mvEYjH+3b/7d6yvr/Pcc8/ddoxf//Vf59lnn+VHf/RH+Zmf+RlKpRL/5J/8E44dO8ZP/dRPfazx3scN3CyccskydsXB+NQ8mqphGAaSJGEMNbKrlwnFRxlqg9uKWt6b49V1/ZDWrjSalIs3VhAOh4tcvkChZ3D0oadJJFOogx6XL7xFo1pBlhV66pB6oUqnpzK0FKyhjFMbgGUi2SQCsQSiy4tRTd9wXer139c+FU8kiY0m2NlcZXVjk2g0+pHVru38Hrl8GcVwU6h3sYkCdgzavR62wCjnvudHKGe2GR8Js7lyFUnxsXjsBOlsjmJPw+/zUujUsBxeauUiwUic0so10BzslbP0TfAEU+iWSDwSwh4PcO3SJZ575U0uXLxIbHQMWbBwOOxMRj2c/f7vPfx7YrEY3/vME6ysb7CTzqN1qvgDcYa1XTYv71Hu6qC4sSluvHPj1KoVSpUy1XIehz+CKAjIhobRrZMe9jBlJ36fn65oUElv3CgU9CgYooyu9/EIJkMB/P4wXVOmtruNV+hjWanbKuFvMhO14ZB6Icv21RV6ukm3WScVjxCNxwm7bGTzOWKTk5iWQWZvD2fyGEPJgWLmEPUu9tgoqjbElBR0U0JyOJA6VXxOmfHpGSJBP9PjYwiWSSgcIb2/SUczaFXL7G5v4wrGaDWqOBxOktNzdOoFPNEA0dAIoeQUzXIWoVMl6HUxMZbE5XZid3oZmiaofVB8uHwhbG4/3WaNyvoaIWmaybOfo1Grcv6N17hw4SLRsUlGR0aJR4LE4yN01R7XNnbw+/0fuar9MJq50WgcFukFwxECoTCddgtd15BlOwIC9cw6iqJ8W6nqT0Oy9D7uMVC73W5KpdKHblMqlXA4HB/re3/6p3+a/f39w9e/+7u/y+/+7u8CNwrYJicnMYwbRuy3WmgqisLzzz/PF7/4Rf7BP/gH9Ho9Tp06xZ/8yZ/cpkoG8PTTT/PHf/zH/PIv/zI/+IM/eCgh+uUvf/k+tf0JcVMI4WZ1qzbQcLputDj1+30qpSK6pmGz2bEM7baiFrg9x7u+l6UrOHEGRmi3DNTQDJaukdtbRXDHQYZqu09g0EcSbThCCeymTH79EjbTiezy4bcPqWlgOnyUylUsrU/QKdPp9ZDULlNTk+SKNfLVFvGZo3S73du8su/UTvZB1a4+0aQ21OnZQyRnjuFyeej3urz10nN0Ww2OnArTUatkyzX04ZBK38Rus7G6tsHSkQXa61vY7HaEXoNe04OGhSVKxPwuupUDitvXUOIzCL06/hE/sXCQYj5HODVDU3DRajeJBcYwDBXLaGP3x1nbzRAOh7Hb7YcPyicefYQTR5uEvE62Sm2KGZO2YcM3Pod7dJqhqlIvphnqOpInhNWrY6l9fMkZFJtAs+aiV8pQ2d9mbH4JX9CHqmq4owkazSYDycvkwhylnevoxV0sp4kpqaD3SKZGGJgSlUrltkr4erXC8vXrtAUn5VYRzRnB8LnZafXZKawiYTCsZagJPbShxaCt4jM0hKGOqLaQ/XFc0QT99DaSO0DAbic4kqJbyjDsNZCdPnRBplAsUi2XcYXjHAsEqGe2yJXL1No5WoVd7DaRuaOncLg8hJLnUASTbiWHabORmD1GO7eBbnPRaNQREVhbuYovMsqRpSXyBwcsL18jv6PicboQhyqyJNDpdNje2eHKdobgzGnOPfEUmtp/R+1uj2NHj1Kvle9ZG/tOvc03hWQsy2J7Y4WgfKNr5aak6Lc6YH6r1Am/G3FPgfqBBx7g93//9/nyl798x1lavV7na1/7GmfOnPlY33s39plf/epXb2sVu4l4PM5v//Zv39Vxnn32WZ599tmPNbb7+GAcPiyaNQIeB+VaCb8ZplAq0+4NyO2s0W7VWV1d5cRM8p2g+C4GvR6yJLCzn6YruJmeW+Tq8nVUycX03AS9dpOdrQ1CDjcRn4uublEololHIxgmCE4veELY9TbDgYXLF6atG7gcMvmdfYSaRfKBhwjYBTAg4PCwtbtJZwhj+FDkAkGvk8nx1KGP8Z16TO9EQ15Zvo5TlUg4DSTJTrfdYHdznXKzS7c/pPD1PyWYmCASGyEyNkmjpyP4Y1zd2GViPMXxxTk8rgz1Qo50YRet18CrJpiaGEcPuUg7XChON4pix5Jk1q5dQgrEUQJxRpUg3eI+87NTxOIj1AoZPIpFvqXz33/va8ST4+iGdduD8pGHHuSF//P/4tpmFjk6iS85y6Bdo9tsMlRVNHWA0+3FERvDZul4XA6wO7EZEpJuUcstc1y2GJ0YI5qcIpPepZCu0ulphHxu3HYIxMN4/UEEUcLpi7CXy+OyWZxZmj1c/R3StCo0VHDGJ1FMqJYK2NweNHWAX+gxf+4p9FqOfqlEPBLAI+sYpkEBFdPSaRXSSB4/DpuI03QiGT3c/iDGsEMxs0U4FCVXL+F1SIxOjuMWHJw9+n1cvb6Kd3SSYv6AQa/H8QcfIlus4grGwdTR2lWEXoOWZaIONDxjYzQqORrFNM1Kj6XvfYBuq0Fue51uu0mz3iTfrOFgwKUVO5lCha4h4nB7OXL8BJLNhtP2rtrd/t4uc/OLFDPr96SN/WFsz8baNWrZbdTRJF9/9cK3JWB+K9UJvxtxT4H6Z3/2Z/nCF77AM888w1e+8hWefPLJw89efPFF/tE/+kfU6/UPLDa7j79cuPVh0daG9MtV1je2EZ0+JHNIyOfG1g9RLWZpjgbfaWMKAO+2iYQUkbZqMjKRotvtUW/3CcXGEQQwDB2nN4hls+OwgaoPafcGhIY6pqGjDsHjj+AQdWS9C/TQcttoiougPCQ1NcdILIzea2B1KtRMk4HNQzDsJziSQpLslGol2mubhz7G/W4XfdCj0WjQ7/dxOBwoinKbd3Sr1aJYazM1s4ixt8/u3gbddofWUMA5MoMkyNQO9hmICr1GFdEax+lQcIciZKoFdtNpHn/kYU4d9xMNhXj70mVKmV2eevJx7A4HLzz/DdqqjtflZXLpBBIG5e4WLruOMOzg9IVQJQm3243L5UKIJ8itX8YSBNqNPuPHkyTjI7c9KI/NTaEZFg6Xi6Hep5bZRHQH8KfmCUoS6tYmptal2yrgEAwsxYs7MYURMnAl5zjotSnXGowNGrRrRbxeH8FAAM1qYrZLmL02zuQMoi+K7HAimCbFWp3d/RtywzdXf9F4glqrQ0e16AwhObNEbm+L0MgYY5NTDDWV2t4KnvAI3qAXm8uH2+UiODaDxx9kbXUVKTzOTqZA2xDRagfY3TJjqUnMoU6hV0SoZ8hlVtEHHZInT2G0K2jeMJvZEuVmD9eYg/HpBbbWrqOqAwwTZLsdLBuyrNyoQm+0aberdGpuepU884kQuq6TWb/G9u4+hi9OcO4BtFIJsVLAVLvs7ayj9aLEZ45iAvZbmLpb1e6GxvCutQU+jEq+E9sz6LaolUqEU/NMLix9WwLmfXetTx/3FKh/6Id+iJ//+Z/n3/7bf8szzzyDoiiMjIxQKBRQVRXLsviFX/gFvvCFL3xKw72P73QcPizW1tldvULvoIri9GIyxBeJMD43hW4J1OotVtfWePDsWQa9/mGbyOREiotre4dKTDfNIQBsNjsORUFVVcZGRxiWKpSLVcZiYRyySK2YQRrUGEnEWTr5KJJkx+l0sbGxjsvrpFbIst5t4PW60QddBpadh04fw61IlMsFklPzJJITHOT22UtnSI1qvP7KC+idBlvpLP2+ikuxEfZ7kQQLlz+E4nRRq5TZT2c454kwPpbkyuVLVC0Po1OLdLIHDAYGyA6CkTge2aBRq+J1O6jk9/F4PFQqdTLpfQKBIKOjI8R33PhUN43sNq+99Ta7tQFqt0M+u4clyfjcTkSbnYElMajV8VsCbkXG7bkxeVAcLgrlKqFEilDsRtX9e4v23jx/AR0bU9NzbO1soQRHCU0u4nC66fc62N1eVMWF1a2hD+p4E9PYHG5ErYNuSfjiY+BX0Ac9egfbpPNVMtkcnVaLqtbBHZ+isruLurWHJEkoih16DcKTEQ4KRY4szFM7f5mt9evU6nUaqh3DMKmW8hhDjdHJOZweP6Zp0HW66esGdnNINBJFtDtwGH3aNQO7TcLpdOL3edEqZezikMUjp4gnJ1B7bexqnWQyRXr1AoNmhfjYOM7IGOFwnKGuUm31qbT7uOwamEMatRqSqKBrGpg6kijg8wYw1AFjx+YZn5ikXXDwzMNncLz4On/6jZfp4CfmC9Kql3EpMjOPPI1hWWy8YiIMmzz0+Gd4+8J5stkcS0feneDdULszKRYO0Hsd+v0+lmV9YPC6Gyr5VrZHVVUuXLqMI5xgen7p2xYw77trffq4Z/es3/iN3+Dpp5/mN3/zN3n77bfJZm9oyX7mM5/hZ3/2Z/m+7/u+T2Oc9/EXCNFolBM2GzuZAvPHHiBfOKAz0BEkG6LTjVcwsYt9MuvLuKw+Qa/nsE1ElmWWt9K3KTFpAxWny4nT48UhizTKFXyBUzfkEVtl+rU8Qr9DN32NgFNmavYJPL4g6qBHOBgg4ZVpD0XcLgfHHnwIu6Jw/rWXkF1OOqpKKjlOez9z2NIS8IfZWj3PtYtvYYk2fKEkcjhBwOmlmNnmrbXruMIjxIYDggE7tb6N1WKXgz/8Y5bmZ3EoDsaCcbR+C61To9Xs4XcpJEbjOB0K7ewmqbEkmyvfRO2r1N0eDEPHMnSqBxncdoFUMsml5RXSTZ3k8ccYt0nkMhnq5RL5vQaGruEdNWnXKnTrec4cP4rrnXqARr1GX9XweoOIgzqy/K7i1M0H5fW9DXr9Hu1Bl2a1ijM4RbvZQu33b1SO2yQ6jSoCEnbPu7oCptqnX88T8Ptx+r3s5ErMnDjL2dnTGF//fTKDDnXTTb9v4g0l8PjDGLpOp15EcfhpaSIXl9c5efwYjz94mq8//022ly+R1xWGooI7OEC0Ow/rF4ZqH7tsQ9cMnF4HIa+L/YMKD5w4Sq1apbK/QXalzlByIg86+CIh4olx+v0eOyvLCJpGsa1SrtYRug00wcns2CSCAJblIBLy09CGdDURSRQIKgLZWp2ebiINVdwS1Mp5nGafhXfyydNjccbHx/G5ztPHxrFzjyE7XIhlB+7wKLJdplktMz57jPLam7QbFRKxGIVCgcmJycPfqVYtk8tmKWQzRJwCb1z2spfJ3pGSfi+VrDhvdCYsZ/bI5F7moTPH8fv9h6vsQCBAo9Ggo1mMjI9/WwPmfXetTx+fis3l5z//+ff1I9/Hdzd0Xaev6jR7TUxvnNTsuz2d1eIBMiKJWJjHTx0hmUweUni3tUDdqsTkvFHZb7fb8UsatXwWzTQ5fmSO5EiMg2wacX4EU3Fjdqrk1ivYRIHJiBvHwgLLaxuE3DasXp1WuY3fKXPs4cfp9to02j2OHzvK3u4utcwGqjZkZ/k8U3NLjKQm6Ns8JJITgEU5n8bwJfGEomSaLcrdKidPP4jhDLC1tc3K7j4iIg8efxjZbifodfLSK6/jkuw4nU5skky/3ye3t4XdGiIHQgg2Gzo2StUqmmUnGo5gObwMfElsjKC4PISjUQa9HumtVfShidZtIjnciIaGJLlAkul0O7hdbiqFLIpsY6gPGPG6sSyLWrWMLNvxeH03HpSGSbfZpC+H8QRDWKbBoNtiaLgZ9LoY7QpGNY1il7E5fXTrZUSxhtVpIHWKOMNBtKEOoh2fx8ug28TnshNPTtDc3sF0eNF6XYb9LsZQh6FKMOxDkz1cvr7GYDC4sdL2+JiYGMdsmijBUQbINHt9isUSQb+XbjmD3VDRDRVPNEgoHCGzvU67WWd+4QjhcJgLFy+wkSkRdjuJxOPsba1TLhwgGCqp6UUaxQxRv4sGQ3IHWcZn5/F6vAiCwGhqku76KqVSlqDdZGFmAsna5q3zr6OrHRbnF4goYUbik9Rr5UNxEFEUScRjDHWNrqrilhQEmx3LMmlWy8imTmJ2nvrWBUoHaaaXTlPMZzjI7JFMTaINNS6efxO9WeXE0hEeOPvAuzrtb1/isbOnDosAZVlmZW39kEpu1KpsrK9Sa3VodTrsbKzz/IsvcfbsOaKR0OEq27KsDwyYlmWhD3XK1RrlcvlTLS6776716eNb7kd9H9+dkGWZcqmAGphken7+8CFw0zZyZ/UqSqdNIpG4bTZ/e1HMe5SYdBVBbZNKjFLavYZdEhDkCbSqztFkgGdO/A1Wd9KUewahcAyPz89gMGB9e48TS0dYOnKjHUgdDLi+tolh6NhlhXypwMzUJKceeJBOu8VBZp9qJs6Zsw+SLtYIhWIIAlTLJcrVOuHUNNnsLq5ABLv9hh1mMpmk3WxS2K0yGOqsb6wzMzODLFjMxryoCHTKWfq9LoNaHpdLZuLoGdyBMF5BxTAM3MEwkzML7K5eYXX9Gs7YLDGfjGZBr93E41SITC5h2p009lcx+00CgSBjiRj1ZpvN9XXCPhdir45NMBiUM7RDQd6+cPGwnzbk8xCNROl22ozNLFDoCxiCDG6FfqdIrzak12pCp0xEMjBED6LWoZ9bveHaZRn4JDAaBeqDPj63g9L2NcIBH6PjMwRMgdWVZdD6GA43nugY3mAIuwj9SpZ2o0yzmGNra4uhBX3Jzff+wBf4oz/+E/L9FoKkoLealDO75IwB8rCPOVTxS0NGPY+RL6/hkgT6pT321TYOp5uFRIiQ2CdbbdMv71ArV9BNiXhinHZ+i5CkcfqJp9jKHJCtNlm++BanHjiH4nBhk+24FDtRsYPZU6mmN5iJ+Yk/NE+/30d0ePDaLcxO+TZxkHK5zEGxhGAZVHJZKrKddqtDMDpCJBwiFB5hOOgRDPjxigbVfIbRsJ+o06K0t8r1a1cZdBo8+egjHD915lCwZtpzhMvnX7+tCFAf9Ejnchx76CkatSrXlpcZSC4coSQDo4Zzyk27uEuxqxOfjJJp96i9fYnj89N3DJj1aoW93R3ypQrN8gEup4ODYulTKy6776716eN+oL6Pbx1EEWwyN9ud3oVw4/0PEMp5rxKTx2izffUC2zt7DEUFh9uDTxFZnBjlxHSSY8eOHa4IIpHIO/tVqDZK9HsdvPR54OzTRKJxAGqVMvVChoOdDN7oGJ1aAa9L4djSIj6fn263TSgYwOf3ox9U0A2d3E6BUrFItlTFK4colmosRpMYpsZwOMTn85NMJkgvv0mzUubtco1aMcdEPMzDD5yg3ulTHxjY9R6TMxNolojlcOESdMbHxtjcz5FIjiOJIr5wjJX+gKAg4vN4aHZV6vUqDDVSC0dBtOGVQa1mmY24cDotMtkNttbKOGYnmJ+dQe4U2M9nkQIjJCemD9mMcuGAq8/9GVa/yeKZR5AOSvQaZVRrSGw0RbdRxm50kV0RZicnuPjWa9TTB7hPPUUsNYPP7wXLoH2wS33tEgE5hGEJ1FodGvUGDl8YvdvEFhWRvWEEDMx+G8PhQhUd1BpdtHye5199G4Cls08g2xVmJ8dJv/QK+VqbaqlATxsiSgre+Ciy5ERz2NnZ3+P44hynT36e/qCL0KlwZnGSRCKBz+djZ2eHt85f4OWLAxzBURSHnWggzuLScWS7nUq7hzuSIr+zQmHzGja7HZsoMBH1sTT+KM2DHeaTEQaajhCOowxNhmofnx2OHZllZmYGgK2tLV55+xKqzcP89BRFy8bo/DH29nbR1D7BUAiH08nmykWmEjEee/JJ3nz1RTymRsQRxqEOGARljn7vX2XuyA0VxHaria5rdNttSpUG9ZbB+MkUyWiMfDZNcTOLsp9F0vsMJA/JqXm2d/fQJQfjMynKssBAtCiVS5w8c5bdrTWy+QLxoOe2gFmvVm4EetGF4QqyeDJBamaaTD77qRWX3XfX+vTxsQK1KIqIosjKygrz8/OIonhXJ1sQBIbD4Sce5H38xYOu60TjI7RF4dDc4qZJQK1Wwq8IeOMj6Lp+x/1vFsVsb2/zp//7OXLlOlZgjFg0TiwWxeMPcFDI8f/9k28QCoUOV+XvbZ3q9/u8cdmL03F7z64tmMAnttD0IQ5fmJpq8fbFy0S8TvzSEGUsgTEcoqkDNrd2sZxe3OFRfO0OBgKqKVKpVgm7ZWw2G+1Wk1zuAE9klCNnHmZnbZlI0I/sC1Nrd4kFvHQq2wzbRUyHnWKlyeLpMEcXZm+cr1uK5lxuL6Jgw1T7+KNJBqpKoVbGIcvYZAW110XttvA57YymJhiaAhMON5Vdg/GYH7cs0NdNKt0h3d0MjXaP1Pg4Xl+QcrnAtauX0U2BquAHY4hsDLA6eYamimSJjE0tYBdMAj4Hk6MRck4PkghOm4HfpYCh0hBsqKKTLg76rihat8N2pkC3dhXL6cPm9mEOdTTLRbfepFtbx9I17JaOYPdQaPZodvrk6n+G0+cnV6hg2JyIegFPJIkvPMag18NhE/CFY3hdCoNqBskySIzfSIPsbK5SrtU5cuRGEJqdncXr9dLWBRKzR1EcTjxe32FKJeTzUOwZJKbmODqdxOVy0e20KZfKXLhyBdnokylVcXi8nDp9jqmx1GFwubaxg67rFCtVXnztbcqancSEm/BIkvL6OoVNgURyksxBidWrF3AwxDNscPSBx2nWq5xZnObEwgw+n49ms8kb/iBTC0fIZdLs7WzR7GlIskxufxdDkInGR1AcDiRJwh8MEgqFSR9U6NbyLJ19nHIhR7VaxT86ha4NsEkikdEEtWqWbqfNyGiKUnqNM0uz1DZ22NlcJT4yxs72Fk1dRPEqBNGYnprE7fV96sVl9921Pl18rED95JNPIggCrndyHjdf38d9vBd2u52w34fH7qdYrVHeX0eSFWSbSMzrJBpKYjQKH5qnqlQqXF3b5vxuGcf0OU6efJBWo0Z2Zw0ts0w4PsZascL/+z/9Nv/0F/4x8fiNFfOtCk6WZbGXyZLJZ5hyL7K3u8NAcjF3Yo5yLs21S28iCyaGfYz9Yg7TA4//Hz9IJndAtVFl0GlR69uYHZsBARqlLNn8Hj6/j2ani32gYRom+VyOWqPJ5PQsqZkjOGwiYY+dnjZgfzvHwCVwZmGGftxFqdFlv1ClWKphEzdJJkbR+11yezs4XC5E0UbY50bVOuhDjWgoSCcnMei2qGa30fodpEETX8QPngixcBzD0DAHXVbzTYSyiiW6GB0Lk8vm2N9e4+rbrxJ2y3S6XTxTJxiaEiPHHkESBNKb16GwibNbBF8Mu9GlVkgjeVxIrgDHFxaolYuI3Qr+eIB0Zo9Br8PowkkstY/sCtI3bLRMOw3NxtAUGGgmLkXDGrTot9qogwHSUMVwOLA7vWTrfeqlPI7QCFa+juiPIjoctAYGctTHxPQCoqnR7bQIR+NMjKeo5mIclLdot5p4fX48Hj8bOytMptKkUilarRatVgu7JOJwuPDc0kInCAKTU9OU336bWrOFvDCFaZqsrq5T7qjER1Moio2GLiFLEtt7e7g8HoLhyCEdff2Pv040NcPQFWHu+DEkyU5NdpIaqHRrZRobZYx2h3Y5Rzjq59iJU3htQ+JeJ0sLZw6Dk91uRx1c5pvfeJ6NnTSq7CUYieO0yWjOCKYgk89l6LRuTEB299OUSmW2swUq+SyVgYXH7aHR6hLrDxBtMqNhP4FghINyBl3X8AdCaEMTn893GDB3Vi+wvrpJKDVP3CUyOT532B55N8VlH1dl7L671qeHjxWoX3jhhQ99fR9/OfFJZAA1TaOQ3We10MEbGUHk/8/enwbZkp/lvegv58w1z7VqnvauXXvq3ZN6Umu0JGxs7mU4BszFRGC4DuwIjK+NbBMQRIA4WPiLQ3ZAOCAEyIFR2Meg48tBICQktbpbPe/de9675qpVteZ5rVw5Z94PJW3U6kHd6hbocPfzqSpzZea/otY/3+l5nxcKhsry4iwzM9PsbN56wzrV13sxK30LX8swt3qa0aBHtV4jSpRQ1DiCJLJ4z6NsvfQF/teffZ4f+Pvf8ypP/RvTcNdefoFas4NemOX6S89S+5pSGoTsbNzA9TxqRxatP/xjSpkUo/GIpiVgZGao7NxCVzVcc0TU2afvhoSijphJ88zTT9GuHzIzPcX0/BLdbpN8JsHaiRVcx2VtZYn65hVGlkPLljHFBJEaZ6vaZrvWwfmLz+O4HrYSx0ikiMwecxmdqWyG2uEmdiizurKMPexSaR6hShGGIZMulJmeXUQQ4GjnADybqRMXaLXqXH/+aVKzq6i5aUqZaQbdFpubl4gXZ7l//T6qe1t0GlX0RAYlO02tekTQO+TciXvpdjpMzS5y+sw5tnd3yS6eQklk6e1fxxq0aLS6iMVlEuksR9ef4+aNKySK8yRLC3hynOaNZ2HUwYsliFyfUI0Rm8oRDepI/oRkOoMvxxhEOqNODzlZYH56FWfUQ0gUEZNljnZus7y0SDJTQFR0BFEiNz3DQeU6B7tbeH5Iuz+ifrDLaDxGJiCWTKPGEtze2uTKxg6PPP5+5pdW7nxXM7k8xXyarGBitw64duMmIwzOnj5NMZ8/Lj/MLaAbOofbt7n4wjMsrZzAiMWxJjYtR2atMEWtZxKLJRAl6Q7JcWX1BOVCFnM0olXZ4u9/4N1ks9nX3C+u61KrHnJpt0V66R7mV09/bRZ6hc7IojhbRBZd9na2jkmFok5x4SQ7B4c4UhwnVsJIZ5HEIdV2D8MbcnL+3bjO5HgIiKK+grCVyWR4b6HAzNQWluezcv4+0ukU31ySeiM29rerMnZ3utY7g7s16rt4Q3w7G7TVavHZv/wy++0Rvd6AlukRiydpdrt02k0Wa2XKSfkN61SDwYB6Z4ik6HT6ffzqPu1OFyuAeCKFTEjP7JGfXcJIF+i7wuum7b6ehnv62ed4cW+D0d4BQixLbmoeXxAxJxN6e9uEUgzBSHDkJWh1fCLT5mjrOtnyPBMvwnFdBN8hdC1SRgIhnsAyB1hKgDcZEEmL7G7dxhu2cLM5XhwfvzjTcYMbtzYQUwXGkY4rxVDTM3hHO/RGFn1PwTBSFEszTCyTkDFtOyTpuKS8EWG3zcROMxkPcGtVSE8RxlIM+yOuv/g0qqoSEzy0RJp8eYbdzZu0TY9EokRufhVZMwi3bnKwu4s/8bhy8XkUSaRRrRArLjB34gzl1fNsPd9ge7+KIkU89MijJBNJVElCiEKMeJJb/QmOZREZKaaXThK4x6zvieXgNasMR2NCScezRojjDhNRIQgDRFkjXiijyJBMpNCdAFHVUfQ43V6HyG3jXn0J33UZ9DvE4kUEZ4w96hMvzeF6HmEYIoQRjjXh9sYWyZkVYsVFMkFEJwoYjC1iwy65bICn59i4vcnmf/tvPHTfvdz30MMYeox6rcJ0SuPdH/wBLMtiNB5TXD7DVLlMv9+/U36oH+5z4+rLVA92yV29jSqKTIYd5lbWEUQRWRRw7AlGPIkgQC5XYtA84ORqjlQqgz9qI4riaxrpr0+YM3JljNoQQZLxXRtV1UmlM+xs3ELrNHjowlk2rzxHfuEkKycX2Lp+keLSOp60h+BYjAcivjUilcmS1PIMex1816aUShBPJNndeqUjLAgCxWKRQjaDLIq8mjfy+mzsN6MyVrgbOX9HcddQ38Xr4tuRAYyiiK8++xyXt6tkFs9ROpOg2+vT7fcZtJs0918m5S7wQz/5E2/oiVerVa7e2qAXxjiqNWj5MRAlUsUpZM3AtS2GtRsYsRhC6DO7sESjO3rdtF2xWOS9736M5y5eRdHLzJ84TavTYRIpyJaNXl6iPxgTDJucOX0fru/j9+o4jT590+G9H/kHJNNZ9na3aXR6zBTzxBNxmod7ZJIJaorKcNBj3Nhj7cK7mF4+cYfAdePi81y8tc3cqQTZ5ZPMzS/jOg7V/W364wlabhbXGtGvbqKpKooWozfuM774PB965AL/n5/85/R6PV66egtLepyJF3Jtt0qoaNRbbdKSy8o956n3TQLfp9vrEystICfzKEYcxxwxHvYRc7MYuSLdzhGJbJHI0Bn1OxxuXEFXVdxxH5wh2eV1Or0BpalpZCFi89pFhp6A6YYIEThOi8J4hD3uoyeShLE8gu8Q0zXs/gA9O0M8V0bOTOEGAoIkEZo9JFySuSkCT+Lo9lUGToBpuQRO85j1XlpAy/ggyAjJAq1uBy2WwBOPh0q0q3v41gA5M8X04kl2N28waDVIzyyxfGqVF5/+Eh0b7n343cydeYjLF1/k2sYO3XadcyeXObk8z5lTx0Zla2sL1/PRNI0o4k7P/sHWbV6+dBFHz5BavZ/l9dPYkzGHzz3N5PYtHrr3HLlUglajyuzycTeDqmt4QUi73eLmtatIdp9nFQ1N2X6VU/t1MZDF5ZM0+hZCUmPcOiQIIyQBZrJxgjBAEGWGE5flZBrbHDEYTzBSOe65kMH1fMaeQBSTSCYTTByfrY1bnFudp7Rwnt2tW69J2Pp22NhvRmXsq88+RyaTodEb39X0/g7hLRnqf/JP/sm39RBBEPjkJz/5bV17F38z+HZlAPv9Pi/f2MQoLjG7cvwiK0zNYlkmnudxtH0L16rfGdP3Wmi1Wly8douBHUFcJ5Et0B+0cUOYTMboqkro+0yGY2689CwrMwV6YwvB7NNqtV7Xq+90OjTaXcbJJPZBjVa7Q9wwmAx7RMkyoRIQS2XR9RiGKLN9sE1x5QzDZo2JZVNeyCDFUpxcOM2weUSnVeORdz3A6vISL7/4PC9d20DMzzO3cgojFiOKIIgEmt0egZ7HRyBXKmOP+9R2bjEcT4gSRcIwwncnCMkk5x/7IJqmM+q2qN58gXrfRBAEbM8nNbvCvSfXaTQaNDsD9EyK/Kk17GGPsWniWiaVrZv0B0NKq/ejEjBot45Hb8oxRBEsN8CZjMhMzZEqLzJu13CdEbIoIPkTRoMhMdPh2s0NJsM+49GYcb9Hz3QolmdRVI3G/ia3X/gi5fIUgp5ESxWQApt+4xDHNElMLTC1fj/96i7jXgsjmcHqVJFCk+T6aaqHm5iRSJieQjZ80sk0SroAjkkslSXwbYhijCYencYRqVSSvZsXcVsHpLN5ND3Os1/+M/rtFo4XkPNF9m5dhVgeYklG4xHJVJoHH36E5n6etBIyXUhy/sxp6vU6L7x0kUZvzO3dCvVxwHSpwNLyMumEzlOf+wJ+YobpE2exO1U0zUDVY2TmT2K3D7hx7TIf/Mj3Mrpx445AThhCq1Fl//ZVdEXkA+//IOW5hdd0ar8uBpJPpUmnkqTnFkAU8f3jsafeyhIXn/squ1u3cR0HzTAYD3u0GzXKiydYXT0JHDuylb1tdF0gcidYZpt4VHxVG9k34tthY38rlTFdi/HU819l7dy9LK/e1fT+TuEtGerXGoIB3GFVvt7xu4b6/374qw16CtM08Tz3a6pVCoqiMVWee81BAu12m/bY5sT5pTsbWxAgFjsewCGdPM3WM/u0222y2eyrnvt1ByFKFFicD3jq5ZvEDY2xJxIYWaRkAcezseo7+KMhmiGwds+DbFbqHF58gl6rQTyRIm7ozJSyPPTAMYlne3ubz37hyziSQTqTxQ1D0OOMfI9WvY7kKSTjcTQ9TRj6EEVMHI+Z5RP4ox77lQPSuTy+HwIivijjWSbFXIZkMsXS8govX7+FE0ZMzDGe63B0cMD+UYVGp4eazHK4t0uuvIVl25huhJyeIp1fwRx2IYyIxJDAczDyRTQjhm92mfQbPP/iReRYCiM7zTPPPs/m/hE7hzWsnSOKuQOShkrQqyGIAs3BhFa7RWx6SHF+hsFgQKW6x2hi4XbrROMx4ajP0dVn6LWaCIqGN2xhN/fRBR8tiqg3myAp9Pu3iekamUSMYatKOJIxHYuk6NEddZioAm5SRfZtBo0Kk0EPOfBR9QyTYQ85XUYaT45Tu5qG73pUrr+EoMTRUxnMdhtRkskvrYNiMOk1CAHPbeHWt/EmI4J6gDI7hR/YZOMaURTn+qVn8UQDvbDAxPLphTL16h6qZqJrOr7vE08kSBg6oueTnZ7ixWsvs7V/yG61iS3ozM7OUJxdwpJitCwYXr2G8DUJ0UT+JMN2i7SugiAxHvVIayLp+VVq7R1c1+H8uXPs7e5wePsSN2/dYlA7IFWYYXVtnZ2DCkgSM7PzrJw8dmqv37rNBVk+HuFqT5BE6Tgyb/5VZA5gIbI4W2bcriKbTZrbN5DEiIwKc9NTdyZiLcgKRuRwfn0VWRLpHRR5/MF7KBaLb5h2fqts7DdSGYuiiHqjjiUmmF1cudOrfVfT+53HWzLUu7u7r/g9DEN+7ud+jmeffZaf+7mf4z3veQ9TU1M0Gg2+8pWv8J/+03/i0Ucf5T/+x//4ji76Lr59vFlimOu6tPsD2t4OR/UWteoRtuuhqwqZVJxSJoHs2ziO86prBUFEQHrN5wtICMJr90/DXzkI0wvriKLE6M8/hzh7lhPnzlE5PKLTPsSzTHRCElOzJIMB3mTE1Zdfotsb0nn2EtnCFHEjhq4pPP38i6yvLHNz94CD1hjHD0hEHrEooj3sEQkStjlAljTKxdMEozGebRMigCAQ13VmyyUC18Js1xh1egiSTCEVJ5qawjCO5SDjySTFQhErgFZli3qrS6TGKZVniOdmmFg21579IrcufpXC2v1k509i2teZBC6u7Rynoj2TVqNBrjSL51gQBBSnZ2gPJ/iDCYP6iJ3mGDGWZ+HcPO1uj26vy35lD8nt866HHmGidNDaXUzbpt1qoRBgDTokigvESws0KnuMOj5yuoSFhG5ksbpNPElHiWXx1Dj2aIhrW4T2BAmPkiGRKBwP9UhoMvmpEoLv0tjfwJaPEGMZglEXu9+meOoCyAp2r0GkGCgSRK4PWpxRdQu3VyM1fwotJhCNO8iJNJphEIkSvhFn0Nw7/v9myxhGjILqsrK0zFQxR0ZyuXF7C1uNU1g8i6zp2K0ermszUZJM/JB0MKYwfwJJluk0apj1CqFnMzJDJu6YoZBCTGS5dthHsIckDI1Ybop+s8q4UWFiOYSNCpPIxVhcwRo0yRga82dPUW20uL3Zo9tqsn7+XkrlMlevX8fAQ5ueJTW9TM+J2L+5w9VbG9yztsLZc/egazGe+OpX2D1qIqsaB0dHbNdanDl7gZFZuxOZq1qM6uEusmvyvvvWsU6W6UcxVtfOsLO5QWsy/lpAJNDttpgu5ZiZmWFn8xYr82VOnDjxpgziW2Fjv5HK2Hg0pNHukp8qv0Km9vgdcFfT+53EWzLUi4uLr/j94x//OM899xyXL19menr6zvFTp07x3ve+l5/8yZ/kvvvu43/+z//Jv/k3/+adWfFdfNt4K8Sw4XDI7u4+XtpnYlpIhSWSskajUaVaH3C70kIeVpnNJ/nQ3/ngnesLhQL5pE69dsBK4gzfuPejCOq1A/JJnUKh8Kr1RVFEq9Wi1emSnPHQjRipXAEllQR3RCEmMmkNkEOXQnkWRdFoXv4if/qZ/04g6STyU/SlJJKQYOKCEQlsHtR46uINslMLZKaXGdQP2LhxnZVT68xPFxk4IXY6yX5lgx1rQFyVwHfwPBeJiFG7hqEp5Eo5Tq8uMNVo0fck0ukU/WEV13GBCFlWCAOXUyurOK6PJ+jMLS6h6zobuwfoRoyEodEbmSQ9D0WLoSky9cMNLB9UtYAoqtRbXZSt28ihA5MhuflVAqtLvVaj4idxtQxKKGKNLURRIvB9HEElHE/oNes8fP4MaWx2emOqR0cEnQNiqQKlpRM0213cfhU5kUXJzBA4E0aVG3jjHsn504RBiBW4JEtzhK7FZDzCsm22K9dJhjrJbInpE6cxEgZCq4OcKpE2kkwCkUBzEVIwGoxILMyRSmZxB3UkJ0LMTeEDXjKLoUqoiTyaEFAulxh0ezS2riMns0iCQDgZoSoKhXQcOa2RDMak02lmpmcYj3pUqnWCmSkE02bU6NIfjRiPRviRjKjIWMMOAhGqHkMxYliBSL07JKfK7NbqJJbvIzczz5SqU69WGFa3qd++gRxPY0cShq4xPTOLHosRl0Nmi1mKpeO2P8+2aGkRTrfG7jWPq5dfxuwNiKcLXNvcQXMPyebyTC2s4YYBt2sthqOnCCMYuCrnppeZmp4lVpjl6a8+wwsvPs+5M+ewHIfG5hU63Q5xXB6+/yxn10/gui4Xr92i1ahSKk0x2Nlh5+YVkBXSmkAxN8vO5mvXo78V3iwb+43q2p7r0Ol2OHdu5lUja+Gupvc7ibdFJvvkJz/JD//wD7/CSH8jZmdn+eEf/mF+53d+566h/hvGW2FuOo7DzY1NlFicdquBWlwkkZ+iWqmgJIsIqSmwxyTzOa4fdtCeu8g968diDoqicO/6CZ64fsCRESOfn7ojdNLpNLBbFR45d/JVL4mvOxE7h407tcOEJqGrMolCiUyuhDkZ4/gh/X4PQTGwnclx5Gdk0fNzCOkiciyNbyhMRj12r1+FyCNVWiCuZ5k5+y5Sc8tsXb3I5ReeI51MEKoGRwf7DNpNbC9EXjpJvTsEs4sw6TNqHJCfP4HnOsTjcbyJSb1a5+VOn1xMJpbOs1epoImQiMbsbm3Q91W0/AwHtSYJQ0OMAnrNOmvLS2zsVujWKqiiAIGH1z4gjBRIJskunsBs7rO3eQunc8TcdIm9wzpWbYt69ZBBfJ7y2XmMTB5ZVhn0e0zC5rHgRRQx8QJkReEjH/kwF1++zM2dI6r2hOxUjHG7Rm9/hyiA4rlHUBNZrFGX4cFN8D0iI4sQ+ghWl5gEtijg+T6ioiHGc8QyJdLleQ66Q7SDbdTsDGqkM6jt4voRSjKL4AeYjos86pIozuEPJYpzK5QXVzi4cZH0TJnQ80hmUhiJJJOuiKAaRJKLokq41hjPmYCqIuhJUjqcmV9n/sQpWs0ah1s71LtjMlM+rUYTNVMiVUgwsjy8URNRksELaFYrxHM2omeRzpcwmxVEf0CopigvriLJx6+9fKFMv15BKy0wVy6ilDN06hVMwWfp5Gk6jSP6vR6F4tSxE3m4y7vvPc0/+qHvY3Nzkxee95k98zCNVgdSFlGqQK0/oFn/CqXpObL5AntHhwiKyqm1NVKZHNLXUuIf/nCCZ556ksPNqyyvniSeN3hg6QTTpSKW6/HS9U36wxHmaIh7sE++VCYtgds5BFEkOVUm6NfftIDIt9NiCW9c1z482CWOy1Qxz1thkd/FW8fbMtSHh4fouv6Gn9F1ncPDw7fzmLt4m3gzxLBnnnuBVDpFszemNxpze2Mb3Ygz6jZJZucZHx7gSzrxbIFRr0vgWqycPo3bPuDZq1tcvX6DlRNraIqELgos51RarX1a4x6CrBD5HpE15MJSgUcfftcrXhLf6ETMr9+HpaQ57Fv0XQfP83HbR4wkGS2WxLEt4skMqZjGZNJClUW0uTXk1BRjzycIIgr5OZLTy7SaDbxRDyFVwvY8LHOMZsQxEmn64wm1g20MTcUVdZKzq8ixDJYvkI7FkGWJXq+BNe5Rmllg5dT9gMiNmxv0203yesTM1Cpmv0dj2CURjkkmk3TaY0zbo7RWQpRVmu06w+oOkjOkML+Cg0B3YCIHJuPRiFwmheCMcfoHUW2PegABAABJREFU9P0Rk06VWCyBlsojqHE6gzGBHXDUm2CZDVJzLVKZNHYY0u10sM0hqqoSzxXQkzkaps9gt0I8liCpgDXskhy2CfoN/G4DOZ4iVZ6HCCLfxhbBlkR810aMfITQQ9W0YyU2P8AyTWK5Ilq6yOz8Eq36IbWDLoIVIBEi6XHSRgI5kSGKQuxmncHRLoqsgCAgayrD6g5TOpz7nu9l78ZFAkXGUnWUZJa5cpxup4MQugS+jejbSOkCkTMil8mQLk4hSAozSye5evkSputSNgxcfCR3hOs6aMEEMR7Dt0ys4YDa3ib3l/KoWoxWdZ9w0kfLpJDiOXzXRpITwPF884njsTi/im0NSaoqjz/+OE8+8yKbV54nX56nNxxQO9yjUdkl4XX48Ae+j2w2S73ZJowXiOeKNDf30PIzSKki2dULDA426PSqDHsdMnENQdQwVPEVUWcmk+W973s/lVuXePTCqTtEs6dffJna0MGxXUYOWK7K2BQwD/b5nvc/ztnv/7vAsfLfmzW4324P9NfxenXtU+UU08Y5huboVeM572p6v7N4W4Z6bm6Oz3zmM3zsYx97TYM9mUz4zGc+w9zc3Nt5zF28BbyW5/ytmJtGPMmTX3qGE2fOsXryDDHXYX8Y4bouAYco/oRGq4OaLWMP2qQMFUHOIMkKe0cNitOzaHJEYXENRVao1yqkUiYL0zpd08NyJuiGQmmuzMrSIoqi3NnYr+VErCwvYd7aZKIbxHJTuKMOuUKJyu0tzOo2op5AyRcx+20cP0KWNIatKlJ+EUHRGVsOwmiIGM+higqCrOA7YxrVfRzb5bDVJbZ4nlBUCKwBemmF6fklVldXaNTrSIFDJCTxvRMkx1XOzucJh022t7fBg5nZaU4vzXHvhXvwPA9JknnyS3+BLRv8nQ89wuf/4gsM9m8gKTqKKJA0FAr5aUxzQH1ng5EdIIVTeMMhc4trJDI56kcHjLpNSuk4hfUHsEZDOs0jVmenmHvovbStgHZo0NjbgHEb03ZxkYlLEbG5FSaV68iSQDqd48aN6whhgJbMkkylyOSLjMZDfNeGSKR3cBsjmUHwbDRdxxkPCKwhgiITOBMc10FMxEmV5hlfefqYlRwE+IFLLp3iyPeRo5CphRXMbgNJkglVg9zCKYJIYFzfZbB3FREQxy3WluZ44NFHSWeLCPaQca/Fy/t7IOsUl5YI7TFbL3+FYbeN63mIQsTQlLEL7+KwY1LvTwhdm47p400sqgd7lM89hiLLJJJpJEVHzUxRu/oUujRBcYYIgzqRJJLwTbR8lnS+SKTEGbSqFBdOIggCrm0BIEkyh5UdZpZLrJ+5h3giyQsvvEB1+xLtWgVhpsCZ5Vk+/IHvY319nYODA/ZqLeLJFIf7+3hyjLnldXq9AdZ4jFGYxnRMnHGXZu2IudVTTJeKjMcmvu8hywqJRBw9FkdRddLpNOl0mq88/VVqQ4eh6eDIcfKLxxPnbGvC7Ssv8uVnX2JqauoV4yzfjJF+qy2Wr4XXq2u3222euqvp/R3H2zLUP/3TP80v/MIv8O53v5tf/uVf5vHHHyefz9PpdHjyySf51V/9Vfb29vj3//7fv1PrvYs3wOt5zsVc9g3mw0Y0Wh1MVOYWloknk0RjgWQigWikqVQqCIRMTU2RmVn6WluVwKTXoNFoEIgyyydO069uE4YB8WSOlcRptjciJEzeff8put0und7xbNyLt/a4tnVwx6NXFOVVTkQ6neH8+kl2Dyq0E3FubV1DkwXmsznGhQyeniMSJVKpNFZuCsv1MYcDstM6eiyOpGpYjoUXAhHENBUZjW51j44jEcULJDNFnNbxqMzU/CkCGRzL4uy587QOd7Eti9zZexls+ayfPYeq6YyHA3KLpzASWcatCoIok8tnGA0HiFoSQYuRzU9x3333UemalGYXURSVRr3Ks1/6HFoijaLFiLttzMEQL5ZHTBVJFkv4gYc/aDIZdGnfehExniGTMFhdP0s8HkeVJeSRiSko9EYTAFKZFFI8zWgwIHBtMskkg8GAUNbpN6uousHi6inSs0sU1RiNUYDdrSJaPeR0llGvjajGSM+vMeh2cXotRGwGrQaqbYGo4PWrKPEck1aFw3CCSkBoj9GLsySSKbpHO2TnTpKdW8F3HQTPQjC7JBMx7NEASVFJTc0zGpmMRiOWZsuk15ap1f8vOt0DahcbDEcjcrkcpWKBVqdHkJnHRuCw3iI3u4xgJNg6qNEe2qRyWbAG+NYIO5YhFEICx6Ry6QkmzX2mi7MIkkxoDzn34IMIgYs17pFIJJBTRSaHh7QONkkVZmi36ozbNa4NOnjdKrWEyHNffZL102f4of/th9nd2qS+fZ0Pv+dhzp07R6fT4StPf5WNnQq39mtMRINKo0dsahlZlsjncwyHQ2zHYdhpkkvqOIGN5AzZ2d1l96iJH0Yokkg2aVDMZe6khr8u8OPYLo4cfwUTPJZIMruyzqUn/hzzD/+IM+fOoynSt4yKv90Wy9fDa9W172p6//XgbRnqj370o2xsbPB7v/d7/OAP/iBwPLgjDEPg+Ivykz/5k3z0ox99+yu9izfEa3vOJhvbG1y/tYkfQXliEk+mXnHdeGzS6PTJ5/Io6vFQiEQiTjZp0JjYlKdnqBxWyU7Po8gSqqbTaTfQJagfNZguTSHJ0h3pQoB+t0O72eLS7ha3D+rUGy0EWWH93AVmlpaQReHOtJ5TS3Ov60QIQCaXo5DPk4omtPYauOOQ6dIUQhQRpWeoHe5zTOaS8UcdhFgMSZLQYwkCawT2EENTEX0RLxDRk1lsQWEy7CHiYxg6hfI0vuvR7LTJZLO0O11sL8AIJDqtDreuX2Pt9Bn0RIpsoUwkCPSCEN8/HijieS6CdBy5B4HP8soq48k1Rv0OfhDy1JNP0ZhAMW6QKCXQE0n6gwHhuE195wZB94CTJ05w+u9/P8899yz+sM3i6XsRQhdV02jXDrFtCzmWRhYNolQJPRbH8216uzdwBh0Smkw8HqM/HmOPBnSHY07kC5QLs3TbLcaBRDKVIohAGLUYmENEzSAxtcCo08JqbuE09iFbxB52iTwHWZKQRFDSBUpzy0yVigy7Lajs4Jl9rGGPwLWRNAPPtoiICB0Tb9AgLNxLPl/Gi0SkRI69ehvF6rBSvA89FqdcLnPP+iq+H1AduaCnGDk+/csX8Y00ohqna/V54ZknmF1aI4xAlcHIFxAkiaC1T2D06PS7WO0jvCBEjqeILZzH9Ww2GhP2//j/5MLqNMvLs9zYreANTKZm5mnX62w+/wV6rTqBG2CGArMr5/BSM7ywVWdzZ4/3vefdRFHAgxfOcP78+TuRoykYFJfPMG2JmKjstcYM+h1QDKbml8hksse933LAbDbJ9X2Ljc0NXMkgn8syPbeAnEjTMEds3HqG959bJJ1O02q16A9HjBzIL868wnCOhgOqtTpBcgpXl+9krr5VVPytMmnvFCv7rqb3dx5vy1CLosgnP/lJfuInfoJPfepTXLlyhcFgQDqd5sKFC/zET/wE73vf+96ptd7F6+C1POfBoM/eQYWuGXBUHTOpb9GahDz2+HvJZP6qf9nzXDqNOusnlkjcMeICSwvzjG5tMo7FEOwBVlukFgoYmRySYxL4FoIzZG7lQbrNGsVUgkQydWeM3kTQ0adWGIY+LSGLY7kcPvUcy0tN5mfLLM7P0WnW2Nk/QJGEV7R/DAZ9rt7axBI0UsV5Tl8IWVmY5amnn6Gs9ijkspy7/xF6/R7NowO6loecSmEPm9hihBkdj56U7R6B2cMZ9zAI6Q5NtEKRSa9JZA0p5AtEvovbbxMvzdNpVdjb3cMXdWKZGJ5lkskXsdUUG5vbOK6LY09AkFEkEVk+Fm1RFJUo8Ii+ntbMZDl/7hzXrl7mc1/4Ig1LIpkrMbcwTyKZpnKwx8zCWUaNfULPIVuaYW71FKIokSvNUOn36LfryO6YXWfCUWUPBwVFkklJIW7vkFFPRI8nkSWJRFxmfWkerB77l6/S6g3ASNFsNqi32pj9DtZ4yHg0wnIDlMBCDFyE3ByNTp0wClFDH23lPFpuFm8ywq7vgKITEeAfXKNndRG904SiQhQJDHcuI1kDXEGhtrsJvo1nDnF7VZRk/pi17kv4vTqNLYVEOo8VqTz53EvEpBCzvktsdZ1YrkxcEuk6MDAtbC/Ct4aoskIoSdSrHdq1L3LuvocpZNO4jJkpz7Bfa+P6PuPmAW4koicypFIZcCfENJl8fpb+kU2jUWduqoDou+xsvsTG9auUinmykktqaZm+6TJ2PNLFMtmZebLTC2xfe4E//qM/4nvf+yBnHvwAwCv2F0CheoTVm7C6vERtYDFqHhB4DvFEEr+9iyFFjEKJZHEOI57AQmfzqM323gHFUgldBNkdEEXzwHEblBiFWJaLpv+V03rcKVFjEkpMzS2g+P1XZK7eKCp+ox5oeGdZ2Xc1vb+zeEckRN/3vvfdNch/g/hmz/kbDV1uapF4YZr9lwXarQaf//znefdjjzJVnsGeTDja38EIx5Snyt8kN3icfr556xajuIwY9Di6uYcZS7O8vES5kENlim6jSloJWVo+nqv79elUhal5Dm5eYq/Vxpg+yVxhin79ANOxaExCRre3WJkrY/bGJDWR+p32D9g7qGAJGtMzC1T3NihmkuSKJaZX10lZFqPmIdWjA3Q9xvTKKeT6Ift7e0iBSCyIEba2EawxMwmRQNJgUKXd79MemsRsD88eI/geYWqRyHeZNPeJBBFzOEDVdOZnyowHXUb1bS6srbB69n6qu5s4Bzdp144QNJ2ppEE8HmM0HOA6NpN+E1ExcF2H8fg4EyBpBnqmRDGbYGZmmpmFVcxR/1hkRNSI56ZxujV6vS6T8ZhcsUgibtCuHSKEAfNn70fLz6C7ElPFNXZuXsa3uhRKU8SMGMga2fIayvCQD37k7zKZjLn28kt4yOTLi+i5Mr3BADuu4yl5IqGJ3zzAM0fImkEsikikc9iTMdrCOkZxnslwgDMZIebmviarCYYMeiJDp7KFoqpIwYRBp46k6kR66jj1ryfQNQMhPUVyagFDFkgEQxaX51AkF9cZEtoOR9Wd4yln8RxXrl7GD6+glVZomS69ic9gYuFVD9DTeWL5Moqi4HQ7HN5+mbNnzjC0dIYTCz2RRohAS2TxxRihHiOURFTf4sy5e5mZX2C0MM3Tf/5/oh4N+Mj/80d4oD9gc2uL3Z0d6rUWqYJCtjjLudk5bGtCv7qLHwQk4waTToBCeKcT4psj06XlFYbjqzStIYVUmigVRxdD+p19vNYeqekVkok4WjGHli4xsFySuRKjTp1+7dhY55MZ9o4abG1tUSgUmC6kubJ3G9uaEEscO62WZTKcWCBp6FJIQjXuZK6+VVT8Rj3Q8OZY2d8uW/wu3lnc1fr+W4BXes7RHUM387XJSmGgksoXefD+e7lx/QrXnnuCyeoJNFlirZSgdP9ZRs7kVczNVCpNMZPk1Ice5/57L1CtVjk4PKI3dpA0nUmnijd2OPf4B8jmC4yGxynX3NwavW6TiTkkkAzKM/OIkkh2aobh4QaapNDq9RH29inFJc6fXMTZO2Rn8yaJVJbOYIyRLFLd20APJiwtn0NRVFRZIlZeQPEmJKMJg84A3xyQz+aQnRGNyj45JUs6nSGfnSGZztI93KJ/uIGLSzwWQ4/FmF89jRuEOI6DZ9lgDWjeeI6JOSQfUxBGInF3iJYQiWdyOLZDplRmUNulsXUZI5lh/swpLr7wPI12l8OjCv2jXRAEusMJc0vLJOMaO7sHgIAuhfiex9bWbXrdHr1uBzXjIocestkn6wi0dm8xaFYwAgvV7RGoS5QWTuF5NuPJBEswyCycwq5vI9kDirOzVKuHDOwBi4UERizGUeUAwUghdusYiSxeBKbjESg6biQjFJMkVANn+wUcc4itxRFjaZBEsotnieVKCJVN/EgEx0Zyh6jxNN6ohabEiGULZASXgVDAjFQEzSCwx6jJEsbcqeP53d0jRN9h+fQFrFYFwayz8sDjBLbN1u1rGMU5zj/+AQqlGS698DQvfOWLNA+fR54+hZzIoSZ9YlPLhJ6L7VlIkoJgxBg0a4TLs2QzGcREHi+IuHXpWcZjB6UQZ6qYRyYCVWJsOXiuR/2wQhTLYQUy/eGQXC7HBz/wfo7WTvJ//NFn6A36zC+epdY3GQ+HeI6FYcSIx5KE6QKN3viOkfrmyDSbL3DP+fOI4SVevnGbTm/I2fWTLMxnqGmrJMpLxKSI7ckAPVdmfnoe17aYjGewanusrJ1i+9Z1tp57CVmPUcxl0YSQRDTm9pUXOXXhYTRDxxyN6LTblKZnUSOP3NcyV1/HG0XF34629zfi7bLF7+Kdw9s21L7v85//83/m05/+NLdu3WIymeD7PgAvv/wyv/3bv82//Jf/krW1tbe92Lt4bXyj5xwJAr2RRa60cEdsxLGPpzgVpqZ539QMhzdf4pHza3fkBt+QuYnNu74mw1kul7nvvvvuvLyGF9a5cnubXreFpuk4toVpWvjdFqI9IpbMkNJFPNdGM2K4nsv+5k16jSqSGmPH7HMyr/HYhfU7hJSNnevsXLtFcWaBUi7N+rmzZPMFICKbNKiPhwSRQLlYYDmeJKHLdF2B1YU5hNOrGLrB0HaRVJ1e65ATeZW2tMR84QTDicN+o40eM4irBqPxhGG7xqiyi2gNUGSRNPMUtAwn1tbJFQv0RxN6zQMcz8O3RjyyPo8oSly59AKWmMBIJNCSOZbedQJr0MZsVegciexbE2oHeyQzWSLBoO9EyPEk2mwRg2NJz0m7itfYYpRNoxsGM+Uikdnn3nNncZNZdq4+h6wZDNt15Pw8xXwWOXUa1Wpz7vQa586sc+vaywzqm2xdeZ7DWot7Tq9h9ruMh13GLriSQaQlkHQVSRKQBQ+lNA+tI0LXRjTSiJ6NEkvSa9bo97oQyyEBYeQTGWmCcRfHHCHFYuzubSPocWZP3YvojOi3GziKhtOroyoqmVSaQjaJHHrEYjE6NZP929c53N/HFDQSyTTNVhsjnmJpdZ1nn/wyvppC8FyiyQg5WUDNzYDvYB5u4LsWsfw0gSKxcfsW587dwwMPPcrOrSuE9z3Gwd4OQiLPyvp5REnG6rfojkyaT32Jw8MjJn5IZziiPzZZWphjrlxElSV8UaVjuhTDCDsUCWJ5RD3ACxy8SML0Qzb3j6hWq8zMzLxmZJrNF3j8Ax9iaqrMtRe+wlIxDoJIG5/lqQyJeIydwzpGPIUgCmixGIqmMTjaYXdvF8/IIqXKTC2fJpPOUK9VmJmeplZrsnXxK8SzRSQB4tjIzoBsSmdpeeUVBveNouJvR9v763in2OJ38c7gbRlqy7L4yEc+wle/+lUKhQKpVArTNO+cX15e5vd+7/fI5XL82q/92tte7F28Nr7Rc84Vy3fG9cGx59xpVO/UkMMwRNFjpNPpO6myt8Lc/MZaVKlUIp1O37muNxji9GqUSnmmlxfY2K8j+DDsdRC6TW68+AyDbpcolsPQVLq9EaWkxtXbOzz+0H2cXjtJrVZDiXzcUMAWdA6qdURZIZ3OkE2nePHSk9QOD3CDkHyhAK5N//AAXZF492PvYWp2jk6zwdHhHmv5BVbnp/nDz36ZE2unGQ9HtFpNmjs38JCwHIfAsVCEkIcffhfpfBElWyaT0Fk+uUYmk2WRiPHYZNjvMoz5fN9H3s/V6zew9RwzC8tsbm1TG1hEQYClxZnIKRgOWFmYw7OP1b2UpEagqkzcgIShICUyuO0GZn2XZDpP6d734khQH08QBiPskcX0dApvNGbY7mL36iSNONmZEpmZJcyjYxJcIp2nXT3At+KcW5kjnkgys3qa4WjMRqXJwWEbfeE8kiCjihF+v44mhsRmVxG0GI3bL6NbY4IgYGSOsSyTIAI9noIoxDGHx2SwWBohnac/HjMMJKJOBy03JOaPiGsKuakZhsMe+BPcsclRv44hi4RRyM3NLbYO6wSigpKbw5m43Nja5/bt2ziTCfXemEhPM6rvoWanSeQXsbp1osBDTmQQYgmSqQRjQaK79xKONcH3HEZjEyOVo5hJYAoSoqSiKDK9icnIHFCvtui3usTLqxi5HANR46hr4kkazYMdhmMLc2yyvVtBSZdIxI6lYIfDMV5zn7wBTXPMpctXWF9ff93IFEBSJP7+Rz7IhXNnabfbxGIG86sruL6PpqlYjkUiyiAI4NoW42EfObGKkUyhjhMYhvZXTGxgYbqELKtUOwNCBOQEeMGQc2cf+JrTyp29/a2i4m+Hlf1Os8Xv4u3jbRnqX//1X+fpp5/m4x//OB/96Ef5lV/5FT72sY/dOZ9Op3nf+97H5z73ubuG+juIb/Scj/Z3CFwb25wgisdG+uvpY0EQXtcD/3aZm994neM4vFRM0w0Ncrk8ylGTXDJNd+M2V69dxRZ0ps88RHHxBP1GDdFIEM9k2W30GH3uLxBVgyhe5NS5e+lHOsnSAs1ei9GtTRamS+xXG0SCyHK5QDpuMO4dR44Z0eb00hLhuMX+9QaqLHJuPs+ZU2v0+30EQcQcjWm0O2TnTpCYjjiqVsF2EAIf12zwwIMPoscStCyIVI39yuHXHBKBeDxOo3rAytwUgiDQ6I1ZXl0nEgRa3QG9/hghkSU9t0Zi9iT9o20c3SAKtumOJsxORZijNrHUFP3mERPLwmvuohsa2dI0Kj6BbSFIAZNApDZ0sapdFk+dRRj2GZgusmsSeRahayAS0e+2uXbxRaxeE00QuLl7RH84xMiWKZenEY0Uu3v7KJMOrtlF0g1UQSBZnCEctcgocRo3n8fvNwhUjXHlNoFioMgykqrhE4Eg4I3a+FFIJMRwwyGSaiBIIhPTxBw20WNx0pkSWn6WbquG1a4T9qv0O03MsYkTSvioBI6LJMiYTkh3/wghcPEHHUIjS3buBK3LX8JuHSLoSSRFR4olj78PZhdJgIWFRXrmEcPmPrsvP8uo02Xp7AyrjzzGy5cuUd+5Rm56kUG7gRWJDPsDiAKSxSnyhRK6odPqHEGjxW5ziGSk0MUKZrdBPjdHqzsgDH3U0EGKAvRUkVgY49LtPR7e2fmWkenZ9fvIZrNkMhmqjSaV2iGl6XnKxTxdx6TTbpBIpGlVdvE8D0EzkByTYjGPomh39nF5ep7ugcl7H3nouNfbdRkOh6/IXL3VXuW3urf/utjid/Hm8bYM9X//7/+d97///XfkQV/rH7+yssKlS5fezmPu4k3gjud86zbVnVvcqlWYmZmlmEqwtHyObL7wLT3wb5e5+Y3XveuB+3nqhUs0qwfoUkjfNvHNPo4XEC+kUDUNd9RDEX1OnT5Ld9KndWubUbtKcXaJC/dnmZ6fx92v0G1UyJVm6HSaPP3Mc4Siwsn5ac6fO4eiqnieiywrNOtHLCRF7jl39lWKTbIsk0vo3LpxhVhpmbmVORzbxvICyskso34X2+8RRhGLS8uMrl9nMLKpjgIK2UOiwKfbaVKMSZw5dT+e592pVw6HA2rVI6TCEqWviWhEQYikGpTmVxh2WuzuH2DEk6hmi7B/yKReJ3AdYrLA4sMfQQoc5mZnGHVbDBoHHA0CBD1Lo9sj7wakSnPETR+rV6d3uInV1BAnHYaNPURZY/bkWXQZFs6eovXc01y8fIVsMo5lmsQzOZRUFl1SEYwUeiyB2a0QuR5uECKKMva4j5afxes3EOIZhFgGp7GH77ngjI/rtrOnQJIJzQGSoiAYCSbNfdKzJ5HEgEZlm8zyOSI1jp6bJp5NM+g1aOxtEHoOcqaEIEigxfEicB0PHJtAVDAyJeRYinhxhnGjgj9oocyuocbTx0ppikQ5lyad1JmXzpAWbPIZnVR6ifL8ArFEEkEUuXTxJXaf+zzt+hGRpuOMhqiJNON2jVyugKHHCZIFtjZfRlQNZFli9cQK2/tH1K8+AUYaVY8hiyGqJJAxVE5feJS9qy9y/eZt/h//4HvfVGT6jU5zs3qsa+8JAV5gcnhjA6ffQFV0igkVwXGZzZVes+bseR6lUgl4debq2+lVfit7+6+TLX4Xbw5vy1AfHBzwAz/wA2/4mVQqxWAweDuPuYs3ia97zrPTZZ58/iKuEmflxDpGPI45Gv21qAV9Y6rN7k3YuPYilYMaU8VZVu+5H0nVmEzGyFqcCCBZwrdsPCXB1MpZWjaMrS6Li/N02x26hxsMO112b13lkUcf457z51+R/gOQRInGwS0EQbjzcvs6MpkMpxamufSll5HzC7iOSxD4RBH4QQBml5MnVrF8UFSV8+fO8fLFF3nmyS+xcyVHPJlkJpdi+szxHOBv5AM4lsXInJCfi+O6Lpqm4TgWvj3BNoekC9MkYjrxwMQfdhg7Ac6ojxiGhFFEvzdA8MaIUcCg02JkTpBzc8wvzHN0+Skq2xto8RR+JDJ0I4a1Hc7O50nHdEZigkR5kYNml6wu0Gh3WVhc5gt/8TluDMdMJhb9gQNjBymRQ9I0NFVFIiSZmyZo7aNLEf1Rj8nEhCgk9ByUWBpJEolkAzVTQo4lEcOAsFdF9C1SC6cxa3tMBi200w8SeS7WoEO4e5OJFxDXNeRUgu7BBsFkQKy8SHL5XuxhB3vUAzWGoBo4lnnssLgjRpVbiIioegzXGuINOwSTAYqqM5XWKeSz+L0jTp9cJqFATBbYrnepHeyweOoc6WyREydPMTrcotJvIGXmkBI5UrkiTLo09jaYjEckU0mG4wlxxQIxoLx6ioyrUDs8QAw8Is/CjzzyMZHVtXV0I0F+qkzXdBgMBm86Mv3mPXBQ3cUXVM7NFCjdf4rtSh3RM0lrvOma819nr/I7wRa/i3cWb8tQJ5NJWq3WG35me3v7LungrxGCIHDixIm/8sArt2n8NasFff2lcuHcgFMLZf77Z79IV0jhWCNi+JSSOpYV4Ug6U9kCO7VdCANyxRLxVJbq0T790YR7H3iQ8WhEo3rIoHXEPfc/+CojDa/v4X+9tWRudpqcfhFhUGMQOLhhhNVvoozaTCdV1s7ew7Cxj+e5DHs9tra2cLUMydkTFHJZkqkYRyY89cIl3v3gvUzlkty4fYPhxKY/GDI6bJCxAwTHpF/bQRcjhChk0GsRmH36/S7lxRWGgUrQ7mE7HpPmPq1aBUMVaRwdIEoSohojEQSMe23iMYPAHtAZD9E1nZgQMbTG2GGJo50KpfV3oUkGpZlZCukkN3ePaB3uoBfmCCd7ZBYWsBt12v0xXucA2w+YEDJz4izRqMnocAPHjxA9Cyk3hxRL4w07EPqEkkJgdlEzBQTXxG1sEjkTNCMO9ghZEpCMOGoUMhz3CYKAYXULURRJL51A9Ca4Zh9kFSU3TzKVxG7vMj7cQkoUUNPF4whbFAkmJmZjF31qGeJZosmY0HfxPRe3WyWeXkU2mywUEqyunCQct7j/zAlyN2/x1MXrXG1WyU+VyUgRqiKgFRbIr5xBljW0VI5h84hRbZdRu4YQBdidI1JTeVw1jpgqUkDHkuNkplewzCH9nSvkiyX0RJrq0R6z+QyyYN/5br3ZyLRYLPKefJ6l+QqnFsoc1RugxPBCG8Np43nqnW6Jb/y+ficyXm8Vb5ctfhfvPN6WoX7kkUf4kz/5kzsiJ9+Mw8NDPvvZz/L93//9b+cxd/Ft4G9SLegbey8XFhZ4/OF3sduxaFoRpUIGWZbZn9gkkxk8Z4IzHmLIYI4GOK6Lomjs7u+QSyfIZHIkkmnSiTiB7xNFEePREM9zURSVRDKFZZq4lkmlUmEwGFAoFPA8j5sbmzS6I3qDIZqiIAcjVA9SkowTdIkElZWVh5FVDd+xOdrf45lnnqbm6px9+P2sr5/CtV263Sa+b8PI5+bGJsVclv0vP03HN8gWSgSqQLdRpXmwiaYZrJ4+h69q6EGIksrTHVusLpXoHtWYOB5CooDuWJj9LkEgIaamkDUD17FQ03mG3Rpep0lp/SGKuSnccY9cMkbFH2LbNm3TQ67ukMukkOQUrf6Yg8oRrb6LHg6JFWZ593veTxAG3Lh5i8r+Pv1OG0FWcGubuFGE3W+hpgokyiuIqTJOKKJky7jtCp45QIxliAIPRdUR5ASxXJHp5XVcQaUd+BiahqzpBK6Dli6ycHKdhBEjnZ8i8BzG7Rp1FBxryKi+RyTpxJfuRdJiEAZ4kwF+54ioUCQ1fxJ7YkM8hyobx2IsgogkhNQ3XuZEVmbh7CN0uy1OTSVYXV1ldXWVs6fXuX7zNp2xzfUbtxh7kDQUwskIW5jQbTVQkzlis2uIgYXVb6OpGp4cQ4s8lNAnm0lTbzaYjPp44x72oE21o+M8/wK64BOfn0KL8Zajx2azyYsXL3HUHhAKIul4DNG3WZoqcnbpPexWm992zfk7jbfDFr+L7wzetoToBz7wAT70oQ/xiU984k5b1mQy4ZlnnuFnf/Zn8TyPf/Wv/tVbuu94POaXfumX+B//43/Q7XZZX1/n3/27f8eP/uiPvuF173//+3niiSde93ytVqNcLr/hZ7/ne76HP//zP39L6/1uxZvxwL9Z0CCVSjEcDr9t4/7NvZeKJLCzcYOjccQo0qk2O2iqynA8YUZSONq4RjSoExhxvvAXn0OQVexxn8DzqBxWWJqbBtckLrjcvnqRrVs6VgBBBLIoIIcet29cwR4Pefbla6iaRkyKkISI+fULrK2fZ9owmAQSW/UesiRgSCHTpSLV7pDnnvsqZrtGSpe5dkViv9Zh8ewF8rkMkiihGwaZbJ6jyh6+6FFrw2g0YuHEaeZCgeeee5ZmpctoNEBW00R6ksODfQrZLMGkj5bKM7NyCrtXZVA7QELD67s44wF29wgxkSeeLuP4IVa3RScM0KQIO1CIalUKiRIT06V/tIPTqDBUDfwIDvf3Gfa65OdWKEzNMBj0ieQE+4c1csQ4PKqytnaChx96F5l0mssXX6A8VWbSiMC18bwcFE+QXXuQXrNGFISosVncRIb+jadw+w0moza2oiILAvGzjxJIOm6/jhGOMbJJvM4hMj4Lc9Pce+999PoDRl5EZA3IJBO0Ozp28whJ1okSRZRY/Fhm1THRM2UEs42oSKAm0JLTaNkiMUVm0q0T+i6ykKaze43PP3+Vq9uHTMdCjA+/j3a7TbFY5MSJE6yurnJwcEDl4IB0Oos+U2IUyLioSJZ93IfeqhEM20TuhKQmMGjXuHDhfjJqyNDsErO7NGt7TBwXPZlGThaZnZujVCxwuHmdaDB6S/XYmzdv8kef/TwtRyaeLUIUMN7fx7EtYtzm7MllStkUsj+ge2B+V+pj39Xw/u7C2zLU733ve/nN3/xN/sW/+Be85z3vuXM8+bW6hiRJ/NZv/RYPPPDAW7rvD/7gD/LCCy/w8Y9/nLW1Nf7wD/+Qf/SP/hFhGPJjP/Zjr3vdb/3WbzEcDl9xbDKZ8Hf/7t/lgQceuGOkv46VlRX+23/7b6849v9PLMZvNqq2OWQyGhBL59CN+FsWOHit3sta5YCNao96u8fsibPkiiV6Y5tWe5/a9g3iocnq2fvwjQz9eouhaRPESkiuiRsrcn23jjCqEZOhu1FBiOVYWjnByvpZmtVDnviLP2cwGDC/uo6RmEWPa+zVa5iDHlKmydKKQzyZ5NSZc3T6T3Hp+gb5mQUeePgxqFR48qmn6XdGxKUIWTPQ0wWMTJlGowVByGg8ZjixsC2Hw2Gb+vaApdkSC6cfpNlsUCzP0NvaxrVtVCNDLJ1GE0VS2QyR5NMY96i3B0wGHUw3IJE2GPT7qHoMPZnHcyaM9q+jJDJg9YnkAErLRFKc8XiAcLDBsL7PYO86YixNYnqORD7PuFvHTWbpdPs09rcQE3nyJ5cZDAYYxVnqIwdl/4jlxVlOnVqjeXjA4tIiQ+WYHBcOHPRkFlFWkI04husSWV383hFqcQFUA1k8bsmxhn36W5dwOkdki0XmyyWUrMagVUeRAkrpOJqqEtdkGvu3CN0J82tn2du4wdgaEWpJZC2Okszh+y74LoLXIZbIEDlDAt9FTBlIkY+mGYSajGMP8SIBOZZCVBT0TIkgpvPMZo1Q+jLf+3feT7FYRBAEdF1nNLEwctPMn7yHymGNSq2OLAgMLQtrMsGp75JKJCnNLtEfjTlqdli7535mF1fIpZN89ctfQNMTnH7gMaIwpJTP4ox6zBXSpOKl40zK1573RmpdzWaTP/rTz1EPkpy6/2E8z+H27Q1apkDKyKLpAkNfRhMTJCKb+0+tkEqlvmMZr7ejLHZXw/u7B29b8ORnfuZneN/73sd/+S//heeee45ut0sqleLhhx/mn//zf87Zs2ff0v0++9nP8vnPf/6OcQb4wAc+wP7+Ph/96Ef5kR/5ESRJes1rz5w586pjn/rUp/A8j5/+6Z9+1TnDMHjkkUfe0vr+tuCbjaplT9h+6SKtscyUKnL/2gk0RX3TAgev1XvZbbd45umvYElJlIxKc38DwR6SSaVZzshsNoekZ2aJTy9jiTqFQCRSxziRiN+rYtZ28QOf0vQqkihSmNEolooc7u9z8NnPMBr0ILtAeaXIzOw0+Zk5OtUKpheRml7lqD1gd2ebTC5PJpcnFY+TL5UJg5C929e5vblFOp3lwiPvZ9A8or1/GylZIBAV2oMxteoh+dlVUsU5jBAONyY0OjUGgw06noyanWHlvneTWTjFX/zlF7EiBep7RJpKqpwkOTvN4d4WnaFD4Ct4apq2FRKoaWKKiKrpeIKC73sIkkhoxIhpKpEAomsyqh9gtipEkwFaaRV96QKCouGELp40wBeP07FOKKEHAeawixR55HM5BEmiPbaRKocUczkC12J7Zxe316Re2WU4ifDNMUG7ieu5xNMFrHoXNV2EUCS0xuhiSLY4QzqdIxy2ENwR0Uik19vl3fefZ+XeR7m2uUOrdpuN7hHpTJblQhyfJIN+B80bIYugyxLgI0U+IgGqBK4YYiTijMZt3PGAdHGO6VwaXZEYBVls1SCUVdLp4/7j9QcfISLC69XZboy4cev2nT5e27YJIpF8aQrfc5mdKdMfW3QGI/RMCSOVZ2y1OLm2xuI9j1LZusW4cpudS08jrJ9FdB1mCxnihRkCs8ek32asOsyU8iwtn0dVtTvtSJ7nva5aV6FQ4PmXLtKYwKl3PYgRi7H50lXq9SqKkeSo1aYTuUxa8OGFBUxX4KjeYHV19Tti/N4JZbG7Gt7fHXhbhvorX/kKqVSKe++9l0984hPvyII+85nPkEgk+If/8B++4vhP/uRP8mM/9mM899xzPPbYY2/6fp/85CdJJBL8yI/8yDuyvr8N+GajCrBx+yYk8lw4t0atekDlqMqF8+deJXAAvKaH/c29l71O+3im7wTKZx5CMeIM6wckRBdh0qOYTXOQKXPYHdO/coVUOotpHqdEs7pKam6Kw0tfIT27ihxPE0U+kqQhSAqZqXmOKnsMxi6l1RUKU9PYkx6CIJGdXeKo0SYiQlBjVBtNTo6OsywuEg889n7qB9tE9phYKsfyPQ+jx2LEDJ1B84hE3GDQ60DgI8oy5ViCdm/AcGTSOKowF9fYrzawjRYfuu/9iKKAYTuk81OUy6uYrUPEUZ2VE2tsXXsZ0w1Al9ESBpE1wZOSx0axsYNT3yIxf4rC2n209jeJzCFKIkUyW6Ry/ZAoDAABOV0mceJ+EqV5JuYIZ9hBiqUJJZnJuI+ip3D6x9rbhUyKYadBIMdJxjSajTrR5DJpQ8OzRtiTMcmpRVqHNVzPR3Isgkhg1GsSuB5iqoDfbaIYcbLlWVQjRuRb6Ok03tEN7jlZZr54hv/XD38/CwsLfOXpr/LiRoXAjxjaLrKmo0gic3GYrK/RHlskSglGlovrtNGMGH4UIJVnEJwe+kimY45ZyCU4sThHo9NjPBqBqiMiIMXiKKqGqmlomsHAGuMKE3aOmlz4Wh+vruvE4waeoWGHLqbjQuSj6DFS6QJmYx85keDE+Qcpzi3QaXfwzS5TU2XOnlwmAiRVY2btPvZ2bpOdy3PvhXtIJI+/20EQ4PohR0dHXLp+m0EgMzu3xHRpCsey7jiz59dWqLX6JFI5dCNGs1Zha2sDpbBEfHqB2JyM2anSbu1y9dp17j1/D41u6zvSj3xXWexvF96Wof7ABz7Az/zMz/Cbv/mb79R6uHbtGqdPn0aWX7m0e+655875N2uoNzc3efLJJ/npn/5pEonEq85vb2+Tyx3PkF1cXORHf/RH+aVf+iUMw3j7f8h3CV4r9fXNRvXrGt35+TVEUSCXK9FrHjAemyQSiTsCB9vb2xzVG6/poUdRdKf3Mooi9nZ3mAgaqal5kpk8kSAgaTFypRluXRsQWGMK0/M0K9u0D3dp1us4lkl5zkLOJOm0PZrtLkJhid6ohuA7YCTxBZF4LEG8NM8kkLEdl7HtoTguQeAhqTrJfInJoIGCgOt6eN5xfdEPIwRBQpVETEEmlS2gaToA8VQWTVORFRV5bHJ4eEC6MM3+7jZCLMW4cUg+oTG3usJetc5BrUW71aA0VUZRNRRZxhl1QZAgDLCGA45qNbJLZxm0jvAGPqKi40dguQ6WZTNpHSKmCiQ8H1VTcUQYDYYgiISeQ0yK8AUBPVtEiyXxXAd72Dke3ylIBEqcUBxgGBKikCUu2CDojDtNJCOJllumedAFZ0RSSaL7JvG5JZR0nl6rRqt9SBRGSLKC53sE1hgpiMC1yOTyzJ26h2G7SQKFtdOn2XvRZmFlhflSFl3XqVQqSESk5BBjapZT6RySLBH4AYeVXZYW5lmSFaqjiEQhx2gyQVAVSosLJBJxNp/9PMmUgmf2qW5dAd9hbFoEYYjt+cRTaSJJIx3XSabSRBEgSYTIWI57p26saRpLczPULA8RidB1cXpNLCcEe4jiDiktrZLKH7fuJWM6riTS6/eZmCaabjAZ9NjbuU0upnB+/QzJVObOHrInE6zxkD/587/gyBTIlabpjW+Tqx6xtLzCysljZ/bajVuMzAlhENLttKge7OKrKaYXTyFK0jEREplceY5AM6g36qRV3vF+5LvKYn/78LYMdalUesd76TqdDisrK686nsvl7px/s/jkJz8JwE/91E+96tzjjz/Oj/zIj7C+vo5lWfzZn/0Z/+E//AeeeuopvvSlLyGK4mve03EcHMe58/s318S/m/B6qa9iLvsKQQPPc/HD6M54PVXX8L5h3rIei9Hu9HjqhUvImfJreujn11bu9F6GUUh3OCaZLdA5rDEeD1E1A0mEbn9AZGQY1o/oDyoM+n3QEiTTWeREBvQEzXYP17UQE7njQRTDDpXt21jN3WMiWn/IcDTBdWxigYvtuHjWBFGUIQiQJWi0GsRzSdR8/M60IVkUqNcOyMZU3DBEA9yv6ZD7rkUumyUMQpq9BsP6PuNei8a+hqFIZOI6yblFDg72QVQY9Ps88Wf/X973ke8ljCLsXoN6+xaiohITPK699DStdofC2hL5bI5x84B6s4GLjqTFUTUdP1PCHbRo3XqOWCJ9LPIRuMSkEFJxtIUlDm5cJLLHDA43wEghAEYyy2TQw+x1cHsdwoHLTD7N9NwiEx/oNPE627RHR9jNGmtn70ETQ9A0Hv7g9yCIEtOFHF/+sz/h4OAiZqTgu87xgI3sNInCDMW5e/AdC0MR0dUkBD6F0hS94RjGbf7r3gb1oYvth4TOBI0rLK2uUZyaRpVF5HGTVrWCqefpdPtEeoJEIkUuEUO0uhxsXWZ0uMG58+eZP3mO5y9dY/PyC9i2CZMBsVQe5cxjZAyRhYWlY5Uux4EgQBR8CI4dUFVVSSaTzORT9A77JGICoueTknxsZ4AeOx5IU0onQJBo1w7JGjJSLo3V3OX5r36FSFLpNmoYtUMu/IPvI53O3NlDURSxcesqtYMDhkKChXMPkMnlcOwJrUaV0bVrnD93Dl2L8dzzT9Of2IzskM1KA8fzUbPzBIGHKEl4nodt9snM5phZXKGxdYV43njH36F3lcX+9uFtGerv+Z7v4YknnnjV1KW3ize615t9ju/7fOpTn+Ls2bOvWYf+ZknT7/3e72VpaYmf//mf53/9r//1ukIu//7f/3t+5Vd+5U2t4W8Sb5T6OqzdxradO4IGiqIiiwKOPcGIJ3Ft5xXzli3TpNWsM3PiDGuv46Ef1eqUMnE2t28TRAK3trZJzmt0+0Nq/Q2MWIxySmNgeoxGJiNfwBF1tOICarrAoNPC6dXpHm5SXDoDRhZh3MSxxmiqih9JCLEckWyQmVlgOLEY97uMu03cICIhBVQre3hByHA4oHO4g3PoMJ9+9/FsaknGHraxPVh69DG8/SPcwGHY65DXdAatKkldYeJ4qMk8cqaMpOkkUjnsfoPDSoWRL5KbXYZkibjuYHouz3/pswiSRCTpTC2fJJnMMGhUaHQHdA93mJo/iZHL49gTNF9B1ZN4kYQkq0Qxg7hu0OtU8EY9JG+MIYIX5MiXpoj0LLFcGUEUccY9lHieeGEaQZTQJRXPGmEdXscNbZT5OVpj51i2spBnZnqK2v4W/VyKC4++B3PY5/pLzxJFEfFYnPLsPOv3PogvXqbf72O7EmN3DIGPZw6pXH2amaWTFMtzIET0mkdMpTNUtq6wM2gyffphFi+cJ5nJMOr32du4yv7hIe86fwpFUXjx5Zex1RTJqRVKJxJsXXqOytYtDiOf2WIWr99kcXGR7PQSh+0+yUyB/mgP3/Nx/RCzsoUkCZz6yA8RT6WIoojhsMdk0MEZ1dDzcZ69soFjv8xk0CWIBKqNDqGWJpNJs748RzGXo9puI4wtSGmY7SMyMQNJ09hr1ji9dp7HHn8cSVY4PNjn8uXLPPGlL/JBQWJ6fgF7MqFWPaB7uE2qvIgsxUnn84iiiBFPMru8xtHuBlcvXyJAYigmmTmxwtAXqe/vUWt1MZQx3VaDeDJN82iXFA7zC/eh6TE63Q4PLB1rHryT4yTvKov97cPb1vp+9NFH+af/9J/yG7/xG3ei3reDfD7/mlFzt9sFeNPP+OxnP0u9Xuff/tt/+6af/eM//uP8/M//PM8+++zrGupf+IVfeEW72XA4ZH5+/k0/468D3zL1tXGDSesmteoBq2tnSCRT5FIJWo0qM0trdLtNSkmDRCJOFEVsb97Acmwy2Rzj0ZBEMnXnnl/30Devv4AhBly+fIvN+pChG7CQnCNfnuVgd5vOqAtWklq9ga8lsccWoT1BjKeRJJ308j0MtQTW7jXMQEENXKKJSWf3Jmo8jRpLkM8WGI76pDwXwZ2QMFRcxWBcuYmbzBHLlkjlioz3t1FCD4wYl6/doNvtMT+VZW22RCSrOOYAQ46QZIFo0GXzpT3SukSoSIRaCiMlkFZASOeYXzvP4ZaEKxn4mkEQLyGEMrLvEtckIrePYWg8+MgHqLc6NFsd1laXmSpP8xeDPrXKNtmZZUjkmUoUcAQVT9Do7N9EiUKyswt4xhizU6OQSXLy/sdoNRo0Nq+QLEyTzmSpHVVA0YiGNVxVAi2FLInYnUOC9gGuENKpZXFDAWHcZuXd74HQJ6XLTOIJbm/vM+x3ONjf4+WXXuCeBx6iXtnDjVQS6SyuoJIpLOA4Dv3GEW4Y0R+OmNx4mfrBDmpgsbY4Q3blBO3KLuVT93Hh0fffyS4ZiQT3Pvp+Lj/7BC++fBVREJhoRR7/ng9w6fmvsrFzC7W0yPr6Q3Sqh0y6e4RyjGrfYv/iDWzHIYxE5h/8MHKyQL1Rp7t9meGgzqWn/5J6/QgigXDSRXXHLM+WWD73IJKms1vfYjCSKCZ1Hnj0DK1Gg539Aw73tpE0ncV4gtT0POWlk8TiSSDiif/r/yCeSPL+v/MhCEP2dnfoDsek8kV2Nm7z2T/6Ax588CEK+SyKaxKLJZiam2e/2ce1HYyvDfAQhOM0+Auff45EaY781DQLc2V2KlUS6TS5Xp/uoEmrsgWKQSKuU15Z5bBaI3K2ieNy7vQ67Xb7HR0neVdZ7G8f3pah/vEf/3EymQy/+7u/yx/8wR+wvLzM1NTUa6Zb/vIv//JN3fP8+fN8+tOfPo6CvqFOffXqVQDOnTv3pu7zyU9+ElVV+cf/+B+/yb/mr/B6aW84rodpmvaW7/mdxDd741EUvXHqa2YBu9dAGLfvCBrMLy7Seukil5/9MlP5DPMnzmOOxmzcukrl1mXapsfVW9uoyh65VIKl5ZU7qkqO53J9c5cTa6eYWlpjrLaQq1Uqm9fJ5gssTeURBJGrN2/TaLbIFKfJp2LY8QRRZhpFiyNJEbIiAwGaGOE7Lo41Qa3vMtJTJKaWyGQydAZ1mrcvEo46qFFAXImDIhL5LvagSXfrZez2IUun7+G+hx7DsSfEwglJXWZsD1mZyxNEFlZo4tX2CGyfkiQgEedgv4GUKiLaQ87fez+tkcX+tZcYjMdohTmsXo3azm3iKhTKM5iDAUEEcTWOOxkhBQ6JYIAWJrEGbebnZrl29RLJdJ7Y9ApGKkO7sovZr6BYXXzVYNhqIfkuMavB7Oq9JIQANRsjSicw27sMxzbjdpfU3DqMO/Qb+yCK4Lu4vRrpqQWS2SwnVldodvr0TYvrzz/JPafXCAWRRqtLZ+cQRIX+cMzzz36V2uE+mUyOoeMTRALphZOMiKMaIaoX4Zsj5CgkdCeMOg0MRaRe2UNxh8iyxNyJM+zs7TO2HPwgIgw8DFUhWZjmyuUnEGWF+Qc+yEG1xc5Bha4ZIEc9Or0RihBg9vsU8gXMSMENIyQ9gZSZQcovYBgaBVHBs00cSaTfOKCzdwPZSCD7DvlsitnpKTYPm9SbLaxIpVQuU+02EHZ2WD97nkBWGQwGDOsVxGyewOwxONpiiESncYTmm3zke38IwpCr165hSzHy82tM6TGKi6fZvvIs5rBHLiYxciOubx9QN0PM8YD+xGbtzL0IAozNMTs7O2wfNYhPRKpHRzRbbXRdJwxDgkkfdxJiGCnKpTz5qTICEkeHFRhU+fsPrZNKpd5x0td3QlnsnYz47+Kt420Z6i9/+ct3fnYch1u3bnHr1q1Xfe6t/EN/4Ad+gN/5nd/hj/7oj17B1P7Upz7FzMwMDz/88Le8R71e57Of/Sw/+IM/SD6ff9PP/tSnPgXwf6uWrdeqQ6uCT7tvMn3KYDQcvELFSxAE9FgM3Yhz//oSrW7vjqDBbEomK5jEjJBeZQvbHNJtNikunUZ1IT93ElGMODzYpf7cc5w/d47Z+Xk2NjfxRZXp+WWGe0c88Ng9jHpNtm7fomvaxGJx1ESSUn/MoFUjLvqsnr6f67duEUvmCBDQZYGZ6RnC+m1K2QSBViZIx7nnxCLbO9v0hm12L1ZIiC7JbIbYwjKIIv1WHbN1yOLiIjOaTT3oUzh1num1C3TGNoFrs3e0j6YoNBp1Yk+/wLn1E5xanOWHPvQY/dGYsRNSOTrCHMgsnpzF8edIFGZoPvElWvVDQj0FoUTg+iQLKRRNx7VMYkpEs9Zl0GnR73WP51knEoSShCTA8vIitf1NdLeHeXgTP5lDtseogwoxVcLTDCLPJK3JZM7fz70PPEQqV0BRVNbWTvHsF/4E3Q6ZRBqxRJIw8AmHXUTbRpYlsucfZ+78Y7Q3L2K7HjFDx/ICzFDlxYuXEdIlPElDzeUJZIX54gyWNWHncA9hY4OphWWMVB5bTRCOJ1iOA6ki8eISbnOPaNxGjXyW188yqu6yt3UNMZbj2lYFPZkhn8/jEtAbTTBHHSTfYrK7RzKTg0aLw2aPwCiydPY8CALWsM+g28BBI/RtJpaDL6nEs2nS04v4kcCgPwJJJFcoMXDGoEokVYHVcw9weFjBc122miaO0UaQVCxR44Ub29ijAReHNZ68eIPy7Dyr974bq7VP2lCptjoM6gecXJjl7D3LDN1lTpw8xdWXL2KJBrlCmdFwwGg0wkikSBXK7Laq1AcH5IplJoKB1XewhhbWzl9ijYfMrZ7mqNGm1uhgWTbJokRiZhU/kSBSBJaXcvRaDUZek0why6OPPUoslmBijhi2m1iqTSqV/I6Qvt5pZbF3os3rLt4e3pahDsPwnVrHHfy9v/f3+PCHP8w/+2f/jOFwyIkTJ/j0pz/Nn//5n/MHf/AHd3qof+qnfopPfepTbG9vs7i4+Ip7fOpTn8L3/dfsnQZ48skn+d//9/+dH/iBH2BlZQXbtvmzP/szfvu3f5sPfvCDfN/3fd87/nd9J/B6dejtzRtcv3adztDGiSRc30OVFWZKOZaWV1FVDVUWmZmZ4fTp06+pTOY4Di9dehk9P8PK2mmuXLvOfvU4BTsKFJr1EfXml1lbP8Xm7dusryyiGwZeEKIZOrH4ErFEkr2NmxzevkwoKsQSaZJYxOSQrVvXaNWbSL6KpBqEnkVaDvGtMe1Ol8RsnjCMmHgB2fIspXiOG5eeZdIfcOKB91GYnkVAZOK9SBRFRKJEqzfCVDLMTS0Ty+TwXI+tnX0a+3XWTp/hxMPnMY+2GcVSvLjXYWDavPeRB0gkEtx/5gRPX7xGsrzMi9c3OazW8JUEiblThJKGpOnY0jGj2FM05AhkAiRFJZ9QKM4vI8ZzCGGAL/hIRpJmpwNEnF9fZXvvgHb7gGKpzNnH34seO05JD2o7WLbDYDQ8jhAtk/LcIv12Cy0/x9LMLEr8CmJ2nm6jhuM6RL5P5FsYyQzt7at45oCemESwhggRDGyBxt4hqlxj/vwjFAoz2IMWsXSBZAjeqEe7uc+4XUeOJZAFiMd0TMdDS2QACI0kgW8Tmm1a9UOy6SzOMIdljhmZJp5scHj5IqIaR4slkWMZOtUe/VaH4XiCW2qgZ6eIeT6KbgAiYk6jVTtkPBpw0LeYhCJCLEsg6cTDCElRGHseqh8S+h6RpJIszDKVjZErTlFvd5EKy+R0iWZjl6HjYxQXUbOzCEaGbr+FpmRoOwLs7pESLO6/cA/3P5xje+MGixmVxx5+iC889TydZoPKUZWe5XP52g0sxyOKQJUE/EmPmYVVhr0aalFn+sRZTEFjNp5k8/JzVG5dYdBtY0sJ/GEbI3TITc+ztH4GEOi0GzQaTXIzi0SpGdzmFmZtF0fVkEWB+VyC0qn30G3u0x3VmT/z4DtO+nqnlMXutnl9d+DbMtTPPvssv/iLv8gLL7yAIAi8613v4td//dd56KGH3pFF/fEf/zG/+Iu/yC//8i/fkRD99Kc//QoJ0SAICIKAKIpedf3v/u7vsrS0xIc+9KHXvP/09DSSJPGxj32MdruNIAicPHmSX/3VX+Vf/+t//Yap7+8WvFEdenZhmc/+6We52bRYPf8QopoC36W+dUS92aZczHJ2LncnffX1l8A3prds22bkhJQXFxAEkWw6xXMvX8OS05Tnlpg7dQ+tzcu8fOUqw/oB73v8MRRFRZHEO3W8ZCbPmfsfIXRGjMcmsq6i6jr1eh3TC3H8EMNzEJM5XN+nXt0isl0M38Fp7yNHAQedMeN2DUHYR418hHwZRYyOGc+Oxbhbpzwzj1xaJQocshkNRzLYP6ggRhFuCEoyh5oqkMrmcdqH5ApT7E88vnRpg8N6i3vOnWEqlySf0Km3G/S6HSZqDjWVJxWqdOtHmNUehC5t10FwxuTnVhg4FpLZxQ5V1GyZVCLBqNtkZ+MWFUkkCnxG4wnXr16lPL+IG46wHAfP9VG1gG6rxsQXWV49TSyTZ+wHDOo9Dg/2GY3GOCHMOGMeOHOKmwdNPNciO3uCSI1j9xsEWpre9mWCQR0/VyRUdGam50hmcrRaXRzfpnmwzcm4zurKCooeQ1J1pksFXhzWECMP2bfotGq4ko4gyIiygj/uY6gyajaD6fQwO3US6jyNwQSzWaPW/VOkeJpA1lEUlVSuSDxfwBn00DWDiTmiurfNWnGB8WiE3WwiqQbjXpN2ZQspnkfP5ZncegE36mHGk7TqNdLZAs64h6qpeJ6HJEYYMQNFkYkiCMIQVdEwclnalU2G/R5yeoYobDPqtRmPRsRSFhNzSD3wyAZD0qkkc9NlpqZmmYyPBwjFFHj2mSe4dG0TP7eIUVikVCwTBR4HNy4xbHVATaIIAqXZxeNa+MERY2vC4pkHqFxxsLotZk6U0BN5YtEymnL8KhUESCYzdA6aBLZDIpNHVRZ54N4LqJp6J7MVhiHNyiZR+J0jfb1dZbG7bV7fPXjLhvrq1at88IMfxLbtO8e++MUv8oEPfIDnn3/+LSuRvRYSiQSf+MQn3lBE5fd///f5/d///dc8d/v27Te8/4kTJ/jTP/3Tt7PEv3G8XgtGFEXcvH4NITtDMLZxgpBSvoSASKetcfH2Jc53K/xvH/x/v+K6b05vWZMx+wcVHp5aJJ5M0BsMmZpdBESGwyae7+MMO5xZnuUQn0a7w9LKKtmkQbPbZMZYRBDAdSwkoNcb4OmQLC/hmR5qPI87GWP2WkzsMRNzjNerIyk6Y2uMOmoSi8Uxcjk8VcbtHOEbORLxNKVskmQiwY2r+2QTBrHiSQ6HNrKiMBkOUeM+5njMpNciigIKuTyBIDMe9vE8h6NGmzCWxSgvEcUl1OwMt+tH2J0qvudRP9xjopsMXRj0uzi2jRC6KPl5MJJ4nSr9bpdg0iMRjumbETvPfRklmaLf6+IGIIQuS7Mz5GZXqTgRGS3Hve95F73egFqlQvXZJxjYLuWZOU6dOkWnWaPTbtAfjjnauMagecDM2n3EE0mSmkT/aItATJMuzjDodRm2qsjjEVGyQORaWKikSsvECiUCZ4hu6KjpWTxzTPNwn1BUCH0Xz3URjRQeKv39Kxw12viJImqieJxaDwKMZAbfdRkf3cYddZBz84zlJFJ+lnRpmXGvy2Q8RFZUUFJ0+33atQrSuMny8gLxKE+9usnO1RiCpBJN+oiKRnvnKpGsoxZmiZVniQY1OgebeG2ZATL+pIwmSwiaQmCPEYmQI590ZopYKo0I+M4YQSzihRGBZzNs7pGYOYmcKKFPRZCbJjCHWEe3yKU10rOrtCYmg50dRLPLk0LAdqXGl7/0ZfZNkSQFCrqJ61UQw4BUJkvoLdJst5guFVEUlVg8wfLCLPVGi6E5xPF97E6Tdz14P3NzJwglhUno0TrYJF2cQVJ0HMdl3KozpRtkc3n0WIxMJntnv9mTCYamEgUB7UYd5RuM+Nf35TtB+no7ymJ327y+e/CWDfXHP/5xbNvmF3/xF/nZn/1ZBEHgE5/4BL/+67/Ob/zGb/Bf/+t//U6s8y6+Ca/XgjEeDdjcq5BdPE1qMiSjC0zaRwRhhC4K5PJ5/GjAZDKh2WyiqiqO4/CFr3yVYagyPbfITLFIu9Xi2kGbiy9d5MyZM/RGFnMLK+iGgWWZjId9TNnhkXc/xs2rl9nb2+fsmbMsLcwzurVJ9WifbLbIwfZt9rY3aFgiTECSRUJJIWHomIFHo9fEGQ3QCnNkls4z6Vbp9/oo7pC1cw+wdOosfhDRrmzROtxh0quyf12gVMwxaByQnl/H8wO6jWvYfkAinkIwh8TiabqVbQQhgtkVLMeh3xgQODbaVIZyvkTTMxkMamzcvoGHTLUxxm7s0q0c4SQndHt95GSeZCrHJJY6HjLie8iqijcYIpsdps/dz9HeFmNrgqbGEDJzpONJzPoug06D7OwJ1FBiYEf0211mF+YZdjsMPDDECCXyefIv/oTS8jlmTl3A2d5FLplook62PMP06jkGgx6jYJOQiEn7CLPbwevXQZJRNINANvAiCavfwc2l8B0XMbRxbAslM0Uk+wRqgt5kiD2xcA6uYlljsqv3M5yYuIFCIKv4vou1+Ty6niRyxtjdKqEaQx308K0xuiIQy2WJzWRxqnuEnoecKqKpCqI3QnRnaLW3WD55mu7QRBw1kDSD/vUtAiRcy8JYuIAgyUwaexRnl0mmkjQPD7A6e4ytIcb0LB4eotkF10RLThNPZfC9AFVTwZ/Qrx/gTMYQBESRyGTQQxIiRE0nkjRi2Sn8bpUwslFUjfzULNeef5LG7WvIqTyVoUeYmkGVI8zRgPGNl5FliWQ8zlSphB/BuNclKuZBOn5FJuIJTqwk6Ha7aM4iXdFiaXmFTC5PunJELlmg320zPNzEsh2CYZvZtIoqCaSSiTutjvBXhK5cXGPvoMKl7S+SK02jSOIdomYml/8bHyd5t83ruwdv2VA/+eSTPP7443zsYx+7c+zXfu3XeOKJJ95wctVdvLN4vRaMfr/PcOJSWsriiyGrJ0/i2BaObaHpBt5UkUuf/yP+1+e+RL44xcQccfH5Z5joRWZX1+k5B+RabRbn51g/fZrrGzvs7mziinFUXUMQQNdjVHc3yBgKgiCwemqdg50Ntm9f5+Sps5w+scyVyy/zwotfobq3SaTEWF45S7vX56gzxJcNggRMhgO0/BxC4CEQEAwb+MMmYRghxrPcvPIipdkF8jOLjPpt4okkpWyamKExMSeohUWmls8QErF3eMR4fxtBVzEr1xC0JFg90uUlXM+jtbdPtpxCTxdJpbJ4rs2k32bQaZKammd26QTJmTWe+1wXrSgxVZ4jCjagOI+ansJp1ZHUJKoYIuISiHkSGYNMvkTHlZBUkWS2RGJ6AUlSmMQ0hvVdwjCiXMwTUyQO9rao7G8RyHGKCyfJaqDIMpO+Sb/fZmCaDCY20yvrOMUpQiFk1GuSzBTAyBCFIsPaLoIgEkvncJ0JE2uCHM8cG2RV5aBySCxyECIIo/8fe/8RLFl+3/eCn+Ndenv9vVW3vGmHbnSjGwQJUqKIId9EPEVoJDFmFlzMQjFrhhQhEyFtyNB2ljMjKeIpNDMavcfHmBEfRRAUQaAb3aj21eVuXe/S2+P9LBJdRAONBkCLRtR3l+dk5jmZef75PT/3/QpEucCw22UwmpEIMmkaY+/dxyo3uP3MS5ydd8gGQ9I0QJAlYt9j1t1HK7dQVq4i1bfI7RHR+BijtUSYpovZ9vZFhDRCsSwqzWXELEbMU+zEY94/R5RVLr74i1RMjbPde5wdHmL7LnF/jzR0EUs12l/+O+jmCxRrH3B0/x2mh+8ipX20goUUBiQoRNkqZ90h7vwR0bRHubVKavfwznfwowSlVCd1RoRJTOh5yKQYjRbVtQuI0yPiMCLPYTQakuhVvDjndOSgVFq0lhtMBx1iUUMrlFFMg1STSW0bfzaC7PIn+nDyHHx3TqNoEOsiD++9z0uv/hLVosUwDLh083l8x+H0ZJ+l7WWuXLrIN77+RwSTGCG/TpqmTxq60lmXSZ6jNjZoaT6pUUYzivRmQwZ37tCsl1kuaX+rdpJPx7x+dvBTE3Wv1/tUu8lXXnmFO3fu/JWc1FP8ePyoEQxBEMizHHs8oKTC+ekJth+QZjlx4DPqdXC8lOrqNpJu8K23PuD+qUt5uYniJERijh252N4uG8st2vUK+wd7lBtLBK6H5854fO8uwaxPsrrGnXfexVJENtp1Nssyh3ff5PDkDCeIiewx5VoDQdbRilUaxSae1MWJUvwoxosy1GIVKQ1BlMCsYVWWiTwbzSxij09599t/wrOv/CKzzhHh4JhQtTj0fKxCEVkzmAzOMEp1SBKWNi9Ru3gdyZsihDYHgwOck/tk3UOatSprm88xdBOSyGdwdsTg4BHrF69y8fpziKKAPZsSSxrr61WO+xMERUfVdHxvhiiKWOUa8fScsqVh1Mv44y5hFNLeukJn90NKlQyrWGU+HaGrMkm1zcyZsK4rXLt+nfngDM0wkXUTL4w4OTlAkgTam5cRAGcypFpbpdReZ9bNSYIZB/c+xKq3iCOfOIqJcgmzvoyYZAiCSjru4g9PSOOQ1CoBOWESkXkhcjwink5I4wDZSBFUg9CZkggKXhhx+Pg+WvsSFzaeYTIeEE+6CDmIRhGpWIU4RlRUpPoyma7j2wOkBFKtjKRa5H6MLCvIqo7bOcPSZErNVeYn99Bih3hwzHEmYLQvsVLbYvr+HfTGOqqQI3pjvNkQURRpblymVCzRV1L+L/+n/5FarcYf/dkbPDidMJ0OcJwZmmYQhgn9d95AyTxMVUI0a1TXr2FWGwTzEc5kgCiKxCnoooRpGKRZxv7j+2RJTKna4N7OHnKxRVkK6M59Cu1NckkmtKdEnsPUDlhrNnFKRfonuwRBgGGaREHI2ckhnYMHjM9PyJOAg86ED+89ZHtzE9mwOAgCkBXqBY3N9VWm4xHPbq9QKxYYHz/684auaoFpYmDLZZ69fJ35fMbh8QkTe4xIzng2pyq4vPbL/+PfaqPWX8eY11P8xfBTE3Ucx5+qm10oFIjj+K/kpJ7ix+NHjWDIskLqjRkfPkBa3yKULUrNNRRV4+DRPXpTh4qmEWXw5nffZU6R5sY1pFID2/WRi1W0JCYYzsgjn8sXNggGx0STY977s1OiKEY1i9x6+RdpLK0R+B6PPnybJTlgc32Nie2xun2Ncq3B3mkPN0j59jf+gInU4ZmXfwHVLLF/eICfQKgaCJJM4tsozYuIzS3UPEVzxgh5SijI9Po93vv6/4d6ycCqNBm5CWMvIZYy3O4xR8cnVNvLxPMR1Y3LSBkkuUhkzyiXisxmU/xZl1AVGPXOOO30mNse3vAMIpfV7WsM+h0M0+Jsf4dR74y0tUb/9JCZF7LR2KSgGcyGU+aBR+5M2Ly6zfLKGrvTDtPpnHrzIlKeYdtj+mdHFPRF9/xkPIQooF5bdNJ7vo+oF4jRSCQdL5dR9CqdeYToDom8OZagMh4NSJwpceAxPtuHwx0S30WsrGA01ymYJqdnp0jVddTlKwTdXYLhCXL9SxilOooo4HX3QRJJ+4cI/pRUL6EXG6ilOrKqg6LTHw+plTwIHOLAJ0xzlPo6mSChWBUid4KQpii1JbAqRElI4k4RjQp5GpG6M0IhZzLvkUc+cqFI7M2I5hOuXlyipkQcOzmROyOJIwwSNEVi9drzOCcPseSc9dVlRFFkb3jMte11vva1r/HRg4e8+JVf5VYQ8cff+GPO5hFBFJJLBqJVJZoFGLKCoUA47aApIq3WEppRZDrqEXR30QyZJHOZnh+gyzmR7+AECYO5R6u0jj0+xp7YFK+sU6rWcMgpWBbe+BxTFbh8+RJu94j9d/6MQmOJNEnonOwznsyotlZ57qWXESSFR/fv8fBon4oU066XsUoliu0l0ml30WH94ldp/EBDV57nfP1bb7G0vI4gCJTLFZ69XcZxXJIkJryyRTg8+VuPVP+qx7ye4i+Ov7TN5VP87eHTRjAUSeD5Cy3eenDAfN5gc+0SiqrhTMaMOicUDJVmo80HH92jM3KRFZX+uIeMwizyCZwZnjNDEQXODZnBcIgl5Hz1F17hj7/9HUZ6jdsv/xK6aRAGIZPpmI21FYpyxje++W2qW9d59soNjg/3ONh9TKoYBHGCPRhw//07rKxvUS4U8XodIm8KdkKSpGilJrk/I/ZnSNJCi1v+3pyxPT6j1ryJtXyZcO4wTVXEWgtNs5jsfkA67aE3V3DtKbHvcHb4mFK1xqWrz3GrUqJ/fsLevQ95/Q//V0S9gKjpVGoNHNfk/uNDHj56RKvdZtDrkOQK5eoaG1/c4PCtrzM53cMo11GDKXKhir62hVFtM+x1URUZ1wk5fvQhQuRgxBAPj9HXLyCTYqYuQeQgITHsL0xHzKULxCikSUq5WiUrLWHVlhk8dug8egPROkXULLIkIlcMpPIKgigiSFMkwyILXeypQC5KSKqGIIooVpk08MgjnzhwQZIRsgRBEBGyFEEvYixfXJhcxCGpM0ay6oR5hjOdkBk1rHKZLPQIo4Q0B1HWFiYYkYOiqiSxQCoq5GlK6k2R0hghdpFCEaFYw2quoygy4kTGaq/RqFfIZY2/+/d+mfR71+tOu8G9x/sM9+9RrVRIsxBvMmDcPSUd7PPVX3kZURTpjW3a61d5vPOQjRsvUPJi3BgK1Rogsv/wI2QhIz5/RKEgIasZ7vAUbzojiyJ0EnSgUjCIfJf+qMd47rGyvYkjzgkyhXkmYw/PSY1HBHYbRUhJVAV3cIaTGjx36ybCZpPMnzM43eG022c0ndPYusIzX/wS7eXVxRpstTnYXSXsHfCVZ7d59ZUvkiTJD3VYf3+zVb/f/0TtN89zHHv+RO+g3mhy1Dv+maj9/lWNeT3FXw5/IaL+j//xP/Lmm29+Ytvu7i6w0Mz+QQiC8Lnvsv5ZxaeNYLxw4xLn/7f/iXnmMT64D5KEP5vi9o/YuvECa+tr3Hv7O9heRPXibcpLIi4qjusw3NtH1CxK9TayouNkGoYh0x3PabdXaJeXcAYndD0PMc+pVQpcv3aZMAj4s/sfsXG7wnQ84tHOLr5oUKqvU70QMhwNOTg4ZDKd0miuYEoC2WAf35khVVaQUx8hjZArTQSjTDzqoxTryIrMpLuLOZ6Rl4Y4kxGKKFIvFfGEhLlVZnx2gOA85njnPhoJza0rvPraV2itrDKd24ymDs2VNWy7jBw5VDevoVZbhJ0+cmUZd9xld+curfUrFAtlTo5PKNbqFFYukrgzIneOQkyexkhxwP79D6kWNS5cex5l/z7dXp+VlRUuri2h6wZ+GhHOZ6Shi2dP+ebX/ysVUyFPwHF9ZvMeJRVKy1c56w8Y7N8jsOekZg3BaiBW26jFGkQ+OAPQi7hBhKZZCMGM6WwMRoVs1iUH1MoSkmaQRT5xd49MSBG8MTEyxtI2SRpTKFVIVZM4V/BmY8QgRFAMZEkhi0NyRSInJ5p2kBUNQVbJEcgiH7ezj6yb5L5Dkkbk41OCNMMsVlEMC6tUQZVStDxGshRuXvoCG+0677z5bVzfpdlcQdU1rokS4+GAXueYOLU5G5wSdx5RK6h8+ZVn+Nrf+1XiOCZKMpI05rw/xPZzUq3MhUsXFk5vsymCrHDx2g3O8oCamqEZIpqYIRZUzrtTRuMRhXadqy/+XXonR3RDFUUWEdOIMAgIgpD29rOErkMS2kx3z0hDD0mRUYMZlbXnaVTKnA5O2b7xBa4Xyrz19jsU7Bhr7RLDqUOx5FCwCouu6nqL/mzIcXfIa4JAq9X6zDX7/bXfKAqfSJgmWY4sCliKSFGK/9Yj6o/xlx3zeoq/PP5CRL27u/uEmH8Qf/iHf/hD257+oH+9+MERjCiKuHnrJrlZpzecMB4N8dwRuiKTAZ3+kOOjA4qrVygurSMbRc7fe5Pp4Jzq1i2M5hrRtMtoMqIs6HzlV77C+fEhZ2fnfPHqc3R6fTwgEyWCOOfo5JSSZRIkGaIkcniwD1aNze02J/0xUZZTWLqI0D8hC3ym57ukScJ61WQcTZiGNloeoTdXUYt1nOmQii6i6BZOYpMbFQSjQuvCVfS6w+j8hN0P3kStriCt3ESTTKxKE9+eMju+jy9onJyfMXE9/BgMVWbpwjW0yZjReEilvUYQBkBOlkQUm6u4vWOKpQL1lXUOD7+FEyUsLS1T2rjE5Gyf3u6HCP0jUs0ESaXSeBZ/eEIw7aNHMwRplcP+DCM+IvADnFylULB47sVXyJKQ6WTMzsO3iU7PKC1t4SkGJ5ND4jhh3j0kFTUk3UIyCmRpTJ5nqGYZyTDwJz1QFLIspVBfIRwNwDAQjQJpmpFMBgiKilSoIUoiuAuVtFA0yEWZNI4IfJfYD4kDd1GrnvbIRZmsUMEsVhGiHOdsl2jcQ7n8RUhClEIVa/kiwbiLe/6YuHdA6k0xFRECd+Er3d7AEGLqloWQJTQqBb7y2pfQVJWD3Udo/hi7nxCnGYok8pUXbpBlVznr9hlIc567ts2Lz9/m1vVrNJvNhUGI73Lnzh3u7+zjKWUKLYvo6JhSsUCWRCgiSLKMUagwGXewO+/joxBFMXkUUZFi9EKR+x++RxYF3Lj9LInncrLzIWIsEc37zPKEPE3wHAejWCa3CpBErF24QKxX+f/+1z/g0mqT289/kelkhGaYFBWZ1uoWk8mQbm/AUgu6/QFz16ffGzM5m7DSfJ3XXnn5MyPNj2u/9x7eZe6GhLJFff0Kmm5+XynJ/ZmIqD/GX2bM6yn+8vipifrg4OCv4zye4i+IT9PgVVWVRqVMbWObVn3C3Y98io0XqIzHuIJOIqokcoFc1uifn+J5Pn4UkkUuoe8Qn+8RT7psXdmg1l7l3Q8+QhQlPnx0yJH9X6mvXmT78mWqtTpRENIf9zk52yWLfOzp9Im3teMHPNh5TBBE6KZMfesqSjin8+AOlXqDQuMWkijgPPyA4Y5J5bqGHnqYskSxUSPx52SuSrmxRGNphUrBIkolCqUZg3EVJ86RTAtBK1Jc2sJalUmTmFxWuPfogFaly8uvvEbBsnjw8P5CaEQvMZxOybOMm7eeZTjo48chVq1JkgmLmWNBJBx36cYBA0VDFnKKhSLL9VW82RCruUpVF5nbI9rLq5jbl+meHNEdjjk/3MWotdlYX2eptsrG+jJXL13i+PiInce7zEZj9OUrpIKGWqlDHMG4h5ALRL5H5O4jGwXy0CdRdWRVQ4g8yoZOEIVkgoxmFsm0AqFnI0gyQuwhJDpiLBHOR8TTPqqqkOcTHHtCLsikSYKoWiBJGMuXyOII//Q+cX+PpLe7+H6lmFSVyAaHiMUqUmWdPM+RJQkhcFAUhWKjzeZynZXVdR7eu0utIBG6I5J0xu3Lm7z4/LNsbGySpgmNWoWypXP5xnXSNEGWlSdGL/c+eJfW9WV+4bUvIQgCcRwznU4Jw5Bu54wTR0K3SriJiBcl9KczxLMOipijxCGdw33cuYOXKKzcfIVqrcHB/i72eEBDSXjx1S9zfnbM4GSflVYLz/c4eCQieyPOHr5HIGjEYUjozkhb6xTXLlNtrXDp+hXcyZCpFzB3PabjEYqqLr7PICSJfIrFCoPOETPbIdcsNLNMqVKjKpr0ApFvf4Zi18frtVGt0PnTbzGRG1x97hqqof9AKSnnwc5jms3m00DnKX56ov5Buc6n+NvDj9LgvX7lMu1akePzE+y5QyiZhKnIPEjodnZw/AhJlkgljfODx4SZgFmoUCw30JcuMh2cIYs5G+ubRCgMZlOevXUbxbyDn4gI5RadwRhdN5AkiWKpysnuA4zM5/T0iE53yCCS8BMBPwbVMBgefIQiy5i6hlJusXH9eURJxNJlWo0aHz54RCEcUaqalMolhCRi6E4pqAL66iZxFEOWkUUuQRBgtrcYdY5J7AlZmuA4DpoqU24uY0o5YZqiagqlokX//JTdex/Q7Q8QSi1UTSfPIUlzVtfWkWcT+qHH8GSIH8WIahlr6SJrW5eQVQ171MP1J+SiSpjAFy9vk6Yx47lD5Ljs3P8IX9CIogSMCmZrE6m6RGZUOezP2D34Bp4fIVfaxN0+o70PKKxeRTcs0kmH1B4haAWyOCTNUgRJQlc1RFkhCzwEf0b70g26ex/hD46JMtDNKoWCSjDqwPSUOPagsUUi6cjLVzCLxYWgzOO3yRFIli9jNTcQ8hS/u0c8PkP+Xro8cac45z7V5XVqtQaj0z0yr0zUPyKUVURJIg1dJDKUQhU/EZmHKVvbV7j50gvIskpsj/mVr3yJYrEEQOD5bK2toMsp/c7JohHJMHBth27nhIYhcOXCRe7ef/Dk+lUkgd7ZMUqpwcWKxtvvvkevP6d2vUmpscpsNkXJfMrVdR6/821EIafc3qDeXCLPMpIwYKndxtAVOkf7eM6ck+NT8jffQMwz9h7dp7Z6kQtf/BXiNKc7GGF3j8liH3FygihGxGOLumVw5flXSZwpD+/f5ZUv/xIr7Rbng4fM+ufU17YZT2dU6m1W6i0GnRMIHC5c2+LWcy9xsPvwUxW7Pl6v3dGc806X4/MBel2he/gQTTdQJJFW0WBr4wqyKD0VE3mKJ3jaTPY5xWdq8L79PtcurHNy/oA3vvMOk0Qlkg1kSSVJc4R5lzyMGB8/JENGtwqYxSb2dITgzaiUyijKGt3BgPLqJUqVOp5noxsmpUoBfJuOG3J+doppmHjzKdHwCNEd0p2+wV5vTmF5Qr3RRFJ1aqUqUuThD44QjSWqtSpKHlErVhC1LS699hJ28J/Jkjl10UcOFspo8azHheu3kQWJvUf38TwHMUuwbZvQNEjjCDEeo+kqYp7hzqfkzhSBGL25judPefjRB4Qo2EFCJFkU2tsoZhlv3OV04jF3HrLcqrNSLzA4HSGqBVoXb5CggKSi6CZC7JOlKQf9EdFwwJvfeYPReIJSWyP0baT6Onpji3DUg+yQxGzQG83IopCCriBZVaI4YfPmF+icHJNIOpKYoxDjJyGyVSMVBNTqCpSayJIEqo7VXieaj7B3zuif7rG6us7s+AH94Zg4T1CMIiopSaFCJGtEUYioFyjU2mR2nzSOUctNguEp4el9kt4hWrlFbA8QVQNBLmLUlpD0IsK0w9weopV0pHIbQdLIYh/yhNz3yEIXyayQyyaT2YQsDqgUDPYeP+ZLv/jLOMJC0hf+fHTn8uYK169c5sHO4x9qRGrV13l4cPKJ63c46LN374BaGS5vr3K4c5/dvQHjo3uIm9ep6AYkCVIao0gCUuSRjk5we00i10byhlQ2nifNUt5+/Y8wmuvERo1RJJH4Aa6gY6CxtLqNKCm4yQOKpQpGrU06OqGipFy7eQuzUCLdO2SW5wymNq5jc+HiNt1el93Tx0wnI1zHp7WyxvnBDuHohIvtClsXtxFF8VMVuz5er515SBhEdN2Uaa6jhRnx0S6vvPQiWxcvQZ4SxzG5mBHG6V9b+vupG9bnC0+J+nOIn0SDtz8as7HU4Pz4iKhxhUZrBUXXqS2tIl26Sv/Ru5wMpwiFArJuEWYZWWCTTrqUNrYolVeYz6dUEUCE2bBLpVTgwo3bfPT+++ydnuG7Dq16jWrBQLEqzAWNoibQWK2TmSWmtst88JjNyze4+exz7HwEkqpxZXOVS1evIwoCg+NdypUqL33hOR4fnFK1NAajCZ7nI6sGCCqxP2GloiFHLnIS4E+6eHZA7IwxSzW0xgaZYiCpBlHgMzx4h1IQEgsx4cYm/U6H2Kih4SFmKWZ9hThJ8AMXdzpn1jtmrVnHn3RJimskoYtlFhD9Eb3je9jn+1itdVRRJk5SzkOVtHIR3CnoVYqNbeauC0YZtVjFrLaJA5tubxdRUmi0BWZehBeBrChkgogzm2EfP8Rau4ZZKjPunqA1LyCUl8mzlNyb4PaPkXULpdJm1t1FC+esVQsYmk5cqhGpJRJBxfMCSFLi3j5quYFj94lDD6XcorBxE9GqAgJp4BKe30cs1EAUKa1fQzEKRGmGqOq4ZxHusIdslCmsX6FcXyIMXPo770IuojbWKG9eR4lnVC2dZHTK0cMPiX2Xq9uLZi/Xtj8xutNsNmk0GpycnOA4DoVCgbW1Nb79nTefXL8Ajj3H91yMco3UKHB+fsbapRv8ndUrPPzoffzuI/JyndB3qFULVOtNzKxAqVRETgJQdRS9wOMHHzHrnRKLOisXnqWShETzETu7p6S5iJ3A4c4DZFUjmo+wKk0q7TVGoYuYzTENE9M00WWBYRKTYxDHIapmcvPmTWQBvnvnu0wnc4bxmIpl8OzFLW49+/wT29fvV+zK85zpdMrrb77FXt8mzmUipUD9wgrLUgmt2KBzvMcb33mTyWhAjEyS5aRRiOwNmT979cc2p/20eOqG9fnDU6L+HOIn0eDtHN5neH6MXGqydetZKvUWsiyjajqQMx8P8HceoggaBUUgI8W0ioxPHxGPz7jxwsvEScakf4aV+bTqBYRymc5gSlpeYamwDO6ElZUVeif7eHFKY2WT0Pe4eKFNlqYEKPQUiSh0ydKUJPRRZZnl1TXyHD788APEyEGSVVAL2IMT5tMJanMDpdSEcZ/dBx/SrpXZ3thgqVVjMJlzoObM+wfkUYKwdBHBKKOZFoqq4mcx4aCGc3KP1LKI7Cnd0yMqW89SrNQYHu0wfvw2gmKQhR6iAJHvYSlN9EKF46N7uM6cSr2FoSsksyGt1ctUtm6w8/4dEBWK9SUis4FzukMmKDh+SJwJKJqKbJYZHT9EFnKCmU0qiNiOiyBrhPaUNMuQCkVyQcb1AkTfW5hOhB6SppMFNokzXjQ62Yt5clEQiOdjbK9D/dqvsV5pcnDapTfqEHsuYhQiSRqypqPXVkjjAL21idbYIIkj8lEHqVhDqy6TygK5pKLXl6ltXsdzbRieE3pz4tmQBMjiGH88IAlDYmeMYDXQrCZiGiKkIaauU17eYhj6+N1Tdt5/C8HuogQjttZXvxdJP4eiKNy/f5/D4xPsMCNOc1RZ5N6Dh5wPJmzdfoXpePSk69nxfI5PzylXG0xjG7Nc49pzr7J2YZvDnfsMhmMCIaJZNlGIEVKFOEmYpgqbV25RTjPefet1ZqmKTsa0f0yruUQmgRDMFp7WlWWiPKVabSDJEtN+F3nQQZEUTM0gSRZKZqoIRSFk1JvywQcfkqsWrufj2D5X11s8c2mDq89/ieW1DYqlT0ajHyt2zedzHuw8Zv+0x7v3dpi7PnKpza0XtymWKozHE6ZhQHP1Ih99Z59UOOaLX/17aLrF4f4jhCzh7qN9yuXyZ9a7f5qo+Kkb1ucTT4n6c4gfp8HrBx5vv/Mu/emcSNQ4Oz4iS5KFcb2uk+cCarFOLipk8y5Kq0miqChWmfVKlVnvhMfvfpsscClsbfDCS1/g5jPP8if//U/o93vIjQ0qqkEsg2EVUcwCnhcTuXOK9SVEzWKzXWc6GRPMTI4fvEcy7mJKMsVCAd/zuPfgIZHvcvXyVcrtJVJBYTSZ4/oD1NGIOJdJkohwPiJYWqNcqXJhU2dNFpCTEM3rk+l1Em9O6s8RJIFwck5iDyksbZCFY4oKSFmEKEqU2mv4rkNqFEl7p4iyihh7GLqBM+nij2Vc10GuLCMXG4jlJQTDJIlzRt0zzs7P8TyXsqmThw6KpJEJElESkc2nKJVF7VsqNege3EOvtMmsBlptGV0W8bp7TM/20Btr5KJCFEYESYLgeouxqihCmI+Q8gzVKINqkgsCIqBKoNnntFs16hef4d67b9KfzFGtKmkGURiQkiOZZTJJRQQks0IWBeSBjZCExNMhuaKimWUySUHWLVzPBVmntLrN/OgjfEVHVHVQCySSRprkpJkEJJjlOpI3JvNtEr3G0eNHKGYJtXkBrerxpa+8hmWo6FJCs1blwc5jHh+ccO/xAZleZmtrkyuXL6MpKo8f3WPn8QF6Y42zTo9AMqmvX6Gtm0TaA07OO6T9LuuSRBh4lKoNbr30C+w/vk9VTnj2mdt8dP8Br//pn7Bx8wuUzRqO56KpOrKmkQsitmsTvvc68dZFpMil0loBq4pUslCyiKJpYJpr2OMR08OHrGxuYuoGcZwudOoNEa1e5vTxEefnOsVyHcPQaa4uoWrrTM728TwPgMl4+MRQA6DbOaEoLEjWFQ0K7S2S3S62k6IIBvsHB2xfvMjS8jLu/gEnJ0cIxSaCZeB7PpPphKohc+u5X2DU73D/0Q6/UK8zn8+fkHIURYuSwk8RFT91w/r84ilRfw7xWRq8k9HCSGOWKhRb61zYbDF1I7qjKY5ts3FhmzTPmc3nyIJAqb3Jc6/9MmkcMZvN8cII3SrTufcmy2rIl156jtd+6VfwPA+9WMfyBpwe7aCapUX6MwqZDXuUm2uokopIThCGpHmOoGgUK3XK5SqlgsF8PmN48hghmuGGKfXlDfozm+HM5qM3/zvj4YBYr6BmOvXlVUrVOrJmcvrwPd5//RuMH78HZDjzMWapjpSL+NNTZvMujqRgGAZWtYksKYj1OmoaMR72Gfe7zN5/E6VQRZEVlPoqmiJBYFMqlJDsDkmWI5kV9FwhDD2mvRN8d06cLGRO8zBAqa6CpeMFLsxHJL5DgoSoueSijO/75KMzzPYGSAp+/xRFkfByIAeKbTzXJUrnZGFIngtoS9tkcUR8cp/Yc1FrSyxvX8f3PGxSJFUn86ekuoljz/B9h/OxQ6pVqGx/gVa1zukHr3N6uEcSLpTTJKNA5rvk+aLOnwY2aQqippIXq8S+g6JbKHUFTVUQ/Dl255BUlFFKbQRRXsxlJxHIC4enaNyhWSvRaDTxggAvybC+FyFXiyUuXrrMysoqH7zzXf6XP/gjNq4/j50qlC48Q2N5k8lkwP3H+9y+dpntqzd5uHvEd771ZxTXLtFarZNnOYIosrm1hR8mHPROcacjBp3TxevHfQwhYWNjA0GUIfLQxAyzUEIrWIymM44PHnO6+5A8g/LSJnIwAUFkMHHI5AgxziDKaDZbNOtViqUiVVPh7lvfZLb3Ia2NZSJ7SFEV0WWIEpvnX/sql67eJI4jojBE0zRkReW9+Yx3X/8GDx49plCuYRg6RU1C01WWiiqCIOKKBrKi8qd/9qe8/9EOdpRT3bDo9XtEvsdLr7zGylKb46NDdFVhPhoy6x6yvrrM1sZlyuUKiiTz+O6buI6DE+VESUbgu3Q7Z9TWtrly7fZPHBV/diYOCqUqOwf32Vo/XnzPT8n6ZwZPifpziB+lwZvnOYf7ewyckGs3buD7AeNUA9Wkkgt0Oyfs33uHaq1O7owoVMosLTWJAw9FUZEFiH0HbzZC1Q1a1XUsQg52H2KYBeIMREFktPsBWZ7h15vMDRU1h6WVFRLfQUh8hsM+u0lELuvoRpGNy9fZvnSZu3e+xfDxBwyylOUbX6S+fgHfdXnwzusc7D0myDWs5mWM9StY9Tp54pNGDte+/L/j4K0/4tGDd9l85hWWbmxzNphgGGWsPCd1xwi6hWGYaKpGHtlUNy8hzofMM5E0hzxwsZYvYphF/DAgsEfIcczo/JBkcIpZuEZhZQN3MifLRDK9RBoLpNGETCuTeA5KFCAvbRCKc7xJH282IZcVMlEiVw2EPCN1JlitDSJ3Th66RFGMKIrIZolidYXZ4QeIigGKQeZPCXuHKOUmqiIT+3NQLhAEAa49BUkCRSPqT1ELDfxgyhv//euIjUu0Nq9gWibOsIvnucTuFPQi4aSLYGuozQ1EUULUCkgbz5KMjpFCl3R8QhrHZMUqpipjSDm9/jGpICEpCpJuodZWkESJLA4X0X6SEHUeocp1SpUS84Mhql7EdWbk4yHVdgVY/NkHaU7Pg+uFEsfnfZrraxiWiWFucn56yP1HO1y9tE0ah3znzttcjmVGMx9ZEigVDJbWtqhYGlc2VwhHZ/QffJejB++jaDqleosPH+3jTt7CiCasLi8RzoacHB8TJCndowMEQaC5cYlie414fEouqOSxiuDPIQkJhmfYxIzqVRRVQiClrgtslwwuX2xjKSEVy6KoiShRi63rzxBFIceHh09ESULXpt85JVIrrNZqRIhMHY/h0KWlp3zhyy9z1JsQZTF//M038LQqy1e/AP0+RmsDZzrkgwePaC0tUavV0QyTlXqNCkVefOYmSysrwGJN+4HHvccHxGqRy1dvopsGd95+m25aRHZDoijEKhZ/oqj4R2XiZrMph8cnjGYOZzt7kGVcuXj6tGb9M4SnRP05xI/S4B32ujzY2aG9ss6N69c52H2MM/YoaQaRoHDh4iX8UYflRo2jhx9SMTVe/tKrdM7OeHR0QoiKqGgoZhl5WaM7PWZnZ48becqxE/Lh2x9iNta4cv0mUrlBrd7GnQ6Zn+0x7p5QqVbJsoThyWN6owbV5jLhpEdJ8BiaGjcvb/PAHXLUnWAIEb2dDxgNBzjjHoWNG2SJhFCsEeQig9GIWr2JkCZ44z4RMnO5glxZYe3SNUJxh/7Mx1i6RDg6Am9KmKSkiYNKClLGYNDhvD8gTWSS0TmTKMa1CmRxRJqlZKFL0ttHTHzi4RRNqpNqZYQsJ04ixGINRZKJZh1IE5Jgjj3qkUsSQRSRRB5iqoBZIRyeIqUhme/giSJ55KO11pFFEVmRyVUTJIU8jhGFDEnTKV95HjnyyRKH4tol7LPHxNMOvVmPHNDLdYRZDylPaF+6xez4HqNBj8aqQZpmZIHDbNhFLLdRGz5xEpOOTkH0CNMYuVBFLtZBlJCNCpKYk7l9rNBG9YZo4QTfc4nDYDH6loaQpiiFKpKkkIQeYp6RSSpBFDI+30e1ytiOjarX8eYzpDgmQuHNdz7gGc/DCVMU1aDXOcNxPVraghQce8ZsMuPu8QFvvv0+hwcHDAMBbRay3SpQrpQYTMacfOdbXN5c4bW/88s8evcNwumAd+7v4ooFrLlLtWiyudwkSxTufPcOq7eaXLl+CwRwXZe0oqGU6hAF2JMJhdVLVFYreJM+9t47NGtlqoZA5/4dZo8FVltVntuo8n/+P/4faDabT1LLYRgyfv0d/MDj/v0HT9LzqmZw/903GcQa/qRPreFgmAV0GWorbUgXKWkvk3h80sfTqmxcfRbXsZkMezjDDrXNq3TsMR/dvcu1q1fQidGJWV9u017+c5LO85zdhw/I9DLbV29iFYs4jkOQilx99mXGvRMOD/ap1OoIgvBjPaI/LRM3m025+/AxvqBhFJssbWzTvHCNE3v2tGb9M4SnRP05xadp8PrOnLIm8Pwzt5BEkUqlTH8wJAckIcFPcmbDLrLTZ00L8PUSk+mM/sQmEg1SQUbSi5iFEmU1g5LCwWhA7833qJRLqGYRs1zl2q1nGc5cQkGhdeEGaZpwdu9t5uUKhUKRYnMV1arh2GOSYE5s6sx7R1x94QXGG1cIjClr65sMel1SWSdTLQI7RXJ8kFW0QhkpS5k7NqZe4Gz3TXoHDxZzzHHEuN+hrMvMBlPs3iFhJhJNplgl0EQBIfV4sHeEMxuDpKMUKuSSQhK7+FOP1HdJgzmqZlKoLxF6Dm6UE7o+ilxGVGQgRCZBW73MdOcOJAG5toRglBBUHTkFcXiCEAck3UdkWYqmF0DI0aVltJWLCxcwRQIgjD3s43u4nV1ko4i2tE2eZpjFIvPeGUkeIecJweCAJPSRCjWSNEDSdKrNJRrtJYTZwqt7Ohrg+SFCnpLrFZAVRM1Er1Xx3SlKuUXiTckDB8wSme+Q2z2arSaavkFq97F7O4z8ETESSS6TTXro688hkJHNeghWFQSJOI4I+4ck41NmikpuHJGLCnHvkNyfUV/ZgkKZ73z4iAcPHxGGAZqQ4szGjKYzAtGk2WrTG46YRxl2ppIGAcbqVcraAEmU6Q+HTCcj2o0qsqJC4DLq9zjv9BAUhSuv/hqttU0C12Vuz4jTgNHEYeCleI92EI2FTrkbJKxs32AwnjDrnSHmMaooYc9HxHGMLOS88sprXLxxe+Ei1z9jvVXiuYtLXLp0CeBJc1YQBMgi7D5ckPTqhSsIgoBnz5nO5otr0aiTWi22n3mW0aDLg3t3cYZnaMRAzv75gMa1Vzg5OyfLcoxKE/fsgJ5vI2QZg16X21stWpZI6gzY3PrCJ6Jgez5j//iEi5cuUywujJCSJCZOMzRDp95eYXyyg2PPKZYWDlaf5RH9w5k4ODw+wRc0llc2OD/coVkp0lpeocXK05r1zxCeEvXnGD+owev7Pn/0ze/w+P5HuHG2SNNFEbEzQCtWIE5oSR5ffe42ResG/4//53/h3be+Q2HpIka1hZ9KJIDnzNHEEDGKqV99nuGjd0k9j6vPf4njsy4P7t9n+9I2UZIx6Z/iez5q5tNIM7JMJUWgIEXU6xbNW1dorWww7Z0zGo/QrSIFL2YyGZPKGpVmleOTU0S9hhSmZKFPFvho1Tp+/4j+6SPGj++DYmCUqoSpQKJY5IJKtTxjerxPrJXJ3AmKnJEL0O2fE6GQFJeRyy2U8iqpPUCJPJBU1OYWEimZPSUaHRDFIXJRA1VHri1hFCqEzpRo3CFJYkgiJFlGVDRS3ya1R+RJglaqk2cp2fCQpesvkPkO494xWRSQuWPUPKFav8DET8hmI/zBMVmWQ30TtbmNIES4zhB3PsQSJTJBQrAqWKUmzYs3EfQCcRyRBTO6R3uEvk+cgTceoszHIBtoTZM88BAVFSKPLHARygLW2k2S0EFUTHIBEk9GiFzqzSbLly+QemMmE5tQ1JjnGgf2BFkVsdauEozPCGd98jQnmvVJph2S+YBEEImSCNUoIKk6xVoTgZwUCTdXOdt7TBR4mHmIaNVJU5EP3vkuhVKZ0uol3DhnPJ0jZAmiVcS0iqSyTslc2Il60yFWocz9/V3e+/Auppyxde1ZVre2MawipXIVfVbkO298i5kbcunFr9B59AHnp8fM5zad3oC42Cd2JkSjM4rtNYq6hCGWsIUMv2ChaippkmIWSgyPd6moRW5eu8pwOPzEyJIswoO777Pbd3jmK197subiOGTY7xGVVti8dgUUgdFoyHlviNzcxNBLCLMOspjT3x2QDYdsNFYpN1pYtSaSXqD3+F2KqkweTigLPi/eusDYdpiMB2ia/qTmvPvoHnIWceXyZT6OsmVZQZFEoiBE002SLCeO/5yUP8sj+gczcYVSldHMwSg2OT/cQU89ti7cekLKnxWdP8XfLJ4S9ecc36/B2+/36Q36dBOLq8+8iG6YhIHHsHtGbvfRhYWQhGmZvPXRI4RCneTslL2TA6z161Q3r6PJEv5kxmTeZ+P6s5QrNfZmE04GHaTKMoZZZNTvcBTZXLxyHdXIWdmo4etXabfb6PUV3nznQzJRAqvMxI1Iz86olIvYnQGh71EvFxCzgMeHHXLFYjgeoa+0yQJ3EU0KOW7vkMn+h+RZirZ8GcUsous6kzDD3X2EVWsznvrEuYBCjjc8YWafk6QQSBZSYxVJEFCsGkqphlRqkIxOSZwRVrmOYRaZ+u/hei5ZHKEoJkKaEs8GGGYRtVAl9WZ4/SNSb0b52otI37Pl9EMJ4jmybiEVqgSRR15aAXWOleR4swGmmFBqrWDPZkxPd/GGHeIwQCw1yf05QecRilkkDV1iUcPrHSLW15FDm1TSSBHI44jIt8k8hzxzyWSTLInJ8wRz6QpR4CIaReI4Jg1HpPM+QjRHUlREswiRhyzmoOqIpTqhLLK7s8O8XuXyxhKlQkIs6ZSsJvNhj/H4jKTcRCk1EQKPYHhKmiZkCKj1NcgSzI1bKJqBLGRImsFoPCHtnJD4LrPeMapuEtVXORnOWG038OwuBx++T3nsEskFhNiH2GOpvkxldZ1+r8P+/mMa9QayXqBcbhOfnyKZUG60ODo5o3XpWQwL8hy6nXPCTGI8s5GtKl4YMn34AYJeJJ72mB3dZ/3CFXz9Gqok0KpXqNTqHD78kPPjgL0Hd9nf20VIYwrJlOu/+iLAJ0aW/MBj9+ED9oc+j/YPccRvcmFzi/XtyzizGZP5lNbKNVqtJu5kQPf8jEgyaS6vYU8sBqMTCiULvVghymWm3ROsShPyHN0wqS9v0lAzzFDh7375ZW7fvv3nNwrfJwyzWVHRLl9AU/6cdC3LxJDh7OSQaq2BLAoo39v/k3hEf38mbufgPmc7e4t0d6XI1oVbT2bB4bOj86f4m8VTov45QZ4vtIHra5dQE4HJdExNlFENC71U4+0PPiDtP6a5tMpb+0MG0zmVlSssl9cYv3eHyf6HFFWRSnsF01SZZXWyNOO9b/43JjOfVKsyDTKqhkCxvkJo9yjLMZkIk3nCcO5xPn6M2YzIrRpKZYnmyjpxFDCdjHA6PfQwIvXniGlMLCqcHR8Rm01CP4JpD0MRmXZOGPoTSFNyRCBDCGzyyEFZv0yhuYE3HzEaDvHRCCYDEnUOgohgVPAHPag2F37KzoRg3CH1bLT1GwjFBsl8gD+fENhznJNHxFGIKOQk7oScnMS3cQMbUS8Shy5Rbx8h9kmTDEnOySWBeNoHcsyV7UVt1zBJspR4PiHyZmRJTDw+5ez0EVPHJ81y8ixDW72+kAV1J4SiTG6U0RpbYFbxj+9CZw+FlDgKiJ05armKoesUSmUCPyCMF/VQf3y2iM4lHTlNIEtI7DFx/xBFL6JaRURFQVZUJFUlmnsopSaGZZIkLu2rN+g7E44/fAPTtIjNOmmWkY6OsaMAsbxEEvmL6D8OMapLEAekgoixdhOCGaIzIPYdcqOMkKQ4s2P01es0Ni8j5CJ+EnIy8fFmLq7vY999E7XcZHlzmzhPQVIo1BoYhSIfnu0ync2oqibeuE9JherKJu2NS3z7T/6Au++/w3MvfQl3Nubue3cYOjFT20OQzoicObXtZ7Caa4h3v0MQhYhmiUbNIA5det1zosBjdLrHxpWbPPfyVxAlkc7hLkY653QwoTe4gysVuXj5OtPx6ElN+vZXvoarfRdJVuiNZ/Q7f0KrVqViqJQsDUmQyKIQJ02ordYBgSAOkUSBQqXOpa2Ek6nPbNBBle+iWxYFQ6N15Tr7736LX7xc59atRQT7aQ5VpVKJb73xnSep6vl8xuHxCcOZw/HJOR++9zYXmgWiZ5/5IaGZz0pVf3ysrfVjyDKaF67RWl75odd8VnT+FH+zeErUPyf4ePTi8tUbJFnK4fEJk/4xM8el0+liFIuEfh1teZsozLFdFVMusH7jBmgW995/l9D3aK1topkWoztvsv/wLm4qsXTzJbIcJKtIJAsIkYPrJ7z/3nts3X6F1FS5+swXuPfhBwwCkUazBnnEaNRHUzR0q0jnsEty9oDrazUe7uxyFmhkooQiSyiqynzvHQRBRFd1ojQlSWLM2jJ5vEgji1lOPOtjxwGeF+DPJ2SCTCKqxI6N1b6IIEvEozGKZiEWamilZfIsIp72SI8+Qm5sIYgykTMhjxxEq4JeaiBoBpIgkSsGGQJh5CE4Q8hShCwm8WbYj++glmqgaAiijLl8kcR3SYI5hcYKUuxiOxOSDARRZmbPcB0bwawgyRpZHJJ4M0gC5OoKgmoQj88g9JBLFaRSC73aolwsgFZgcniPLPTRW6toxQrebEriThajSbGPe/QRcQ5e7wBBsxDzDKlUI4sC3MExwnRAnsYEkoqoGiiRjxuMUZOQyJ4wHE+IWzdorrdZ3brIaOpyuNvk9MF7+M5kIZ9aaqKV61iNJaL5iChXiGYdxCwjtufIxTqyYhAnQzAbGMuXqG1cw5+NcI8e4acpeS4hSQqZpKIIKXqxSnN5FSf0mc9tLEWmWK5RrDVpVYo0TZFyaZXdky67Ryd0Oz2OzgacnXch9hlHItbGTZQ0J5x2SYw6cRSiSiK1izcZ7ryDfXwfpdHAKpQ4P95h8tijWq3w4qtfRTN0Rr1z2mWDWzdf5PR4n+7hY177u/97AA4P9p/UpEHgwuYm3eGYZ599hlHnmGLuod+8wSQJON57QNVSQZTIc4HRsIcYONQrJXJR4vr1a7jvvEt/PMRYXaFSLiLkAr2TPRR/yJdf/lVEUXyyhj/NoerjVPUH73yXoe2TGmXKrQ1Wkgw9mhL4Pt/4g9/n5uULXN5c+Yk9ogVBYGNjgysXTzmxZ7RY+cT+nyQ6f4q/OTwl6p8TfP/ohSRJPHu7jOM4vH/3I0TtAs1mmze+PiBOclLFpL5SwE9z+v0ezeUNGp0z+qfHHO3co9JoMTx8QKZXaF+4glmsUNAkMkS8JMfzJszHAyTqLCUJdUtla2WFR/fvUSoWEIwiOGPc3jEnc48ozXAHp5jTQ4Z6jlBaQvD6CKnAbO99bMdGNMpIkkReaqPqRfJpHzmyEciwtm9TqDQInDl+LpMEA6LxGaJVWbhlpSmBqJM7c8RSE2SVaNxBbW4iGQUEUSGZ9wnPHxHbQ/LAwWxvIJV1Qt8lTzKkcoVoOiJ2RqRJgFyqI8kq1tIFojxGUDUyb0YmqUhWBfv4AaKiI0gyU3dCGrgIqk447ZK504Wa18WXkOurCFm2mGf2bfJQRWmsI6kWiTNEAAyzhODNMBqrSHlEtbWEMzhj3j0mz3L6SYDX3QcB9OoyglGnePFlQtch9SaIZhXRLJM6YxLfJZuPIfZB1kBRkVQDd5IiyiK5PWbYPUU0KjQvPcM8ybhiGFi6TtF8Dm8+ZbjzHmK5jVWrkyERzUeE8ym5ZpJrJmgWmVFGrq2DkJMiI1llFFldeCwnGUkcoRbrVC/cZH70Ee58TLHWYNQ9Q9+8iCbkjE72cDUFRZZIkhS8MZZVZO4G9MYzkuIyF1+9ydFHd+j1+2RqkUzRUKMYVUhIgzlpljOZOrj2e+jFMqHncqFVYaNhIgg5GAm5ELKyvozdP8IXBZqlwpM0r+c63Lt7lyTLcez5E+e3j6PL1Y0Nep0TJsM+jfYa3uCQkp4z6E+oKgoFUeS0P0KQZKrlIqhgigYn3TMyzUHKIoLuAfcmPbRiFVNXaRZUXrp5hVu3bv3Ydd1sNnntxef4f/2X36M/9Km1EkJvwoVmiV966R8iKwq7j+6xVFH5hVe/9Ani/3H4UdMjgef9xNH5U/zN4ClR/5zgz0cvXHJBJEliwjAkzkRWVjexJ30818Xr9hFLLUaTKY7jIUsiy8srgMT0+BHvdA5RrRKRa6M3VmhvXkYVQdN0bHuON7cZDEfMhxOUPEOYD1jffo48z6k2W3hZzPj8mMlkxPLWNuuNVWa9U2pCjWFs8+BsTGuzgb5yjVZrlcHeR+hzl/HcwRudYBglTE0jL9YJZj0kSaRcalJb3aK3/wBTK5Dk4JsVovmYXFZR2tvo7YtkcYgU+2RxTDQ+gzzDam+QRgGiXiLt75HbAxBlokkXJBm5ug6iRCYpKKUGQhYRTX1AIvXmGJmPbGjIegGhUCVLEySzhj0Z4PVPSOddFL2AYlpIkoWkWEjNKnL7MsrqTURRIB6dIJeXkAoNksk5kmwg6RaCJJPHAd7ghDyJSFOBSf+Eef8EtbVFwaghWSUIXOI4IUtjpFILqbpCGoVopQZSa4NweELQ3ycZn5OlMUqljVhZRlHURRSfZShL24sOdVFCUAtopdriZiBwkPKEi5cWDUu1epO5YZFkEIcRuaKTZymR7yAbZYQ0JnEm5FlGJsmQpWRpgkCGbFqkSNiTAZJmolca6OUqoyQiC11SeYM4CDl+8D4Xbr+IfbZHnod4nodpWVz+8hfRrSKn4znL2zeJtDJBnFKt1XGnGb5sMeydQjDn8pXLzHUFL62gNtbIfJdUFjDrK2xsbvLKi4sO6vOyjKobbN38AlmWPlEQ+5h8CqUyeZ7h2jN0wyDJcjTd/L51pbO1tkzDEnHtAb3jfS6t1LhQzKmvrbO8tsHO3gEDJ8YgIolmxAjkegkfhVTS2X75V7HKVRQS1lba2KM+guQRhiHT6fRTJUC/Xx7U931aK+ts3F5D0dQf+gxXrz/D+Pgh8/n8p276+rTpkY+NU37S6Pwp/vrxlKh/TlAul9GElP/23/431GKDXBQRgF5/wLVyk0cffcDJ7gPiikN1XcWLEsJMwAsD0qN9nFEHoXkBkgi9aKKZFpFW5ODRXfzVDQTVBElCURQarRbp5JQwTTnoDMj1PVRJYDa3aW1eYdx9H3s4pqhJ9KdD0jhGMQu4mYQ993CPT7EufZGpG+GjI1SKCON7ZElCFIZIrkfm28iajlZfwZuNmVolwiikWKgwnA/JgDR0URsbyMUaqT8jiyNEo0ieg6gZxNMuoSgQzIfkik46G4IAoiwjahaCVliMMrkT4lkfpVBBX7+FYJ2RuWMQF7KiAgJFPUUKHcIgolBrY65ucDbvExkl0jSCKCHDBkVBLjVQqstImo6QpYiqhWgqZN6ERJRI/TkIKSCBKBF7MzSjQOaPcQcnqPV1RGREIUMko9peQhZSvNmYxJuhmlWi4BxZNzHXriEvXSJ7778hlCME2UCQVbT6ClZzk9npQ7IoIJr0Ft9ndYVoNkRRVWzPIwsWilf9wZDm0gqRUiLKRURypHITtb5J4LkwG5HlGZnvkgU2kqSQzvoIkoKYRaBohJ5DngskQbCoa6Yxo/Nj8iigubqFUiygCDmD8x1O3v4GjWqJ27duMDw/or26wcuvfpnX33oHQdJprV8gFUQOdh6iSpCVqpSrq4vSQR7ROzlAKC1hNAsEUUrizynXKlx84YvoRYXhYECxVODy5gp2mKHIClax9kPrRhIlLCnncG+Hre0ryKJAGHgY1uI6Go/7rC01eebWTfq9Hi3J41d/4WUMw1hIeI7OKOAzGBwRWQU01SAtttheq/Gnf/j/IxB1Lj//AqVKld7JAcPhkMvrK4ihzf/7f/5faa9uPNFA/1gCFPhEB7rvORwdn/DyL29Rq/8wcf5lm74+rT7+1E3rZwtPifrnBA8fPuTNd97j/mEftbpCrb2CqsgcnnW589b/lfHJY1w/QqZCYM4wKw0qqxvMB2d0HryFaJSobd1AlUTaZZNp94iRnxKi0On1Ka5eRpckItshdqeMeh1KlsnQ9qkHMdduPsNpr8fOzkNks0SzKTHtHOKEoBYrzOY+fpzjy2ViN6Qc+4RxxLR/ghNDplhoq9fR62sYpkHUPySenKNIG5Dn9I528MY9xucnuJMOie8hSCpKqYGkmmRpQhIsatmSVUIot4gijygMELUiqTchTxMkWUKzSsjFCrlaQDIshMRDK1xCssoE4w6J76KXWxRa6+RxhDvp40Yegu+iCjmyoqLqOkIcIpoV8jwnz1OSNENQDHIkBElFEkXSJCQXQLEqJFlCFthE/hyxUEMSRRAEsjRFsqpIkohoFDGWt4l9h2g6oCjLyHoL3bQQZJVZ4BFNu0hWFdEoL0w3Qp8s8lHqG8ilJnkSIeQpYW+PzB6QSRqZPURqriMqKtF8SFhuoG3cIncnlFYv4/g2wd5jBEUBWaW4vIWomfjTHmkcIdfXyHOBPAnIBRlJU0imp5CL5L6NLMmk3owgdImcEYKukyERjs8xSbFKFfwoJMnBKFTQDZH15SbP3rqBem2DIAj44M536PdG5JJFludMB13qlkJ9+TrdzjnFtXXENKCz/5CEDFPRiUIPbzIitieMspSqoVAvrvLB3bu8cGmFF774Akcnp3TPj7l45cYnyGc8HPCdb/93MgROj444ODmHKGAWZmxcuslkMsDIQ7Y2FtkGZz7hytbqE3nNZrPJdDplOBwyurLJ0ckpb97dxVAK5KFHu1rAWt5GiD0mXRdZyBHyhGalyFnX53jos3F7ldX20hMJ0MNv/Cl5niNXlj9h//nR8UIa+KWXXvpEZzZ8sunrL2pf+Wn18af42cFTov45QL/f53/+g69jG8u89muvMR30GU2nHOwfs3f3fRzXRdIrtG88i+95hGFE7rgkcUziTUlyUAUJyNGknFTWCMKIVFAxzRL+bIgqZHiORxAGOGfHRO4crbrMaW/I8HSfcsHk0tVbfPtP/pCzk1NEISNEQyy1SJwYIh93OibJRIxiCX/aw8tlnOkIefk6YrlFMukSu2MkpYXe3iSwR8y7h2iFKoFvI8QhZmMVjDJO/5h0fE6agVooI0r6otlKURFkHfFjfW0E9NYG4VCAYI5SqKHIMqE7wWhcIE8isjTBXF4lz1Myd4peX0a3KiiKTCxKyLpJXlkinQ3wB3t09+7hjc4QCm2UxiaCJJJMu+R5vugCj0NSb4ZilRFlBfKcNPLJQg/JLBOPzpGLNUSjRJan5M6McNIjSBNkq4Jk1clyQC+SIeLPpsT2BEEvIaQRch4jGBZZ5JM7I5L+AWngIDU2EOTFn7VcbKMKCVHgIrUuEfYPQDXI0xTBKBImGYZiIMgObhAhyiZ+Osfr7GEUSmiVFigy7rSLqBfIFYM89omnPZLJOblVhixBEkTKzWXSyEFwpwS+S+ZN0Ze3wB+RJy6RIDEYzzCKFeI4IkljRL3BZDImn53TWFmjj8Rg94DDhzvMnIBy54xCpUmxUsNJRZI4ZHx+TJZEyCLIWgFV1ZCtMrIkEYgJUeSyt79P92QfYXyEHE5JRIXUdznvdul1uzzz/EsYlkX39ITX3/gWgqzx2i9/Dd0w2Xn8mPv3PuL4rf/OvHfKtevXuHL5MrIosf/4wQ/VbH9w9trzYiRJ4NalTWRZQhQyVq8+TxhFC69uQWDaURhNZ6RGmVorQdFUJEn6ngToNf7wv+6SJQFfe/GrT+rN7aUlrl2/zr2dfQ73954okcEnm76iKOLPXn/jqX3lzyGeEvXnHHme8/a77zEIZa6+8MVFw1GhjD4ecHDeIzXKEGWEqET5gnS8wQmxPcRNY6TER9V0ZF0l8+b4YpnBzgNix4Y8JXRsQm/G8WxAJusL/Wd/TmH1GmptmTjLmc/n/C//0/+dG1/8MlEY0338AUJlldK1Vyg2V9AFmTj0mOcq/skjEntI6kwor11B0QsgySTzIVkcIuQJaRSQqFUkvUgw7YEARcOgduEiEzeGxPtebTQmT0Iy30WyNERFJ09C0nkPBBFJFCmUypQLOq5vYgdVJFVDUE3S7j5p6JFlMUKWkeUQjrrkSYBiNPF6j4k1CySVYDYkF7qAAGlGPOqC1UTZeh6lUEOIHLJ4cS7EPqnvkNgDYt1C0EzyNCaedMljHyHPkA0LIQkQgjlZ4JCHNkkWIhYapFG0uAmQJESrSuTPcEIbzSwQulPEyEZLiyiKhD0dEjoZabqYlZZUA1EzyRHI45BElhG1AopRIJZkUm+O50RIRhEhjckjH1lRETQT35nizWZokUN7eZVYlvHdKaIoIkgqWThFFES02gqyWUSrrqCoGlH3MYIso8cOot8nnE1oqmCmMyIk5GKZSKuRmRW8HPJsTKlYYnV5BdEb8fjglOLqVbZu3uDqi7+A+t/+iD/+5utMJyO2b79CpbVEHEXYnsfe+28RhwGXLl7i+PQY15kiyiq5P6NYqWKWm5Al+JMeQuTgmct896NdisUSrg9Hb75O7+gxm5sXGPS7KKrB8194iVK5SqFg8crLL3Pzxk3ev/MGzHssWyKTk91Prdl+ml3ksNfl7lGPvaMTrl++iCyKT9LoAL7nkyUxQyfArBokcYyiKE/Wsut6C+W7UMZ17CdqY4vu8w2GozEPdnZYWV2j8b0o/OOmr1Z9ndfffv+pfeXPKZ4S9eccs9mMs+EMUTU5OTnG8QM83+f45JTjsz5ioY6pl4gQkdpXEKUcUyvjne2QZykCOVkak/o++uo2ilVhartIjQqiJBOePCS2J4RpiqBoKFYNuX0JodpCrS9hyCIpAtMjh/2P3ueZL7zEjlUiqayQSSqT4ZAo8EgClywXEAtVvM6jhTFElpHrJdJZjyTwkZsbGOUmeeDgdQ9IA49wdIZMilHZQhfBHZzizMYk7hxJ0UinHYIkRvXniIKAYJSIZn3SaQc1C8GRkIoGjZUNEmdEHIfkqokgiCTjMwRZIfUdfEUl9V3yJCIanpFJBlLrEoJRQjbOSP058fCIZD5CLtbRWhcxqksIogBChlpuksz65HlKGgcE3T3SwEMqL1LR8aQHwRTyHK21jl5bJ5oOENMpVnud2PdIRYF41iPPM/TlyxAHxIGDtryNVl8iPd9Dscr4jkN09gghjRGrqwh6kbzziHjWRSrVUYwCgiiQZhmCouGf75CnCYLAokFuqY6kFQinXaLAIXZmyLKAkMbIqo6UxczdOYXWOsmgS5RGCEaZZNpH0C3kWhmtuQ6ICPMBhilT37zIrHPAdqvNalFGU1XefniAZzQxV9YQkhB/cIwlJlhbNzmdDgiOHjPzNjFWjpB0i0ajQaVWZf3SNXq9Pgd3v8P1L/4yYegR2XMI5kizLnXrCofOkDjOsRrLpJoORhHNKjIb9oiznMiesbe7S6QUaMs1rl17kciek/sD7NmQ8XRK5cIGj096HJ4PqBYNtjbWKZcrvPDSq4yOHvDKczcwDONTG70+zS6ytbzC9StXuH/UoV6bUCtZDHrnT0a9zk4Omfc7jNyEtDOgKiXsHR5zYRPK5QpJEiPICkKifEJtDBb7X3j2Nt8ZnTI4uI8zOH1yA3H9ynM82Hn81L7y5xhPifpzjiiKmDsuw6mNKlewyg1G03PmQhEvBUHTURUDLUvRFRHFLCMkEWFfJfFtBMUgsYfk7ow0uoRtH5EhkYQBkmaQyBokIXK5jVrfQNJMBKMMmkEsyqRpQrG9gZm5GFKGMx2BZiGoGiEKkllElg3k6ipxGJCLEuJ8SArMJwOy8AiluUWa5Qj2iFQAxSogFEpgmETDEzJ3RvfxXYadMwIkBFHCXL9FLop4p/chGxAr6iIKzQ2IAzJ/hlisfK+zdkZFFCmoIn4GSeKj6DoiKZpZQdBUMjJQdUJ7hNzeWlha6kXSwEWUFMTqKlnok4zPEBUVQZYW0TwiiAqCqiGIixRtmiak3pQ8dJGn5yTOiGg+Qio2kEtNYntGHgZIeYqiG+itTfLBCUapgWKUyUIHIXQQ85xcNRBlFWdwjkFIae0Ck2Efp39AHProcYik6AiRTzzuoBTq6O018kwgcKZkWYJ/fA9RAskokcYBiBKROyX1XQqtDRTdwFAl8jRi9OgM7AGxWiARZKI0B0VCtqrkkU8uK+SRS+zNUciQJZEkDNA0hdidU1lqkGsKiqERTbt44zGCPyfNc5IkITNMPG+XYDYEP0bxYr7x+tvcefdDLl/eJs0Erl+/SaNe494b3+CN//yQVJTRdJ1mpUgq1ylrMuVSCU0vopdrhKKOXqoxHnQ4f/AuShoSeS6RUadYsBgNBpyUKlQsA0EpsNM5ZjL1uPSVy+iWRRSE9Md97IePuX3tMoVCkTjNMQyDVqv1Q2vuR9lFCoLA1sVtBqMxjx4+5IVnbjGze+w/+JAgShgNOpiFEknYo1KtcOHy8wyCBOd7x5VlhTyJydP4idrY90NTVG5fu/JDNxCfbV/52UYdT/H5wFOi/pxDURSc+XzRUCXKdIYT5mFGodJALdbIBAV/fIpVrpF6s8XM8fAUubKEYFXRJHExruRO6B/cQ6uvI5tVgmmfoHtAPDpFUhZRliDJZFGApBfJIp/QlxGSgFq1QigpGNUSve4OSRyjllqgmUTzEYpZQinUQHbIc4gGh2hmCUnTcQ8/JItj1OYF9OYaYp6RJimKVSObnSMqMnGaIRlFpFILQ9EJohBBEtHalxYNTKcPEFSTPJgtdCZFCbWyhLZyGc0wEdMQe9wjnU2YT0dEQYBgliiYFUzTJHJtgs5jkiRa1JcFGUk1IU0XqepKizQKQZIR1AJJFCHOR0h6adG8FQfkkY9YaiFmOdnoFEHWECWVdNYnz2L01hbqylUkswRJjJglSPEcWVJxRl3yMMDQS6CY5OEiUxA5DrmQ4wY2uqYgl8uIsc9mq8LB9BTbz9BkGVFIFt3K8x7uXoAQzJCMIuFsQDofknsjUFQghyQmtheCJmkckGUJ9ZUt8ixlvPc+aRiQxilSNieNIpI4IUtSFEEmcceolRVyq0Ya+IhShlWukTljnNGAPMsQrRqldpvlVpPqYR/v9IwwA2vtBma5DaGNd/qIVCuSISHUN2lfuoo96nBw2ke1yiglm5JpIkoSxcYq5eYKxXKVoqGw+9E7vP3+O6jlZS488zLD7jnTs31yb4LbPcEbdSiubCMbZdT2NrEo4Q3P4OH7JFuXCcYdVtc20KOUIFi4SBmmwYqxyfnZEYfHJ1za2vxMRa4fZRcJUK03eOELL/DWn/xvRNMuZSklHJ7QPesgWlVWKssYweK3bH7PKevj496+eYPcn5MnAVbhkz7zT2rR9dIPeUV/1vnAUynQnwf8TBK14zj8i3/xL/jP//k/Mx6PuXbtGv/sn/0z/tE/+kef+br/8B/+A7/1W7/1qfs6nQ5LS0uf2PbHf/zH/Mt/+S/54IMPME2T3/iN3+Df/tt/+6l30T/TyDOqRYOz6YBpKCArBqpeQJYl3PkEIfYpLl8gC1z88wcgFxCLVfLBAUoek2QR1c1bRPMBzt47yK2LZIjIZgWl1Caz+8TjU5KjD8CsooYupCkRGXJ1mVkwJXdtbFlADgOyOCR2pwsFK99DNgoksy6CUUSQJMhyNNNCb29B5OGNuuTeCEnaBNkknvYJurvIwRTdKOIHPrlZRay0kSWZaDoktkcIkoKiF0hLDYxam2QcETkzRFVDL9ZQW1voeUjY3WP0+B1ko0iil0AyyCMX73yHxLcp1VssbVxgcPiQIHIJR2dIsgrlFmq5TRYHZM4YgQzRLJLOByTTDoJeAFEk8+aIukkuKqS+DTnIRhmtuUbmjEExkBQVudwmE2VyMUC2KhBMiYaHeL0T8sglzQXIQhRRxrIsxMDB2LiJ7zooech0PCWcD8lCl0wvIS2vkZWaJHmO1DbR7QHBtIt/+hDJLBLP+hBHlDduIBZrhPYUVVgQUKqXUa0SeeQxPd0hmQ8Jhsc06xWSRoPx8S6JPUbIkoVMa7GOqBpIVpksF0idMWmakRbLgECcJMiaQZqLNKo1dMOELKWwsk0gFQjjGCkMyKcD1OYGUpYz23sXP/DxMwmpvMx4PqMi2Aymc04+fAOxssq1V/8Oqm4Q+i698zNQDLxEJnVmeHOb1cu38DKZVJTRh2ffE6gRUY0S5tIWimaiVJeJ+3scPfgASZb5wqu/QDA6Zdg5odZofc8iEmq1FuPeEQd7O1xp/2hFrk+zi/x+GLrJ7Zs3nkS+nufxJ6/fobh8gXK1Rhzd5qN79zg72KHeXqFSrtM5fYyUvsd2u0CeWxzsPvyJBUh+3Pk8lQL9/ONnkqj//t//+9y5c4ff/d3f5cqVK/yn//Sf+Mf/+B+TZRm/+Zu/+WNf/+///b/n2rVrn9hWr9c/8fib3/wmX/va1/j1X/91fv/3f59+v88//af/lF/5lV/h7bffRtO0v9LP9NeFOI5ptpZInYTUmVAya/SnQ5zwlGx8iuC6CKrxvcYhDeIIxARheoqVuzx79Qpn/TH68jb944xwNkK1SqBZiMUWaRzjOyNySSWNAuQ8Qy5WyeKIZD7E3b0DtTbVWoPEneINe0SBj+A6qEYVQVTIBYUocsncDqk9XHTEKjppHJMLImq1Tdg7ZB7HKOU2oghi7C0iWK2IkGbIZgkKTQRNR0Eldm3co7sIigaBg3/2kDxwUAp1kvmAVNFwdt7ESWKS8TFS8wJSYwMjz0CUKOg60fCIcHSOP0wQai0QNcQkREoC8tAhGkYk39P1hhwEmTz0yKKQTA4hcMl8mzT2SWWNtP+IeNZBqS2jVlZJI5dcMVCtCmkak6YJgiiCJCFbZURDZ3p8HyHPkUSZbNpdmHTkGZFuIkoy6ai3cLPSDARJxw98xGIbrX2JPEvIjBKKVUTOIXMnZMf3ybwJRqGCloW48zlSfZ0UCQoKgiQQJRHJpIteKC9mu7MISRAoVRu0W01mfsTo9BC9uYZRbRO/9w1SIM8S/NOHiIUquT8Ho0hoT5ACe9GoqGnE8z5Zfok0jojDkNSso5SqpN4UVUhIyMllnWAyQBBEJFFCNQukUUiqWvT7B9izGRM/5cr1LWzHZXreZe7MsWdzMidCREJNY8Z77+LORki5AIKCrMhEvkOqFtH1Iq7tILguRatA8fKzHLxxiuSOkEWJpaVltDx8QpaabpKmEedHB6xcanHj6gs/sp77w3aRf/68T4t8+/0+qmGxvLaBJC1sT2/fusXhwT7jkx2iOGXSOeCF5Wd49Su/BPBTCZD8ROfzVAr0c42fOaL+gz/4A77+9a8/IWeAr371qxwdHfHbv/3b/MN/+A+fXOw/Crdu3eLFF1/8zOf89m//NleuXOG//Jf/giwvvoYLFy7w2muv8e/+3b/jn/yTf/JX84H+mqGqKo16Fb2mctrtk6QOydl9nCDETAPMWnXhKdx5ROCHxIFDY82gXS9Q0Qo0my26gwmT8xMcLyBVTZIkRleTxZ94EhPP+sjlFoLvIAgQOzMkq4pcWyOLfNyjDzGTTWJRYh5AXmiSOSOCLEMQJXJRhCxfSD5Ouqi6TpqEGJqKUq4QZDJpEiNJMgIZ5eULRFMTu3cMcYqQxqi6QeZPIdFBFJCt8sK60iwj6RpxGBLHIVnsoVWalJY28Fwbd9IDrYSxdIks9BARyAXwfY8YmcyoIOQpcZojSCLIGhk5UrGJUaiQepNFbV3SycMJWZoiGgWUxgaxPSaeD0AUkSyH1BmjWjXk8hJqa4tkekacZ4tmL3eCaCzGq6J5lyj2FxG6oiKVm8Tjc2SriGgUUOsroJVJ/Cn+bEiKRJpkiLGDVGoj1dYRVR0EiVxRQTERRYE8y5DrK4SRh9M7xKw0ESzw50PSKESQVNAMxDQmFyTiDIgSVEvGscdk3R2CcRMvzvCDALm3T+5OkfTCIsNi1YjcGbKkIKoWuaTgz3pIwZx46tNav4ikaPijc6KJtLiBSSJKuo4/9/COzogCF8GZE3s2CjnpvMfpB99C0oukcYg3mzIYd1AKVYI4Y+yEOGGOj4FZNZDKNaYnD0FJWWs3aNQ17Cjj0cNHdPb2ybUKRqWJpGh4voeiGbjOnDyUESUJMc8529/h1sVVNrcucHR4wPhkhyTLSaOQphr92A7pn1Z689Mi3mq9QaVWx7HnzCZjnIrMV778KtVqFeCnEiB5KgX684+fOaL+vd/7PQqFAv/gH/yDT2z/rd/6LX7zN3+Tt956i1dfffUvdYyzszPu3LnD7/zO7zwhaYBXX32VK1eu8Hu/93ufG6L++G561nNYWlrmrDdk/epNwlwllTR6B/cxBQlVkbD7Z2SCTMVUIA4QjQL7jx5yenJKVlkhE2T0UgPJLBEkCdGsQ+zOSNMESdYQDBFBkkFSQFaQFA1z5TJ+5DA4OaSwcW0xy2vPEAo1JEUnmQ2I0ghRMZCEHKHcQJAUojAinPRolCoEs0XjlFpqkMYx9ukuOH2S6RildRFB0YijALW4+PMUkxCtWCP36gjkIGjoJWshRFKs4p4/JsoF9MYaaRSQ5zmSKC06uBWZcD4mjKKFEtqkR+ZOiJubpHFAkmYocUQ8OkEkXZB0BqnbJxoek3pztOVtUHUyf046GyIoJlp9HWv9KtGkB6IEWYKsl4iGJ0SijCAIZFmGpBdRjSLFahV33EcuVInnI7IsR0oT1NYmYnmJwB6ThAFJliLpJdRSnWR0jFyokuU5aZahFsrk5GR5DlFCEvokzmxxYcgarj0j9m0wquhL28hGkRwRQRRIBscEgxNyb0zsz4infWRNJy4uoxSq6KUhUZbjzyfk/hxBKxJNO6SBRzI5QxBlREVByDJ0w2DlwjXal2+DN8FsrJHM+rTqNTSjQOj0CQZn5GYZwawiV1dRapD2dglmI4zqErlqomomVJeIw4DEmzMbDdBSAccPUA0TUdaRVBM/CJm7M4ovvUyrXuBLl68QzYYcHR0SSTJ5EhHM+sRRiGyWcUQJOQsRwwDRczi9f4cvP3+DWqNJtd7AsefEUcjp8QFXly6wvb39Y9fd90tvdo8eMJ3biHnGcrPCF1984RNE/6MiXkEQKBRL9LtnXNxY/kSj108rQPJUCvTnGz9zRP3RRx9x/fr1TxAowDPPPPNk/48j6t/4jd9gMBhQLpf5pV/6Jf7Nv/k3nxDA/+ijjz7xnj94nNdff/0v+zH+xiAIAtevXOb47Fvs3XsX11rm8jPPMZ8M6Z2dUTZ1Un/O4aPHKJJEpVhgNhpQ27yKo5k4wYhSe5XcqNE/fAiCiNzcRJNU0Etk0SNyowiKjoCAWm4iahZkGbk/A1lDLNTJ3DlhlCARLchV1RCyDKVQXZCFqCJoBsnwmFxSkfIU++g+cXODwPcQBEh8B3KI/ClS6CIJOXp9GcRVxNgjtUdksk5gT0lDl3TcRYxdclGm0FxDkiTcwTlJ6ON29pGKDWJ7CoqGohrkGbiDY0RFQ9QLSIU6eZoTIRK6MwRZhTwjjUOS448I+weIWhE0A0mUEc0yilZAVHTk6iqyUcGLw8XvoBjkor5w3BIgdceIVpU0cBBFFbm6QuqOyH0J0yygmmWC0Tm5MySYdhGtGnHok006ZKMuuWqAN0NIE0RFQRJyoshfdOojgrFoxsqzFEGQEGQBIYuBHKW8hKxIJHFK0ttFEEC0qmSkpM4E0SgiVVZIA4csdMgkDalQQVu6RF6qk6UpZn2VOEmJtAJh9zFiliBXVxEjDxQNVTchdMiTBLXSJMpTQtdGRqDebDEGdE0DRWD/9Ai5tHDXsgcdsiwFWSUMfZTyMnKxilUoEk77ZHlKrJVIM+gePsRaE6gub1JrLyPJCoEzRwT8+ZjJdIKShejaIf2pQ7G1Qp5IiM1VMlFFssf44y6iWSaybcwkYPviRRrNGnfe/i6qqrG0to4oiEzGQ5qmxNryEoPB4CdS9Wo2m1zPc9x332MuQCbKuNHCbvZj5bKP1+jfRMT7VAr05xc/c0Q9Go24ePHiD22v1WpP9v8oLC0t8c//+T/nlVdeoVQqcffuXX73d3+XV155hddff51nn332E+/x8Xv+4HE+6xhhGBKG4ZPH8/n8J/tgf00YDAY82HnMZDJlMurTP+5xsrdDqVKlVi6z1qrS67jU26uUyxXq5SLTWMAo1fCTmL4b01hZJXImhIMj9NVrFGpt0iQmC2xiWUIqVhd/rqKAUqiRJwFoBkkSIuoWWqmBmMbIVplgfI6qKKi6SWiPEVUTUbOIpz2yiUc665KbZeRilTSJCd05smpgbr9AmkRkkw7h7JzK2kWc3hFEHnmhgaIbRNMekX1EKijkSUIW+WjlJqkokyTxwnyjUEUp1MjyBEGQSbOUbD4imvXJAnfhYKUvBD+IfbIsQamtkecJ6fCYwtYzxNM+YZYhldoomo5QaoOqI8s6WeBAniGlEWJzC6m/TxYFBN0dYm9KFroYhRKKZhKNjsh9myzLSYUc2SxDaJNEM0aDA9zDD0CUEYpt5GKd1J2g1LeQVJM88hAKFcgSotmAXFIR9CKSUSIjIwtd8mIdxO95duf54kYnS5ALVXSrgDfqobcukOcZYXcPqdIGQVqIy0QBqTcjiwNEchSrjFxZIhcl0vkZ5tplCqUG44N7BHFAbpSQRIEsiVErLYxSnSRwib0ZBHOE+hbTzjEFUyGNA6r1JrKmMz95SDKfU1raRLeKKLLI6HiPOHRJQ5+4vsqk38EedEh9G6PaxrAyEqOEOzgk6J8jFZtYlRAljpkePaBZMlHrtxGcERN/TH/vLk4s8cLLr/Hum68zGp1hrlwhL9ZIkoTcGSHkIWaxxNbaKr/+P/wPvPXG69y782f4kytoikRRSBAEkXfv7/7Eql6DwWAhMoJB88IqsqKQxDEns/EPiYz8dUW8nyYZ+nQE6+cPP3NEDXzmHeBn7fu1X/s1fu3Xfu3J46985Sv8+q//Ordv3+Zf/at/xe///u//RO/1Wcf4nd/5Hf71v/7XP3L/3yS+Xx3Jam1QXd6iXF7FCTMgo1AqMjzf4/DRfcylS9ieTxCENFfWELwe4XCI0ztCzHNqloaq6eCMmT96E6XUIk1TFKtCNuuS+TZiuY1eqhLbI+LQB9Ukj2KSNCNGJIsi0jghE6T/P3t/FitZdt13g7+9zxxxYo47D3lzzprJIiVSokRTsuUR7oYFGB5e/WQ/GjAgQ7ZgwIBh2QbcT/3Q8IvQstW22wK6/Umfvpb1aaQ4DzXnePPevFPcmMcz77374SRLVRRLEqmiVZTz/5ZxI07EQSJi7bXWfwC/jqXBqXUQEqQTYKsVUTLDqtRxai3S+QgTz7FcD6IJluXgt7tUnNt4ZIyiFar3CBGM0d0dikJT6WxR8euo1QTllaSs1XhAnkToNEaG68giRWlF1nuIymIMhuj4DUye4m7fwdu+jbF91LyPla5Qqyl22MVqbaGzCKtaw3FcrHoXpETYDki73AvnCUYXqNUEHS/RyRIZhICk6D9CFznGvkoRz0DltHZvEKztMn/yFvl0iU5XZEaBylFpjN29grI9RLJCVtu4zTVk0CCbDVCLMU7YRCQxxXKKFYSl4clsjFqeYnSB09giT1cUk3P0vI9wXFQ0Y7kYkWcJTn0NK+yQnr6NyiKksACNtBxsN6DIIqQQoHLS3oPyIGYgnY0QWuG4Lm7YAqcCqsDfOMCur2O8Clq4SOkSnbzGLGzQsKBmVqwujpC2C8shXr4kdAXp+IJsOQUDMpmiJ31c28XxAvJZD4PCa6xTYNFY2yJdzcnmARjN5OwhSe8BDd8mtA1XX3gFoXNqRKwHBrXWoCUadPav8ujomOV5D3V5jyJVuK6PyhbUGk2atYCVKnfGn/0Ln+Pk7jf49MtlpOUb9w5ZyYDN3b0/kavXt0xPeosCXMXJ4Qm50jiWpBn6LLLiD5mMfNgd72AweJ+F6TPL0D+/+MgV6k6n8x072vF4DHznLviPwsHBAT/2Yz/GF7/4xfe9B3zn7nw8Hv+R7/FP/+k/5R//43/87r/n8zl7e3vf1Wf6MKC15ktf/Rrns4zrt67x5mvfQFSaHDz3Cl5QoXd+ioymTIqUpQzJtIslHVS0ZPTgEY5OMVqRrxaMBz2MtYtV62L5dcgjitWYPI4pVhNst4JOphgxwGRxKcvJEoo0wnb9UqY0vSSblTtXjCGdjTBGY2lT6pFVhi2gsr6H7YcYVdDYvUG1vYFTxOSWQ4pPlidgLC4fvE2epjgyxhSKOJmjVgvsnZsEQoDOEa6PKsqYRSwbu7GGU2uioilqusBpbVCptUimQ4iXmJqNVlkpO3JcdJFg1TcAiU6X5Th2fIoTNPBaW1iNdUw8KwlklaAc+QtJevmQvH+M29ok2LqJrDTJFsMy/zidI22JMB7J4JRKrU7Lytm6eYsn73wD2WqRJTGWV6HIC0R7H/IMIcBqbpCtFpCkCK1KpvVqhnADssFxqWOX7tMu2rC69wWsoIplexTLMW6ljnGrFDpHChtUTrEY4lTqWPUu0q9BFpEvJxhpYbW2kNUWQucl87xSw3Ec7KBBdX0PlcWQLJAYlM4xwRoiqKNVgVE5Qkjs+hqFW6WYDTGtJq1Wl1defpHFbMpFo0rvQrOMFdX1KrVWhyBsMJuMEZaL0ClB4FPELo21TWRjiyyNWeu0WPWPmR3HBGu7ZFmKKjLC9hYvf+rHSOKYulWwuBjywtYastKkTsCDs1NkpcXzn36R4ekjLnvnePUGi/kFrYrNnY99munZQ2azGZubWziuT71e5+6Dh6zkd+fqNZvNeHB8zjCWmGpAe30f1/fIkpTBuI9YxTw4XvHKi7M/1e75g/CdLEyfWYb++cVHrlC/9NJL/NIv/RJFUbxvT/3GG28A/InC1r8dxpj3Bap/6xpvvPEGf/2v//X3PfeNN974I9/D87w/c+lWv9/nt37n9/g/v/RNKp0dzvtjehcXNNvbLKZjvKBCq73GN1/7Auf9BaZ7DVPrYLk22cyisDyWsx6e6xLst4hmQ1bDc7I4AQ3S9pBKobMYYbs4+y+jew+JDr/KuEiRlToCgS4ydK2DsJyy8C0ycFy0KsfSJppjkhXCtrFcj8XoApmnWLU1Fv0HWKLcP1ZrFSbTGcnklHg+oViNyJIUp71Fdf0KOluRZTlozerykHQgqezcIlWy3L96VVSRks5HCKOQXg2nvY0xYIddqtJmeXYf41QQGLLRE5z2LtKtYHkh0glIzt/GpDHCC8lXU4RfwQ4C/EaXNE1QWQJBFenXUKsZCEhnAzzLRsYgFgPsoApCY8YnBOtX8Lb32bxym6oNLhm3rl3lydEh4+EYZQzKqeI6HiKek0dzRNiiWM4QlkQGLTDl/4FROWo1QVaaiCJDxytMHkORoKeLMsDDq+J2tjF2gHE8LNtFGEN0do+8d4gRElMUCKMw8Ry7s4/TXMPEC7JZHyElIlxDG4Wa9xDyCtpyyHJFvppgLB+rvYvl+pgsxtIORhpIF3i1NkQjnHxBY+fjHJ2ccXF2SnN9m+3CZ/b4FM8LyI0k7Z1gWZKDlz9N/9HrLM8f4boOCAvXcWi1u+h0ges41MOQaneLKM2wpcHtbDCbTvF0Su4IQpHz8gvP8/C0T7XZ4cnZJcvJkMbmFbZvvECBIFfgNJtce+mHkI5DlqYYY97VFidJ8j25eqVpytHpOfbuC+zuXOFbL/2WecrpieLo9K33rck+LHyQhekzy9A/v5B//FP+5+Jv/a2/xXK55L/9t//2vsd/4Rd+ge3tbT71qU99V9d7/Pgxn//85/n0pz/97mM7Ozv88A//ML/4i79Ypto8xRe/+EXu3bvHT//0T//pbuL7iHfeeYf/x//z/8X/eP0xfR2ycpsMV4r+MiPXoJZjhhenRIsJT548IQ03sDyPfDWliJaIahvR2EA391klMRYaNb0kFS4iaCCqHUxQJ08S8vkAy6tiSYPlV6hs36aY9Sn6x6jVGMtyMNEMk0SgFE5zE5yQfHhSZj/rnGI5RMXzki2cpeWeVD51ybIdBvdfo/f4PkUS4ZgENXxCPhvhtDZLhu9shPZbBLsv4F/5OPbGDXSlSb6akU3OMX6IbO9gd69it7bJckU87aOlgy7SUu+rMrTWCEwZJ1ltYfkhlhcCBuFXIc/IpxfkWYZCsDq9SzQ4Q0kHr1qHaEJ88g7L+19ATcvQD6k1UkiM0bj1Nq7ns713wPbuPvVGE50sePLN3+HeG1/j3puv86Q3ZDKbIylwwhbScSgm5wjLwa6vgXAwyRIVzSgmZ6jZJSZdQRqVXt2WjUjmyHyFI6H94mdp3f5htC4QdlmEVBqRT/sYrXG6+/jbtylWU0y6RKcLVDQFx4ciwSzHuNU6dhAivYBi3idPlqSLCbOzh+Tjc0QeoeYjhC4QaUSxGCKKBCuPsPOY9PIQtRzgSEO91qDT3eQrX/oyyWrO8698DK9SobN7lYojMMmSOCuYLZasVvMyfWt6Qig1oQOeY+PYFovLE6qu4PpzL+KqiIAcO5mxOL1LMTiiU5HUTMSPf+JFPvaxj7HRChkPLrlxsEMlm3Fx/xvMe0+w8tIrPgxrzBLF3bffZjmfcnJ2zoN7b7PRruH7/vfk6pUkCVGUUA1qfHstFAKqQY0oSkiS5EP/DXjXMnRr74MPF+MFs9nsQ3/vZ/izwUeuo/5rf+2v8VM/9VP8w3/4D5nP59y4cYNf+qVf4td+7df4xV/8xXc11P/gH/wDfuEXfoFHjx5x5coVAP7SX/pLfPazn+Xll19+l0z2b/7Nv0EIwb/8l//yfe/z8z//8/zUT/0Uf/tv/23+0T/6R/T7fX7mZ36GF1988QPdzf6s0e/3+W+/8n/QUzVuvPoyzvklTqXBdHBOkmRMFwndRoWGY7j/zjeY9HtU/Q7ognS5IHdd/NYWBoGsNlk9GpLFU6p7t3E7e8STC9LVBKQNRYbfWkPmEfGjr5JOeiUZitLFSSdLhLDQxqCLEbgBAhDGgGWjp31E2IA8IR08xqk0sL0Kat4njWf4tTZ2rUM6uyQ6foedVz6LyGOcehuVZTjrB5gsKa8FSNvBrTbIUGityJcDhFdB+vVyZxyPUEX+lDmukPECdEEyG1HML5FS4FRCjIB8OUQGdZxKE6My1LyP1mUnjsqx166QPnmD5Pw+luXgNjqYPKOY9lDLCcJy8XeeB6Nwam10ukIYheNYWL6DJRVCF+g8x1nbx+/uk077LOdjlrlBOHXcsI1lBFZ9Axm2SU/foJhfYlWaOJ09TDxFx0ssYVCLAcKysTAEnodT8fE2ruM21hje/ULpw97axq2E5BqksCiWQ1ApjutDMketCoTjU0QzLK+Kcmxsa4d83seky9JQZjknm/fRizFpnqDDBmAh611IFph0hnRtCBogBDKPqUgFjo2nVuTLMSdvfYnZxRFXt3+YB4fHrOKUee8Jg8sLhBeCUyFbTolHl1SqVSqVKmtOSnT5iOXlKY21PTwVsbb1EipPGb35dRytuHnjFt1GlZduXyWLV3T9Jp/+oY9xeHjI8fETvvy11xnlLlGWMR0fk6cpUudlaEtwnWgxx7YFuwfXOHxyTliM+dzLfxPP874nVy/f96l4NsvZkNa3da7GGJazIRXPxvf9973ue82Lfi+eWYb+r4ePXKEG+OVf/mV+9md/lp/7uZ9710L0l37pl95nIaqUQilVZgA/xUsvvcR//s//mX/37/4dcRyzvr7OT/7kT/LP//k/59atW+97j8997nP86q/+Kj/3cz/H3/ybf/NdC9F/+2//7Z/5aBve/4V2HAdjDL/+G7/J6TTjhc98gkpYZzKbczG6RGUp09mEySol2twCIbg8PaJIY6yw7B6pLsvrSkl6+Rht++STc0zYwVQ7qCJDaIMwGlS5E0yjVRlCIQTScsmXY4yUNK5/CpMuiSdD/O4eMW7ZkQ1PyMdPkEbjb18FDcX0Ap3luFtdWmtbZHmOqDTwGx0saTGzXNJxj/5bv4+sdcGrIfUCp9ZFqwIraFAsBkS9Q+xqA52tUKsZWoGsBKh0iXB8MBohy52pUXkpv3IchCpIZ5c4QmAJC+VW0PMRuV2+xmhFPjoBJLJSL6cCwkLWSt2yziKKvIZKI6RbQbR8zKyPMArhBiAkThBCMqfVWS+dsaZjkvkM41Wo1VokoxMmZ0egCpy1awjPp1hOSjKeVpg8BeGSnd/D23sRiYFK+QNuVhOMUlR2nsO3BI4jaB88x2LYY3r/y8SDHtge3uZ1gkaHOI4wRlDMLkl6h6zyBGwXWWlhV0KwHKTtlkXTKHScIIsM3xIEaxuMZ1OUKTXadlBFSwdTJGSjM7Inb+Lsv4BaDEnSBEtC0Fwji2JkPGVuch7djRjNllwkgo1WnUIbVkmGDjcQXhW/1sQOQmwvAKNIlhq3EhIEdWbHx1xGSzqtFvde/xrT2ZRsPqZCwnk2oXX7Bn7e5WCjznqnzRe+9GV+7+tvMU4txoVHpgztdpskOWP2+A2MyvBqLYJiSnwyoVWvsbFTY2djA9igPxpz+/btdzXOV6t3WC0X5HmG47hUw9oHunp5nsfB3g5n88n73M3SJGJ0eY6MJuzt7bzvt+TDIn992JahH8bh4Rm+vxDmvZXuGb5rzOfzdxNs6vX6h3LN936hh9MZg8seyWrFca9P6rW58bFPs721yXI65ktf/CKp38L3Q4Yn91HagBBMjt9mGhWEtz5djlmlIF1MEJUGq94R8eUh2fAMv72Ft30DoTXFcorwQ5xaG/XUz1tPzqnUm1TaW8yGZyxO79PpdKnUahTSY5kqFpMhWA5mMUIlS5z1A4SUSL+GzlOyyQUsh4Sb+1T3X8Kvt9EqJ48j0tWU+aPX8KTGa21hvCrxYo5s74Jl43b20EVGMTkHrdHpkmxwDEJgN9ZLtnbYRs2HCD/ECIGalIxot9LErtbJ5sNS960KjO2ikghZaZb3ly7IFyPssIUV1HDXr5ENj8kuj5GWxArb1LavEQ/OCLq7KGkRH7+GYzsEO7cJKlWE7RKPe1RqNXS8ZPX4G2htqN/8IYwxTA7fIFMFXnODYP8VtOWyOn4To4unNqlVjNbEx68jnADbr2B0jgAqjQ7a9hG2g1WkuMUKr1pn1XvMfHxJnqQ4a1fwdp/HD5tIr4LwquTRkvjJa6SDJzi1DuHec2TzIXmaYOsCIw1u2KG5uYuXr1gs5/h+hfm4jyky7NZ2aayyHFMsxzhhm8XhN7G8CvW9O+A3UMYgshUiXVCpBDTsgiKNSBXcePlTpNM+/cGAiWhQufIS6WJENu5BMqPSWmM1uMCKBty681wZZPGb/z9e/9LvYbwq7asvsr5zhVajUTL3Z2f82HN7/O3/69+gXq/ze1/5Bl+/e4iubpBLl3FUYAcVRDQlsA2Hb79O/8kjmleeY6Nd56U7N9jZ3KDd6RLW6kTLJeMnd/nLn/00eZ7zK//jN3l4PkK4IcJyMCrHZEtubHf4G3/pJ74j6/t3Pv/7vHU6BizGixWFNthS0K5VAcULu20++5kfRQjxfvLXd9BRfzfkr2+998lCv29H/a2/HT54h72afPe9/6S/Nc+Y4/9z8d3Ujo9kR/2/Mt77hQ6amyzmirR9nUiOmR/1cVzD2WBCnOawGtPe3kdUO0RJhhIWi7N3cGwLnWdIaRNfHmG0IVzborBd8tUE2/HJx+foLEJpRWEsJCDDBsKpkC3GWEEN4dhYYQu30cWybdz2Ds7ogknvlOlAsn3rZZx8gckT3HoXLSV2e4s8ibCDOsILsSotHNvD1Doseg9IlSTcuILjV7CEIXA9VipDuFWMV0VU2ujZlGJ4gtPZAzfAqXYxWUwRLcgnPYzWpaEKAhnUsIM6Op4j/SpoBfUNkievIZUiCGuYsE0RLVDLCflyjHAroHJ0kaKzHOkGSC9ECIlWBjW5QGcrnLUr6CxiefYQo3KKZIllSWyvQj4+x3Nd2LqGzjOSaZ/l2QNEtiIZnSG9EDteoZMVaZqUqVNeDYVBp2WXa/LSqYynTmMkS3Qeo3SGEBamiDFBFWyPbD6hGD/BEQbfL+073eYOFDl2Zx8BKKUxeVoaolgOor4OozOEdBC2j+VXsSp1LJ2RLybo2SWqWiW3BHo54eLkATpZ0rj6CgJBMR8iVUpl8wai2qKhMqbvfJHIq+C2N1HYGJUT+FU2r94mWwzRwyesb+0zODnErnXAr2F7HWwp8bqbrIoE6TuY5YjABrta58nd17BmF0hVsHv7JWJlUau47Kx36WxsUqt4mOwmcTTg7LzH6UWPQaTw613czhZHp+d0NnZRRcHh2RMsnVNZ20efn7HWCOm2mrz80kuE70mkeu94uAzlEEjbR3gVxLfiJnXxx9t2zr/BEp/tnV0s20IVisViSkjC87dL6deHTf76sAxUnjHHf3DwrFB/hPD+L/QdXn/zLVKrwtpGkyhOmCmb9OghTe0yCSqQLHjhR/4iqyTj7OyM+WxGoQVG2Miwy0Z3lyTLWK2mTNIlKonJ5qMyICKNcXfuYNXWENIGv17aXC6nGK3KLhiQyYKFZTHsHaKljd/dQ1Tq6GhBJhwyLbEcD+HXQBXoNMFdP8Dym1iVWrm3lhZUGqhoBtLCqnWprZW78unhNzE6I01tjLGoNNaxpgNMGqOjGXn/MarSJp+X0jBh2wgZlkYiQYEM6mSDI7LhE+y1faRbwWQrpLSQKiUaPCFLE9RyWtqg2h5WtYnT2sH4NUy6Qi0GFLNLnNY2anRENjrFqtSxu3uoZXmwAYU2BlEojFYUeUY0OifPEvIsJV/NQRUIv4rd3i3TsYIOKjdIr4qxbYrhGcaAUYpiOS5Z2F6IXo7LvblXxdm4itO9gpQ2ajmgiOeoaZ9iNsBEE+ztm8haG+PXYdKD5RSnsYbQBaqIKdIVwk0QdoCJZlAkCFuSLQZInVPfvIpUKaltMXnr8yyEotHZxLNAjZ4gwzXSSQ+vEuL6VfzWAXlWxn8mSYbX3cap1IjGfYTtg21jm4IsjWm11xhNzmjWQx6cHNJqbpEXBjt00MmCdJ6QTnq4KiGejah11licPyEZ92iub+OG64Q1m52d6yTTPo5O2OnUWd/aIY5iBscpbz08IvB92psHXIwPCWwHpQ1FlnF+dgpeE2FLOt0WlxdPSC2f816P0eDyfYX6W+Nhx3F4/a23sRqb/NVP3mG1iiiKHNt2qFYrHD64+4eK6LdGxcYYXrp1jbOLHpeTc9JcUaQxrZrPi8/dodvtAh+cXw3fe170H2eg0u12mU6nHzjOfsYc/8HCs0L9EcJ7v9CrVcRkEeMGDR4fHZGJCtu3P0bv8V0cWzIbT1jOhjTOL3hyfslkOCD0HeTWLqKxzWwyJpcOnW6TfDAg0waBQccLimSOU1vD9usgJPn0ouy01q6i5QwVzVBaY9k21u6LSNen6D1G+jVkYxvHKuVW0qvirIX4qwVx75AinWGvXcVubj4t2quSdOT4FOkCy/Ex2pAsp+RJhFpNySbnaK9OsZzCaoq1nCG9Kn53j3w+Jj1/gFFZOepu7eGs3yR78hrZ+AxMQayKUgPteMhqG8sLQGuczg7FYgpZgXACVHIGFRt/93l0FqOLFBYp+XyAcHzsehedRRitcVvbiFoXvZph+SFu2ETqDJWsyBdjcCrYzU3CvTsYIDt/iFYjrMZmGeOZrlBFTtw/wg6bCNtBKQ1eUCZo+SG2tFHRlOz8HkU0LR3etm5gd3aRAlA5stJEISnO75NeHlLtblJEU7TtYlXX0W6A0UNMkeB2DygWI7LlBXp6CYCaDzB5jskyivEplrShvYYlJWI1xq6XwSObm1vk0Yw0f7m870IhTUHzxqtk2hBdHJP0D8lW0zIkxQiMlFTqdUBgZStUNGeRzJjNZtiXPfIiJxkcM+9dQA52tYlVJKjlCNHZRlpVUscltms4m3Wsahvt18mFTZKk+M0NpKeZDnusbW7j+h7Cdlisxhgh2aw3sKUow1wEXJ6foOyA9to2i/EQjKERhtiVBho4Pztj/+D6ux3ut3bPwHuKqCQMw/d9J7+9iH6nUfF6K+TKRotef8g4lyxywdfffshZ75Lnb9/CGPN9IX99kIHKcDjkdz7/+3/kOPv7cXh4hu8fnhXqjxDey+ZcLObkhWY5mZBJj+7WLkG9weziMdVaA9fz6B/d5Uu/8SsYt0boW1RaLcaDHuvXt5GWYNDrUdRC9m68wCKKWY6HxOcPsI1B1FvISlg6jmHQ8z5JvCSfXpT7UcvH27qF5VXR6RIZNLCbW2VR0RqVRhilkdKlSGLyaIxRCoxARXNEUYBdBiQIwCQr8niGUIrU8Uo3L20QjU2EG2JWC4rBMYlTQTgefm0T2/JQyYJiOMBurCHQ6GhKthhhpIVBks/6CK8C0YLs/B5Odx/Ltsu0K8tGxUtkkWEQFKsxOllgtCkPEdJCSge7uYlwPNLTt0AI3L0XMHlSdqS2gxuEVDyb1eUxuRug4iW6SFmNe6UFqBfirl1DJQvs1hZerYnIY+KLRxTxkmIxwVlvILwWWueQp1hBHSp1lNGoi3tIawfLqyC1wuQJ0q2Qj04pxqdoVeCv7SEcm3R0RiWoEdYb5H6VVTwh7x8jnSpWvYuI55hoDhhMkeJ1dqhc+zgiXZIPjknnE2Tg4VmwubPLjWvXCGt13nn7glqtju1b5HadeDJAx3OiaEUezdHJAtfz0DrFbm5iG8P61dsUGmaPvkH/6C6NvVs4zW1kfQMvF2RCYklBxTHI1hrzJ29jKh1MfRMzG5IqhQzqVLdvMFgNYXRMuP8ccaEwiwmN3eeYD58QLxfl3rjIqVUDAs/Ftmza9ZDBfIotDJfnJ7T3bxPPpwg00WTAzvY2k+USz3WZzJfMphNsy+bw4Tu4+ZKdm69+VwzqDxoVv333DZ48fIcrN1/k5p1X/9AI+aVb175vedHfbqDyJx1nP2OO/2DhWaH+COG9bE7bdlB5ymSe0tq5hhACx5Jsrq/RaLa4uBxQJAvm0wl7tz/O9sF1MIbBaMxkNMCTEk/FTC5OWd/YYX1zgwezS9RqCG6I7QYIaeF29pGOS5FGqHhRum9hQNq4rXXcZofkYoZ0POzaOknvHjpZYhYjsmSFcUNMtYlVW0clC3QyR68q2PUudmMDDOhkTrEYIJTCCIlVaeKtHyD9kHzep5i9Vhb0So388hFa5Zg0Rjo2QuXIsIP06wijKJI5wmi89SvYfgMct7zObIBaDJF+CJU6xpLY1Q7FbEBepO9KnvLFGGk7OFu30PEcvZqioinCttFphFVtIoVAaU0Rz3G0Qqot8sxFFyn5bEgRTfFr7dK/XBW4jS5aF2XmcmsHu9LAqZR749m9L5FnKcwGWJU6GIPRC/RyhM4SdBYj3UrJQJdWmbzlVEiHR+SD03IUvnWLsNGCPGZ5/pBiOUIvx8jWLtUrH2f+4EskZ28ihjV0NC0zx9E4fhWvvYXQOXZrA1TG6uIRiQQTT3n+Ez/Kjau7HD96iI3Ca7RwbIfJ8JJsfEYqCjy/CZYm0xqyFV5nl0p7E53HZHGE5QZYYRNt2SynU2zXY3BxQjQf460d0Ln6IiwvWV7cI5kPCQ8+Th5HJOMe0rIJGmusHdwiHtVYPPgKq3GfpNrCcg2O6xJrQ55nLKZjTDznhY/fxAg47Z1y5eAqF1/8fU7vHzI8H7FIcnRR4KuIg90tqlcO6DSrhJ7LycN3eO3zv0GaxCAlaxubfP3th4SuIFnN/9gi+q0R+bePiithCFgsnQ64AdVaCIj3jZDPLnqst0JOzp+wvrlDUeQ4jktYKwlEH1Ze9Hczzv6wmePP8P3Fs0L9EcL74vBu3iGsuMxPB6xf9THGML08Q8czZtmSx2+9A9qQjy8YHHlEyym2ZRNPe0TLJY7rEFRrzE+PePTFOcLkzM4OkZaDEoJiNcVtbOC0d7AcF+YjTBphVVoYU6CXU1QWk4/OyZZzjOViTEG5ZDXI9g5FusLyawinipBThBOQj8+Qfg3hH6DzFIQgn16gkwhZX0OvphgnQC+H5MMjimSFFbZxujnuU5OT6MmbpIPH2M0tLK+CG7ZxugflCP7N38BtbmCtXcdyPIwpENLC37pJPj4hO7+LrLaQtgdCoNMlQjhY7S30wkU6Dno1L+/BrYBWyEodncSll7cx6GSJ5XjosE0x6TF9/AZS5STjczQCf+0KXmMNPb6AdIVVaWB5IabIMGiS3mP8/Tv4nT2iyjtoM0dnEUJa2O0drFoXadmoeF5GZ876GF2Uk4rJBXm8oBgcIcMWQlpYlsQIiV1psP7cpxjc+yqTh9+g9sMHhJtXsaQhHl+yvDhELQZYQQ1bWvg7t3BcHxXPUFlEHi0oFkNMsUIrRf/0kC+spgRhg1p3G+U3SQqD3TRw/A7J1GL95i6FVkSnMUGzRXjtJbLFGFRBNF7iOA5CGzLpEA2OqbS6BJZA5xnx8AS7vUFdSNblilW2hOkFsoixdUZtbRPLdomnQ5SwSXKFMxugF1NExWM6ukSlCQ/vvoFejHj5YJ3trQ3yPOf04i5H0wlpklKpt6jFhqRQ5YHPEiSLCV3/Ki+99HFsKXGTEY6UOLtXuXr9Fn6lWpKvzp/Q698ju/sGH/vkj/yhPe53HpH/wXOWiznjxYorN19kuhyzXK7eHZ+/d4R8ZaPF8dtf4Mtf/TphvU0Q+NQ8C8932ap7H0p61nczzv6g6M1vv+8/7eHhGT4cPCvUHyG8n815l41OG1cf8uTRPZaDcy7ufo3JMiYxFvGqdPtydl/E2b6OVQmxXYt8sWBx/CZ+fY1ifQ9tNIvFjGg6IMsVXmu37IgdH2NEScLyq6VhiRegLh8hLAdpWTA+ZhUnaLeCSZZkgycYaWOH7TJeMahj1dfKcItGF5GuIEvQqynJ0TcR0kK4Qdlla13+GDgexfgY44Vl1xxUUGlS7pmLDGdtD7e1SXzxiPziLtbtH0N4FbKL+6h4gV5Ncdf2S6MSnYNllxGUXoC3flCO2Z0Ktl8BywPbRU176PkIoXOM45U2of1HWK1dhGUjvRCKHKvaQsUz9GqCbG1jVxoURYbT2iTvH6KVwt19jvDgJTACz6+Rr6alF3ihEI6PDLsIUzA/u1/GaCIQWYyREivcRwblZMBogRU0sFu75LM++eUhq+PXCXafw2t0sVwXp71PEc/Q80tyXRBsXaG9vs3k9CHx4JT8/B2yzatlLnhrnbT3EC0EdlBDWjYOOb7lUiDJlmNEnuB6Lp2dXVhcYhmNrLawmussl0sqnke9UWO4mmM31onnU5bRChUtCRxJ4Ptk00vy5bg8aKQxUlqsVku0E1BmlGa43XWEG+C4PtliRF4suHPnOovZhM39TSrNLg+Ojljb2ufi+CHL6Qg3bGN7AZsHN8nShOnx27zxm/8bdjKhs7bOWrvJ0WnBf/rl/4219U0cx+L+N79EEqxz48YtHPuQwvK5duMWzVaLwdkRVd+lVqtz+OAdRJFRv3KH9Z0r5KrAxDFhLeTaredZLJaMTu7zqN5ga3v/OzKo8zz/jqPiPM8otKHbbNKfDymK/H1/9ysVhqMJ0WpBZ+8WVWWIcsMqihmdX7LmFfzEKz/1obCrv5tx9v+s6M1n+HDwrFB/xPC+QPrRjDVrxVvf/HX6gwmxU8fevc7axlX6b/4+heUg/Tp2o4vKE7JRH+3WMNV15oMTUmWobFwF28Hy23gGglqL7OgNiskF0q2gLZtCUOYoG42VrZC1Fo5fxQnqUNsCN0CpnPT0LlgW2vJQeYSlFWoYU0zOkX5Y5jlbNqLWwURTlMqx8rT0mc4TRFBH5CkybCNsF52nGA3kCTpLSS8PyYanyCDE6eyQ9Q4pTt9GB3WE55dSpO4u7uZtimhM2j9CGLDamwjLBstBA7bjIMMOJl0hvRAd1FDRGKvSRs9HWJUaIBFCYvKUYvgEoQu8Sp0sXZS+2kEdo/JyPF6pU6zmWLUOVrVNPDqHPAWvCkETkcWkg0cY6WBh8JrrxL0l2dm90rJTGISQWK0d3OYmCDBFDkYj4zmWH5JphcmiMgTE8aAoMKZAIjCWh55dEAdVxlJiVZugc+Zv/TbRkzdx/QoCjW0yRKWCdMpc7bCxhi0UaZphdzZxXQfRbtKsh/QfRUwGF8S4rNsVwvYaxXJCNLwgnw6o790hefAas4dfw7MkSmtGJw+odGPqB8+ztnsDFc1wbclbX/sCll9FyoLNa7fZvnqT2WxeWsQeP2B1eMr1K/tkaYrdaVFd2+b07IRktaC9c504WrIYHVELXK7ceo7lZExyfhez6LF75xXaW/ss4pS+rNDyKrjKZruzhq5t0e2uc+fqNi/evMLjk3NiCY7tsLF7hYtHb2J98ytUTYISNoPZkpPxO++mXLVqAQf7e9y8/TxOsaIlIsYfEEE5nU6/46jYcVxsKVhMpziWxLad932f49WKQb/H9o3neeWVTyAELJcriiLHsmz650/oj8bcMeZPXRS/23H29yt68xk+fDwr1B9BvJfN+cL1PX7+//Z/J9m/RdVtYq9dQRjNhRCE+y9BHhENzsiLouyEa2sEYRcVL0rpjypIo0W5M3Z8CmGVGmm3it3cRDo+Op6hl0PU7BKvtUU666PiiExp7KaP0BodLxGOiylysvkZRhfk+Wk5QradsruulvnIbmsXE3ZJz97BGINVbSJcD7IEHA9RaaKXY4xWWPUu9toVrFqH/KnvNZaD290vx9JCYIWl3WiRRuhkBX4V2w3Q8ZJ8fPo0DSsAr4ZAgLBR8+G7bHCjFQgb4fpQZGSTc4TWZVRlkaPTFU5zHZ2UJDGVJTA4gjxFeEEZEZkska094odfKnXXtleGkhQZslJDr6ZIp4LMl6iZIp0PURd3qYZ17PYBs2EP8hjp+GWXvxqX4R7SKu8vqGFVWqALdA4aQFrYQQ1hQT6OyGYDhNHIPMJ1XIpsBfEU4ftI20dpg4mGmPwMv9Ehm/eZRhFOY4NGt0t08RgWQ+ywyfbLn6F//IDlcsZyeEEx6+MKjScUbreL41eZmhhpSW5+8nMYv84bv/3fSYyDrwSTUZ9OvRzxWo5LsZrj25KrL7wKKieZPWKZFGRxxCpT3Lt/j631dR6cPWQ4HFKxDFGWYnshtk6R4yd41QqX73wFFc2Q0YRg8zqf+Iv/F4ajEdkqx6lU0SZnlsfI3gWt9S1kvcN0vuCVl14kDKscPTlh0n9CmufMBud84qBFt7XO195+SKN+he761rspV/3RJf1vvM6N/R0Ugk9+/GOl9/d3kDR90Kg4rNVp16q8/eBNXrh1jTCsvvs9NsZw+PAdkJKr12/9wWvewyyX2/sfGrv6exlnf9jRm8/w/cGzQv0RxHst/bTWVNvr7Fe3ufukB2nC7PwRKk0wRiGkTTLu4W5cRQQNkBaOW8Gu1qmu72KkS1FkiLBDkcZkFw+xa10kYHkBVm0NZbsgHYTtYQcBMpmSzscY2yWa9gGBVWtjt/fI+kcAWPX1MjZRFyUj2/JQiyEUqvxcboCsNDDG4O7cJus9pFiOsRrl4UB5FSwhsBobZaGHsquvNNGrMcXkrLQF9WtljKYBZ/M2ydHXUfNBacSyeRNhe5i8lHqZ5Zh8coHOopIYFnYwi1FZcC0b8qTUFWvQ8QKBxBQJOo0wyZI8jct97mpGuPccwdWXSzvOxZDo/D4mj/F27iCcClIYcHx0Uh4WhF9FSov44iFSWpjFCM/kbOzssdAuYjZFLSYkZ28j3aBc9Wcx2E6pv7Zd3J2bZchHkWOlKyyjyolIukQtx7jVBq4oiJdDwnqd8LkfIo6WaCHRCKw8p3Ac8sERDacDix5S+ARhnej8IbMnd0uL1FRhWQm5sDHhOuHODUS6xM4X7N+4Q9ha5+zwLms7V8iMTSJdOo022zdeYDyZsRqckg414e4eNho7X1Esh3jre8wvT0jTvOQhLEZYUlK/+gqPRiuG08cs51OUNlieT6Qcqo02WTSn0aizsb1Np91mcAns3eDKrRcpioLxZEqltYFfqbFYzbFEwTxeIISkFtSYLMrdcKPR5JWXGiyXK2aTMX3mPHfrJq+98SaFcOm01wgqAQBFkRGtYo5P+zx8/ISOjNlph3zqk59gfX39D30n/6hRMSjCfATZFqvF8n0jZDdfsraxiV+p/qFrwofLrv5ex9kfVvTmM3z/8KxQf8Tw7TrNy4szLodj9vdeQD08ZjnqYbwQN2yA7ZNlMXhVHL+KFmDZNqgE2wmwW5voQsFyilqMyZcTitUEWW2UTluTc9BFOX7WOU6tTTF4hE+O095AVdoUw0uMtLA7VxDSQkcznNb2UzOQKWreLx3CvBCTLCh0Tnr6Tmkh6lbBZOTnd9GLAcW0jxPUUfMhUO5HyRMMBiwXLAfLq4IlSR9/E5MsMdJC1iBPlojhMaZQFLOL0lKz0nxa6OxSM6xLuY9w/NLEpciwO7s47d1SmrUYIdwKij7Ctgju/AXywSHF8KRcDwS1ciwvnpDlOXaaEqztYdXarI5ex926jbv7EsXoCCeoYTW2kZ7H8p4mfvx1nO2b2EKgZz08z0F4m6ySnEyUTmFWUMcYg4rm5a4cg0mW6HSJMeV4XFoOwqsi/Cr59JKoKLD9CqrIUVlMNLykGB4TtDYQQUhr9zmKySl5EuO1t1HakJ91qLuK1DiM7r3G4OIxuBWEZeH4VfI4YuZWKNIUoxROUCN3Ai7vPUbKB1y97bGYjqnWO1T9KputOsvJOWDobGzh5hHxYkgtG9Fq1BmRYHU20VnEwy/9Bla1RXtrj812jenSJlotyKWPqDhcbQSsra3z6OiI+eNj7MCm223i1TvYfpXJImI+HRCGLQCOjw45vRhQSQ227ONYkuxbnucVh+VsiMS8ZzcsKIqc11/7JlYy5Te/9E3uPXyMkQ4njx/Q2dxlOhrR61/iNjdYP3iO/sPX6W7tMjEVfu+PcOT6oFHxC7ttfuKVv0l/NP5DI+Sdm6/y9bcf/k9jVz8bZ//5xLNC/RHCd9JAikqT5RffKF3KVguscJ327k2i6Zh48ATtVMHxUcbCJCu8oEp08QhLCrz6OsvBKflyjJr0cNo7uJ097OY2ejnCFBnx6dugNE7YwA4bxPM+meOByYkvj0rHLa1LdrVbRTg+Riv0YoS0XQg7pQtWusAohYkXJfPWrSAsD/IULWOMtJGuj4mX5YGiUkf4ISpdYkuBwJRpWEGIiQpMHmPV2pgsKS1DpQCVIYMKZCl6OUYnS4rRGSpdoeaXCK+GtKyStR4tsNf2cbr7CGEhbBervobOyp25vnxIevYWlhdi1TdQswsKrTBpAkKCtEgGR0jLBi8oR/thG5POMXkG9QCVLSmSBdIPceprhFs3qdYa6OEjdJ4zu3hMgoMjNCRzsssHWLUuWO7T+1JlFOhqjlEZ+fgCU+9iWTbC8bEqddJpj9ViSDE6oajUENGYZqONkAJXGFqBTf8yBaeK7VeokuNduwPLPt16m/7pY6ygQW3/xXLSUd8inQ9Z9Y6xhCCd9njwxV9Ha02erJhOxhzdfxviKd0bH+P6wU2u3nqe+ahPEa+wah32rxzw6PUvka3GTOOCSneH+WSObfv4nke4ewfL83AbDVx1Si3w6NY8qo5gOThDVhrcefFjRNMhi8UE7+oLOEEFx7HwPY9otcng7BBlDBs3XqTSdQi720ghWExG9E8e4DUlN/ZeYvr4CVGak946QCnFZe+cz//+FzBFymd+9LN4gc/xOGU2HvOVX/l/I+sb5NLDSJt2c0CrUcPOFly/+UPsH1z/Yx25/qhR8Z3vEG4BcNa7/J/Krn42zv7zh2eF+iOCD9JAHly/QadZ553LGY4XYIDp5RlOe5vo7CFZcgbSKotPHpFfPEDNLrGCkOn9r5BpnoZOdNBFBkUGSKRfR2VR2WHOh+SzDBNNEdJBWS7kCdlsQJHGSK+KTCKK2QAhLKxqA4xCOGW0pfQrgMEICzMs7SK9vZexqnWK/mOs5iYyi0vXLiRaFRhkuW91AlQcoWY9jMoobBedxuUO/WkSlo5niKCBXW0jshilx+AEFIsBJovKMXTQQAY1KBIsx4OqwNt5AVROseqD1ggnwBQpllehAMxqivAq2JV6aXBSpNjt9tPdeQeBRAlBdnIXg0GrHD3pYYocrTIcYciiJcLxsMMWmKJM8HJ9vGabdDVlNb3Esmz8zjbab5Rse6XQy0npCFdfK8lt6RIVz0vmuF8rvcyrLiLLUBcPsbyA1vVXSFZzdB4jJRTRgtXFQ2S+olar0666tNpbDM+OOD27QJ+coKtrGDcgmo+RloVmgpYu2q0gkxnS8Ykml8haG7fSIGi0kSiiXHH55AG3n38RIQW1zhqOLSjiKZfDMcavIbTCqnVx1ITl/bukyzl+d4+sOqFaq6GTBVVbEFZqpf69e4CvNOtXn8f1A+pHp1y+9U3S6TmOvY0SAUWRsJoOmV0cYQU1Xtm7BudnLFdLGp01bL/KoHeBNVjQ3dxhMLikqhYMHr/N4vKYw0cPqTguP/ITf5V2d43FfEY0H3N2coZuH2BJgdRPs9Avzpg9nvCxj32Mztrmn9iR64NGxR/0+J8Fu/p7GWc/S9H66OJZof6I4IM0kFEUs7V/lfPRa1yM+1jCJ7VilFLk0Zz04iHSCSBZQJGhhcIO6sSzPoUyYNtIr4rV2YcsIhufY4oMq7aGdD3czh6F46OjBXkyw6QpTtDC4IBfQwob4biISg1v6wZEM6xaB7tzBZPHZCdvkV8eguujZpfoeA5Ko/qHKClLfbBXQ3oedn2dYnqJjmYYM8Oqd5BhG5PFaJVj19YRtlcSzYzGWC52Z5/o/heQqynS9ZFOFeFWyWeXkCXIWguvUqeIFog8QkiHIk8weV4Ga1SbGK1R8QJj2yXT2vVL7XN7G2/tKvmsT3HyOm5nH2/nDmp2iYoXYHultakuHdGMNqW+Ok9Q0QK/3sC2LbQGI8D3A9AFKl7S2tgkWdthORmhJVQ3rpKnCXlRFnxcH6ddSuWEX8UOW8h6t0wH6z/CcitgWZgswaqvIYoU7bfwDCDbxLMBNg56OmRnc4u1azfIpMdsMmJ42SPFwm92qYfrzM+PKLTBMRkmGmNVO2jbYznug86p7tymUm+iowmWyal31hFFRrKac/boHuu7ByymY9Y7bXrnZ1w8foe1dotRlDBenrFKEoJKBaUKsmTJdDwkmvaRzQphp41JCsLuFs12l2U8xfV8kJKgs41VOWI1GdPubpLFC6aTMfPpiFjBfDzg9S/+Jtv7N7CKjPNH97g4fohrC2qb18jtgCs3n6Nd9dDJhG5QY95scvMTP07taYdaqYZcPHnMtKjQvfIc03EflUTUak1aG7tMzo+YjXpUnu6uvx+OXGtra3zmkx/jq1//Bo/f/DJaSJphlb1O/SMzjn6WovXRxrNC/RHBB2kg8zzDr4bcvnOHJ/+f/0ocr9CWR55lWJZD/eqLGAREMzI0CS7MRjhrB9ga8uEh0nIRRYzOE7AdstEpru0i/W2wPXQ0L72vbQ+rs49xK8igiVPfQIzPUIshAoEdrqEKhcmzUn/sNBFhm+T8HezmFtKv4XWvggTphxTjC1Q8Iesf4nb2EI6DsR2K8QmmUJhsVRYhL8Cpb2IsCz3vo8bnyLCJzmLSi/uoRRkkYrTCqjTR6QqdpUivgu5dYG1ewbUsHCGJ5ynV9jaLUQ+TLDCVBlgS6QXoNMGqNhC2j7BdBDYgsCpN7Fq3DOtorqOVQs8HmNUEq9pG1joweoIaHWPvvoBUBVIXaFVqp/PhKVKI0td7foljwWI5I8Urx+IUsBhgSZciTVCraZl57dcwOscJGuRphI5mWGGnPFhVm1hSkAyfQKIoohmL47eodTfxKgFRb8F8YuMUEdevHODZkt7JYy4vzjEImu0OsyiliBOwbIJKhXjcI5mf4G9qvFobXeugVYbf6GCT09i/xWrco9FqYXs+J69/iTe/9nk8G55/+eNUd/cYDvq00ynJ5YT+g/vI5jbGcqhd+wRrjQ6Dd74IUpMrzcXRI9bsnGD3Bmvbe8wHZzTDgCCsMZtNOT96SHXzKus72+we7HLRH+G0t1i/+Qrf+MLvkK9mpIspp+98HSng4skhSjjcfPVTyNWItmvY39tjPBjy5smIe49PyTWY8B2uXb9Bq9Ol3ztnVYD0AhZpjt3cpOI4OF6V1XyIHVRZphGXF+ds7ex9Xxy5BoMB79x/wCLVaANSF1RdwXO3bn4kiuCzFK2PPp4V6o8IvpMGcjIacvedtzh+fMhwkWIHAegcwjbe2j5OpUG2GLEcXaLiFcVyitIFVqWJMUCRYjd20WlpDaqVQjoeorUNRqMWQ3SWkA2fICwbq7WN9GuoNELoIaYokNJCIbDCLmp4jKHsTrFsrKCOsJynkYw5Oouw/BDyFOmFeNu3EUOPfHiCLhJs10VmKcKr426sodMIlAIhKRYjdPw0ECSZ49h7qMU5Ko5w1q5gt7exvDomXZBnMcX0ArvaQgQ10tEZlucR2JpifIrb2sILquTjs3JMHDRReYaO59i1ThkM4ddK68t4jlZ5SXxzfIrlFJPMSktPbRCOi3Rs3OYWxXSAsO8jnYACTR7N0GmEXk0I1g+Ynz5CLQYYIRFqjhEOWRKhPR/bq+N7LnZQLQllQoB00NGMePJFjLDxD15GSAu1GGJWI5TlUEx7CK9aurd1dhCtbTKjEbUuanRCXmTcf+2LPD47p1CC2aiHLQx5vU1eGIxcUm1v0jp4jsu3v0Q0m2DSGGVNyaY9sGwqtQa2bTNbLLEdj2pYxxEwazYZTS84fPMrBGrF9s4OoVWw/vyLRL3HXJ4FmFoL2b1K+8otBAJhOeTDY9IkYTq7ZD4dYzWm+L1TPB2zde0Oy9mYB699jbOzU1oHLzIYj0mTFeH6Hjv718niiLWtHSanCa1Oh8uTY3SypN5ssrF7hbarCbw6B/s7PD46IbEq7L/4I8wHJ+RJwvk8Y/Xmm7z04otEqyWrJKN75zq4VRaLGSYvSLSms7aBClwW75wQrZbfl53x+4rglefYec/Y+/Nf/eafeRF8lqL1g4Fnhfojgm/XQE7HI954800Sq0J79waP335Ac/cW/f4lWZ5TDZqkSUI0m6CSFVpr7LUDzOyyNDLJEnArZddZRBTRHKMKrKCB9KqlHtvxyE7fLlOx6l2k0chKs9Q92x5WkZANjhECjEqRQVgagYzP0PECncWYZIXRGgTYYQcDZWKWX8EKu2A7mDxBR3MKy0GnSyzPxzv4BHo5LL2pkYAGIcCtYvsh0nag0sRqbGCFXZxaG5wAZRQy7OALiTbgdPcohsfE83Pqocf2wQ1UtcIKQ3L6kHwxxqq10WmMWk1R9TUsr4LT3ccgyIbHkK7Kbj5eUBQpwqlgBXXs5hZOeweTrshFacRSzIYYrTBFik6isvhX60QG7Fq7TPCq1DDGUIzPyvjMWz+C3LyJsCzEaoJIc/TgSZmdbQzSr6PzBClsvL3n0PMBejUDy8HMBjjNLUwaIYM6WloIJP7aFbQlGL/2f9Jb1fDnS6yggdIGWWuRFgYrWaB0gdPZZHb+iDxLsCoNsB3yxRBRJFjhFtoNKSxJkQ2oeZL54Bz8Ou2rL9DtrtMIBHm2YjW8oGLb7DZ9vI2P8c137jPTkrW1rdIfXSnK33JNNL5ARRN6pyOi0Rnui5/k1R/9iyituffmG/SmS8L2Bs2dAyyVMYuWmNmceDUnqNTwHRvH5Hgo9m69hNKaIKzTXt/i5O5rNM2Mxw8fkXhNdq7eQhtDPB9Sr/pEskKSpRw9PiSsVimKgqBSBS+gGTrUw5DheIaxJbnrkRc50WLB4YN3PtSd8Q9CEXyWovWDgWeF+iOC92ogH91/m2F/QCR8uhu7XAxeI+4fU9u9zVZtnXtf+zxx/wzheEjXRyuNu34NtCKfXGAsG+lWEEHJ0nbXr5GPzzAqR9bWwLZLHXE0wWiNXV/D7u6SXR5itMJubWHX2k8lUx75+AwQZfSiLC07NQZpORSYUipVL7Wn0rIQQRu9mj511wLhViBPUJNzVBphh+0yQrOzR46F5XpgWag8Q8wv0asJatZHVGvYdh3huGgMxeCw1BgHIabaQCxGSLs0cDHONSKzIlslIGckozNEUMOy/XJaEISgi1KSVu9SnCxKdzEBSBsVzxAI3K1b2K5BWG7JUs9TitUElUVY1RaVg1cppj2S3n3soIlprkO6BK1QaYwqLlHxHBPPyWeXWNU2wvYoFOg8QScxJktBSnBc/O7HkbU18vN3UCohefIWbn0du7lGNhm8qy9HCAwSjURnMcVqQT6bUrghzvot7IqPbdmkqxXZaoWOZ9h5hN/axMwuSJMEnApuo4PUBb7vE+zdYTk4YX5yj3D3qbQsWSDXthFejXj+kOvbG/zwj3yG4ZMHNFxNPjrBDzw8L8C1JHkyJ08TLNdnfnnK7Mk7iKCGt3ULN2xSM0sOOlVklrDon9DrXRDLgGvXblD1XCbRDGnbVFrraKB3ckxYb9AIbGbFimVuuP7CbcaXZ+g8Y3BxTqPZwCpcHjw65JXP/Q2EEGRxgmNJru7v8Pj0nIlSXPQn3LnZoOoIzg7vcuX2i2xsrhMEAUEQMBpPeHj0DjJZYKIJe9t/eGf8pyFY/SAUwWcpWj8YeFaoP0L4Funkt37nd7n39hvI1g698zNWizmeH6CKnMV8it3ZpYjneGELp71DFi/J50N0ukJUGphCgeOUcirbw+gChEU2fIxczRDSxm6sId0KVq2JSZZIy0NKC2HU008jkJaDFbbKTldrisUErQ2WF2AHjdIopOiX5Kr5ABHUcXbvYFc7JUN6PkBPeyU5K1mgojl22EFWmxSzSzBg0iVa+SDKQlYMjilWU+z6GiQRyvLKmM2wi7Dc0oqz1kV6VbJoionmWG4Fe22DfHzM6vh1RBSX2dDYCMfG8hsIxwVhIfwqRpeHDKtWfhZZ7ZD1HpCdvoOaXIAuSga5tEr3smiO3dgEo0rCVVDHsl3sagentVkSwC4PUXlCMbjEaqwjn2rP/Y1rFLMe6cV9ZLWFjheYbInl1yiyBIxBZBGy2sbkMXo5JllN8XeeQ61G5ah/dontVShUgclSjCrAdtDSxq51qe7dxvEq6GSJzQDLbyDlAUX/EKezz/TsEcZyMJaLZ1t4QcD61RcRQZXBfYuo/4hZsiS0BaLZIEkz0sF9up7hznPPY4whLQq8ZoPeUcrjL/8+qR1SpBHZckU2vSSaDpkcvYUVtmis7aHiBb67TqBr7N7YIV1OWfaPadaa3L75MSrVkPnglCJesdbd56Q/obBc4sWAmsxxdcrGxiabu7vML46YXZ6SrZZEBaxv74NS9E97XJvPCap1xuM+67WAnZ1twrDK4eMj7h6/xblM2GzXOF9cEPdr5I0Qx3bI44hV/5hNN+WlH/80f/UnPsP+/v77CuqflmD1g1AEn6Vo/WDgWaH+COFbpJPpKmMRJWRqTFCrc3D7BRYiYJIYgq5PVdSIe4/QqoCgUcqILg/RgJoPEbZLsRhjpgN0Mi8dsGTJeNbRFOFWkdJBOD46zcCS6KJ8jlXrYnkV1HKMduJyn+tWytF5NEZYNtrtIOMFKp5SzAZgDGo1w26sYzd3kBik41EICcsRwqug0wiVpAjGuGqfYjnGaWzi1PZLP+4ixQyOymLe2CDYeZ5i3kM4frlfTuYI20c6LjKol/IwL0RaNjqagRdgHB+8CkIIjFdqm7FdpO1guVWM0SQXh6hFv3QY86qYZEWRrDDpEqvRQScrivMpVrWBVW1j+RWs+gYIKOaD8uCjcuxKA299H611af1pe6XbWxAipY3T3iLvH5EYjcBQTM4xaYJKV7jVBk5nD4oMIQXCdbGtdmlCYzT54Ig4K7tilee4ocEohZQSNR8ABmMUMqjhIsq0r0Y50bCUpshTsKvkaUIyH1IgUcbGimZYazt49TUwOY6K2L96i4vViMHR10g8BzPr0lYZB1vr3Lx5i+VqxfHZOaPLM95++y6XR/fY29nBb9mEG1fITr5I7+5XqXfWkUWC61dZDs6wigTLEVzZXaO9fYAVjZmePmA+viSeDdDRlOcOdlnM51i1ACEM/emc6WLIRT5HqhStJY7QiGyFj8KpNyjinPFihQQG4wlf++qXuXV7QbticbB/ExA0Gk1uXb9GkM/4zKsv8sL1fd48GdEbjum980UyZXAtwW47ZPPl5/nUc/vs7+8DMJ1OybKM+XzOG/cOWcnvnWD1g1AEn6Vo/WDgWaH+iOC9pJP1a88TPDhD1vepVEMGoymeMJg8ww07iOkKym0w+WpMdvmYYjlBSAekRAiBcD30fIiwPZz2NsYIdLrA8qroeFk6lOWlzSaWR9E/KnfdhlIPnSfkg2NUGmF5VQyGYj7Cam5h0pg8mWOSCDtskg6foJMFTthEzfuYoPS+zodHZTdabaGTFTmKPI+wV1Oc7hVwfASUXatWqCzB+lZgh1HoeIG0PWSlgQRMukL4HaygSTE+KUfCtoewXWSeIB0fr94pmbX1LlhOeYhYTpEVjbd2QD65oJjkICRS2hA4gCjJdqsxpmGVRRUDUoBTwRQxqAK0oljNSrZ6pYm7cZVi2icbHGKSJc7GNZy1axiV4jY3yIdPSk172MYKGuAE5WFJKbQqsMJW+X+WZQgU0nKRnf3S4W01xeAgXRuMwmlulEYzRYEMqpgsQSUleU9rQbYYY2wPLAcpbYzJUemK6HyGQYHlIlyfef+E1eiSfNrmpU/8MBvbB7iLU/arir0r+6TGZf3myzTaXXqXA3LpExmb8TLjchyzWilWT87ZMy7bu3vYtsU3Pv9b9M4f4K9fpeJVqHge0hTY2QILQZYkkCu2t3fYRbN7fY96s00YVpmMRhw9PmRydsHF66+RGIeDT3yS/WvXefjwEY8uBixOH1DpbLJ9cIf1ICjTrgaXoDWP7r7FZj3gs3/9r9BoNIFvFZhTru1ucPPmTVqtFqn+BlvbO0jLwVBuPLTKCUXK87dvMRwO3+2e01xx+PA+ym/yIz/24+8W2e92t/yDUASfpWj9YOBZof4I4NtJJ8vlEikkDobO1g6jCzDFRcn4NoIimoK0kQLS47cwboAVtpF+rRypxlPS03tY1Sbe3h3s+nqpcZZlrrGoNMvoxFWMCJqoRZ9iOUZgk1/cR0/Oy51xNAdTFkOTLHA2riIbm+jxCdKvI5vboAq0VuTDU+LeQ1SelqzzIkY+df3CEohpD9sLQEr0aoayLyGLoLlZTgQmF6hZD2E56HhGdv6gtECN54gsgbW9UpY16xHHMxASp7WJ5QSkvSlFunrX/ERpSitSJDpZgO2j8hRWU9RqivDL3T1CYExZpK2gTp7HqPkQ6ddw1w5AlyNm7Dr54LCcLkgbky7xNm+htUFLi/TyGFGpYTU3yzXAcMTq6LIMF9ncRVaa2M1NTJ6S9R+Rnt9FZzH+7gvYYasMEtEFxeISvZyWIReqQMeLcjQO5F6/HHkDlmmjVhOy/hHB/ouAplAK4Uiwfbxai/jsHiqaYTc2cG0La+0alufiWhakK6Jkydd+6//g5ZdeJNARn/r0qyTK8I37J0zv3QP7CO0EVBttRv0L+ssM41bYfelHcPwKq8WAi6Wi293k6o2bPLm4pFr1CURK1QvwEQRhjfFiwWuvv46jM240LV554QZxtGRrZw8QtDpdGq020WrJYJ7QqlephAH9k8eo5YSw0mTqN1HGorO1g5SSerODSJesffrTjPp9LnvnjAeXFFmKKhSLxZSQ5N0C8+2JdNPlCmk0O90Gn3z14wDvkyflRc798zGq0uLNew956c7Ndw8B381u+U9aBOEPOvk/C6ORZ7ajH308K9QfAXw76USpgtbaJos0ZXjyED9s4VRCktP7ROMx1vQErS3UbIICnFoHy68hKw2sxiZmcIiu1LEqdZzWNgIDzQ2EG5TmIukSJW3U4Lj0CtcaUxQ4G/sl41vaZXGO5qWRil9HL6fISgM1fIK3cQ1n7QpCWGWBlxKTRiAd8nEPU2TYtQ541bIzHw9RyxHe1i2wbNAFVljuxpPjbyKrHaygjtu9glY52fkDtEiRXhV0QdZ/jEqXmCzGaE0hLPz957GCJiZboeI5xWIE+QpLQDqfoJ27JcO5yFB5grAdEBY6noE2iCJHVuoYpUDlkK2QTkkeQ0qsehfpeGSXh+j5ADUbUCzHqOUEZ/0apkjJpz2SiwfkqylBd7/M37YctJEU0x7u2gF2YwOjC4S0scIQtZrgNLZK8ppXKWVgRmF5ISYOyJdPELZdssCDEKe1A9IBrUtCnLAA8W6wSjE+Q9sulYOXQCm0VsQXj4gPv470Kliuj9YFIp5i2V3C3Ru4dsm+n5894N43v8xf+qE7rG3vEMuQj9c3eePtu5z0h1TXrxCtTojTlCJNaHbWaO/eQNous3TJStuMnpyS5ZLq+gG7a21q7RrdzS1mwx6p9Gl09kkWM3Q0gDBgtkzJp/dYLRdcu/EcQbXK8LLH8ekZ3XaDIs85Pu+R5AqhMuLRQxYRBGGdZDnHsm1mg3OqsuDGJ3+E/vkJv/f//U/8j/+9ZIX7tuRgo8knf+Kz7yswa2trPGcMi699nbkq0EKySDVv37vPfDZnZdXeZWaPRwMs12Pv2m16vVOOnpzwyksNyj78u9st/3FFEOB3Pv/7f+ZGI89sRz/aeFaoPwL4dtKJbTs0Wy2absh01GM2eMLy8pis95D5IkLUNynSjCLPcLdug+OhlxOwLCyVYTkeKmyCMehkgeUG5ThcF+B4UGSYIgV0mWgVdrGCEDXtPR03O6WP9mKItDyK4RNQBm0K3PYOxnbLTlfaSM9HrF/HunxUFu2gQjG5QK8mJfM8bGLSCHf7DnZrBxPPy+u6Fey1q6h5HxXPsZsbmDQuiVyui7C90r2r1n2qN56SpQOkdDCiIDn8OtnlY4xKyQenGF3gNteg0sTp7mGFrVJKliVldORqjkoW6CJ/On2oYDc2MSpD5xlqNaZIlug8AulRTC9LTXM8QwgLf/8l0ouHpL0HmPN76Hkf3AAdz0ub0zyhmPUx6Qq9Gpb/F51dpOujFmNMNKUAhM6x29sUj79O8vjruN09kJI0fkyxGJJPS092abs4G9eRlRZqco7dvYKzto9ezdDZClNkOO09RJ6Q9o8oai3yNMJkKSpZYgdVwt07YDkIt4aaX8JqiJXvI/0K2TzB9UMKVbCazcicOq987BMANOohv/Vbv4vt5Zw8OSdeLfC8Oq3tA7xaiyxeMZ/Pqa3t4bZ3yJMVFcvBqrfJlxMev3FGXlkj2FhnuUzpPbjHmh0ht1/m3uUKKxlTny/pHd5jbX0TxxIUizGTZQr1bbbuHBCEIfFyydvf+AKzk7ewiyX9qkdYb9AMA7au3SGOE05OTvE2rvLDP/6T7O3vU+Q5y9mYu49P6Ha77xa7wWDA57/6TVaiytWX/2DnfO/B2zx8+00+/RN/+d2i9K2M6SyNaLfXmfSfsFyu3o2n/G53y9+pCNbrdQ4PD/ndL3+dzAnfPbR8r0YjH4b957MUrY8unhXqjwC+nXQShlVatYB+XHDjhVeZDM5ZXjwgi5fYzU0y4WLSIULaZW6z7ZIVOSaN0UWKsD2kW0Uvhui4ZEVLy8W4FYTjYdIIO6hhggZGWjitLcjjMtUpj9GWg9GKfDlF6OKpW5aDdH0EBjU5w/j1smsWZWTkt7o8HB/j+MhKC2nZFLN++ZmcAGE7iGoDFgOKeI7T3sFqrKPTFWo5Q3g+anJRMrYrdUSRI6pljrTtbiBstwzxaO2UB4lZD9IIIy20ylF5gVNfx6qtgSkoJj1QOcJ20Gjy0ROc9es4jXX0coRyXPBqGEBnMfnlISqa4m7dxq42wA0wQpRe3LaHOb8HRYrV3CxNSCoh2vFQy8nTznaAtOzyUIREFClGV8F2kJU6UIaPSNtHiG9QPCX+CVH+0KIVwmjy3kOk7ZS69CzC8isIx4FkiVOtlbv++QAhJZX2Gvn0gvT8Hnm8RBiw6128RhehFNliglUpqHS3MbNLsov72OYqejHAtwS63uFhb876aZ958iUEgtkyLS1N3SperQ6uh9/ZQ2mBMZr5eIgRNtVWl8XYEC9n7OwfcLC3z+GjQ06ODqnt+yT5I+LVknx6wSys8JWHPa5d2aFTDfjYJ15l0O/hZHNevHmV3//yV8mbuzz3/CtlAAtQazZ56Yd+nF6vR7Iac/u552i0uigh6F0OuP/Wa1yMFzTcgDjLsW2bTqfL+sbm+/bIwAfqmXf3r/La2/e5HIzY3tkFRJkxXQ8ZXJ6zeeUGudLvpnN9r7vl9xbBwWDA737+9/mtL36Ny8iwvb2Dun+Xg6vXaHW637XG+pn9559/PCvUHwF8J9LJwf4ei7sPOD87ZnJ2zMXZGap9QHPnNsP+ORXnJtHghGIxQHohOAEmS9DzIXgVTJFRrKaISQ8ZdhB5irEdyBJ0XnZdWkjsoIb0Kjhbt1DpkmJ8Wjp6rWbY1SbS9XE2bkA8B9vGWbuOsC3UcoLOIhAW6cUDZLUJwkJNe9jNddytW2Vxlu+UpKrVqOzobRuUQs0HqPoadmunZF+bDLVYoKYD3CsvIYzGWA75sCSNGa/cw+ssKk1SjEZiUFoh/BC3UpqGICTFaoyaj5DVemnFGXYQtQ7FclJmP0sB0ie5eIQuUqyggRaiNGMJ21hBjXT4BDuolweRZIWaPqIYPcFubuFt3iinDkWGgVLHnccIAfXrrwKG6cOvY4octRwD5Q+1VWmQxXOK6Rmy2kGGLWzbLsfytS7YHjx5g2JwXLLMR0/KvbRbxXUriCLBrBLUcoqJZliuQ7W5TV5r4pmcXC1J7Sr+1lW8ehdRaaPdMjglnw3wqk10siBbzUmjJUGnQ62zQdUq3ey++fAMYTm88MLzXCkMF7MUp7nJ/OQRTdcijqdM+4rx+WMsYDyZsLg8IxkPkDu7tBsV3p6cEWcZQZ4TLS9BpaxtbLFx6+MY22UUz5mcPeHqzhYH12/S753x6PExq1VMsOFhMGRRjFI5luXgBxW69ZBe/zHj6QynUuPscsh4tmC6jAjrda5ur7PE5427D97dJ793jwx8oJ7ZcT067Q6Xo+m7XbMQgoOr11i8+SbH994smedCslos/tQEq2+RRoexQTd2ufPCTaQ0DC7PWTx1U2t1un/iPfgz+8//NfCsUH8E8J1IJ2FY49ruJt/8+td5+JXfZBRpRNAgWi4AiR9UyHRKMek9zZcGtRiiihRbNVHRrNzbqhzyFOEHYPmYZF6mN8VL3NZ22WFnEdnFPcodnIW0XbJkidPcxF2/Uu61ixQpZfl6aWOyiGIxRFSe7rSFRC2H2O3tcvebJ+W+1wvAdnDau2XohuOSCQsRTchGp6h4QTHvY/K07CodF5NFqMUYlSegFU5zE8ty0aLAUO7khVtBbFwnHxyVCVmLMUIriuUEvZq8u/sljTHJEpXH5XSguQfCwmpsgh9imzLaUq0mIARCSIsijKcAAHlhSURBVLRSmOWIZPAEe/0K6Ck6WSAsD3fzBlbYxagUk8ZI20fWAwwGlSxL1r1l44chWTQreQOOC8mSfDEgG51TRFOEZSPyBGFVMAjMYozJEyzHx9q8VrLMMUi/Qjq5IPOrOEGIMBpL5wSdDbZ3dnGEIkzWufHJv8D5W1/m5HLI7nOv4HkesRZcFBGptkFnJXPeCVhEMcpIJmfHCCuhvr7GZDwmXNsDx2G2WLFz5SrxvbtMdUKRRqhkReCHnL79BSa9ExpXX0RPB4hkxvXnnse3Jb/7m7+BqXZpb1eod7dItcEqEnS8wPV9kDaXJ5ckFz1+90tfYzBdUHUk88sn2L6Pnc956wu/gfDrSNtHFwkmmbPeCMhrAfHFI+5dnrLQLq7UmNWM/StXuP38C4S1Budnx+/uk799j/xBeuawVmej2+buwyPy/A92zq1OlxdfeIEv/N5vInXG4MjHs60/FcHqvaTRnSubXCzu41crWFKyc/UWZ4/vc/T4kGa78yfag/8gOJ89w4eDZ4X6I4IPIp3c2Qg46qyRtNvETshCOyzyHnm8QtTXkXYFWWli8hxZ71AMT4gvH6KjOVa9U7puZRGWFBTLc9S0X9qH2g5WpY50/HLEm0WldjqaIywXy31a1LMU6deehlaUEZA6mpbSKGlhV1oIKUtGdrJEtHcRwiqDJ6SFjhZINwCtUekC227h1NfJhUCnMcViiM4zhOUg3QC9GqFWs3J8rAqKZInd3i+Jar37CL8G0kEICUZDnmLVuwjHp4hm2O1tFAZZaZb2nxhQBWbaw6gc4dcQjoeaX2J0Dm4VFU3LUXNjC+lXkWi0X0EvRxTjU6ywg0ojZFB6bpsiRhiD3eiiswTpBti1NaL7v098eVROCPIcPRuXO3ApMMkUYQeIPKKYXuB297Hr6xCE2G6AMbq0ZS0y1PSydHjDIMMu1mqGLaGxdUBeFOSTC7L+EX2TE7oW67Uai7MHLKKMWqNJJ/TQwmbe72EXMVmSY7wqs+E5JpphB1WklKSrGUMVsRqc0RtNeP5H/zLttS0WUcTO1ibXb91mcvkbVLIxx199TKXeLWNPpUQtRtjpgmvbXT716R+h9+SQN+4fEhUamUcsesds33mFaq3G2dEhk8tztLSZzebsHdyifnAdr7vBdDrktDdAJSuS1QqtDMIquQpa5eVhzxJc293kh29u8ZV3DqnV1nAsSbDd4cb1q9Tq5Qj6vftkYcz79sgfpGcWQrC5scnx/Tc5Oz7EtZ13u9LJeMCrd67x8u3r1Ov1PzXB6r2kUSMEjiXJkpSgUnJIOhvbjE/us1zMkUL+sXvwHwTns2f4cPCsUH+E8O2kE8dx+O3f/T1M0MR31yiw8TONiebI+jpOc5Pk/D5Z/3FJ3HJ8rMY6ajXB3bxZummh0EVekrcsF2H7JYGsUsNu72BXm4iggUkWZP0jTJGhshgRdiGalv7eXljuUaVEL4aIagsraJBf3EWrFBXN0dGs/AxeBWwXVI4VlD9qorWNTpdlIlUaYwU1hOVh4kuKaQ+rvoYMQlAau9IsvcfDJtnwDL0Ykp18kzxooKI5MpphSQd75zZ6OcZu72K1NtF5Sv7oK+TDE+zGBk53D2k5SL+KTpZoVZQxm6OT8jAhbUyRoWf9cucs7dI4pN4FlWGyFMufkk/OMEqXBcMUmKLscIwoc41NusIYgwkp792rAxrjVhHuEhWv0ItLrOY6QXcH41lox8EO6gjXRRj1dH1RLd3JlmN0ukCEXbLBY2xddtWBBfHFfaL5DG000nJZDXtIX6Ku3yZXGpkvcasN1GpCq7sJNQ+TuFjSYjw8Z3n8BiJZYPkhdtjEdX1WUcIyjSmmb3M5WbK+ucPGepeWB7YlubqzTsP/GA8eH1Op1hilAj9OKbKUzVDyqR/6JI1GizPh8NwPfZa3vv4l1lo7zJYrPKGwpYUX1OifP8JyXKqBx86NFzBFjusHdLeuMD47YnDymKyqePVzf4M8XaHyHOtpytU3futXuFVx+Cs/9RfJpMf2jRdwPZ9H9+8xiMowDSEEru+RK02eZ4wHvfftkf8oPXOSRvzYqy/QbFa/AzP71Q9tdPxe0qhlyZKHMu6zHVxBCPD8CoU25FnKZDz8Y/fgPwjOZ8/w4eBZof6I4b2kk+l0yniRYLkOWZESLaeMej3S+RA77IJtle5kgM4i7LB0yBL+OXZ7B+mHoBUSg0lWyEoDYVnkg8dYzQ2sagvh+khpoR0PK2yVxav3CJNFCFnaddp+DRUtsCwLwibkScmUXo4xwkIt+gBILywlVPG8jIcMW5gswmluotIF2fk9iuWYQlpgOahoho7nqNUEu76G09pC+HV0uiSfXVBM+ziNTayghtYF0nLB9UoSmetDkWG3Si23SVYI6WDiOdrxUVMbwjWkG6CWI0w0xekekI2O0NEMZ/MaxWgFTmmYYtIVdmsTp70D0kYMj9DTABl2sLeuk58/Qi0mJRFv/WrpH+74gEHFC/Lhcalzd1zyxRATlVataIUxgrzIMckCv9qgqLcpMBgD0vYgzxBuBWk7KGkhnQA7qJHrAjProbViNT2nSGNMUCNYO6De3UJHY8JagzRJsOzSDc5yXEiXnBzepdLaxG2t00ASL2eoehNZ7yA7u1h+HV0kaHGB295FRAuU36I/XTAd9WF+yed+/DME1So6aPO5Gy+ws9bim3cfUWl2GY7GTKZThpc9/EqNOI5xgpSqpVnb2qKhDEkekw2fEJ8fMjq8z8bV2+zd+jhho0087SOk5OLsmFqtQrWzie/C4d032Nw9IAgbxMslJ4/foF1zOdi/RZ7ntBp1gqBKtVbj4Np1Fm++ydnj+3Q2ttFaoLKEs+NDuoF43x75j9Mz/+inP0X3+yxP+nbS6JW9Xfpf/yb3357QXdvC9T1UlnL65DHrVfuP3YP/IDifPcOHg49koV4ul/yzf/bP+C//5b8wHo+5c+cOP/MzP8Pf/bt/94983S//8i/zX//rf+UrX/kKZ2dnbGxs8JnPfIZ/8S/+BTdv3nzfcz/3uc/x27/923/oGn/lr/wVfu3Xfu1DvZ/vFVmWkRmIZnPOnzxkph2SaIlKI1gMMPnTDs/2AJCWi4qGoHJMunwq+zRobRCiDMxQtoewfYxlU0x7OFs3UdG0tBzNIkR9DXP+DsVsgNvZKnfNXhXpBeB4OEEDrRV6cIhGIIzGWbuCTmKkXynZzn69DKmY90vJlQBUgfXU0lONTtHJEqRVMrqDBnZzC3fjBsK2yEZnFGd38faex928jTDmD/TSyzG4Aenpm8iggTG6zMpurONuXENnq7L4qZzs7C1UfR1dZAitsVubqNWo3GePfYrJOcINsFvbSCdA+iHSdkszGctDVurIIseyPHKd4dTWn5qeSGSlgQk7YNmoWR8Vz/B2niu12NEMbA+7tY1ZjLAcB3/7FsmkRzaf4nhVkniO5YaI2hqWdLD8KvmkRz46QRsByzG2H9JstjBFjIPC7bxAKn1q29dorO+QTgdYUrB48hbKqmLXu7iehwjqLJZjLh/cJbd8bFsijKGzsUfqtVBOQJ7nZJNLZKWFqXex/BmO4+B1dnCzOZmTkERLrEoTbIdOo8rOzjYXoxm19X3WNzY5PnxE79FbkC5IJ0PCasgLt67TqIU8GUyQXogbWNhBWBrBWD4FksHlOYGOef1rXyJPYsKKyyTKeenmBnGyYPToNTKlcS3JXivk1U9/DjUf4Pv++zrjVqfLSy++yNHjQ8Yn9zk/P2OjIrj13Cd4/s7tP6Sj/pOYenw/R8TvJY220jWOjx6TRitGgxGnj+6RTMfc2Kxz+2NXeeHbPv8fd72PqvPZM3w4+EgW6p/+6Z/mK1/5Cv/6X/9rbt26xX/6T/+Jv/f3/h5aa/7+3//7H/i6n//5n2dzc5Of/dmf5dq1a5ycnPCv/tW/4tVXX+WLX/wiL7zwwvuef+3aNf7jf/yP73vso7TLcV2Xy7NT7j06ZCaqqGoLO9xETXulSUkWlxabjbVShmRZqGiKXW3ibtzEaW+j4znFbEA+eFxqk1VePldYZJeHZINjLK+CMRqjNSaPKSYXuI0ObnsXkgXGDTBOANEcZUpXMJ3EJZPZ8bE7B+jFCHRKPjrBqnexgvrTXbNVRmU6Lt7aVYRXJclitFaY1RQrXCvNU1SGXWthhAX9I9z1q3g7L5S7clWgTCldsoWkiGfIosy81vEcabsYUyAtuwzccH2E00ZnaVlY6xugc9RqigH8Ky8hjIE8RascMCDA6KLcES97qPjpbj2PyXsPsCoN3K1bmGyFjpeoyRn0H5eFOovLEX5QL0lwOsfxQ3SyKjtrt4LWBtneJbt8SLEcYnWvITBkvQcle95yyk5eOhTjxyhh8Kt1MlVQDVsEtRbVzausstI8JV7Oyx1+vELUN8GycNSSaHhCZgR7t1+hd35KPLpkvpiXcjvLRTa3KKIFshIi3BHu+gHS8SCok5zfxfIrrO9fhWzGa2+8TXttnVsvvszB/h5hGP7BuHbnCs+9+AqeWvHi7ev0Li543J9x4/p1Dvb34Ktf53e+9jqJXUeonO3NDbqdBr2jB5h4ylqrQXdrn+c//iI6T8vM6aDB/mbIZreJ4zgEQcD6+jrRcsU4GuF53h/qjOvNFjdv3eHw4TvsVLf58R9+levXr3/HTvRPaurxYWiSvxO+RRp9/D9+k//xta8RrF1h4+bLbNyUnBw9ZHl5zNX97p9YVvXM/vN/HXzkCvWv/uqv8uu//uvvFmeAn/iJn+D4+Jh/8k/+CX/n7/ydcgT7HfDf//t/Z319/X2P/eRP/iQHBwf8+3//7/kP/+E/vO9vQRDw6U9/+vtzIx8C0jTl7TffZCF87PY+Ok1Q2YpieonV3il3s8sxdthBRXOy6SWWW0ULWWqWXR+JxrY9dDJHpREmzyjSBY7WCCnLZCzLKXfJ0iplW8bgNncRbgWlFCaaYeLTcq+rC7BdiukFRhfIagMwZXKXZSMdn3w+wuQZOl7B/7+9/47S7CrvtOFr75OenCqnruoc1a2AIkISiBwGi3cYYUyWPR4vh88wHvzaRM9gg/GyB61ZZjyMsYQXGD4zIAsbmM8gESSEhDBC6hbdrY7VlauenE/c3x+nu1DRQR3VBZxrrV5S7xN3nTp9n733ff9+uo6QEiM/TODZ+J16KM7idENjCU2GrlTdJl6rBp6NcjvoqR6EYYUSmrqJ8mykESMARKsMrovvlZBCog1uRASg9Y6G5h6+h6KN0DS8to2szqKkjlSl8OMi1YPyXGS7DnYTb+kYQjeQdgvVaYSj61QBf7ECQqIME02EU93CiuMJLZwREBrKdzHXXIGQYC9NhtajmoGnx9CtBMbAOoJWBeXZGIUhvG4TuzSFFbiY+Qnc4lH8IEAm0+j5IYJGCb1ZRKZ68btVOpUl9HQvbrOFHkAsmcHzPJqzBzGVTyBEWDKmOpi6RaxvCF3Xwrru+hJubYGgUcXLjuEjMYWOj4ay2wiljicihj9bLZ6GTi3UgheKSqXMaF+aDWtGjktoKnoLBeb2PcPhg23yuR4S8TipVIZEokLaPUKnlqfVyJFIxtm4YT31UhGn4aCNDmAHHUbXDLK4GJAuDHDtDTcgEEwf3s+agR7SiSQdadHu2uzaGBps/OzIUAhx6qTLoSzbNl/7nAHuuUQ9LnVNcm9vL4V0inQ6SyxuUVucxdAk64d7GL9+F6XFOfY+c4C+vr6zCrCR/OcvB6suUN93332kUine+MY3rmh/5zvfyZvf/GYee+wxbrrpplMe+7NBGmB4eJjR0VGmpqYuyf1eKpRSfPmf7ufIfBnbsfDqFTATy+5S6riUpAp8AqeL73Twawvo2X40PRNmLAuBsJLL1pDe7DN4rQqB08WZ20tszS703CDYHQLPQVoJsJKhiYfdIIinCGqLkMigJfPI7ACB08SvLRF0m6hA4VbnUUvHkCiElUBZCWRAODUsNfAcAtfGnt6Ls3QM3A5eswSaGfpSJzIYPWvwgiOoTi1MRAsCAqFQdjMcyR+3UZBmDGGl8BtLYMbQNAPl2ajAxXcUqjyF366iXBctlkAhUXYLXzeQUoNUD5qRwCuG9cnO0tFwHV83EU4HoRlgJBDJLN7cQdzy9HEbzDze0uHjGeAFhO9i5sO1c6cyvywRavSNE9gdQGEWxtCy/QgBrufjludC2U/DRFhJ3NIUOB0Cz0em8uGUebeJRKHnR9ASKYjFUcdLlHw9RrtWxqkdwPM9dALi+Qx+q0W8dwRLGjRLFSaG+pBmDDsQIHTsQKGMFJrUcdvNUF7Vs1GeTUCAch0IPAQ+mqZhxONkkjHylkR6fWydGKG0OE+g4OjUNM22Q9dTVJemOfijRxnNGNiDaUZTGqm1IxyZOca/7t3DzOwSff397Ny8kZ7eXUwePcL+Q5MsLijqXQ9aNjPHjmE3K2h2nW07dlCs1Kk3bOaaARO1OrqUpxwZnhgZV6tVisUiEAbAC50Nez5qkmu1Gt1Acsutt6GExPNcdN0glUoCAkPTzzlT+7lmCi7VDEHE88eqC9R79uxh69at6PrKW9u5c+fy9tMF6lNx+PBhJicn+ZVf+ZWTth06dIhCoUC9Xmd8fJw3velNvP/97ycej19QHy4GP/jBD/g/X3+QhpYiOThKvePg2x18u4OWyKLn+vHbTdzKHG55FuV2UL6HXhhG12MoIcKMZaWQQgNNDw0qAh9pJRBCQx4f7RJPIVoVvNI0yncx8iPY84egOodybYSmgRT4zSKBAtxOqMPt2fjFKazxnchkWKalAp/AqOKVpvHaFTQrFSpspfL4nQa4Ei3Th1cvowTg+WC30JJ53NoCwjAJlIJmBd+IIfIj4XS954RT90IQdJrIwEPmh8BuITQLt3gUJTWsnnFELolym/itRpjF3q6h2nWsER197bowwDstAt/BrS2iKR+vXcd3OgTtOgE+yvOR8WxYcqYboU1nu4aV6wMthdU7iu8rpFnHr8+HNp+5QURMhvXguh5+eGgGIpWHxiKtZ76HUAK/VUOzYqEyWSwNTpvA7aICHyM/HD5LRwtzDow47YWjKKeLXZpFFMawkllkMk2QTNBqTFLf8yia8gh8D7fbotu1cYRJt9XCri6QzPXheh28ThV/qopeGEUm89BuhF7fsRR2eQ5dgC8MnE6TerNJutthodLiqe99iaJrkB2aYGBoGFOEH06ZpMXEmiEmBgvMFKvInjXctP0mSuUi3/+3J4kl0zTaTZpTXfSeNVw1vInpIwep7N3HTLlMfXI3IwO9DI6OM1+qYeCTwWZm6hiHLZfefO60I8Nnu12Fo8hDFzTyvRQ1yacKkD/N1E6ecmbwfDO1TzdTEKmW/WKw6gJ1qVRi3bp1J7UXCoXl7WeL53ncddddpFIp3v3ud6/YdvPNN3PnnXeyZcsWOp0OX//61/n4xz/Oww8/zLe+9S2klKc8p23b2La9/Pd6vX7W93O2+L7P//dL97HQliQGxpD5YeyGg9cJA3WACEeIZixcV3Y6BE4XIQVBu4ajqmjJfOhB7bTxEQhNhn8POhjZAbRkAfRYqIWtgjBpDIXXaaJJiWrXcJpF9EQOLTcICITyEYAwBxGGhX1sDyLTg1YYxUikQwlSp02gWeF6b7uJnh5A5gYQgYdwOviaDKeHrRheaQovlsZz2mhmDDSToNPCry8hgK7dwXRstEQ6tL30nNDFqrGEObIdI9OLdzzzXCmBkenDGNqIFk/htap47R8jYmnMRJZut4m9eJTAaWEObUJP5tF0C8+16Uw9jZbIIn0XTzbw7PB+glYZkOjxFDKWBt9B810wYmhC4DlNVKuE16oCAmKpMOvcsUMXrIG1oXBJuxFKkAah17QMXMyh9chEjgCQmoGW6cWrF+lO7UHoFnq6h6BdC5cDXIXyAwjACHw8oaHaDVrlBdpLU6BA87vEe0dpyRR6zxBBu41Tq4AWD+vtA0UgG7jV6VDvPNNAOR06k09h5AbA6UI6j9eu01xsYliCdZs3YfYMYfS0kNUWdrfDscMH6bQaxIIOO3bsYskWPPCdhylMbGFsvBeFotDTx+DQCMneUZ743jeQeowbrtyElIJkOsfC4hLFcgUrM0hyzTrGtm5FCkVpYRbVKLJxpJ+X3XQNfX19pxz9XYqR78WuST5dgBwZHHjeMrUj1bJfHFZdoAbO+MV6Ll+zd911Fw899BBf+tKXGBsbW7H9Ix/5yIq/v/rVr2ZiYoI/+IM/4P777+eOO+445Xk/+tGP8id/8idndQ/nw9LSEg9++7t8b/chSA/hO13aM4dwOy6eZhH4LkG7StCuEQQ+WiyJSmbRfEC56IWx43KWGlq2H2km8FplvOIUCoUKXIzsYCh4Es+G68q6iW8lkH4AHAkzyTUNTTcQWlhiZOSHkbEUQad2vKyqFmaCS0HQWEJZCbRkHt+KQ72IkesHqaMls2i6CXoqnH6vLhJ0a8Ryw3SnduMuHUMKiUjmCII6QgmU08GtLqDnBrDdDsKMIwIPd/EIfreFObg5FHNBoaV66E49ReC0EVaGoF0N/ZzriwTtBlbfeKhCJjRkpgfVqtA98mOE8kObynYZoRSB20FXGWQyh6YZSAFYKYTXRaDQ4im0wMeeewYtniDo1LDrJfAdCAAChN1CagZBdwF7vhVmpOsWMp7G6BtHc7rhujAKv17EiCXR0n0Iw0JoOsoJp6RjI6E1qe20MfonCNp1pG6QGVqL02nSnt4ffkhqeliS53tIR8fqGcWNZWmXpsIsfrdLet0V+J06rZnDBEpgDqwnaFVRzVKYgd8q45WmsAoj2J0awq2S37iO6668kkwyyXzbJTE4zubNA0xOHkFXPltecAudehnostR12fPQD9jVkcxXWuhSUMgk0QOHuZmjSDOJiCXodtskEkliyTTVpRlaQZz84Fqmig3UgcMUsmkG+oY5OD9LIe2xfv36U34sXyo1rotZk3ymAFmqHSImA+YvcaZ2pFr2i8WqC9Q9PT2nHDWXy6Fm8omR9ZlQSvHrv/7rfPazn+Uzn/kMr3/968/q2m95y1v4gz/4Ax599NHTBuo/+qM/4j3vec/y3+v1+kkfAefLiRd8/0ID2TvBms3Xszg1ycLT38eRMQLNCDWudROneAzl2eg9a8J//JNp9FRv6JaVyBK4blg2JAR+bSEUMwlcpJVG611D0CjiVmbQ0z0olQitH5WH0PVwCj0/hDm8Gb9RQepGWBNMqKstnA5+ZS6U3DTiBK0qnqaHa8tuh8BpY/SM4nc7oOl4rQpGph9hJjAKI9gL3dDGMZYksfFalBf6PkunGzpD2S30wjAQrk7TbeE7LZTTQcuPhuvwZgKvuhB6RgcC/3h//PpcOMvQbYYqZGYsFFDRNHQrieybQFgHsGf2hUpliTzxsW247SYq8BFmEiORwbfbaEIis/1h2ZqhoyfzmJqkM7OXoFEDI4bRM4xfnMHMDyPTPaggQJpxvE6TzsEfYPavDZXThAaaiYwlw5mNWIpuaRY9CEJ7TECLp0Id8VhohymtZLhmr8XA7dBuNZBSR0+koFPH6N9AdnQj3dIs9YM/pDG1D6Hp2M0qwndJDm/A0jW6QmAkMui5Yay+CdxmBbd4DCM3QNBt0V04iN8qobltCoUUt954HYODgzz6wx/RMfMs1RpQc3ExSKSyxFNp4ok4iweexPUDmjKDF8sxsvkq7G6bpYVZ/HqdZrnMwkKFTO8wjt1FIDnwkyfodrqkB0YIAjBSWcxUjsV6k+lj/8Zo1iSRzVCv1085cr1UalwXqyb5bAJk2quRDDqXNFM7Ui37xWLVBeorrriCz3/+83iet2Kdevfu3QDs2LHjjMefCNL33HMPn/70p3nLW95yzvdwumlvAMuysCzrnM/5XDz7BV+zbiPmEweJx2K4nQZm/wT24iyBctDSfQS+h+Z0wXdCAwcVYPSvQ/ZvBBReZRa/3Qizn30n9FFulMKyqUwfqlXEq8wQON2wxMuMgRDIVG+YWd4qYxRGQulOzwvXcz0bzYojhELG0+H6qdNGWonQfcq10RK50Bc7nkXLjyDLc6HWtmES+C6y0wgNQRpFkBpW/zr0oc34S0dCkw8hEPFMKJDSaYaj+kQBaSXwW2XwXfxWBXvmJwgjHpaZGVY4shcaWqYHzUxw3I4KAi8cnc8/g9cqQyKDoekY6V5U7xhO6RjWwHriYztg8sf4zSpeeRppxgjcDsSyyHQfSmqo2hI+IlTx6nTwG0X0dE9o7ZksECsM49eLiFgKvXccK9VLR9ORhoXfCkvmhCScCndt9HgKYklM06TbaUGgiOWH8ZXCrS3gVebRswNIK0DqGk69Ho68YyZGYQSvpDASWVzHwfcD9FQBqZvEsz2Yg+uxmzW0nhE6gYPbrKKZFla+DxmzUF4Cj7C2Pt63Bl2XBOUpjE6RnmyKnp4e9u3fz0KtzdC2bbSURYMYUuqUKksMNerk8j2UKxXMZJbewUHswMB2HOLJNJmeAfYcOUJjcZZ6pUGlXELrlBgbX4tTmqYwNM76a1/I4twc1dI8Td0lHrMQOuRzGay4ftqR67mMfM8liepi1SSfTYAsH2tx9eZ1zMwvXLJM7Ui17BeLVReo77jjDv73//7ffOlLX+LOO+9cbv/MZz7D8PAw119//WmPVUrxG7/xG9xzzz38r//1v3jnO995Ttf+zGc+A3BZSrae/YIHKPJJk4XJ/XiBB3oMc2gjbrcTyoYWj4UZwqk8WjITZh4vHQ49mA0T37ERhhlaRZoxtJ4xvKXJ0DO5NI3sH8ca2wFCD6fQ25VQc3vqJyinE5YUOV3chQOhcEmzQuC5CCsZ1irbXXy7hdeqhIHfqSPNBFphiKAZ+iX75dlQTSyWCuuOpYbSdHzPCdW6nM5xGU4PXwUIK4meyKLcDjLTTzCzN0zOMuJIwbK7lzCTyHgSv1VHuQ5CatjlWYQA2g1EuhctlkaoAKQeGmHM7MXvttAU+K4LysNv1VCODUJgLx0BzYRYAqNnJPS8VkHoLe00wXXASuLVi5DIhcIqmV6k5+B2GniNEo5mhB8YroNXnUU2S6BpYMQQno20Emi5odC0ww/Q42nsqaeIGTq6TNKqVenOH8Rr1VBuBy2WJj64AS2Vw24sITuN42Yi/ViJDI3KAoHvYXdaOLUFcDoYA+sR6TzS7qJqpbCUzUwT6HFUu0o8kaTrOgi3ixlPUBiawErnqAdt6osHSaczeMkC93z6U1g9I0gzjja/SLtRpU2c3okt1Lp16vU6uhTYtkMqZ9CXz9HpdvE8j0a9xpGjk6h0PympMZbvoqTO4GAf7fIsKlBk83l03SCdL1BIGAwM9GNZFvH4JpYmn8Ez/dOOXM925Fuv19n7zIGzTqK6WDXJZxsgM5kM69evv2TZ2JFq2S8Wqy5Qv+pVr+JlL3sZv/Vbv0W9XmfDhg18/vOf5//+3//LZz/72eVMybvuuovPfOYzHDp0iPHxcQB+7/d+j09/+tO8613v4oorruDRRx9dPq9lWVx11VUAPPTQQ/zpn/4pd9xxB+vWraPb7fL1r3+dT33qU7zkJS/hda973fPe75/VAb56+xa++p3HqBUriMwwWjyF7/s4S5M4M3vRUzn0dC9BPBWOaDvNsNwoWUCzUshYMlTzajdC9yzdDFW3nFboS41ACIU+uJbAH0NN7UaVZ8O6WqdD4FSQ8WxYTpTM4i5OEjTLICXKDeuhpZnAmd6LsJL4iSxU5lB2G3dxEkWAObgRfIegXkRLTaBlBxC1eTTNPD6VbeM1SwR2GxnPhNPcdmgpKKQWymqqAGml0HvG0OwOXmUeZXdQnQZes4hqidAgo38dXmMpzPJOFTCyA2GyXbuGV11ES+Twl44SmHE4Xi9O4OMUjx0XgnEwckNoZhLldUOJ0HQvvmuH6+BHfoSWHURP96CbcXzDQvNdAiMOThuvXUXvWYPq1I+LpSTCGYtWHXNgPFxiCDw0K0HQqSPiSUQiQ6tRJZHtQXpdbNfFMGPo+QFkLImZ68NzbaQex8gNodp1/PoSxOIEgNdt45bn8WuLSE2iIQgcF6VEWLLXbkA8wFMSv9vGbZRRAQTNColEAjOeoFNdpDl3BOF0uPrWl1EslTnaDshNXIXfKGJ7AXq6l9bRA3hBQG9PH13XY+7wfpxGmdzEOIWxLUxNHmFpfpZup4stTAqDvRx9apKJ/hxCCIpLCyzOzNFo1EkVBjj23W+S7x2gt7eXmWIdXRMkTI3isaNcff2W045cz2bkmxYeu/cfpiXPLYnqYtQkn0uAfK6a7gshUi37xWLVBWoIpUDf97738cEPfnBZQvTzn//8CglR3/dDMQ6lltv++Z//GYC/+7u/4+/+7u9WnHN8fJyjR48CMDQ0hKZp/Lf/9t8oFosIIdi4cSP/9b/+V/7zf/7PZ5z6vlT87At+3bXXsG//Mxzcuwe/1UXrG8ctz+CWpogNbcYY3IgWT+PWiwR2F4/QT9mtzmENb0EYJnq6D5lyw8DpdtDiGbTs2tAFy20jYmmCVpipbRbGQvMN3UAocMtTeLUFzN41CDRAhSP4dF8YfD2HoNOkU/wBNIuowEGWptHSPXjdBlo8FTpqOS1ELKwR9euLBK1aOPLP9IHy8evFsEraiKGZMVzXBgFCN0PFNLeLMGOgfJACLdOPFkuHAisI8Dz0XD+x9S8I17I7Nfxmmfb8QTCtMJs7lkToVpjYluol8G2EZoY14dVFtHQCrWeM+IbrkbEkfnUerzKLUj4icPHrRQLHwYyn0eKZMMGuWca1O+F0e2wC++hTePVFrN6x0Nva6RIsHCbwuqBb+O0GwrRASKSZxC3NggLftWmX5+kWj0G8gNJNZCqP8D3sxSMQS4PbxTBjyGSWzsx+Wu1KmHegFKAwcn3hyL7ThE4LvC7SMPEaRfx2BXw3DNzVGQaH11CsNYmnevDr83QXZ9CcKjuvuZqh4WEcI0Wio7DSOQLDolOeId07jGnFsOcPQ0wwe/AovVbAcD7J6Pg4noIrNk0gpeKJIzOYhSEai1MULMHWDRNMHpvBVxqxnhHKtRaamaQ5fQTX8xgYHiPXP0S7UeOZA3tg7hCDr7v5tCPL5xr5JoJ26B0tYvQPjeH6HqrTIZVOnVUS1dmql52O1RIgI9WyXyxWZaBOpVLcfffd3H333afd59577+Xee+9d0XYiED8XGzZs4Ktf/eoF3OHFJ5vNMpBP8cyh/YyMr6Pd7mCaBkGngo+O6Lbwa0WMTD/G8BY0w8KrzOKVZxBSw+obx2uUw0AgZZglXZpCJjLo+WG0WBqvVQrXivEQRhwRT+NXFxCGEdopejZC6uj5YUQsid+s0F04jHI7GJk+hJlEtavH5UZ9lNvF7BkN16fjWQKng/K8MBNZhE5bKgjQElm8+iJCSOTx6+I5BLZDYLdD8ZJ4CvQ4BDP4tcVQB/y4qYgKfALbxq8vIFSA73XxmmUCp4NM5kDqBJVZtFQec2wHQaOILTW88ixBT45g/gB6rj90p1IKIU3MwQ141Xn0eDoUPNGs0N7TiEFuCOXYuPUFAt9fvj+9MIaR68evhkYZJHIozwbHQXlOqNymxwiaRQK7TeC5+N3m8fV1Dy3VE358eKGhSax3iJgIUFYKu9PFq84S6AJdEwQY2AuHUJqJlsyTGJgIXb3sJp4dkBrdSuC2cWw7LNcTGl5tAd/uYCRzWJkeNF1H2E0MYVCZqtE+/GM8SzG+bjOJvhEqC8fodEqMT4xz5Quuo1yqkB8YoadYJKEFBOkM3cYSqjZHrxlQVS1UZZrRlODlL38V9VqNw5OHWTM6zI5tWwmCgGKjS8/IBKXZY4wObaFULDFbt0kPrEF2uxhTB+m0amy48ga6lSUWDz5JUF9C0yAnHXJrJ+g47rIj1qk408h3ZHA9337sCRpCMVXai+sHGMedqibWjJ1VEtWFjHRXU4CMVMt+cViVgfqXkWKxSLVa5Zk9T/PjnxykXKmyd/8BYiPbaCxM41dmw8zoRBZ53HnKqy0iY2m0ZC7McI7PhdO4BGCYaFacwLERMoBEFlWZRkkTlIDARXVbYea2ZqHsJr7TQbNSgAidqtK9qNm9KLuN7BlDeOFUtRAGMpHCGtmKUj5+o4iMhXXUzvxBROBjTexCGDH8yixaugc0g8BpE3TqqPkDYMRDOVG7jSYEShqoVjF003K6aGYc73g9teo2obYQrikbJt7iYXQr1B+XyXxowiHALc0gGkX0VAE9N4jXLOIceBR8G9Wq49ZLIDXMkS3omTBDXljxMOh6LkG7QqDpcHwUL6QWlroFPmg6CAg6Ddz6UuhhHc8S+A6qXsZvlfALI2jdZuhKphmhSItQqE6ToNPAb1bQEjmMVIbUyAY05eJWZvGqxeMldRJduUinDQqseAqnvgS+g+220PAx3CZGzzCZQg92S6Nx9CmkkcC3WyjdIja4ntTIRsx0Hk03SJo6CbuI1VpEVicZMdvMH3yM4jMamXSCNfkEt7zs5aSSKRYXSwjPY6AnSyKdIlXoI6X7bJoYIWEaPPOjh8Fu05e2sJRDRvcY1FukdYUuNTwEhlCUZibJGgFWPMb3f7wbc3gLycIg8cCjM7GRmaNHqC4tMb5xE26jyNBgL06nTa4nyYa1a1msLD1nNvLpRr579+7l6QNHyG68mt7+0JHK6doslhdp7DvAto3rLnkS1WoKkBc6QxCxOogC9Spgue5Sz3L9i17K4SOH+LfHH6ViC7xAghkLjS2sOCrbh++08SqzIFQoBem0EZ4d1scGLlq6D2V3IZ4h8D1E4KCkhdesIF0PmSqgp3vCKWGpIZMFvOoMqlUlEBp+s4xTnSNwOmixLMpIILP96Jl+RDmBPbMXfWA8XCPv1giERtCuhCPVTC/2whHc2hKalPjdJnphLFRB00OBD684hZY2kJqJU5skaNfxuw1E4COO12OrVpXOwR9A4IVKbPlR9Pww7tKRMEFNKVS3gUxl0WIZhG6ANFB2G99u43db0G2hJzLhx0yuP1RlMxMEzTKBbqFZSZTyUc0qIghwy7OEVl8q1PgO/OP64w5efQkt04uRHUS5DnqqB6N/LdJK4pan8bsNvMoMumGixdaESXn5IYx4Gsw4bn3puImKhkz2oKwE3dI0QaeD7TnIeIrkwFpi0sNIZBDxFHa9ApqG226gKQ9Lgp7O0Te+AdWoUDy6BzNVwMz00m2U8dr18HpKoYSOZ3foNmokLRjcfBX+lMY7/8MdxONxfrR7L0GiQBuLbLaXbrtGvTRPXjfYsnU7C8US1YVZTE2SSCRx2m0kiut3buaGa3aSyWQwTRPHccKkrWP7sD0fWZtGSpMdN9/G03v30VE6Y8PjSE1SnFtkaHAIK5WnWlxg4cBu9MDGiSnWDA8xsXYdmVyeo3sWTgqkp8vgfnYwV0pxePIYnjTpKfQRT4QKg/FEnOH4OLMzkzxz4ADDyUufRLWaAuSlXAuPeH6IAvVl5lR1l9VGnUCPkxoaoLtUQqZ6oFUnsDuobhtn6ShBq4LUw1Ido28CFKETlBAQ+ASejWhX8SvTIHRkLAGug9uaQUuEo3AV+PhOm8BphSPbZAGFCkeM5ZmwltmIheVUTge/Mkvg2WEtcLcVfiygwgz0RBZpxgkMA1GZg1aZbqsKbgcIMHIjoeumFAgrgR8EiCAI66zrSwing5HpDe0lTQtlDkN9KXSg8lyEEUfZTQK7hTG4AVWaQrk2eqoPLZbCb5XC+mWng2qF69QynkHrW4sMXKRuoYREyw0SNIrhNZO5sFzKbiGSmbAe3DDRs4OhRnizgggCAkJjEHv2IPheqI9uxEDK0JzDczH61iJ8N8ySr82HMq1GDE3XCJplpOdAPA1mDLe2SOBk8R0bmchDs4gIFEHg4UodVZ1HOBmQJspz8GpLSNNAkx7SSlGdnaQ+tR8Ry9A3sZXkyGYaxTmK+3+EZ3exlybxq7NIK44ufTyrF8e2Ua7H4elFrtq5lX/3qpexWCzx7Uf/jX2PzzA0NMxIxkRPmAwMj5BIpXl69xMI5VGdMyjPHWNjb5yXv/jmkzT1+/r6lgNSfedmntp/iNnpY5SqDTKJNK1aGdvuYgY2g8Mj+EsV8oNrKB/7Cb26x3XXXM3g8ChCCFqNxknZyGcrg1mr1Wg5inVrxigvzhJPbloOjEJAPt/HwR99l81Xr39ekqiiABlxsYgC9WXm5LpLxczsHB3Xp9t18YWOX5tHy/Tit2v43QZ+eRqpaRhrdiGTPfjNMkGnhuo2Qw9kp4NXXwizpo14mMl9vNZac9p49QX8VhlpJsMgaMUxBzaiZ7I4CwfxW1W0dA9m/1qQBq4ZR5oJQOFXKygIDTeOTw1ryRwy20/QKKMUYS1zIoeh6wihg5lACZDJPMrp4ndnEVqXwGmjZwfwnDaB3aRb7BALfDiu6KXnB9GS2/BKx8Ipd89FaRJZWyCw26GaV6eGyPQgvVRYDtUoHXfd8hFGHCNdQLl2aDwhdbCbx80zWvjtKnSaIEGYSQI7tKv0KnP4jRK+3UIacdJXvBzsOu1D/4azeNwuVBB+LMXSYWma0w5NQI4niJnJPDLwiGV7CPAJmhU6xWOhCYjQEJ6DHk+C5yADH7NnBFPXMZI5qC/gdpooRJh30KniNW2IpZCOR3V+iiBQxPKjdNod9FqRfO8AjaMWJNNYqTw6brhE4js46CQNj7GN6xnfcS1TjTrl+hQvfMGVjAwN8tAPfoRjpNiy4RYOHj7C4b1PgW6wYbSf4d4CrXqFDRuHeNmtLzyl8c2zA1J/fz/ZbJZHHv0BTxanCbo+CweajK/fzNDwBOlMllqzTanTodtqMbhxeDlInyrZ6lxkMB3HwfUVG7Zs5Sc/2cvMkWfoGRjGiiWwu22Kc9PIbo2JNWPR1G/EzxVRoL7M/Gzd5czMLPsOHKFer9HpStx2Ey3ThzGwHq9RxT76b8tZz0qA31gIE65cB6N3HC2Vx2uUCToNhNNBy4+gpfLYcwdAakgrGRpftCooIVAEiEChnCauZ+NWZkNZSzOJEAbCtDDzw3itKkIKpBnHD3yEGQ9He/UiZt/4ctIXrgOmhQw8jIFNoJuowAlVxFwbdCuU77RtzOHNSDOObljYCweRSiHMBGb/2jBhreSixZPoE1eGa7mVBZTdACHCdW9CcRCUQsQSCGkeX0+WqG4bfWwNeiIHSJz5Z8LyL9NCOF0C1yGoL+FV5tHyw0i3i9AMRKoXf24fgd0J17rTPWhCYQyux60tohaP4Nbmw48RVYW0i4hnUUIj8Nrh9HYsc1yHvER3aQrdNIiNbcWfDpXDvHYjfH5eB9NKYCbzaFJDWik0FObgWmJKYTfrdOaPYFox4iNX0e12ce0mRqI3NEfJ9GEHIJpNqvOT4RJHu4qjaXSbFUxdI5nvoRDTyaiAnVu2MTA8Aoxw+MBe9j5zgFteeBPZbPb4iLVIVvNwStMgJZmBQWKuzvhI7pxMHPr6+rjl5psoNzoEsSxTs/MIQ6JrksD3yaXiHN73GO3FSQZfdA1BEJwy2epcZTBPVE7EYwmu2LGDo0cOU556Bi9Q6FKQMyRjG9cyPDx80d/jiIhLSRSoLzPPLsvyAp/d+w4w1/Yx0z10Wm2EHkNYCfB9vMWDoc2ilTru29xFpHoRpoVQAQKJUiLMRA58nPoSsdwQQasKngt+GxHPoGX6CHQzPLdh4Leq+M0qyrcJ2nX03FA4fU6A6DYRCPRkHq9TxWuU8Kvz4ei9ZwypGwS+i2YmjpdhhVneYVA0EX6Algo1x93iTFhqNLAhnEI3rDARLN2LoYIwo7m+iD0jkfFMaDaR7AGvixASo38Cv74I0gj9o6WGjGcI7A7+0hQ4LQKng963NvxYMBIIwwytHA0T1WniNkt4taVQva3bRBgxlOfQOfB9kDp6IovvdLD612INbUTzHfz6ArbdDDPUhUTqMbREhrCKT+E1ishEFpTAqy2hOx38pQSe3UEKHYw4muuQyPVi9I5T3/cYitCMQ6FIZArYrTJObR5XN7ATWfzAh26TbnWR9MQO9KGNJFwH1+4QKIVXXUAaMZzqEq5hhuVn8TSarmNX55BOGyuVpMfIMWjZjPcPsGPXT7ONn539/LPrqYZhAOC67nmvreZyOdatGWKqEXDttdcyefTIiqA5Eg/o3bqGWNDh6J4fnjLZ6lxlMFeURm3cypWFHpqNOq7roOsGi/MzrMloUe1wxM8dUaC+zCz/4zJ7jIbt0wp0zEQWzargl0qIWAa3USJollBKYaZ6kIVhHM8maDcJzDIySIM08J021JfwagugIDa0mdjQRvxWFVFbQCuMoKULGPmRcN0ZCNwOQjPxuy2U7xK4NoHvI1QXd3ovWrYPIWQo/dltENhdlO/hlmdQUkMz4+jHjTuCTg0QmL1j+N0WQovh16dRUgtVPb1uqGc9tBlndi8CDRV4KOUjYylE3zhq6ieIWDwMZPF0aFEZeGFmu2agvC5+u4rwPEgXEMk8MpkjsJv4roNM9oCQYUpYp07geqh2DeH74QdEEOA3FvFaNQLlI5xOONWumejxFFp2ECnAHNqMFBKEB1IL15WDAGHFQfko30NoJvhBaMPp+yjfRQkJvofwbOK94wS6iVeZwWtVMZMpnOIMZjqHSGTx6kW86jxO4OO3a7i1RXzPwcwPYaWyCAKsoY2YQ1tCVzPDxEj34EsD4XsIwJEabqdJIteL22kg/S5mp8RAIUujVcfqmFyxbgfbduwi39O7/Hv3sxKSF3s99dllSpXyEhs3baZWr1OvlGjUq2y7egc3X3fVckLaqT4IzlUG81SlUYlkanm0nqIb1Q5H/FwSBerLzIl/XKa//TD7DsyRH9uM53Zp1CogNQLfD4O0lQwPsBJoVqh45DUWUb6DNI77NHdbiHgGoevIVC4UzjDTqOIx9NwQZu84SnmhRnbgIzJ9iHY99GB2uwTtGkr5BI0iWrYfNBlOlesWfnUudMMyLbSBdchkHv+4hrhyOijfR5qxUDTESuDbk4CP0E1EPBVOiUuJ79h4zXKoIhbMI8zj/XI6CGkgpEBP96KUQI+ncStzodFIpo/Ab6MZCQLTw6sdQQUeXquCUAoMC3QDv7GEV5pCJAq4panj5h+ZUGWsOoeym8hkATORw29WEVLiVWcRUmLkR5CJNDg2UvkEgUfQ7SA1E00AuoZPDL9exOybQGYG8DoVZKuGV5vFLc+EKnCJDJ25Q8hGBawkpvDRrFgYXH2H5NpduI0Sqr4I6V7QNcz+tcQH1oZ654DwHPzaPIYVR2b6kG4Xt7GE3pNDNwy0bB+Nw0/g1IvosQy2lOA7OHaTeBBKm8YNAzOeoNpymDx6BCHEcrB+PiQkT5Qpff+xx3nkm/9MqdFFqYDeVIyJ/Mbn/Dg4HxnM1VQaFRFxsYgC9Sqgr6+Pq7ZvZu+BwzjlaTozB3AbZTwfSCVDOdBuOzTPCAKcub1hrbGVxhhYj5YqEHTqeNX5UNrTSiHjWbziMbTCGvxOEz2ZDXWmtWSo8qXpiMBHSYFXncOrLiB0E6SBV51DS2bRB7aHa6qVaVAqTODSjVDExEqC7xEQlojJRJbA7eC1SkjPxm9XUK6DjGXQ9dBNSjkdlFJ0DzyC2yhi9q8LjT4SOYQIpUlV4OF3WggUZHuRyQL27D7c+gJSM49P+3eRmUH0dB6/WcGtzCCtJEG3id+qIo04upVAaBp2cQrdSuBVZgk6VdAtjGQ+TKYjQBgJpJBIwyTwuqjG8SQsu4WWG0FKAXYT6dtw3NZTZHoJPBtnbi9KgdQNZCyFlhnASmXJFfpIpJI0F6ZpH9c+1xJZtESaRDoLToPW4lGMdAHh+yA0DCuGpkmEHqPdqGBoGjLVgyrN4bXr6IkcdruFTHUwYnHcADzPR7Xr6IURzGQaV7koz8FIj6IMwdBAH+n+cVLDa5kuF5l/7DGu2LGDkbGx51VC0hMagxMb2dbTTyqTRdd0Fuanefg5PJHPV+XrYpRGnYuhR0TEpSYK1KuE4eFhrti+Dc9I8ZM9TzFdbtMuLgCCwHVCGU0rjdcsoZwuZuF4uZPdDkd+nQaB3QTPJggU0orjN0u0fvBltGQGGU/ht6sop4u04hiDG+G4ZnfgOWixFMKMh9O7uoG0Uvi1eYJ4FrfTRAJGuoCeHQhlQc0EQvl4bodASCAgaFWwDz+JwgcEWiqP5mRQuk5QX0D5AUKTeM0qRt9ajN4JhBTgu6EWNwItnkW5XXy7TeB0QhnMZgUt24fMjyAI8Dsg7RbKTyGsJEKPoVw39Ne2UqHamBChEpqZwK8vhSPrVA8yCMKpcKXQM73I3ACaoYdZ7W4Xz24RaDru7DPIxaNo8RRSaniNMm6tiIhniI9sxvccZLKA1C10w0RJA2nOkewbRYkAQUD/lhdQPfgjOhWHgdE1yFSBuGXQmJ+k2SriBT5ut02sZwRLlzjdNsr3CVybZquOJiWGoROUZ/A1k8Bu4zTLYbKc8qFbIza0gcTIJuLCRU/ECdwChb4BejJJurPP4NUX2b9fx0zmqCxWmZr6/zE6PMCGwTTbXnDbRQ8+zw5whmHw9L79tGWCK65aGWiT6eeW87wQla8Lmco/23KwiIjniyhQrxKy2SyDhTTf/refUCxV8WMZzKE0nYVJVLeOlu5FuR3cxSMY+QGE1NAyhVAcxA3rpw0jht9tErSqBL6DkR8JNZ679VBJy4yHalu+H4qjqICgWUECJHMIJLrZwW+V8e02dBt4s/tRnTqxtVdiFEbQ0n141TkUCi0zgO928eeeQR/cjI4i8Dw0qRMEHl5tAXtmHzKRA7eDlukDPYU0Yxi5AYQgFP+wm7iVOdB0ZCyFW5kh6HbwNQ1lt5DZfqSQ+LVQ8lO3UijdXJ66xrNB6mHGeDyJ0TuGjOdRdgO/voQjQolNGUviFSfxdQs904OW6YcgQCFQqDDpy4wTdOqhXaeuh3roTgclTIil0VI5rIF1uM0qIp5GtathmZrXRVMBUoBM5ClNPkm+WWRisMC8FtAqzRHv1NAzKdI4+PkcVjpHpynwLD0sFTNTJAoDiEQenxl8u0W3XkVr1pHHk/r8xjx2t4n02kjlkRpaS0z45DMZdCuGUy8Rz/YSz2WZO/AE6ZiBflwYJ5nK0phZoNM0USp1Tr+fZzPC/NkA5zpdjk1Osv3aW87bE/n5nso+l3KwiIjniyhQrxKKxSKVSoUfP/4Yh6dmCMauJqgthVrR9WIo7pEfQVrJ0N7RNMMaZccmsFugAmS6B6Ub+JUZ9Oxa9N4sKp6me/AHKLuD2yijp/JIPYY9uw+kiVs6AtLA6F+HOO7vrKd7EbF46MRlWHg1HSE0lOcCAcp3Q0WzeBItnglFSgKXIAiwBjeiJfME3RpeaQZHM1HdFtJMEFt/XZgANbefwO2Get/tBjIWRzkdMCyUZoRr5kpgJFKY66/Hnv4Jztw+YiNbMQbWYWRHUH4XZ3Y/3dn9KKXw64vhCDmZR0v3IzVJcNzcA2nQPfZjAjuO8roErTI+ARKBni6gmXFkPItbnkJm+gjaDYzB9ei54TDxrDqP3juKdLtIAZ1jTyMyvVjxMVQQgN1CEuA6bVqzz2CmC3SKM6ScBPrgNhK5PuYO70N1G8R1QTqVJBYz2XTVCzh06AgL1Rb9EzuwkZQaHWTMIDWwBt9pU68tgGdjL02iBx5mMkO3UUEXAbqZICl9EpYI686lQCSSBErQaNTxOh16hnfyghfeRrcT6oIvJeDmG66lWimdcTT7bJaWlvjJvv0cnlmkYzvELZN1I/1s27J5OWidKsAtzM2wdGCOA4cPk0ilViSzwXN7Ip/4OFBKsXP7NuDCMtGfi3MtB4uIeL6IAvUq4MQ/cou2RqIwSCBmcKqLdI8+hdSNUDykbww9N4QwTFAKGc+h3C5etxnqSgsNAhe6zVBeUwUgJVL5GD1jOHPPYMQSBI0SXrsWJoe5Dsp30PKj+OUp8Fy07ADSTCA1DWElUPEMGDG0dAGvUQLdgCBAWslQ7MOwEMkcfqsGELYLgRIaRm4oFCUREr9eRM/2EzQroeVmLA12C89uQKtMYLfCY5N5hKYjHDssd6ov4FdnQhtMTQfPxW8WUYGLTOSIje2gu3AIfAcZSyE1A0GA0ONoQsP3Oii3DQiMTD+iZwxpJTBTvfjNIn51Fj1VwCcAOF6m5oZr5E4L7DYAge+jOnWwEjiVBUSzhLBbGPnhZQ1wqWsYqR7ihQFolciMjNGyeqkWj2Fle7jqxtvQpUJ06ridBnPzC1SLC0hh0TsyRqlcxivX8W2PWMzCcVokCoNodgPlNJGBgy59DNFlZO1GWs02SUswNDZB4LkEyqdUb6EQaNIjm4qzftNWpBAkEkmECkglE5hWjMGhUQ7ve4Lhgwfp6+s7beBbWlriaw98m0MLzeOJiglU3eXIwgGOzszx6ttvo7e395QBLpMrMDy+lkbH5uiRw+QKPSuucaaEtjNNP18qta9zLQeLiHi+iAL1ZebZX/HDowVKlX9GaXEa+x4CLYaZLqCbCYzCGrxGEac8jaYZYWazboV+0aYVrhlbKdzKPEG3QdBtIfsnkLqFNpwDu41nN/DbZTSpEdRLEEtgrtmJDAL8ZpGgXQ9dtVRAEM9BqwrIsNZY6OB1ceYOIpNhnbSw23i1pXD6OQBrZBuaFQv1GnUzdMrq1JBWCtVt4i4dBUAY8VAgRY9Btw2agQD8dh23MoPqNEIvayFR7UooIFIYBinRUj1hzbJno3wP5Tk4lTlULIOw4uG9OjZKM0JTEMdBodBTBcxkNhQ6cWyUFOjZfjwV4LcqeK0GAQoZN5FmLEyWUz5C0zDyg+Gad2wN0jAIXBclCB3CWuVQMa6+RDw/QGbNNhoz+wm6TRL5foxEFkPTSKdipLI5soVeagvTmJriyMEDtMqLpHp6Kc8eodENkChEp0K7VCdwOiSyPSR8k+Hx6wg6daTbZunwHnr6BhgdM5mtVelW5hgZGycWT+JWF3GcBpmYwOrvI9vTt/x7VlqYpS+Twg8CDh6dZN9PDtDudOnrKZxyDVYpxfcfe5wnjxbJrtlMT8/AsslFqbTAk0f3k3/scV70whtPGeBSqSSFTIKmG1CuN2k26qQzYeJXEAQcOvATBmIBSqkVblmXa/r5XMvBIiKeL6JAfZk58RUfS/Xx5I8e5+jhwzSXSiihoyfSiGQhdK1qLILnYmYHCLpNnPI0Zs8YItMTrjW3agSlaVS3iZEfCYOnEmHGOCDTBTQrgV9dQKUKYXKZa+MuHCI2uJHY+JWhjaSZQPkuzvw+UCqsPfY9VKeO126Eut7NFEKGphVBu460EqEFZO8YyrUJuvVw1df3CNwumhEncDo4U09j9K5BWgm88gxBt4mMpdHzQygrjtcohbXYRiz0qw4CvOLhcP04lkLqVmgUckJQRQUoFSClRJkWQbse2kwaVlhDXZkNFdE8G6FpaGYMFXjovotqlgjimfBnUJzGyPYdt+MsgdMNa8m7DbR4Fr9TC0u8EhkMAkRsEdcJVdl8ofCKU8SyvVixBJ2ZvVBbYHBolHVrRpk5doyJkQFSsTES2LSKM7h2m26lxBXrR9nfKRJo0J3eT6VSw0cjppt0A4/ejbuQAhJBm8L4JkoHn6I4P8XwliuJCchkc1QqB5k9+DRzk4eJxSxifpukJclYWQrDY9jtDq4Mg3TMb1PoHWPP/oNUOh7ZvmHWXXEthm6cMghWq1We2HuAWN96RkYnOBGD44k4I/EJ7E6bJ/YeYMumDacJcIKJNWPUmvuYPDRDrbKWRDLF3PQxHnvkO7SbDdZPjGN/91EGezJs27zptKPz52P6+XzKwSIing+iQH2ZcRyHYqlCbbFBxbdwfR+hx9CSYSaxapYJNB1dMzD616KExJnbj9+soOxO6N2s6SinC76LAozecYJunaBTI0jl8CtzoTqZCjB716D1joEKcJcm0awUyndAEE6ne+GUs9kzStBuofWPI1E484cImqWwFGh4E8rphPfgOijdCoO20wk9k10HLd2LV18EpcC0whrqVgNT0zB614Q14p0ayu3iLBwKBU80DXN0B7TLONN7EFYKFQikClC1RYJYChV44RS3AGklcFtV/E4zzOq227jtOrJZDmcYNIlSCpSPmcwhAhfNSqLFEtBtIITAj6WQyTyB56LZreNJZzGC+nGZUN9BqAC0UK0Lv4uV68OQFl6ziNuooCsPy2+REqEhSCKXRPkd7OIUcekxseUquo0y4xNr0Q0jXCuOKW689hriOtRaNraVIfA86p5EGTFs1aZZmiemQd/wMJ4XsDh9hHgiw3W3vJz5Z56kUZwn3duH4bjUqnXivsNofy8jGY2tG9ZxZG6JfY8/yPDwCH2ZFBNrt3Nsdp42Jpam6OvvJZvLI4RYDoJP79vPLl3HdV2mpqYo1jts3L6Gn42JQsDg0BoOTj5N47iRxqkCXDabY8OaEbpzB2nOH+V7u/+NH+/Zgx/PMzKxgW68wGwroNytUa4/wRWb1l226efzLQeLiLjURIH6MmMYBkuL89i5CZKZJF3Xh2QBqot4zTkCzSA2tAlhJcGIhbXPnouQOrJ3DdJ3QQUE0kDqMURrKVQQcx38pWP4djscUZvJsKzHcxC+H675Wmm0vgmwW+Eas5T4pWPofevQUoO4cgY9lkJYKUR1CT0/SODZBJ0mQasSrstm+lB2C3vmaTguViLMBMqz8WsLqMBHOc5xw5ARRCKHW5pGdeuhsIluobvdcFo3nkNP5vC7eZzyDEIz0MwEgdMKy5ECF3/pCAQ+Zs8ofnURb/4AbmUaoVt43RZ64KFiGZTTCm0q64tIt0vh2lfgBopuJxRnMZM5AtfGK8/gN5ZQCjrtOqmRTSSHt+EUp/C8LtKPEQQ+wmmjOnWUVMR7hkN99FYRzdAwMymGBvoZ376DsbXrMPF46gffY834BE1fC/shBbphrFgrVkHAuvExyqVFHn7yIIGZJd4ziEz34izM0CnN0e2U8fr6KB7eg3BaXHHjLWRSKSY7bYY27+Lq8fV4nkezVqFbWeAFu3bQalQZS0tuvP5aHn78CRwjyboNW/CVYm6xhKskWSNgYu2OZ7lLCWJWgu888l2OzCximDFKxUVmpo8xWCuSTJ+cJa7wUSognU4zUOieNsB1Wg1uu+Eahgb6uefzXyS9ZhtXXHszVjyO07UplxdxvS40POTe/dgul2X6+ULKwSIiLiVRoF4NSAm6wezkIRrNNioZD5O8kr1g1xCxZDj9WjPxuo0wqGk6wdIkxNNI3UQ5LTxnMQy21cXQPzmWQNlNVABCqNDIQjfQrSSBZ4NhhYIe8TRBdY5ASny7jaFpCCHRzCTKsQkcGxG4GNkh3NocSvkI00JP5sB18H0XISX21NO4iRyalUQmMuHouts4XvtrYKQKyGSWwLND+dF0P1osCVKje2z3cSEWDZnIIoSETgNjeBPCWotXm0VaKQQCZ+Ewfm0RpXy80gwykUM/blQSeG6o7KV8gmYZv1FGaBoSBZqJClrIeAYZT+AVpyBw0WJpfN9HdFtIzyaezuN3GrSPPY0dTIaKaz3D6JqAeJZuZYHA7iLbVYZ7cwyt7WfHxnFEdpB169fTaXcY6N2HxCcVj3N0+igTAwXi8eRP14rTSRqNKhsmRqnl0ix2JEsNh4Ozx6jNTYIQ9PUPkrBGCKqzxHXIjI6yadNGZqePgoCR8XXEk2EATaUzzLtd4okEmXSGxWP7uPKKHbz2ZS8Ok7Km9lOsVClPHWHztp2sW79hRRZ2pVTkmUOHmW4GjCYK9I6uIdk/iv7UIZ549Hu88PYUmfxP91dKsTB1lN5UjL6+PvL5/BkD3NbNV/KDf/sRTZHkihfcRCIZKtI92yva8NuUm11Q6rJNP0fKZhGrkShQX2Zc16VvYJDZVpNvf+1+bMdFGB2MbB9+q45I9aCCgKBTR+UGkVJD7xmFQKFnepDZAfREHhW4eJVZ7OIUQim0eBqZ7UUzUwSdGl5lDpnMocl4mPxUnQczNPxQroPfbYbezFLidxoouxWqnWkmQoUCJiIWR3biSAFK6mixJErTUQRobhe/XSFoVwm6dajNoid7UEKEo9p4Gt9pIaoL4XS0ZoRKabqJQoS10JoOSuG3qwROB2t0LebwFqSVQEsk8SrzeE4nnNJvlcORvm6gZQdQnTrWyBb03vHQ0lKBV5sP66udJgtPfQc9P4rsGUEjoD25G18p9NxQuFTQrtKd2oNdL1GfPYSVH8CKp3BaDaxYjHgiQX7NBoJWAz8IaJS7yFQGIQSWLth55VUcm5ph5vAz2L7P+rXjdDstjs3OotltfD/F7ORh6uUFdKeJGh0iRZfRoXUsVpq88lWvQQnBsWNTHDx0mKPzi8wVq3TaPrFuhe1X78RFsrQwg+m2yOULWLGfjjqdro2hSXTdIBaPL486+/v7l1W6lpaWiBs6o1u2kcpklo9VSrHnySfYd3SOQJgcmiuzWOuQS8fZvmMHjz/1NE899jBX3/wSYvEkdrdNaX6WztIk1+/aSC6XQwhxxgBnGAZzS1VSmQKx+MrRshBQKPRTmz9CQgsYyMaZv4zTzxdD2Swi4mISBerLjGmamJpk+ughytU6CAm+H+o/D23Ea1XxGyU0K4HQLQKaoUxkfgikheo0cAOFHksjrCRSSrqNRczRHVi5QZylo2DGMQfXI8w0+sB6VLeG1yyj2lXchSOIZA7le6ACNDOFiKUI6othOZbQEIaFlsyF/28mQRiowMHvttGkIGjX8OtFZKqAPjoemmJ4DsrtoA9uwlk6gjd/AOU6ePUllG6G3tKdOiqexq8v4dtN9OPJXd7iEVAKY3ATMpZCdRsI3UTvX4dIZEJNcxUgrTh48dB/2ujDGliPMCwCp41mJtGTGaQUSKdJMH+A7rHdBOV5DOWS6BsjOziOZ6RRsTQqmYJuA9kqotdm0PQA2a1jug36CusxYwK/NI1RGCFmpbBiCRqLU1SL0/SZvQipsX5igh8/8QPcZoP02nF6Mjp5oVNrGhx46iH2Nbvous5AT47hJGy58hYymczxRKwkmqaxbds2tm3bSrPZZGpqiqmZWWYO72e0N01paQm/ucSOXbvYf+AQdrdNPJlGKSiXF+lPx0mlkrQazRWjzhMqXdlsltmFRabmp0mmfxoEpyeP8OTe/XQTQ0ysGWFi8yacrsNSeZFA01g/PsrM4f0ce+pR4ulcaD7iNNm1fpibbrh++TxnCnCLi4sEQhKPx5bve8V7ELNotTv0pxU7tm5h9zOHL+v088U2KYmIuBCiQH2ZyWQytGoljhw9SqBbYLdQTgetbwJzcBPu3m8jdQ29fx1IEQa1bh0tlkFLSNzSIl59MSxbMmOhD7Xvgd0ksDvg2WGZlJT4rSJaI4NyOgjfQyHoTD+NlBqB52CObkN4NqpVQukxjN7x0CJSN8CI4VXnQQhkahRd68drFAk0DeV0UUKifBe/No8WS4FhEjhtvMVDoZZ2ph+hG2ESWaOI1Ey6c/vRO3XwHNCtcOq6toAzfygUUhGEMqbHa5mlGUMzLKRloTpNpO8Q+C54Dloyj57pC0fTQYCWSIHvo8czWKkszfoiXr0MrRIi24tIFvAChVtfRJcaSB3LNBkc3U5S2STicaadMpqbYmSkn+mZGTwlQzMTwySZSqMlTaQ5iJkw2f3Yd9m5fRsvve4KRocGyWQymKaJbdt887uP0DO+kVyhl3Qmi+95NGtl9h2Z4grDOEUiliCVSrN16zbWjI4ylTW4+ZorEEKwe/9hmu0mSUOyNDdN79A4lcoScWUzsWYjSnHaUeep1mCteJx9T++mWO+waeMQa9aMoUntWVPSMGIZpII2/RkDPRaQsOKsHVvL9mcJnjz7GqcKcKZpksukafttSguzjKzdtCLY2p0urcoSI2vXs379+p96ZEfTzxERUaC+3NTr9dAIo1XBcz2UFUfYNkoz8Ts1kHrot9yp41XmCZoljL5x9J5hhBJI38OKp0HqyHgqrFGG0GrRNNDzw+g9YwjPpTP5Y5zSFFJqaIUhdDMBCwfDWmgjjrdwCKHHCOwW5sBaZKYfFRcE9SWchQN41SViEzvRdJPAtUFq4HRANzD6J1D1RaSmo+cGwnVgoeN3G6EtZSwdKqwJhZ4dRMTT+KUZ7JmnCTotpG4S+E7oyNWuY41kCbrNUHfcjCPjGYRu4i4dBqeLFIJ0rod2dYlAeQgh0IJQWc1ph17OBAGaGcOuL9EtzSOVIjG8EZnuIbHhWpTbxS5O0ylOY5gm0rfRXAddeoz0pElfczPzex+nrzePrUDrW0cymcGMWbiOy/zRfWzu7eeWG67BLs1ww5XbWLNmzXIAUkrx3e89gkr1cuXGldO4/QODHD6wl+m5eQbyqTNkGk+zbqSf3t5eXNflis3rmJ6bxy65HDvwDNW5SSYmxtm0cSO61Dh8YO8ZR50/uwZbqdWZnznGUG+W0f4eUsmfJo2dmJJemiyzYWKMl9z0AuLx+HlNBWezWQZ7MpQ6HlarxcyRZ+gZGMaKJeh22ux/6ocMWh4vuDq872j6OSLip0SB+jLjOA4d26Vdq2DXS6hYBhm4eKVJgvpCWFfsOTiLR5ECrKEN6D1jaKl+vLn9aIaJzA6i7FZYDmVYaLnBsGa6VkQJgYFA6QbKSBCUpyHdg/Q8CJoI38dI9aKEQiqF21hCGAn8Vg0hNAIUXvEYbmkKPTcMmkF36ikQOoHvhWVS8Sz4NuSGEbqFW5xGS+XwW2XQTbR4JvRe7tQQQNBto+fCDHKnOI2UGiKRQyqFyPSGimmdOn6jiLXmCgQitOGszuDXFpCuTaaQZ3jTDhb3Po4SBl3lHpdO7Q/lNUVAENh4nTpOaRqtU6Zv+43k11/F4twMXqMIegwtmQcVQGORdCrOuo0biTlNtl99Lbv37CGRiJM1AoqaJJ1N4wuNTqtFZf4Y/YbDS2+9ndHRMY52asTj8RWB5GyUrhaP7ePqbRson2aq16/NU/XifOOhx36q0JVPcduNL+Cma3Zy9NgUDTugMnXwrEedzw6CMzMzYR6BFqfUrKH6Blbcq2GZlBbmuXpoYsVHyLmyPJqvPwGA3W1TntxPp9OlWS8zmID/59WvoL+/f8Ux0fRzREQUqC879Xqdxx//AUen5/E9Fzo1tGSOoN0A00HvW0tQnsJIF1Cahd67JhTkqC9API2e6QHPJUgVoFkm6DTBMEGL4TcPo5wuttRRThPVqCCsdGjJaMWRiRxKakgRlm1p+WGCo0+gug0U4HcbKM8JxT+MBPgeqlUjQKHHYginTaAUMp6GwEMvDCM0A78ShLMBCrR4BlSAaNUwMv149SLCiIXuVbEkcngzfn0eunWEYZGIWYjRjYj8IHZ1EffIE8hEBkUAdhtTdZFGQMI0aU09w0AhQ6vVIvB97NIUyu2QHhgnnkzRmD+K01jE7CwxsH4ra656EZ6Q+O0att9AJJJ0XA/NNHCcNj094xiaJJ1OUq1X6UsIrJF+Crk0lWoDzW3g+AFuo87GgsHtt7yK8fEJWsfriH82E/lsla4ymcwpE7EyMqCsFA09uyKAT81NUX7mMDdfexVbt249r1Hns4Ng4dAUMtVH6+jRFSNdu9tmdvIw8aDJ9q2bL3g0++zR/HypTrXeQMZNhjZv4bprrl4RpCMiIn5KFKgvI0opdj/9NHsPHME2EijZBruFyA6hJdLohWG0VA+epoUJWr4HuokwLPzSdCi9mOkNp4c1A2FYCLeD6jbxPBc0HS0/iJbKQ5BFT/fhFI+BZhD4HnQb6JqBiCXDBC2pIzUdMoMgOJ7EZRFbswuveBSvsYRbnQ0TvMw4ynePW0cqfLcbWmUiCMwYwndAOCi7hRZPY2YKaGYC17RwK3ME3Tp6rp9EppdAF/idGmY8TVzXiPWP4qKDHke5NlrQDb2jsTG7FXK5NLrs0iyXsAZHcAKHYO4IvrBQjSLt5gLtAJRdRzaWWDs2SKp3mMHREaotG52AxanD+L6L7iti8TQty8Srz+MsuSQn1tIfFzDQw8i6HtKZNH6rzkxriTVDY/SsG2Drpo3kcvkzZiKfi9JVLpdbMdVrGAZP7nmaupZ+ToWuCxl1Lot8NNrs2L6dyaNHKE89gxcodCmQzSI3X72d9evXn/c1nk00pR0Rce5EgfoyUq1W+fYjj9NwgjDjOpZESYmWSKGlCmiZXoTbRWgGMt2DtzSJapRChykg6LbC0a8S4YKi76BlBgmaxeMmGQqBRDld9GwfSA3ZLOE3iggh8Vwba3gjIpFDNUq4c/vwmhX0VB7ltPFdGxlLE7SKCMPCGNoMTgevdIyg00BL9YDv4rWrEHh4ldnQu7lVxTDjxEc2gdRDBzA8YgMbCA48htAkIteLZcYopOOYCYXnaHS0NCiF26yTGFqH126i9/SiK5+4LknGTOJeDyYugxObCTyH3t4+GvU6k4eeYenYfjy/idPqoknoScUYXLeJq2+6lSeePkBcE3jxGGZ8nGSmQHVhkurSAt2lRURlmit33sRNt9xGMpWmWSuTtHRuvPYqent7GRse4uHHn8A1M6xdv4lYIkmr0ThjJvK5Kl09e5RbrVZZrDQvuULXsxPMKuUlNm7agud7NOs1yqVF+oYz3HTd1Rc1kEZT2hER50YUqC8jxWKRw8emsf0AkepF+ItIBFpuEOE5CCXxnS6aYWH0rz0ubGIjrARS+WiJXOicpVuobhM0Ey3bHyp4taooP0BL92BkBwncDn67HsqONisgDaSu45WmoTSN323j15YI3DaeboVCIOleVLeFU5k7LhgS+jMrIZHHBU/8dg0jnsGvzuI3l0CPo6FIZHJoAoxsnnanAihEdRrVLGINTJBfu4NcKkUqrqPqC1h2hUqzQ0PFsZtVYoYks/kKHNslnU6Sy+UJ3C6lJ7/F4PqNrNm4hYGkxvq1E3ieh6a9iqMH9pFwawwP9hOLxRgaGmJyappjjYCh2TmmZ44yuv1qqtU67XgcM93HaMykuzTJUM8IN79gJ36rgmPXTlrr3bBhw7MykfefVSbyhShdPZ8GESsSzKZ+2rctQ9mTjDoiIiKef6JAfRlRStFstvGlifIDvE4Tw4yFDk2Bh7Kb6NlBCDxo19FzQzjTPwmVt4wYQmg4S8cQAkQsg57tRzlNvMYSXquMlulHGCYymQXHDHW8pRauNasAqcdQRhxpWGhChupnUoBdxy3P4cwdROg6WroPJTQECqMwhJEbhHaFuA4iVyAAut1kmOhl6AxMbKFneIji0hLeUh2jsYCvJKo4R//IBPGBCbJDY7RKs+iGyaYdO4nhUJ89zJGlBotOjbhdxYibWJZGMpXCdhzqh59Ex6NnaISEcJlYM0Eq9dMp5XUbt1I+to+rr756ecSWSqWoPP4EA0MDzO3ey9QeRe/YepT00CwXTXkMr+3nbf/PuxgeHj7jdOz5TNuer9LV820QEU1JR0SsXqJAfRkxTZNAKTzXDxO2lEJ5Hl69gpQC32ljZjYipIZXmYfARyayePWFUKksUOA5CN1EExLl2Xjl2XAd2Ywf1+Su4fgHw8xmpdBSPSjXxi1N4TpdzMIQMplHqQCjZwwhJG5lDmlUcNt1YsObiI1uRdldVG2OdLaXdKEXuzyLJcFr19BFQMwISPZlGB3oQY9L8KoIwyU92Et25xbmDu3DqQUMbtxFywnQNJdsPsnVO7YwOjpKp9VgzmliJVKo5hJDgz3Ec3nqHZuZwz+mU1kiL9v0DQyxaaSPdWsnyGZzK36epxplngiUhcwzmG6bJ3Y/zfT00+imyUBPnm3jg7zsxbewdevWs3pm5zNtez5B8HIYRERT0hERq5MoUF9GLMvC9zxkKg/FGWK9o3jtOkG7AulepN0msG30dB6ZKuDMPYPfrqB8hd+qE9gtrJGtGIOb8OsLqFYFr1NDoQicLlq+gDBMhBkHLTSH8OYPojQNmeknqMwRCB18B6nHIPAJGosIAUamBxHY6O0iWnUKK50nls9imQEWLvFCAel0MDUbMxajLWyu2bmL17zu9TRrVY4cPMCefftpK5eYbzOStSisv4Z1V97M4UPPMFOqs3HTOkZHR8OfRSyBbsUYjhv071yPE0CpPkPKcbh2JMHmm25k+9bN7JucY2z9OpLpzEk/z9ONMk8Eyl07tvOr3S6Li4tIKUmn04yNjSGlvOTP+lyDYGQQERERcYJVGaibzSbvf//7+cd//EfK5TJbtmzh//1//1/e9KY3Peexi4uLvPe97+Vf/uVfaLfb7Nq1i4985CPcfvvtJ+37zW9+kw984AM8+eSTJBIJXvva1/Lxj3/8eSsTWVpawkimibW6uLnB0BEy1YNfL+I3SohYMhw9N5cI3G7omiV0RDKJFNBtVnCLkwStSqiXjQKng9+qoSfzSN0g6HYQsTR4Ae7CIZziFFoiiyYk+shG9GQB2lXMeALf74IuGRjoQ6o+OksGpm+Ds0Rfrg/NCkuhhCNJp5IMj4yQMEcJmmVS/Qbrt2wil8uTzxcYHV/L2g0beeqpp1iotdmyZTO+EjjdDvGYRZo2uDaddgczZlErlykvzrFxyxpe/itvwzAMisUiAL3Pymx2/EeYmps+51HmswPl4ODgpX60F4XIICIiIgJWaaB+wxvewOOPP87HPvYxNm3axD/8wz/wq7/6qwRBwJvf/ObTHmfbNrfffjvVapW7776b/v5+/vqv/5pXvvKVfPOb3+TWW29d3vc73/kOr3rVq3jNa17D/fffz+LiIn/4h3/I7bffzg9/+EMsy7rk/ZRSYuo68XgCR0vitOvo/RNhBnW3hVOcAjO+nF2NJpFa6MkcGHFkMosSOn6njpA6gduluzQJQmIUhsNEsFYVtXgA5XTxW3V8r4NuptBTeaTXwsoUyG64Ak0oDKfJaE/okmSXZ2jpHTasn2Dzlh20Oy2m54scPlKlPreHWK6AaTQZHChw1XVb2bh+LfuOTK0Y/RV6+hge6ifmH6I/IZk8NkWpVGLL1q1cteEmKrU6lcVjOJ5Pee4YG3vjvPy2m5c/lPL5/Ek/s1+2UWa0dhwRESGUUupy38Sz+drXvsZrXvOa5eB8gpe//OU8/fTTHDt2DE3TTnnsJz/5SX77t3+bRx55hBtvvBEAz/PYtWsXqVSKxx57bHnf6667jlarxZNPPomuh98rjzzyCC984Qv55Cc/yW/91m+d1f3W63Wy2Sy1Wo1M5uTp2DMxOTnJf/mvf8GTs01aMk2jWsIY2oJbPkbQbeHbbfA9jHQBmcijlE/QqhLYTZRrIxRhzbLnEnQq2MUZ9HQv1sSVeKVjofe0ChCuDZ6NaRnIbhMrboVe0EIjMbadvrF1pC2doVycgb4CCekTVw6jKcHg8BBL1Ra26+PZHfIpi7GRYdLpNEKI5dGuEIKlpaVw9Fdu/FRFq5Bm66aNmKbJ7OwsTzy9H5XsYXB4DbFEnOLSEnPTk2Skw8tufeFZzWac7jpRhnJERMTPC+cSO1bdiPq+++4jlUrxxje+cUX7O9/5Tt785jfz2GOPcdNNN5322M2bNy8HaQBd13nLW97CH//xHzMzM8PIyAgzMzM8/vjjfPSjH10O0gA33XQTmzZt4r777jvrQH0hjI2NsX3tMPvm96MnLdo1UG4bLZnDa1TQDQtZGEEpj6Bbx+82UZ5L4LQIGiUC3w/NMJwmQb2Ilu7BTKRQiwcImhU0p8XQ0ADbr97B1k0b2Lx2lK2bNiKEYHJqmid/8gw/3n8Iv3mM/uQQQ7kCfUmNmKYzmE5y8/Ea4rMdzT3X6C+Xy9HX13fSVO62kdw5BdlolBkREfHLxKoL1Hv27GHr1q0rAijAzp07l7efLlDv2bOHF73oRSe1nzj26aefZmRkhD179qxo/9l9v/e9711QH84WKSX//o7X8/C//TfmA4dkTMd226EZRq4fe/4wdOrIZB5N6qjARwgN5di4dgdTg3wywTXXXslb3/Qmjs4u8pN9+2nVa4wN9fLy229ny5YtJBIJLMtaEcyuv17xiuNaz0/v3U+t4xJIjVxSMtiTWRE4zzUJ6kz7X6wgG2UoR0RE/LKw6gJ1qVRi3bp1J7UXCoXl7Wc69sR+Zzr2xH9Pt++ZrmHbNrZtL/+9Xq+fdt+zYfv27fx/7noLd3/6c3R9l87CIn67gmUlCbK92HMH8atzeEqFFpHdBjLwGSj0cM3OLfyHf/cqXvWKl5/TyBd+GuhyuRzbtm17XkenUZCNiIiIOHtWXaAGnjPAXKxjT7fvmc7x0Y9+lD/5kz854z2cK6997WtZu3Yt/3jf/Tz25E84fPQYdkMjLsHqS6M7gkQ6SyabpSefZvO6cV50041cc8015PP5FVPL50MUOCMiIiJWL6suUPf09JxyRFsul4FTj4LP9dienh7g1KPzcrl8xmv80R/9Ee95z3uW/16v1xkbGzvt/mfL9u3b+dDWrUxNTVGv15meniYej1MoFBgeHqZSqQCsSN6KiIiIiPjFZ9UF6iuuuILPf/7zeJ63Yp169+7dAOzYseOMx57Y79n87LEn/rt7925e/epXn7Tvma5hWdYlK92SUjI+Pg6EfXk2vb29l+SaERERERGrm0svyXSO3HHHHTSbTb70pS+taP/MZz7D8PAw119//RmP3bdv34oyLM/z+OxnP8v111/P8PAwACMjI1x33XV89rOfxff95X0fffRR9u/fzxve8IaL3KuIiIiIiIjzRK1CXvayl6l8Pq8+9alPqQcffFD9xm/8hgLUZz/72eV93vWudylN09TRo0eX27rdrtq+fbsaGxtTn/vc59Q3vvENdccddyhd19W3v/3tFdf41re+pXRdV3fccYf6xje+oT73uc+psbExtWPHDtXtds/6Xmu1mgJUrVa78I5HRERERPxScC6xY9WNqAG+/OUv89a3vpUPfvCDvPKVr+Sxxx7j85//PL/2a7+2vI/v+/i+j3qWXotlWTzwwAO8+MUv5nd/93d53etex9zcHF//+tdXqJIB3HbbbXzta19jbm6O173udfzu7/4uL37xi3nggQeeF1WyiIiIiIiIs2HVKZP9vHEhymQREREREb+cnEvsWJUj6oiIiIiIiIiQKFBHRERERESsYqJAHRERERERsYqJAnVERERERMQqJgrUERERERERq5hVp0z288aJpPkLNeeIiIiIiPjl4UTMOJvCqyhQXyCNRgPgouh9R0RERET8ctFoNMhms2fcJ6qjvkCCIGB2dpZ0On3ORhknDD2mpqZ+bmuwoz6sDqI+rB5+EfoR9eHSo5Si0WgwPDyMlGdehY5G1BeIlJLR0dELOkcmk1mVv0jnQtSH1UHUh9XDL0I/oj5cWp5rJH2CKJksIiIiIiJiFRMF6oiIiIiIiFVMFKgvI5Zl8aEPfejn2gQk6sPqIOrD6uEXoR9RH1YXUTJZRERERETEKiYaUUdERERERKxiokAdERERERGxiokC9QXQbDb5/d//fYaHh4nFYlx55ZV84QtfOKtjFxcXecc73kFvby+JRIIbb7yRBx544JT7fvOb3+TGG28kkUjQ29vLO97xDhYXFy97P7785S/zq7/6q2zYsIF4PM7ExAS/9mu/xoEDB07a97bbbkMIcdKfV77ylZe1D/fee+8p70sIwfz8/En7X8pncb59ON3P9lT9uNTPodFo8N73vpeXv/zl9PX1IYTgwx/+8Fkfvxreiwvpw2p5Jy6kD6vlnbiQPqymd+JiENVRXwBveMMbePzxx/nYxz7Gpk2b+Id/+Ad+9Vd/lSAIePOb33za42zb5vbbb6darXL33XfT39/PX//1X/PKV76Sb37zm9x6663L+37nO9/hVa96Fa95zWu4//77WVxc5A//8A+5/fbb+eEPf3hREiXOtx9//ud/zuDgIO973/tYt24dU1NT/Nmf/RlXX301jz76KNu3b1+x/7p16/jc5z63oi2Xy13w/V9IH05wzz33sGXLlhVtPT09K/5+qZ/F+fbhk5/85EkStu12m1e+8pVcc801DA4Orth2KZ9DqVTiU5/6FLt27eJXfuVX+Nu//duzPna1vBcX0ofV8k5cSB9OcLnfiQvpw2p6Jy4KKuK8+OpXv6oA9Q//8A8r2l/2spep4eFh5XneaY/967/+awWoRx55ZLnNdV21bds2dd11163Y99prr1Xbtm1Trusut33ve99TgPrkJz95WfuxsLBwUtvMzIwyDEPdddddK9pvvfVWtX379gu+31NxIX245557FKAef/zx57zOpXwWF9KHU3HvvfcqQP3t3/7tivZL+RyUUioIAhUEgVJKqaWlJQWoD33oQ2d17Gp5Ly6kD6vlnbiQPqyWd+JC+nAqLtc7cTGIpr7Pk/vuu49UKsUb3/jGFe3vfOc7mZ2d5bHHHjvjsZs3b+bGG29cbtN1nbe85S384Ac/YGZmBoCZmRkef/xx3vrWt6LrP538uOmmm9i0aRP33XffZe1Hf3//SW3Dw8OMjo4yNTV1wfd2tlxIH86WS/0sLnYfPv3pT5NKpbjzzjsv6L7OlRPThufDankvLqQPq+WduJA+nC2r+Tmcisv1TlwMokB9nuzZs4etW7eu+AUF2Llz5/L2Mx17Yr9THfv000+vOMfp9j3TNc6WC+nHqTh8+DCTk5MnTfEBHDp0iEKhgK7rrF+/nve97310Op3zv/njXIw+vPa1r0XTNAqFAm94wxtOOuZSP4uL+RwOHDjAQw89xJve9CZSqdRJ2y/Vc7hQVtN7cTG5HO/ExeByvxMXk5/Xd+IE0Rr1eVIqlVi3bt1J7YVCYXn7mY49sd+Zjj3x39Pte6ZrnC0X0o+fxfM87rrrLlKpFO9+97tXbLv55pu588472bJlC51Oh69//et8/OMf5+GHH+Zb3/rWc4rSX6o+nFhPvOGGG8hkMuzevZuPfexj3HDDDXzve99j165dK85xqZ7FxXwOn/70pwG46667Ttp2KZ/DhbKa3ouLxeV6Jy6E1fJOXEx+Xt+JE0SB+gI407TMc03ZnMuxp9v3Yk0LXUg/TqCU4q677uKhhx7iS1/60km2nx/5yEdW/P3Vr341ExMT/MEf/AH3338/d9xxx7nf+Fne55m2vfKVr1yR3XnLLbfwmte8hiuuuIIPfvCD3H///Wd1rovxLC7Gc/A8j8985jNs376dG2644aTtl/o5XCir6b24UC73O3G+rKZ34mLw8/5OQDT1fd709PSc8ouxXC4Dp/7KPNdjT2RYnm7fM13jbLmQfpxAKcWv//qv89nPfpZ7772X17/+9Wd17be85S0APProo+dwxydzMfrwbCYmJrj55ptX3NelfhYXqw9f+9rXmJ+f59d//dfP+toX6zlcKKvpvbhQLvc7cbG5HO/ExeLn+Z04QRSoz5MrrriCvXv34nneivbdu3cDsGPHjjMee2K/Mx174r+n2/dM1zhbLqQf8NN/kO655x7+9m//dvkX/Fy40KmlC+3DqVBKrbivS/0sLlYfPv3pT2OaJm9961vP+R4u9xTfanovLoTV8E5cCp7vd+Ji8fP8Tixz+RLOf7752te+pgD1hS98YUX7K1/5yucsp/nkJz+pAPXoo48ut7muq7Zv366uv/76Ffted911aseOHSvO9/3vf18B6n/+z/95WfsRBIG66667lBBCfepTnzrna//5n/+5AtQ//dM/nfOxz+ZC+nAqDh8+rFKplPqVX/mVFe2X8llcjD7Mzc0pXdfVf/gP/+Gcrn2xnsPPcq4lNavpvTjBufZhtbwTz+ZilDZdjnfi2ZxvH1bbO3G+RIH6AnjZy16m8vm8+tSnPqUefPBB9Ru/8RsKUJ/97GeX93nXu96lNE1TR48eXW7rdrtq+/btamxsTH3uc59T3/jGN9Qdd9yhdF1X3/72t1dc41vf+pbSdV3dcccd6hvf+Ib63Oc+p8bGxtSOHTtUt9u9rP34nd/5HQWod73rXer73//+ij8/+tGPlvf77ne/q17xileov/mbv1H/+q//qr7yla+o3/qt31KapqmXvOQlyvf9y9aH22+/Xf3Jn/yJuu+++9QDDzygPvGJT6jh4WGVTqfV7t27V1zjUj+L8+3DCT72sY8pQP3rv/7rKc//fDwHpcKPji9+8Yvq7/7u7xSg3vjGN6ovfvGL6otf/KJqtVqn7cdqei/Otw+r6Z043z6spnfifPtwgtXyTlwoUaC+ABqNhvq93/s9NTg4qEzTVDt37lSf//znV+zz9re/XQHqyJEjK9rn5+fV2972NlUoFFQsFlM33HCD+sY3vnHK6/zrv/6ruuGGG1QsFlOFQkG97W1vO6WwwvPdj/HxcQWc8s/4+PjyfgcOHFCvfvWr1cjIiLIsS8ViMXXFFVeoP/3TP71oHxvn24ff//3fV9u2bVPpdFrpuq6Gh4fVW97yFrV///5TXudSPosL+X1SSqlNmzapiYmJZZGIn+X5eA5Knfn34sR9r/b34nz7sJreifPtw2p6Jy7kd0mp1fNOXCiRzWVERERERMQqZpWslEdERERERESciihQR0RERERErGKiQB0REREREbGKiQJ1RERERETEKiYK1BEREREREauYKFBHRERERESsYqJAHRERERERsYqJAnVERERERMQqJgrUERERzyu33XbbqrFAPB++/e1vI4Tgwx/+8OW+lYhfEqJAHRHxPPPjH/+Y//Sf/hPbtm0jk8lgmiZDQ0O8/OUv5xOf+MQpbQN/2Th69ChCiLP+MzExcVGvPzExcdHPGRFxvuiX+wYiIn5ZCIKA9773vfzlX/4luq5zyy238PKXv5xEIsHi4iKPPPII7373u/ngBz/I4cOH6e3tvdy3fNnI5XJ86EMfWtFWrVa5++67GR8f5x3veMdJ+0dE/KISBeqIiOeJ973vffzlX/4lL3jBC/jCF77A+vXrT9rn8ccf573vfS/dbvcy3OHqIZfLnTS1fPToUe6++24mJiaiaeeIXyqiqe+IiOeBAwcO8Bd/8Rf09/fz9a9//ZRBGuDaa6/lwQcfZGhoaLntxDTwO97xDvbt28cb3vAGent7EUJw9OhRADzP47//9//Orl27iMfjZLNZXvziF/PVr371pGt8+MMfRgjBt7/97ZO23XvvvQghuPfee095/cOHD/Pv//2/J5/Pk0wmeelLX8qTTz55yr48/PDD3HrrrSSTSXp6erjzzjuZmpo6+x/aWfLsNePvf//7vOIVryCXyy2vg59pTfnZfXv23ycnJ5mcnFwxvX6q43/0ox/xile8gnQ6TTab5Y477lh+JhERF4toRB0R8Txw77334vs+v/mbv/mcU9pCCDRNO6n94MGD3HDDDWzfvp23v/3tlMtlTNNEKcWdd97Jl7/8ZTZt2sRv//Zv02q1+Md//Ede+9rXcvfdd/N7v/d7F9yHo0ePcv3117Nt2zbe9a53cejQIe6//35e/OIXs3fvXgYGBpb3feCBB3jVq16FlJI777yT4eFhHnjgAV74wheSz+cv+F5OxSOPPMKf/dmf8eIXv5j/+B//I8eOHTvnc5yYcv/EJz4BwO///u8vb7vttttW7PvDH/6Qv/iLv+C2227jN3/zN3niiSf4p3/6J3bv3s2ePXuIxWIX0JuIiGdxmW02IyJ+KXjxi1+sAPXggw+e87FHjhxZ9uD9wAc+cNL2v//7v1eAuvXWW5Vt28vtU1NTqr+/XxmGoQ4fPrzc/qEPfUgB6lvf+tZJ57rnnnsUoO65555TXv9jH/vYiv3f//73K0B99KMfXW7zfV+tW7dOCSHUQw89tNweBIF685vfvHyu8/053HrrrSvav/Wtby2f89Of/vRJx53Y/qEPfei053z729++on18fHyFf/TprveFL3xhxba3vvWtCjjJRzwi4kKIpr4jIp4H5ufnARgeHj5p24MPPsiHP/zhFX8efvjhk/YbHBzk/e9//0ntJ6apP/7xj2Oa5nL76Ogo7373u3Fdl8997nMX3Ie1a9fyX/7Lf1nRdtdddwHh2voJHn74YQ4fPsxrX/tabr755uV2IQR/9md/dsrZgovBVVddxbve9a5Lcu5Tccstt3DnnXeuaDtx/Wf/PCIiLpRo6jsi4nlAKXXabQ8++CB/+qd/uqItFoutCHIAu3btWhGIT/DEE08Qj8e57rrrTtp2Yrr2xz/+8bnf9M+wa9cupFz5bT86OgqEGdknOLFm/aIXveikc4yPjzM2NnZJ1nFP1f9LydVXX31S26l+HhERF0o0oo6IeB44sX47MzNz0raPfOQjKKVQSnHPPfc85zl+lnq9ftptg4ODANRqtXO95ZPIZrMntel6+K3v+/5y24lr9ff3n/I8p7vXC+VSnfd0nO3PIyLiQokCdUTE88BNN90EwLe+9a3zPsfp1LwymQwLCwun3HaiPZPJLLedGBV7nnfS/hczoC8uLp7xni42p/v5XOr+RkRcaqJAHRHxPPD2t78dKSWf+tSnKBaLF/XcV111FZ1Ohx/84AcnbfvOd74DwJVXXrncdiLr+lSj+yeeeOKC72fXrl0APPTQQydtm5ycvCQlWmfifPqraVo0Ko5YNUSBOiLieWDz5s285z3vYXFxkVe96lUcOnTolPudz9rm29/+dgD+6I/+CNd1l9tnZmb4q7/6K3Rd59d+7deW21/wghcA8Pd///cEQbDc/v3vf/+iJJ3dfPPNrF27ln/5l39ZkRSnlOKP//iPn/cAuHnzZlKpFF/5ylcol8vL7QsLC3zkIx855TGFQoFisfhLLzwTsTqIkskiIp4nPvaxj+G6LnfffTebN2/m1ltvZefOncsSoj/+8Y/54Q9/SCaTYefOnWd93re+9a18+ctf5v7772fnzp289rWvXa6jLpVK/OVf/iXr1q1b3v+GG27gxhtv5MEHH+TGG2/klltuYXJykq985Su87nWv47777rugfp6YOXj1q1/NS1/60uU66gcffJC5uTl27tzJU089dUHXOBdM0+R3fud3+NjHPsbVV1/N61//ehqNBv/8z//MrbfeesqPppe85CX88Ic/5HWvex0vetGLME2Tm2+++aQEv4iI54MoUEdEPE9omsYnPvEJ3vrWt/I3f/M3fPe73+Wxxx7DcRwKhQJXXHEFf/VXf8Vb3/rWc9L5FkLwf/7P/+Huu+/mM5/5DP/jf/wPTNPk6quv5j3veQ//7t/9u5P2/8pXvsJ73vMevvrVr7J792527drFV77yFWZnZy84UAO89KUv5YEHHuD9738/X/ziF4nH49x+++188Ytf5G1ve9sFn/9c+chHPoJpmtxzzz38zd/8DRMTE3zgAx/gda97HV/60pdO2v8DH/gAlUqFf/mXf+HBBx8kCAI+9KEPRYE64rIg1JnqRiIiIiIiIiIuK9EadURERERExComCtQRERERERGrmChQR0RERERErGKiQB0REREREbGKiQJ1RERERETEKiYK1BEREREREauYKFBHRERERESsYqJAHRERERERsYqJAnVERERERMQqJgrUERERERERq5goUEdERERERKxiokAdERERERGxiokCdURERERExCrm/w82/dT3A810tgAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHvCAYAAACboJyJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5idZZ3w/3lO7+dMOdN7pmdSCS0gBKSXRWRFUVEE/b3i7rqry7prBRWXFZdd14K+rpQovCpSBJVeEhJCQjop03s/bU7v5zy/P4Y5zElmkplkkkzC/bmuuZLzlPu5n1Oe7/3tkizLMgKBQCAQCBYlilM9AYFAIBAIBLMjBLVAIBAIBIsYIagFAoFAIFjECEEtEAgEAsEiRghqgUAgEAgWMUJQCwQCgUCwiBGCWiAQCASCRYwQ1AKBQCAQLGKEoBYIBAKBYBEjBLVAIBAIBIsYIagFggWiqqoKSZJ49NFHj3psR0cH9913H1dccQVFRUWo1Wpyc3O55JJLeOSRR0in08c9n66uLr71rW9x+eWXU11djdFoRK/XU19fz5e+9CW6u7tnPO/RRx9FkiSqqqoy2yRJmvffunXrjvseBAIBqE71BASCDxqpVIqGhobM67KyMlauXMnAwAAbNmxgw4YN/P73v+fZZ59Fp9Md83U2bNjAD37wAyRJoqCggIaGBkKhEH19ffziF7/g0Ucf5ZlnnuHKK6886lgXXHDBYdt8Ph/79++fdf+yZcuOee4CgeB9hKAWCE4ysixjs9n4+7//ez73uc9RU1OT2ffEE09w22238fLLL/Otb32L//zP/zzm6yxfvpzHH3+cyy+/HLvdntnucrn4h3/4B37/+9/z6U9/moGBAfR6/RHH2rx582HbNmzYwCWXXDLrfoFAsDAI07dAcJJRKpX09PTw/e9/P0tIA9x8883cfffdADz88MPHZQI/55xz+OQnP5klpAHy8/NZv349OTk5uFwuIWQFgkWOENQCwUlGkiRycnJm3X/FFVcAMDExgdPpPCFz0Gg0VFdXAxAOh0/INQQCwcIgBLVAsMiIRqOZ/x/NJH2seDwe2tvbUSqVrFix4oRcQyAQLAxCUAsEi4wnnngCgJaWFiwWy4KOPTExweuvv84111xDKBTiq1/9alZ0t0AgWHyIYDKBYBGxf/9+HnzwQQC+9rWvLciYXq/3MFN7TU0Njz76KJ/97GcX5BoCgeDEITRqgWCR4PV6uemmm4jH41xzzTXceuutCzKuSqXiggsu4IILLqC2tha1Wk1vby+PP/44/f39C3INgUBw4hAatUCwCIjFYnzkIx+ho6ODpUuX8thjjy3Y2CaTKSuy2+12c/fdd/Pzn/+c8847j9bWVmw224JdTyAQLCxCoxYITjHJZJKPf/zjbNy4kaqqKl5++eUjRoUfL3l5efzsZz/juuuuY2xsjJ/97Gcn7FoCgeD4EYJaIDiFyLLM5z73OZ599lmKi4t59dVXKSkpOSnXvvbaawHYtWvXSbmeQCA4NoSgFghOIX//93/PY489Rl5eHq+88gpLliw5addOJpNZ/woEgsWJENQCwSnim9/8Jg8++CBms5kXX3yRpUuXntTr/+lPfwJg5cqVJ/W6AoFgfghBLRCcAv7rv/6Lf//3f0ev1/OXv/yFNWvWLPg1vvzlL/PGG2+QSqWytvf39/PZz36W1157Db1ezx133LHg1xYIBAuHiPoWCBaYf/iHf+Cuu+6adf/TTz+d2W82m/nGN74x67FPPvkkRUVFxzSP5557jp/+9Kfo9Xpqa2vR6XSMjIwwOjpKOp3GbDbz//7f/6OysvKYxhcIBCcHIagFggUmGAwSDAZn3W+xWJBlGQCHw4HD4Zj12OnlROfLT37yE55//nnefvttRkZG8Hq9GI1GVq9ezRVXXMGXvvQlSktLj3l8gUBwcpDkqSeGQCAQCASCRYfwUQsEAoFAsIgRglogEAgEgkWM8FELBKcBH/vYxxgdHZ3Tsddcc80RA9QEAsHphRDUAsFpwPbt2+fcQKO2tvYEz0YgEJxMRDCZQCAQCASLGOGjFggEAoFgESMEtUAgEAgEixghqAUCgUAgWMQIQS0QCAQCwSJGCGqBQCAQCBYxQlALBAKBQLCIEYJaIBAIBIJFjBDUAoFAIBAsYoSgFggEAoFgESMEtUAgEAgEixghqAUCgUAgWMQIQS0QCAQCwSJGCGqBQCAQCBYxQlALBAKBQLCIEYJaIBAIBIJFjBDUAoFAIBAsYoSgFggEAoFgESMEtUAgEAgEixghqAUCgUAgWMQIQS0QLELuueceJEnC5XId8bh169axbt26kzOp05jbbruNqqqqYzpXvMeCU43qVE9AIBAcOw8++OCpnoJAIDjBCEEtEJzGNDc3n+opCASCE4wwfQsEi5jBwUE++tGPYrFYsFqtfPrTn8bpdGb2z2SWjcVifO9736OpqQmdTkdeXh6XXHIJW7ZsyRyTTqf56U9/ysqVK9Hr9dhsNs477zyee+65zDFVVVVcd911vPjii6xevRq9Xk9jYyMPP/zwvO9DkiT+/u//nkceeYSGhgb0ej1r1qxh69atyLLMj370I6qrqzGZTFx66aV0dXUdNsbDDz/MihUr0Ol05ObmcuONN9La2nrYcY8++igNDQ1otVqampr4zW9+M+Oc4vE49957L42NjWi1Wux2O5/73Oey3l+BYDEgNGqBYBFz4403cvPNN/PFL36RAwcO8O1vf5uDBw+ybds21Gr1Yccnk0muvvpqNm3axD/90z9x6aWXkkwm2bp1KwMDA6xduxaY9Nk+9thj3HHHHXzve99Do9Gwa9cu+vr6ssbbu3cv//zP/8y//du/UVhYyK9//WvuuOMOamtrueiii+Z1L3/5y1/YvXs3//Ef/4EkSfzrv/4r1157LZ/97Gfp6enhZz/7GT6fj69+9avcdNNN7NmzB0mSALjvvvv4xje+wS233MJ9992H2+3mnnvu4fzzz2f79u3U1dUBk0L6c5/7HDfccAMPPPAAPp+Pe+65h1gshkLxvl6STqe54YYb2LRpE1/72tdYu3Yt/f393H333axbt44dO3ag1+vndX8CwQlDFggEi467775bBuSvfOUrWdsff/xxGZAfe+wxWZZl+eKLL5YvvvjizP7f/OY3MiD/7//+76xjv/nmmzIgf/Ob3zziHCorK2WdTif39/dntkUiETk3N1f+P//n/8zrfgC5qKhIDgaDmW1/+tOfZEBeuXKlnE6nM9t//OMfy4D87rvvyrIsyxMTE7Jer5evueaarDEHBgZkrVYrf/KTn5RlWZZTqZRcUlIir169Omu8vr4+Wa1Wy5WVlZltv/vd72RAfuqpp7LG3L59uwzIDz74YGbboe+xQHCyEaZvgWAR86lPfSrr9c0334xKpeKNN96Y8fgXXngBnU7H7bffPuuYL7zwAgB/93d/d9Trr1y5koqKisxrnU5HfX09/f39c5l+FpdccglGozHzuqmpCYCrr746ozlP3z51jbfffptIJMJtt92WNV55eTmXXnopr732GgDt7e2MjIzwyU9+Mmu8ysrKjCVhir/85S/YbDauv/56kslk5m/lypUUFRWxYcOGed+fQHCiEIJaIFjEFBUVZb1WqVTk5eXhdrtnPN7pdFJSUpJl5p3pGKVSedjYM5GXl3fYNq1WSyQSOeq5h5Kbm5v1WqPRHHF7NBoFyNxrcXHxYWOWlJRk9k/9O9N9HbptfHwcr9eLRqNBrVZn/Y2NjR01LU4gOJkIH7VAsIgZGxujtLQ08zqZTOJ2u2cUoAB2u53NmzeTTqdnFdZ2u51UKsXY2NiMwm+xMXWvo6Ojh+0bGRkhPz8/67ixsbHDjjt0W35+Pnl5ebz44oszXtNsNh/XnAWChURo1ALBIubxxx/Pev3EE0+QTCZnLcBx9dVXE41GefTRR2cd8+qrrwbgF7/4xUJN84Ry/vnno9freeyxx7K2Dw0N8frrr/PhD38YgIaGBoqLi/nd736HLMuZ4/r7+7Mi3gGuu+463G43qVSKNWvWHPbX0NBw4m9MIJgjQqMWCBYxTz/9NCqVissvvzwT9b1ixQpuvvnmGY+/5ZZbeOSRR/jiF79Ie3s7l1xyCel0mm3bttHU1MQnPvEJPvShD3Hrrbdy7733Mj4+znXXXYdWq2X37t0YDAb+4R/+4STf5ZGx2Wx8+9vf5hvf+Aaf+cxnuOWWW3C73Xz3u99Fp9Nx9913A6BQKPj+97/P5z//eW688Ua+8IUv4PV6ueeeew4zfX/iE5/g8ccf55prruEf//EfOeecc1Cr1QwNDfHGG29www03cOONN56K2xUIDkMIaoFgEfP0009zzz338Itf/AJJkrj++uv58Y9/nPHjHopKpeL555/nvvvu43e/+x0//vGPMZvNrFixgquuuipz3KOPPsrq1at56KGHePTRR9Hr9TQ3N/ONb3zjZN3avPj6179OQUEBP/nJT/jDH/6AXq9n3bp1/Pu//3smNQvgjjvuAOCHP/whH/3oR6mqquIb3/gGGzduzAoQUyqVPPfcc/zP//wPv/3tb7nvvvtQqVSUlZVx8cUXs2zZspN9iwLBrEjydBuRQCAQCASCRYXwUQsEAoFAsIgRpm+BQHDMJJPJI+5XKBRHTBUTCARHR/yCBALBMXNoDvKhf0cqvCIQCOaG0KgFAsExs3379iPun8pxFggEx44IJhMIBAKBYBEjTN8CgUAgECxihOn7OEmn04yMjGA2m7MaAQgEAoFAMBuyLBMIBI5amx+EoD5uRkZGKC8vP9XTEAgEAsFpyODgIGVlZUc8ZtEJ6tdff53HHnuMLVu2MDg4iM1mY82aNXznO9/hrLPOOur5DoeDr33ta/zlL38hHA6zYsUK7r333kw94Om8+uqrfPvb32bv3r0YDAauu+467r//fgoKCuY836ni/YODg1gslrnfqEAgEAg+sPj9fsrLy+fUAGbRCepf/OIXuN1u/vEf/5Hm5macTicPPPAA5513Hi+99BKXXnrprOfGYjE+/OEP4/V6+Z//+R8KCgr4+c9/zlVXXcWrr77KxRdfnDl248aNXH311Vx77bU8++yzOBwO/vVf/5UPf/jD7NixA61WO6f5Tpm7LRaLENQCgUAgmBdzcZkuuqhvh8NxmEYbDAapra2lpaWFV199ddZzH3zwQf7u7/6OLVu2cP755wOTBRlWrFiByWRi27ZtmWPPOeccQqEQe/fuRaWaXK9s2bKFCy64gAcffJA777xzTvP1+/1YrVZ8Pp8Q1AKBQCCYE/ORHYsu6nsms7PJZKK5uZnBwcEjnvvMM8/Q0NCQEdIw2aTg05/+NO+88w7Dw8MADA8Ps337dm699daMkAZYu3Yt9fX1PPPMMwt0NwKBQCAQHB+LTlDPhM/nY9euXSxduvSIx+3fv5/ly5cftn1q24EDBzLHTd9+6LFT+wUCgUAgONUsOh/1TPzd3/0doVCIb37zm0c8zu12k5ube9j2qW1utzvr39mOndo/E7FYjFgslnnt9/uPfgMCgUAgEBwji16j/va3v83jjz/Of//3f88p6vtIjvlD98127JHGuO+++7BarZk/kZolEAgEghPJohbU3/3ud7n33nv5wQ9+wN///d8f9fi8vLwZtWGPxwO8r0Hn5eUBzHrsTJr2FF//+tfx+XyZv6P5zQUCgUAgOB4WraD+7ne/yz333MM999zDN77xjTmds2zZMvbt23fY9qltLS0tWf/OduzU/pnQarWZVCyRkiUQCASCE82iFNTf//73ueeee/jWt77F3XffPefzbrzxRtra2rLSsJLJJI899hjnnnsuJSUlAJSWlnLOOefw2GOPkUqlMsdu3bqV9vZ2PvrRjy7czQgEAoFAcBwsujzqBx54gLvuuourrrpqRiF93nnnAXDHHXewfv16uru7qaysBCYDvc466yz8fj//8R//QUFBAQ8++CB//vOfDyt4smHDBi6//HKuv/56vvSlL+FwOPi3f/s3rFbrvAqeiDxqgUAgEMyX+ciORRf1/ec//xmAF198kRdffPGw/VPrilQqRSqVYvo6Q6vV8tprr/G1r32Nf/iHfyAcDrNy5UpeeOGFLCENsG7dOp5//nm+853vcP3112dKiP7oRz+as5AWCAQCwalHlmV8Ph/xeByNRoPVaj2jmiQtOo36dENo1AKBQHDqcDqdHGzvYNwTIJ5Mo1EpKMw109xQj91uP9XTm5XTWqMWCAQCgWAuOJ1ONm/fTUjSU1TRiM5gIBoOMzg6iGf7bi48e9WiFtZzZVEGkwkEAoFAcCRkWeZgewchSU9NXRNGsxmlUonRbKamromQpOdgewdngtFYCGqBQCAQnHb4fD7GPQGKistnLGZVVFzOuCeAz+c7RTNcOISgFggEAsFpRzweJ55MozMYZtyvMxiIJ9PE4/GTPLOFRwhqgUAgEJx2aDQaNCoF0XB4xv3RcBiNSoFGoznJM1t4hKBepNx2221IkoQkSajVampqarjrrrsIhUKnemonjY0bN3LWWWeh0+moqanhl7/85RGPf/TRRzPv2aF/Docjc9xLL73Eeeedh9lsxm63c9NNN9Hb23uib0cgECwgVquVwlwzY6ODh/mhZVlmbHSQwlwzVqv1FM1w4RCCehFz1VVXMTo6Sk9PD/feey8PPvggd9111wm73mIyEfX29nLNNdfwoQ99iN27d/ONb3yDL3/5yzz11FOznvPxj3+c0dHRrL8rr7ySiy++ONPnvKenhxtuuIFLL72UPXv28NJLL+FyuUQ1OoHgNEOSJJob6jHKEXo6WwkFAqRSKUKBAD2drRjlCM0N9WdEPrUQ1IsYrVZLUVER5eXlfPKTn+RTn/oUf/rTn4DJFeP9999PTU0Ner2eFStW8OSTT2bOTaVS3HHHHVRXV6PX62loaOB//ud/ssa/7bbb+MhHPsJ9991HSUkJ9fX1ADz44IPU1dWh0+koLCzkb//2bzPnxGIxvvzlL1NQUIBOp+PCCy9k+/btmf0bNmxAkiRee+011qxZg8FgYO3atbS3t8/r3n/5y19SUVHBj3/8Y5qamvj85z/P7bffzn/+53/Oeo5er6eoqCjzp1Qqef3117njjjsyx+zatYtUKsW9997LkiVLWL16NXfddRd79+4lkUjMa44CwZmALMt4vV4cDgder/e0ipK22+1cePYqys0KPANt9O3fgWegjXKz4oxJzQKRR31aodfrM8LkW9/6Fk8//TS/+MUvqKur48033+TTn/40drudiy++mHQ6TVlZGU888QT5+fls2bKF/+//+/8oLi7m5ptvzoz52muvYbFYeOWVV5BlmR07dvDlL3+Z3/72t6xduxaPx8OmTZsyx3/ta1/jqaeeYv369VRWVnL//fdz5ZVX0tXVldV17Jvf/CYPPPAAdrudL37xi9x+++289dZbAPT19VFdXc0bb7zBunXrZrzXt99+myuuuCJr25VXXslDDz1EIpFArVYf9f36zW9+g8FgyFporFmzBqVSySOPPMJtt91GMBjkt7/9LVdcccWcxhQIziRO12Ih07Hb7VyUn39GVyZDFhwXPp9PBmSfz7eg4372s5+Vb7jhhszrbdu2yXl5efLNN98sB4NBWafTyVu2bMk654477pBvueWWWcf80pe+JN90001Z1ygsLJRjsVhm21NPPSVbLBbZ7/cfdn4wGJTVarX8+OOPZ7bF43G5pKREvv/++2VZluU33nhDBuRXX301c8xf//pXGZAjkYgsy7I8NDQkNzQ0yNu2bZt1rnV1dfIPfvCDrG1vvfWWDMgjIyOznjed5uZm+c477zxs+8aNG+WCggJZqVTKgHz++efLExMTcxpTIDhTcDgc8tN/fUn+7fNvyq/s7pU3tY/Lr+zulX/7/Jvy0399SXY4HKd6imc085EdwvS9iPnLX/6CyWRCp9Nx/vnnc9FFF/HTn/6UgwcPEo1GufzyyzGZTJm/3/zmN3R3d2fO/+Uvf8maNWuw2+2YTCb+93//l4GBgaxrLFu2LCsq8vLLL6eyspKamhpuvfVWHn/8ccLvRVV2d3eTSCS44IILMser1WrOOeccWltbs8Zdvnx55v/FxcUAmYCu0tJS2traOOecc454/4euiOX3THJzWSm//fbbHDx4MMvsDTA2NsbnP/95PvvZz7J9+3Y2btyIRqPhb//2b08rk59AcDzIH6BiIWcCwvS9iLnkkkv4xS9+gVqtpqSkJGOanYpQ/utf/0ppaWnWOVMNRZ544gm+8pWv8MADD3D++edjNpv50Y9+lNUCFMBoNGa9NpvN7Nq1iw0bNvDyyy/zne98h3vuuYft27fPKihlWT5s23Qz8tS+dDo953svKipibGwsa5vD4UClUpGXl3fU83/961+zcuVKzjrrrKztP//5z7FYLNx///2ZbY899hjl5eVs27Yt051NIDiTyRQLqWicvVjIQBs+nw+bzXZqJinIIDTqRYzRaKS2tpbKysoswdfc3IxWq2VgYIDa2tqsv/LycgA2bdrE2rVr+dKXvsSqVauora3N0raPhEql4rLLLuP+++/n3Xffpa+vj9dff53a2lo0Gg2bN2/OHJtIJNixYwdNTU0Leu/nn38+r7zySta2l19+mTVr1hzVlxwMBnniiScO06YBwuEwSqUya9vU6/ksJASC05kPUrGQMwEhqE9DzGYzd911F1/5ylcyPbl3797Nz3/+c9avXw9AbW0tO3bs4KWXXqKjo4Nvf/vbWdHZs/GXv/yFn/zkJ+zZs4f+/n5+85vfkE6naWhowGg0cuedd/Iv//IvvPjiixw8eJAvfOELhMPhGYXibAwPD9PY2Mg777wz6zFf/OIX6e/v56tf/Sqtra08/PDDPPTQQ1npac888wyNjY2HnfuHP/yBZDLJpz71qcP2XXvttWzfvp3vfe97dHZ2smvXLj73uc9RWVnJqlWr5nwPAsHpzAepWMiZgDB9n6Z8//vfp6CggPvuu4+enh5sNhurV6/mG9/4BjAp6Pbs2cPHP/5xJEnilltu4Utf+hIvvPDCEce12Ww8/fTT3HPPPUSjUerq6vjd737H0qVLAfiP//gP0uk0t956K4FAgDVr1vDSSy+Rk5Mz57knEgna29szvu+ZqK6u5vnnn+crX/kKP//5zykpKeEnP/kJN910U+YYn883Y9rXQw89xEc/+tEZ53TppZfy//7f/+P+++/n/vvvx2AwcP755/Piiy+i1+vnfA8CwenMVLGQwdFBakxNWeZv+b1iIeVnSLGQMwHRj/o4Ef2oBQLB6UhWi8ji8kyLyLHRQYxy5IzKQ16MiH7UAoFAIDgiU8VCDrZ3MD7QlsmjLs8109wghPRiQghqgUAg+IDygSgWcgYgBLVAIBB8gJEkSaRgLXJE1LdAIBAIBIsYIagFAoFAIFjECEEtEAgEAsEiRghqgUAgEAgWMSKYTCAQCATHjSzLInr8BCE06kWKw+Hg//yf/0NFRQVarZaioiKuvPJK3n777VM9tdOGp556KlMXvbm5mWeeeeaIx99zzz1IknTY3/TGJbfddtuMx0xVbhMIPog4nU7efGsLL7+5lZc37+DlN7fy5ltbcDqdp3pqZwRCUC9SbrrpJvbu3cv69evp6OjgueeeY926dXg8nlM9NRKJxKmewlF5++23+fjHP86tt97K3r17ufXWW7n55psP6x42nbvuuovR0dGsv+bmZj72sY9ljvmf//mfrP2Dg4Pk5uZmHSMQfJCYqnA2GEiTW9FIVcsacisaGQyk2bx9txDWC8EJ64r9AWE+zb/nysTEhAzIGzZsOOJxgPzggw/KV111lazT6eSqqir5iSeeyDpmaGhIvvnmm2WbzSbn5ubKf/M3fyP39vZm9r/zzjvyZZddJufl5ckWi0W+6KKL5J07dx52nV/84hfy3/zN38gGg0H+zne+I999993yihUr5IceekguLy+XjUaj/MUvflFOJpPyD3/4Q7mwsFC22+3yvffemzXWAw88ILe0tMgGg0EuKyuT77zzTjkQCGT2P/LII7LVapVffPFFubGxUTYajfKVV14pj4yMzOs9vPnmm+Wrrroqa9uVV14pf+ITn5jzGHv27JEB+c0335z1mGeeeUaWJEnu6+ub1/wEgjOBdDotb9i0Wf7t82/Kb3U65S1drszfW51O+bfPvylv2LRZTqfTp3qqi475yA6hUS9CTCYTJpOJP/3pT8RisSMe++1vfzujfX/605/mlltuobW1FZhs6XjJJZdgMpl488032bx5MyaTiauuuirTvi4QCPDZz36WTZs2sXXrVurq6rjmmmsIBAJZ17n77ru54YYb2LdvH7fffjsA3d3dvPDCC7z44ov87ne/4+GHH+baa69laGiIjRs38sMf/pBvfetbbN26NTOOQqHgJz/5Cfv372f9+vW8/vrrfO1rX8u6Vjgc5j//8z/57W9/y5tvvsnAwEBW16wNGzYgSRJ9fX2zvi9vv/02V1xxRda2K6+8ki1bthzx/ZzOr3/9a+rr6/nQhz406zEPPfQQl112GZWVlXMeVyA4U8j0tS4un72vtSeAz+c7RTM8QzgJC4czmhOhUcuyLD/55JNyTk6OrNPp5LVr18pf//rX5b1792YdA8hf/OIXs7ade+658p133inLsiw/9NBDckNDQ9ZqNhaLyXq9Xn7ppZdmvG4ymZTNZrP85z//Oes6//RP/5R13N133y0bDAbZ7/dntl155ZVyVVWVnEqlMtsaGhrk++67b9b7fOKJJ+S8vLzM60ceeUQG5K6ursy2n//853JhYWHm9bZt2+SGhgZ5aGho1nHVarX8+OOPZ217/PHHZY1GM+s504lGo3JOTo78wx/+cNZjRkZGZKVSKf/hD3+Y05gCwZnG+Pi4/Nun/ipvah/P0qan/ja1T+4fHx8/1VNddAiN+gzgpptuYmRkhOeee44rr7ySDRs2sHr1ah599NGs484///zDXk9p1Dt37qSrqwuz2ZzR0nNzc4lGo3R3dwOTQWtf/OIXqa+vx2q1YrVaCQaDDAwMZI27Zs2aw+ZYVVWF2WzOvC4sLKS5uRmFQpG1zeFwZF6/8cYbXH755ZSWlmI2m/nMZz6D2+0mFApljjEYDCxZsiTzuri4OGuMc845h7a2NkpLS4/4Hh66wpdlec5RqE8//TSBQIDPfOYzsx7z6KOPYrPZ+MhHPjKnMQWCMw3R1/rksOgEdSAQ4Gtf+xpXXHEFdrsdSZK455575nTuunXrZozInfobGxs76rFXXXXVCbqz+aPT6bj88sv5zne+w5YtW7jtttu4++67j3relDBKp9OcddZZ7NmzJ+uvo6ODT37yk8BkFPPOnTv58Y9/zJYtW9izZw95eXkZ0/gU0yOfp1Cr1Yddd6Zt6XQagP7+fq655hpaWlp46qmn2LlzJz//+c+B7AC1mcaQ59mNtaioKOvzhslFSWFh4ZzO//Wvf811111HUVHRjPtlWebhhx/m1ltvFQ8hwaJBlmW8Xi8OhwOv1zvv3818meprPTY6eNi15Pf6WheKvtbHzaLLo3a73fzqV79ixYoVfOQjH+HXv/71nM998MEH8fv9WdvC4TBXXXUVZ5111mEP3ZqaGh5//PGsbYu5OH1zczN/+tOfsrZt3bo1S+vbunUrq1atAmD16tX84Q9/oKCgYNZ+p5s2beLBBx/kmmuuAWBwcBCXy3VC5r9jxw6SySQPPPBARut+4oknTsi1zj//fF555RW+8pWvZLa9/PLLrF279qjn9vb28sYbb/Dcc8/NeszGjRvp6urijjvuWJD5CgTHi9PpnGxZ6QlkWlYW5pppbqg/YS0rJUmiuaEez/bd9HS2ztjXurlhlcinPk4WnaCurKxkYmICSZJwuVzzEtTNzc2HbVu/fj2JRILPf/7zh+3T6/Wcd955xzXfE4Hb7eZjH/sYt99+O8uXL8dsNrNjxw7uv/9+brjhhqxj//jHP7JmzRouvPBCHn/8cd555x0eeughAD71qU/xox/9iBtuuIHvfe97lJWVMTAwwNNPP82//Mu/UFZWRm1tLb/97W9Zs2YNfr+ff/mXf0Gv15+Q+1qyZAnJZJKf/vSnXH/99bz11lv88pe/nPc477zzDp/5zGd47bXXZjV//+M//iMXXXQRP/zhD7nhhht49tlnefXVV9m8eXPmmJ/97Gc888wzvPbaa1nnPvzwwxQXF3P11VfPOoeHHnqIc889l5aWlnnPXyBYaKZSpEKSnqKKxoywHBwdxLN9NxeefeL6S9vtdi5Ys5Idu3bTu/8d0pICm8lIeZ5F9LVeIBad6XvKBL1QPPTQQ5hMJj7+8Y8v2JgnGpPJxLnnnst///d/c9FFF9HS0sK3v/1tvvCFL/Czn/0s69jvfve7/P73v2f58uWsX7+exx9/PLNgMRgMvPnmm1RUVPDRj36UpqYmbr/9diKRSEbDfvjhh5mYmGDVqlXceuutfPnLX6agoOCE3NfKlSv5r//6L374wx/S0tLC448/zn333TfvccLhMO3t7UfM5167di2///3veeSRR1i+fDmPPvoof/jDHzj33HMzx7hcroyvfop0Os2jjz7KbbfdhlKpnHFsn8/HU089JbRpwaJAlmUOtncQkvTU1DVhNJtRKpUYzWZq6poISXoOtnfMaAZfCFO50+mktaOTQCxNWgZFKolRI9FUXyeE9AIhySfaiXEcuFwu7HY7d99995z91NPp7Oykvr6ez3/+8/zv//5v1r5169axbds29Ho9fr+fyspKPvGJT/Ctb31rXhql3+/HarXi8/lmNS+fKCRJ4plnnhHBTALBBxiv18vLb24lt6IR47TgzilCgQCegTauuOi8LNfeQpjKszT5GczeJ1KTP92Zj+xYdKbvhWTKBDyT5nPhhRfy8Y9/nMbGRiKRCC+88AL3338/mzdv5o033siKXJ5OLBbLym0+1CcuEAgEJ5N4PE48mUZnMMy4X2cwEE+mswJEF8JUfqgmP2UJNZrN1Jia6Ols5WB7Bxfl5wsf9XFyxgrqZDLJ+vXrWbp06Yx+6HvvvTfr9TXXXENVVRV33XUXzz77LDfeeOOM4953331897vfPSFzFggEgvkyPUVqJo360BSphRKwmWInFY2zFzsZaMPn8y3qIN3TgUXno14onn/+ecbGxmYMIpuNT3/60wBZlbQO5etf/zo+ny/zNzg4eNxzPVZkWRZmb4HgA858U6QWqprYsWjygmPjjNWoH3roITQaDbfeeuu8z53N7A2g1WrRarXHMzWBQCBYMOabIrVQAna+mvzphLzIWnaekYJ6bGyM559/no9+9KPk5eXN+bz169cDLMqULYFAsLg5lQ93u93OhWevmgwOG2jLBIeV55oPS5FaKAE7pckPjg5SY2rKutcpTb78NCx2ciry0Y/GohTUL7zwAqFQKNMY4uDBgzz55JPApC/ZYDBwxx13sH79erq7uw9riLB+/XqSyeSsZu9Nmzbxgx/8gBtvvJGamhqi0SgvvPACv/rVr7j00ku5/vrrT+wNCgSCM4rF8HC32+1clJ9/1MXCQgnYM7HYyanMRz8SizI9q6qqiv7+/hn39fb2UlVVxW233cb69eszr6fT0NBAPB6np6dnxi9JV1cX//iP/8jevXtxuVxIkkRdXR2f+MQn+Od//ud5mbZPZXqWQCA49RxPitKp0sIXMq1qMSxSFgJZlnnzrS0MBtJZQXZT+3o6Wyk3K7jogrUL8hnNR3YsSkF9OiEEtUDwweV4Hu6nWsAt5PUXm0/3WDjWfPRjReRRCwQCwUngWFOUFoOJda6m8rkgSdJpn4K1mKPYz9j0LIFAIDjRHMvD/XhKfi40UwK2oKAAm812TEL6ZHfsOlEs5padQqMWCASCY+RYIqjPpEIhp9p8v5As5ih2oVELBALBMXIs/ZgXs4l1PkyZ7wcDaXIrGqlqWUNuRSODgTSbt+/G6XSe6inOi6kodqMcoaezlVAgQCqVIhQI0NPZ+l4Ue/0p8b0LQS0QCATHyLE83BeziXWuLCbz/UIylY9eblbgGWijb/8OPANtlJsVp7TBiDB9CwQCwXEwn2IjsLhNrHPlTDLfH8pCBtktFEJQCwQCwXEyn4f7mVAo5Ewx38/GYotiF4JaIBAIFoD5PNznq4UvJAuR83wm1/lejAhBLRAIBKeAU2FiXago7TPBfH86IQS1QCAQnCKOx8Q6X814LkVW8j9A5vvTCVFC9DgRJUQFAsHJZr6a8VxKnVpSASxWC46J4Jy17TMpj/pkI0qICgSCDyxnQt3pI3Es5UePFqWtN5rZ9Mbb1Da3sKSuec4lTRdjhPSZiBDUAoHgjOFM1/AOzV+eEohGs5kaUxM9na0cbO/govz8LGF55ChtmXGnmxAayiqqM8FhRxtzisUWIX0mIgqeCASCU8pC1Yo+0yplzURGMy4unz1/2RPA5/Nl7TtSkZVgMMS420tebh5qTXaL3yONKTh5CI1aIBCcMhZKAz5WTfN041jzl48UpZ1IxHGPj9FYW4XJfLivdDHkRJ/p7oyjIQS1QCA4JSxkq8czqVLWkYTSseYvHylKe7i/B306SFFh0YzC71TnRJ/p7oy5IAS1QCA46Sy0BrzYKmUdqwZ4NKE0s2YsEwyGSCTiDPf3UF9gmjF/ebYiK/UFJgpWLyUQCyPL8qLKiXY4HLyy8S38aQ3FZZWU2O1Ew5GT2rd7MSAEtUAgOOkstAa8mCplHUvqlM/nY2RkhN0H2pGNeRRVNJBMy4QCPjrGHXh8u7nwnEmhNF0z1hvNjDvdjLu9uMfH0KeDFKxeisvlmleUtsvlYvMiy4l2OBz8/sln6PamyC2uwNszSI7TRVVFOTV1Z447Yy4IQS0QnAacaT66hdaAF0ulrPma86eE+pjbz74DBwmgp6xcNSnkZQWJVBqVQmJwaBylnOT6a6/OaMZvb9vOpjfeJoSGvNw8GmurKCosIhALs/kI2uZMUdqnsqTpTDidTl7esJlOV4SKlvOx5uURj8ZweBwE2jpZ1lh3WrkzjhchqAWCRc6Z6KNbaA14MVTKmq85f7pQN+WWoskLkKPPYW93D5JSTUvLUopyJwVUMJFm0879NDfWU1tbS35+PharhdrmFsoqqlFrtJjMFiRJyhQwma+2uVhyoqfeR19KRW5BMbbcXBQKBXqDnhJ9JSPD/fQNDNLS3HTKg9xOFiI9SyBYxJypKUdTGvDY6OBh6VhTGnDhPDXgU91LeD6pU4cKdbVWQ0qWCUejmOzlGAvL8fqDKN8TUFU19UzE4a23tzExMTGZzjYRZEldM7n5BZgt7wvU40mpmtK2CwoKsNlsp8RqM/U+lpZVoVYqiEXfTymTJMjNLWAiEMHldH5gGn8IjVogWKScySlHJ0oDPpVa4XzM+Yf66NVqDal4DE80Tm55PUhKgl4HkUiEVDpFf18fvmCUt95tJ63UkmPW4fKGKGlcHMFzC8nU+1hcUEjuyDDO8RFKq+vfj3zXaYknU4wO9dNcavtANP4QGrVAsEg51uIWpwsnSgM+VVrhkYqKQLY5/1ChbjJbMOvV+FwO1Gotao2GZErG5/fR0z/E0Og4JeXVFFY1YSqqYjyqoLe3n/GxkaNe63Rj6n2MRSJUVdegS4UZ7u0gEgqQTqXwud14RgewKOI0N9SfdovUY0Fo1ALBImWxpRydCBaLX3QhmE9Am8/ny/LRS5JE9ZJa3j3YzmjPQcz5JUikGBkZwemeoMCso6isjFTAhTUnl5LySgYH+tm7ezfFJaVIkmLWa51uZL2PdU0sa2mhr7cHz2AHiVQaj2OUunw9l198wWkbozFfhEYtECxS5qOhnc4sBr/oQjBlzjfKEXo6WwkFAqRSKUKBAD2dre+Z8yc1wJl89GUV1SxvbkT2jTHWsZPAwEEmBjspsepZUt9APBYl12LCZLagUChYueocIl4HB/buOuK1TjcOfR81Gi3LVq6mpbGBAquecxsr+MTf3khBQcGpnupJQ2jUAsEiZbGkHJ0uLIYUtrmmOc3mo1+ypI7RsVH0SZn62kbGfGGKqhvxucbRpcJUVbdk7qmorJzqigoKNEk8iyClaiGZ7X1sKc87rbMdjhXRj/o4Ef2oBSeSrLzcGQKuPiiVmY7GYkthm+uiYaZ5a6UkkqTAHYyy+2AnVnsJxQX5VFXXkJOXnzk3FAjgGWjj8g+diyRJp5XrYK7vz2JYfJ0oRD9qgeAMYbEVoliMLGTN8IVirq0fZ/PRA3i9XnKMGsajClpWrkGhmNkPPXWdqTF8Pt8xC7STIRjns6gSLTQnERr1cSI0asHJ4EzWLI4HWZZ5860tDAbSWSlsU/t6OlspNyu46IK1p+z9Op7Pbi4WFeBwwZdjorS4CIvFMudrngyrhLAQvY/QqAWCM4wzWbM4HkG22LtmHa/wm8miolZK2DQSNVUV+Hw+3m3vJqwwZKwJ42MjvLZrNxHvW1RXVJCfl3PUa56M5hdncl2AE82ii/oOBAJ87Wtf44orrsButyNJEvfcc8+czn300UeRJGnGv7GxscOOf/XVVzn//PMxGAzk5+dz22234XA4FviOBALBbDidTt58awsvv7mVlzfv4OU3t/LmW1vmXHHt0BQ2WZYJ+H143E4Cfh9avf6UpbAtVFU5u93ORRes5YqLzmN1YxVmrYJQXGZnWy+PP/NXdrX1kJNrx2g2EwwG6BkaQ2mvRF1UT1pnIae84YjXnGp+8U7nKI6wTGvPIPsPtpJMp6ipayIk6TnY3nFYBbkjIcvyZPU0hwOv15tZjJ3JdQFOJItOo3a73fzqV79ixYoVfOQjH+HXv/71vMd45JFHaGxszNqWl5eX9Xrjxo1cffXVXHvttTz77LM4HA7+9V//lQ9/+MPs2LEDrVZ7XPchEAiOzEL4lqensMXjscl8W3+QZFpGpZAwqhWYlYlMCtvJciEstPYoSRKJRIL2viFCkoGiynKS6TRdrihpWWLHzp3U19Uy7vIQQUtpWRXRcADvYAcy8ozdpmRZpru7m5c3bObgiI8lqy/Cmpd/3M0vZrMi2HNzzvi6ACeKRSeoKysrmZiYQJIkXC7XMQnqlpYW1qxZc8Rj/uVf/oX6+nqefPJJVKrJt6G6upoLLriAhx9+mDvvvPOY5i8QCI7OQgmyqRS2A2378IdixFRG8srr0eoMRCNh2t/dQZEqRDweP6mR4Qttkp/p/fJ6J4ilZGStibahMbp6X0PWmimsqMEaDmLQGUimZRKJ+GHXTCQSHGhrZ+OW7fR7YoRSMi6fH43BgMloOubmF0dafA2NthONxmZsxCLLMq7xMSJBP5FI5LC+2B90Fp3pe8pUfSIZHh5m+/bt3HrrrRkhDbB27Vrq6+t55plnTuj1BYIPEifaDFpSWMBA2x66B0fJKShDozcSi8WZ8HqoKCshr6yWre/sYNM7u45qhp5prvO5rylmqio33SyfSCaIJVIZ4Xe06870foVCYUZHx3CFEhRUN6Mw2pBVOoKymt6BYTxuJyrFZB1xeF9jHRkZYfP23bSP+Uka8qk7ay0mmx1XIELvwDDBUPCYml8cupgwms0olcrJxVddE7Ixj3DAx+jIQNb9Tbhd7NnxDq+98Tr9o+Ns3XNwXu6PDwKLTqNeCK677jqcTidWq5V169bxve99j5aWlsz+/fv3A7B8+fLDzl2+fDlvvfXWSZurQHAmcyLNoFNj9wyN4w6lSSiD7N/yCjn2Imw5ORSY9VRV1KNSKHjrlecoqqpj2arZtfcmWaa1o3NOGvfRtPND23hOuF1ZZvlUPIYq7MK/ogFJko6q6R8u+GWcHg9qvQGVQoHRYsWnUKFWKrFarPgDfjrbDrC6thSTeTKiOBoOo1ZK9A0MEpIMlFXkM+oJkmcvwusaxxtPEsXA2LiT2hrTvJtfHNWKUFJBdGIcKejKFHmJRMPs2rkLZzBGYUk5q1csQ6vWnNLUusXIGSWoi4qK+OY3v8l5552HxWJh3759/Md//AfnnXceb731FitWrAAm/eAAubm5h42Rm5ub2T8TsViMWCyWee33+xf4LgSCM4NjNYPC0cujOp1ONr+zG1dURmHIJa+6keLKesaH+1HF/NSWFVJWUQHAyMgIg44JKpuMHGqsm9LeO/dtZWjUgWzKP6q/fC6+9fz8/ExVuZyYnf0HDhBVGsgrr0ejNdDX046UTrL5nV1ICgmFpRBzTgl6lZJUMsWA35t13UMFfzAYwhuIUFvXyMjYOGP93SiRMRr1uEYGSScTRMaH0DRVEwz4MZomy5XaNBKBWJqiynLSchqVQiIei1BcXkWovY2wN4lHrSRUYCcWieAZHaC2rnhO5UjnUptepzeyurEKp2eCsf5W9h04SAA9S5uaqK6swGq1AYgo8EM4owT1VVddxVVXXZV5fdFFF3HttdeybNkyvvOd7/Dss89mHT/bh3+kL8V9993Hd7/73YWZsEBwhnJUH3THQcLOVkZHBlhS3zyv8qiyLPP2tu3s7h5Hl1NIMOJheNRJQtZQVlmJ3z2O0zGOyWKhf3CI7p5+hkbG6RoYJZqUqaoozwgEAK1eT9/gMKVLGllxFH85wIG2dhyhJGUV+aTlNAqFAoPJhL2whK72A2zbsZNrrryC5oZ63O/s4u3Nb5A2FVFZU0siFmdsbIgcvYqlKy5ky8ZXiUTjLFlipH94PBMEl2s2EiCVue6h5WSTyQSJVJoiewFanY79O7YiRSbQGFT4uzoIhaMotHraegfoHx5FjgepLcmjZkULu9r60BkMSJKETinTuX83RRVLKCmvZMI5ykBvJ4NygGjQN6/mF4cuJg5lavFVUlJCU1MTAwMD+AMB7NXNFBYVAe9/BxZDat1i4owS1DNRVVXFhRdeyNatWzPbpiLAZ9KcPR7PjJr2FF//+tf56le/mnnt9/spLy9fwBkLBKc/x2IGnWs/6u7ubjbt3I+6rBlLYSX5Og0xScuww0M83UdpkZ3hkR5c/hCyMZe0Uk1JaSmWwiockUgmmnlKWLsd44RjSYrLKo8a+OVyudi4ZTtJw6TZWKWQ0JBCBhIoCYUidLeNopAkzj5rNcsblrDvYBtpKc14XwdqpeI9k3wdCkkiHEsz4vSitccpqZgMgotFwzjHRyDoozMRYkXLpKCaXhvcZMlBKcn43G7CAQ915QXUVJ9NMpFASsYY98eIJZOoDGYUSgVyOokkSRlhOjY0SG9fD+8e7KBvaJT07nfJy8+nqLSMgvwcimwGCsusXLHuwjk3v5hPbXpJktDr9egNJvLtBUwX0lOIKPD3OeMFNUx+SaaX35vyV+/bt49rrrkm69h9+/Zl+bMPRavVitQtgeAozNcMOtfyqLIss7+1jRAaVtY0oFQpiUQi5ObmEI4lcHr9qEgxMe7Aml+EITmBXo5iLi0mHPBQWt3A6MgAfQODrFhmRZZheKgPg0FH/ixa4/QgrHf2HsAZ11C3rAWDwYTbOcbe3TtIJ2IsP+tcKpeUMND+Lv2+JLHtu2moKqNmSS32qiZkOY1KpcZkMgISbpcDj8dDypBDQVk1euOkFqo3mimtrmewu42+wbaMqy1T/KStnZ6BdtzdHQRTsGLZCqqblmHLzWPPzu2YiqoxlWswK+I01tWiVmswGg30dLYxPDqGRkrw4msvE1Ba0VUsY3n9eXgcIziGB9ix8RUqc3Vc1vIR1p53zrz8w7M1Gplt8TVXDfx07w63EJzxgrq3t5e33nqLyy67LLOttLSUc845h8cee4y77roLpVIJwNatW2lvb+ef/umfTtFsBYIzg/maQeea2+zz+ZgIRMnLzWPC48QbjBCMxEimZBLJFAo5SWfbAQIjvZSWeDCYTOTYC0kplUy07yUc8GMvrcbtczI+NkbQP4FVmURbVkI0HJl1rmqlRE//AAmNhZJKI0qlBkmhxOsLYCqth0QUr8eFyWbHbDKxpKEJx+ggPf0DaJSKyYAvc7YZPx6LEYxEMdtrsrJPYFLomaz5jPYliUajWftkAFmmsCCPxNAoI0N9FBYUIikUjDpcpAw55GgSNDfUZ5n4i4rLGetvJRUJ4w1GkfNLybMXodHoMJrNaPUGbDqJQl0Ki9VCfn4+82U+telFd7i5sygF9QsvvEAoFCIQCABw8OBBnnzySQCuueYaDAYDd9xxB+vXr6e7u5vKykoALrvsMi666CKWL1+eCSa7//77kSSJ73//+1nX+OEPf8jll1/Oxz72Mb70pS/hcDj4t3/7N1paWvjc5z53cm9YIDjDmPkhLBMMhkgk4gz391BfYMoI5bn6IOPxOCqtHpM+yb5392AqrcNiK0Ct0ZCIx1HoXAwe3IkqHqSsaQXlSxrR6Y3EomFSmg58I91IsSCBCScFyjD1VaU0nXUhrR2dRxQYuVoFgVia6iUNpPr6cXgc2HLy8IcjWO1lIKfxDXUiDfZQYFCQiEcwmawE3QEsOiVjM4yt0WhIJWIo5RQ6nS7rPmUZQpEABoMus296EFt58xrq3isXunf3brZtepV8mxWf20fjihJqqquyhDRMWga8/gDRSITyqhrSGjNB5xCptIxSIVFkNdBYcRGhsT76hsaP2Tc8W6ORmdwK89HAP8gsSkF955130t/fn3n9xz/+kT/+8Y/ApIZcVVVFKpUilUpl5eMtW7aMP/zhD/znf/4nkUiEgoICLr30Ur797W9TX1+fdY1169bx/PPP853vfIfrr78eg8HAddddx49+9CNh2hYIjpNDH8J6o5lxp5txtxf3+Bj6dJCC1UtxuVzzMq9OaerxZJp0PIoc9oPJBLIK0gnifjfxgAtTThHltUsxGI3ApDm5ftlqho0mVGEXS+xVXPGhc6moqMjUbjiSwKiqLH8vCMtIVUU5gbZOhgf7iEZiWNWTi4ThwV5iTgXKsgq2B8MogLh7kKsuOpeYP3zY2MODfZTkmrAYJEaGB8jNLZhMiYrG8HgcKCM+yspK0Gq1swbnlZSWU1xSyoG9uzDEvRQU2ClfUoPRfHiTh2g4jEJOk0zJGK25lNQ0EYtFSSaTqFQq9HojcjpF2DlMOBY/Lt/wfLqHie5wR0d0zzpORPcsgWBmpkpUbtm6jR2tPSTVJvLy8inMz6WosIhoLDzvjkmyLPPCSy/z0q5uCmta8HnG8QcjpNIyCgUEnSMkAi4M9nKKq+uoqW3KSskKBwN0bH+DK89u5NqrrszS1qZyo8fcfrzBEAo5TWm+lTWrV6HRaHj5za3kVjRiNJvxeifYtfdd9rR2o8stgUQUR+dumlefx5KmZWh1BrweD0NtOzmnrpjVLY043J6sXOmCHBN+n5/hEKDR4w1GSaTSqJUKbCYdxCM0l1q56IK1+Hy+rOsfSigQwN3filmrwCMbZu0kZiOE0xuiLwD2ykb0Bn3WOJFQgPHOd6nJ03PjNZedtGjrD2J3ONE9SyAQnFKmC732/lHiCj01lZXU1FRTUlqeqTV9LDWvqyrKUWzZRSwSoKy6jnQqRTjox+dxkacpJBrLQ2myok5GGBnuz9JU3R4nqnScmsqKw65nt9tpkmUCO3fhTyVJS5Pm7taOTprq6zKm/LxUMf2DQ6DSYdDr8U84iYz3kV9aRfPq81EoJGQZIrEwjU1NyFolDreHD609H7/fnyWMXC7XpDkbJcUF5ajUapKJBEGfB6NWlclfnktwXiI1mXoW6xua1TJwzprVtLZ1cPDtdxlARVlFNQaDCUmaFJbusRHkeJDq8up5+YaPV9Ceyd3hFgIhqAUCwYIy3Zdqyi1Fmx9gib2SSCxM7/A4JrMFq9WWlfrk9XozAuloD/qSkhKW1lUTSEXxDXVmco8r8kzk26vYd6ANhVrFssY6XB4PE46BjKZqVaYpq6umpKRkxnm/tWMPIclI9fJDCpns2ENjdTl9Q/t5Ze9+dPZyiooraDRYeOetN3F6JsgtqyXg96LR6PB4HOjlGNWVdagUSsYH2vD7/YcJoyzTr3uI4Cym3/kE59nt9llNyQBen5fIhIO+niF6enopLy3DXmAn6PUQcfazYkkJSxsb5tUz+2TVUP+gIgS1QCBYMA71pU54XKQBW24uOQp7ptHDimVWQEJn0DM4Mspzf3metFqPSqNFq1Ie8UFvtVqpqy5nwJ+iuaiUZDKBSqUGIBGPEfE50JtzKCkpprS0hGAwRDKZQKlU4RgZoNxyeDnMQ+cNEAz4SSTi2AtLcIwNM+5yYzPqMKhBl47gGWxDpZBYXlmAXkohq7Uc3P0ONVWVFFgMVFVM5mqnUqkj5gPPJfhqvjnKM42X0d5VVtZdcT3dPZ20dvXSunsrnYkQzVUlrDtnFWvPO3fOAnYhOqAJjo4Q1AKBYME4tNCJWq1BpZCIRcPojebJRg+OAYLBEKlUkh07d7L97e0UlFZTUlVDYZ4Ogy2PwUBg1gd9JlDtnd0M9HahVKlxu934QxHcHg9SyIc2HWfvzu3UNTSjNxiIhieFmZHojJHE0+ft9bhnbJfpGfBiseVw8aVXITPZlUqt1iDLMuqdu5BNdmI+F821lRQWFjJVxGMu+cBHM/3ON0L60PFmCkYrqahk1Vk+vBMTDPZ101hs5eorr8iqOXEkFrqVp2B2hKAWCAQLxqG+VJPZQq7FhHN8hNLqejQ6LYlUGrfbRf/IOLv3t2EprOCsy28gGU/g8jgIDY3R0lCL2zF6xAe9Ih2nc89uDvQNI+tzKCoqoqm2hpqqdYyPDOIe7ECdDKHTG48aSTw170g0zMGDrZm63FPtMod6Oxndf4CaygpqV12QlfcsyzK5FhPj4RBqre69rBEps2+h8oGPJ0J6pkpxkiRhttgwW2zk5ubjmcU8P58xp5hLCdAPYgDZsSIEtUAgWDAO9aVKkkRVdQ2B/fsZ7u3AYM5FQZqe3j56h8fQKdI0rz4XlVJFghhmsxWnY5S+wSHqqioZH2g/7EE/ZW4NKi0U1TQhFTdhsxcTCHiRlQqMJjMr15xPt8VKjhTm7NWr0Gq1RxQEGo0GtVKiq21SSJdWTwZxBfw+xkZHcYfijEUU+PcfxFKwicaly8jJmywIMnWPzu3b8fj8xOon00fnkw98NKE1tV+WZZYvbQYgkUjMWcDNJRgtlkjhdDrnLDjnMuZsJv/T1a99qhYXQlALBIIFI9uX2kgoFEZSKqmprsY5Pkbr/rfRyXGSqTRl+QUEDWVoDWa6OtrwhyfTrNLJBJ6RQXKtVhKHPOinm1sLCkvoHx6nvKYevdGMvbCYkeF+evsHWFJVgU5nwDnmQKPRHFVLtFqtGDUSPQOD1J99SUZI9/T2EZe0yDoLzWdfgHegjdb+UeJpWL7sfWFty83DnmclRwoRcw3SNz4wZ233aELrSPvnqv0eLRhtbGiQnq4OkokYao1uToJzpjFlWc749hOxOGqldJjJfza/9sDIAINvbGJ1SyMlJSWLTsM+lYsLIagFAsGCMeVL7XttAy/+tQtJb0FSqZGTCdJhH02lNpbVL+Fg3yjljSvZtPktOtrbwZiDxV6GRqMjGosw1HGA3fv2U5uny3rQTze3xuJRkmkZrc7w3rVBrVCxe9d2hoeGUShVTIz2kmvWH7VutSRJ1FRWoNr2Lm6PE0mhZGRkhFBSQm1QYyZJZWkpmpgPnVbLkMuH9uB+1px/IbFIhLHRQYotWi649EY0Gs2cNa6jBWM1VpfT1jt43MFaRwpG87icvLVlE2azjfLGVegMxjld49Axp/v2E6k0Hscodfl64vGzMufM5teOx2ME/EFaOwZo6x1kWWM9RXmWRaNhn+qgublFDQgEAsE8kGWZdDJKOhYmHQ2TjoWRUzEMBgPFxcXkWC2olCpigQk8Xh95RaVo9QYkpQKFQkVeQSEeX5Cwz5NVDGK6uXV6oBpAwOtmcKAXb1qLuaSG/KpmcsvrccRVbN6+G6fTecQ5T6V9WaUYzv4OBvu6UUkyOVoF1RWlqJUKLCYjSyrLKcq10Nl2gAPvbMAz0Ea5WcGFZ6+ioKAAm82W+fdo5u7pQstoNqNUKieDseqaCKLjlTfeJIRuxv0hSc/B9g7mUrNqagFllCP0dLYSCgRIpVIE/X7e3vwGkkrL+Rd+CKPZMudrTB9zz4632b59O+PhNNq8CiRzHgUl5ajzynlrx57Me59ZaBWXZ96bCbeLffv344xJVLScj75oCdr8cgYD6Tl9bieao31O8/kcjhWhUQsEgiMyH7/c1ENNZSvm6jWXEAoGMtHRRpOZ3q42hkbHKMwx0dbdhtZkxaZI4RrswmovQaXR43YMIwUclOeaMZhVWQFO082t0wPVSqrqGB3sIyprKSjLw2CyMuFxUFyQx9KWpfR0th01AtlqtVJXWcKgP0VZaSmxZIrimlpMRiOyLNN1YA8JnwOF1khSoSWVltGRYHVzLUuWLJm3mfZowVhms43d414qVuQeU7DWocwUjJaIhlGn41yw9mJstpx5X8Nut3PBmpX8/sln8PhS5BpsJEMeisx6qppWYrFYs6K/D/Vry7JMX29PJi4gLcuM+V1odToKChdH5PjxBs0tBEJQCwSCWZmrX25KmDudTnoGRilrOguFQoHZkh3pXFRcjmOgjdXNtfQMjuD1+ymsaMDjGmO0bYxINIpekWR5fQ2NzUvxjfRl+aizzK11TZlAte4Du3G5PMiWArRKmHCPoydOVUUdkqSY08N0egqUyxVBq1IgpWUioQBDvV2M9XdRWF2PpbCSVCpOKuwjpstlX0cPVqt13qbPowVjKVVKosk0KrV6xv3H0q/50Jxtn8/HVp2ewqLDC8DM9RoajYbC0goqVpSj1emyWnkCWe/9oX7tYMCPxx8kr/y9CmyRKGqlApVKfdKE4NE4nqC5hUIIaoFAMCNz9ctNF+auCS+tXb2TZsIltZlgqymmootlWaYox4x/pBdPKIGs0iIlYxSYdKxZvYbGpqWEg0Eih+Qfz5RP3NzcxO53tjLc00puaQx9RSkFBmOm4MjUdefyMJ3e83m4u5W9PR3Y7XYC/gkKquqobVpOJBxiuLeTQpOOpSvW0Nfdfkxa39ECvFLJFDqVgmQiMeP5c8nPns0aMt1CoVV1H1dP6Hg8TiIlU2ovyLQMns70995ut2f5tROJeCbOQJbB43FQYNa/J+hPjhA8Gouhb7YQ1AKB4DDmWsyiSZbfK7s5KcwtZWnGY2pG/HFC+/ezrKUlS1hPRRdPeJz0DI0TSSvRAk3LV6I3GImE/LgDEXw+L27H6Iz5xzOZcMvyzKysKaZ+1QrKK6qyNDp4v6d0JBLB4XAc0YQ/VfN7ZHgEh+cgI6MjhBMyOcpxdng24PP7IOJHWVnOu7t3UmAvYNzjnLfWd7RqY4GAl6pCG0Gfh4LConn3a56LNWQhekLPR5AdutAymawoAK/HQyQWRi/HqKqoYz7FYk40i6FvthDUAoHgMObilxvrbyWwcxchyThNmMsUF+QxHk4Tjcfo6+3Blps32Ubyvehik9lKymjHVl9GQZOSfTu30b5vF8tWraGouJy+nnbe3ryJVbWls+YfH2rCVavVvLv/AINBGaMxW0jLskxn+0ES7kG2AomUfMTUmqma3ylrMR++pp7uvgE2vbOXts5u5HiI5ualNJ53NRqdDuf4CL6eHqzK5Ly1vqNVGzMRZc0lF9HWOzjvfs1ztYbMNAetXo/bMc7wUB9WZZKmsy48oqVgvoJs+kJrzD1M3D2I2+2isamJ6sr3rSAnSwgejcXQN1sIaoHgA8J8gsLm4pfzBkP4U0mql08X5lKmX/NEKsWoY4Jq7wQqpSoTXbx85Vl0DYyQX1CM3qBHbzDy7jub6dq1mfzCUhKxMHLUS0v9hUdNqZquwTY3Nsz4MO1sP0h/534qapvIq2w6YmrNTJYEs8VKa2cv5uIqNEoJm1mLJXfSzF1aXU9P67vE3UOoZ/ElH4m5VBvLz8+fVzWy+Zb2nD6Hzn1b6RscJhxLYjDo0JaV0NrRmTluts9hvoJs+kJrWV0luw+0I2uVqBTKeReLORmc6r7ZQlALBB8A5lusYS7mTIWcJi0pDhPmVquNZY11dPf08m57N3vTQcwGA6pUjAvWrsNgNJJIpdHotABYcvJpWHkure9sIBGPozZaCAa9HGhrx2azzfkhONPDVK2USLgHqahtYuWa848qtGYrtanV61GYc8jNzSMw3EkkGMBgtgASqNQwx/rYs837SE055tK0YzrHEqWcn59PidfLgbYucoorWVPfQL69gGg4Mqdc4WMRZFMLranP+FQJwbky389hIRGCWiA4wzmWYg1zMWeW5lsJxNIzCvN0Mkk86EWpUKDW6EjKMolkCo1Gg0qlRq1UEI/G0Bv0BENBRlwThCQdjZX1GMxmXHKK8aiCzfMsJnHowzQSibAVyKtsmpPQmsmSkEwmseXkEpYk/EE/sWiMWDyGFI7g8TiwaiXMhUUkEoljLjE5l6Ycc/V/zzdK2el0cqCtnY1btuOMayiptDPmdKPTG7BabXNusHE8guxUCsH5cKr6ZouCJwLBGcyxFmuYrUBGKBCgp7MVoxxhzepVFOVZGBsdzDp/wu3i3X376B73Ubf8LM798DVULl1DED27du4iEYuQY9bj8Tgmhf64k1A8RX6eHaPJjNc5RnFBPi0rzyaEju07dzE+Po7X6513UYn5Cq3plgSQCQaDhEIhtEoFJQV5GOUY8YAb90gfAccABXqJ2opS8m1W/H4/b761hZff3MrLm3fw8ptbefOtLSe9YEf2PRzO9ACtqUVc+5ifpCGfurPWYimsxBGR2dfWic/nfX9B4wng8/mOeO0pQTa1sHI6nXP+3KbOnUuxmA8aQqMWCM5gjqdYw1zMmZIkHRaI1H5wP0MuHxVlJTQ11qNUqigsKqKxqYkDHT309fRQXVdPoL2Lvu4O3L4IqWgUsxo8zlH06QhV1S0EAn6c3gC72vcz6PSRY7VkzPX5s2hfUyb+MbcfbzBENBRkbHQMfU4hpZXVh70/h0YVT1kSDrYfBI0ebzBKIpVm3OUi4Zogz2piTUs9jUuXTRZxMRro6WzDLCXZ195DSLHwJSbnq6XPNbjLYrGwacvbhCQ9ZRX5jHqCGAwmFEolJfrKrN7h80mTOl0bbixmhKAWCM5gjrdYw1z8p9OF+YTPz2BvL0saWmhqrM9E8ALY8/Iw6Yd4d/9+SkpLaaqt5u2336Zrx06sRj1F9fUU6CWqqltQqFTsa+skJGvR5hRTUrsUvd7I4OggPa+8jlYhEYpP+shtFjNFeRYK8nJp6x1kLJAkmpIJJ3WEkjLdzhA9Tz7JjR+9kcrq2sx8ZooqliSJgrxcXtjwFkF1HpV1LeTYbMhqPdvf3oyz00XD9X+DxWIlGg7T09mGIR1GkhSEFAvfl/lYhN5cg7v8fn9mEZeW01l9wyWJrN7hkizPKU3qVNfEPlMRglogWMQcb1u9KTNoJBRCRs6U8zSZLUiSNKc81aP55aYL8+HhYVAoWLpmDUrl5OPF5/PSNzDIRCBCWlLjGhvmlWd/j1ZvJJJIoUtHsZntmPRaKquqyMnLY+++/UQkLXk5ufjCE2h1eoxmM4oxJc9v2Eo8raBqSS0mg5FwSoErnGBi63a0OcXIOgtRhZ7cogLsOi1mewlvvfESTz/1FDd/4haKiktnjSqWZRmH20NFbROgxOMeIOTsR6WQuHhVI2Njowx17kMjx9CqlZTnmiktWsKug10UlZXP22pxJI5H6M3FGuJwODKLOIVCkdU3XJKkTO/wRCKOxzl21DSp2aPNTRRQTnf7Abbv3MVVV1yO4jiC7z6ICEEtECxSFsKEaLVa0UpJNr7+IjpLPsm0jEohkWsxUVlVzYTHuSB5qtOFeU73INFwBKPZjM/nZV9bJxFJS25BBYa8OImAC/+Ei1AMSsuqSerz8URlDoz4GR5/gTVnrWYiECHHXo5nfBC7xYTJbMHjcvLySy/iTJvQWu34tXaiaRgfniBXlcQzEcIQ95BfZaektJIpmVlQVMwF6y5n52t/YsfGF1nashytSjljVPGUq6C+cRkGkynTsnFqcRMOBhhs2815yyc/A6vVOtnDeYFLTM43xWomjmYNOTSyf3rf8LzCEtJpiVQ8ynB/D/l66ahpUjO5WaYv0gLBMJ0He0jLMueuOUto1vNACGrBB5JT1QB+riyUCdHlcuENRQgnIK3QU1RagUyKocE+Ol95kRVLSmhec8mC3fuh/aj7BgaJSFpKSisBmaGefqRknNzKJkacEzijCpYsXYVuZJRQSsGYY5g3N20mp6icaDKNQY5SVd0CwI6tb9HrjmBrOBelSklOYTEqpQq/30pPxy6Sfi8GhYlyg4lDbye/oIjaphUUaxOct+x9IXvofU93FUzlUE9HZzCi1uiwWq0zNgoxms1ZPZnVag0S0ryra80cWyATDIZIJhOYLDmMuQaPqqVPX0Ad+p23WCxZvuycvHyWtbRMtqoc7GBkZJhCg0R901k0NzYc9ft2qJvl0EVaTqmK/liEfm+chDCDzwshqAUfOKbSUXoHxwjH4hi0GqrLi1g6h4fRyWAhtKnp4yitRVx++Sr6B4eYcA+TSKUx6bWozFZyzSby8/NnHWO+TPeP7t+zk74RN9biKibcTsJ+DwRdaEw2YrISXU4RGq0ak8XKEr2esdFRFAkrvXsO4HcMcdEll9GwdBk5efn4fV46e/pRWu1Y8wtJhP0olUrkVAy9Wo3CmINnoIek1o9CoSAcDpFMJlGpVOj1RmLRMAa9Dq1+Mnd7qiHFocL6WOo6T1+c5MTs9Pf14vEHM9aLqN/F2fXl87JazCT0pjTTRCqNUpKJjHXTUluROf5IC87ZrDMFebl4/O9XPrPYcqirb6Snq5VSYwkfOmf1nDuDZb93pqxFmiRBJBTAaNRT27AU5/jIKe+KdTohBLXgA4XT6eSvr75B14gbSWNCUqqRgxG6R/fRNzTCtZddcsqF9UK11Zs+jtFsxmazZTQylUqNJDfhGWifs+90rlYIu91OY3U5B5/7Czv3dqLL6UCnVlFRlEt97RJ6h8aJpNLkFBQRmnCTSqUwW6yYzFaKg34McT+ybxijyYQtN2/yXibchOJJrPn5BP0T6NJRHH3thMIRUmmZVCKGa2yIUCDAwaJStGYrqbSMUiFh1mmJBjxoYxOEogFeTsSRVGr0Wg01pQVZ2uJ0oVttbDysTedMJS2nFie9r77Bqzt3ordXUlhei4SSsZF+/KE4AyPjdHd3H5PQS6ZTWZqpRqfF53bTe3APv3v6z1TVLEGnN87qGjmidcY/SGN1OQ63J8uX3Vhspbnh7Hn9Fqa/dwWUMxGIkFtQgSRNfnfc4yPYLSbMFitKhfKUd8U6nRCCWvCBQZZltmzdxt7uEWxlDeQVlaDVGYhFw7jHRtjb3U6OaRt/c921p3SVfzyR2tOFqc/nI5ZMTRtHwmQyZY5NpVInJOXG6XTyzt79eFN6DJY89Pkl6HRG/JJM77CDaDhITCFhRoFKKWU6LkkSKBUS+XY7hhwtmkQgo+mlUqnJ9yYWID7qJ61VozLlYiypJSVLjA8PEFGa8A92s327maazLqS4oopI0MeOnTsJj7SDnEZvzceRMmAvKkGvlekd76RveJRrPrwuq/Z176tv8MJz+99fzKUSyPEgtSV5M7oK8vPzyTWbMJut6PRafI4R4rEoiVAAq72YdocTz1N/5uK1Z8/JcpMReiMDBGKpLM1UlmWcw70olUom1PnkSQYaW86asYrYXKwzDreHD609H7/ff1yuoOnWlO72AwSCYXJKVURCAdzjI+hSYaqqW5AkaVF0xTqdEIJaMG8Wu393NrxeL3sOdqK3V1FaU5+Zs95oprSmnlgsyp6DnVx0oZecnJxTNs9jMb/Kskx3dzf7W9uYCERRafUkYxEGhocx5JdSUlqWpU2bTMY5dyaaj79clmXe3radvX0uLJVNVOtshCQ9tqIKAgEvQ2MD6IITRBQx3IZxCq0G9Ho9AOm0zHBfF7p4kNw8KxesWcnIuGNS8/L6UMd8qE02pFiEiDKfInsp6bSMw+HA5RjHaM0lt6qGdNjPUHcrY90HUKuUaAwmfCojslJDzYqLUWjUROQUubnFxGI2tnfsR0q+zPXXXpPR7iRJQqHSIWkNSCo1cjKBnE4esWxnNK3goovXIUsK3G4XHb0DaIoqyM0rpKAyjqt7P+1jfib8u1nWUIPFYpn19zMl9IY2bKatc5SyxrOQ0ymi0TCusWH8I71Yy2opX9JE0DlIJBLFNINrZK7WGb/ff0TNdj7WlAvPXsX2nbvoPNhDfyyC0ajHbjFRVf1+J7XF0BXrdEIIasG8OB2KGcz2UHG5XLiCUWqXVc340Cosr6JrqA2Xy3VKBfV8uxE5nU7e3radTTv3E0JDXm4ehfl6CouqSIw6efW111hS20ACJYlUGrVSgc2kg3iE5lLrMabczOwv93q97G7tRGdfQll5NTaLha72NvyOASz5JcSs+YS8o8QmegkGgzRcchnpVAq3c4zOA/uI+hxo1CqImRkZK6apoZ4VGg2xWAyrBt7c10MsImO0WglPOBgdHiLk96NMhrGXldG06nx8w53oDUZaDx4gqVBTVFiC1+VEacmnuHQyp9g1OsTY2Cg6kwVHVMlzb2wlKWmoqSjG7/OjtBZx1ZpGQqFwZnEzVdxkJt/q+1YQI0qlgu7eXjDYMlpwOqVBqdFiseWx++BB3t1/gJraerRq5ay/H7vdzqqlDbR29hBx9mfSxExKyCkoonRJPRq9jolUmmQygSyncTgcxBIpDnT0s6y5iWQyedwR6fP9zdvtdq664nLSsky/N05tw1LMlvcF+2LpinU6IQS1YM6cDsUMjvRQAZAkBRKHN7cHkFAiSac+v3M+3YicTieb39nN7u5x1GXNrKxpIB4L4x4fIdTXT1lpBe/ufwmnP865H7qEHFsOAa+XAx37MSXcrFt+/bxTbqbP81B/ucvlwh2IUrt00jdptuVR29DI6GAf/uFO0uEIPucIl6ysxROMMHTgHUaUGpwuJ0q1FntlHcX5NmorShkMBvDs2MOFZ6+isLCQyz58KU6vnzFnO6pUBOfYEAHHOEq1FrPFiEqtQVIo0Gh0lJeXMhEI4w2E8Xk9BBOgjcbpbn2Xkopq1DoD3R092Es0FNW2MBJ0oTDn0zriZfe2t1m65nxMDgcFBQVZ34nZ4gOmW0FkScryzwLEomES0QidfYMkTXZkhYr8ynrUKvURfz8lJSUsW9qMNrcUtVaDWq0hEY+xfc++99w2MdRKBaOjo7y+cTNjE0GiiSTh4S4mnKNctu6ieVtnpnOsv3mFQsG5a84isX03zvERlArlSW8NeSYhBLVgTixUJPJCzudQrdnlch3xodJSV02eWcfY6AA1puasFB5ZhrHRAfLMugWNgj5W5lKwQpZlDra1MzARJqUxkZNfhFKlRK8yU1pdz3BPB+MdrVQ3ryLs9+Ab7iLk1KBSSDRXFgMFONweGmX5uNpdHqqRyXIamVTmtdmWh8maSyQYwOd1ow0Nc8P112Gz2Xhnx042vr0do95AVUMzeVYjVRXlWK02ZFnO+l7Z7XauuewSBked9HodqNVa8ovLKVvSgE6jZqCvm96OVnK0Mm73BIOjTmJKPToS+NzjaCIR0uk0Lsc4Wo2apKSgzpaDUpJQSOBxOehobWVHWx/dIRXFB3spzjWzZtVyKioqZ71fyLaC5NqLJruDaTWEwyESiQTOwV78bgcGTQ2lZcVMDIdIp1MYzblH/P1YrVaK8iwMBnzUFE/+7gJ+HyqFRCQSYmx0mKR3nAOtXpL6fIqWrEChAKdaRV9E5pmXN7K0ppyxOVpnpjPX3/yH8vJm9G+f6taQZxKLTlAHAgG+//3vs2fPHnbv3o3L5eLuu+/mnnvuOeq5Tz/9NH/84x/Zvn07w8PDFBYWcsEFF3DPPfdQV1eXdey6devYuHHjYWNceeWVvPjiiwt1O2cMCxWJvBAcWs9ZIacpybOSSMYJqWyzPlSGx8ZZ2VjLxgMDDOsN5OUVotFpiUdjuN3jRJ2DnNdSt2iiUI9WsKK7u5sNW3cSVNoYcPnIl/V4vD6KCu2YjCb0FhttngDL164hHrLTXF2CwWCYVrwjeNTPbL7+8vz8fPJNOsYH+zA2Lc9qFak3mRkd7KU0Pwe73U5OTg4XnH8eTn8ES3E1FlsuJpMReP+cqe+V1zvZHMJkMpFv0eNVaTmreTV9w2NYCwrRaLXEYnE69+1EqUvhjUEkBXqdElIplAYbksWOoboFOR7BOdqLQY4QCwWIBCZIh3xs27mXmC4X+5LlGAorsRTaGRwfwbVxC1ddDBUVlbNqoNOtIMP9PQQmXJNFPiIRnMODBMZ6SCbTlMSUeFwupKCLUH0NuXn2zH2O9bcyMDCAXq/P+qwPta7oDUbSkSAbX3wOg9mG0zFORJtLWb6FWDxK1OOguKiQ2qWreHfbRgaHh2m05s65V/QUc/nNdx7YTiDwMuEEM5rFT5euWIudEyKoZVmmq6sLvV5PWVnZvM51u9386le/YsWKFXzkIx/h17/+9ZzP/eEPf0hRURHf/OY3qampYXBwkH//939n9erVbN26laVLl2YdX1NTw+OPP561bbE8pBcbx1szeqGYMsVl1XMOR9jZ1YpvuJvLrr5h1oeKY6CN1c0NeENhusf7cQYn3g8UivhZUZXP+eeevageIrOV73Q6nWx6ZxfjYZnKlnqCimHUBiveeIzIwDDVFaUoVWoSaZl0MoVGpcSWk5cV9T2Xz2y+/nKbzcbK5jo27O1iWKs7LLI+4uzn3BXvL4YSiQRqjY7C4tJM9Pd0dAYDLq+PjZvfIi6rmPD56R31kFYZ8DqGMWrU+HxuLCYLcsSLWRFn1OFBixmDVkNwrAd9Xhn5ZZUkZAURvw+tVktaY0FCwUDbHgwqmUQkiKKwjubVaxls34fD40ZfU01t8wq6Du5lx+53KSsrO6IGOqVBbtn6Dq+37caT0pFXUIRSATm1Z+ENRkioDETSKvT6HHp6+zGZLOTk5ROJhtl34CD+QAC9wXSYwJuumbrcE4wP9aBKJNCo8oikFCg1enq6u4n7XdiUSUxNjYQDE1TWtTC6dwNVJXYC4ciMmm1+fj5er/cwQXq033wsEedAZy+xhkYampbPahafb2vIdDrN4OAgwWAQk8lEeXn5B77k6HEJ6meffZZnn32WBx54IBN809fXx3XXXUdraysAn/jEJ/jtb3875ze6srKSiYmJTPDPfAT1n//8ZwoKCrK2XXrppVRVVfHf//3fh42l1+s577zz5jz+B5ljiUReKKbM3LFYjJ279zAWSBJIKrLqOVsKytg47mXbO9soKi0jNz/brDYllCwWC9d8eB0H29rpGXYQiYXRGzTUNNXNqfrSYmDKJBlXmygpKcVgMGA1GfCGA+QXleF2Oxgbd5Jj1qNWSLjd49SXF72nrb7PXOt8z9VfPnX82vPOZSIYpmukj/GAKyu9acWSEtaed+6sZSwPZXxshN7efpT6FpbUNaKPhOhzR0lqDfjHB9BpdQQm/HgVKooLCik++1w2vfgc/r4DGIwG0gE/anspxRV1+CMxJhxjeMZ7SQW95BQVEnKPUlKSh8OSR3FNI0qlEmt+EZ7xISaG+1CWVlBQUs5A23Z2bNtCRa7hiL7V/Px8rDYra85dizeSpG/cg62iiZyiUvoHhpkYG8AW8bLmkssJeBz09fYgyzK7du4igB57dTP59oIZBd5F7wnUNzdvQX3uhZSUVfDai3/F0b0fc6WM3pqDLtdOTm4ucZ2ZrvY2KmtqiSbTaLVaVq1aNaO76M23tswY03Hkz0amo7OTpEJDbcPSzP7jdYW1trbyyhtv0jfuJZpMo1MpqCq0cfklF9HU1DTncc40jktQ//KXv2RoaCgrQvaf/umfOHjwIJdeeilut5vf//73XHrppdxxxx1zGvN4tJlDhTRMBmOUlZUxODh4zOMK5q9ZLRTTg8MmfH7aOntI6awYCypYUv9+PWeT2UJ53VJc/W20HtjH2ouyc12nCyWbzcZF+fmsOE3NcVMmyZraJlIdbTgdIxQWFRHu68c1NoTOYMYX9BLzOlCnQshBD5Xla5gyKcP8PrP5+hrtdjvXXnYJB9ra6RkYxe31olEpWLKkinMOqfF86PcKyJTfVKlU7Nm1C63JTMvKs1EoFKTlNEajHmtZHR5rLmY5zDlr7Iw6nERTCpxOJwaVTEl+HqW1LYy5PKjzyggGJ1BGIpgUKSRFEqVewmbQkJtTzJKaCtwHOjGabcgypCSJ2tp6dMo0/qFO4okkvuEebMuLufDsC7JS0aYEn1qtBiZLtvYOO1ix+my8/gBO31ZkBYQ9TqSYD4NBj1mjRa1UkldYgmewg/D+d3EGYyxtaqKwqAiQZhV4kiQRk5VUL2nAYDKRk5ePrbCU4vrlmHLykVRa4iEvlsIC/OMD9LQdQKecdBkcqtkeLVDsgjUrZ/3NBwJB+vr6qakoP6zM6rG6wlpbW1n/1J8nu5atWIfZZiPg9dLRuZ+Rp/7MZ2/iAyusj0tQHzhwgMsvvzzz2ufz8fzzz/Pxj3+c3/3udyQSCVatWsVDDz00Z0G90PT09NDf389HPvKRw/Z1d3eTm5uL3++nsrKST3ziE3zrW9/K5HUK3me+mtVCcOiDRB8J0T48wXgoTV44TigcxGScNOXq9Xpycqw4BlS4JnwEA/7MA2S2doanq5tjyiSpNxozjRT87nFKCvPxTHhxj/Uy1HWQ2jwdl527Almlwe0YRa1UHfNnNl9fo91up1mWCYdCpGSZtKQglIDWjs5MoBFkf6/27HibWDQ+WeAjEmXCNYZvrJ/LrrkxY5EzmS2TXZ4cI+QWlhN0DpJfUERVzRICgSD7du9A21iDvbIeZxR0wTDxRBwJBRqtFoVCIh1R0VJbiy03j+CEC1tOLkoJJtwOUKnQygmq6+owGoxEggFc46No/YVcfOGFmXlPX0C6vD6c42OQTqPV6Rlx+4ioreTm2CgpKcVaVAGyTKTEztDoOEOd+xkfHSavoBi3y4N/wkFVfTPVlRVMX0zNJPCmm6ODAT9ojFRU1+ALBcgtrQQkIoHJ77wlr5j9+7ZzcWMh5eXlWZ/PXALFWjs6aaqvw7Njz2G/+e72AyiiPmob1834HZivKyydTvPKG28SVOex4rx1KBSTY+ba7djy1rF36wZeeeNNGhoaPpBm8OMS1E6nk+Li4szrzZs3k0wmueWWWwBQq9Vcfvnlh/mBTxbJZJI77rgDk8nEV77ylax9F154IR//+MdpbGwkEonwwgsvcP/997N582beeOONWb8MsViMWCyWee33+0/oPSwmTmYU50wPkrScRqNVY5BVpLRGxsad1Na873PNtZgwaSa/l74JDwaj6YxMB5luksxqpOAdQ59Ok6uIklds5BM3XsuqVatwuVwL8pnNZ3HjdDp5a8ceQpKB6paGI6b1TJUcPfD8KzhjKow5dkw5uRiNehJpBQ7PBMVuFzl5k1rl1OLENdpPIhomFosiyTKO0UFqCizU5q9gOCSj9I0z1HWQdG4V9trlxMMRnMP9EE/jCcVQpMcoMcoo4n7S3mG6d25g1QWXUlJcmlkA6oxm3I6dNFYWU1FRkbm3qQWk3lZEwJ8ilrsEkglScT8qXYohbwSX1088mUYpKdAb9SBBOhYl7PfQ1noAWg+QGO+ipKiA1SuWZfXunuJQgTf9s08k4qRkmZblq9ixazdDHfux2EtAThEOBnCNDqFOBlmx9GJcLldmcQUwMDBAR98w9upDsx8mG4potXp6BvpYvrR5xt98pVWFuq4avW5m//V8XWGDg4P0jXupXPG+kJ5CoZCorGuhb+8GBgcHqaysnNOYZxLHJagtFgtutzvzesOGDSgUCj70oQ9ltqnVakKh0PFc5piQZZk77riDTZs28dRTTx22orz33nuzXl9zzTVUVVVx11138eyzz3LjjTfOOO59993Hd7/73RM278XOyYrinCni1GS2YLeZ6WsfxFJURTASJBKJoNfrkWWZaNBHQ2UJqdAEwbE++ryOMzId5FBzcU5e/qR2GPCTiMcYGuilvrCJ6upqnE4nGo3mmEpEHmsFuvmm8k31gK5qWsk5JRWkUklUKjUgo9AaCURi9PX2YMvNQ5KkzOKk/eB+Bsd6GO6UyDGbMp8zwKZ3dtHVPkGuvQhX0Evnzk1IOgtWs5GqNecyMdzH0EA75opizJEITc1L2b3vIJ3vvIHunIvRVlYT8Hrp75zMN7/8kutRKBSH3Fsj7+4/QExpoKZusjvYcE8HTLjRKBTIGgux8UE87nGs6Xx6BoZweb00L11BZeMyBtr3kTLIaKQ0kUAA3qtrPp1DBd70z95eWIJKIWHLzeWcNWtoO3iAgdZtqJUSmrxcchQJ1AU5jE2EeHnzDjQqBVopiSQpGPf42d3eS2nKwJjTRVVFOelkcnLB5w8ST6SYGO0l16xn7XnncNEFaw/rvLVpy9sL5goLBoNEk2nMsywEzTYbvck0wWBwTuOdaRyXoG5sbOTPf/4zP/jBD1Aqlfz+979n9erVWT7r/v5+CgsLj3ui80GWZT7/+c/z2GOPsX79em644YY5nffpT3+au+66i61bt84qqL/+9a/z1a9+NfPa7/cftgg40zkZZuOZIk4lSaKxeRkdXd2MdO7DnGsnEY9DOol7fARtMoQlL5ely5ewvGUpiUTiuBYSi7VU6mxuCIWkYMLjQpsMEvDDK5u2HRYgNFMcx0zMVjimqb4OjUZzxPdkvql8U8cXljcgy2nSqSSyQoHRZMKglnD5kow4XNQGfJgtNgBsuXnkF9ipKzRy9upVaLXarLksb1jCvoNtGAuroKOTpMOBWa0m12RGG/NRYNHg8ptwK2wUGu1ccfHVVC9tZ+PGjex541kGcnPJsVqoL7Rx+SXXZ3yj0+8tFAofUthEIq+ohOjEGIRcxOJmkCTSIQ+7u7rxRWIU55gpLCnF7xyhyKqnZe3fsG3rVvbsfofi8oosS95sLpupz94xNoxRrcA5OkR+cSW1DfWUF9qoKi1Cq9WyZ+8ejNYSyprOQm80MjY0yIYtm5BUWlYua6GoQoHGbMcRCTP6znbkRBylxU5eeT3ptISkUjMeU/Lyhs2sWtpASUlJJoobWFBXmMlkQqdSEPB6yZ1hQR3wetGpFFlZCx8kjktQf/nLX+ZjH/sYpaWlGc15uraZSqXYvHkz55xzznFPdK5MCelHHnmEhx56iE9/+tPzHuNIPhCtVotWqz2eKQrmwGwRp7n5dtZddDEvv/wS46092NJebFYbFq0SrVFLsUVLc2PDcZcAXeylUmdzQ5ilJF5Jwq80U1RWfkzV42YLMjrYfpBN235PUUEBOqNl1vdk5rSeyV7KiUSccCiE0+3G6XRitVqJx+O43BM4QgfxBsMk0zKJaIRoJEhaqWN8IoBnbAiNSsFZa85Gq9YwNjqIiSjnHhKcNj1DoKi4hLyKBmQZ1lx4Kel0kngshkarxe1y457wUd24nGgiTCQSpbFpKfUNjezYtgUbQS6+8EIqKt4XnrIs43Q6cU14sZSlSadTk4VNdO8/D7Q6A1qDkfrKMjwTE7QPjWBKmYgMdGKx5GBU6EgFXJg1SorLS4nHE1RVVrB762b27X6H2vqlaPV63I5xhof6sCqTNJ11YZbAm/7Zx9wJBjo78I72U1VVSf05Z6FVq3lz4wZIxjn/kqswms0E/D66uzvQ5ZWjs9gIxZPk20w4Ax6KK+vY2nEAhUrLeSvqAYmR4X4sBh1JpZZ3Wnto7exh2dJmivIsWTnSC+UKKy8vp6rQRkfnfmx52ebvdFqmv3M/9YW2D5xSNMVxCeqbbrqJn//85zz00EMA3Hzzzdx+++2Z/a+99hrhcJirrrrq+GY5R2RZ5gtf+AKPPPII//f//l8+97nPzev89evXA4iUrUXAkaLMK5fUsWaNk8BwN7l2M7ICbBZD1kPkeDgdSqXC4W4ItVrNu/sPEFBZj7l6XDqdZvvOXYwFkixpqMdoNgESyXSKQFJiLGnEmFLTsPQsYpHDuzXB4YusqV7Kg8NjjI4MEwiGkMMeUskEK8Yd6NQqegcGUBfVU1JZTyKVpqOrB3ckjk0jU11djSbmZ2hggInxYZbWVVNXWXKYMDg0Q6C9q5fcCPgDIeIqN8FIdLIlZjzG+OgwFoMOg8mM3xUkmUwAoFAoWdqyEs9AGzabLSOkp8buGRiltauX8ZiaHLOBeDRMPBpDb5gMQI1Fw6gUEvmFRdgLizHKEZpqyigsKKCiaRV+n5eRcQfuiQD7N7xFNJ5Aq1GRDIZx97UScQ7j9gUIx5IYDDq0ZSW0tnfg9/uzmnhMffYrWnysHRmhb2CQQCzNxGAXiXgURWSClStW45vw0HpgHx5/kK7efiylS7CmFSQCSVY0LCHQ20vPwd0kkqAzWZmYmCASDpAOevAjE1IaKGs8i4izH21uKYMBX9bnPdN3ECbz471e75ytUAqFgssvuYiRp/7M3q0bqKxryUR9H+p++CBy3AVP7rzzTu68884Z911xxRVMTEzMe8wXXniBUChEIBAA4ODBgzz55JPApC/ZYDBwxx13sH79erq7uzPBBV/+8pd56KGHuP3221m2bBlbt27NjDmVRwiwadMmfvCDH3DjjTdSU1NDNBrlhRde4Fe/+hWXXnop119//bznLFhYjhZlXmLVccGHP3VUM+x8WWylUo/GlBtCluXJAKHeIezVzTMed6SUmanuW9u27+Ctve3YKprx7mslx6ynoqyUts4u3OEEFbVNhDzDRMIhzBbrjO/J9EVWXqqY/e1duAIRJrxBlPmV6Mxx1KkwXswcGPLiGexA1prQmq3oDCaGe/vAYKWuvA5nfyf9HQdZWr+EuoYmxkcGKcrR8qG152c9tA9dXBXr9YRTSnZ39DHs9FBco6OkqhqNRofX7cB9YD9qzEQiEdRKxXs+8UkODeCaPnZZ01mEJD0j/ji+tAbPxARJZQ+1DUuB93suG01mervaqKkopqGhgQGHl0gkzKDDgyuYYMIXQplfhd2ahz/gI5mUSRvtDI4OUFS5hDXNy8m32xkfG+W1XbuJeN+iuqKC/LycLCuGzWbDZrPR1NSUEZY9PT10dfdwsKOLgaER0koNVrMJtSkHW+kS/BMeBrvaKbfbqK6qgM5OunwuookkPqOCsqJ8giktYaWRktJK5HSKkLMftVZDTfHMKWM2mw2n08m7Bw4esxWqqamJz97EZB713g30vpdHfaj74YPIoishCpPCv7+/P/P6j3/8I3/84x8B6O3tpaqqilQqRSqVQpblzHF//vOfAXj44Yd5+OGHs8asrKykr68PgOLiYpRKJd///vdxuVxIkkRdXR3f+973+Od//ucP7KptsXEqagUvplKpc2VK2+voG2Z3ey9FEQX5w0PkF9gxmsyZkqGzpcxM777lDMbwheIYlFokvZU+p5sde17EF0lgzi3CF4oSG+uhprw00xHp0Pcks8h6Zzdvb95EwphPOhYnqTag1ujJUSuprmoiEPASTgQYcEfJtZuQgh56u6J4AjEs9lL8Xjejo6P4ervJsRhJKboxqhWMuSL4fL5M9Sy1Ws3BtvbDFlf1TUtp6+ggEkvhC/ipUGuIx8KEPA4sWtBZC+nuauesppqsYjDTA7hmWrjVLKkltH8/0UQcnSkH7/gQPRKQSmJWJikor6G3qy3jp7VarRhUMm+8uRFVQRVyIolkyqGgYrKscSwSRmnNxRtNETcVYzLbKCgswu/30TM0htJeiVpnI63TkFPewODY0GFWjOnCsmtgBFdMQTKdRlPaSEFRGa6hXjzDB9CN9BMORxhzedn8zk4aapegVakoyrGgt+awZnkTRqORHe+2kptbgCRB9D0rgVqtmfU3sFBWqKamJhoaGkRlskNYEEE9NjbGzp078Xq9mQbvh/KZz3xmzuNNCdQj8eijj/Loo4/O+zyA2tpa/vrXv855PoJTx8muFbxYSqXOlekPSHt1M6UpAwlJy862TqLb3qGktAyr1Uqu2YjRaCAe9BN5rzmF3+9nZGSEXfvbaB/1TnbfKihm3+4djLp9jI+OoVAqCaS0JJVaapc0EfZNMDHUQ0dXF7bcPHLy8md8T+x2O8saanh3/wEi0Rj9I2NYSpeQo5UoKq7CbLESDQXZu2cPXn8AXwJKC2WiwX4c/hiRUACP24VSraWktomqlnPQ6vU4R4do2/cuaimF3pJHPJkmEQ0zMDxMy7kXZ30v1Bo1BpOVqmIVA337ORB2k59vJ89qRl1WjjMSQZWSsefmMpW/fGgA10wLt/dT4roJurwEx/rRRRzYzGashcWkg87sCPQtb9MzPE5HZyfy0DiyLFG16kPEoxH8E240coyi8iq6O1qpb27BE3ASDPjoGxgkImkpLa0kGg7gHexARqambmbLzlQv8I5RLzHUdA+OYi/WoFCMklNSwdhQH/vefh1b7WpKms7CbNKizS8k5HXjGB2kQqehoKAAn8+X8b3L8vtWApPZAhz+G1hoK5RCofhApmAdieMS1NFolC984Qv87ne/y9JspyO/15lnPoJaIJjOySxOcrJLpR5PZPnhD0jo6u2jtasHY34lWoMNSatEaS1k58F9jPW1U19eCAoFEf+L6IwWOrq6cUZlJLWBhpIGZDlFxO/CFVXiDQRR6U2UV1QTmnARDoWJBieorF4CRmMmZWq298RisVBTW4/KnAeqA5Q1LcNosiBJ4J9w093ZiiehwlRQhSHXTmFVGT73OO4D76KIBbCXVpJfUExwpAuNVofeaEZvzWPMl2Bf3xhXXrsWvdHI6NAA451D6AaGMZrMWK02fD4v7777LqMeP6byenLCcXJ1EjkGFWajEeJhYsFh5JQS0pPWuZkilqcWblq9noDf917FNDWhcIhAOIqMAqVSQWFeHhXF+dTWVFNfX59p+Tm1iCqtX0FTVMeEP8iBA/tIte6jpLiIgvw8ioqrSKdTxFNp9EYTQb8Dr9ebFVGu1Rkmg+wS8Vm12u7ubjbt3I+6rJmKPD3OZDdpgw1vJElocBBZpSEYS2FLJ7Db7cTDftKyjKTVkVtQjDYRoKejFZM1F6Uk43O7CQc86FJhqqpbMt/LQz/v09EKdbpxXIL6X//1X3n88cepr6/nlltuoaysDJVqUVrTBYI5cTylUucrdI83svzwB6SMhISkVCNpNJgNJYwPHMTpCxJWmjEVV2POszAaUdA/GiE20UcwnkZltTM25MTpeR6rLQdVTjEalwuUSpSmXCKyEv+Em66971BVkoetqBIkiZ6eA+Tm5uLzumkoshz2nmg0GrRqJRq9AavFglIxOcfx4SF2bNmAJ6FCZ80nFAnhG+ynobqSmsblDA2PMjTYz8r61fhdI9hMevQm82Tby64urEWlWAsKkJFRKBQoVSosZjMOX5jegUGqymX2t3cxkVRhtOWjN1jJLSpFp4ZAMIhKAoPFRk4qzUjbLna8+TIVVVXk26yHuVU0Gg3RkJ8db28mlEjj8/kYG+rH4fGhtdnR6w0EfUFGwjDc5WZPRz8XOpycf+45tHZ0ZhZRoVAQvVaDrrSMSDRCWmfFajawpL4BhSThcbvQKBVEQkFUikm/7/SI8tg08zPMrNXub20jhGayJ3kiTrHLT1xSE0+rcY04CXm9lJaWUZVnIuoZJeR1E9amKLbn0HLFFUz0t5GriBBwDRIZ62asv4um+nqqalrIycuf9TdwulmhTkeOS6r+8Y9/pLm5mZ07d4qUJcEZwbGWSp2v0F0In96hD8hgMERcVtDSshSvP4gv6Gewr4ecglLqly7DZqqle+9W9LIWnSUXVyRFUpmgZsVa5IEh+lt34/aPcN7lazCYc/HtfJvkxCjxVBDCXpIxJ169hC8YYcLlxDXUzcGDB6guyaf4wnNwuVwz1vEe8HvJNRvp62wlHI3S3tGBwzWBOrcEdSyCVqsmEQiy/8ABli1tprC4jLb9e2h9ZwOldjsFy5YRjUQZGxkgFvTSuHQFce8orvExujracfsCjI+NEki5CLideJwuUqY8aurqCEy42bv1dUinSaPEOTaETqNi1arV5Oflct6HLsFg1KNNhljdXMuSJUuyPtt4PM6Yw8FY0khJZQ3hiTATGjupolKUOg1Orxu0ucTQUb9sGZ7xEbZ3DOIPx4gl01QtPRu/f9KMPe5y4YmkiQeDJMNJtEqJaCSMXm8kEg5SaDMw0HWQupI8VOrJvuHxaAydXneY+XkmrXYiECUvN494LIzeaMaeY8EbS1NkycGsUdDpc1BWamfp8lWMj49QX2Rm5bIWTCYTqVSaiGuEs1atRKvVsqyukl3725BNJjQa7awWBzi1DXs+KByXoPZ6vXzyk58UQlpwSlnowiTzDWKbr9BdKJ/eoQ/IZDJBIpWmKDeP/Hw7I8MDOCxmlq9YSWlFJaFgEF8oBio/krWQyqWVdO3bSSoeQ6/TobYVQTLG+EA3pUsayCkqI63UYjEbKbXbCE64SMkSXoeDuMqAqaSO/EI7lhwdwyHYPEOA09SiZ8TvYbC9lfGEmoTKSlIdR6E24fSG0CYD1FWVE/SMsfGVPlRaPVG/h/BInLAizkCrjMk8WRCjqMCO0WwiMBKio6sLyWwnr6KBZQWVHNy/h57eftwTXtZcsA63Y4T+rk4cHe+iNOYQQ0ksrcDvCfDa889RatPzmdtux15YQmfrPnbs3kN1dXWm3WY6nWbHrt1orYXYUdPVtp+42oaxsBqrzkhv27sQDnHuRR8m7HXgHBmgrLoO31CSsUAMn9tJUV2M1q5eIpKW6qYVaMZduDxmxge66HIMY7cYMVgtxNyjhH0uXAO9pEKVuANx/H4v0riLgvx89HIkY36eTatVafUU5utxj49QWl1PUaGdyMAwgYAXnd5APByAmBmvb4IcnZJljXWYTJOCdUqYarXaTCS53W6f02/gVDXs+SBxXIK6qamJ8fHxhZqLYBGwWKtxzcaJKkwy1yC2YxG6C+XTO/QBqVKpUSsVGS0sOOHGYjZRWDrZEz4SDhKPRohbbBTYS1BrDWg0arweJxZrLiqFRFJvw+fzU5RKk4qGiaUCVJeXICUiBGNp8s1q9LZCZJWGXJ1EU8syRocHQQMhlIfdq91u54I1KxnsewatwUBq3Esg4iUVS2C2mMnJW0LYM0rP4ADxeAxJqabcbKOk0E5BeQ3pVIrhwT5KS0uRzGY8DgexSBhFZAJtRSOl1fVIkoTeaGZJXTMxzxij48O073oLZTpJ2OfAai8imJRIoUOl0iLpLBC3MugZ4qc/foDqpuWoDWbeCk0wMDDI9ddcRX5+Ptt27OT1rXvRFdUQj/hxj42gK9LjD46iN1nR67TojMWo1Rqs9hL8Q52kU5NFUHItZrra2ti+fQfKnGJKSic7ven0eox6HcpklI5tr9G59RWqqyqIxWPk2gupv/jD9A30093ZhmvCQ8TrobKkiCuvuR6LLYdQIDCrVqtVKynKsRPq62O4t4O8whIqS4sYHBxkoLMbaWKAdIGJAr1EdWVdprb4bMJ0+m8gFosRjUbR6XSo1epM7NHUd/ZkN+z5oHHcPurPf/7zdHV1UVtbu1BzEpwiFns1rkM50YVJ5hLEdixCd6F8eoc+IAuLSlHLcToP7kav1aKXYxSXlJKIxVHqdfjcDkxaJaDk/2fvv4PkSNPzXvSXmZWV5b3prupq79DwGAzGu10NuVyas5RopAgFKUq6iiApw1CQS1ERS1GWZhUnYk8EdeKKMkuJcSUd8mpJkZdGO7M73sKj0d6W6fLeZmZl5v0Dgx5gBjODGcwul1w8/wBVlVn5dVZmvt/3vO/7PLLiRNcGhIJBZIb02008DhnVEujVG+wuX8BjM4k6BGyDBrWuiqLINJtt5IAbr11gfGISURAJhWLUivvYBAfnr24Q9HkZGxtjOBxit9uRZZl4cpxnJo8yfOUtxnwJ9F4TVbTjcbvo1kX6kgd7NIlbkXF4bQj+EJm9bXypRXypceSgB380ytpOlszOG0xMTBB1OOl32u/kr6HVbjAzM03A58EU7WDo2N0BbE47LsmNWqth84dRQkkkTIrrb9Mc9Mh3hhw/fhK122a9PSD3X/8HMxNjSL4YSnCU8YUT1MtF9gpVXG4PdoeJOxBCVJyY/RaGoeNweTBMi1I+S3p9hVogyO7uLruVLsceeQb/O05vHreHmSk3gtpm7nPfQ8ghEHDb6cp+kqkplq9fxxGbYGniCLKscJDZo1fJsXb1PGqzTCQc/PBVbbvHsaNH2d/bpZbZYGhahCQBmx+e/v5nCETimLJAtZCnnM8hCiKGZeAV1DsGU0EQ0HWdtc2tD30u/Hm0Un434Z4C9cjICJ/73Oc4d+4cP/dzP8fp06c/kN548skn7+VQ9/Etxp2CXr/bZW1rlZ30N3ni3Jn35e/+PPGdIkzySYLup5XTsywLWZZZmBzj0pWrvHrlbbKVBtl8CVmWOXb0CIFwnIPsLook4bcNcczOcj1dQOv3aLcaBLxuwpEI5XKZbKsMlkDEJXFyNsGRI0dwOexcu3yR1ctXCQSDmJbAaGqCRHLs0Ea0UCxw4fU3kG0yzfwez33zBQKBAIsLCyzOzaKIBtVml/hUEkGyExlJIgqjZLc3OFi7iOEKIjh9OFxeWvktxh0xQqlpDFcEr8eD0+Egl97DLQw5vjDNm/UCly5fpS+HcLocWGqPTqeFJEAo4KNaa1Au5InG4zSaTXo4GBgtNENiqGropQx6pw6eEcSwk0o9zfk33iAUHWF+MslaLkexco2f+H/9LPXOFYbaAI/XRyQSRbc7EPvdG0pmQx0ME0mS0dU+rXqZjctvINpkDFcEmz9Cq15ie2uT/kBlfnYaWRKpFg/w2wyWTpzjYHuF/nDI9JEjXDr/Jpu5GvZgDFPtIYl9XN4QIZ+HmE8h6Zd58vGHDnvVb8Wtk7Z6rczc/CJDY0in1aRWLbGUWOKJc2fY2Njg//na/2Kn1GZggEOC6ZiXH/vhH7rnWopvdyvldxPuKVA//fTThzmTX/mVX/nQH+SD+qvv488fdwp69WrlHSedLgcHB6RzeZ5++AGWFhe+I2bH3yktIZ8k6H4aOb33+iHv7qbpaQaRxDj+0RnKlQrXtjJIV68SCfoYnZji6OlzODwe9tP/kwsv/RlOpwN/MEyp0cbQNKI+BWvQJRUL8vC5B3G+YxPqD/iZGw2xcPw0hWqDeGocl8dLp9thbW2DiyvrdJo9/B4XjWYbX3ySBl5Ka3lUm5ewz0Uhs48SiKModvpqn2hslOjoKKXMDrqq0qtUsIXCuMw+ydQYtXqTicWT6N0642NJGnaDiUSUarPL1LFzDK68BYqTdn9IdnsLm2RjYnoW1Rlg6DapazkOzr9Jz5RwTJxECkSxOyNYCFjNIt16Ecf4CJLDgy2YxOhV6A1Nru3kULsWtWaVt157mUGvR77aYGxmEa/LQbWnYrMr2EyVVimHYrch2mS2Lr3K1oXXcETHOfP45zAEgWA0Tm5nDaNZJK910Mr7TE2kiPo8TE4dw25XEC0TUxCpVIpcXd3AnlzCG0thtzvodFpUKiX6pSyjZ45SarZotVofeD3ftqrNrB+uahdH/SwtzFOpVPjDb76KEZnj3AOzON0e+t0Oxf0t/vCbrxIKhW5T//okk+G/yD7v38m4p0D9y7/8y/dnS38J8N6gV69WuLa8zEByEU7N40suUM1uslHqUmt/Z2hdfxr08d3k4z9qm08SdO81p3f7KmeBir6DERJplMvUyy2On3qQhQcepVGvsX75TfxqibNzKbROmUajSNRucGXjDaruOK1IAsVhx2Fq2GWRqGJybCJOPbNB8ZYHfeLxB2mKHkTJRrl0gEGC3f0c67kyuuQiMT1CcXuVod2HKzHHaGqSYm6f6+kSj5w6iiFIrK+tEg9HqKtdqpUiomjHPzpB3xAYqn1iI0niPgdun59ytYHbG6DaroFp4PO4abU79EUHJx94kH69gCKZ6KJGbHKBnmZQHxjMzU5gOQOcjcV4/c++Rq9SQxwaiPoQJeRGssn0hiqCK4jZbyG6fZiijYGqEgvGkRQnOjLt4hbPf/MFhpaIgciVq9cI+Ty4PH5UQWYkGmHMbVIsZ3nuv/3ftIsZLLuLaChObneDeCzG/NISHrebnd09wi4boYCXo4sLxEcTAOxsrpKM+GkNDDZWVxgIdsYnZtB0nYNikb6q0+4NKRTqdJ9/iajbBqbJ/HT2A9NRH7SqNU2T//xffofy0M3Jsw/jdt+4b4LBECOJFFfeeIGvf/MlFhYWDlXAvlMmw/dxj4H6V37lVz6lYdzHnyduDXqWZbG3u8NAch0W6himiWR3kJyYplYufGJK+dMsVLtX+vhu8vF3s80nDbqfNKf33lVOt9ul0VURFBfesTmsXotGtUB0NEE4EuXUw0+x8fY3sdkknnrkIQ4ODlhbucaJpz6P4glRazSoFQ9o9Ho4GOKKhqi3Wnz+oQfx+/2Hv9NN8Y42BnSaXEtnaJp2Oq02HsVOp5JHH3SYfPCvgCDSaVSJJSdppntUuhrB2CjNQhrNsnC4osg2g2K+QGV/A29khOnJSXQLoqEAHk8ASUzTbTeQRIFWq07EKdLTLULxGPVahaGu0cylKdTb2AKjCE4/AibVSgmfw0Z8LEH1+AOo65v06nlE0YZflsEm0TaGiE4vRr+N2a0hiyA63XhDUUTZTm7lLZqlIr6xJwgmp/G7HKD3OdjbppC5fCOv7DuF7LFT2S5hG/ZwRFMInii6ZGc4NDD7bayhymgiQbPRoJpP43IqyIpCr9M5vDbOPnCaty5cJJsv4veHaDfr1DoDdMGGZHfR6ddwhpN0+3Wcaht7YIRM2/zQGoz3rmrL5TLPv/AiL1/ZJHDkETb30nicCiPxKB63B1EUmJg7xt6VF8hkMoeqYHczGVZ1g3K5fJ/q/hbjvjrJfdwW9EzLpNbqEE7NH95w2kBFlkRk2f6JZ9GfdqHavdDHd5N3Az5Wbu6TBN1PktN77ypnONTp9AcMDDu+UBA8HlrZTfqdNi6vD4fThccXIl9pArCfydIWvZx+5EmGWp/Va1dQZo8SiCYY9LrY1RY79SZvXV7me55+/PA3jkQiHJ+fRlhdo1VoUt9ZoWtI9Mt1grNLmMaAQHwMTySBoWv0qzm8oohugsvlRkRmJB4l5nVwbXuXdlUm4najjAWRgiF84RGKuT3ARJBsuJ0K2+vXCAU8BMIJEvEYG+kC2lDj2tXL2N1ejixO07t4ibbkwMJGMb9HxG3HF5ogXyjQ7GuEYmOY2ibt0i4VScYZHUcSwCYK6L0mjmgcwbKQ3X4kpxu936O6cQHRE0WOTmFKDurtLgsL86Rmj3LppT9m3N7iJ37kB/nt//F7xOdP8vDRB1jZSdNUTSxLwG2z0MUh+cwec8fOML+wwKX8Nr38NrlND0Gv57ZrY3piHJf9Cs3hgL2NVZSRadxuJ/s7G2j9PsnxSeo7DWTFSafX49QDD7K7tXZXE+ab1/petYfoDpKYPoJlQaPdoJ/OMTWexOP24A0E2B2adDqdw30/ajJcyGbY2dpgqKvIdseH3tN/0bpJvtPwqQTqbrfLH/zBH3D58mWazSY+n49Tp07xhS98Abfb/dFfcB9/rrg16AVDEYamheK4MYu2LKjVSsS8TjweN4ZhfmyVoW9FdfYnXcneTd7t+to6Anys3NwnLaT5uDm9965ybDYZ0TJpt1sovhCiKDI0LIbDG7+POujhdDowBIudnR1WdzLYXD7sDjvZnVUET5Dx8TkEQcDhctMuqnjdUVqmnZX1DZ4Ih9nZ2eH66jq1rook23G63IyPREnMLPDW9V08Y/PUWl167RZDdYDN4cQ0LfqdFrIo4PL6aRXTRD0ennz8IeZnC2zt7qGZEv2wh71MBntP4smzJ+irOsX0OvXcLpT2CQaPMpMaxe3xMdzc5fJbr2FqKscfeQKbTSYe3ccc2MDppl+1kc2XKNSaSJKMJUhE41FiYR/Z7U2arQMEQccmKTitAZbaRCvvY1Nc+KeP0jjYY/ft5xlqGqGxeQaWDdEQ0TWTTDpDKBRgem4RsbLJa2++RVf0cuLBJxEkGwGfF1GDPjbMQY+h0aHZ6dFrtxnqGna7yIOLs3z/Zx/H4XDcdm0kEgmOzU+zV26zd+EajVoNS7LRHWg43F7SK29DLcPJpz5Dvd2l22nf1YT51mt97shxrqztMui08IWj2JU41UqRQrHM7LSHdqOBwybi8XgO9/+wyXCtUubV117G6w2QWjyNw+X+wHv6L1o3yXci7jlQ//7v/z5/9+/+Xer1+m163zcfQL/1W7/FX/2rf/VeD3Mf30LcGvSy6V0MTaXX6yBJdmq1Ek5LZXJ8DhA+tsrQt7I6+5OsZO8m77a7ch5EkdTimW9bbu5uVxx3Ejlp1yuksw1amoTIEKt2wGB6Cm/ghqGCOOxTyNd5pdNhZSfLQAkxuHyJXrtJdOb4Lb24DlRVQ1JkRscm2NhdYXP9q1zaSKMpfkaTKUYiToKpeXYqPfqDIfGgh0KrgeIKoA269GoFXOFRRAEatRJJnwu3y8l2dodAyM6bV1bRDQvZ5SekiEyOp7A/eY5cvkCx3sEmGDh9AmceO85I7BkGmk6xXqBcyaGXdugVy5x5+gfxBcNYloUi26jtZ7GcXeyiQK3Tw2aIyHaR1s4a0ZEEi8dPMTk1xdb2Lja9R083yGWLOD0KstmhXinRGDRR2zW0ZhVPNMn40lkkWabTbjHUdDq9PgGHyNGlBVZf3iKTL+HxxXE4XYiShNfloKcPsJtD+qJEr2swVGusXL3E/v4uXr2GeWye9a1tlhbmb/tt/X4/cxMJNFuD2akWuYMc7YGELDhwKjZ0VcSTmKSvDRGHA3Rdwx8IfeSE+dZr3el2Mxrykt1ZwxMMI4oiXm+ATqNEt9tjf3OZ+XiAVCp127V+p8lwv9vl9Ve+iWBTeOTxJ3C/o5Z2p3v6Vr3z72Rv9+903FOgfv311/mxH/sxJEni7/29v8fTTz/NyMgIxWKRF154ga9+9av89b/+13nxxRd55JFHPq0x38e3ADeD3vW1dQo762xeeI3ExBQxn4vJ8RviCJ9EZehbXZDycVeyd5N366kagih+rEK1e1k1fJx97+T17IwkCDU1OoMesqkjCjb29tPUK0UcZp98sUgk6GX86Fkaoodye0i2UGHQaxGchpu6gpo2oN9rExofp9fr8b9feo2+qiHHZhmNz9IVRDL1AcGBRio1zt5BkUjAS7faIVdoYooKerdELbeLKJgkIiEmUgtcfvUbDKoHeE98D+GJI7cxH+pelscfPM3MzAyNRoNyuUy73cbr9RKNRvH7/bRaLTRNYy4R5r///76B2m/T77ZRHC4EWaF7sM1QsBOeOwOKQCAaR+/WEewOKul1WtEgJx58lMFAo3yQJu60EFwGhjeMO7lAtF6gVq9i9O1EZ0+gd1soEnhDIWyihGGXiPmdeNwy/W4HWbCwKy5Ep+MGY+H23lABU3O0BiaCDTKlLP3CLrVwhLhX4bHPfJ7o6BjpVoPaW5c4vjCNz+c7vF6XFubJHLxMvZQjOH6U6dEx9tMZTEskGo6QSKUo7a7RLO8wePAB7HL3IyfMt17rgiCwdOwY2ee+wcobKuMLJ3F4fDTqVa4Udonaujz7zA++z07yTpNhfdBDNjUee/QpAoHgbdvfek83Go3viBbKvwy4p0D9r//1v0ZRFF5//XWOHTt222c/9mM/xs/8zM/wyCOP8G/+zb859Iq+j+9cRKNRnopEGBsd4ZW3L6HbJaYmJ3C43B+oiPRR0DQNVTfQhzq1avnQG/nm/p+GYL8gCIeWhJqm0Ww273pF+l4Mej1cih3Euy9Ue28V9tC06LabbBRL1JqXePzcB68aPm5a4L1ez0NPlOnZI8h2hbdee4Vmu87Y2BS1QgbZaaE7XAiWwZGlE7g8HiJ+L91hl2jAy2rxgINslpm5eXRVJ729QUiB0ViU5198hfoAQtFxwjNLyIqLrq4yNHTom4QUC5/LQTa3x0RilGZlh61smU6zjtkuE4+GCYRPUt9fRajts3j8DBMz81iCgCSJ73tYH7Es3njrPJdWN6m2B1iWScTj4NTSHI8+/BCxWAy73c6xzT3axoBGZoNOr0+zmGMsHKDSHaDW8/S6XTRhgNPpZGzxLI29q9jVJnoth9QuUNm4QMDtIOQP0Ou20XfeQESksbOL7ggQ8szQaZXIXnuN6OI5fB4PvtERzEGXXl9lr7jHQtxPamqSQnNwKNfpcXuYGk9SKJYp1xoMyhk89JmL+/FHRyjWO1Sb6yiiRaGQ5+rydaZn51Fk6XBS9tDp43zj5ddp9RroHQ+KNcAQZUKBMNXcHvmDA2i3uHj5CsKwz4PzqQ+dMN+81gvZDKVyiVqrQzQWZ297nevZDWyKG9QmDy5M8APPPsvi4uIdv+e9k+Fms8kbDifxkcQdt795T1cqlftV458S7nlF/eM//uPvC9I3cezYMX7sx36M3//937+Xw9zHtxGCIDA7O4vf739nFr1+TypDrVaLna0NNg5qSHYFmygQ8nmYnJomGI58KoL9n3RF+kFFaFOpEQS4q0K1W6n9cGyUrb196u0+umFiEwUy2SKSNeQHv//7PhX5Ubjd69kSJXauvo6IyaPH50CS0EyR/kCltreCXsgQnz3OZjrHbvYAOwbKsEfA4yHmtnOwuYxsDTG1HiHZ4MmHzpLLF9jc3UcxNYqlEkNvGZss4XIoqJKEbqnU8jU8Xg+FXI7czhaKx8/JqTiSEMMSjzPUdWS1xWTCQ8mKM5Q9nF/eQJZEgl4nk+Mp/P4AI6MpNq+9wcr6NpvlLo7oDLNHx7EwKGb2eOHKFvVOj+//K88QiUSYm0qRbhksjSSpVSuo+hBvZJS54Ahby5dh0EK2STidbnxeNyHXKUa8kIyFKOUyTM4d4bFHH2E0kcQY6myvXefa+TcRPSF0JcjQHUYzTErb1xl0OowvncLrmaNRLVIt73A85uAHvu+vUa7Vqas1lG73UK7T5XCRiIXJby8TFrvMnjhLeOII4ZEEisNFrVrmytXLDNo9xiM+IhPzyDb5cFK2MDnG2bMPUNJs9LEzGl1ge2eLlQuvYykeIqOTKCMJuoIDUe/T6PbfZ4Ty3mtdEYa88NrLBMYWCKfmic+dYuHc01w//xp7y28xORpl9uhJ9ot1Bq++9oEM0K21FHa7HcW2/ZETWeC+q9anhHsK1L1ej1gs9qHbxGIxer3evRzmPv4ccLc6vx+GcrnMtfUdDEcAwxUkNb2ApvYoFw9oLy9z7OhR6rXyPQn2f+IV6YcUoR1dvFH1fTeFao1Gg2KtjdMf5/yVZXqmTCgaJxzwow00OrrJyxeWWVqcv01m17Is0uk0GzsZolNL7/u7PmrF4fP5iIyM0hec1Ns9TEFE9ngJ+VxEQiHUfpfn0ms44lNMnHwEl8uDOuhRLR5Ar09EMREmE7TffgOhauf44iLHjh+jVq3y9T/73xT3dgimZjAMi16nQWB0gq5hMKgWUTsNvD4/o5MJRiamcfgjuF1OrFaFSDhIWzVRdZ1Sdo9L19eRg0mOhBPIdhnDMCn1OrTXNjm+OIfb7WE3k2MgKPgnlkiOTXLz0nIfOUFOcbB1sMf1tXWeejxy+NuViwd4fEEcip1ivY4se/D5/IiAKkiIDjemzYHihl6/yptvvUWmoTESjZItNWh2+0ymUjjdPuyJeaL9Hg3VomuTOfLwZ5mYW2L37W+Qv/wi5bW3ENQ256bj/J2/8TMsLS1RLpeptS4BNwr2avvr9PsDOq0aI2IHRzJJcHyB5PS7+ehGp48nOYez06ReWMMwhgSCocNJ2c5+mnDATzw4ys7uHhvrl9jf2KKlWTi9Bp2ChuSyM744xpH5s1RL+Y+kjgVBRLApINvpD1Q0XafVaNI2ROTYDGPzE0wfP4fa79913vhuOy4ikQj2DwzoFpVyiX6vQ7/fv+tnyncr7ilQT05O8vWvf51/82/+zQdu8/zzzzM5OXkvh7mPPyfcrc7vnXC4WhSdPPL4Eyyvb1EoZAmFYoxMzLK/vszrr3yTM4vTLC28v2jrbnAvK9K7KUK7m200TaNSb7C9cUChZ+ENx+nkS3gaTUbiUSanF7ic3WJ5de1QgvUmA7Cxl+PS+i4jfZHIQe6QZbiJD1txtFot9vbSyGNLJGZPYHcoaAOVUq1EK5NDbZRQgiPERlNIkh1RknC6vSQm59lZ7YGlcuLIInHFJDUaxZKdpNcuc31ljXazRmzxQcbPPEEtu0ujXsMoZImlpqnpJq1On7GJadr1CpIgsnj8LEOtx1sv71JTBU499BiKw0XftLNc7SKm99FdF/GE4kiigM/poKH2EVbWGI0EqLe6+EbjhMMx+v0uw+EQm82G0+kmPJKg2K6wmylwqtm87bcrVDLo1Qzl3TRuXSeYmGZkapFSKY9qWhRLFWxqnWIji6oZxCbmcPrD7JdbNLYavHH+Cm67yPTxc1w5/waG3UvE72HYaxEcHcf+9P/B3hv/m1a1TEge8tCjj1Gp38ij3zaOaotGq43gkPElxwgH/Hzt+dfw+MOH112/36fTV/EFYqiSRCltoKnq4X02Mpqiur+KVxHZO8hgDHW8kVEmZB/B1ByCBenN6/hoszA9SSAQRJZsH0odN5tNBqbIsaNLXLp6nUK1if5OQaji8nD67DkEvU2/18Xr89913vhuOy4CgcAdA3qz2WB3P83a6ipe+rxx2cte5oNFXO7jHgP1j//4j/Mv/sW/4Cd/8if51V/9VRKJd3MW+XyeX/qlX+LChQt86UtfuueB3se3H/fSVnVrEZnb6+X44hx76Qz1UhrdMJEFE9HUOLEw84lvznspVLubIrS72abVarG6vkHe9DG2+ABunx9d0w77VEfDfsKhMPX2gGazia7rh+c0OrVE0nBh90Ypt2u0l5c5fuzYYbD+oLSAZVlk8wUUjxdZknA4HTccpFxOEs4JttaX2Vpe5bHHn8DhdlOulUg4J+i0mxTyeSqtHlvZLbZ39zmaCnLqxI3U1fmLlxibnKEuBjA9I6j9HqHEBKYg0aqVKe6sMpS9DFWNfiVDMhHGFh3B7lDI7qzijI5jfye/r2oDupqBHIgzEGzUqxUmjj9Kp9NiI71Hv1llFw2fqDFolhFCY6TT+3T6AwzTuhHQXU5isRiCJNNTNVRVpdFoYFkWJ44ucQI4OpPi1/+v/5tyr08kNoKiOMEyyOxuIg96FNPbyN0i43NLCJJEtlxDtDuRvFEq+X3SuRxWMM9AN/D7FSRJRDJUaukNCrkDGq0mybEkp44tMTJ3gkyrftu1f/P6ODg4YC+doa2abGRLlKp1BqvLHLc/gNfnp9Nu0W63sXsCNzoqROh1O7RbTTxeHw6XC92wmEiNcXH56xQML8npRTrGAYriotNtMT45hdPss7+3RzAc/UjqWNM0dtMZdkst6hrIbj+yZaCqQ9yhGPVWB6feRte1u7pn3nv/3M1E9r0BXdU1Ll65RrHaIOr3ceaBp3E6XPerwD8C9+ye9Wd/9mf81//6X/kf/+N/MDs7Szwep1gssrW1haZpnDt3jl/8xV/8tMZ7H98m3Gtb1Xurq/3+ACeP+2m3OzQbNYzhkEZ+iPcOOa6PGtetRS3q0PjEObC76WH+sG1uBkyb4kToGrg9XkRRQHEo2JU4lXKBzbXrnJoexWYXUFWVtc2tW84pFMoVSv0eicl5DvY22NvdIRAKA3xghX2z2aRU73Dq9Dm2b7E0VBwu1EGPfqOK2uuQSIwiSTYK65usXK3SU4dYDi+uSIpGuYDicZJpGfzWf/sa8UiYg1KVYHISSRSwuxyoQw1VhUAkhmDoFDcv0+n2cAk6c2enOX7sOFvZIs1qhVanT3h0hlY1j67r9Htdcpl9BHeQI2ceJbP8Jnsr5xk6goi+KIJm0syuMDYZp9dVuHLlKqPzp0hMTBP0+tG1AY16lcb6Oq5hk7CocOHSZTqadRuzkxyJc+bkSZb38mSuvoYzEEFxOJgciaB2m9i7PkKTcdrdHqV6i0ByDncwjE1WkBxeNioVri2vYKot/LEEarvOQB1QLpRQseELx0gunqCjawxUlem5Ra5fuchrb7zFk48/SiAQQNd11veydAUXIxMpfEmdnXKHbFPltVdfIhoKoVkSB/kCe3v7mJ0KXkFleW0TTzZP0OvG43KhdVoYhkF8JIFbdNOoF2lX8wiSjVDAx0h8DAmLWmaDTruFKIgfWt/RbDa5fHWZQXiO2eMPYHc4aTVqVAeraJpGrd7ENShjs8l3fc/cirud7B4yD/urXFvboKlaLM3PMzk9czgpvV8F/uG4p0DtdDp58cUX+fVf/3W++tWvsrKywsrKCgDT09P85E/+JF/84hdRFOUjvuk+vtNwr21Vd6qurler7xh9dOh2+6j1PBeil3nwgTN3NYt+b9GYPuiRzuVwhRP4AiGGQx2bTcbjcfNJer4/Lg4D5pkHKX3jBfI7K0TGpm5YSKp9tEYNvVnF611AMXsMBoP3ndPJ8RTttU3yB2lc3hCV8j6l/AGdTvMDK+xvToImx1K4PJ4b5/QdS0ObKJAMuqh6XWxsbSEpHprNDhsb66h2H+NTs6D1cQlD3B4fzugYaruJbvWwB0fpik704RCb3sWheDF0nYFqYne4EbEIu0SW5pZ47Kln8Pn9VJstdvIH9Pp9RLVPt9UgvbdLrdEiX6kRlNyo2gCv34/WKNG2mrjcPoR+G3HQYHrqIYq5DLX2AKPSRHRVcbXahMJhwiNJNi/sUSuuEFqcpWY6GRlP3VZVv5s+QHF5+cJffYyNtRXKjTbQx+N0obh9eFxHsdQB6fOvYcQj+OIJROFGoZPscmMJAr1uG4dsJzo+jyBYrKxcQ7MEwuEgyfgcodFJSnurXL6+RvYgT7uncjWzQa3dZyo1QqvZoit5Dye0lmUxMzGOnq2ykcnT3E8zNr2Aw+mm3a9hWjJ+RSQ6eQR10OPVt1+nnNtjbnwU0zTJFMs8/MznUBQFr0uhoYtMTk0iCAKmYTA0LXRNpV6r3FbUeGvA9Pl8bGztYNh9BGNJFJf7Buvi8RFMTNBv1uiVdnG6pduurY97z9zNZPdmQE+n07SaTaJTS8RGE7dd1/erwD8c9yx4Yrfb+dKXvsSXvvQl2u02rVYLn8/3sVdK9/GdhXs1vXhvwUmjVj00+giNzTOslYnFwtRMJ6/cBeX1QTac1zZ3+d3/+TVmjpxAcTgPq4onUmNUiweE3lnJNhqNT1228OY5mj56hBOFAmv7B7SyOqYJkigQdjkQkil63TaTyQAOh+N9rWo+n/8wLVBtlimktxl1msxPp95XYX/zYdxsNtEHPfrdLsFwhEAoTKfdQtc1ZNlOo1HnjRef4+rKOrGxaXpDEc3uA7uHWrXMiNdONHQjSCfHJhn02uTXL2ETRWLJcSrlCtqgTyIWo9NTkQcqDnOIf2YMn2Ij4Pfg8foAgaDfR/XCJbb3cljZIpbep9WfQHG5CMST+EZSNLsazVKRcGKS6dQMCAKlXBrB6WRraxtV9jKaCNFo16jVPHSdHlrNOgo6Rq+BOejjiqQIxxPvq6pvFCrQrjB36mEeeeKZG+dBU1FVFX04pHJ1hVarjuzy43EqNHM7uMMjSIqDcmYHJAm/XUMzNIoHaVyBMHZ3EMvMYbXLhE+dZtDvEI+EyTaaVDoqJ04+gDXU8YxMspYvcv3ieU4/8gSdduuw9XByaoprK6s4nQ687hAzY3HE4YBmvYIz6MfrD3L9wuuUSiXqgyGm5KNtKZS7Ovv5EsPX3+Ts6VMcPbLA8voWB7k0oVAMw9AwNJVsepeY28bSwmkqlcr7uh5cMmzsZklOzjCUTCr5LL5gGLvdgSyYVPo9bJqKa2TkhmUnd+/c9kkgCAJOpxOnx0ckPnLH+/B+FfgH41PV+vZ6vfcD9F9A3EkV615NL24tONneWKFSKtMTHETiKer1Mm5hyJHFRXw+/0dSXh9Ew+u6hssfop2tkMkXeeChRxGQSOfTXL38vwgIKtPTU9RevfCpyha+N2AOej2OnzyNJdpoqBb+UASXx4eq6uTWL+ITXSwtzNNsNj+wVe3k8WMUCwViUo/veeIhxsfHbzsXt7IJ6tAgncuxdVDixOmzeLw+ZNlOMBShXi3zx3/wNTqaST+zR77WIxQfRVJc2H1BctsrNIc1Tp06SzgcRxBAcbiwKU5ckkm9lGdmdoG1a5eQDJ2JRBxREjnYXkc0HKQiXmw2ietXLmBTnGSKFXzRJO5sjlI5i298CUN2YWgqiVgEVTApFvMMuhqN3T0KbZ1WrYI1aDKs7lNt93D6InjjIzR2NqnvNDERMAd9RgIOHnrwDDmbSiAcYXl9i76gEIqNHxbPdTSD3e11rlx8g0efepahrrO/t0et1UE3TLbXVxh2KtgcIUanZug263QPthj0e5R3NxkZHSM2Osb25ddobV/iwJRx+0N4ZZDsDprVMl6HDSQZJRDHbqkMBj3ssoRpmRQOCizv56kZb3Jkvnr4e8qKk1Asgb2vkd5eY7dfo9HusZhK4PCGqNUbnH/5ddzJOaZPPEowHKR1sM/GQY1CsUy2NqDe6XP66ALjozHqzRa14j4H+7tE7RoLI1McXVwA7qxJv756le1MHn9qHl9slEajQaucxTAtFF0jKJt0bBKyJCGK0ifWSfg4+LR82L8bcd+U47scH9SDfGR+7p49k2/mp948f4FLu1s4RqbplDPEvM5DtTPgIymvO9HwN12+5GCCxz47x97185S3r2Oz22HQo1IsoIxEmDj2EE73B+sQ38v5uhkwt/NlHnn8GU4cP/4OtV+h1ihRK+WZizh59qnHAD6yVa3TqjM/mbxjkH7vw3ho9/JnX3+Oy8u/w+zsPOFoDNQue/u71PsG48ceQrW56NSKbF97i0qpgOILY5ftdEyDa1cvk1o4htPlRB30kCWRqZlpdvfS9DomLqcdaVCnul+jXCzQK6dJxSP0hx6q+QPKFy5TbvUYKn5SyVFOzaVY297HHfXji8bpdrtU9tao1BtgDnGFRznY2aCjCyguNzZZwRkZwx6bIL15jaAcJHHsISYTcdR+l0a1jDRoEA2HqBZy5ItlOjhJpGI4XU4AnC4nkzOLFLaWqWS2uPS2m0qthekK4gmPM+y3mTtylNJBhrWVZZRchtlTD9Nt1ilmtvH7fIQmFqhUq3iCEZKRANlCgXDIhyJLVPJp3IJOYjRFrlwnFIjQLO5TyWdQ1AbfeH6Lcl/A8o5StTwU+gKdYY92d5mJ8TEMRCzZgYgJloFhGHi9PpITKdRWFVckwfGzjxIfG6fTalBtNImOThCRPbQPdqg2u2wfVIl0usymEkiGSmI2dqjkBvDSq6/dsY5kduEoaxs7dBo1HIEoM/MLDPq9w4r6brvF+efT2LUmlf0NFFn6RDoJHwefhg/7dys+VqCenp5GEASee+45pqammJ6evqv9BEFge3v7Ew3wPr51+NCq7vOXWZxKUWtlPpFn8k1Eo1EePHOaXK1Dcu44iuI4zCHfxN1Ur76Xhu+0W4cuX3anG70/z9JUApfLyfrmNtYDT+C2BlhYSJKE2+tlyr3I8uW3efWNN3nq8ccIBAIfa+Vwp/PliiR59bXXee7rf8pjjz7B8VNnqJaK5LJ7zIXG+Z6nHycajd54oH6CVrX3swmQyx2wlysRGl/ALBVoNJs4A1F2NnbQ+11iqSls3hAOp4dybp+h5MQWSCAFEwSmluhUshzUc7z92is89NgTtOpVoj4PY+NTmJbFKy+/THZnGy0WxdJU1G6DxRNnOXrqAbYzB9icowSDTdpr15g8cgrZ7UbWOkRiXVr1PNfXr9Gq12g1amCz44+Oorca6MYQSZJxutwYgwaCTcbpD+IIjNDt9QABfziKIMSIJCbYvvo2ly5doN+oUlIlHJExyu01fB4nE2NjeDweNLVHMjlGRNYpbS+THyiEkwq6VGXE52LyyKOYpsl//e0umeXXEUSJQCiM22Zh6AMKuQyKJLB45CjjE5N0L13C6faRiEZxqDU8TjsCFpo+hF6bVjGDz2cnXSrQdyeYefAMnlyGg1KFLg4kUQS1j7q+QS5fp6NZTMwuMXXkJCvrm9T6Bs0rF6nVqihePzabjUG3SymXw7K7iSXGYWSUgqlidBvYtDb72xkG+S2efvgBlhZv1HN8VB++1+dneiLF2s4+Vq9BPicQCsVwe7yo/QHZ7TVOTY/w41/4/tvsTL+VRVz36sP+3YyPFahN07ztJL739QfhVrOO+/jOwN1UdZeqNR47e4rVjc2PZd/4XiiKQtDrwWFXcN/iznMTH0V53Yky03UN3TAxhkOqhQMMtY8/EEIQBFRTYjSRpJZZO2w9qVcr7O3ukC9VuV4+oN7VmB6L3zUV/kHnK5FM8eyzHl5/5WWuv/0S/foNWchjqfDhd98URfkkrWq3sgmtVpO9dIY3L14lW+thd7oQTIFBt0PSGDA+t4CFRDm7g64E6ZZL5PNFlNQxfP4IzfwOmtpDCY4wME32Dko433iZhZkJJqeO02o1SReqWA4/jzz8MEdPnuH6lQvsVroYDj/rG9sY7hDTc5O0Wg0yBwVEUWB6bonzrzzH8so6yugCA8GBPDKDEkjh9EextB7dehlz0EbWOmg9Gw5fGLWSpVku459YpJlZo1M+oN0YxeML0G02GLSqtAtp/B4XxWKZaGiKdnfIQa1ELl/ixNI8w24Tj1Mmnc3RaffwpsaRBAGXLDCRGjtkbX7kR36EP/2D38PsZum2D8hXW9TLZaRmi9RYknjsKMFwlMlUit1CFdQuZ08ew+11kz/YobGfQdeHTIRceFwOMjYPE0uncLjc+IMR6uUCgjmko9kQJJFCOkuz1cft9zMxdwSP10soFKSumlR3S2ytXMMVnyR3cIBAjmI+S2p6EcWhYBo2RJvC2NQ0D548xlDX6BT2OHHsKMFg8K768AVBYHbxCOmdDVzo2KwezcIu3V6fbr3MiDLkr33+e5mbm7ure/jD7ouP4xj3SS1hv9vxsQL13t7eh76+j784uNuq7pN2O08+9ug9ecneK+V1p/27nTa53a13VKY6hBSBrXU3oXAY3TCxMLCJArJsp16tHBayRWaOIbn9+EZTZNqdOxok3Olv+7DzFQgEefKpp8msXeLhE/OHZhKHft4f0KrW6XQZDnUEQaS858Dn873vuDf3HWgql5ZXOah1OeiBO3UEt9tDv12nWStRbHRQhxZLJ05Sye9Tye9TqzUYKi7cgSiGaAebk36jciMvaQzodxpUD3qMPvwAvkCAt8+fJ50tkIoGOHH8OL1+j71CFSGQ4vpeiV6jxOKpB7FXSljGEKfHR7XeIJDPks8X6QsOxH4PX2oey+GjtbOB6A7iCo8wNExsosVoIolnbJF64YDa9hWGoo3phVN4ZQuhW6WV2aAnK7SaFRx6C2ckTtDnIbOVod+qE07N4pVE8nvbvPTC8xxPRejbFRoDA18kydyJBxnqQ2q1EsvrWxxfvJFiiY8mmZ2epFEtU1JtuAMSR8em0QZdLNFGemcLl8tNIODDWr9OqV7gyVNfYHpugWSpQL9Zpdfvce6Rx3jzrbcQbDKWBZZpMbQMZibHcdhtVBstsoUczYM9zpw4hiMQpd3tICsuYtEwhWvXyGQyaIZFcmQMnH563RaqZjBQVXqdLqJg0e+1iMyMMpJIYBgme40Suq7fxup8VB++0+Hi6NwUiWiAtmrS6HSJeS2SUzOcPXP6I1UlPwqf1Ijmk1rCfjfjfo76uxQfp6r743omvxf3Snm9d3+H4mJrew/N5qKrCSQm5xmLhSl3mpQ3ttBMkaKqMRbw4PZ4uXLxPAPJRXJqnkF/gCLL+AIhXB4vr7/y8h0NEm7Si7f1bOsf1rPtRrbf8Bl+77m6cxGNcOj92223UWzSHRkFu91Ov9fhree+QVW30+yr1PomSZuMpCh4bCHaDheyJNE1oFytE4vF6WxtUCwWsIXHMUQnoigie/y43SlMrYfD7OJwSyT9FlqjwPW3K2Q2tpmZmmVh6Riizca1lXVqqsXkyDg2j5/r5yts7u6ztbtHOBig3elRz+2g9jv0kYlNH6We3WLY6aK1BwwNk/5ARW2VMdUegbE5LEsn4HbiGI2jRyLYJAuzXUFxuIjGwozHw3TadaJeG5oapnKQxpuY5ZQ3TrpQopcHwwKXNaQ76NNothAUD6mROLogow36CIDH5aZc7rC7n+bUCT/9bpdBt8PU0TOciY5wfnmdxNQihmGwv7fD/tY63W/+IQtLxzkzl6SY7qM1Cuxf72C3iTx1ao693AFvvf4ym/sFBsh0r1/DJkvEgn6mjizgdnkY7bRZ6dVwqUGe+uz3IkrSu+zJ0MTq1IjGYsiDGlqjTKfbQzMFBJudYq1J7/JFPNKQUafIkcVFbm0zlGWZq9dXPlYf/txUiicefeTQgezTCor36jF/r8+U7zbcU6D+zGc+w9/6W3+Ln/iJn/jAbf7bf/tv/NZv/Rbf+MY37uVQ9/Ep49tdgXmvlNetNpwvvvYSZc1OaixJvdHAI4u4PX4C4Sj769c42LhIIBxm4tT30e20D3PZIFCrFvHYoFIps7mXYeiOYIm22wwSqm9dJBkJkC+VqbcH2BQnQ10lvb+PMzhCcmLyY52ve2EUNE1jf3eHzVyPydOP0yvX8IgaXXWIXmsg9apE4iNYskJYkcil08yP+jl76gRXVrfRBn0MvY8+1JExkSURZ8CPzfLQb+ZYmJnne556hE6nA6bJ0rnHsdkkrlxbRpPdRMJRREwEC7q9Hu4RLw5vAMFlJ+YJUNxfZ+3aJdzxKVzeMJbsQut1wBgiqR2MhgmyDZviRLLJDDpthkONYb9NJBIl4POyn15DVhSiUhKb4WJ6JITf6+EbL7yIKImMTc9jDHUsaZXuENyBMHanl50VjWsrV0nEw/hd8+TT61y+ukx0fBq74sIY6lT3Nwn7fdSrRRBFpmcXsASRgM9Hv9el0WigWwLuUJxeYQtB7zMyPkHIIfLQiUXi8TiKoqBpGvVvvIhUV5HdPga9Ad1WHX8kjmXoWIaBIIAoSgiGRjISQLbJeHy+Q/ak2WwwHGrMuPxsC12K5RqmZMfm8lMfaDRqFUqtClGpx5M//EMEAsHbrg/LsthJ5/GMTNJpN0GQCPi8lGsZ8rn9D+zDF0XxMCh+XKr6TvhWeszfx51xT4H6hRde4Omnn/7QbdLpNC+++OJdf2e73eZf/st/yeXLl7l06RKVSoV/9s/+Gb/yK79yV/uXSiW++MUv8kd/9Ef0ej1OnjzJv/pX/4rPfvaz79v2ueee40tf+hJXrlzB5XLxAz/wA/zGb/zGPVNCfxHw7ajAfO9DIRKJ3BPlFY1GOWmzsZsrcWx06lDkZD+TvSXfaxEPupkYDVCvlVEUJ5puYJoCW+vXaZUPCIXCrGxn6OoWqcQouqZjmgZub4igGuX5P/1D8gc5gqMThMMR4hEnI/FxjGKTV197mb/idhOK3N7f/GHn61ZryutXLhCKxHB7/dhEgUI++4GMgmVZrG5s4okl8Ve26FaLWIaA1+Wk2+tQ7zZxGW2mT52lV8oQjcfY31ym51BZfOhRkiMxKr0BvewaksON7HIzHLQYotBtVNCrBUZDZxkfH6fZbBLczqD2+wwEgXq7T2JsClMb0Cgd0O4NsLt92F1efIEI/XYNwehyZOko6+ub1NLrqJoG1pBkIonT66NUKjDo99GGFrJggtql3yyTXb+KSzQwhkMq9Rb9YholEibqmWQmNUo4GGB3ewN50ES0e9AGA+yKg9mFRQrZfVrtKvn9TYobl+n3ekwsPkMwNkqh1qLVrjBsDpg5MottqLN3Lcfv/8/fZWk8dsPEw+VCkiRkweDy8jU80RS+6BiBkSl2Bh1W9wu8cf4i86k4Pr+fdO6AqfEUe+ksla5BJBzmoFSjL4mYvRpm105HDnOQyzImCmxcvcCYV+T4wlGKhSxu7417y+PxUK1WyB3kqTbWKO3uokkO+uUNJHcQh8OBa9DGgYpvZJKNdJ6JiTT9Xge31ScWTvHyq69zcXUTR75Fs9kAC4LREWS7jNpIM3C6aGRv9OHPTY0xNjqNZVmHGgJ36rf+JC2L32qP+ft4P77l1He320WW5Y/e8B1Uq1X+/b//95w8eZIvfOEL/If/8B/uel9VVfnsZz9Lo9HgK1/5CrFYjN/8zd/kc5/7HM899xxPPfXU4bYvvvgi3/d938f3f//38wd/8AeUSiV+8Rd/kc9+9rOcP3/+L72a2re6AvOT5q8+CrquI9sdxEeTSNINVaVAIPC+fO8Di1OUa3V20nvU87v0VZXuQMUfG8MfjVM3HXhcfirVIlouS7fdRkDg2vIyFc2GEZ5l4dyTSKJFtXhAd2+fpaNLvHX+Iq+/8k2e+sznDtu+7vZ8iabGwdYmVy9fRBBEwl4Hp4/M8chDD97xnNx8IC4unaTZ1agP+pSKBZCdqJ02ks2BKzaKaYGhD2hVS0wG7Dw4P0anlMYtqLTUDnq3ipJcIjQyi6K4aOT3qeyv4umUGYm965DmkiF/kCYcG0U3TOwOBX8wTO7KJXYyeUamFlBEg0YpR7uSZSLoIhpPUqi10NsVfA4b3sgE2EUC0REMJGr1GnpmA8WpMGw2iBhNpO6QQqWK3dRYXJjngb/yFIpdodxo8saLX+fo3BQxn4uQR+bibg7VfgWn04nP42RkbIKEKPPCn/weiuJAdvkpVVvs7exginbmjj/A/vYaV77xR4iyk3azStXS6VXyjKQmEH3nWVxYQEBAkGSQZRAkms0qtVoNd3gUz6iCJ+ThoN5jN5Ol82cvkD8oMLR78YxM4otO4vPrWIZFr5qnVM3T3DFp7EcYDzr5a9//vUQiEV55j8b1tdV1MrkDdH2Ic/I0bm8Eud3AprZweQOIeh+zlSca8rG3tc7bZovve+YxYpEUa7sZKpoNR3iMNk6MSBhrMKCtqqTiKew+nUEtz2wyygPH5ml3e1xc2Tq89xRhSKPbR/KPfCKq+lbcqxjSfXx8fOxAnU6nb3vdaDTe9x6AYRhks1l+93d/92O5Z01MTFCv1xEEgUql8rEC9X/8j/+R5eVlXnvtNR555BEAnnnmGU6ePMkXv/hF3nzzzcNtf+EXfoH5+Xl+7/d+D5vtxmmYmpriscce4z/9p//ET//0T9/1cf+i4ltVgXmv+asPw93mexOJBEeOHOHE0QZBj4PX1jLEx+dJpqbodjuYloDL66PfKGG5PJRKJSrlMk1dwBUZQ0YEAZxuL8mpeXK7G9SqNR595GGuv/USmZXz6KaFaJmMRgOcO/vBMqiH58Pm59Hv+QJDY0in1aRWLTEUpDvuA+8+EEeiMSJBH8OuweSEQs+yMRMI0W53KBUO2L/2Jn5xgGV6eezMUX7sR3+EbDZLq1nn1YsrFDsGgtmidu0V+uoAQ+3jtNtQvCH+P7/3NTYyRZwuD4N+l0J+jVJ+hFK+Qnp3l1a7RSG7R6dwgOp1oQw7GJ02WvmAmhaj0+0i6iqizY7aqhKIJdE7VWoZE9OSaOW2EbUOsUQEpB7PPPaDpDMZRkMeHnv0Mcan5/D6brAQ7VaTrfXrOOlhCDaSi2coGJu0BAf+8Di1VoXi+TcZql3KhQL+8SV8fh/2QISGLtDpDSheOY+uaQwtGRmZkcUHmJqcoLJznU6/yvLGDq2eim5YHF06QjqbIXOwz97GdWyiwNKpJF6nnd2rb6ErAcaOnuPN118n38oQXpjGEZvAHwkjdVr0GlVGZo5QzW4yPFjn7NQSjz3yMKOjo/j9/vdpXLcGJiEF2p4otuAImuwiGknSK6WxoaGbBpFInAceepzdKzZGI06OH13i2soqXcHJ0okFNvb/mEavz+zSPAhQTm/SqBaYWTrN1cwuHqHB3kGZnuS6TcHvxW/8KT0dnn329OF980mp6vvCJd9+fOxAPTk5efhjCoLAV77yFb7yla984PaWZfHlL3/5rr//XnIaX/va11hYWDgM0gA2m42/+Tf/Jv/0n/5TcrkcyWSSXC7H22+/za/+6q8eBmmARx99lPn5eb72ta99VwRq+PQrML/V+auPQ9kLgkAwGOTokQW+8cZFdNmLy+VBcTgxtT6F7TVcosbksdPki/sIgohvdIriTgan13e4YhcEgXA8QS2zwdSMh0gkikMyMSwBU7TR1W5Q1IIgvC9Yf9D5CARDJMcnbzsfwG3+36qqUivlKTVfoVJvkdnPoIoKFhKINlweP7ZhD1lrIjgdWEONrm7xyutvcGR+joWZSVazNcZPzlKpN8hks7j9fmLxMQRMeqU0aU0k3NB5bGEWRbZTH5hcfvNFrm/u0xrKuAM3PJ89sQRD02KoqQgCOHwhRF8MdzBCMBLH6DVodfvU0pvYHTKVlbdo9wYIpoXf66SfbhMJ+LBpLbyixsM/8IX35fp9/gDzi8d59c++RjAhM7uwhOLy8Pa1NbLby6jakGohQye9humNE5ZE4tEQuYM8+WIZ3/gSw04H0yaAK4Ig2/D4gzg9foKJCexqAL1VZj+ToVqp4vLtc1CqUi7k6TQqRCJRirkMZQFamsWZ5ATlRhubJ4DocBNOTmHYZDqdDsnUBFWHA6egE1lcYrOWRjMlLq3vc307c8gePfnYo4ca167YOCu7WfL1PulKCcMVweHxY/f4qW1eIOT3ooTC6EOdSCyGw3WDYbxJM/d6fRSXm4BlUCnckAT1hUao7C0jrFwi6lZoFPtUVTh68t1rzcLC4Ytgik72M9l36Oh3n+Efl6q+L1zy7cfHDtQ/8RM/cSg8/1/+y3/h5MmTnDp16n3bSZJEKBTiM5/5DJ/73Oc+jbF+JJaXl3niiSfe9/6JEycAuH79OslkkuXl5dvef++2r7766rd2oN9h+DQrML/V+au7pezhBttzcHDApStX6Q00jFKe4kEWh2JnqKnY3F5mTj+ExxegltkCUSTi8tDvtQkG/TidzsPjKg4XQ9PiIL3HXjqD/dgpphYXPpItuNvzsb29Ta5QZHM3w14mR08dgmWwt58Bd5CzTz7LueljpLfX2d3d5eDyi+haH1EfMLJwlKNLR5hdPPKuZeD5y0R9HrwOG/5QgKEgIvnC+AMhBr0u1Z1lwhMLKA6FnnljMjE1nsK0e2nYItj9fSYmjiL74yiyTDO3TVtTKeymsYsWi+eeYmL2CLqmsXnpNUy9j1uxkSvksYY9QiOTzB6dZn5xCYfLydbKFaK0ObM0y2YuyMhY6o6/b7VS4ur6FlOCi3r/GjZRIOaxUy0W6A/tiIqXviBjsymki1UKlSqaqtLs9tAkJ9pAR9SHOB0ak7NLDNUB6b0dnGafkVSCttGnV6+wevEN3KmjKP4QoekT+GwKgqmzm84gCBJeRaTZbNDpD4nEEuzYJDrtJv5Ygma7RmQwwOsLUsvv0apVwO4iNnOURGqCQa/LxvYGu5kXePzB03i9XpweH/5QGKVQ59jYNL3XX2crvwV6D5skYhdMxiZmsCyDSj7DqFsi4LtBLd+kmdvtFnaHi/nkCKVikVY5iz4c0q4UmI/7mJia49VihmA4RrfbPTSp0XWVoWkxkhynXs3R6XQPGSj4+FT1feGSbz8+dqD+6le/evj/F198kZ/6qZ/iH/7Df/hpjukTo1qtEgqF3vf+zfeq1ept/37Qtjc/vxNU9Ybg/020Wq17GvNfNtykaxWnk3areWiQYFcU7HYFp8t9z/mrj6Ls4Ya04ub+Adc3d+lqBl11yNTiLA63j06rgaB1brgZdTsMhyY2m42hrlPKZwkqYBfBsuDms0Yd9JAEWF25iisQ4+jJMwjvuDB9GFtwN/m8SqPJy29dpC86KbeGSKOLjPhCXL1yETUgIYuwfPkix0+f48gDjzA6Mcva5TfoZVY49fDnOPPQ43h977IgN8citzsszU5SVds0ywVkT4hhp4YLA80fQPH4KOf20Hx+isUSqxu7GHYXus2FKzrO4rFT9HWTnqrTcQXoVzcxbU5MrUkwFGao9ijtb6I1igihceKRCIZ9h6YGifmjhAJuHG4Pmq4yPzuD12ZRazQ/kDatVytcuHiBgewnNnuSUDiCOujx1muvUGr2SczPYg01mvlt3Ilp+pKLviWA1MJpc9MtH4DixOz3keXmDV3vVoPS5lV8DhuNagmh38LoVnGFx4iMJnHFJwlERynXGtgcbgprOu3dK4SPHKPRaKJLToZDHcu0qOXTNLs90DXskkg4HGJ/Zws7OjNjKWyyTLvdYj+TpdY1ONgvsZ/+Qx44vsig32Wo68iSiN3u5KFHH0N9+WWapoY/FMMUxhAkG83cHqPJCIojyEjYRyQSwW7bZtDrYbPJ7+zvYHZ+kX6/S6fVoGtTOXX2HK1GncFAYy+XQ88UbhRXSiKKaKAP+lgY6IZ5aMJxE5+Eqr4vXPLtxT0Vk+3u7n5a4/jU8GGzuDutaD7ud/zqr/4q//yf//NPNrjvAtjtdgbdFudff4VSvUWhWGQwUHHYJUZGRomFAnglHVmWaTQan5huv0nZNxoNKpUKAJFIBF3XefX8Zbo4aAsu5NF5XKrOTuFtMt94ntnjpxmJjYDNjtcp4HbA2uoFPFYPtyRidis8+fBZMoUyB7l9QqEYsmLnYH8HrZwBw+Dk6dOHQfom3ssW+P3+d407tAGDXhe39/2CJoNel3KxQHxiFkwBPGEC4Tj7e7vUOiq6I4DNBp1ujdXzLzGzdBK7TWJhaoI9tcGRY6fxvaO+9d6xVPdXSUb86M0hY4k40bEpZLuCPuhTrZRI7+/hdHmITi5Sze8zHPRQsVNr9wn4PCiyjVA0jKqq+F12LK2NIsvsXN6ltHaRUHyEdmYdAwGHO0g2l0PTNBSHD5sIlVqDYavMyWOLTI3PYxMlqvuruO0ChXdoU7ghB6tpKmvXl6kPLFITkze8vaUbFH9PciGFx5Aw6XYb2Bwe3P4w1lCk06zRrVUIjE5iNwX69QIW0DNFsul9zF4DyRsmvnQCSRCpb12g2R7iiSQw1S6iZSBYBrIk0O00kB0u9H4HbyBMVzPQ1Br5cgW3P4Q7FAabg2anRukgQ37jKp16iVg0TrvT5vzFy9QbdXyjk6Qm53FHRqlsL5PtmFTyOXSbi4DHRblWIpGc4OzZB7h85Rr5jYt4BINKr8aISyAWCTDqU1hamCcQCLxLM88tEvQ6Kb2zv9PpolbIkohH8Xh9LF++QKdZo9a3SKTeNS6pVovU6pv0NlaIhoK3+U/fC1V9X7jk24d7CtQrKys899xz/I2/8TfuOIMqlUr89//+33n22Wc5cuTIvRzqrhAOh++4Gq7VasC7K+hw+IYgwAdte6eV9k380i/9Ev/4H//jw9etVotU6s403ncjNE2jUCqx2xawuYLIY0fxOd30WzWq3RqleoaYrcdLr7yGakn3VBH+3nYTWdqimNtn6IqSmopxsL5Py7AhuPwsPPws65ffILu7jS4ouG0iRkdnzmHj3Nwop48uIMsyb166Rr1cIB4M0u71Ke2vUS0WcJodjk8n6Voy8ZHEHcdzk0I8ODjgyvL1G8YdukF6f5/dYpNHHn+CQCB4uL1lWexsrdPvdlEUJ9v7WdwjU+zu7dMcGMieEJHENP1WDWcgjJZfIxlyEw6F6XTabK5cQZTEDxyLblhMjqeoX19nvV7GiI/j9TrotRrkdjaQY1NMLSwhSjYkQQC7QjgQY2NrA7XfR7zlgS5JNgSbwujEJLXdZVJjo7i8AfY2LRyJOfwjE5iKB7Gax+YJYZcgGo9j9pqMvKPUZhgmumExPTHB+l6Wy+dfRx1otFWDeq3K+voaifFJkiMRarUyCecEnW6HvmoQG5+jmVujWS4SDIboVA7A7mRQyaF2O3QrOWwiGI08kgC4A3SKaVz+MPGZJULxJL1aGZvTjSHY8cWSoLbx2UV65SyWqjFst5FFCafHR6/dANOkkt9Ht/tZevBxaoUc9XaDsZEY/ugol177JroJybEkS8dPkS0UqVo6UrvDUOvh9gaQ7AqpiWlM06Sa3SY8NoPQHZDNGLidXiZHIzi6BSxLxCsPOLlwhPlb5GeBW2jmNaKhAM10jp3NFRjqeKUhsdQ0u5ur9Gp5RpNjKDYbDqfjhrWky0nSOUm31WD/6lt4F+YRrCMYhvGpUNX3hUu+PbinQP1rv/ZrPP/88/z9v//37/h5OBzmy1/+MpcuXeI//+f/fC+HuiscP36ca9euve/9m+8dO3bstn+vXbvG5z//+fdte/PzO0FRlL/0rVufFDf7fsNjM+S2MtQ1i/HUKLJix+7ysr9WxzVoU5MlLuyUePKpp3G4PpmzValU4n+/8ApNw0ZybJLRWJzdrQ1euraH7GuzW26zvr2LKzhCwhumN9BQAnHKG5cwt5axdB2P0eaxmR/isUceB2BlfYOBqpHL7NJTh7icCrFwgDOnJjl6ZIFwOMzXX37zQ6tdB/0uF5fXwBs9rLp1Bkd45dWX+MP/9QecPXOa0WQKm2Rjc32ZzPpVKi0VfW2TzEEBudxG9seIjY7TV3cAC0GSCcdjbGdWufD2m4TjSaq1Grl8nquXLnLmwYcOZSNvHYvdJpJIJIhEIlTLX2Nz+XU6sVH0QQ+nYOAP+HC43NSqJbxuJ61mk26zgtmu0hRF+qpOrZWn1e7SaTVp1qtkzCEBl4LNrlA4yDIQXUSTM4iCDVlR6GPi9fup9tpU1rewMUSRZVLlMtFQ4HBMgiBw/Y+/Tlm14Q5GcXi8hGMjhMdmMAQNoVPjIAcWAqZpYFomjXIecTggNr3EtQtvIoRSKNFxxLCI02HHqGWQTQ3FLmEThgwdTix3EBsmnVoJYdDBG4hSzuzh9flo11T84Qhxh4vhUKfTaZHd36ek9cisXsGUZBxOB56QnVq5gISFW6tj0wS2zn8Dadgn5HGQnJjCECVafZ3RqUUGjRL5zB5jU3M3ZGztCvOLx9nTu4z6bOitNnvrG5Q0naDPzZOnj5CMBZkcT5FIJN63Kr2NZq4V8JodBrUCmCb+2Ahmp0zILjCIxzmSnGN7b4/c7gbheALF4UId9LAJAhGPzJG4h1p6/T5V/RcM9xSoX375ZT772c8iinee1UuSxGc/+1leeumleznMXeOHf/iH+Zmf+RnefPNNHnroIQCGwyG/8zu/w0MPPUQicWMllEwmOXfuHL/zO7/Dz//8zx9W977xxhusr6/zcz/3c9+W8f5lw83CqdGxCXKNAS7BQb9Zom1Y2CSBsdEY5Y0D3IkpHMEQliAeOlvdKcd7q2DKzV58XddpNpv8ydefZ7MyIBQbpd5ZR9lcp1ipgzeKIz5BX+1gOIJ0LBsrK8v4o2OEJ+axYxKOhGnWKnS3z5NKjgLvevpOHn+YhXPOQwcsvzTkkYceJBaLYVnWh1e7HqTpNqsMIylSoQimZSKKIi6Ph9H4CG9fOM8f/1GG0ZE4Tm7YDUYnFrFr4AzEKXU0Ch0Vv9QlbA5xOxUa1TKKy0mvUaNVr9PpORj3pOgZLiRflAvrOzRabU6fOoXT7cauKMiynVIhx/gt1e9//Ud++HBi407EUFWdlm6yeeVNXA47XbXPxtoa9VYLvVVBG+q8/Ef/D56xOWx2F51agW61RKewx1TUQ3p9mb1iHcOboJAvYg51XOIQm6mT3l5HDCYwmj28ikBzMGRYarGxtsrTxybw+XxcWb7O5JFTnEuMYxhDBr0eLsWOPRikWilh09oEFDvVZgejkafUquGRBfyxJJ12E8ETwbIEOuUcDDV0vYsoK1iuAJ1OFSm3jSmI2A2TmlrHHoswMpoklIrTP9igVS2CZVLJZxlJTVGvFKnWm+xvXsdudxANBxj2mvQsi2Y5T2X3OvGgn7ljp3E5nUh6k8njf4XdtVV29zPYq21ypSpeTUAWTNRmBQEYD3vweH0YhkGj1cFmDZEQmJ5IIZgGiXiI40tHmJmZ+Ugzi1tp5lvvB7vdfqND4NULjIylcHk8N+xWMxsMTQubKJDwuRg7ssRnnnnqUGntPlX9Fwf3FKgLhcJH0r7JZJJ8Pv+xvvdP/uRP6Ha7tNtt4AbF/nu/93sAfP7zn8flcvF3/s7f4bd/+7fZ3t5mYmICgL/9t/82v/mbv8mP/uiP8mu/9mvEYjH+3b/7d6yvr/Pcc8/ddoxf//Vf59lnn+VHf/RH+Zmf+RlKpRL/5J/8E44dO8ZP/dRPfazx3scN3CyccskydsXB+NQ8mqphGAaSJGEMNbKrlwnFRxlqg9uKWt6b49V1/ZDWrjSalIs3VhAOh4tcvkChZ3D0oadJJFOogx6XL7xFo1pBlhV66pB6oUqnpzK0FKyhjFMbgGUi2SQCsQSiy4tRTd9wXer139c+FU8kiY0m2NlcZXVjk2g0+pHVru38Hrl8GcVwU6h3sYkCdgzavR62wCjnvudHKGe2GR8Js7lyFUnxsXjsBOlsjmJPw+/zUujUsBxeauUiwUic0so10BzslbP0TfAEU+iWSDwSwh4PcO3SJZ575U0uXLxIbHQMWbBwOOxMRj2c/f7vPfx7YrEY3/vME6ysb7CTzqN1qvgDcYa1XTYv71Hu6qC4sSluvHPj1KoVSpUy1XIehz+CKAjIhobRrZMe9jBlJ36fn65oUElv3CgU9CgYooyu9/EIJkMB/P4wXVOmtruNV+hjWanbKuFvMhO14ZB6Icv21RV6ukm3WScVjxCNxwm7bGTzOWKTk5iWQWZvD2fyGEPJgWLmEPUu9tgoqjbElBR0U0JyOJA6VXxOmfHpGSJBP9PjYwiWSSgcIb2/SUczaFXL7G5v4wrGaDWqOBxOktNzdOoFPNEA0dAIoeQUzXIWoVMl6HUxMZbE5XZid3oZmiaofVB8uHwhbG4/3WaNyvoaIWmaybOfo1Grcv6N17hw4SLRsUlGR0aJR4LE4yN01R7XNnbw+/0fuar9MJq50WgcFukFwxECoTCddgtd15BlOwIC9cw6iqJ8W6nqT0Oy9D7uMVC73W5KpdKHblMqlXA4HB/re3/6p3+a/f39w9e/+7u/y+/+7u8CNwrYJicnMYwbRuy3WmgqisLzzz/PF7/4Rf7BP/gH9Ho9Tp06xZ/8yZ/cpkoG8PTTT/PHf/zH/PIv/zI/+IM/eCgh+uUvf/k+tf0JcVMI4WZ1qzbQcLputDj1+30qpSK6pmGz2bEM7baiFrg9x7u+l6UrOHEGRmi3DNTQDJaukdtbRXDHQYZqu09g0EcSbThCCeymTH79EjbTiezy4bcPqWlgOnyUylUsrU/QKdPp9ZDULlNTk+SKNfLVFvGZo3S73du8su/UTvZB1a4+0aQ21OnZQyRnjuFyeej3urz10nN0Ww2OnArTUatkyzX04ZBK38Rus7G6tsHSkQXa61vY7HaEXoNe04OGhSVKxPwuupUDitvXUOIzCL06/hE/sXCQYj5HODVDU3DRajeJBcYwDBXLaGP3x1nbzRAOh7Hb7YcPyicefYQTR5uEvE62Sm2KGZO2YcM3Pod7dJqhqlIvphnqOpInhNWrY6l9fMkZFJtAs+aiV8pQ2d9mbH4JX9CHqmq4owkazSYDycvkwhylnevoxV0sp4kpqaD3SKZGGJgSlUrltkr4erXC8vXrtAUn5VYRzRnB8LnZafXZKawiYTCsZagJPbShxaCt4jM0hKGOqLaQ/XFc0QT99DaSO0DAbic4kqJbyjDsNZCdPnRBplAsUi2XcYXjHAsEqGe2yJXL1No5WoVd7DaRuaOncLg8hJLnUASTbiWHabORmD1GO7eBbnPRaNQREVhbuYovMsqRpSXyBwcsL18jv6PicboQhyqyJNDpdNje2eHKdobgzGnOPfEUmtp/R+1uj2NHj1Kvle9ZG/tOvc03hWQsy2J7Y4WgfKNr5aak6Lc6YH6r1Am/G3FPgfqBBx7g93//9/nyl798x1lavV7na1/7GmfOnPlY33s39plf/epXb2sVu4l4PM5v//Zv39Vxnn32WZ599tmPNbb7+GAcPiyaNQIeB+VaCb8ZplAq0+4NyO2s0W7VWV1d5cRM8p2g+C4GvR6yJLCzn6YruJmeW+Tq8nVUycX03AS9dpOdrQ1CDjcRn4uublEololHIxgmCE4veELY9TbDgYXLF6atG7gcMvmdfYSaRfKBhwjYBTAg4PCwtbtJZwhj+FDkAkGvk8nx1KGP8Z16TO9EQ15Zvo5TlUg4DSTJTrfdYHdznXKzS7c/pPD1PyWYmCASGyEyNkmjpyP4Y1zd2GViPMXxxTk8rgz1Qo50YRet18CrJpiaGEcPuUg7XChON4pix5Jk1q5dQgrEUQJxRpUg3eI+87NTxOIj1AoZPIpFvqXz33/va8ST4+iGdduD8pGHHuSF//P/4tpmFjk6iS85y6Bdo9tsMlRVNHWA0+3FERvDZul4XA6wO7EZEpJuUcstc1y2GJ0YI5qcIpPepZCu0ulphHxu3HYIxMN4/UEEUcLpi7CXy+OyWZxZmj1c/R3StCo0VHDGJ1FMqJYK2NweNHWAX+gxf+4p9FqOfqlEPBLAI+sYpkEBFdPSaRXSSB4/DpuI03QiGT3c/iDGsEMxs0U4FCVXL+F1SIxOjuMWHJw9+n1cvb6Kd3SSYv6AQa/H8QcfIlus4grGwdTR2lWEXoOWZaIONDxjYzQqORrFNM1Kj6XvfYBuq0Fue51uu0mz3iTfrOFgwKUVO5lCha4h4nB7OXL8BJLNhtP2rtrd/t4uc/OLFDPr96SN/WFsz8baNWrZbdTRJF9/9cK3JWB+K9UJvxtxT4H6Z3/2Z/nCF77AM888w1e+8hWefPLJw89efPFF/tE/+kfU6/UPLDa7j79cuPVh0daG9MtV1je2EZ0+JHNIyOfG1g9RLWZpjgbfaWMKAO+2iYQUkbZqMjKRotvtUW/3CcXGEQQwDB2nN4hls+OwgaoPafcGhIY6pqGjDsHjj+AQdWS9C/TQcttoiougPCQ1NcdILIzea2B1KtRMk4HNQzDsJziSQpLslGol2mubhz7G/W4XfdCj0WjQ7/dxOBwoinKbd3Sr1aJYazM1s4ixt8/u3gbddofWUMA5MoMkyNQO9hmICr1GFdEax+lQcIciZKoFdtNpHn/kYU4d9xMNhXj70mVKmV2eevJx7A4HLzz/DdqqjtflZXLpBBIG5e4WLruOMOzg9IVQJQm3243L5UKIJ8itX8YSBNqNPuPHkyTjI7c9KI/NTaEZFg6Xi6Hep5bZRHQH8KfmCUoS6tYmptal2yrgEAwsxYs7MYURMnAl5zjotSnXGowNGrRrRbxeH8FAAM1qYrZLmL02zuQMoi+K7HAimCbFWp3d/RtywzdXf9F4glqrQ0e16AwhObNEbm+L0MgYY5NTDDWV2t4KnvAI3qAXm8uH2+UiODaDxx9kbXUVKTzOTqZA2xDRagfY3TJjqUnMoU6hV0SoZ8hlVtEHHZInT2G0K2jeMJvZEuVmD9eYg/HpBbbWrqOqAwwTZLsdLBuyrNyoQm+0aberdGpuepU884kQuq6TWb/G9u4+hi9OcO4BtFIJsVLAVLvs7ayj9aLEZ45iAvZbmLpb1e6GxvCutQU+jEq+E9sz6LaolUqEU/NMLix9WwLmfXetTx/3FKh/6Id+iJ//+Z/n3/7bf8szzzyDoiiMjIxQKBRQVRXLsviFX/gFvvCFL3xKw72P73QcPizW1tldvULvoIri9GIyxBeJMD43hW4J1OotVtfWePDsWQa9/mGbyOREiotre4dKTDfNIQBsNjsORUFVVcZGRxiWKpSLVcZiYRyySK2YQRrUGEnEWTr5KJJkx+l0sbGxjsvrpFbIst5t4PW60QddBpadh04fw61IlMsFklPzJJITHOT22UtnSI1qvP7KC+idBlvpLP2+ikuxEfZ7kQQLlz+E4nRRq5TZT2c454kwPpbkyuVLVC0Po1OLdLIHDAYGyA6CkTge2aBRq+J1O6jk9/F4PFQqdTLpfQKBIKOjI8R33PhUN43sNq+99Ta7tQFqt0M+u4clyfjcTkSbnYElMajV8VsCbkXG7bkxeVAcLgrlKqFEilDsRtX9e4v23jx/AR0bU9NzbO1soQRHCU0u4nC66fc62N1eVMWF1a2hD+p4E9PYHG5ErYNuSfjiY+BX0Ac9egfbpPNVMtkcnVaLqtbBHZ+isruLurWHJEkoih16DcKTEQ4KRY4szFM7f5mt9evU6nUaqh3DMKmW8hhDjdHJOZweP6Zp0HW66esGdnNINBJFtDtwGH3aNQO7TcLpdOL3edEqZezikMUjp4gnJ1B7bexqnWQyRXr1AoNmhfjYOM7IGOFwnKGuUm31qbT7uOwamEMatRqSqKBrGpg6kijg8wYw1AFjx+YZn5ikXXDwzMNncLz4On/6jZfp4CfmC9Kql3EpMjOPPI1hWWy8YiIMmzz0+Gd4+8J5stkcS0feneDdULszKRYO0Hsd+v0+lmV9YPC6Gyr5VrZHVVUuXLqMI5xgen7p2xYw77trffq4Z/es3/iN3+Dpp5/mN3/zN3n77bfJZm9oyX7mM5/hZ3/2Z/m+7/u+T2Oc9/EXCNFolBM2GzuZAvPHHiBfOKAz0BEkG6LTjVcwsYt9MuvLuKw+Qa/nsE1ElmWWt9K3KTFpAxWny4nT48UhizTKFXyBUzfkEVtl+rU8Qr9DN32NgFNmavYJPL4g6qBHOBgg4ZVpD0XcLgfHHnwIu6Jw/rWXkF1OOqpKKjlOez9z2NIS8IfZWj3PtYtvYYk2fKEkcjhBwOmlmNnmrbXruMIjxIYDggE7tb6N1WKXgz/8Y5bmZ3EoDsaCcbR+C61To9Xs4XcpJEbjOB0K7ewmqbEkmyvfRO2r1N0eDEPHMnSqBxncdoFUMsml5RXSTZ3k8ccYt0nkMhnq5RL5vQaGruEdNWnXKnTrec4cP4rrnXqARr1GX9XweoOIgzqy/K7i1M0H5fW9DXr9Hu1Bl2a1ijM4RbvZQu33b1SO2yQ6jSoCEnbPu7oCptqnX88T8Ptx+r3s5ErMnDjL2dnTGF//fTKDDnXTTb9v4g0l8PjDGLpOp15EcfhpaSIXl9c5efwYjz94mq8//022ly+R1xWGooI7OEC0Ow/rF4ZqH7tsQ9cMnF4HIa+L/YMKD5w4Sq1apbK/QXalzlByIg86+CIh4olx+v0eOyvLCJpGsa1SrtYRug00wcns2CSCAJblIBLy09CGdDURSRQIKgLZWp2ebiINVdwS1Mp5nGafhXfyydNjccbHx/G5ztPHxrFzjyE7XIhlB+7wKLJdplktMz57jPLam7QbFRKxGIVCgcmJycPfqVYtk8tmKWQzRJwCb1z2spfJ3pGSfi+VrDhvdCYsZ/bI5F7moTPH8fv9h6vsQCBAo9Ggo1mMjI9/WwPmfXetTx+fis3l5z//+ff1I9/Hdzd0Xaev6jR7TUxvnNTsuz2d1eIBMiKJWJjHTx0hmUweUni3tUDdqsTkvFHZb7fb8UsatXwWzTQ5fmSO5EiMg2wacX4EU3Fjdqrk1ivYRIHJiBvHwgLLaxuE3DasXp1WuY3fKXPs4cfp9to02j2OHzvK3u4utcwGqjZkZ/k8U3NLjKQm6Ns8JJITgEU5n8bwJfGEomSaLcrdKidPP4jhDLC1tc3K7j4iIg8efxjZbifodfLSK6/jkuw4nU5skky/3ye3t4XdGiIHQgg2Gzo2StUqmmUnGo5gObwMfElsjKC4PISjUQa9HumtVfShidZtIjnciIaGJLlAkul0O7hdbiqFLIpsY6gPGPG6sSyLWrWMLNvxeH03HpSGSbfZpC+H8QRDWKbBoNtiaLgZ9LoY7QpGNY1il7E5fXTrZUSxhtVpIHWKOMNBtKEOoh2fx8ug28TnshNPTtDc3sF0eNF6XYb9LsZQh6FKMOxDkz1cvr7GYDC4sdL2+JiYGMdsmijBUQbINHt9isUSQb+XbjmD3VDRDRVPNEgoHCGzvU67WWd+4QjhcJgLFy+wkSkRdjuJxOPsba1TLhwgGCqp6UUaxQxRv4sGQ3IHWcZn5/F6vAiCwGhqku76KqVSlqDdZGFmAsna5q3zr6OrHRbnF4goYUbik9Rr5UNxEFEUScRjDHWNrqrilhQEmx3LMmlWy8imTmJ2nvrWBUoHaaaXTlPMZzjI7JFMTaINNS6efxO9WeXE0hEeOPvAuzrtb1/isbOnDosAZVlmZW39kEpu1KpsrK9Sa3VodTrsbKzz/IsvcfbsOaKR0OEq27KsDwyYlmWhD3XK1RrlcvlTLS6776716eNb7kd9H9+dkGWZcqmAGphken7+8CFw0zZyZ/UqSqdNIpG4bTZ/e1HMe5SYdBVBbZNKjFLavYZdEhDkCbSqztFkgGdO/A1Wd9KUewahcAyPz89gMGB9e48TS0dYOnKjHUgdDLi+tolh6NhlhXypwMzUJKceeJBOu8VBZp9qJs6Zsw+SLtYIhWIIAlTLJcrVOuHUNNnsLq5ABLv9hh1mMpmk3WxS2K0yGOqsb6wzMzODLFjMxryoCHTKWfq9LoNaHpdLZuLoGdyBMF5BxTAM3MEwkzML7K5eYXX9Gs7YLDGfjGZBr93E41SITC5h2p009lcx+00CgSBjiRj1ZpvN9XXCPhdir45NMBiUM7RDQd6+cPGwnzbk8xCNROl22ozNLFDoCxiCDG6FfqdIrzak12pCp0xEMjBED6LWoZ9bveHaZRn4JDAaBeqDPj63g9L2NcIBH6PjMwRMgdWVZdD6GA43nugY3mAIuwj9SpZ2o0yzmGNra4uhBX3Jzff+wBf4oz/+E/L9FoKkoLealDO75IwB8rCPOVTxS0NGPY+RL6/hkgT6pT321TYOp5uFRIiQ2CdbbdMv71ArV9BNiXhinHZ+i5CkcfqJp9jKHJCtNlm++BanHjiH4nBhk+24FDtRsYPZU6mmN5iJ+Yk/NE+/30d0ePDaLcxO+TZxkHK5zEGxhGAZVHJZKrKddqtDMDpCJBwiFB5hOOgRDPjxigbVfIbRsJ+o06K0t8r1a1cZdBo8+egjHD915lCwZtpzhMvnX7+tCFAf9Ejnchx76CkatSrXlpcZSC4coSQDo4Zzyk27uEuxqxOfjJJp96i9fYnj89N3DJj1aoW93R3ypQrN8gEup4ODYulTKy6776716eN+oL6Pbx1EEWwyN9ud3oVw4/0PEMp5rxKTx2izffUC2zt7DEUFh9uDTxFZnBjlxHSSY8eOHa4IIpHIO/tVqDZK9HsdvPR54OzTRKJxAGqVMvVChoOdDN7oGJ1aAa9L4djSIj6fn263TSgYwOf3ox9U0A2d3E6BUrFItlTFK4colmosRpMYpsZwOMTn85NMJkgvv0mzUubtco1aMcdEPMzDD5yg3ulTHxjY9R6TMxNolojlcOESdMbHxtjcz5FIjiOJIr5wjJX+gKAg4vN4aHZV6vUqDDVSC0dBtOGVQa1mmY24cDotMtkNttbKOGYnmJ+dQe4U2M9nkQIjJCemD9mMcuGAq8/9GVa/yeKZR5AOSvQaZVRrSGw0RbdRxm50kV0RZicnuPjWa9TTB7hPPUUsNYPP7wXLoH2wS33tEgE5hGEJ1FodGvUGDl8YvdvEFhWRvWEEDMx+G8PhQhUd1BpdtHye5199G4Cls08g2xVmJ8dJv/QK+VqbaqlATxsiSgre+Ciy5ERz2NnZ3+P44hynT36e/qCL0KlwZnGSRCKBz+djZ2eHt85f4OWLAxzBURSHnWggzuLScWS7nUq7hzuSIr+zQmHzGja7HZsoMBH1sTT+KM2DHeaTEQaajhCOowxNhmofnx2OHZllZmYGgK2tLV55+xKqzcP89BRFy8bo/DH29nbR1D7BUAiH08nmykWmEjEee/JJ3nz1RTymRsQRxqEOGARljn7vX2XuyA0VxHaria5rdNttSpUG9ZbB+MkUyWiMfDZNcTOLsp9F0vsMJA/JqXm2d/fQJQfjMynKssBAtCiVS5w8c5bdrTWy+QLxoOe2gFmvVm4EetGF4QqyeDJBamaaTD77qRWX3XfX+vTxsQK1KIqIosjKygrz8/OIonhXJ1sQBIbD4Sce5H38xYOu60TjI7RF4dDc4qZJQK1Wwq8IeOMj6Lp+x/1vFsVsb2/zp//7OXLlOlZgjFg0TiwWxeMPcFDI8f/9k28QCoUOV+XvbZ3q9/u8cdmL03F7z64tmMAnttD0IQ5fmJpq8fbFy0S8TvzSEGUsgTEcoqkDNrd2sZxe3OFRfO0OBgKqKVKpVgm7ZWw2G+1Wk1zuAE9klCNnHmZnbZlI0I/sC1Nrd4kFvHQq2wzbRUyHnWKlyeLpMEcXZm+cr1uK5lxuL6Jgw1T7+KNJBqpKoVbGIcvYZAW110XttvA57YymJhiaAhMON5Vdg/GYH7cs0NdNKt0h3d0MjXaP1Pg4Xl+QcrnAtauX0U2BquAHY4hsDLA6eYamimSJjE0tYBdMAj4Hk6MRck4PkghOm4HfpYCh0hBsqKKTLg76rihat8N2pkC3dhXL6cPm9mEOdTTLRbfepFtbx9I17JaOYPdQaPZodvrk6n+G0+cnV6hg2JyIegFPJIkvPMag18NhE/CFY3hdCoNqBskySIzfSIPsbK5SrtU5cuRGEJqdncXr9dLWBRKzR1EcTjxe32FKJeTzUOwZJKbmODqdxOVy0e20KZfKXLhyBdnokylVcXi8nDp9jqmx1GFwubaxg67rFCtVXnztbcqancSEm/BIkvL6OoVNgURyksxBidWrF3AwxDNscPSBx2nWq5xZnObEwgw+n49ms8kb/iBTC0fIZdLs7WzR7GlIskxufxdDkInGR1AcDiRJwh8MEgqFSR9U6NbyLJ19nHIhR7VaxT86ha4NsEkikdEEtWqWbqfNyGiKUnqNM0uz1DZ22NlcJT4yxs72Fk1dRPEqBNGYnprE7fV96sVl9921Pl18rED95JNPIggCrndyHjdf38d9vBd2u52w34fH7qdYrVHeX0eSFWSbSMzrJBpKYjQKH5qnqlQqXF3b5vxuGcf0OU6efJBWo0Z2Zw0ts0w4PsZascL/+z/9Nv/0F/4x8fiNFfOtCk6WZbGXyZLJZ5hyL7K3u8NAcjF3Yo5yLs21S28iCyaGfYz9Yg7TA4//Hz9IJndAtVFl0GlR69uYHZsBARqlLNn8Hj6/j2ani32gYRom+VyOWqPJ5PQsqZkjOGwiYY+dnjZgfzvHwCVwZmGGftxFqdFlv1ClWKphEzdJJkbR+11yezs4XC5E0UbY50bVOuhDjWgoSCcnMei2qGa30fodpEETX8QPngixcBzD0DAHXVbzTYSyiiW6GB0Lk8vm2N9e4+rbrxJ2y3S6XTxTJxiaEiPHHkESBNKb16GwibNbBF8Mu9GlVkgjeVxIrgDHFxaolYuI3Qr+eIB0Zo9Br8PowkkstY/sCtI3bLRMOw3NxtAUGGgmLkXDGrTot9qogwHSUMVwOLA7vWTrfeqlPI7QCFa+juiPIjoctAYGctTHxPQCoqnR7bQIR+NMjKeo5mIclLdot5p4fX48Hj8bOytMptKkUilarRatVgu7JOJwuPDc0kInCAKTU9OU336bWrOFvDCFaZqsrq5T7qjER1Moio2GLiFLEtt7e7g8HoLhyCEdff2Pv040NcPQFWHu+DEkyU5NdpIaqHRrZRobZYx2h3Y5Rzjq59iJU3htQ+JeJ0sLZw6Dk91uRx1c5pvfeJ6NnTSq7CUYieO0yWjOCKYgk89l6LRuTEB299OUSmW2swUq+SyVgYXH7aHR6hLrDxBtMqNhP4FghINyBl3X8AdCaEMTn893GDB3Vi+wvrpJKDVP3CUyOT532B55N8VlH1dl7L671qeHjxWoX3jhhQ99fR9/OfFJZAA1TaOQ3We10MEbGUHk/8/enwbZkp/lvegv58w1z7VqnvauXXvq3ZN6Umu0JGxs7mU4BszFRGC4DuwIjK+NbBMQRIA4WPiLQ3ZAOCAEyIFR2Meg48tBICQktbpbPe/de9675qpVteZ5rVw5Z94PJW3U6kHd6hbocPfzqSpzZea/otY/3+l5nxcKhsry4iwzM9PsbN56wzrV13sxK30LX8swt3qa0aBHtV4jSpRQ1DiCJLJ4z6NsvfQF/teffZ4f+Pvf8ypP/RvTcNdefoFas4NemOX6S89S+5pSGoTsbNzA9TxqRxatP/xjSpkUo/GIpiVgZGao7NxCVzVcc0TU2afvhoSijphJ88zTT9GuHzIzPcX0/BLdbpN8JsHaiRVcx2VtZYn65hVGlkPLljHFBJEaZ6vaZrvWwfmLz+O4HrYSx0ikiMwecxmdqWyG2uEmdiizurKMPexSaR6hShGGIZMulJmeXUQQ4GjnADybqRMXaLXqXH/+aVKzq6i5aUqZaQbdFpubl4gXZ7l//T6qe1t0GlX0RAYlO02tekTQO+TciXvpdjpMzS5y+sw5tnd3yS6eQklk6e1fxxq0aLS6iMVlEuksR9ef4+aNKySK8yRLC3hynOaNZ2HUwYsliFyfUI0Rm8oRDepI/oRkOoMvxxhEOqNODzlZYH56FWfUQ0gUEZNljnZus7y0SDJTQFR0BFEiNz3DQeU6B7tbeH5Iuz+ifrDLaDxGJiCWTKPGEtze2uTKxg6PPP5+5pdW7nxXM7k8xXyarGBitw64duMmIwzOnj5NMZ8/Lj/MLaAbOofbt7n4wjMsrZzAiMWxJjYtR2atMEWtZxKLJRAl6Q7JcWX1BOVCFnM0olXZ4u9/4N1ks9nX3C+u61KrHnJpt0V66R7mV09/bRZ6hc7IojhbRBZd9na2jkmFok5x4SQ7B4c4UhwnVsJIZ5HEIdV2D8MbcnL+3bjO5HgIiKK+grCVyWR4b6HAzNQWluezcv4+0ukU31ySeiM29rerMnZ3utY7g7s16rt4Q3w7G7TVavHZv/wy++0Rvd6AlukRiydpdrt02k0Wa2XKSfkN61SDwYB6Z4ik6HT6ffzqPu1OFyuAeCKFTEjP7JGfXcJIF+i7wuum7b6ehnv62ed4cW+D0d4BQixLbmoeXxAxJxN6e9uEUgzBSHDkJWh1fCLT5mjrOtnyPBMvwnFdBN8hdC1SRgIhnsAyB1hKgDcZEEmL7G7dxhu2cLM5XhwfvzjTcYMbtzYQUwXGkY4rxVDTM3hHO/RGFn1PwTBSFEszTCyTkDFtOyTpuKS8EWG3zcROMxkPcGtVSE8RxlIM+yOuv/g0qqoSEzy0RJp8eYbdzZu0TY9EokRufhVZMwi3bnKwu4s/8bhy8XkUSaRRrRArLjB34gzl1fNsPd9ge7+KIkU89MijJBNJVElCiEKMeJJb/QmOZREZKaaXThK4x6zvieXgNasMR2NCScezRojjDhNRIQgDRFkjXiijyJBMpNCdAFHVUfQ43V6HyG3jXn0J33UZ9DvE4kUEZ4w96hMvzeF6HmEYIoQRjjXh9sYWyZkVYsVFMkFEJwoYjC1iwy65bICn59i4vcnmf/tvPHTfvdz30MMYeox6rcJ0SuPdH/wBLMtiNB5TXD7DVLlMv9+/U36oH+5z4+rLVA92yV29jSqKTIYd5lbWEUQRWRRw7AlGPIkgQC5XYtA84ORqjlQqgz9qI4riaxrpr0+YM3JljNoQQZLxXRtV1UmlM+xs3ELrNHjowlk2rzxHfuEkKycX2Lp+keLSOp60h+BYjAcivjUilcmS1PIMex1816aUShBPJNndeqUjLAgCxWKRQjaDLIq8mjfy+mzsN6MyVrgbOX9HcddQ38Xr4tuRAYyiiK8++xyXt6tkFs9ROpOg2+vT7fcZtJs0918m5S7wQz/5E2/oiVerVa7e2qAXxjiqNWj5MRAlUsUpZM3AtS2GtRsYsRhC6DO7sESjO3rdtF2xWOS9736M5y5eRdHLzJ84TavTYRIpyJaNXl6iPxgTDJucOX0fru/j9+o4jT590+G9H/kHJNNZ9na3aXR6zBTzxBNxmod7ZJIJaorKcNBj3Nhj7cK7mF4+cYfAdePi81y8tc3cqQTZ5ZPMzS/jOg7V/W364wlabhbXGtGvbqKpKooWozfuM774PB965AL/n5/85/R6PV66egtLepyJF3Jtt0qoaNRbbdKSy8o956n3TQLfp9vrEystICfzKEYcxxwxHvYRc7MYuSLdzhGJbJHI0Bn1OxxuXEFXVdxxH5wh2eV1Or0BpalpZCFi89pFhp6A6YYIEThOi8J4hD3uoyeShLE8gu8Q0zXs/gA9O0M8V0bOTOEGAoIkEZo9JFySuSkCT+Lo9lUGToBpuQRO85j1XlpAy/ggyAjJAq1uBy2WwBOPh0q0q3v41gA5M8X04kl2N28waDVIzyyxfGqVF5/+Eh0b7n343cydeYjLF1/k2sYO3XadcyeXObk8z5lTx0Zla2sL1/PRNI0o4k7P/sHWbV6+dBFHz5BavZ/l9dPYkzGHzz3N5PYtHrr3HLlUglajyuzycTeDqmt4QUi73eLmtatIdp9nFQ1N2X6VU/t1MZDF5ZM0+hZCUmPcOiQIIyQBZrJxgjBAEGWGE5flZBrbHDEYTzBSOe65kMH1fMaeQBSTSCYTTByfrY1bnFudp7Rwnt2tW69J2Pp22NhvRmXsq88+RyaTodEb39X0/g7hLRnqf/JP/sm39RBBEPjkJz/5bV17F38z+HZlAPv9Pi/f2MQoLjG7cvwiK0zNYlkmnudxtH0L16rfGdP3Wmi1Wly8douBHUFcJ5Et0B+0cUOYTMboqkro+0yGY2689CwrMwV6YwvB7NNqtV7Xq+90OjTaXcbJJPZBjVa7Q9wwmAx7RMkyoRIQS2XR9RiGKLN9sE1x5QzDZo2JZVNeyCDFUpxcOM2weUSnVeORdz3A6vISL7/4PC9d20DMzzO3cgojFiOKIIgEmt0egZ7HRyBXKmOP+9R2bjEcT4gSRcIwwncnCMkk5x/7IJqmM+q2qN58gXrfRBAEbM8nNbvCvSfXaTQaNDsD9EyK/Kk17GGPsWniWiaVrZv0B0NKq/ejEjBot45Hb8oxRBEsN8CZjMhMzZEqLzJu13CdEbIoIPkTRoMhMdPh2s0NJsM+49GYcb9Hz3QolmdRVI3G/ia3X/gi5fIUgp5ESxWQApt+4xDHNElMLTC1fj/96i7jXgsjmcHqVJFCk+T6aaqHm5iRSJieQjZ80sk0SroAjkkslSXwbYhijCYencYRqVSSvZsXcVsHpLN5ND3Os1/+M/rtFo4XkPNF9m5dhVgeYklG4xHJVJoHH36E5n6etBIyXUhy/sxp6vU6L7x0kUZvzO3dCvVxwHSpwNLyMumEzlOf+wJ+YobpE2exO1U0zUDVY2TmT2K3D7hx7TIf/Mj3Mrpx445AThhCq1Fl//ZVdEXkA+//IOW5hdd0ar8uBpJPpUmnkqTnFkAU8f3jsafeyhIXn/squ1u3cR0HzTAYD3u0GzXKiydYXT0JHDuylb1tdF0gcidYZpt4VHxVG9k34tthY38rlTFdi/HU819l7dy9LK/e1fT+TuEtGerXGoIB3GFVvt7xu4b6/374qw16CtM08Tz3a6pVCoqiMVWee81BAu12m/bY5sT5pTsbWxAgFjsewCGdPM3WM/u0222y2eyrnvt1ByFKFFicD3jq5ZvEDY2xJxIYWaRkAcezseo7+KMhmiGwds+DbFbqHF58gl6rQTyRIm7ozJSyPPTAMYlne3ubz37hyziSQTqTxQ1D0OOMfI9WvY7kKSTjcTQ9TRj6EEVMHI+Z5RP4ox77lQPSuTy+HwIivijjWSbFXIZkMsXS8govX7+FE0ZMzDGe63B0cMD+UYVGp4eazHK4t0uuvIVl25huhJyeIp1fwRx2IYyIxJDAczDyRTQjhm92mfQbPP/iReRYCiM7zTPPPs/m/hE7hzWsnSOKuQOShkrQqyGIAs3BhFa7RWx6SHF+hsFgQKW6x2hi4XbrROMx4ajP0dVn6LWaCIqGN2xhN/fRBR8tiqg3myAp9Pu3iekamUSMYatKOJIxHYuk6NEddZioAm5SRfZtBo0Kk0EPOfBR9QyTYQ85XUYaT45Tu5qG73pUrr+EoMTRUxnMdhtRkskvrYNiMOk1CAHPbeHWt/EmI4J6gDI7hR/YZOMaURTn+qVn8UQDvbDAxPLphTL16h6qZqJrOr7vE08kSBg6oueTnZ7ixWsvs7V/yG61iS3ozM7OUJxdwpJitCwYXr2G8DUJ0UT+JMN2i7SugiAxHvVIayLp+VVq7R1c1+H8uXPs7e5wePsSN2/dYlA7IFWYYXVtnZ2DCkgSM7PzrJw8dmqv37rNBVk+HuFqT5BE6Tgyb/5VZA5gIbI4W2bcriKbTZrbN5DEiIwKc9NTdyZiLcgKRuRwfn0VWRLpHRR5/MF7KBaLb5h2fqts7DdSGYuiiHqjjiUmmF1cudOrfVfT+53HWzLUu7u7r/g9DEN+7ud+jmeffZaf+7mf4z3veQ9TU1M0Gg2+8pWv8J/+03/i0Ucf5T/+x//4ji76Lr59vFlimOu6tPsD2t4OR/UWteoRtuuhqwqZVJxSJoHs2ziO86prBUFEQHrN5wtICMJr90/DXzkI0wvriKLE6M8/hzh7lhPnzlE5PKLTPsSzTHRCElOzJIMB3mTE1Zdfotsb0nn2EtnCFHEjhq4pPP38i6yvLHNz94CD1hjHD0hEHrEooj3sEQkStjlAljTKxdMEozGebRMigCAQ13VmyyUC18Js1xh1egiSTCEVJ5qawjCO5SDjySTFQhErgFZli3qrS6TGKZVniOdmmFg21579IrcufpXC2v1k509i2teZBC6u7Rynoj2TVqNBrjSL51gQBBSnZ2gPJ/iDCYP6iJ3mGDGWZ+HcPO1uj26vy35lD8nt866HHmGidNDaXUzbpt1qoRBgDTokigvESws0KnuMOj5yuoSFhG5ksbpNPElHiWXx1Dj2aIhrW4T2BAmPkiGRKBwP9UhoMvmpEoLv0tjfwJaPEGMZglEXu9+meOoCyAp2r0GkGCgSRK4PWpxRdQu3VyM1fwotJhCNO8iJNJphEIkSvhFn0Nw7/v9myxhGjILqsrK0zFQxR0ZyuXF7C1uNU1g8i6zp2K0ermszUZJM/JB0MKYwfwJJluk0apj1CqFnMzJDJu6YoZBCTGS5dthHsIckDI1Ybop+s8q4UWFiOYSNCpPIxVhcwRo0yRga82dPUW20uL3Zo9tqsn7+XkrlMlevX8fAQ5ueJTW9TM+J2L+5w9VbG9yztsLZc/egazGe+OpX2D1qIqsaB0dHbNdanDl7gZFZuxOZq1qM6uEusmvyvvvWsU6W6UcxVtfOsLO5QWsy/lpAJNDttpgu5ZiZmWFn8xYr82VOnDjxpgziW2Fjv5HK2Hg0pNHukp8qv0Km9vgdcFfT+53EWzLUi4uLr/j94x//OM899xyXL19menr6zvFTp07x3ve+l5/8yZ/kvvvu43/+z//Jv/k3/+adWfFdfNt4K8Sw4XDI7u4+XtpnYlpIhSWSskajUaVaH3C70kIeVpnNJ/nQ3/ngnesLhQL5pE69dsBK4gzfuPejCOq1A/JJnUKh8Kr1RVFEq9Wi1emSnPHQjRipXAEllQR3RCEmMmkNkEOXQnkWRdFoXv4if/qZ/04g6STyU/SlJJKQYOKCEQlsHtR46uINslMLZKaXGdQP2LhxnZVT68xPFxk4IXY6yX5lgx1rQFyVwHfwPBeJiFG7hqEp5Eo5Tq8uMNVo0fck0ukU/WEV13GBCFlWCAOXUyurOK6PJ+jMLS6h6zobuwfoRoyEodEbmSQ9D0WLoSky9cMNLB9UtYAoqtRbXZSt28ihA5MhuflVAqtLvVaj4idxtQxKKGKNLURRIvB9HEElHE/oNes8fP4MaWx2emOqR0cEnQNiqQKlpRM0213cfhU5kUXJzBA4E0aVG3jjHsn504RBiBW4JEtzhK7FZDzCsm22K9dJhjrJbInpE6cxEgZCq4OcKpE2kkwCkUBzEVIwGoxILMyRSmZxB3UkJ0LMTeEDXjKLoUqoiTyaEFAulxh0ezS2riMns0iCQDgZoSoKhXQcOa2RDMak02lmpmcYj3pUqnWCmSkE02bU6NIfjRiPRviRjKjIWMMOAhGqHkMxYliBSL07JKfK7NbqJJbvIzczz5SqU69WGFa3qd++gRxPY0cShq4xPTOLHosRl0Nmi1mKpeO2P8+2aGkRTrfG7jWPq5dfxuwNiKcLXNvcQXMPyebyTC2s4YYBt2sthqOnCCMYuCrnppeZmp4lVpjl6a8+wwsvPs+5M+ewHIfG5hU63Q5xXB6+/yxn10/gui4Xr92i1ahSKk0x2Nlh5+YVkBXSmkAxN8vO5mvXo78V3iwb+43q2p7r0Ol2OHdu5lUja+Gupvc7ibdFJvvkJz/JD//wD7/CSH8jZmdn+eEf/mF+53d+566h/hvGW2FuOo7DzY1NlFicdquBWlwkkZ+iWqmgJIsIqSmwxyTzOa4fdtCeu8g968diDoqicO/6CZ64fsCRESOfn7ojdNLpNLBbFR45d/JVL4mvOxE7h407tcOEJqGrMolCiUyuhDkZ4/gh/X4PQTGwnclx5Gdk0fNzCOkiciyNbyhMRj12r1+FyCNVWiCuZ5k5+y5Sc8tsXb3I5ReeI51MEKoGRwf7DNpNbC9EXjpJvTsEs4sw6TNqHJCfP4HnOsTjcbyJSb1a5+VOn1xMJpbOs1epoImQiMbsbm3Q91W0/AwHtSYJQ0OMAnrNOmvLS2zsVujWKqiiAIGH1z4gjBRIJskunsBs7rO3eQunc8TcdIm9wzpWbYt69ZBBfJ7y2XmMTB5ZVhn0e0zC5rHgRRQx8QJkReEjH/kwF1++zM2dI6r2hOxUjHG7Rm9/hyiA4rlHUBNZrFGX4cFN8D0iI4sQ+ghWl5gEtijg+T6ioiHGc8QyJdLleQ66Q7SDbdTsDGqkM6jt4voRSjKL4AeYjos86pIozuEPJYpzK5QXVzi4cZH0TJnQ80hmUhiJJJOuiKAaRJKLokq41hjPmYCqIuhJUjqcmV9n/sQpWs0ah1s71LtjMlM+rUYTNVMiVUgwsjy8URNRksELaFYrxHM2omeRzpcwmxVEf0CopigvriLJx6+9fKFMv15BKy0wVy6ilDN06hVMwWfp5Gk6jSP6vR6F4tSxE3m4y7vvPc0/+qHvY3Nzkxee95k98zCNVgdSFlGqQK0/oFn/CqXpObL5AntHhwiKyqm1NVKZHNLXUuIf/nCCZ556ksPNqyyvniSeN3hg6QTTpSKW6/HS9U36wxHmaIh7sE++VCYtgds5BFEkOVUm6NfftIDIt9NiCW9c1z482CWOy1Qxz1thkd/FW8fbMtSHh4fouv6Gn9F1ncPDw7fzmLt4m3gzxLBnnnuBVDpFszemNxpze2Mb3Ygz6jZJZucZHx7gSzrxbIFRr0vgWqycPo3bPuDZq1tcvX6DlRNraIqELgos51RarX1a4x6CrBD5HpE15MJSgUcfftcrXhLf6ETMr9+HpaQ57Fv0XQfP83HbR4wkGS2WxLEt4skMqZjGZNJClUW0uTXk1BRjzycIIgr5OZLTy7SaDbxRDyFVwvY8LHOMZsQxEmn64wm1g20MTcUVdZKzq8ixDJYvkI7FkGWJXq+BNe5Rmllg5dT9gMiNmxv0203yesTM1Cpmv0dj2CURjkkmk3TaY0zbo7RWQpRVmu06w+oOkjOkML+Cg0B3YCIHJuPRiFwmheCMcfoHUW2PegABAABJREFU9P0Rk06VWCyBlsojqHE6gzGBHXDUm2CZDVJzLVKZNHYY0u10sM0hqqoSzxXQkzkaps9gt0I8liCpgDXskhy2CfoN/G4DOZ4iVZ6HCCLfxhbBlkR810aMfITQQ9W0YyU2P8AyTWK5Ilq6yOz8Eq36IbWDLoIVIBEi6XHSRgI5kSGKQuxmncHRLoqsgCAgayrD6g5TOpz7nu9l78ZFAkXGUnWUZJa5cpxup4MQugS+jejbSOkCkTMil8mQLk4hSAozSye5evkSputSNgxcfCR3hOs6aMEEMR7Dt0ys4YDa3ib3l/KoWoxWdZ9w0kfLpJDiOXzXRpITwPF884njsTi/im0NSaoqjz/+OE8+8yKbV54nX56nNxxQO9yjUdkl4XX48Ae+j2w2S73ZJowXiOeKNDf30PIzSKki2dULDA426PSqDHsdMnENQdQwVPEVUWcmk+W973s/lVuXePTCqTtEs6dffJna0MGxXUYOWK7K2BQwD/b5nvc/ztnv/7vAsfLfmzW4324P9NfxenXtU+UU08Y5huboVeM572p6v7N4W4Z6bm6Oz3zmM3zsYx97TYM9mUz4zGc+w9zc3Nt5zF28BbyW5/ytmJtGPMmTX3qGE2fOsXryDDHXYX8Y4bouAYco/oRGq4OaLWMP2qQMFUHOIMkKe0cNitOzaHJEYXENRVao1yqkUiYL0zpd08NyJuiGQmmuzMrSIoqi3NnYr+VErCwvYd7aZKIbxHJTuKMOuUKJyu0tzOo2op5AyRcx+20cP0KWNIatKlJ+EUHRGVsOwmiIGM+higqCrOA7YxrVfRzb5bDVJbZ4nlBUCKwBemmF6fklVldXaNTrSIFDJCTxvRMkx1XOzucJh022t7fBg5nZaU4vzXHvhXvwPA9JknnyS3+BLRv8nQ89wuf/4gsM9m8gKTqKKJA0FAr5aUxzQH1ng5EdIIVTeMMhc4trJDI56kcHjLpNSuk4hfUHsEZDOs0jVmenmHvovbStgHZo0NjbgHEb03ZxkYlLEbG5FSaV68iSQDqd48aN6whhgJbMkkylyOSLjMZDfNeGSKR3cBsjmUHwbDRdxxkPCKwhgiITOBMc10FMxEmV5hlfefqYlRwE+IFLLp3iyPeRo5CphRXMbgNJkglVg9zCKYJIYFzfZbB3FREQxy3WluZ44NFHSWeLCPaQca/Fy/t7IOsUl5YI7TFbL3+FYbeN63mIQsTQlLEL7+KwY1LvTwhdm47p400sqgd7lM89hiLLJJJpJEVHzUxRu/oUujRBcYYIgzqRJJLwTbR8lnS+SKTEGbSqFBdOIggCrm0BIEkyh5UdZpZLrJ+5h3giyQsvvEB1+xLtWgVhpsCZ5Vk+/IHvY319nYODA/ZqLeLJFIf7+3hyjLnldXq9AdZ4jFGYxnRMnHGXZu2IudVTTJeKjMcmvu8hywqJRBw9FkdRddLpNOl0mq88/VVqQ4eh6eDIcfKLxxPnbGvC7Ssv8uVnX2JqauoV4yzfjJF+qy2Wr4XXq2u3222euqvp/R3H2zLUP/3TP80v/MIv8O53v5tf/uVf5vHHHyefz9PpdHjyySf51V/9Vfb29vj3//7fv1PrvYs3wOt5zsVc9g3mw0Y0Wh1MVOYWloknk0RjgWQigWikqVQqCIRMTU2RmVn6WluVwKTXoNFoEIgyyydO069uE4YB8WSOlcRptjciJEzeff8put0und7xbNyLt/a4tnVwx6NXFOVVTkQ6neH8+kl2Dyq0E3FubV1DkwXmsznGhQyeniMSJVKpNFZuCsv1MYcDstM6eiyOpGpYjoUXAhHENBUZjW51j44jEcULJDNFnNbxqMzU/CkCGRzL4uy587QOd7Eti9zZexls+ayfPYeq6YyHA3KLpzASWcatCoIok8tnGA0HiFoSQYuRzU9x3333UemalGYXURSVRr3Ks1/6HFoijaLFiLttzMEQL5ZHTBVJFkv4gYc/aDIZdGnfehExniGTMFhdP0s8HkeVJeSRiSko9EYTAFKZFFI8zWgwIHBtMskkg8GAUNbpN6uousHi6inSs0sU1RiNUYDdrSJaPeR0llGvjajGSM+vMeh2cXotRGwGrQaqbYGo4PWrKPEck1aFw3CCSkBoj9GLsySSKbpHO2TnTpKdW8F3HQTPQjC7JBMx7NEASVFJTc0zGpmMRiOWZsuk15ap1f8vOt0DahcbDEcjcrkcpWKBVqdHkJnHRuCw3iI3u4xgJNg6qNEe2qRyWbAG+NYIO5YhFEICx6Ry6QkmzX2mi7MIkkxoDzn34IMIgYs17pFIJJBTRSaHh7QONkkVZmi36ozbNa4NOnjdKrWEyHNffZL102f4of/th9nd2qS+fZ0Pv+dhzp07R6fT4StPf5WNnQq39mtMRINKo0dsahlZlsjncwyHQ2zHYdhpkkvqOIGN5AzZ2d1l96iJH0Yokkg2aVDMZe6khr8u8OPYLo4cfwUTPJZIMruyzqUn/hzzD/+IM+fOoynSt4yKv90Wy9fDa9W172p6//XgbRnqj370o2xsbPB7v/d7/OAP/iBwPLgjDEPg+Ivykz/5k3z0ox99+yu9izfEa3vOJhvbG1y/tYkfQXliEk+mXnHdeGzS6PTJ5/Io6vFQiEQiTjZp0JjYlKdnqBxWyU7Po8gSqqbTaTfQJagfNZguTSHJ0h3pQoB+t0O72eLS7ha3D+rUGy0EWWH93AVmlpaQReHOtJ5TS3Ov60QIQCaXo5DPk4omtPYauOOQ6dIUQhQRpWeoHe5zTOaS8UcdhFgMSZLQYwkCawT2EENTEX0RLxDRk1lsQWEy7CHiYxg6hfI0vuvR7LTJZLO0O11sL8AIJDqtDreuX2Pt9Bn0RIpsoUwkCPSCEN8/HijieS6CdBy5B4HP8soq48k1Rv0OfhDy1JNP0ZhAMW6QKCXQE0n6gwHhuE195wZB94CTJ05w+u9/P8899yz+sM3i6XsRQhdV02jXDrFtCzmWRhYNolQJPRbH8216uzdwBh0Smkw8HqM/HmOPBnSHY07kC5QLs3TbLcaBRDKVIohAGLUYmENEzSAxtcCo08JqbuE09iFbxB52iTwHWZKQRFDSBUpzy0yVigy7Lajs4Jl9rGGPwLWRNAPPtoiICB0Tb9AgLNxLPl/Gi0SkRI69ehvF6rBSvA89FqdcLnPP+iq+H1AduaCnGDk+/csX8Y00ohqna/V54ZknmF1aI4xAlcHIFxAkiaC1T2D06PS7WO0jvCBEjqeILZzH9Ww2GhP2//j/5MLqNMvLs9zYreANTKZm5mnX62w+/wV6rTqBG2CGArMr5/BSM7ywVWdzZ4/3vefdRFHAgxfOcP78+TuRoykYFJfPMG2JmKjstcYM+h1QDKbml8hksse933LAbDbJ9X2Ljc0NXMkgn8syPbeAnEjTMEds3HqG959bJJ1O02q16A9HjBzIL868wnCOhgOqtTpBcgpXl+9krr5VVPytMmnvFCv7rqb3dx5vy1CLosgnP/lJfuInfoJPfepTXLlyhcFgQDqd5sKFC/zET/wE73vf+96ptd7F6+C1POfBoM/eQYWuGXBUHTOpb9GahDz2+HvJZP6qf9nzXDqNOusnlkjcMeICSwvzjG5tMo7FEOwBVlukFgoYmRySYxL4FoIzZG7lQbrNGsVUgkQydWeM3kTQ0adWGIY+LSGLY7kcPvUcy0tN5mfLLM7P0WnW2Nk/QJGEV7R/DAZ9rt7axBI0UsV5Tl8IWVmY5amnn6Gs9ijkspy7/xF6/R7NowO6loecSmEPm9hihBkdj56U7R6B2cMZ9zAI6Q5NtEKRSa9JZA0p5AtEvovbbxMvzdNpVdjb3cMXdWKZGJ5lkskXsdUUG5vbOK6LY09AkFEkEVk+Fm1RFJUo8Ii+ntbMZDl/7hzXrl7mc1/4Ig1LIpkrMbcwTyKZpnKwx8zCWUaNfULPIVuaYW71FKIokSvNUOn36LfryO6YXWfCUWUPBwVFkklJIW7vkFFPRI8nkSWJRFxmfWkerB77l6/S6g3ASNFsNqi32pj9DtZ4yHg0wnIDlMBCDFyE3ByNTp0wClFDH23lPFpuFm8ywq7vgKITEeAfXKNndRG904SiQhQJDHcuI1kDXEGhtrsJvo1nDnF7VZRk/pi17kv4vTqNLYVEOo8VqTz53EvEpBCzvktsdZ1YrkxcEuk6MDAtbC/Ct4aoskIoSdSrHdq1L3LuvocpZNO4jJkpz7Bfa+P6PuPmAW4koicypFIZcCfENJl8fpb+kU2jUWduqoDou+xsvsTG9auUinmykktqaZm+6TJ2PNLFMtmZebLTC2xfe4E//qM/4nvf+yBnHvwAwCv2F0CheoTVm7C6vERtYDFqHhB4DvFEEr+9iyFFjEKJZHEOI57AQmfzqM323gHFUgldBNkdEEXzwHEblBiFWJaLpv+V03rcKVFjEkpMzS2g+P1XZK7eKCp+ox5oeGdZ2Xc1vb+zeEckRN/3vvfdNch/g/hmz/kbDV1uapF4YZr9lwXarQaf//znefdjjzJVnsGeTDja38EIx5Snyt8kN3icfr556xajuIwY9Di6uYcZS7O8vES5kENlim6jSloJWVo+nqv79elUhal5Dm5eYq/Vxpg+yVxhin79ANOxaExCRre3WJkrY/bGJDWR+p32D9g7qGAJGtMzC1T3NihmkuSKJaZX10lZFqPmIdWjA3Q9xvTKKeT6Ift7e0iBSCyIEba2EawxMwmRQNJgUKXd79MemsRsD88eI/geYWqRyHeZNPeJBBFzOEDVdOZnyowHXUb1bS6srbB69n6qu5s4Bzdp144QNJ2ppEE8HmM0HOA6NpN+E1ExcF2H8fg4EyBpBnqmRDGbYGZmmpmFVcxR/1hkRNSI56ZxujV6vS6T8ZhcsUgibtCuHSKEAfNn70fLz6C7ElPFNXZuXsa3uhRKU8SMGMga2fIayvCQD37k7zKZjLn28kt4yOTLi+i5Mr3BADuu4yl5IqGJ3zzAM0fImkEsikikc9iTMdrCOkZxnslwgDMZIebmviarCYYMeiJDp7KFoqpIwYRBp46k6kR66jj1ryfQNQMhPUVyagFDFkgEQxaX51AkF9cZEtoOR9Wd4yln8RxXrl7GD6+glVZomS69ic9gYuFVD9DTeWL5Moqi4HQ7HN5+mbNnzjC0dIYTCz2RRohAS2TxxRihHiOURFTf4sy5e5mZX2C0MM3Tf/5/oh4N+Mj/80d4oD9gc2uL3Z0d6rUWqYJCtjjLudk5bGtCv7qLHwQk4waTToBCeKcT4psj06XlFYbjqzStIYVUmigVRxdD+p19vNYeqekVkok4WjGHli4xsFySuRKjTp1+7dhY55MZ9o4abG1tUSgUmC6kubJ3G9uaEEscO62WZTKcWCBp6FJIQjXuZK6+VVT8Rj3Q8OZY2d8uW/wu3lnc1fr+W4BXes7RHUM387XJSmGgksoXefD+e7lx/QrXnnuCyeoJNFlirZSgdP9ZRs7kVczNVCpNMZPk1Ice5/57L1CtVjk4PKI3dpA0nUmnijd2OPf4B8jmC4yGxynX3NwavW6TiTkkkAzKM/OIkkh2aobh4QaapNDq9RH29inFJc6fXMTZO2Rn8yaJVJbOYIyRLFLd20APJiwtn0NRVFRZIlZeQPEmJKMJg84A3xyQz+aQnRGNyj45JUs6nSGfnSGZztI93KJ/uIGLSzwWQ4/FmF89jRuEOI6DZ9lgDWjeeI6JOSQfUxBGInF3iJYQiWdyOLZDplRmUNulsXUZI5lh/swpLr7wPI12l8OjCv2jXRAEusMJc0vLJOMaO7sHgIAuhfiex9bWbXrdHr1uBzXjIocestkn6wi0dm8xaFYwAgvV7RGoS5QWTuF5NuPJBEswyCycwq5vI9kDirOzVKuHDOwBi4UERizGUeUAwUghdusYiSxeBKbjESg6biQjFJMkVANn+wUcc4itxRFjaZBEsotnieVKCJVN/EgEx0Zyh6jxNN6ohabEiGULZASXgVDAjFQEzSCwx6jJEsbcqeP53d0jRN9h+fQFrFYFwayz8sDjBLbN1u1rGMU5zj/+AQqlGS698DQvfOWLNA+fR54+hZzIoSZ9YlPLhJ6L7VlIkoJgxBg0a4TLs2QzGcREHi+IuHXpWcZjB6UQZ6qYRyYCVWJsOXiuR/2wQhTLYQUy/eGQXC7HBz/wfo7WTvJ//NFn6A36zC+epdY3GQ+HeI6FYcSIx5KE6QKN3viOkfrmyDSbL3DP+fOI4SVevnGbTm/I2fWTLMxnqGmrJMpLxKSI7ckAPVdmfnoe17aYjGewanusrJ1i+9Z1tp57CVmPUcxl0YSQRDTm9pUXOXXhYTRDxxyN6LTblKZnUSOP3NcyV1/HG0XF34629zfi7bLF7+Kdw9s21L7v85//83/m05/+NLdu3WIymeD7PgAvv/wyv/3bv82//Jf/krW1tbe92Lt4bXyj5xwJAr2RRa60cEdsxLGPpzgVpqZ539QMhzdf4pHza3fkBt+QuYnNu74mw1kul7nvvvvuvLyGF9a5cnubXreFpuk4toVpWvjdFqI9IpbMkNJFPNdGM2K4nsv+5k16jSqSGmPH7HMyr/HYhfU7hJSNnevsXLtFcWaBUi7N+rmzZPMFICKbNKiPhwSRQLlYYDmeJKHLdF2B1YU5hNOrGLrB0HaRVJ1e65ATeZW2tMR84QTDicN+o40eM4irBqPxhGG7xqiyi2gNUGSRNPMUtAwn1tbJFQv0RxN6zQMcz8O3RjyyPo8oSly59AKWmMBIJNCSOZbedQJr0MZsVegciexbE2oHeyQzWSLBoO9EyPEk2mwRg2NJz0m7itfYYpRNoxsGM+Uikdnn3nNncZNZdq4+h6wZDNt15Pw8xXwWOXUa1Wpz7vQa586sc+vaywzqm2xdeZ7DWot7Tq9h9ruMh13GLriSQaQlkHQVSRKQBQ+lNA+tI0LXRjTSiJ6NEkvSa9bo97oQyyEBYeQTGWmCcRfHHCHFYuzubSPocWZP3YvojOi3GziKhtOroyoqmVSaQjaJHHrEYjE6NZP929c53N/HFDQSyTTNVhsjnmJpdZ1nn/wyvppC8FyiyQg5WUDNzYDvYB5u4LsWsfw0gSKxcfsW587dwwMPPcrOrSuE9z3Gwd4OQiLPyvp5REnG6rfojkyaT32Jw8MjJn5IZziiPzZZWphjrlxElSV8UaVjuhTDCDsUCWJ5RD3ACxy8SML0Qzb3j6hWq8zMzLxmZJrNF3j8Ax9iaqrMtRe+wlIxDoJIG5/lqQyJeIydwzpGPIUgCmixGIqmMTjaYXdvF8/IIqXKTC2fJpPOUK9VmJmeplZrsnXxK8SzRSQB4tjIzoBsSmdpeeUVBveNouJvR9v763in2OJ38c7gbRlqy7L4yEc+wle/+lUKhQKpVArTNO+cX15e5vd+7/fI5XL82q/92tte7F28Nr7Rc84Vy3fG9cGx59xpVO/UkMMwRNFjpNPpO6myt8Lc/MZaVKlUIp1O37muNxji9GqUSnmmlxfY2K8j+DDsdRC6TW68+AyDbpcolsPQVLq9EaWkxtXbOzz+0H2cXjtJrVZDiXzcUMAWdA6qdURZIZ3OkE2nePHSk9QOD3CDkHyhAK5N//AAXZF492PvYWp2jk6zwdHhHmv5BVbnp/nDz36ZE2unGQ9HtFpNmjs38JCwHIfAsVCEkIcffhfpfBElWyaT0Fk+uUYmk2WRiPHYZNjvMoz5fN9H3s/V6zew9RwzC8tsbm1TG1hEQYClxZnIKRgOWFmYw7OP1b2UpEagqkzcgIShICUyuO0GZn2XZDpP6d734khQH08QBiPskcX0dApvNGbY7mL36iSNONmZEpmZJcyjYxJcIp2nXT3At+KcW5kjnkgys3qa4WjMRqXJwWEbfeE8kiCjihF+v44mhsRmVxG0GI3bL6NbY4IgYGSOsSyTIAI9noIoxDGHx2SwWBohnac/HjMMJKJOBy03JOaPiGsKuakZhsMe+BPcsclRv44hi4RRyM3NLbYO6wSigpKbw5m43Nja5/bt2ziTCfXemEhPM6rvoWanSeQXsbp1osBDTmQQYgmSqQRjQaK79xKONcH3HEZjEyOVo5hJYAoSoqSiKDK9icnIHFCvtui3usTLqxi5HANR46hr4kkazYMdhmMLc2yyvVtBSZdIxI6lYIfDMV5zn7wBTXPMpctXWF9ff93IFEBSJP7+Rz7IhXNnabfbxGIG86sruL6PpqlYjkUiyiAI4NoW42EfObGKkUyhjhMYhvZXTGxgYbqELKtUOwNCBOQEeMGQc2cf+JrTyp29/a2i4m+Hlf1Os8Xv4u3jbRnqX//1X+fpp5/m4x//OB/96Ef5lV/5FT72sY/dOZ9Op3nf+97H5z73ubuG+juIb/Scj/Z3CFwb25wgisdG+uvpY0EQXtcD/3aZm994neM4vFRM0w0Ncrk8ylGTXDJNd+M2V69dxRZ0ps88RHHxBP1GDdFIEM9k2W30GH3uLxBVgyhe5NS5e+lHOsnSAs1ei9GtTRamS+xXG0SCyHK5QDpuMO4dR44Z0eb00hLhuMX+9QaqLHJuPs+ZU2v0+30EQcQcjWm0O2TnTpCYjjiqVsF2EAIf12zwwIMPoscStCyIVI39yuHXHBKBeDxOo3rAytwUgiDQ6I1ZXl0nEgRa3QG9/hghkSU9t0Zi9iT9o20c3SAKtumOJsxORZijNrHUFP3mERPLwmvuohsa2dI0Kj6BbSFIAZNApDZ0sapdFk+dRRj2GZgusmsSeRahayAS0e+2uXbxRaxeE00QuLl7RH84xMiWKZenEY0Uu3v7KJMOrtlF0g1UQSBZnCEctcgocRo3n8fvNwhUjXHlNoFioMgykqrhE4Eg4I3a+FFIJMRwwyGSaiBIIhPTxBw20WNx0pkSWn6WbquG1a4T9qv0O03MsYkTSvioBI6LJMiYTkh3/wghcPEHHUIjS3buBK3LX8JuHSLoSSRFR4olj78PZhdJgIWFRXrmEcPmPrsvP8uo02Xp7AyrjzzGy5cuUd+5Rm56kUG7gRWJDPsDiAKSxSnyhRK6odPqHEGjxW5ziGSk0MUKZrdBPjdHqzsgDH3U0EGKAvRUkVgY49LtPR7e2fmWkenZ9fvIZrNkMhmqjSaV2iGl6XnKxTxdx6TTbpBIpGlVdvE8D0EzkByTYjGPomh39nF5ep7ugcl7H3nouNfbdRkOh6/IXL3VXuW3urf/utjid/Hm8bYM9X//7/+d97///XfkQV/rH7+yssKlS5fezmPu4k3gjud86zbVnVvcqlWYmZmlmEqwtHyObL7wLT3wb5e5+Y3XveuB+3nqhUs0qwfoUkjfNvHNPo4XEC+kUDUNd9RDEX1OnT5Ld9KndWubUbtKcXaJC/dnmZ6fx92v0G1UyJVm6HSaPP3Mc4Siwsn5ac6fO4eiqnieiywrNOtHLCRF7jl39lWKTbIsk0vo3LpxhVhpmbmVORzbxvICyskso34X2+8RRhGLS8uMrl9nMLKpjgIK2UOiwKfbaVKMSZw5dT+e592pVw6HA2rVI6TCEqWviWhEQYikGpTmVxh2WuzuH2DEk6hmi7B/yKReJ3AdYrLA4sMfQQoc5mZnGHVbDBoHHA0CBD1Lo9sj7wakSnPETR+rV6d3uInV1BAnHYaNPURZY/bkWXQZFs6eovXc01y8fIVsMo5lmsQzOZRUFl1SEYwUeiyB2a0QuR5uECKKMva4j5afxes3EOIZhFgGp7GH77ngjI/rtrOnQJIJzQGSoiAYCSbNfdKzJ5HEgEZlm8zyOSI1jp6bJp5NM+g1aOxtEHoOcqaEIEigxfEicB0PHJtAVDAyJeRYinhxhnGjgj9oocyuocbTx0ppikQ5lyad1JmXzpAWbPIZnVR6ifL8ArFEEkEUuXTxJXaf+zzt+hGRpuOMhqiJNON2jVyugKHHCZIFtjZfRlQNZFli9cQK2/tH1K8+AUYaVY8hiyGqJJAxVE5feJS9qy9y/eZt/h//4HvfVGT6jU5zs3qsa+8JAV5gcnhjA6ffQFV0igkVwXGZzZVes+bseR6lUgl4debq2+lVfit7+6+TLX4Xbw5vy1AfHBzwAz/wA2/4mVQqxWAweDuPuYs3ia97zrPTZZ58/iKuEmflxDpGPI45Gv21qAV9Y6rN7k3YuPYilYMaU8VZVu+5H0nVmEzGyFqcCCBZwrdsPCXB1MpZWjaMrS6Li/N02x26hxsMO112b13lkUcf457z51+R/gOQRInGwS0EQbjzcvs6MpkMpxamufSll5HzC7iOSxD4RBH4QQBml5MnVrF8UFSV8+fO8fLFF3nmyS+xcyVHPJlkJpdi+szxHOBv5AM4lsXInJCfi+O6Lpqm4TgWvj3BNoekC9MkYjrxwMQfdhg7Ac6ojxiGhFFEvzdA8MaIUcCg02JkTpBzc8wvzHN0+Skq2xto8RR+JDJ0I4a1Hc7O50nHdEZigkR5kYNml6wu0Gh3WVhc5gt/8TluDMdMJhb9gQNjBymRQ9I0NFVFIiSZmyZo7aNLEf1Rj8nEhCgk9ByUWBpJEolkAzVTQo4lEcOAsFdF9C1SC6cxa3tMBi200w8SeS7WoEO4e5OJFxDXNeRUgu7BBsFkQKy8SHL5XuxhB3vUAzWGoBo4lnnssLgjRpVbiIioegzXGuINOwSTAYqqM5XWKeSz+L0jTp9cJqFATBbYrnepHeyweOoc6WyREydPMTrcotJvIGXmkBI5UrkiTLo09jaYjEckU0mG4wlxxQIxoLx6ioyrUDs8QAw8Is/CjzzyMZHVtXV0I0F+qkzXdBgMBm86Mv3mPXBQ3cUXVM7NFCjdf4rtSh3RM0lrvOma819nr/I7wRa/i3cWb8tQJ5NJWq3WG35me3v7LungrxGCIHDixIm/8sArt2n8NasFff2lcuHcgFMLZf77Z79IV0jhWCNi+JSSOpYV4Ug6U9kCO7VdCANyxRLxVJbq0T790YR7H3iQ8WhEo3rIoHXEPfc/+CojDa/v4X+9tWRudpqcfhFhUGMQOLhhhNVvoozaTCdV1s7ew7Cxj+e5DHs9tra2cLUMydkTFHJZkqkYRyY89cIl3v3gvUzlkty4fYPhxKY/GDI6bJCxAwTHpF/bQRcjhChk0GsRmH36/S7lxRWGgUrQ7mE7HpPmPq1aBUMVaRwdIEoSohojEQSMe23iMYPAHtAZD9E1nZgQMbTG2GGJo50KpfV3oUkGpZlZCukkN3ePaB3uoBfmCCd7ZBYWsBt12v0xXucA2w+YEDJz4izRqMnocAPHjxA9Cyk3hxRL4w07EPqEkkJgdlEzBQTXxG1sEjkTNCMO9ghZEpCMOGoUMhz3CYKAYXULURRJL51A9Ca4Zh9kFSU3TzKVxG7vMj7cQkoUUNPF4whbFAkmJmZjF31qGeJZosmY0HfxPRe3WyWeXkU2mywUEqyunCQct7j/zAlyN2/x1MXrXG1WyU+VyUgRqiKgFRbIr5xBljW0VI5h84hRbZdRu4YQBdidI1JTeVw1jpgqUkDHkuNkplewzCH9nSvkiyX0RJrq0R6z+QyyYN/5br3ZyLRYLPKefJ6l+QqnFsoc1RugxPBCG8Np43nqnW6Jb/y+ficyXm8Vb5ctfhfvPN6WoX7kkUf4kz/5kzsiJ9+Mw8NDPvvZz/L93//9b+cxd/Ft4G9SLegbey8XFhZ4/OF3sduxaFoRpUIGWZbZn9gkkxk8Z4IzHmLIYI4GOK6Lomjs7u+QSyfIZHIkkmnSiTiB7xNFEePREM9zURSVRDKFZZq4lkmlUmEwGFAoFPA8j5sbmzS6I3qDIZqiIAcjVA9SkowTdIkElZWVh5FVDd+xOdrf45lnnqbm6px9+P2sr5/CtV263Sa+b8PI5+bGJsVclv0vP03HN8gWSgSqQLdRpXmwiaYZrJ4+h69q6EGIksrTHVusLpXoHtWYOB5CooDuWJj9LkEgIaamkDUD17FQ03mG3Rpep0lp/SGKuSnccY9cMkbFH2LbNm3TQ67ukMukkOQUrf6Yg8oRrb6LHg6JFWZ593veTxAG3Lh5i8r+Pv1OG0FWcGubuFGE3W+hpgokyiuIqTJOKKJky7jtCp45QIxliAIPRdUR5ASxXJHp5XVcQaUd+BiahqzpBK6Dli6ycHKdhBEjnZ8i8BzG7Rp1FBxryKi+RyTpxJfuRdJiEAZ4kwF+54ioUCQ1fxJ7YkM8hyobx2IsgogkhNQ3XuZEVmbh7CN0uy1OTSVYXV1ldXWVs6fXuX7zNp2xzfUbtxh7kDQUwskIW5jQbTVQkzlis2uIgYXVb6OpGp4cQ4s8lNAnm0lTbzaYjPp44x72oE21o+M8/wK64BOfn0KL8Zajx2azyYsXL3HUHhAKIul4DNG3WZoqcnbpPexWm992zfk7jbfDFr+L7wzetoToBz7wAT70oQ/xiU984k5b1mQy4ZlnnuFnf/Zn8TyPf/Wv/tVbuu94POaXfumX+B//43/Q7XZZX1/n3/27f8eP/uiPvuF173//+3niiSde93ytVqNcLr/hZ7/ne76HP//zP39L6/1uxZvxwL9Z0CCVSjEcDr9t4/7NvZeKJLCzcYOjccQo0qk2O2iqynA8YUZSONq4RjSoExhxvvAXn0OQVexxn8DzqBxWWJqbBtckLrjcvnqRrVs6VgBBBLIoIIcet29cwR4Pefbla6iaRkyKkISI+fULrK2fZ9owmAQSW/UesiRgSCHTpSLV7pDnnvsqZrtGSpe5dkViv9Zh8ewF8rkMkiihGwaZbJ6jyh6+6FFrw2g0YuHEaeZCgeeee5ZmpctoNEBW00R6ksODfQrZLMGkj5bKM7NyCrtXZVA7QELD67s44wF29wgxkSeeLuP4IVa3RScM0KQIO1CIalUKiRIT06V/tIPTqDBUDfwIDvf3Gfa65OdWKEzNMBj0ieQE+4c1csQ4PKqytnaChx96F5l0mssXX6A8VWbSiMC18bwcFE+QXXuQXrNGFISosVncRIb+jadw+w0moza2oiILAvGzjxJIOm6/jhGOMbJJvM4hMj4Lc9Pce+999PoDRl5EZA3IJBO0Ozp28whJ1okSRZRY/Fhm1THRM2UEs42oSKAm0JLTaNkiMUVm0q0T+i6ykKaze43PP3+Vq9uHTMdCjA+/j3a7TbFY5MSJE6yurnJwcEDl4IB0Oos+U2IUyLioSJZ93IfeqhEM20TuhKQmMGjXuHDhfjJqyNDsErO7NGt7TBwXPZlGThaZnZujVCxwuHmdaDB6S/XYmzdv8kef/TwtRyaeLUIUMN7fx7EtYtzm7MllStkUsj+ge2B+V+pj39Xw/u7C2zLU733ve/nN3/xN/sW/+Be85z3vuXM8+bW6hiRJ/NZv/RYPPPDAW7rvD/7gD/LCCy/w8Y9/nLW1Nf7wD/+Qf/SP/hFhGPJjP/Zjr3vdb/3WbzEcDl9xbDKZ8Hf/7t/lgQceuGOkv46VlRX+23/7b6849v9PLMZvNqq2OWQyGhBL59CN+FsWOHit3sta5YCNao96u8fsibPkiiV6Y5tWe5/a9g3iocnq2fvwjQz9eouhaRPESkiuiRsrcn23jjCqEZOhu1FBiOVYWjnByvpZmtVDnviLP2cwGDC/uo6RmEWPa+zVa5iDHlKmydKKQzyZ5NSZc3T6T3Hp+gb5mQUeePgxqFR48qmn6XdGxKUIWTPQ0wWMTJlGowVByGg8ZjixsC2Hw2Gb+vaApdkSC6cfpNlsUCzP0NvaxrVtVCNDLJ1GE0VS2QyR5NMY96i3B0wGHUw3IJE2GPT7qHoMPZnHcyaM9q+jJDJg9YnkAErLRFKc8XiAcLDBsL7PYO86YixNYnqORD7PuFvHTWbpdPs09rcQE3nyJ5cZDAYYxVnqIwdl/4jlxVlOnVqjeXjA4tIiQ+WYHBcOHPRkFlFWkI04husSWV383hFqcQFUA1k8bsmxhn36W5dwOkdki0XmyyWUrMagVUeRAkrpOJqqEtdkGvu3CN0J82tn2du4wdgaEWpJZC2Okszh+y74LoLXIZbIEDlDAt9FTBlIkY+mGYSajGMP8SIBOZZCVBT0TIkgpvPMZo1Q+jLf+3feT7FYRBAEdF1nNLEwctPMn7yHymGNSq2OLAgMLQtrMsGp75JKJCnNLtEfjTlqdli7535mF1fIpZN89ctfQNMTnH7gMaIwpJTP4ox6zBXSpOKl40zK1573RmpdzWaTP/rTz1EPkpy6/2E8z+H27Q1apkDKyKLpAkNfRhMTJCKb+0+tkEqlvmMZr7ejLHZXw/u7B29b8ORnfuZneN/73sd/+S//heeee45ut0sqleLhhx/mn//zf87Zs2ff0v0++9nP8vnPf/6OcQb4wAc+wP7+Ph/96Ef5kR/5ESRJes1rz5w586pjn/rUp/A8j5/+6Z9+1TnDMHjkkUfe0vr+tuCbjaplT9h+6SKtscyUKnL/2gk0RX3TAgev1XvZbbd45umvYElJlIxKc38DwR6SSaVZzshsNoekZ2aJTy9jiTqFQCRSxziRiN+rYtZ28QOf0vQqkihSmNEolooc7u9z8NnPMBr0ILtAeaXIzOw0+Zk5OtUKpheRml7lqD1gd2ebTC5PJpcnFY+TL5UJg5C929e5vblFOp3lwiPvZ9A8or1/GylZIBAV2oMxteoh+dlVUsU5jBAONyY0OjUGgw06noyanWHlvneTWTjFX/zlF7EiBep7RJpKqpwkOTvN4d4WnaFD4Ct4apq2FRKoaWKKiKrpeIKC73sIkkhoxIhpKpEAomsyqh9gtipEkwFaaRV96QKCouGELp40wBeP07FOKKEHAeawixR55HM5BEmiPbaRKocUczkC12J7Zxe316Re2WU4ifDNMUG7ieu5xNMFrHoXNV2EUCS0xuhiSLY4QzqdIxy2ENwR0Uik19vl3fefZ+XeR7m2uUOrdpuN7hHpTJblQhyfJIN+B80bIYugyxLgI0U+IgGqBK4YYiTijMZt3PGAdHGO6VwaXZEYBVls1SCUVdLp4/7j9QcfISLC69XZboy4cev2nT5e27YJIpF8aQrfc5mdKdMfW3QGI/RMCSOVZ2y1OLm2xuI9j1LZusW4cpudS08jrJ9FdB1mCxnihRkCs8ek32asOsyU8iwtn0dVtTvtSJ7nva5aV6FQ4PmXLtKYwKl3PYgRi7H50lXq9SqKkeSo1aYTuUxa8OGFBUxX4KjeYHV19Tti/N4JZbG7Gt7fHXhbhvorX/kKqVSKe++9l0984hPvyII+85nPkEgk+If/8B++4vhP/uRP8mM/9mM899xzPPbYY2/6fp/85CdJJBL8yI/8yDuyvr8N+GajCrBx+yYk8lw4t0atekDlqMqF8+deJXAAvKaH/c29l71O+3im7wTKZx5CMeIM6wckRBdh0qOYTXOQKXPYHdO/coVUOotpHqdEs7pKam6Kw0tfIT27ihxPE0U+kqQhSAqZqXmOKnsMxi6l1RUKU9PYkx6CIJGdXeKo0SYiQlBjVBtNTo6OsywuEg889n7qB9tE9phYKsfyPQ+jx2LEDJ1B84hE3GDQ60DgI8oy5ViCdm/AcGTSOKowF9fYrzawjRYfuu/9iKKAYTuk81OUy6uYrUPEUZ2VE2tsXXsZ0w1Al9ESBpE1wZOSx0axsYNT3yIxf4rC2n209jeJzCFKIkUyW6Ry/ZAoDAABOV0mceJ+EqV5JuYIZ9hBiqUJJZnJuI+ip3D6x9rbhUyKYadBIMdJxjSajTrR5DJpQ8OzRtiTMcmpRVqHNVzPR3Isgkhg1GsSuB5iqoDfbaIYcbLlWVQjRuRb6Ok03tEN7jlZZr54hv/XD38/CwsLfOXpr/LiRoXAjxjaLrKmo0gic3GYrK/RHlskSglGlovrtNGMGH4UIJVnEJwe+kimY45ZyCU4sThHo9NjPBqBqiMiIMXiKKqGqmlomsHAGuMKE3aOmlz4Wh+vruvE4waeoWGHLqbjQuSj6DFS6QJmYx85keDE+Qcpzi3QaXfwzS5TU2XOnlwmAiRVY2btPvZ2bpOdy3PvhXtIJI+/20EQ4PohR0dHXLp+m0EgMzu3xHRpCsey7jiz59dWqLX6JFI5dCNGs1Zha2sDpbBEfHqB2JyM2anSbu1y9dp17j1/D41u6zvSj3xXWexvF96Wof7ABz7Az/zMz/Cbv/mb79R6uHbtGqdPn0aWX7m0e+655875N2uoNzc3efLJJ/npn/5pEonEq85vb2+Tyx3PkF1cXORHf/RH+aVf+iUMw3j7f8h3CV4r9fXNRvXrGt35+TVEUSCXK9FrHjAemyQSiTsCB9vb2xzVG6/poUdRdKf3Mooi9nZ3mAgaqal5kpk8kSAgaTFypRluXRsQWGMK0/M0K9u0D3dp1us4lkl5zkLOJOm0PZrtLkJhid6ohuA7YCTxBZF4LEG8NM8kkLEdl7HtoTguQeAhqTrJfInJoIGCgOt6eN5xfdEPIwRBQpVETEEmlS2gaToA8VQWTVORFRV5bHJ4eEC6MM3+7jZCLMW4cUg+oTG3usJetc5BrUW71aA0VUZRNRRZxhl1QZAgDLCGA45qNbJLZxm0jvAGPqKi40dguQ6WZTNpHSKmCiQ8H1VTcUQYDYYgiISeQ0yK8AUBPVtEiyXxXAd72Dke3ylIBEqcUBxgGBKikCUu2CDojDtNJCOJllumedAFZ0RSSaL7JvG5JZR0nl6rRqt9SBRGSLKC53sE1hgpiMC1yOTyzJ26h2G7SQKFtdOn2XvRZmFlhflSFl3XqVQqSESk5BBjapZT6RySLBH4AYeVXZYW5lmSFaqjiEQhx2gyQVAVSosLJBJxNp/9PMmUgmf2qW5dAd9hbFoEYYjt+cRTaSJJIx3XSabSRBEgSYTIWI57p26saRpLczPULA8RidB1cXpNLCcEe4jiDiktrZLKH7fuJWM6riTS6/eZmCaabjAZ9NjbuU0upnB+/QzJVObOHrInE6zxkD/587/gyBTIlabpjW+Tqx6xtLzCysljZ/bajVuMzAlhENLttKge7OKrKaYXTyFK0jEREplceY5AM6g36qRV3vF+5LvKYn/78LYMdalUesd76TqdDisrK686nsvl7px/s/jkJz8JwE/91E+96tzjjz/Oj/zIj7C+vo5lWfzZn/0Z/+E//AeeeuopvvSlLyGK4mve03EcHMe58/s318S/m/B6qa9iLvsKQQPPc/HD6M54PVXX8L5h3rIei9Hu9HjqhUvImfJreujn11bu9F6GUUh3OCaZLdA5rDEeD1E1A0mEbn9AZGQY1o/oDyoM+n3QEiTTWeREBvQEzXYP17UQE7njQRTDDpXt21jN3WMiWn/IcDTBdWxigYvtuHjWBFGUIQiQJWi0GsRzSdR8/M60IVkUqNcOyMZU3DBEA9yv6ZD7rkUumyUMQpq9BsP6PuNei8a+hqFIZOI6yblFDg72QVQY9Ps88Wf/X973ke8ljCLsXoN6+xaiohITPK699DStdofC2hL5bI5x84B6s4GLjqTFUTUdP1PCHbRo3XqOWCJ9LPIRuMSkEFJxtIUlDm5cJLLHDA43wEghAEYyy2TQw+x1cHsdwoHLTD7N9NwiEx/oNPE627RHR9jNGmtn70ETQ9A0Hv7g9yCIEtOFHF/+sz/h4OAiZqTgu87xgI3sNInCDMW5e/AdC0MR0dUkBD6F0hS94RjGbf7r3gb1oYvth4TOBI0rLK2uUZyaRpVF5HGTVrWCqefpdPtEeoJEIkUuEUO0uhxsXWZ0uMG58+eZP3mO5y9dY/PyC9i2CZMBsVQe5cxjZAyRhYWlY5Uux4EgQBR8CI4dUFVVSSaTzORT9A77JGICoueTknxsZ4AeOx5IU0onQJBo1w7JGjJSLo3V3OX5r36FSFLpNmoYtUMu/IPvI53O3NlDURSxcesqtYMDhkKChXMPkMnlcOwJrUaV0bVrnD93Dl2L8dzzT9Of2IzskM1KA8fzUbPzBIGHKEl4nodt9snM5phZXKGxdYV43njH36F3lcX+9uFtGerv+Z7v4YknnnjV1KW3ize615t9ju/7fOpTn+Ls2bOvWYf+ZknT7/3e72VpaYmf//mf53/9r//1ukIu//7f/3t+5Vd+5U2t4W8Sb5T6OqzdxradO4IGiqIiiwKOPcGIJ3Ft5xXzli3TpNWsM3PiDGuv46Ef1eqUMnE2t28TRAK3trZJzmt0+0Nq/Q2MWIxySmNgeoxGJiNfwBF1tOICarrAoNPC6dXpHm5SXDoDRhZh3MSxxmiqih9JCLEckWyQmVlgOLEY97uMu03cICIhBVQre3hByHA4oHO4g3PoMJ9+9/FsaknGHraxPVh69DG8/SPcwGHY65DXdAatKkldYeJ4qMk8cqaMpOkkUjnsfoPDSoWRL5KbXYZkibjuYHouz3/pswiSRCTpTC2fJJnMMGhUaHQHdA93mJo/iZHL49gTNF9B1ZN4kYQkq0Qxg7hu0OtU8EY9JG+MIYIX5MiXpoj0LLFcGUEUccY9lHieeGEaQZTQJRXPGmEdXscNbZT5OVpj51i2spBnZnqK2v4W/VyKC4++B3PY5/pLzxJFEfFYnPLsPOv3PogvXqbf72O7EmN3DIGPZw6pXH2amaWTFMtzIET0mkdMpTNUtq6wM2gyffphFi+cJ5nJMOr32du4yv7hIe86fwpFUXjx5Zex1RTJqRVKJxJsXXqOytYtDiOf2WIWr99kcXGR7PQSh+0+yUyB/mgP3/Nx/RCzsoUkCZz6yA8RT6WIoojhsMdk0MEZ1dDzcZ69soFjv8xk0CWIBKqNDqGWJpNJs748RzGXo9puI4wtSGmY7SMyMQNJ09hr1ji9dp7HHn8cSVY4PNjn8uXLPPGlL/JBQWJ6fgF7MqFWPaB7uE2qvIgsxUnn84iiiBFPMru8xtHuBlcvXyJAYigmmTmxwtAXqe/vUWt1MZQx3VaDeDJN82iXFA7zC/eh6TE63Q4PLB1rHryT4yTvKov97cPb1vp+9NFH+af/9J/yG7/xG3ei3reDfD7/mlFzt9sFeNPP+OxnP0u9Xuff/tt/+6af/eM//uP8/M//PM8+++zrGupf+IVfeEW72XA4ZH5+/k0/468D3zL1tXGDSesmteoBq2tnSCRT5FIJWo0qM0trdLtNSkmDRCJOFEVsb97Acmwy2Rzj0ZBEMnXnnl/30Devv4AhBly+fIvN+pChG7CQnCNfnuVgd5vOqAtWklq9ga8lsccWoT1BjKeRJJ308j0MtQTW7jXMQEENXKKJSWf3Jmo8jRpLkM8WGI76pDwXwZ2QMFRcxWBcuYmbzBHLlkjlioz3t1FCD4wYl6/doNvtMT+VZW22RCSrOOYAQ46QZIFo0GXzpT3SukSoSIRaCiMlkFZASOeYXzvP4ZaEKxn4mkEQLyGEMrLvEtckIrePYWg8+MgHqLc6NFsd1laXmSpP8xeDPrXKNtmZZUjkmUoUcAQVT9Do7N9EiUKyswt4xhizU6OQSXLy/sdoNRo0Nq+QLEyTzmSpHVVA0YiGNVxVAi2FLInYnUOC9gGuENKpZXFDAWHcZuXd74HQJ6XLTOIJbm/vM+x3ONjf4+WXXuCeBx6iXtnDjVQS6SyuoJIpLOA4Dv3GEW4Y0R+OmNx4mfrBDmpgsbY4Q3blBO3KLuVT93Hh0fffyS4ZiQT3Pvp+Lj/7BC++fBVREJhoRR7/ng9w6fmvsrFzC7W0yPr6Q3Sqh0y6e4RyjGrfYv/iDWzHIYxE5h/8MHKyQL1Rp7t9meGgzqWn/5J6/QgigXDSRXXHLM+WWD73IJKms1vfYjCSKCZ1Hnj0DK1Gg539Aw73tpE0ncV4gtT0POWlk8TiSSDiif/r/yCeSPL+v/MhCEP2dnfoDsek8kV2Nm7z2T/6Ax588CEK+SyKaxKLJZiam2e/2ce1HYyvDfAQhOM0+Auff45EaY781DQLc2V2KlUS6TS5Xp/uoEmrsgWKQSKuU15Z5bBaI3K2ieNy7vQ67Xb7HR0neVdZ7G8f3pah/vEf/3EymQy/+7u/yx/8wR+wvLzM1NTUa6Zb/vIv//JN3fP8+fN8+tOfPo6CvqFOffXqVQDOnTv3pu7zyU9+ElVV+cf/+B+/yb/mr/B6aW84rodpmvaW7/mdxDd741EUvXHqa2YBu9dAGLfvCBrMLy7Seukil5/9MlP5DPMnzmOOxmzcukrl1mXapsfVW9uoyh65VIKl5ZU7qkqO53J9c5cTa6eYWlpjrLaQq1Uqm9fJ5gssTeURBJGrN2/TaLbIFKfJp2LY8QRRZhpFiyNJEbIiAwGaGOE7Lo41Qa3vMtJTJKaWyGQydAZ1mrcvEo46qFFAXImDIhL5LvagSXfrZez2IUun7+G+hx7DsSfEwglJXWZsD1mZyxNEFlZo4tX2CGyfkiQgEedgv4GUKiLaQ87fez+tkcX+tZcYjMdohTmsXo3azm3iKhTKM5iDAUEEcTWOOxkhBQ6JYIAWJrEGbebnZrl29RLJdJ7Y9ApGKkO7sovZr6BYXXzVYNhqIfkuMavB7Oq9JIQANRsjSicw27sMxzbjdpfU3DqMO/Qb+yCK4Lu4vRrpqQWS2SwnVldodvr0TYvrzz/JPafXCAWRRqtLZ+cQRIX+cMzzz36V2uE+mUyOoeMTRALphZOMiKMaIaoX4Zsj5CgkdCeMOg0MRaRe2UNxh8iyxNyJM+zs7TO2HPwgIgw8DFUhWZjmyuUnEGWF+Qc+yEG1xc5Bha4ZIEc9Or0RihBg9vsU8gXMSMENIyQ9gZSZQcovYBgaBVHBs00cSaTfOKCzdwPZSCD7DvlsitnpKTYPm9SbLaxIpVQuU+02EHZ2WD97nkBWGQwGDOsVxGyewOwxONpiiESncYTmm3zke38IwpCr165hSzHy82tM6TGKi6fZvvIs5rBHLiYxciOubx9QN0PM8YD+xGbtzL0IAozNMTs7O2wfNYhPRKpHRzRbbXRdJwxDgkkfdxJiGCnKpTz5qTICEkeHFRhU+fsPrZNKpd5x0td3QlnsnYz47+Kt420Z6i9/+ct3fnYch1u3bnHr1q1Xfe6t/EN/4Ad+gN/5nd/hj/7oj17B1P7Upz7FzMwMDz/88Le8R71e57Of/Sw/+IM/SD6ff9PP/tSnPgXwf6uWrdeqQ6uCT7tvMn3KYDQcvELFSxAE9FgM3Yhz//oSrW7vjqDBbEomK5jEjJBeZQvbHNJtNikunUZ1IT93ElGMODzYpf7cc5w/d47Z+Xk2NjfxRZXp+WWGe0c88Ng9jHpNtm7fomvaxGJx1ESSUn/MoFUjLvqsnr6f67duEUvmCBDQZYGZ6RnC+m1K2QSBViZIx7nnxCLbO9v0hm12L1ZIiC7JbIbYwjKIIv1WHbN1yOLiIjOaTT3oUzh1num1C3TGNoFrs3e0j6YoNBp1Yk+/wLn1E5xanOWHPvQY/dGYsRNSOTrCHMgsnpzF8edIFGZoPvElWvVDQj0FoUTg+iQLKRRNx7VMYkpEs9Zl0GnR73WP51knEoSShCTA8vIitf1NdLeHeXgTP5lDtseogwoxVcLTDCLPJK3JZM7fz70PPEQqV0BRVNbWTvHsF/4E3Q6ZRBqxRJIw8AmHXUTbRpYlsucfZ+78Y7Q3L2K7HjFDx/ICzFDlxYuXEdIlPElDzeUJZIX54gyWNWHncA9hY4OphWWMVB5bTRCOJ1iOA6ki8eISbnOPaNxGjXyW188yqu6yt3UNMZbj2lYFPZkhn8/jEtAbTTBHHSTfYrK7RzKTg0aLw2aPwCiydPY8CALWsM+g28BBI/RtJpaDL6nEs2nS04v4kcCgPwJJJFcoMXDGoEokVYHVcw9weFjBc122miaO0UaQVCxR44Ub29ijAReHNZ68eIPy7Dyr974bq7VP2lCptjoM6gecXJjl7D3LDN1lTpw8xdWXL2KJBrlCmdFwwGg0wkikSBXK7Laq1AcH5IplJoKB1XewhhbWzl9ijYfMrZ7mqNGm1uhgWTbJokRiZhU/kSBSBJaXcvRaDUZek0why6OPPUoslmBijhi2m1iqTSqV/I6Qvt5pZbF3os3rLt4e3pahDsPwnVrHHfy9v/f3+PCHP8w/+2f/jOFwyIkTJ/j0pz/Nn//5n/MHf/AHd3qof+qnfopPfepTbG9vs7i4+Ip7fOpTn8L3/dfsnQZ48skn+d//9/+dH/iBH2BlZQXbtvmzP/szfvu3f5sPfvCDfN/3fd87/nd9J/B6dejtzRtcv3adztDGiSRc30OVFWZKOZaWV1FVDVUWmZmZ4fTp06+pTOY4Di9dehk9P8PK2mmuXLvOfvU4BTsKFJr1EfXml1lbP8Xm7dusryyiGwZeEKIZOrH4ErFEkr2NmxzevkwoKsQSaZJYxOSQrVvXaNWbSL6KpBqEnkVaDvGtMe1Ol8RsnjCMmHgB2fIspXiOG5eeZdIfcOKB91GYnkVAZOK9SBRFRKJEqzfCVDLMTS0Ty+TwXI+tnX0a+3XWTp/hxMPnMY+2GcVSvLjXYWDavPeRB0gkEtx/5gRPX7xGsrzMi9c3OazW8JUEiblThJKGpOnY0jGj2FM05AhkAiRFJZ9QKM4vI8ZzCGGAL/hIRpJmpwNEnF9fZXvvgHb7gGKpzNnH34seO05JD2o7WLbDYDQ8jhAtk/LcIv12Cy0/x9LMLEr8CmJ2nm6jhuM6RL5P5FsYyQzt7at45oCemESwhggRDGyBxt4hqlxj/vwjFAoz2IMWsXSBZAjeqEe7uc+4XUeOJZAFiMd0TMdDS2QACI0kgW8Tmm1a9UOy6SzOMIdljhmZJp5scHj5IqIaR4slkWMZOtUe/VaH4XiCW2qgZ6eIeT6KbgAiYk6jVTtkPBpw0LeYhCJCLEsg6cTDCElRGHseqh8S+h6RpJIszDKVjZErTlFvd5EKy+R0iWZjl6HjYxQXUbOzCEaGbr+FpmRoOwLs7pESLO6/cA/3P5xje+MGixmVxx5+iC889TydZoPKUZWe5XP52g0sxyOKQJUE/EmPmYVVhr0aalFn+sRZTEFjNp5k8/JzVG5dYdBtY0sJ/GEbI3TITc+ztH4GEOi0GzQaTXIzi0SpGdzmFmZtF0fVkEWB+VyC0qn30G3u0x3VmT/z4DtO+nqnlMXutnl9d+DbMtTPPvssv/iLv8gLL7yAIAi8613v4td//dd56KGH3pFF/fEf/zG/+Iu/yC//8i/fkRD99Kc//QoJ0SAICIKAKIpedf3v/u7vsrS0xIc+9KHXvP/09DSSJPGxj32MdruNIAicPHmSX/3VX+Vf/+t//Yap7+8WvFEdenZhmc/+6We52bRYPf8QopoC36W+dUS92aZczHJ2LncnffX1l8A3prds22bkhJQXFxAEkWw6xXMvX8OS05Tnlpg7dQ+tzcu8fOUqw/oB73v8MRRFRZHEO3W8ZCbPmfsfIXRGjMcmsq6i6jr1eh3TC3H8EMNzEJM5XN+nXt0isl0M38Fp7yNHAQedMeN2DUHYR418hHwZRYyOGc+Oxbhbpzwzj1xaJQocshkNRzLYP6ggRhFuCEoyh5oqkMrmcdqH5ApT7E88vnRpg8N6i3vOnWEqlySf0Km3G/S6HSZqDjWVJxWqdOtHmNUehC5t10FwxuTnVhg4FpLZxQ5V1GyZVCLBqNtkZ+MWFUkkCnxG4wnXr16lPL+IG46wHAfP9VG1gG6rxsQXWV49TSyTZ+wHDOo9Dg/2GY3GOCHMOGMeOHOKmwdNPNciO3uCSI1j9xsEWpre9mWCQR0/VyRUdGam50hmcrRaXRzfpnmwzcm4zurKCooeQ1J1pksFXhzWECMP2bfotGq4ko4gyIiygj/uY6gyajaD6fQwO3US6jyNwQSzWaPW/VOkeJpA1lEUlVSuSDxfwBn00DWDiTmiurfNWnGB8WiE3WwiqQbjXpN2ZQspnkfP5ZncegE36mHGk7TqNdLZAs64h6qpeJ6HJEYYMQNFkYkiCMIQVdEwclnalU2G/R5yeoYobDPqtRmPRsRSFhNzSD3wyAZD0qkkc9NlpqZmmYyPBwjFFHj2mSe4dG0TP7eIUVikVCwTBR4HNy4xbHVATaIIAqXZxeNa+MERY2vC4pkHqFxxsLotZk6U0BN5YtEymnL8KhUESCYzdA6aBLZDIpNHVRZ54N4LqJp6J7MVhiHNyiZR+J0jfb1dZbG7bV7fPXjLhvrq1at88IMfxLbtO8e++MUv8oEPfIDnn3/+LSuRvRYSiQSf+MQn3lBE5fd///f5/d///dc8d/v27Te8/4kTJ/jTP/3Tt7PEv3G8XgtGFEXcvH4NITtDMLZxgpBSvoSASKetcfH2Jc53K/xvH/x/v+K6b05vWZMx+wcVHp5aJJ5M0BsMmZpdBESGwyae7+MMO5xZnuUQn0a7w9LKKtmkQbPbZMZYRBDAdSwkoNcb4OmQLC/hmR5qPI87GWP2WkzsMRNzjNerIyk6Y2uMOmoSi8Uxcjk8VcbtHOEbORLxNKVskmQiwY2r+2QTBrHiSQ6HNrKiMBkOUeM+5njMpNciigIKuTyBIDMe9vE8h6NGmzCWxSgvEcUl1OwMt+tH2J0qvudRP9xjopsMXRj0uzi2jRC6KPl5MJJ4nSr9bpdg0iMRjumbETvPfRklmaLf6+IGIIQuS7Mz5GZXqTgRGS3Hve95F73egFqlQvXZJxjYLuWZOU6dOkWnWaPTbtAfjjnauMagecDM2n3EE0mSmkT/aItATJMuzjDodRm2qsjjEVGyQORaWKikSsvECiUCZ4hu6KjpWTxzTPNwn1BUCH0Xz3URjRQeKv39Kxw12viJImqieJxaDwKMZAbfdRkf3cYddZBz84zlJFJ+lnRpmXGvy2Q8RFZUUFJ0+33atQrSuMny8gLxKE+9usnO1RiCpBJN+oiKRnvnKpGsoxZmiZVniQY1OgebeG2ZATL+pIwmSwiaQmCPEYmQI590ZopYKo0I+M4YQSzihRGBZzNs7pGYOYmcKKFPRZCbJjCHWEe3yKU10rOrtCYmg50dRLPLk0LAdqXGl7/0ZfZNkSQFCrqJ61UQw4BUJkvoLdJst5guFVEUlVg8wfLCLPVGi6E5xPF97E6Tdz14P3NzJwglhUno0TrYJF2cQVJ0HMdl3KozpRtkc3n0WIxMJntnv9mTCYamEgUB7UYd5RuM+Nf35TtB+no7ymJ327y+e/CWDfXHP/5xbNvmF3/xF/nZn/1ZBEHgE5/4BL/+67/Ob/zGb/Bf/+t//U6s8y6+Ca/XgjEeDdjcq5BdPE1qMiSjC0zaRwRhhC4K5PJ5/GjAZDKh2WyiqiqO4/CFr3yVYagyPbfITLFIu9Xi2kGbiy9d5MyZM/RGFnMLK+iGgWWZjId9TNnhkXc/xs2rl9nb2+fsmbMsLcwzurVJ9WifbLbIwfZt9rY3aFgiTECSRUJJIWHomIFHo9fEGQ3QCnNkls4z6Vbp9/oo7pC1cw+wdOosfhDRrmzROtxh0quyf12gVMwxaByQnl/H8wO6jWvYfkAinkIwh8TiabqVbQQhgtkVLMeh3xgQODbaVIZyvkTTMxkMamzcvoGHTLUxxm7s0q0c4SQndHt95GSeZCrHJJY6HjLie8iqijcYIpsdps/dz9HeFmNrgqbGEDJzpONJzPoug06D7OwJ1FBiYEf0211mF+YZdjsMPDDECCXyefIv/oTS8jlmTl3A2d5FLplook62PMP06jkGgx6jYJOQiEn7CLPbwevXQZJRNINANvAiCavfwc2l8B0XMbRxbAslM0Uk+wRqgt5kiD2xcA6uYlljsqv3M5yYuIFCIKv4vou1+Ty6niRyxtjdKqEaQx308K0xuiIQy2WJzWRxqnuEnoecKqKpCqI3QnRnaLW3WD55mu7QRBw1kDSD/vUtAiRcy8JYuIAgyUwaexRnl0mmkjQPD7A6e4ytIcb0LB4eotkF10RLThNPZfC9AFVTwZ/Qrx/gTMYQBESRyGTQQxIiRE0nkjRi2Sn8bpUwslFUjfzULNeef5LG7WvIqTyVoUeYmkGVI8zRgPGNl5FliWQ8zlSphB/BuNclKuZBOn5FJuIJTqwk6Ha7aM4iXdFiaXmFTC5PunJELlmg320zPNzEsh2CYZvZtIoqCaSSiTutjvBXhK5cXGPvoMKl7S+SK02jSOIdomYml/8bHyd5t83ruwdv2VA/+eSTPP7443zsYx+7c+zXfu3XeOKJJ95wctVdvLN4vRaMfr/PcOJSWsriiyGrJ0/i2BaObaHpBt5UkUuf/yP+1+e+RL44xcQccfH5Z5joRWZX1+k5B+RabRbn51g/fZrrGzvs7mziinFUXUMQQNdjVHc3yBgKgiCwemqdg50Ntm9f5+Sps5w+scyVyy/zwotfobq3SaTEWF45S7vX56gzxJcNggRMhgO0/BxC4CEQEAwb+MMmYRghxrPcvPIipdkF8jOLjPpt4okkpWyamKExMSeohUWmls8QErF3eMR4fxtBVzEr1xC0JFg90uUlXM+jtbdPtpxCTxdJpbJ4rs2k32bQaZKammd26QTJmTWe+1wXrSgxVZ4jCjagOI+ansJp1ZHUJKoYIuISiHkSGYNMvkTHlZBUkWS2RGJ6AUlSmMQ0hvVdwjCiXMwTUyQO9rao7G8RyHGKCyfJaqDIMpO+Sb/fZmCaDCY20yvrOMUpQiFk1GuSzBTAyBCFIsPaLoIgEkvncJ0JE2uCHM8cG2RV5aBySCxyECIIo/8fe/8RLFl+3/eCn+Ndenv9vVW3vGmHbnSjGwQJUqKIId9EPEVoJDFmFlzMQjFrhhQhEyFtyNB2ljMjKeIpNDMavcfHmBEfRRAUQaAb3aj21eVuXe/S2+P9LBJdRAONBkCLRtR3l+dk5jmZef75PT/3/QpEucCw22UwmpEIMmkaY+/dxyo3uP3MS5ydd8gGQ9I0QJAlYt9j1t1HK7dQVq4i1bfI7RHR+BijtUSYpovZ9vZFhDRCsSwqzWXELEbMU+zEY94/R5RVLr74i1RMjbPde5wdHmL7LnF/jzR0EUs12l/+O+jmCxRrH3B0/x2mh+8ipX20goUUBiQoRNkqZ90h7vwR0bRHubVKavfwznfwowSlVCd1RoRJTOh5yKQYjRbVtQuI0yPiMCLPYTQakuhVvDjndOSgVFq0lhtMBx1iUUMrlFFMg1STSW0bfzaC7PIn+nDyHHx3TqNoEOsiD++9z0uv/hLVosUwDLh083l8x+H0ZJ+l7WWuXLrIN77+RwSTGCG/TpqmTxq60lmXSZ6jNjZoaT6pUUYzivRmQwZ37tCsl1kuaX+rdpJPx7x+dvBTE3Wv1/tUu8lXXnmFO3fu/JWc1FP8ePyoEQxBEMizHHs8oKTC+ekJth+QZjlx4DPqdXC8lOrqNpJu8K23PuD+qUt5uYniJERijh252N4uG8st2vUK+wd7lBtLBK6H5854fO8uwaxPsrrGnXfexVJENtp1Nssyh3ff5PDkDCeIiewx5VoDQdbRilUaxSae1MWJUvwoxosy1GIVKQ1BlMCsYVWWiTwbzSxij09599t/wrOv/CKzzhHh4JhQtTj0fKxCEVkzmAzOMEp1SBKWNi9Ru3gdyZsihDYHgwOck/tk3UOatSprm88xdBOSyGdwdsTg4BHrF69y8fpziKKAPZsSSxrr61WO+xMERUfVdHxvhiiKWOUa8fScsqVh1Mv44y5hFNLeukJn90NKlQyrWGU+HaGrMkm1zcyZsK4rXLt+nfngDM0wkXUTL4w4OTlAkgTam5cRAGcypFpbpdReZ9bNSYIZB/c+xKq3iCOfOIqJcgmzvoyYZAiCSjru4g9PSOOQ1CoBOWESkXkhcjwink5I4wDZSBFUg9CZkggKXhhx+Pg+WvsSFzaeYTIeEE+6CDmIRhGpWIU4RlRUpPoyma7j2wOkBFKtjKRa5H6MLCvIqo7bOcPSZErNVeYn99Bih3hwzHEmYLQvsVLbYvr+HfTGOqqQI3pjvNkQURRpblymVCzRV1L+L/+n/5FarcYf/dkbPDidMJ0OcJwZmmYQhgn9d95AyTxMVUI0a1TXr2FWGwTzEc5kgCiKxCnoooRpGKRZxv7j+2RJTKna4N7OHnKxRVkK6M59Cu1NckkmtKdEnsPUDlhrNnFKRfonuwRBgGGaREHI2ckhnYMHjM9PyJOAg86ED+89ZHtzE9mwOAgCkBXqBY3N9VWm4xHPbq9QKxYYHz/684auaoFpYmDLZZ69fJ35fMbh8QkTe4xIzng2pyq4vPbL/+PfaqPWX8eY11P8xfBTE3Ucx5+qm10oFIjj+K/kpJ7ix+NHjWDIskLqjRkfPkBa3yKULUrNNRRV4+DRPXpTh4qmEWXw5nffZU6R5sY1pFID2/WRi1W0JCYYzsgjn8sXNggGx0STY977s1OiKEY1i9x6+RdpLK0R+B6PPnybJTlgc32Nie2xun2Ncq3B3mkPN0j59jf+gInU4ZmXfwHVLLF/eICfQKgaCJJM4tsozYuIzS3UPEVzxgh5SijI9Po93vv6/4d6ycCqNBm5CWMvIZYy3O4xR8cnVNvLxPMR1Y3LSBkkuUhkzyiXisxmU/xZl1AVGPXOOO30mNse3vAMIpfV7WsM+h0M0+Jsf4dR74y0tUb/9JCZF7LR2KSgGcyGU+aBR+5M2Ly6zfLKGrvTDtPpnHrzIlKeYdtj+mdHFPRF9/xkPIQooF5bdNJ7vo+oF4jRSCQdL5dR9CqdeYToDom8OZagMh4NSJwpceAxPtuHwx0S30WsrGA01ymYJqdnp0jVddTlKwTdXYLhCXL9SxilOooo4HX3QRJJ+4cI/pRUL6EXG6ilOrKqg6LTHw+plTwIHOLAJ0xzlPo6mSChWBUid4KQpii1JbAqRElI4k4RjQp5GpG6M0IhZzLvkUc+cqFI7M2I5hOuXlyipkQcOzmROyOJIwwSNEVi9drzOCcPseSc9dVlRFFkb3jMte11vva1r/HRg4e8+JVf5VYQ8cff+GPO5hFBFJJLBqJVJZoFGLKCoUA47aApIq3WEppRZDrqEXR30QyZJHOZnh+gyzmR7+AECYO5R6u0jj0+xp7YFK+sU6rWcMgpWBbe+BxTFbh8+RJu94j9d/6MQmOJNEnonOwznsyotlZ57qWXESSFR/fv8fBon4oU066XsUoliu0l0ml30WH94ldp/EBDV57nfP1bb7G0vI4gCJTLFZ69XcZxXJIkJryyRTg8+VuPVP+qx7ye4i+Ov7TN5VP87eHTRjAUSeD5Cy3eenDAfN5gc+0SiqrhTMaMOicUDJVmo80HH92jM3KRFZX+uIeMwizyCZwZnjNDEQXODZnBcIgl5Hz1F17hj7/9HUZ6jdsv/xK6aRAGIZPpmI21FYpyxje++W2qW9d59soNjg/3ONh9TKoYBHGCPRhw//07rKxvUS4U8XodIm8KdkKSpGilJrk/I/ZnSNJCi1v+3pyxPT6j1ryJtXyZcO4wTVXEWgtNs5jsfkA67aE3V3DtKbHvcHb4mFK1xqWrz3GrUqJ/fsLevQ95/Q//V0S9gKjpVGoNHNfk/uNDHj56RKvdZtDrkOQK5eoaG1/c4PCtrzM53cMo11GDKXKhir62hVFtM+x1URUZ1wk5fvQhQuRgxBAPj9HXLyCTYqYuQeQgITHsL0xHzKULxCikSUq5WiUrLWHVlhk8dug8egPROkXULLIkIlcMpPIKgigiSFMkwyILXeypQC5KSKqGIIooVpk08MgjnzhwQZIRsgRBEBGyFEEvYixfXJhcxCGpM0ay6oR5hjOdkBk1rHKZLPQIo4Q0B1HWFiYYkYOiqiSxQCoq5GlK6k2R0hghdpFCEaFYw2quoygy4kTGaq/RqFfIZY2/+/d+mfR71+tOu8G9x/sM9+9RrVRIsxBvMmDcPSUd7PPVX3kZURTpjW3a61d5vPOQjRsvUPJi3BgK1Rogsv/wI2QhIz5/RKEgIasZ7vAUbzojiyJ0EnSgUjCIfJf+qMd47rGyvYkjzgkyhXkmYw/PSY1HBHYbRUhJVAV3cIaTGjx36ybCZpPMnzM43eG022c0ndPYusIzX/wS7eXVxRpstTnYXSXsHfCVZ7d59ZUvkiTJD3VYf3+zVb/f/0TtN89zHHv+RO+g3mhy1Dv+maj9/lWNeT3FXw5/IaL+j//xP/Lmm29+Ytvu7i6w0Mz+QQiC8Lnvsv5ZxaeNYLxw4xLn/7f/iXnmMT64D5KEP5vi9o/YuvECa+tr3Hv7O9heRPXibcpLIi4qjusw3NtH1CxK9TayouNkGoYh0x3PabdXaJeXcAYndD0PMc+pVQpcv3aZMAj4s/sfsXG7wnQ84tHOLr5oUKqvU70QMhwNOTg4ZDKd0miuYEoC2WAf35khVVaQUx8hjZArTQSjTDzqoxTryIrMpLuLOZ6Rl4Y4kxGKKFIvFfGEhLlVZnx2gOA85njnPhoJza0rvPraV2itrDKd24ymDs2VNWy7jBw5VDevoVZbhJ0+cmUZd9xld+curfUrFAtlTo5PKNbqFFYukrgzIneOQkyexkhxwP79D6kWNS5cex5l/z7dXp+VlRUuri2h6wZ+GhHOZ6Shi2dP+ebX/ysVUyFPwHF9ZvMeJRVKy1c56w8Y7N8jsOekZg3BaiBW26jFGkQ+OAPQi7hBhKZZCMGM6WwMRoVs1iUH1MoSkmaQRT5xd49MSBG8MTEyxtI2SRpTKFVIVZM4V/BmY8QgRFAMZEkhi0NyRSInJ5p2kBUNQVbJEcgiH7ezj6yb5L5Dkkbk41OCNMMsVlEMC6tUQZVStDxGshRuXvoCG+0677z5bVzfpdlcQdU1rokS4+GAXueYOLU5G5wSdx5RK6h8+ZVn+Nrf+1XiOCZKMpI05rw/xPZzUq3MhUsXFk5vsymCrHDx2g3O8oCamqEZIpqYIRZUzrtTRuMRhXadqy/+XXonR3RDFUUWEdOIMAgIgpD29rOErkMS2kx3z0hDD0mRUYMZlbXnaVTKnA5O2b7xBa4Xyrz19jsU7Bhr7RLDqUOx5FCwCouu6nqL/mzIcXfIa4JAq9X6zDX7/bXfKAqfSJgmWY4sCliKSFGK/9Yj6o/xlx3zeoq/PP5CRL27u/uEmH8Qf/iHf/hD257+oH+9+MERjCiKuHnrJrlZpzecMB4N8dwRuiKTAZ3+kOOjA4qrVygurSMbRc7fe5Pp4Jzq1i2M5hrRtMtoMqIs6HzlV77C+fEhZ2fnfPHqc3R6fTwgEyWCOOfo5JSSZRIkGaIkcniwD1aNze02J/0xUZZTWLqI0D8hC3ym57ukScJ61WQcTZiGNloeoTdXUYt1nOmQii6i6BZOYpMbFQSjQuvCVfS6w+j8hN0P3kStriCt3ESTTKxKE9+eMju+jy9onJyfMXE9/BgMVWbpwjW0yZjReEilvUYQBkBOlkQUm6u4vWOKpQL1lXUOD7+FEyUsLS1T2rjE5Gyf3u6HCP0jUs0ESaXSeBZ/eEIw7aNHMwRplcP+DCM+IvADnFylULB47sVXyJKQ6WTMzsO3iU7PKC1t4SkGJ5ND4jhh3j0kFTUk3UIyCmRpTJ5nqGYZyTDwJz1QFLIspVBfIRwNwDAQjQJpmpFMBgiKilSoIUoiuAuVtFA0yEWZNI4IfJfYD4kDd1GrnvbIRZmsUMEsVhGiHOdsl2jcQ7n8RUhClEIVa/kiwbiLe/6YuHdA6k0xFRECd+Er3d7AEGLqloWQJTQqBb7y2pfQVJWD3Udo/hi7nxCnGYok8pUXbpBlVznr9hlIc567ts2Lz9/m1vVrNJvNhUGI73Lnzh3u7+zjKWUKLYvo6JhSsUCWRCgiSLKMUagwGXewO+/joxBFMXkUUZFi9EKR+x++RxYF3Lj9LInncrLzIWIsEc37zPKEPE3wHAejWCa3CpBErF24QKxX+f/+1z/g0mqT289/kelkhGaYFBWZ1uoWk8mQbm/AUgu6/QFz16ffGzM5m7DSfJ3XXnn5MyPNj2u/9x7eZe6GhLJFff0Kmm5+XynJ/ZmIqD/GX2bM6yn+8vipifrg4OCv4zye4i+IT9PgVVWVRqVMbWObVn3C3Y98io0XqIzHuIJOIqokcoFc1uifn+J5Pn4UkkUuoe8Qn+8RT7psXdmg1l7l3Q8+QhQlPnx0yJH9X6mvXmT78mWqtTpRENIf9zk52yWLfOzp9Im3teMHPNh5TBBE6KZMfesqSjin8+AOlXqDQuMWkijgPPyA4Y5J5bqGHnqYskSxUSPx52SuSrmxRGNphUrBIkolCqUZg3EVJ86RTAtBK1Jc2sJalUmTmFxWuPfogFaly8uvvEbBsnjw8P5CaEQvMZxOybOMm7eeZTjo48chVq1JkgmLmWNBJBx36cYBA0VDFnKKhSLL9VW82RCruUpVF5nbI9rLq5jbl+meHNEdjjk/3MWotdlYX2eptsrG+jJXL13i+PiInce7zEZj9OUrpIKGWqlDHMG4h5ALRL5H5O4jGwXy0CdRdWRVQ4g8yoZOEIVkgoxmFsm0AqFnI0gyQuwhJDpiLBHOR8TTPqqqkOcTHHtCLsikSYKoWiBJGMuXyOII//Q+cX+PpLe7+H6lmFSVyAaHiMUqUmWdPM+RJQkhcFAUhWKjzeZynZXVdR7eu0utIBG6I5J0xu3Lm7z4/LNsbGySpgmNWoWypXP5xnXSNEGWlSdGL/c+eJfW9WV+4bUvIQgCcRwznU4Jw5Bu54wTR0K3SriJiBcl9KczxLMOipijxCGdw33cuYOXKKzcfIVqrcHB/i72eEBDSXjx1S9zfnbM4GSflVYLz/c4eCQieyPOHr5HIGjEYUjozkhb6xTXLlNtrXDp+hXcyZCpFzB3PabjEYqqLr7PICSJfIrFCoPOETPbIdcsNLNMqVKjKpr0ApFvf4Zi18frtVGt0PnTbzGRG1x97hqqof9AKSnnwc5jms3m00DnKX56ov5Buc6n+NvDj9LgvX7lMu1akePzE+y5QyiZhKnIPEjodnZw/AhJlkgljfODx4SZgFmoUCw30JcuMh2cIYs5G+ubRCgMZlOevXUbxbyDn4gI5RadwRhdN5AkiWKpysnuA4zM5/T0iE53yCCS8BMBPwbVMBgefIQiy5i6hlJusXH9eURJxNJlWo0aHz54RCEcUaqalMolhCRi6E4pqAL66iZxFEOWkUUuQRBgtrcYdY5J7AlZmuA4DpoqU24uY0o5YZqiagqlokX//JTdex/Q7Q8QSi1UTSfPIUlzVtfWkWcT+qHH8GSIH8WIahlr6SJrW5eQVQ171MP1J+SiSpjAFy9vk6Yx47lD5Ljs3P8IX9CIogSMCmZrE6m6RGZUOezP2D34Bp4fIVfaxN0+o70PKKxeRTcs0kmH1B4haAWyOCTNUgRJQlc1RFkhCzwEf0b70g26ex/hD46JMtDNKoWCSjDqwPSUOPagsUUi6cjLVzCLxYWgzOO3yRFIli9jNTcQ8hS/u0c8PkP+Xro8cac45z7V5XVqtQaj0z0yr0zUPyKUVURJIg1dJDKUQhU/EZmHKVvbV7j50gvIskpsj/mVr3yJYrEEQOD5bK2toMsp/c7JohHJMHBth27nhIYhcOXCRe7ef/Dk+lUkgd7ZMUqpwcWKxtvvvkevP6d2vUmpscpsNkXJfMrVdR6/821EIafc3qDeXCLPMpIwYKndxtAVOkf7eM6ck+NT8jffQMwz9h7dp7Z6kQtf/BXiNKc7GGF3j8liH3FygihGxGOLumVw5flXSZwpD+/f5ZUv/xIr7Rbng4fM+ufU17YZT2dU6m1W6i0GnRMIHC5c2+LWcy9xsPvwUxW7Pl6v3dGc806X4/MBel2he/gQTTdQJJFW0WBr4wqyKD0VE3mKJ3jaTPY5xWdq8L79PtcurHNy/oA3vvMOk0Qlkg1kSSVJc4R5lzyMGB8/JENGtwqYxSb2dITgzaiUyijKGt3BgPLqJUqVOp5noxsmpUoBfJuOG3J+doppmHjzKdHwCNEd0p2+wV5vTmF5Qr3RRFJ1aqUqUuThD44QjSWqtSpKHlErVhC1LS699hJ28J/Jkjl10UcOFspo8azHheu3kQWJvUf38TwHMUuwbZvQNEjjCDEeo+kqYp7hzqfkzhSBGL25judPefjRB4Qo2EFCJFkU2tsoZhlv3OV04jF3HrLcqrNSLzA4HSGqBVoXb5CggKSi6CZC7JOlKQf9EdFwwJvfeYPReIJSWyP0baT6Onpji3DUg+yQxGzQG83IopCCriBZVaI4YfPmF+icHJNIOpKYoxDjJyGyVSMVBNTqCpSayJIEqo7VXieaj7B3zuif7rG6us7s+AH94Zg4T1CMIiopSaFCJGtEUYioFyjU2mR2nzSOUctNguEp4el9kt4hWrlFbA8QVQNBLmLUlpD0IsK0w9weopV0pHIbQdLIYh/yhNz3yEIXyayQyyaT2YQsDqgUDPYeP+ZLv/jLOMJC0hf+fHTn8uYK169c5sHO4x9qRGrV13l4cPKJ63c46LN374BaGS5vr3K4c5/dvQHjo3uIm9ep6AYkCVIao0gCUuSRjk5we00i10byhlQ2nifNUt5+/Y8wmuvERo1RJJH4Aa6gY6CxtLqNKCm4yQOKpQpGrU06OqGipFy7eQuzUCLdO2SW5wymNq5jc+HiNt1el93Tx0wnI1zHp7WyxvnBDuHohIvtClsXtxFF8VMVuz5er515SBhEdN2Uaa6jhRnx0S6vvPQiWxcvQZ4SxzG5mBHG6V9b+vupG9bnC0+J+nOIn0SDtz8as7HU4Pz4iKhxhUZrBUXXqS2tIl26Sv/Ru5wMpwiFArJuEWYZWWCTTrqUNrYolVeYz6dUEUCE2bBLpVTgwo3bfPT+++ydnuG7Dq16jWrBQLEqzAWNoibQWK2TmSWmtst88JjNyze4+exz7HwEkqpxZXOVS1evIwoCg+NdypUqL33hOR4fnFK1NAajCZ7nI6sGCCqxP2GloiFHLnIS4E+6eHZA7IwxSzW0xgaZYiCpBlHgMzx4h1IQEgsx4cYm/U6H2Kih4SFmKWZ9hThJ8AMXdzpn1jtmrVnHn3RJimskoYtlFhD9Eb3je9jn+1itdVRRJk5SzkOVtHIR3CnoVYqNbeauC0YZtVjFrLaJA5tubxdRUmi0BWZehBeBrChkgogzm2EfP8Rau4ZZKjPunqA1LyCUl8mzlNyb4PaPkXULpdJm1t1FC+esVQsYmk5cqhGpJRJBxfMCSFLi3j5quYFj94lDD6XcorBxE9GqAgJp4BKe30cs1EAUKa1fQzEKRGmGqOq4ZxHusIdslCmsX6FcXyIMXPo770IuojbWKG9eR4lnVC2dZHTK0cMPiX2Xq9uLZi/Xtj8xutNsNmk0GpycnOA4DoVCgbW1Nb79nTefXL8Ajj3H91yMco3UKHB+fsbapRv8ndUrPPzoffzuI/JyndB3qFULVOtNzKxAqVRETgJQdRS9wOMHHzHrnRKLOisXnqWShETzETu7p6S5iJ3A4c4DZFUjmo+wKk0q7TVGoYuYzTENE9M00WWBYRKTYxDHIapmcvPmTWQBvnvnu0wnc4bxmIpl8OzFLW49+/wT29fvV+zK85zpdMrrb77FXt8mzmUipUD9wgrLUgmt2KBzvMcb33mTyWhAjEyS5aRRiOwNmT979cc2p/20eOqG9fnDU6L+HOIn0eDtHN5neH6MXGqydetZKvUWsiyjajqQMx8P8HceoggaBUUgI8W0ioxPHxGPz7jxwsvEScakf4aV+bTqBYRymc5gSlpeYamwDO6ElZUVeif7eHFKY2WT0Pe4eKFNlqYEKPQUiSh0ydKUJPRRZZnl1TXyHD788APEyEGSVVAL2IMT5tMJanMDpdSEcZ/dBx/SrpXZ3thgqVVjMJlzoObM+wfkUYKwdBHBKKOZFoqq4mcx4aCGc3KP1LKI7Cnd0yMqW89SrNQYHu0wfvw2gmKQhR6iAJHvYSlN9EKF46N7uM6cSr2FoSsksyGt1ctUtm6w8/4dEBWK9SUis4FzukMmKDh+SJwJKJqKbJYZHT9EFnKCmU0qiNiOiyBrhPaUNMuQCkVyQcb1AkTfW5hOhB6SppMFNokzXjQ62Yt5clEQiOdjbK9D/dqvsV5pcnDapTfqEHsuYhQiSRqypqPXVkjjAL21idbYIIkj8lEHqVhDqy6TygK5pKLXl6ltXsdzbRieE3pz4tmQBMjiGH88IAlDYmeMYDXQrCZiGiKkIaauU17eYhj6+N1Tdt5/C8HuogQjttZXvxdJP4eiKNy/f5/D4xPsMCNOc1RZ5N6Dh5wPJmzdfoXpePSk69nxfI5PzylXG0xjG7Nc49pzr7J2YZvDnfsMhmMCIaJZNlGIEVKFOEmYpgqbV25RTjPefet1ZqmKTsa0f0yruUQmgRDMFp7WlWWiPKVabSDJEtN+F3nQQZEUTM0gSRZKZqoIRSFk1JvywQcfkqsWrufj2D5X11s8c2mDq89/ieW1DYqlT0ajHyt2zedzHuw8Zv+0x7v3dpi7PnKpza0XtymWKozHE6ZhQHP1Ih99Z59UOOaLX/17aLrF4f4jhCzh7qN9yuXyZ9a7f5qo+Kkb1ucTT4n6c4gfp8HrBx5vv/Mu/emcSNQ4Oz4iS5KFcb2uk+cCarFOLipk8y5Kq0miqChWmfVKlVnvhMfvfpsscClsbfDCS1/g5jPP8if//U/o93vIjQ0qqkEsg2EVUcwCnhcTuXOK9SVEzWKzXWc6GRPMTI4fvEcy7mJKMsVCAd/zuPfgIZHvcvXyVcrtJVJBYTSZ4/oD1NGIOJdJkohwPiJYWqNcqXJhU2dNFpCTEM3rk+l1Em9O6s8RJIFwck5iDyksbZCFY4oKSFmEKEqU2mv4rkNqFEl7p4iyihh7GLqBM+nij2Vc10GuLCMXG4jlJQTDJIlzRt0zzs7P8TyXsqmThw6KpJEJElESkc2nKJVF7VsqNege3EOvtMmsBlptGV0W8bp7TM/20Btr5KJCFEYESYLgeouxqihCmI+Q8gzVKINqkgsCIqBKoNnntFs16hef4d67b9KfzFGtKmkGURiQkiOZZTJJRQQks0IWBeSBjZCExNMhuaKimWUySUHWLVzPBVmntLrN/OgjfEVHVHVQCySSRprkpJkEJJjlOpI3JvNtEr3G0eNHKGYJtXkBrerxpa+8hmWo6FJCs1blwc5jHh+ccO/xAZleZmtrkyuXL6MpKo8f3WPn8QF6Y42zTo9AMqmvX6Gtm0TaA07OO6T9LuuSRBh4lKoNbr30C+w/vk9VTnj2mdt8dP8Br//pn7Bx8wuUzRqO56KpOrKmkQsitmsTvvc68dZFpMil0loBq4pUslCyiKJpYJpr2OMR08OHrGxuYuoGcZwudOoNEa1e5vTxEefnOsVyHcPQaa4uoWrrTM728TwPgMl4+MRQA6DbOaEoLEjWFQ0K7S2S3S62k6IIBvsHB2xfvMjS8jLu/gEnJ0cIxSaCZeB7PpPphKohc+u5X2DU73D/0Q6/UK8zn8+fkHIURYuSwk8RFT91w/r84ilRfw7xWRq8k9HCSGOWKhRb61zYbDF1I7qjKY5ts3FhmzTPmc3nyIJAqb3Jc6/9MmkcMZvN8cII3SrTufcmy2rIl156jtd+6VfwPA+9WMfyBpwe7aCapUX6MwqZDXuUm2uokopIThCGpHmOoGgUK3XK5SqlgsF8PmN48hghmuGGKfXlDfozm+HM5qM3/zvj4YBYr6BmOvXlVUrVOrJmcvrwPd5//RuMH78HZDjzMWapjpSL+NNTZvMujqRgGAZWtYksKYj1OmoaMR72Gfe7zN5/E6VQRZEVlPoqmiJBYFMqlJDsDkmWI5kV9FwhDD2mvRN8d06cLGRO8zBAqa6CpeMFLsxHJL5DgoSoueSijO/75KMzzPYGSAp+/xRFkfByIAeKbTzXJUrnZGFIngtoS9tkcUR8cp/Yc1FrSyxvX8f3PGxSJFUn86ekuoljz/B9h/OxQ6pVqGx/gVa1zukHr3N6uEcSLpTTJKNA5rvk+aLOnwY2aQqippIXq8S+g6JbKHUFTVUQ/Dl255BUlFFKbQRRXsxlJxHIC4enaNyhWSvRaDTxggAvybC+FyFXiyUuXrrMysoqH7zzXf6XP/gjNq4/j50qlC48Q2N5k8lkwP3H+9y+dpntqzd5uHvEd771ZxTXLtFarZNnOYIosrm1hR8mHPROcacjBp3TxevHfQwhYWNjA0GUIfLQxAyzUEIrWIymM44PHnO6+5A8g/LSJnIwAUFkMHHI5AgxziDKaDZbNOtViqUiVVPh7lvfZLb3Ia2NZSJ7SFEV0WWIEpvnX/sql67eJI4jojBE0zRkReW9+Yx3X/8GDx49plCuYRg6RU1C01WWiiqCIOKKBrKi8qd/9qe8/9EOdpRT3bDo9XtEvsdLr7zGylKb46NDdFVhPhoy6x6yvrrM1sZlyuUKiiTz+O6buI6DE+VESUbgu3Q7Z9TWtrly7fZPHBV/diYOCqUqOwf32Vo/XnzPT8n6ZwZPifpziB+lwZvnOYf7ewyckGs3buD7AeNUA9Wkkgt0Oyfs33uHaq1O7owoVMosLTWJAw9FUZEFiH0HbzZC1Q1a1XUsQg52H2KYBeIMREFktPsBWZ7h15vMDRU1h6WVFRLfQUh8hsM+u0lELuvoRpGNy9fZvnSZu3e+xfDxBwyylOUbX6S+fgHfdXnwzusc7D0myDWs5mWM9StY9Tp54pNGDte+/L/j4K0/4tGDd9l85hWWbmxzNphgGGWsPCd1xwi6hWGYaKpGHtlUNy8hzofMM5E0hzxwsZYvYphF/DAgsEfIcczo/JBkcIpZuEZhZQN3MifLRDK9RBoLpNGETCuTeA5KFCAvbRCKc7xJH282IZcVMlEiVw2EPCN1JlitDSJ3Th66RFGMKIrIZolidYXZ4QeIigGKQeZPCXuHKOUmqiIT+3NQLhAEAa49BUkCRSPqT1ELDfxgyhv//euIjUu0Nq9gWibOsIvnucTuFPQi4aSLYGuozQ1EUULUCkgbz5KMjpFCl3R8QhrHZMUqpipjSDm9/jGpICEpCpJuodZWkESJLA4X0X6SEHUeocp1SpUS84Mhql7EdWbk4yHVdgVY/NkHaU7Pg+uFEsfnfZrraxiWiWFucn56yP1HO1y9tE0ah3znzttcjmVGMx9ZEigVDJbWtqhYGlc2VwhHZ/QffJejB++jaDqleosPH+3jTt7CiCasLi8RzoacHB8TJCndowMEQaC5cYlie414fEouqOSxiuDPIQkJhmfYxIzqVRRVQiClrgtslwwuX2xjKSEVy6KoiShRi63rzxBFIceHh09ESULXpt85JVIrrNZqRIhMHY/h0KWlp3zhyy9z1JsQZTF//M038LQqy1e/AP0+RmsDZzrkgwePaC0tUavV0QyTlXqNCkVefOYmSysrwGJN+4HHvccHxGqRy1dvopsGd95+m25aRHZDoijEKhZ/oqj4R2XiZrMph8cnjGYOZzt7kGVcuXj6tGb9M4SnRP05xI/S4B32ujzY2aG9ss6N69c52H2MM/YoaQaRoHDh4iX8UYflRo2jhx9SMTVe/tKrdM7OeHR0QoiKqGgoZhl5WaM7PWZnZ48becqxE/Lh2x9iNta4cv0mUrlBrd7GnQ6Zn+0x7p5QqVbJsoThyWN6owbV5jLhpEdJ8BiaGjcvb/PAHXLUnWAIEb2dDxgNBzjjHoWNG2SJhFCsEeQig9GIWr2JkCZ44z4RMnO5glxZYe3SNUJxh/7Mx1i6RDg6Am9KmKSkiYNKClLGYNDhvD8gTWSS0TmTKMa1CmRxRJqlZKFL0ttHTHzi4RRNqpNqZYQsJ04ixGINRZKJZh1IE5Jgjj3qkUsSQRSRRB5iqoBZIRyeIqUhme/giSJ55KO11pFFEVmRyVUTJIU8jhGFDEnTKV95HjnyyRKH4tol7LPHxNMOvVmPHNDLdYRZDylPaF+6xez4HqNBj8aqQZpmZIHDbNhFLLdRGz5xEpOOTkH0CNMYuVBFLtZBlJCNCpKYk7l9rNBG9YZo4QTfc4nDYDH6loaQpiiFKpKkkIQeYp6RSSpBFDI+30e1ytiOjarX8eYzpDgmQuHNdz7gGc/DCVMU1aDXOcNxPVraghQce8ZsMuPu8QFvvv0+hwcHDAMBbRay3SpQrpQYTMacfOdbXN5c4bW/88s8evcNwumAd+7v4ooFrLlLtWiyudwkSxTufPcOq7eaXLl+CwRwXZe0oqGU6hAF2JMJhdVLVFYreJM+9t47NGtlqoZA5/4dZo8FVltVntuo8n/+P/4faDabT1LLYRgyfv0d/MDj/v0HT9LzqmZw/903GcQa/qRPreFgmAV0GWorbUgXKWkvk3h80sfTqmxcfRbXsZkMezjDDrXNq3TsMR/dvcu1q1fQidGJWV9u017+c5LO85zdhw/I9DLbV29iFYs4jkOQilx99mXGvRMOD/ap1OoIgvBjPaI/LRM3m025+/AxvqBhFJssbWzTvHCNE3v2tGb9M4SnRP05xadp8PrOnLIm8Pwzt5BEkUqlTH8wJAckIcFPcmbDLrLTZ00L8PUSk+mM/sQmEg1SQUbSi5iFEmU1g5LCwWhA7833qJRLqGYRs1zl2q1nGc5cQkGhdeEGaZpwdu9t5uUKhUKRYnMV1arh2GOSYE5s6sx7R1x94QXGG1cIjClr65sMel1SWSdTLQI7RXJ8kFW0QhkpS5k7NqZe4Gz3TXoHDxZzzHHEuN+hrMvMBlPs3iFhJhJNplgl0EQBIfV4sHeEMxuDpKMUKuSSQhK7+FOP1HdJgzmqZlKoLxF6Dm6UE7o+ilxGVGQgRCZBW73MdOcOJAG5toRglBBUHTkFcXiCEAck3UdkWYqmF0DI0aVltJWLCxcwRQIgjD3s43u4nV1ko4i2tE2eZpjFIvPeGUkeIecJweCAJPSRCjWSNEDSdKrNJRrtJYTZwqt7Ohrg+SFCnpLrFZAVRM1Er1Xx3SlKuUXiTckDB8wSme+Q2z2arSaavkFq97F7O4z8ETESSS6TTXro688hkJHNeghWFQSJOI4I+4ck41NmikpuHJGLCnHvkNyfUV/ZgkKZ73z4iAcPHxGGAZqQ4szGjKYzAtGk2WrTG46YRxl2ppIGAcbqVcraAEmU6Q+HTCcj2o0qsqJC4DLq9zjv9BAUhSuv/hqttU0C12Vuz4jTgNHEYeCleI92EI2FTrkbJKxs32AwnjDrnSHmMaooYc9HxHGMLOS88sprXLxxe+Ei1z9jvVXiuYtLXLp0CeBJc1YQBMgi7D5ckPTqhSsIgoBnz5nO5otr0aiTWi22n3mW0aDLg3t3cYZnaMRAzv75gMa1Vzg5OyfLcoxKE/fsgJ5vI2QZg16X21stWpZI6gzY3PrCJ6Jgez5j//iEi5cuUywujJCSJCZOMzRDp95eYXyyg2PPKZYWDlaf5RH9w5k4ODw+wRc0llc2OD/coVkp0lpeocXK05r1zxCeEvXnGD+owev7Pn/0ze/w+P5HuHG2SNNFEbEzQCtWIE5oSR5ffe42ResG/4//53/h3be+Q2HpIka1hZ9KJIDnzNHEEDGKqV99nuGjd0k9j6vPf4njsy4P7t9n+9I2UZIx6Z/iez5q5tNIM7JMJUWgIEXU6xbNW1dorWww7Z0zGo/QrSIFL2YyGZPKGpVmleOTU0S9hhSmZKFPFvho1Tp+/4j+6SPGj++DYmCUqoSpQKJY5IJKtTxjerxPrJXJ3AmKnJEL0O2fE6GQFJeRyy2U8iqpPUCJPJBU1OYWEimZPSUaHRDFIXJRA1VHri1hFCqEzpRo3CFJYkgiJFlGVDRS3ya1R+RJglaqk2cp2fCQpesvkPkO494xWRSQuWPUPKFav8DET8hmI/zBMVmWQ30TtbmNIES4zhB3PsQSJTJBQrAqWKUmzYs3EfQCcRyRBTO6R3uEvk+cgTceoszHIBtoTZM88BAVFSKPLHARygLW2k2S0EFUTHIBEk9GiFzqzSbLly+QemMmE5tQ1JjnGgf2BFkVsdauEozPCGd98jQnmvVJph2S+YBEEImSCNUoIKk6xVoTgZwUCTdXOdt7TBR4mHmIaNVJU5EP3vkuhVKZ0uol3DhnPJ0jZAmiVcS0iqSyTslc2Il60yFWocz9/V3e+/Auppyxde1ZVre2MawipXIVfVbkO298i5kbcunFr9B59AHnp8fM5zad3oC42Cd2JkSjM4rtNYq6hCGWsIUMv2ChaippkmIWSgyPd6moRW5eu8pwOPzEyJIswoO777Pbd3jmK197subiOGTY7xGVVti8dgUUgdFoyHlviNzcxNBLCLMOspjT3x2QDYdsNFYpN1pYtSaSXqD3+F2KqkweTigLPi/eusDYdpiMB2ia/qTmvPvoHnIWceXyZT6OsmVZQZFEoiBE002SLCeO/5yUP8sj+gczcYVSldHMwSg2OT/cQU89ti7cekLKnxWdP8XfLJ4S9ecc36/B2+/36Q36dBOLq8+8iG6YhIHHsHtGbvfRhYWQhGmZvPXRI4RCneTslL2TA6z161Q3r6PJEv5kxmTeZ+P6s5QrNfZmE04GHaTKMoZZZNTvcBTZXLxyHdXIWdmo4etXabfb6PUV3nznQzJRAqvMxI1Iz86olIvYnQGh71EvFxCzgMeHHXLFYjgeoa+0yQJ3EU0KOW7vkMn+h+RZirZ8GcUsous6kzDD3X2EVWsznvrEuYBCjjc8YWafk6QQSBZSYxVJEFCsGkqphlRqkIxOSZwRVrmOYRaZ+u/hei5ZHKEoJkKaEs8GGGYRtVAl9WZ4/SNSb0b52otI37Pl9EMJ4jmybiEVqgSRR15aAXWOleR4swGmmFBqrWDPZkxPd/GGHeIwQCw1yf05QecRilkkDV1iUcPrHSLW15FDm1TSSBHI44jIt8k8hzxzyWSTLInJ8wRz6QpR4CIaReI4Jg1HpPM+QjRHUlREswiRhyzmoOqIpTqhLLK7s8O8XuXyxhKlQkIs6ZSsJvNhj/H4jKTcRCk1EQKPYHhKmiZkCKj1NcgSzI1bKJqBLGRImsFoPCHtnJD4LrPeMapuEtVXORnOWG038OwuBx++T3nsEskFhNiH2GOpvkxldZ1+r8P+/mMa9QayXqBcbhOfnyKZUG60ODo5o3XpWQwL8hy6nXPCTGI8s5GtKl4YMn34AYJeJJ72mB3dZ/3CFXz9Gqok0KpXqNTqHD78kPPjgL0Hd9nf20VIYwrJlOu/+iLAJ0aW/MBj9+ED9oc+j/YPccRvcmFzi/XtyzizGZP5lNbKNVqtJu5kQPf8jEgyaS6vYU8sBqMTCiULvVghymWm3ROsShPyHN0wqS9v0lAzzFDh7375ZW7fvv3nNwrfJwyzWVHRLl9AU/6cdC3LxJDh7OSQaq2BLAoo39v/k3hEf38mbufgPmc7e4t0d6XI1oVbT2bB4bOj86f4m8VTov45QZ4vtIHra5dQE4HJdExNlFENC71U4+0PPiDtP6a5tMpb+0MG0zmVlSssl9cYv3eHyf6HFFWRSnsF01SZZXWyNOO9b/43JjOfVKsyDTKqhkCxvkJo9yjLMZkIk3nCcO5xPn6M2YzIrRpKZYnmyjpxFDCdjHA6PfQwIvXniGlMLCqcHR8Rm01CP4JpD0MRmXZOGPoTSFNyRCBDCGzyyEFZv0yhuYE3HzEaDvHRCCYDEnUOgohgVPAHPag2F37KzoRg3CH1bLT1GwjFBsl8gD+fENhznJNHxFGIKOQk7oScnMS3cQMbUS8Shy5Rbx8h9kmTDEnOySWBeNoHcsyV7UVt1zBJspR4PiHyZmRJTDw+5ez0EVPHJ81y8ixDW72+kAV1J4SiTG6U0RpbYFbxj+9CZw+FlDgKiJ05armKoesUSmUCPyCMF/VQf3y2iM4lHTlNIEtI7DFx/xBFL6JaRURFQVZUJFUlmnsopSaGZZIkLu2rN+g7E44/fAPTtIjNOmmWkY6OsaMAsbxEEvmL6D8OMapLEAekgoixdhOCGaIzIPYdcqOMkKQ4s2P01es0Ni8j5CJ+EnIy8fFmLq7vY999E7XcZHlzmzhPQVIo1BoYhSIfnu0ync2oqibeuE9JherKJu2NS3z7T/6Au++/w3MvfQl3Nubue3cYOjFT20OQzoicObXtZ7Caa4h3v0MQhYhmiUbNIA5det1zosBjdLrHxpWbPPfyVxAlkc7hLkY653QwoTe4gysVuXj5OtPx6ElN+vZXvoarfRdJVuiNZ/Q7f0KrVqViqJQsDUmQyKIQJ02ordYBgSAOkUSBQqXOpa2Ek6nPbNBBle+iWxYFQ6N15Tr7736LX7xc59atRQT7aQ5VpVKJb73xnSep6vl8xuHxCcOZw/HJOR++9zYXmgWiZ5/5IaGZz0pVf3ysrfVjyDKaF67RWl75odd8VnT+FH+zeErUPyf4ePTi8tUbJFnK4fEJk/4xM8el0+liFIuEfh1teZsozLFdFVMusH7jBmgW995/l9D3aK1topkWoztvsv/wLm4qsXTzJbIcJKtIJAsIkYPrJ7z/3nts3X6F1FS5+swXuPfhBwwCkUazBnnEaNRHUzR0q0jnsEty9oDrazUe7uxyFmhkooQiSyiqynzvHQRBRFd1ojQlSWLM2jJ5vEgji1lOPOtjxwGeF+DPJ2SCTCKqxI6N1b6IIEvEozGKZiEWamilZfIsIp72SI8+Qm5sIYgykTMhjxxEq4JeaiBoBpIgkSsGGQJh5CE4Q8hShCwm8WbYj++glmqgaAiijLl8kcR3SYI5hcYKUuxiOxOSDARRZmbPcB0bwawgyRpZHJJ4M0gC5OoKgmoQj88g9JBLFaRSC73aolwsgFZgcniPLPTRW6toxQrebEriThajSbGPe/QRcQ5e7wBBsxDzDKlUI4sC3MExwnRAnsYEkoqoGiiRjxuMUZOQyJ4wHE+IWzdorrdZ3brIaOpyuNvk9MF7+M5kIZ9aaqKV61iNJaL5iChXiGYdxCwjtufIxTqyYhAnQzAbGMuXqG1cw5+NcI8e4acpeS4hSQqZpKIIKXqxSnN5FSf0mc9tLEWmWK5RrDVpVYo0TZFyaZXdky67Ryd0Oz2OzgacnXch9hlHItbGTZQ0J5x2SYw6cRSiSiK1izcZ7ryDfXwfpdHAKpQ4P95h8tijWq3w4qtfRTN0Rr1z2mWDWzdf5PR4n+7hY177u/97AA4P9p/UpEHgwuYm3eGYZ599hlHnmGLuod+8wSQJON57QNVSQZTIc4HRsIcYONQrJXJR4vr1a7jvvEt/PMRYXaFSLiLkAr2TPRR/yJdf/lVEUXyyhj/NoerjVPUH73yXoe2TGmXKrQ1Wkgw9mhL4Pt/4g9/n5uULXN5c+Yk9ogVBYGNjgysXTzmxZ7RY+cT+nyQ6f4q/OTwl6p8TfP/ohSRJPHu7jOM4vH/3I0TtAs1mmze+PiBOclLFpL5SwE9z+v0ezeUNGp0z+qfHHO3co9JoMTx8QKZXaF+4glmsUNAkMkS8JMfzJszHAyTqLCUJdUtla2WFR/fvUSoWEIwiOGPc3jEnc48ozXAHp5jTQ4Z6jlBaQvD6CKnAbO99bMdGNMpIkkReaqPqRfJpHzmyEciwtm9TqDQInDl+LpMEA6LxGaJVWbhlpSmBqJM7c8RSE2SVaNxBbW4iGQUEUSGZ9wnPHxHbQ/LAwWxvIJV1Qt8lTzKkcoVoOiJ2RqRJgFyqI8kq1tIFojxGUDUyb0YmqUhWBfv4AaKiI0gyU3dCGrgIqk447ZK504Wa18WXkOurCFm2mGf2bfJQRWmsI6kWiTNEAAyzhODNMBqrSHlEtbWEMzhj3j0mz3L6SYDX3QcB9OoyglGnePFlQtch9SaIZhXRLJM6YxLfJZuPIfZB1kBRkVQDd5IiyiK5PWbYPUU0KjQvPcM8ybhiGFi6TtF8Dm8+ZbjzHmK5jVWrkyERzUeE8ym5ZpJrJmgWmVFGrq2DkJMiI1llFFldeCwnGUkcoRbrVC/cZH70Ee58TLHWYNQ9Q9+8iCbkjE72cDUFRZZIkhS8MZZVZO4G9MYzkuIyF1+9ydFHd+j1+2RqkUzRUKMYVUhIgzlpljOZOrj2e+jFMqHncqFVYaNhIgg5GAm5ELKyvozdP8IXBZqlwpM0r+c63Lt7lyTLcez5E+e3j6PL1Y0Nep0TJsM+jfYa3uCQkp4z6E+oKgoFUeS0P0KQZKrlIqhgigYn3TMyzUHKIoLuAfcmPbRiFVNXaRZUXrp5hVu3bv3Ydd1sNnntxef4f/2X36M/9Km1EkJvwoVmiV966R8iKwq7j+6xVFH5hVe/9Ani/3H4UdMjgef9xNH5U/zN4ClR/5zgz0cvXHJBJEliwjAkzkRWVjexJ30818Xr9hFLLUaTKY7jIUsiy8srgMT0+BHvdA5RrRKRa6M3VmhvXkYVQdN0bHuON7cZDEfMhxOUPEOYD1jffo48z6k2W3hZzPj8mMlkxPLWNuuNVWa9U2pCjWFs8+BsTGuzgb5yjVZrlcHeR+hzl/HcwRudYBglTE0jL9YJZj0kSaRcalJb3aK3/wBTK5Dk4JsVovmYXFZR2tvo7YtkcYgU+2RxTDQ+gzzDam+QRgGiXiLt75HbAxBlokkXJBm5ug6iRCYpKKUGQhYRTX1AIvXmGJmPbGjIegGhUCVLEySzhj0Z4PVPSOddFL2AYlpIkoWkWEjNKnL7MsrqTURRIB6dIJeXkAoNksk5kmwg6RaCJJPHAd7ghDyJSFOBSf+Eef8EtbVFwaghWSUIXOI4IUtjpFILqbpCGoVopQZSa4NweELQ3ycZn5OlMUqljVhZRlHURRSfZShL24sOdVFCUAtopdriZiBwkPKEi5cWDUu1epO5YZFkEIcRuaKTZymR7yAbZYQ0JnEm5FlGJsmQpWRpgkCGbFqkSNiTAZJmolca6OUqoyQiC11SeYM4CDl+8D4Xbr+IfbZHnod4nodpWVz+8hfRrSKn4znL2zeJtDJBnFKt1XGnGb5sMeydQjDn8pXLzHUFL62gNtbIfJdUFjDrK2xsbvLKi4sO6vOyjKobbN38AlmWPlEQ+5h8CqUyeZ7h2jN0wyDJcjTd/L51pbO1tkzDEnHtAb3jfS6t1LhQzKmvrbO8tsHO3gEDJ8YgIolmxAjkegkfhVTS2X75V7HKVRQS1lba2KM+guQRhiHT6fRTJUC/Xx7U931aK+ts3F5D0dQf+gxXrz/D+Pgh8/n8p276+rTpkY+NU37S6Pwp/vrxlKh/TlAul9GElP/23/431GKDXBQRgF5/wLVyk0cffcDJ7gPiikN1XcWLEsJMwAsD0qN9nFEHoXkBkgi9aKKZFpFW5ODRXfzVDQTVBElCURQarRbp5JQwTTnoDMj1PVRJYDa3aW1eYdx9H3s4pqhJ9KdD0jhGMQu4mYQ993CPT7EufZGpG+GjI1SKCON7ZElCFIZIrkfm28iajlZfwZuNmVolwiikWKgwnA/JgDR0URsbyMUaqT8jiyNEo0ieg6gZxNMuoSgQzIfkik46G4IAoiwjahaCVliMMrkT4lkfpVBBX7+FYJ2RuWMQF7KiAgJFPUUKHcIgolBrY65ucDbvExkl0jSCKCHDBkVBLjVQqstImo6QpYiqhWgqZN6ERJRI/TkIKSCBKBF7MzSjQOaPcQcnqPV1RGREIUMko9peQhZSvNmYxJuhmlWi4BxZNzHXriEvXSJ7778hlCME2UCQVbT6ClZzk9npQ7IoIJr0Ft9ndYVoNkRRVWzPIwsWilf9wZDm0gqRUiLKRURypHITtb5J4LkwG5HlGZnvkgU2kqSQzvoIkoKYRaBohJ5DngskQbCoa6Yxo/Nj8iigubqFUiygCDmD8x1O3v4GjWqJ27duMDw/or26wcuvfpnX33oHQdJprV8gFUQOdh6iSpCVqpSrq4vSQR7ROzlAKC1hNAsEUUrizynXKlx84YvoRYXhYECxVODy5gp2mKHIClax9kPrRhIlLCnncG+Hre0ryKJAGHgY1uI6Go/7rC01eebWTfq9Hi3J41d/4WUMw1hIeI7OKOAzGBwRWQU01SAtttheq/Gnf/j/IxB1Lj//AqVKld7JAcPhkMvrK4ihzf/7f/5faa9uPNFA/1gCFPhEB7rvORwdn/DyL29Rq/8wcf5lm74+rT7+1E3rZwtPifrnBA8fPuTNd97j/mEftbpCrb2CqsgcnnW589b/lfHJY1w/QqZCYM4wKw0qqxvMB2d0HryFaJSobd1AlUTaZZNp94iRnxKi0On1Ka5eRpckItshdqeMeh1KlsnQ9qkHMdduPsNpr8fOzkNks0SzKTHtHOKEoBYrzOY+fpzjy2ViN6Qc+4RxxLR/ghNDplhoq9fR62sYpkHUPySenKNIG5Dn9I528MY9xucnuJMOie8hSCpKqYGkmmRpQhIsatmSVUIot4gijygMELUiqTchTxMkWUKzSsjFCrlaQDIshMRDK1xCssoE4w6J76KXWxRa6+RxhDvp40Yegu+iCjmyoqLqOkIcIpoV8jwnz1OSNENQDHIkBElFEkXSJCQXQLEqJFlCFthE/hyxUEMSRRAEsjRFsqpIkohoFDGWt4l9h2g6oCjLyHoL3bQQZJVZ4BFNu0hWFdEoL0w3Qp8s8lHqG8ilJnkSIeQpYW+PzB6QSRqZPURqriMqKtF8SFhuoG3cIncnlFYv4/g2wd5jBEUBWaW4vIWomfjTHmkcIdfXyHOBPAnIBRlJU0imp5CL5L6NLMmk3owgdImcEYKukyERjs8xSbFKFfwoJMnBKFTQDZH15SbP3rqBem2DIAj44M536PdG5JJFludMB13qlkJ9+TrdzjnFtXXENKCz/5CEDFPRiUIPbzIitieMspSqoVAvrvLB3bu8cGmFF774Akcnp3TPj7l45cYnyGc8HPCdb/93MgROj444ODmHKGAWZmxcuslkMsDIQ7Y2FtkGZz7hytbqE3nNZrPJdDplOBwyurLJ0ckpb97dxVAK5KFHu1rAWt5GiD0mXRdZyBHyhGalyFnX53jos3F7ldX20hMJ0MNv/Cl5niNXlj9h//nR8UIa+KWXXvpEZzZ8sunrL2pf+Wn18af42cFTov45QL/f53/+g69jG8u89muvMR30GU2nHOwfs3f3fRzXRdIrtG88i+95hGFE7rgkcUziTUlyUAUJyNGknFTWCMKIVFAxzRL+bIgqZHiORxAGOGfHRO4crbrMaW/I8HSfcsHk0tVbfPtP/pCzk1NEISNEQyy1SJwYIh93OibJRIxiCX/aw8tlnOkIefk6YrlFMukSu2MkpYXe3iSwR8y7h2iFKoFvI8QhZmMVjDJO/5h0fE6agVooI0r6otlKURFkHfFjfW0E9NYG4VCAYI5SqKHIMqE7wWhcIE8isjTBXF4lz1Myd4peX0a3KiiKTCxKyLpJXlkinQ3wB3t09+7hjc4QCm2UxiaCJJJMu+R5vugCj0NSb4ZilRFlBfKcNPLJQg/JLBOPzpGLNUSjRJan5M6McNIjSBNkq4Jk1clyQC+SIeLPpsT2BEEvIaQRch4jGBZZ5JM7I5L+AWngIDU2EOTFn7VcbKMKCVHgIrUuEfYPQDXI0xTBKBImGYZiIMgObhAhyiZ+Osfr7GEUSmiVFigy7rSLqBfIFYM89omnPZLJOblVhixBEkTKzWXSyEFwpwS+S+ZN0Ze3wB+RJy6RIDEYzzCKFeI4IkljRL3BZDImn53TWFmjj8Rg94DDhzvMnIBy54xCpUmxUsNJRZI4ZHx+TJZEyCLIWgFV1ZCtMrIkEYgJUeSyt79P92QfYXyEHE5JRIXUdznvdul1uzzz/EsYlkX39ITX3/gWgqzx2i9/Dd0w2Xn8mPv3PuL4rf/OvHfKtevXuHL5MrIosf/4wQ/VbH9w9trzYiRJ4NalTWRZQhQyVq8+TxhFC69uQWDaURhNZ6RGmVorQdFUJEn6ngToNf7wv+6SJQFfe/GrT+rN7aUlrl2/zr2dfQ73954okcEnm76iKOLPXn/jqX3lzyGeEvXnHHme8/a77zEIZa6+8MVFw1GhjD4ecHDeIzXKEGWEqET5gnS8wQmxPcRNY6TER9V0ZF0l8+b4YpnBzgNix4Y8JXRsQm/G8WxAJusL/Wd/TmH1GmptmTjLmc/n/C//0/+dG1/8MlEY0338AUJlldK1Vyg2V9AFmTj0mOcq/skjEntI6kwor11B0QsgySTzIVkcIuQJaRSQqFUkvUgw7YEARcOgduEiEzeGxPtebTQmT0Iy30WyNERFJ09C0nkPBBFJFCmUypQLOq5vYgdVJFVDUE3S7j5p6JFlMUKWkeUQjrrkSYBiNPF6j4k1CySVYDYkF7qAAGlGPOqC1UTZeh6lUEOIHLJ4cS7EPqnvkNgDYt1C0EzyNCaedMljHyHPkA0LIQkQgjlZ4JCHNkkWIhYapFG0uAmQJESrSuTPcEIbzSwQulPEyEZLiyiKhD0dEjoZabqYlZZUA1EzyRHI45BElhG1AopRIJZkUm+O50RIRhEhjckjH1lRETQT35nizWZokUN7eZVYlvHdKaIoIkgqWThFFES02gqyWUSrrqCoGlH3MYIso8cOot8nnE1oqmCmMyIk5GKZSKuRmRW8HPJsTKlYYnV5BdEb8fjglOLqVbZu3uDqi7+A+t/+iD/+5utMJyO2b79CpbVEHEXYnsfe+28RhwGXLl7i+PQY15kiyiq5P6NYqWKWm5Al+JMeQuTgmct896NdisUSrg9Hb75O7+gxm5sXGPS7KKrB8194iVK5SqFg8crLL3Pzxk3ev/MGzHssWyKTk91Prdl+ml3ksNfl7lGPvaMTrl++iCyKT9LoAL7nkyUxQyfArBokcYyiKE/Wsut6C+W7UMZ17CdqY4vu8w2GozEPdnZYWV2j8b0o/OOmr1Z9ndfffv+pfeXPKZ4S9eccs9mMs+EMUTU5OTnG8QM83+f45JTjsz5ioY6pl4gQkdpXEKUcUyvjne2QZykCOVkak/o++uo2ilVhartIjQqiJBOePCS2J4RpiqBoKFYNuX0JodpCrS9hyCIpAtMjh/2P3ueZL7zEjlUiqayQSSqT4ZAo8EgClywXEAtVvM6jhTFElpHrJdJZjyTwkZsbGOUmeeDgdQ9IA49wdIZMilHZQhfBHZzizMYk7hxJ0UinHYIkRvXniIKAYJSIZn3SaQc1C8GRkIoGjZUNEmdEHIfkqokgiCTjMwRZIfUdfEUl9V3yJCIanpFJBlLrEoJRQjbOSP058fCIZD5CLtbRWhcxqksIogBChlpuksz65HlKGgcE3T3SwEMqL1LR8aQHwRTyHK21jl5bJ5oOENMpVnud2PdIRYF41iPPM/TlyxAHxIGDtryNVl8iPd9Dscr4jkN09gghjRGrqwh6kbzziHjWRSrVUYwCgiiQZhmCouGf75CnCYLAokFuqY6kFQinXaLAIXZmyLKAkMbIqo6UxczdOYXWOsmgS5RGCEaZZNpH0C3kWhmtuQ6ICPMBhilT37zIrHPAdqvNalFGU1XefniAZzQxV9YQkhB/cIwlJlhbNzmdDgiOHjPzNjFWjpB0i0ajQaVWZf3SNXq9Pgd3v8P1L/4yYegR2XMI5kizLnXrCofOkDjOsRrLpJoORhHNKjIb9oiznMiesbe7S6QUaMs1rl17kciek/sD7NmQ8XRK5cIGj096HJ4PqBYNtjbWKZcrvPDSq4yOHvDKczcwDONTG70+zS6ytbzC9StXuH/UoV6bUCtZDHrnT0a9zk4Omfc7jNyEtDOgKiXsHR5zYRPK5QpJEiPICkKifEJtDBb7X3j2Nt8ZnTI4uI8zOH1yA3H9ynM82Hn81L7y5xhPifpzjiiKmDsuw6mNKlewyg1G03PmQhEvBUHTURUDLUvRFRHFLCMkEWFfJfFtBMUgsYfk7ow0uoRtH5EhkYQBkmaQyBokIXK5jVrfQNJMBKMMmkEsyqRpQrG9gZm5GFKGMx2BZiGoGiEKkllElg3k6ipxGJCLEuJ8SArMJwOy8AiluUWa5Qj2iFQAxSogFEpgmETDEzJ3RvfxXYadMwIkBFHCXL9FLop4p/chGxAr6iIKzQ2IAzJ/hlisfK+zdkZFFCmoIn4GSeKj6DoiKZpZQdBUMjJQdUJ7hNzeWlha6kXSwEWUFMTqKlnok4zPEBUVQZYW0TwiiAqCqiGIixRtmiak3pQ8dJGn5yTOiGg+Qio2kEtNYntGHgZIeYqiG+itTfLBCUapgWKUyUIHIXQQ85xcNRBlFWdwjkFIae0Ck2Efp39AHProcYik6AiRTzzuoBTq6O018kwgcKZkWYJ/fA9RAskokcYBiBKROyX1XQqtDRTdwFAl8jRi9OgM7AGxWiARZKI0B0VCtqrkkU8uK+SRS+zNUciQJZEkDNA0hdidU1lqkGsKiqERTbt44zGCPyfNc5IkITNMPG+XYDYEP0bxYr7x+tvcefdDLl/eJs0Erl+/SaNe494b3+CN//yQVJTRdJ1mpUgq1ylrMuVSCU0vopdrhKKOXqoxHnQ4f/AuShoSeS6RUadYsBgNBpyUKlQsA0EpsNM5ZjL1uPSVy+iWRRSE9Md97IePuX3tMoVCkTjNMQyDVqv1Q2vuR9lFCoLA1sVtBqMxjx4+5IVnbjGze+w/+JAgShgNOpiFEknYo1KtcOHy8wyCBOd7x5VlhTyJydP4idrY90NTVG5fu/JDNxCfbV/52UYdT/H5wFOi/pxDURSc+XzRUCXKdIYT5mFGodJALdbIBAV/fIpVrpF6s8XM8fAUubKEYFXRJHExruRO6B/cQ6uvI5tVgmmfoHtAPDpFUhZRliDJZFGApBfJIp/QlxGSgFq1QigpGNUSve4OSRyjllqgmUTzEYpZQinUQHbIc4gGh2hmCUnTcQ8/JItj1OYF9OYaYp6RJimKVSObnSMqMnGaIRlFpFILQ9EJohBBEtHalxYNTKcPEFSTPJgtdCZFCbWyhLZyGc0wEdMQe9wjnU2YT0dEQYBgliiYFUzTJHJtgs5jkiRa1JcFGUk1IU0XqepKizQKQZIR1AJJFCHOR0h6adG8FQfkkY9YaiFmOdnoFEHWECWVdNYnz2L01hbqylUkswRJjJglSPEcWVJxRl3yMMDQS6CY5OEiUxA5DrmQ4wY2uqYgl8uIsc9mq8LB9BTbz9BkGVFIFt3K8x7uXoAQzJCMIuFsQDofknsjUFQghyQmtheCJmkckGUJ9ZUt8ixlvPc+aRiQxilSNieNIpI4IUtSFEEmcceolRVyq0Ya+IhShlWukTljnNGAPMsQrRqldpvlVpPqYR/v9IwwA2vtBma5DaGNd/qIVCuSISHUN2lfuoo96nBw2ke1yiglm5JpIkoSxcYq5eYKxXKVoqGw+9E7vP3+O6jlZS488zLD7jnTs31yb4LbPcEbdSiubCMbZdT2NrEo4Q3P4OH7JFuXCcYdVtc20KOUIFi4SBmmwYqxyfnZEYfHJ1za2vxMRa4fZRcJUK03eOELL/DWn/xvRNMuZSklHJ7QPesgWlVWKssYweK3bH7PKevj496+eYPcn5MnAVbhkz7zT2rR9dIPeUV/1vnAUynQnwf8TBK14zj8i3/xL/jP//k/Mx6PuXbtGv/sn/0z/tE/+kef+br/8B/+A7/1W7/1qfs6nQ5LS0uf2PbHf/zH/Mt/+S/54IMPME2T3/iN3+Df/tt/+6l30T/TyDOqRYOz6YBpKCArBqpeQJYl3PkEIfYpLl8gC1z88wcgFxCLVfLBAUoek2QR1c1bRPMBzt47yK2LZIjIZgWl1Caz+8TjU5KjD8CsooYupCkRGXJ1mVkwJXdtbFlADgOyOCR2pwsFK99DNgoksy6CUUSQJMhyNNNCb29B5OGNuuTeCEnaBNkknvYJurvIwRTdKOIHPrlZRay0kSWZaDoktkcIkoKiF0hLDYxam2QcETkzRFVDL9ZQW1voeUjY3WP0+B1ko0iil0AyyCMX73yHxLcp1VssbVxgcPiQIHIJR2dIsgrlFmq5TRYHZM4YgQzRLJLOByTTDoJeAFEk8+aIukkuKqS+DTnIRhmtuUbmjEExkBQVudwmE2VyMUC2KhBMiYaHeL0T8sglzQXIQhRRxrIsxMDB2LiJ7zooech0PCWcD8lCl0wvIS2vkZWaJHmO1DbR7QHBtIt/+hDJLBLP+hBHlDduIBZrhPYUVVgQUKqXUa0SeeQxPd0hmQ8Jhsc06xWSRoPx8S6JPUbIkoVMa7GOqBpIVpksF0idMWmakRbLgECcJMiaQZqLNKo1dMOELKWwsk0gFQjjGCkMyKcD1OYGUpYz23sXP/DxMwmpvMx4PqMi2Aymc04+fAOxssq1V/8Oqm4Q+i698zNQDLxEJnVmeHOb1cu38DKZVJTRh2ffE6gRUY0S5tIWimaiVJeJ+3scPfgASZb5wqu/QDA6Zdg5odZofc8iEmq1FuPeEQd7O1xp/2hFrk+zi/x+GLrJ7Zs3nkS+nufxJ6/fobh8gXK1Rhzd5qN79zg72KHeXqFSrtM5fYyUvsd2u0CeWxzsPvyJBUh+3Pk8lQL9/ONnkqj//t//+9y5c4ff/d3f5cqVK/yn//Sf+Mf/+B+TZRm/+Zu/+WNf/+///b/n2rVrn9hWr9c/8fib3/wmX/va1/j1X/91fv/3f59+v88//af/lF/5lV/h7bffRtO0v9LP9NeFOI5ptpZInYTUmVAya/SnQ5zwlGx8iuC6CKrxvcYhDeIIxARheoqVuzx79Qpn/TH68jb944xwNkK1SqBZiMUWaRzjOyNySSWNAuQ8Qy5WyeKIZD7E3b0DtTbVWoPEneINe0SBj+A6qEYVQVTIBYUocsncDqk9XHTEKjppHJMLImq1Tdg7ZB7HKOU2oghi7C0iWK2IkGbIZgkKTQRNR0Eldm3co7sIigaBg3/2kDxwUAp1kvmAVNFwdt7ESWKS8TFS8wJSYwMjz0CUKOg60fCIcHSOP0wQai0QNcQkREoC8tAhGkYk39P1hhwEmTz0yKKQTA4hcMl8mzT2SWWNtP+IeNZBqS2jVlZJI5dcMVCtCmkak6YJgiiCJCFbZURDZ3p8HyHPkUSZbNpdmHTkGZFuIkoy6ai3cLPSDARJxw98xGIbrX2JPEvIjBKKVUTOIXMnZMf3ybwJRqGCloW48zlSfZ0UCQoKgiQQJRHJpIteKC9mu7MISRAoVRu0W01mfsTo9BC9uYZRbRO/9w1SIM8S/NOHiIUquT8Ho0hoT5ACe9GoqGnE8z5Zfok0jojDkNSso5SqpN4UVUhIyMllnWAyQBBEJFFCNQukUUiqWvT7B9izGRM/5cr1LWzHZXreZe7MsWdzMidCREJNY8Z77+LORki5AIKCrMhEvkOqFtH1Iq7tILguRatA8fKzHLxxiuSOkEWJpaVltDx8QpaabpKmEedHB6xcanHj6gs/sp77w3aRf/68T4t8+/0+qmGxvLaBJC1sT2/fusXhwT7jkx2iOGXSOeCF5Wd49Su/BPBTCZD8ROfzVAr0c42fOaL+gz/4A77+9a8/IWeAr371qxwdHfHbv/3b/MN/+A+fXOw/Crdu3eLFF1/8zOf89m//NleuXOG//Jf/giwvvoYLFy7w2muv8e/+3b/jn/yTf/JX84H+mqGqKo16Fb2mctrtk6QOydl9nCDETAPMWnXhKdx5ROCHxIFDY82gXS9Q0Qo0my26gwmT8xMcLyBVTZIkRleTxZ94EhPP+sjlFoLvIAgQOzMkq4pcWyOLfNyjDzGTTWJRYh5AXmiSOSOCLEMQJXJRhCxfSD5Ouqi6TpqEGJqKUq4QZDJpEiNJMgIZ5eULRFMTu3cMcYqQxqi6QeZPIdFBFJCt8sK60iwj6RpxGBLHIVnsoVWalJY28Fwbd9IDrYSxdIks9BARyAXwfY8YmcyoIOQpcZojSCLIGhk5UrGJUaiQepNFbV3SycMJWZoiGgWUxgaxPSaeD0AUkSyH1BmjWjXk8hJqa4tkekacZ4tmL3eCaCzGq6J5lyj2FxG6oiKVm8Tjc2SriGgUUOsroJVJ/Cn+bEiKRJpkiLGDVGoj1dYRVR0EiVxRQTERRYE8y5DrK4SRh9M7xKw0ESzw50PSKESQVNAMxDQmFyTiDIgSVEvGscdk3R2CcRMvzvCDALm3T+5OkfTCIsNi1YjcGbKkIKoWuaTgz3pIwZx46tNav4ikaPijc6KJtLiBSSJKuo4/9/COzogCF8GZE3s2CjnpvMfpB99C0oukcYg3mzIYd1AKVYI4Y+yEOGGOj4FZNZDKNaYnD0FJWWs3aNQ17Cjj0cNHdPb2ybUKRqWJpGh4voeiGbjOnDyUESUJMc8529/h1sVVNrcucHR4wPhkhyTLSaOQphr92A7pn1Z689Mi3mq9QaVWx7HnzCZjnIrMV778KtVqFeCnEiB5KgX684+fOaL+vd/7PQqFAv/gH/yDT2z/rd/6LX7zN3+Tt956i1dfffUvdYyzszPu3LnD7/zO7zwhaYBXX32VK1eu8Hu/93ufG6L++G561nNYWlrmrDdk/epNwlwllTR6B/cxBQlVkbD7Z2SCTMVUIA4QjQL7jx5yenJKVlkhE2T0UgPJLBEkCdGsQ+zOSNMESdYQDBFBkkFSQFaQFA1z5TJ+5DA4OaSwcW0xy2vPEAo1JEUnmQ2I0ghRMZCEHKHcQJAUojAinPRolCoEs0XjlFpqkMYx9ukuOH2S6RildRFB0YijALW4+PMUkxCtWCP36gjkIGjoJWshRFKs4p4/JsoF9MYaaRSQ5zmSKC06uBWZcD4mjKKFEtqkR+ZOiJubpHFAkmYocUQ8OkEkXZB0BqnbJxoek3pztOVtUHUyf046GyIoJlp9HWv9KtGkB6IEWYKsl4iGJ0SijCAIZFmGpBdRjSLFahV33EcuVInnI7IsR0oT1NYmYnmJwB6ThAFJliLpJdRSnWR0jFyokuU5aZahFsrk5GR5DlFCEvokzmxxYcgarj0j9m0wquhL28hGkRwRQRRIBscEgxNyb0zsz4infWRNJy4uoxSq6KUhUZbjzyfk/hxBKxJNO6SBRzI5QxBlREVByDJ0w2DlwjXal2+DN8FsrJHM+rTqNTSjQOj0CQZn5GYZwawiV1dRapD2dglmI4zqErlqomomVJeIw4DEmzMbDdBSAccPUA0TUdaRVBM/CJm7M4ovvUyrXuBLl68QzYYcHR0SSTJ5EhHM+sRRiGyWcUQJOQsRwwDRczi9f4cvP3+DWqNJtd7AsefEUcjp8QFXly6wvb39Y9fd90tvdo8eMJ3biHnGcrPCF1984RNE/6MiXkEQKBRL9LtnXNxY/kSj108rQPJUCvTnGz9zRP3RRx9x/fr1TxAowDPPPPNk/48j6t/4jd9gMBhQLpf5pV/6Jf7Nv/k3nxDA/+ijjz7xnj94nNdff/0v+zH+xiAIAtevXOb47Fvs3XsX11rm8jPPMZ8M6Z2dUTZ1Un/O4aPHKJJEpVhgNhpQ27yKo5k4wYhSe5XcqNE/fAiCiNzcRJNU0Etk0SNyowiKjoCAWm4iahZkGbk/A1lDLNTJ3DlhlCARLchV1RCyDKVQXZCFqCJoBsnwmFxSkfIU++g+cXODwPcQBEh8B3KI/ClS6CIJOXp9GcRVxNgjtUdksk5gT0lDl3TcRYxdclGm0FxDkiTcwTlJ6ON29pGKDWJ7CoqGohrkGbiDY0RFQ9QLSIU6eZoTIRK6MwRZhTwjjUOS448I+weIWhE0A0mUEc0yilZAVHTk6iqyUcGLw8XvoBjkor5w3BIgdceIVpU0cBBFFbm6QuqOyH0J0yygmmWC0Tm5MySYdhGtGnHok006ZKMuuWqAN0NIE0RFQRJyoshfdOojgrFoxsqzFEGQEGQBIYuBHKW8hKxIJHFK0ttFEEC0qmSkpM4E0SgiVVZIA4csdMgkDalQQVu6RF6qk6UpZn2VOEmJtAJh9zFiliBXVxEjDxQNVTchdMiTBLXSJMpTQtdGRqDebDEGdE0DRWD/9Ai5tHDXsgcdsiwFWSUMfZTyMnKxilUoEk77ZHlKrJVIM+gePsRaE6gub1JrLyPJCoEzRwT8+ZjJdIKShejaIf2pQ7G1Qp5IiM1VMlFFssf44y6iWSaybcwkYPviRRrNGnfe/i6qqrG0to4oiEzGQ5qmxNryEoPB4CdS9Wo2m1zPc9x332MuQCbKuNHCbvZj5bKP1+jfRMT7VAr05xc/c0Q9Go24ePHiD22v1WpP9v8oLC0t8c//+T/nlVdeoVQqcffuXX73d3+XV155hddff51nn332E+/x8Xv+4HE+6xhhGBKG4ZPH8/n8J/tgf00YDAY82HnMZDJlMurTP+5xsrdDqVKlVi6z1qrS67jU26uUyxXq5SLTWMAo1fCTmL4b01hZJXImhIMj9NVrFGpt0iQmC2xiWUIqVhd/rqKAUqiRJwFoBkkSIuoWWqmBmMbIVplgfI6qKKi6SWiPEVUTUbOIpz2yiUc665KbZeRilTSJCd05smpgbr9AmkRkkw7h7JzK2kWc3hFEHnmhgaIbRNMekX1EKijkSUIW+WjlJqkokyTxwnyjUEUp1MjyBEGQSbOUbD4imvXJAnfhYKUvBD+IfbIsQamtkecJ6fCYwtYzxNM+YZYhldoomo5QaoOqI8s6WeBAniGlEWJzC6m/TxYFBN0dYm9KFroYhRKKZhKNjsh9myzLSYUc2SxDaJNEM0aDA9zDD0CUEYpt5GKd1J2g1LeQVJM88hAKFcgSotmAXFIR9CKSUSIjIwtd8mIdxO95duf54kYnS5ALVXSrgDfqobcukOcZYXcPqdIGQVqIy0QBqTcjiwNEchSrjFxZIhcl0vkZ5tplCqUG44N7BHFAbpSQRIEsiVErLYxSnSRwib0ZBHOE+hbTzjEFUyGNA6r1JrKmMz95SDKfU1raRLeKKLLI6HiPOHRJQ5+4vsqk38EedEh9G6PaxrAyEqOEOzgk6J8jFZtYlRAljpkePaBZMlHrtxGcERN/TH/vLk4s8cLLr/Hum68zGp1hrlwhL9ZIkoTcGSHkIWaxxNbaKr/+P/wPvPXG69y782f4kytoikRRSBAEkXfv7/7Eql6DwWAhMoJB88IqsqKQxDEns/EPiYz8dUW8nyYZ+nQE6+cPP3NEDXzmHeBn7fu1X/s1fu3Xfu3J46985Sv8+q//Ordv3+Zf/at/xe///u//RO/1Wcf4nd/5Hf71v/7XP3L/3yS+Xx3Jam1QXd6iXF7FCTMgo1AqMjzf4/DRfcylS9ieTxCENFfWELwe4XCI0ztCzHNqloaq6eCMmT96E6XUIk1TFKtCNuuS+TZiuY1eqhLbI+LQB9Ukj2KSNCNGJIsi0jghE6T/P3t/FitZdt13g7+9zxxxYo47D3lzzprJIiVSokRTsuUR7oYFGB5e/WQ/GjAgQ7ZgwIBh2QbcT/3Q8IvQstW22wK6/Umfvpb1aaQ4DzXnePPevFPcmMcz77374SRLVRRLEqmiVZTz/5ZxI07EQSJi7bXWfwC/jqXBqXUQEqQTYKsVUTLDqtRxai3S+QgTz7FcD6IJluXgt7tUnNt4ZIyiFar3CBGM0d0dikJT6WxR8euo1QTllaSs1XhAnkToNEaG68giRWlF1nuIymIMhuj4DUye4m7fwdu+jbF91LyPla5Qqyl22MVqbaGzCKtaw3FcrHoXpETYDki73AvnCUYXqNUEHS/RyRIZhICk6D9CFznGvkoRz0DltHZvEKztMn/yFvl0iU5XZEaBylFpjN29grI9RLJCVtu4zTVk0CCbDVCLMU7YRCQxxXKKFYSl4clsjFqeYnSB09giT1cUk3P0vI9wXFQ0Y7kYkWcJTn0NK+yQnr6NyiKksACNtBxsN6DIIqQQoHLS3oPyIGYgnY0QWuG4Lm7YAqcCqsDfOMCur2O8Clq4SOkSnbzGLGzQsKBmVqwujpC2C8shXr4kdAXp+IJsOQUDMpmiJ31c28XxAvJZD4PCa6xTYNFY2yJdzcnmARjN5OwhSe8BDd8mtA1XX3gFoXNqRKwHBrXWoCUadPav8ujomOV5D3V5jyJVuK6PyhbUGk2atYCVKnfGn/0Ln+Pk7jf49MtlpOUb9w5ZyYDN3b0/kavXt0xPeosCXMXJ4Qm50jiWpBn6LLLiD5mMfNgd72AweJ+F6TPL0D+/+MgV6k6n8x072vF4DHznLviPwsHBAT/2Yz/GF7/4xfe9B3zn7nw8Hv+R7/FP/+k/5R//43/87r/n8zl7e3vf1Wf6MKC15ktf/Rrns4zrt67x5mvfQFSaHDz3Cl5QoXd+ioymTIqUpQzJtIslHVS0ZPTgEY5OMVqRrxaMBz2MtYtV62L5dcgjitWYPI4pVhNst4JOphgxwGRxKcvJEoo0wnb9UqY0vSSblTtXjCGdjTBGY2lT6pFVhi2gsr6H7YcYVdDYvUG1vYFTxOSWQ4pPlidgLC4fvE2epjgyxhSKOJmjVgvsnZsEQoDOEa6PKsqYRSwbu7GGU2uioilqusBpbVCptUimQ4iXmJqNVlkpO3JcdJFg1TcAiU6X5Th2fIoTNPBaW1iNdUw8KwlklaAc+QtJevmQvH+M29ok2LqJrDTJFsMy/zidI22JMB7J4JRKrU7Lytm6eYsn73wD2WqRJTGWV6HIC0R7H/IMIcBqbpCtFpCkCK1KpvVqhnADssFxqWOX7tMu2rC69wWsoIplexTLMW6ljnGrFDpHChtUTrEY4lTqWPUu0q9BFpEvJxhpYbW2kNUWQucl87xSw3Ec7KBBdX0PlcWQLJAYlM4xwRoiqKNVgVE5Qkjs+hqFW6WYDTGtJq1Wl1defpHFbMpFo0rvQrOMFdX1KrVWhyBsMJuMEZaL0ClB4FPELo21TWRjiyyNWeu0WPWPmR3HBGu7ZFmKKjLC9hYvf+rHSOKYulWwuBjywtYastKkTsCDs1NkpcXzn36R4ekjLnvnePUGi/kFrYrNnY99munZQ2azGZubWziuT71e5+6Dh6zkd+fqNZvNeHB8zjCWmGpAe30f1/fIkpTBuI9YxTw4XvHKi7M/1e75g/CdLEyfWYb++cVHrlC/9NJL/NIv/RJFUbxvT/3GG28A/InC1r8dxpj3Bap/6xpvvPEGf/2v//X3PfeNN974I9/D87w/c+lWv9/nt37n9/g/v/RNKp0dzvtjehcXNNvbLKZjvKBCq73GN1/7Auf9BaZ7DVPrYLk22cyisDyWsx6e6xLst4hmQ1bDc7I4AQ3S9pBKobMYYbs4+y+jew+JDr/KuEiRlToCgS4ydK2DsJyy8C0ycFy0KsfSJppjkhXCtrFcj8XoApmnWLU1Fv0HWKLcP1ZrFSbTGcnklHg+oViNyJIUp71Fdf0KOluRZTlozerykHQgqezcIlWy3L96VVSRks5HCKOQXg2nvY0xYIddqtJmeXYf41QQGLLRE5z2LtKtYHkh0glIzt/GpDHCC8lXU4RfwQ4C/EaXNE1QWQJBFenXUKsZCEhnAzzLRsYgFgPsoApCY8YnBOtX8Lb32bxym6oNLhm3rl3lydEh4+EYZQzKqeI6HiKek0dzRNiiWM4QlkQGLTDl/4FROWo1QVaaiCJDxytMHkORoKeLMsDDq+J2tjF2gHE8LNtFGEN0do+8d4gRElMUCKMw8Ry7s4/TXMPEC7JZHyElIlxDG4Wa9xDyCtpyyHJFvppgLB+rvYvl+pgsxtIORhpIF3i1NkQjnHxBY+fjHJ2ccXF2SnN9m+3CZ/b4FM8LyI0k7Z1gWZKDlz9N/9HrLM8f4boOCAvXcWi1u+h0ges41MOQaneLKM2wpcHtbDCbTvF0Su4IQpHz8gvP8/C0T7XZ4cnZJcvJkMbmFbZvvECBIFfgNJtce+mHkI5DlqYYY97VFidJ8j25eqVpytHpOfbuC+zuXOFbL/2WecrpieLo9K33rck+LHyQhekzy9A/v5B//FP+5+Jv/a2/xXK55L/9t//2vsd/4Rd+ge3tbT71qU99V9d7/Pgxn//85/n0pz/97mM7Ozv88A//ML/4i79Ypto8xRe/+EXu3bvHT//0T//pbuL7iHfeeYf/x//z/8X/eP0xfR2ycpsMV4r+MiPXoJZjhhenRIsJT548IQ03sDyPfDWliJaIahvR2EA391klMRYaNb0kFS4iaCCqHUxQJ08S8vkAy6tiSYPlV6hs36aY9Sn6x6jVGMtyMNEMk0SgFE5zE5yQfHhSZj/rnGI5RMXzki2cpeWeVD51ybIdBvdfo/f4PkUS4ZgENXxCPhvhtDZLhu9shPZbBLsv4F/5OPbGDXSlSb6akU3OMX6IbO9gd69it7bJckU87aOlgy7SUu+rMrTWCEwZJ1ltYfkhlhcCBuFXIc/IpxfkWYZCsDq9SzQ4Q0kHr1qHaEJ88g7L+19ATcvQD6k1UkiM0bj1Nq7ns713wPbuPvVGE50sePLN3+HeG1/j3puv86Q3ZDKbIylwwhbScSgm5wjLwa6vgXAwyRIVzSgmZ6jZJSZdQRqVXt2WjUjmyHyFI6H94mdp3f5htC4QdlmEVBqRT/sYrXG6+/jbtylWU0y6RKcLVDQFx4ciwSzHuNU6dhAivYBi3idPlqSLCbOzh+Tjc0QeoeYjhC4QaUSxGCKKBCuPsPOY9PIQtRzgSEO91qDT3eQrX/oyyWrO8698DK9SobN7lYojMMmSOCuYLZasVvMyfWt6Qig1oQOeY+PYFovLE6qu4PpzL+KqiIAcO5mxOL1LMTiiU5HUTMSPf+JFPvaxj7HRChkPLrlxsEMlm3Fx/xvMe0+w8tIrPgxrzBLF3bffZjmfcnJ2zoN7b7PRruH7/vfk6pUkCVGUUA1qfHstFAKqQY0oSkiS5EP/DXjXMnRr74MPF+MFs9nsQ3/vZ/izwUeuo/5rf+2v8VM/9VP8w3/4D5nP59y4cYNf+qVf4td+7df4xV/8xXc11P/gH/wDfuEXfoFHjx5x5coVAP7SX/pLfPazn+Xll19+l0z2b/7Nv0EIwb/8l//yfe/z8z//8/zUT/0Uf/tv/23+0T/6R/T7fX7mZ36GF1988QPdzf6s0e/3+W+/8n/QUzVuvPoyzvklTqXBdHBOkmRMFwndRoWGY7j/zjeY9HtU/Q7ognS5IHdd/NYWBoGsNlk9GpLFU6p7t3E7e8STC9LVBKQNRYbfWkPmEfGjr5JOeiUZitLFSSdLhLDQxqCLEbgBAhDGgGWjp31E2IA8IR08xqk0sL0Kat4njWf4tTZ2rUM6uyQ6foedVz6LyGOcehuVZTjrB5gsKa8FSNvBrTbIUGityJcDhFdB+vVyZxyPUEX+lDmukPECdEEyG1HML5FS4FRCjIB8OUQGdZxKE6My1LyP1mUnjsqx166QPnmD5Pw+luXgNjqYPKOY9lDLCcJy8XeeB6Nwam10ukIYheNYWL6DJRVCF+g8x1nbx+/uk077LOdjlrlBOHXcsI1lBFZ9Axm2SU/foJhfYlWaOJ09TDxFx0ssYVCLAcKysTAEnodT8fE2ruM21hje/ULpw97axq2E5BqksCiWQ1ApjutDMketCoTjU0QzLK+Kcmxsa4d83seky9JQZjknm/fRizFpnqDDBmAh611IFph0hnRtCBogBDKPqUgFjo2nVuTLMSdvfYnZxRFXt3+YB4fHrOKUee8Jg8sLhBeCUyFbTolHl1SqVSqVKmtOSnT5iOXlKY21PTwVsbb1EipPGb35dRytuHnjFt1GlZduXyWLV3T9Jp/+oY9xeHjI8fETvvy11xnlLlGWMR0fk6cpUudlaEtwnWgxx7YFuwfXOHxyTliM+dzLfxPP874nVy/f96l4NsvZkNa3da7GGJazIRXPxvf9973ue82Lfi+eWYb+r4ePXKEG+OVf/mV+9md/lp/7uZ9710L0l37pl95nIaqUQilVZgA/xUsvvcR//s//mX/37/4dcRyzvr7OT/7kT/LP//k/59atW+97j8997nP86q/+Kj/3cz/H3/ybf/NdC9F/+2//7Z/5aBve/4V2HAdjDL/+G7/J6TTjhc98gkpYZzKbczG6RGUp09mEySol2twCIbg8PaJIY6yw7B6pLsvrSkl6+Rht++STc0zYwVQ7qCJDaIMwGlS5E0yjVRlCIQTScsmXY4yUNK5/CpMuiSdD/O4eMW7ZkQ1PyMdPkEbjb18FDcX0Ap3luFtdWmtbZHmOqDTwGx0saTGzXNJxj/5bv4+sdcGrIfUCp9ZFqwIraFAsBkS9Q+xqA52tUKsZWoGsBKh0iXB8MBohy52pUXkpv3IchCpIZ5c4QmAJC+VW0PMRuV2+xmhFPjoBJLJSL6cCwkLWSt2yziKKvIZKI6RbQbR8zKyPMArhBiAkThBCMqfVWS+dsaZjkvkM41Wo1VokoxMmZ0egCpy1awjPp1hOSjKeVpg8BeGSnd/D23sRiYFK+QNuVhOMUlR2nsO3BI4jaB88x2LYY3r/y8SDHtge3uZ1gkaHOI4wRlDMLkl6h6zyBGwXWWlhV0KwHKTtlkXTKHScIIsM3xIEaxuMZ1OUKTXadlBFSwdTJGSjM7Inb+Lsv4BaDEnSBEtC0Fwji2JkPGVuch7djRjNllwkgo1WnUIbVkmGDjcQXhW/1sQOQmwvAKNIlhq3EhIEdWbHx1xGSzqtFvde/xrT2ZRsPqZCwnk2oXX7Bn7e5WCjznqnzRe+9GV+7+tvMU4txoVHpgztdpskOWP2+A2MyvBqLYJiSnwyoVWvsbFTY2djA9igPxpz+/btdzXOV6t3WC0X5HmG47hUw9oHunp5nsfB3g5n88n73M3SJGJ0eY6MJuzt7bzvt+TDIn992JahH8bh4Rm+vxDmvZXuGb5rzOfzdxNs6vX6h3LN936hh9MZg8seyWrFca9P6rW58bFPs721yXI65ktf/CKp38L3Q4Yn91HagBBMjt9mGhWEtz5djlmlIF1MEJUGq94R8eUh2fAMv72Ft30DoTXFcorwQ5xaG/XUz1tPzqnUm1TaW8yGZyxO79PpdKnUahTSY5kqFpMhWA5mMUIlS5z1A4SUSL+GzlOyyQUsh4Sb+1T3X8Kvt9EqJ48j0tWU+aPX8KTGa21hvCrxYo5s74Jl43b20EVGMTkHrdHpkmxwDEJgN9ZLtnbYRs2HCD/ECIGalIxot9LErtbJ5sNS960KjO2ikghZaZb3ly7IFyPssIUV1HDXr5ENj8kuj5GWxArb1LavEQ/OCLq7KGkRH7+GYzsEO7cJKlWE7RKPe1RqNXS8ZPX4G2htqN/8IYwxTA7fIFMFXnODYP8VtOWyOn4To4unNqlVjNbEx68jnADbr2B0jgAqjQ7a9hG2g1WkuMUKr1pn1XvMfHxJnqQ4a1fwdp/HD5tIr4LwquTRkvjJa6SDJzi1DuHec2TzIXmaYOsCIw1u2KG5uYuXr1gs5/h+hfm4jyky7NZ2aayyHFMsxzhhm8XhN7G8CvW9O+A3UMYgshUiXVCpBDTsgiKNSBXcePlTpNM+/cGAiWhQufIS6WJENu5BMqPSWmM1uMCKBty681wZZPGb/z9e/9LvYbwq7asvsr5zhVajUTL3Z2f82HN7/O3/69+gXq/ze1/5Bl+/e4iubpBLl3FUYAcVRDQlsA2Hb79O/8kjmleeY6Nd56U7N9jZ3KDd6RLW6kTLJeMnd/nLn/00eZ7zK//jN3l4PkK4IcJyMCrHZEtubHf4G3/pJ74j6/t3Pv/7vHU6BizGixWFNthS0K5VAcULu20++5kfRQjxfvLXd9BRfzfkr2+998lCv29H/a2/HT54h72afPe9/6S/Nc+Y4/9z8d3Ujo9kR/2/Mt77hQ6amyzmirR9nUiOmR/1cVzD2WBCnOawGtPe3kdUO0RJhhIWi7N3cGwLnWdIaRNfHmG0IVzborBd8tUE2/HJx+foLEJpRWEsJCDDBsKpkC3GWEEN4dhYYQu30cWybdz2Ds7ogknvlOlAsn3rZZx8gckT3HoXLSV2e4s8ibCDOsILsSotHNvD1Doseg9IlSTcuILjV7CEIXA9VipDuFWMV0VU2ujZlGJ4gtPZAzfAqXYxWUwRLcgnPYzWpaEKAhnUsIM6Op4j/SpoBfUNkievIZUiCGuYsE0RLVDLCflyjHAroHJ0kaKzHOkGSC9ECIlWBjW5QGcrnLUr6CxiefYQo3KKZIllSWyvQj4+x3Nd2LqGzjOSaZ/l2QNEtiIZnSG9EDteoZMVaZqUqVNeDYVBp2WXa/LSqYynTmMkS3Qeo3SGEBamiDFBFWyPbD6hGD/BEQbfL+073eYOFDl2Zx8BKKUxeVoaolgOor4OozOEdBC2j+VXsSp1LJ2RLybo2SWqWiW3BHo54eLkATpZ0rj6CgJBMR8iVUpl8wai2qKhMqbvfJHIq+C2N1HYGJUT+FU2r94mWwzRwyesb+0zODnErnXAr2F7HWwp8bqbrIoE6TuY5YjABrta58nd17BmF0hVsHv7JWJlUau47Kx36WxsUqt4mOwmcTTg7LzH6UWPQaTw613czhZHp+d0NnZRRcHh2RMsnVNZ20efn7HWCOm2mrz80kuE70mkeu94uAzlEEjbR3gVxLfiJnXxx9t2zr/BEp/tnV0s20IVisViSkjC87dL6deHTf76sAxUnjHHf3DwrFB/hPD+L/QdXn/zLVKrwtpGkyhOmCmb9OghTe0yCSqQLHjhR/4iqyTj7OyM+WxGoQVG2Miwy0Z3lyTLWK2mTNIlKonJ5qMyICKNcXfuYNXWENIGv17aXC6nGK3KLhiQyYKFZTHsHaKljd/dQ1Tq6GhBJhwyLbEcD+HXQBXoNMFdP8Dym1iVWrm3lhZUGqhoBtLCqnWprZW78unhNzE6I01tjLGoNNaxpgNMGqOjGXn/MarSJp+X0jBh2wgZlkYiQYEM6mSDI7LhE+y1faRbwWQrpLSQKiUaPCFLE9RyWtqg2h5WtYnT2sH4NUy6Qi0GFLNLnNY2anRENjrFqtSxu3uoZXmwAYU2BlEojFYUeUY0OifPEvIsJV/NQRUIv4rd3i3TsYIOKjdIr4qxbYrhGcaAUYpiOS5Z2F6IXo7LvblXxdm4itO9gpQ2ajmgiOeoaZ9iNsBEE+ztm8haG+PXYdKD5RSnsYbQBaqIKdIVwk0QdoCJZlAkCFuSLQZInVPfvIpUKaltMXnr8yyEotHZxLNAjZ4gwzXSSQ+vEuL6VfzWAXlWxn8mSYbX3cap1IjGfYTtg21jm4IsjWm11xhNzmjWQx6cHNJqbpEXBjt00MmCdJ6QTnq4KiGejah11licPyEZ92iub+OG64Q1m52d6yTTPo5O2OnUWd/aIY5iBscpbz08IvB92psHXIwPCWwHpQ1FlnF+dgpeE2FLOt0WlxdPSC2f816P0eDyfYX6W+Nhx3F4/a23sRqb/NVP3mG1iiiKHNt2qFYrHD64+4eK6LdGxcYYXrp1jbOLHpeTc9JcUaQxrZrPi8/dodvtAh+cXw3fe170H2eg0u12mU6nHzjOfsYc/8HCs0L9EcJ7v9CrVcRkEeMGDR4fHZGJCtu3P0bv8V0cWzIbT1jOhjTOL3hyfslkOCD0HeTWLqKxzWwyJpcOnW6TfDAg0waBQccLimSOU1vD9usgJPn0ouy01q6i5QwVzVBaY9k21u6LSNen6D1G+jVkYxvHKuVW0qvirIX4qwVx75AinWGvXcVubj4t2quSdOT4FOkCy/Ex2pAsp+RJhFpNySbnaK9OsZzCaoq1nCG9Kn53j3w+Jj1/gFFZOepu7eGs3yR78hrZ+AxMQayKUgPteMhqG8sLQGuczg7FYgpZgXACVHIGFRt/93l0FqOLFBYp+XyAcHzsehedRRitcVvbiFoXvZph+SFu2ETqDJWsyBdjcCrYzU3CvTsYIDt/iFYjrMZmGeOZrlBFTtw/wg6bCNtBKQ1eUCZo+SG2tFHRlOz8HkU0LR3etm5gd3aRAlA5stJEISnO75NeHlLtblJEU7TtYlXX0W6A0UNMkeB2DygWI7LlBXp6CYCaDzB5jskyivEplrShvYYlJWI1xq6XwSObm1vk0Yw0f7m870IhTUHzxqtk2hBdHJP0D8lW0zIkxQiMlFTqdUBgZStUNGeRzJjNZtiXPfIiJxkcM+9dQA52tYlVJKjlCNHZRlpVUscltms4m3Wsahvt18mFTZKk+M0NpKeZDnusbW7j+h7Cdlisxhgh2aw3sKUow1wEXJ6foOyA9to2i/EQjKERhtiVBho4Pztj/+D6ux3ut3bPwHuKqCQMw/d9J7+9iH6nUfF6K+TKRotef8g4lyxywdfffshZ75Lnb9/CGPN9IX99kIHKcDjkdz7/+3/kOPv7cXh4hu8fnhXqjxDey+ZcLObkhWY5mZBJj+7WLkG9weziMdVaA9fz6B/d5Uu/8SsYt0boW1RaLcaDHuvXt5GWYNDrUdRC9m68wCKKWY6HxOcPsI1B1FvISlg6jmHQ8z5JvCSfXpT7UcvH27qF5VXR6RIZNLCbW2VR0RqVRhilkdKlSGLyaIxRCoxARXNEUYBdBiQIwCQr8niGUIrU8Uo3L20QjU2EG2JWC4rBMYlTQTgefm0T2/JQyYJiOMBurCHQ6GhKthhhpIVBks/6CK8C0YLs/B5Odx/Ltsu0K8tGxUtkkWEQFKsxOllgtCkPEdJCSge7uYlwPNLTt0AI3L0XMHlSdqS2gxuEVDyb1eUxuRug4iW6SFmNe6UFqBfirl1DJQvs1hZerYnIY+KLRxTxkmIxwVlvILwWWueQp1hBHSp1lNGoi3tIawfLqyC1wuQJ0q2Qj04pxqdoVeCv7SEcm3R0RiWoEdYb5H6VVTwh7x8jnSpWvYuI55hoDhhMkeJ1dqhc+zgiXZIPjknnE2Tg4VmwubPLjWvXCGt13nn7glqtju1b5HadeDJAx3OiaEUezdHJAtfz0DrFbm5iG8P61dsUGmaPvkH/6C6NvVs4zW1kfQMvF2RCYklBxTHI1hrzJ29jKh1MfRMzG5IqhQzqVLdvMFgNYXRMuP8ccaEwiwmN3eeYD58QLxfl3rjIqVUDAs/Ftmza9ZDBfIotDJfnJ7T3bxPPpwg00WTAzvY2k+USz3WZzJfMphNsy+bw4Tu4+ZKdm69+VwzqDxoVv333DZ48fIcrN1/k5p1X/9AI+aVb175vedHfbqDyJx1nP2OO/2DhWaH+COG9bE7bdlB5ymSe0tq5hhACx5Jsrq/RaLa4uBxQJAvm0wl7tz/O9sF1MIbBaMxkNMCTEk/FTC5OWd/YYX1zgwezS9RqCG6I7QYIaeF29pGOS5FGqHhRum9hQNq4rXXcZofkYoZ0POzaOknvHjpZYhYjsmSFcUNMtYlVW0clC3QyR68q2PUudmMDDOhkTrEYIJTCCIlVaeKtHyD9kHzep5i9Vhb0So388hFa5Zg0Rjo2QuXIsIP06wijKJI5wmi89SvYfgMct7zObIBaDJF+CJU6xpLY1Q7FbEBepO9KnvLFGGk7OFu30PEcvZqioinCttFphFVtIoVAaU0Rz3G0Qqot8sxFFyn5bEgRTfFr7dK/XBW4jS5aF2XmcmsHu9LAqZR749m9L5FnKcwGWJU6GIPRC/RyhM4SdBYj3UrJQJdWmbzlVEiHR+SD03IUvnWLsNGCPGZ5/pBiOUIvx8jWLtUrH2f+4EskZ28ihjV0NC0zx9E4fhWvvYXQOXZrA1TG6uIRiQQTT3n+Ez/Kjau7HD96iI3Ca7RwbIfJ8JJsfEYqCjy/CZYm0xqyFV5nl0p7E53HZHGE5QZYYRNt2SynU2zXY3BxQjQf460d0Ln6IiwvWV7cI5kPCQ8+Th5HJOMe0rIJGmusHdwiHtVYPPgKq3GfpNrCcg2O6xJrQ55nLKZjTDznhY/fxAg47Z1y5eAqF1/8fU7vHzI8H7FIcnRR4KuIg90tqlcO6DSrhJ7LycN3eO3zv0GaxCAlaxubfP3th4SuIFnN/9gi+q0R+bePiithCFgsnQ64AdVaCIj3jZDPLnqst0JOzp+wvrlDUeQ4jktYKwlEH1Ze9Hczzv6wmePP8P3Fs0L9EcL74vBu3iGsuMxPB6xf9THGML08Q8czZtmSx2+9A9qQjy8YHHlEyym2ZRNPe0TLJY7rEFRrzE+PePTFOcLkzM4OkZaDEoJiNcVtbOC0d7AcF+YjTBphVVoYU6CXU1QWk4/OyZZzjOViTEG5ZDXI9g5FusLyawinipBThBOQj8+Qfg3hH6DzFIQgn16gkwhZX0OvphgnQC+H5MMjimSFFbZxujnuU5OT6MmbpIPH2M0tLK+CG7ZxugflCP7N38BtbmCtXcdyPIwpENLC37pJPj4hO7+LrLaQtgdCoNMlQjhY7S30wkU6Dno1L+/BrYBWyEodncSll7cx6GSJ5XjosE0x6TF9/AZS5STjczQCf+0KXmMNPb6AdIVVaWB5IabIMGiS3mP8/Tv4nT2iyjtoM0dnEUJa2O0drFoXadmoeF5GZ876GF2Uk4rJBXm8oBgcIcMWQlpYlsQIiV1psP7cpxjc+yqTh9+g9sMHhJtXsaQhHl+yvDhELQZYQQ1bWvg7t3BcHxXPUFlEHi0oFkNMsUIrRf/0kC+spgRhg1p3G+U3SQqD3TRw/A7J1GL95i6FVkSnMUGzRXjtJbLFGFRBNF7iOA5CGzLpEA2OqbS6BJZA5xnx8AS7vUFdSNblilW2hOkFsoixdUZtbRPLdomnQ5SwSXKFMxugF1NExWM6ukSlCQ/vvoFejHj5YJ3trQ3yPOf04i5H0wlpklKpt6jFhqRQ5YHPEiSLCV3/Ki+99HFsKXGTEY6UOLtXuXr9Fn6lWpKvzp/Q698ju/sGH/vkj/yhPe53HpH/wXOWiznjxYorN19kuhyzXK7eHZ+/d4R8ZaPF8dtf4Mtf/TphvU0Q+NQ8C8932ap7H0p61nczzv6g6M1vv+8/7eHhGT4cPCvUHyG8n815l41OG1cf8uTRPZaDcy7ufo3JMiYxFvGqdPtydl/E2b6OVQmxXYt8sWBx/CZ+fY1ifQ9tNIvFjGg6IMsVXmu37IgdH2NEScLyq6VhiRegLh8hLAdpWTA+ZhUnaLeCSZZkgycYaWOH7TJeMahj1dfKcItGF5GuIEvQqynJ0TcR0kK4Qdlla13+GDgexfgY44Vl1xxUUGlS7pmLDGdtD7e1SXzxiPziLtbtH0N4FbKL+6h4gV5Ncdf2S6MSnYNllxGUXoC3flCO2Z0Ktl8BywPbRU176PkIoXOM45U2of1HWK1dhGUjvRCKHKvaQsUz9GqCbG1jVxoURYbT2iTvH6KVwt19jvDgJTACz6+Rr6alF3ihEI6PDLsIUzA/u1/GaCIQWYyREivcRwblZMBogRU0sFu75LM++eUhq+PXCXafw2t0sVwXp71PEc/Q80tyXRBsXaG9vs3k9CHx4JT8/B2yzatlLnhrnbT3EC0EdlBDWjYOOb7lUiDJlmNEnuB6Lp2dXVhcYhmNrLawmussl0sqnke9UWO4mmM31onnU5bRChUtCRxJ4Ptk00vy5bg8aKQxUlqsVku0E1BmlGa43XWEG+C4PtliRF4suHPnOovZhM39TSrNLg+Ojljb2ufi+CHL6Qg3bGN7AZsHN8nShOnx27zxm/8bdjKhs7bOWrvJ0WnBf/rl/4219U0cx+L+N79EEqxz48YtHPuQwvK5duMWzVaLwdkRVd+lVqtz+OAdRJFRv3KH9Z0r5KrAxDFhLeTaredZLJaMTu7zqN5ga3v/OzKo8zz/jqPiPM8otKHbbNKfDymK/H1/9ysVhqMJ0WpBZ+8WVWWIcsMqihmdX7LmFfzEKz/1obCrv5tx9v+s6M1n+HDwrFB/xPC+QPrRjDVrxVvf/HX6gwmxU8fevc7axlX6b/4+heUg/Tp2o4vKE7JRH+3WMNV15oMTUmWobFwF28Hy23gGglqL7OgNiskF0q2gLZtCUOYoG42VrZC1Fo5fxQnqUNsCN0CpnPT0LlgW2vJQeYSlFWoYU0zOkX5Y5jlbNqLWwURTlMqx8rT0mc4TRFBH5CkybCNsF52nGA3kCTpLSS8PyYanyCDE6eyQ9Q4pTt9GB3WE55dSpO4u7uZtimhM2j9CGLDamwjLBstBA7bjIMMOJl0hvRAd1FDRGKvSRs9HWJUaIBFCYvKUYvgEoQu8Sp0sXZS+2kEdo/JyPF6pU6zmWLUOVrVNPDqHPAWvCkETkcWkg0cY6WBh8JrrxL0l2dm90rJTGISQWK0d3OYmCDBFDkYj4zmWH5JphcmiMgTE8aAoMKZAIjCWh55dEAdVxlJiVZugc+Zv/TbRkzdx/QoCjW0yRKWCdMpc7bCxhi0UaZphdzZxXQfRbtKsh/QfRUwGF8S4rNsVwvYaxXJCNLwgnw6o790hefAas4dfw7MkSmtGJw+odGPqB8+ztnsDFc1wbclbX/sCll9FyoLNa7fZvnqT2WxeWsQeP2B1eMr1K/tkaYrdaVFd2+b07IRktaC9c504WrIYHVELXK7ceo7lZExyfhez6LF75xXaW/ss4pS+rNDyKrjKZruzhq5t0e2uc+fqNi/evMLjk3NiCY7tsLF7hYtHb2J98ytUTYISNoPZkpPxO++mXLVqAQf7e9y8/TxOsaIlIsYfEEE5nU6/46jYcVxsKVhMpziWxLad932f49WKQb/H9o3neeWVTyAELJcriiLHsmz650/oj8bcMeZPXRS/23H29yt68xk+fDwr1B9BvJfN+cL1PX7+//Z/J9m/RdVtYq9dQRjNhRCE+y9BHhENzsiLouyEa2sEYRcVL0rpjypIo0W5M3Z8CmGVGmm3it3cRDo+Op6hl0PU7BKvtUU666PiiExp7KaP0BodLxGOiylysvkZRhfk+Wk5QradsruulvnIbmsXE3ZJz97BGINVbSJcD7IEHA9RaaKXY4xWWPUu9toVrFqH/KnvNZaD290vx9JCYIWl3WiRRuhkBX4V2w3Q8ZJ8fPo0DSsAr4ZAgLBR8+G7bHCjFQgb4fpQZGSTc4TWZVRlkaPTFU5zHZ2UJDGVJTA4gjxFeEEZEZkska094odfKnXXtleGkhQZslJDr6ZIp4LMl6iZIp0PURd3qYZ17PYBs2EP8hjp+GWXvxqX4R7SKu8vqGFVWqALdA4aQFrYQQ1hQT6OyGYDhNHIPMJ1XIpsBfEU4ftI20dpg4mGmPwMv9Ehm/eZRhFOY4NGt0t08RgWQ+ywyfbLn6F//IDlcsZyeEEx6+MKjScUbreL41eZmhhpSW5+8nMYv84bv/3fSYyDrwSTUZ9OvRzxWo5LsZrj25KrL7wKKieZPWKZFGRxxCpT3Lt/j631dR6cPWQ4HFKxDFGWYnshtk6R4yd41QqX73wFFc2Q0YRg8zqf+Iv/F4ajEdkqx6lU0SZnlsfI3gWt9S1kvcN0vuCVl14kDKscPTlh0n9CmufMBud84qBFt7XO195+SKN+he761rspV/3RJf1vvM6N/R0Ugk9+/GOl9/d3kDR90Kg4rNVp16q8/eBNXrh1jTCsvvs9NsZw+PAdkJKr12/9wWvewyyX2/sfGrv6exlnf9jRm8/w/cGzQv0RxHst/bTWVNvr7Fe3ufukB2nC7PwRKk0wRiGkTTLu4W5cRQQNkBaOW8Gu1qmu72KkS1FkiLBDkcZkFw+xa10kYHkBVm0NZbsgHYTtYQcBMpmSzscY2yWa9gGBVWtjt/fI+kcAWPX1MjZRFyUj2/JQiyEUqvxcboCsNDDG4O7cJus9pFiOsRrl4UB5FSwhsBobZaGHsquvNNGrMcXkrLQF9WtljKYBZ/M2ydHXUfNBacSyeRNhe5i8lHqZ5Zh8coHOopIYFnYwi1FZcC0b8qTUFWvQ8QKBxBQJOo0wyZI8jct97mpGuPccwdWXSzvOxZDo/D4mj/F27iCcClIYcHx0Uh4WhF9FSov44iFSWpjFCM/kbOzssdAuYjZFLSYkZ28j3aBc9Wcx2E6pv7Zd3J2bZchHkWOlKyyjyolIukQtx7jVBq4oiJdDwnqd8LkfIo6WaCHRCKw8p3Ac8sERDacDix5S+ARhnej8IbMnd0uL1FRhWQm5sDHhOuHODUS6xM4X7N+4Q9ha5+zwLms7V8iMTSJdOo022zdeYDyZsRqckg414e4eNho7X1Esh3jre8wvT0jTvOQhLEZYUlK/+gqPRiuG08cs51OUNlieT6Qcqo02WTSn0aizsb1Np91mcAns3eDKrRcpioLxZEqltYFfqbFYzbFEwTxeIISkFtSYLMrdcKPR5JWXGiyXK2aTMX3mPHfrJq+98SaFcOm01wgqAQBFkRGtYo5P+zx8/ISOjNlph3zqk59gfX39D30n/6hRMSjCfATZFqvF8n0jZDdfsraxiV+p/qFrwofLrv5ex9kfVvTmM3z/8KxQf8Tw7TrNy4szLodj9vdeQD08ZjnqYbwQN2yA7ZNlMXhVHL+KFmDZNqgE2wmwW5voQsFyilqMyZcTitUEWW2UTluTc9BFOX7WOU6tTTF4hE+O095AVdoUw0uMtLA7VxDSQkcznNb2UzOQKWreLx3CvBCTLCh0Tnr6Tmkh6lbBZOTnd9GLAcW0jxPUUfMhUO5HyRMMBiwXLAfLq4IlSR9/E5MsMdJC1iBPlojhMaZQFLOL0lKz0nxa6OxSM6xLuY9w/NLEpciwO7s47d1SmrUYIdwKij7Ctgju/AXywSHF8KRcDwS1ciwvnpDlOXaaEqztYdXarI5ex926jbv7EsXoCCeoYTW2kZ7H8p4mfvx1nO2b2EKgZz08z0F4m6ySnEyUTmFWUMcYg4rm5a4cg0mW6HSJMeV4XFoOwqsi/Cr59JKoKLD9CqrIUVlMNLykGB4TtDYQQUhr9zmKySl5EuO1t1HakJ91qLuK1DiM7r3G4OIxuBWEZeH4VfI4YuZWKNIUoxROUCN3Ai7vPUbKB1y97bGYjqnWO1T9KputOsvJOWDobGzh5hHxYkgtG9Fq1BmRYHU20VnEwy/9Bla1RXtrj812jenSJlotyKWPqDhcbQSsra3z6OiI+eNj7MCm223i1TvYfpXJImI+HRCGLQCOjw45vRhQSQ227ONYkuxbnucVh+VsiMS8ZzcsKIqc11/7JlYy5Te/9E3uPXyMkQ4njx/Q2dxlOhrR61/iNjdYP3iO/sPX6W7tMjEVfu+PcOT6oFHxC7ttfuKVv0l/NP5DI+Sdm6/y9bcf/k9jVz8bZ//5xLNC/RHCd9JAikqT5RffKF3KVguscJ327k2i6Zh48ATtVMHxUcbCJCu8oEp08QhLCrz6OsvBKflyjJr0cNo7uJ097OY2ejnCFBnx6dugNE7YwA4bxPM+meOByYkvj0rHLa1LdrVbRTg+Riv0YoS0XQg7pQtWusAohYkXJfPWrSAsD/IULWOMtJGuj4mX5YGiUkf4ISpdYkuBwJRpWEGIiQpMHmPV2pgsKS1DpQCVIYMKZCl6OUYnS4rRGSpdoeaXCK+GtKyStR4tsNf2cbr7CGEhbBervobOyp25vnxIevYWlhdi1TdQswsKrTBpAkKCtEgGR0jLBi8oR/thG5POMXkG9QCVLSmSBdIPceprhFs3qdYa6OEjdJ4zu3hMgoMjNCRzsssHWLUuWO7T+1JlFOhqjlEZ+fgCU+9iWTbC8bEqddJpj9ViSDE6oajUENGYZqONkAJXGFqBTf8yBaeK7VeokuNduwPLPt16m/7pY6ygQW3/xXLSUd8inQ9Z9Y6xhCCd9njwxV9Ha02erJhOxhzdfxviKd0bH+P6wU2u3nqe+ahPEa+wah32rxzw6PUvka3GTOOCSneH+WSObfv4nke4ewfL83AbDVx1Si3w6NY8qo5gOThDVhrcefFjRNMhi8UE7+oLOEEFx7HwPY9otcng7BBlDBs3XqTSdQi720ghWExG9E8e4DUlN/ZeYvr4CVGak946QCnFZe+cz//+FzBFymd+9LN4gc/xOGU2HvOVX/l/I+sb5NLDSJt2c0CrUcPOFly/+UPsH1z/Yx25/qhR8Z3vEG4BcNa7/J/Krn42zv7zh2eF+iOCD9JAHly/QadZ553LGY4XYIDp5RlOe5vo7CFZcgbSKotPHpFfPEDNLrGCkOn9r5BpnoZOdNBFBkUGSKRfR2VR2WHOh+SzDBNNEdJBWS7kCdlsQJHGSK+KTCKK2QAhLKxqA4xCOGW0pfQrgMEICzMs7SK9vZexqnWK/mOs5iYyi0vXLiRaFRhkuW91AlQcoWY9jMoobBedxuUO/WkSlo5niKCBXW0jshilx+AEFIsBJovKMXTQQAY1KBIsx4OqwNt5AVROseqD1ggnwBQpllehAMxqivAq2JV6aXBSpNjt9tPdeQeBRAlBdnIXg0GrHD3pYYocrTIcYciiJcLxsMMWmKJM8HJ9vGabdDVlNb3Esmz8zjbab5Rse6XQy0npCFdfK8lt6RIVz0vmuF8rvcyrLiLLUBcPsbyA1vVXSFZzdB4jJRTRgtXFQ2S+olar0666tNpbDM+OOD27QJ+coKtrGDcgmo+RloVmgpYu2q0gkxnS8Ykml8haG7fSIGi0kSiiXHH55AG3n38RIQW1zhqOLSjiKZfDMcavIbTCqnVx1ITl/bukyzl+d4+sOqFaq6GTBVVbEFZqpf69e4CvNOtXn8f1A+pHp1y+9U3S6TmOvY0SAUWRsJoOmV0cYQU1Xtm7BudnLFdLGp01bL/KoHeBNVjQ3dxhMLikqhYMHr/N4vKYw0cPqTguP/ITf5V2d43FfEY0H3N2coZuH2BJgdRPs9Avzpg9nvCxj32Mztrmn9iR64NGxR/0+J8Fu/p7GWc/S9H66OJZof6I4IM0kFEUs7V/lfPRa1yM+1jCJ7VilFLk0Zz04iHSCSBZQJGhhcIO6sSzPoUyYNtIr4rV2YcsIhufY4oMq7aGdD3czh6F46OjBXkyw6QpTtDC4IBfQwob4biISg1v6wZEM6xaB7tzBZPHZCdvkV8eguujZpfoeA5Ko/qHKClLfbBXQ3oedn2dYnqJjmYYM8Oqd5BhG5PFaJVj19YRtlcSzYzGWC52Z5/o/heQqynS9ZFOFeFWyWeXkCXIWguvUqeIFog8QkiHIk8weV4Ga1SbGK1R8QJj2yXT2vVL7XN7G2/tKvmsT3HyOm5nH2/nDmp2iYoXYHultakuHdGMNqW+Ok9Q0QK/3sC2LbQGI8D3A9AFKl7S2tgkWdthORmhJVQ3rpKnCXlRFnxcH6ddSuWEX8UOW8h6t0wH6z/CcitgWZgswaqvIYoU7bfwDCDbxLMBNg56OmRnc4u1azfIpMdsMmJ42SPFwm92qYfrzM+PKLTBMRkmGmNVO2jbYznug86p7tymUm+iowmWyal31hFFRrKac/boHuu7ByymY9Y7bXrnZ1w8foe1dotRlDBenrFKEoJKBaUKsmTJdDwkmvaRzQphp41JCsLuFs12l2U8xfV8kJKgs41VOWI1GdPubpLFC6aTMfPpiFjBfDzg9S/+Jtv7N7CKjPNH97g4fohrC2qb18jtgCs3n6Nd9dDJhG5QY95scvMTP07taYdaqYZcPHnMtKjQvfIc03EflUTUak1aG7tMzo+YjXpUnu6uvx+OXGtra3zmkx/jq1//Bo/f/DJaSJphlb1O/SMzjn6WovXRxrNC/RHBB2kg8zzDr4bcvnOHJ/+f/0ocr9CWR55lWJZD/eqLGAREMzI0CS7MRjhrB9ga8uEh0nIRRYzOE7AdstEpru0i/W2wPXQ0L72vbQ+rs49xK8igiVPfQIzPUIshAoEdrqEKhcmzUn/sNBFhm+T8HezmFtKv4XWvggTphxTjC1Q8Iesf4nb2EI6DsR2K8QmmUJhsVRYhL8Cpb2IsCz3vo8bnyLCJzmLSi/uoRRkkYrTCqjTR6QqdpUivgu5dYG1ewbUsHCGJ5ynV9jaLUQ+TLDCVBlgS6QXoNMGqNhC2j7BdBDYgsCpN7Fq3DOtorqOVQs8HmNUEq9pG1joweoIaHWPvvoBUBVIXaFVqp/PhKVKI0td7foljwWI5I8Urx+IUsBhgSZciTVCraZl57dcwOscJGuRphI5mWGGnPFhVm1hSkAyfQKIoohmL47eodTfxKgFRb8F8YuMUEdevHODZkt7JYy4vzjEImu0OsyiliBOwbIJKhXjcI5mf4G9qvFobXeugVYbf6GCT09i/xWrco9FqYXs+J69/iTe/9nk8G55/+eNUd/cYDvq00ynJ5YT+g/vI5jbGcqhd+wRrjQ6Dd74IUpMrzcXRI9bsnGD3Bmvbe8wHZzTDgCCsMZtNOT96SHXzKus72+we7HLRH+G0t1i/+Qrf+MLvkK9mpIspp+98HSng4skhSjjcfPVTyNWItmvY39tjPBjy5smIe49PyTWY8B2uXb9Bq9Ol3ztnVYD0AhZpjt3cpOI4OF6V1XyIHVRZphGXF+ds7ex9Xxy5BoMB79x/wCLVaANSF1RdwXO3bn4kiuCzFK2PPp4V6o8IvpMGcjIacvedtzh+fMhwkWIHAegcwjbe2j5OpUG2GLEcXaLiFcVyitIFVqWJMUCRYjd20WlpDaqVQjoeorUNRqMWQ3SWkA2fICwbq7WN9GuoNELoIaYokNJCIbDCLmp4jKHsTrFsrKCOsJynkYw5Oouw/BDyFOmFeNu3EUOPfHiCLhJs10VmKcKr426sodMIlAIhKRYjdPw0ECSZ49h7qMU5Ko5w1q5gt7exvDomXZBnMcX0ArvaQgQ10tEZlucR2JpifIrb2sILquTjs3JMHDRReYaO59i1ThkM4ddK68t4jlZ5SXxzfIrlFJPMSktPbRCOi3Rs3OYWxXSAsO8jnYACTR7N0GmEXk0I1g+Ynz5CLQYYIRFqjhEOWRKhPR/bq+N7LnZQLQllQoB00NGMePJFjLDxD15GSAu1GGJWI5TlUEx7CK9aurd1dhCtbTKjEbUuanRCXmTcf+2LPD47p1CC2aiHLQx5vU1eGIxcUm1v0jp4jsu3v0Q0m2DSGGVNyaY9sGwqtQa2bTNbLLEdj2pYxxEwazYZTS84fPMrBGrF9s4OoVWw/vyLRL3HXJ4FmFoL2b1K+8otBAJhOeTDY9IkYTq7ZD4dYzWm+L1TPB2zde0Oy9mYB699jbOzU1oHLzIYj0mTFeH6Hjv718niiLWtHSanCa1Oh8uTY3SypN5ssrF7hbarCbw6B/s7PD46IbEq7L/4I8wHJ+RJwvk8Y/Xmm7z04otEqyWrJKN75zq4VRaLGSYvSLSms7aBClwW75wQrZbfl53x+4rglefYec/Y+/Nf/eafeRF8lqL1g4Fnhfojgm/XQE7HI954800Sq0J79waP335Ac/cW/f4lWZ5TDZqkSUI0m6CSFVpr7LUDzOyyNDLJEnArZddZRBTRHKMKrKCB9KqlHtvxyE7fLlOx6l2k0chKs9Q92x5WkZANjhECjEqRQVgagYzP0PECncWYZIXRGgTYYQcDZWKWX8EKu2A7mDxBR3MKy0GnSyzPxzv4BHo5LL2pkYAGIcCtYvsh0nag0sRqbGCFXZxaG5wAZRQy7OALiTbgdPcohsfE83Pqocf2wQ1UtcIKQ3L6kHwxxqq10WmMWk1R9TUsr4LT3ccgyIbHkK7Kbj5eUBQpwqlgBXXs5hZOeweTrshFacRSzIYYrTBFik6isvhX60QG7Fq7TPCq1DDGUIzPyvjMWz+C3LyJsCzEaoJIc/TgSZmdbQzSr6PzBClsvL3n0PMBejUDy8HMBjjNLUwaIYM6WloIJP7aFbQlGL/2f9Jb1fDnS6yggdIGWWuRFgYrWaB0gdPZZHb+iDxLsCoNsB3yxRBRJFjhFtoNKSxJkQ2oeZL54Bz8Ou2rL9DtrtMIBHm2YjW8oGLb7DZ9vI2P8c137jPTkrW1rdIfXSnK33JNNL5ARRN6pyOi0Rnui5/k1R/9iyituffmG/SmS8L2Bs2dAyyVMYuWmNmceDUnqNTwHRvH5Hgo9m69hNKaIKzTXt/i5O5rNM2Mxw8fkXhNdq7eQhtDPB9Sr/pEskKSpRw9PiSsVimKgqBSBS+gGTrUw5DheIaxJbnrkRc50WLB4YN3PtSd8Q9CEXyWovWDgWeF+iOC92ogH91/m2F/QCR8uhu7XAxeI+4fU9u9zVZtnXtf+zxx/wzheEjXRyuNu34NtCKfXGAsG+lWEEHJ0nbXr5GPzzAqR9bWwLZLHXE0wWiNXV/D7u6SXR5itMJubWHX2k8lUx75+AwQZfSiLC07NQZpORSYUipVL7Wn0rIQQRu9mj511wLhViBPUJNzVBphh+0yQrOzR46F5XpgWag8Q8wv0asJatZHVGvYdh3huGgMxeCw1BgHIabaQCxGSLs0cDHONSKzIlslIGckozNEUMOy/XJaEISgi1KSVu9SnCxKdzEBSBsVzxAI3K1b2K5BWG7JUs9TitUElUVY1RaVg1cppj2S3n3soIlprkO6BK1QaYwqLlHxHBPPyWeXWNU2wvYoFOg8QScxJktBSnBc/O7HkbU18vN3UCohefIWbn0du7lGNhm8qy9HCAwSjURnMcVqQT6bUrghzvot7IqPbdmkqxXZaoWOZ9h5hN/axMwuSJMEnApuo4PUBb7vE+zdYTk4YX5yj3D3qbQsWSDXthFejXj+kOvbG/zwj3yG4ZMHNFxNPjrBDzw8L8C1JHkyJ08TLNdnfnnK7Mk7iKCGt3ULN2xSM0sOOlVklrDon9DrXRDLgGvXblD1XCbRDGnbVFrraKB3ckxYb9AIbGbFimVuuP7CbcaXZ+g8Y3BxTqPZwCpcHjw65JXP/Q2EEGRxgmNJru7v8Pj0nIlSXPQn3LnZoOoIzg7vcuX2i2xsrhMEAUEQMBpPeHj0DjJZYKIJe9t/eGf8pyFY/SAUwWcpWj8YeFaoP0L4Funkt37nd7n39hvI1g698zNWizmeH6CKnMV8it3ZpYjneGELp71DFi/J50N0ukJUGphCgeOUcirbw+gChEU2fIxczRDSxm6sId0KVq2JSZZIy0NKC2HU008jkJaDFbbKTldrisUErQ2WF2AHjdIopOiX5Kr5ABHUcXbvYFc7JUN6PkBPeyU5K1mgojl22EFWmxSzSzBg0iVa+SDKQlYMjilWU+z6GiQRyvLKmM2wi7Dc0oqz1kV6VbJoionmWG4Fe22DfHzM6vh1RBSX2dDYCMfG8hsIxwVhIfwqRpeHDKtWfhZZ7ZD1HpCdvoOaXIAuSga5tEr3smiO3dgEo0rCVVDHsl3sagentVkSwC4PUXlCMbjEaqwjn2rP/Y1rFLMe6cV9ZLWFjheYbInl1yiyBIxBZBGy2sbkMXo5JllN8XeeQ61G5ah/dontVShUgclSjCrAdtDSxq51qe7dxvEq6GSJzQDLbyDlAUX/EKezz/TsEcZyMJaLZ1t4QcD61RcRQZXBfYuo/4hZsiS0BaLZIEkz0sF9up7hznPPY4whLQq8ZoPeUcrjL/8+qR1SpBHZckU2vSSaDpkcvYUVtmis7aHiBb67TqBr7N7YIV1OWfaPadaa3L75MSrVkPnglCJesdbd56Q/obBc4sWAmsxxdcrGxiabu7vML46YXZ6SrZZEBaxv74NS9E97XJvPCap1xuM+67WAnZ1twrDK4eMj7h6/xblM2GzXOF9cEPdr5I0Qx3bI44hV/5hNN+WlH/80f/UnPsP+/v77CuqflmD1g1AEn6Vo/WDgWaH+COFbpJPpKmMRJWRqTFCrc3D7BRYiYJIYgq5PVdSIe4/QqoCgUcqILg/RgJoPEbZLsRhjpgN0Mi8dsGTJeNbRFOFWkdJBOD46zcCS6KJ8jlXrYnkV1HKMduJyn+tWytF5NEZYNtrtIOMFKp5SzAZgDGo1w26sYzd3kBik41EICcsRwqug0wiVpAjGuGqfYjnGaWzi1PZLP+4ixQyOymLe2CDYeZ5i3kM4frlfTuYI20c6LjKol/IwL0RaNjqagRdgHB+8CkIIjFdqm7FdpO1guVWM0SQXh6hFv3QY86qYZEWRrDDpEqvRQScrivMpVrWBVW1j+RWs+gYIKOaD8uCjcuxKA299H611af1pe6XbWxAipY3T3iLvH5EYjcBQTM4xaYJKV7jVBk5nD4oMIQXCdbGtdmlCYzT54Ig4K7tilee4ocEohZQSNR8ABmMUMqjhIsq0r0Y50bCUpshTsKvkaUIyH1IgUcbGimZYazt49TUwOY6K2L96i4vViMHR10g8BzPr0lYZB1vr3Lx5i+VqxfHZOaPLM95++y6XR/fY29nBb9mEG1fITr5I7+5XqXfWkUWC61dZDs6wigTLEVzZXaO9fYAVjZmePmA+viSeDdDRlOcOdlnM51i1ACEM/emc6WLIRT5HqhStJY7QiGyFj8KpNyjinPFihQQG4wlf++qXuXV7QbticbB/ExA0Gk1uXb9GkM/4zKsv8sL1fd48GdEbjum980UyZXAtwW47ZPPl5/nUc/vs7+8DMJ1OybKM+XzOG/cOWcnvnWD1g1AEn6Vo/WDgWaH+iOC9pJP1a88TPDhD1vepVEMGoymeMJg8ww07iOkKym0w+WpMdvmYYjlBSAekRAiBcD30fIiwPZz2NsYIdLrA8qroeFk6lOWlzSaWR9E/KnfdhlIPnSfkg2NUGmF5VQyGYj7Cam5h0pg8mWOSCDtskg6foJMFTthEzfuYoPS+zodHZTdabaGTFTmKPI+wV1Oc7hVwfASUXatWqCzB+lZgh1HoeIG0PWSlgQRMukL4HaygSTE+KUfCtoewXWSeIB0fr94pmbX1LlhOeYhYTpEVjbd2QD65oJjkICRS2hA4gCjJdqsxpmGVRRUDUoBTwRQxqAK0oljNSrZ6pYm7cZVi2icbHGKSJc7GNZy1axiV4jY3yIdPSk172MYKGuAE5WFJKbQqsMJW+X+WZQgU0nKRnf3S4W01xeAgXRuMwmlulEYzRYEMqpgsQSUleU9rQbYYY2wPLAcpbYzJUemK6HyGQYHlIlyfef+E1eiSfNrmpU/8MBvbB7iLU/arir0r+6TGZf3myzTaXXqXA3LpExmb8TLjchyzWilWT87ZMy7bu3vYtsU3Pv9b9M4f4K9fpeJVqHge0hTY2QILQZYkkCu2t3fYRbN7fY96s00YVpmMRhw9PmRydsHF66+RGIeDT3yS/WvXefjwEY8uBixOH1DpbLJ9cIf1ICjTrgaXoDWP7r7FZj3gs3/9r9BoNIFvFZhTru1ucPPmTVqtFqn+BlvbO0jLwVBuPLTKCUXK87dvMRwO3+2e01xx+PA+ym/yIz/24+8W2e92t/yDUASfpWj9YOBZof4I4NtJJ8vlEikkDobO1g6jCzDFRcn4NoIimoK0kQLS47cwboAVtpF+rRypxlPS03tY1Sbe3h3s+nqpcZZlrrGoNMvoxFWMCJqoRZ9iOUZgk1/cR0/Oy51xNAdTFkOTLHA2riIbm+jxCdKvI5vboAq0VuTDU+LeQ1SelqzzIkY+df3CEohpD9sLQEr0aoayLyGLoLlZTgQmF6hZD2E56HhGdv6gtECN54gsgbW9UpY16xHHMxASp7WJ5QSkvSlFunrX/ERpSitSJDpZgO2j8hRWU9RqivDL3T1CYExZpK2gTp7HqPkQ6ddw1w5AlyNm7Dr54LCcLkgbky7xNm+htUFLi/TyGFGpYTU3yzXAcMTq6LIMF9ncRVaa2M1NTJ6S9R+Rnt9FZzH+7gvYYasMEtEFxeISvZyWIReqQMeLcjQO5F6/HHkDlmmjVhOy/hHB/ouAplAK4Uiwfbxai/jsHiqaYTc2cG0La+0alufiWhakK6Jkydd+6//g5ZdeJNARn/r0qyTK8I37J0zv3QP7CO0EVBttRv0L+ssM41bYfelHcPwKq8WAi6Wi293k6o2bPLm4pFr1CURK1QvwEQRhjfFiwWuvv46jM240LV554QZxtGRrZw8QtDpdGq020WrJYJ7QqlephAH9k8eo5YSw0mTqN1HGorO1g5SSerODSJesffrTjPp9LnvnjAeXFFmKKhSLxZSQ5N0C8+2JdNPlCmk0O90Gn3z14wDvkyflRc798zGq0uLNew956c7Ndw8B381u+U9aBOEPOvk/C6ORZ7ajH308K9QfAXw76USpgtbaJos0ZXjyED9s4VRCktP7ROMx1vQErS3UbIICnFoHy68hKw2sxiZmcIiu1LEqdZzWNgIDzQ2EG5TmIukSJW3U4Lj0CtcaUxQ4G/sl41vaZXGO5qWRil9HL6fISgM1fIK3cQ1n7QpCWGWBlxKTRiAd8nEPU2TYtQ541bIzHw9RyxHe1i2wbNAFVljuxpPjbyKrHaygjtu9glY52fkDtEiRXhV0QdZ/jEqXmCzGaE0hLPz957GCJiZboeI5xWIE+QpLQDqfoJ27JcO5yFB5grAdEBY6noE2iCJHVuoYpUDlkK2QTkkeQ0qsehfpeGSXh+j5ADUbUCzHqOUEZ/0apkjJpz2SiwfkqylBd7/M37YctJEU0x7u2gF2YwOjC4S0scIQtZrgNLZK8ppXKWVgRmF5ISYOyJdPELZdssCDEKe1A9IBrUtCnLAA8W6wSjE+Q9sulYOXQCm0VsQXj4gPv470Kliuj9YFIp5i2V3C3Ru4dsm+n5894N43v8xf+qE7rG3vEMuQj9c3eePtu5z0h1TXrxCtTojTlCJNaHbWaO/eQNous3TJStuMnpyS5ZLq+gG7a21q7RrdzS1mwx6p9Gl09kkWM3Q0gDBgtkzJp/dYLRdcu/EcQbXK8LLH8ekZ3XaDIs85Pu+R5AqhMuLRQxYRBGGdZDnHsm1mg3OqsuDGJ3+E/vkJv/f//U/8j/+9ZIX7tuRgo8knf+Kz7yswa2trPGcMi699nbkq0EKySDVv37vPfDZnZdXeZWaPRwMs12Pv2m16vVOOnpzwyksNyj78u9st/3FFEOB3Pv/7f+ZGI89sRz/aeFaoPwL4dtKJbTs0Wy2absh01GM2eMLy8pis95D5IkLUNynSjCLPcLdug+OhlxOwLCyVYTkeKmyCMehkgeUG5ThcF+B4UGSYIgV0mWgVdrGCEDXtPR03O6WP9mKItDyK4RNQBm0K3PYOxnbLTlfaSM9HrF/HunxUFu2gQjG5QK8mJfM8bGLSCHf7DnZrBxPPy+u6Fey1q6h5HxXPsZsbmDQuiVyui7C90r2r1n2qN56SpQOkdDCiIDn8OtnlY4xKyQenGF3gNteg0sTp7mGFrVJKliVldORqjkoW6CJ/On2oYDc2MSpD5xlqNaZIlug8AulRTC9LTXM8QwgLf/8l0ouHpL0HmPN76Hkf3AAdz0ub0zyhmPUx6Qq9Gpb/F51dpOujFmNMNKUAhM6x29sUj79O8vjruN09kJI0fkyxGJJPS092abs4G9eRlRZqco7dvYKzto9ezdDZClNkOO09RJ6Q9o8oai3yNMJkKSpZYgdVwt07YDkIt4aaX8JqiJXvI/0K2TzB9UMKVbCazcicOq987BMANOohv/Vbv4vt5Zw8OSdeLfC8Oq3tA7xaiyxeMZ/Pqa3t4bZ3yJMVFcvBqrfJlxMev3FGXlkj2FhnuUzpPbjHmh0ht1/m3uUKKxlTny/pHd5jbX0TxxIUizGTZQr1bbbuHBCEIfFyydvf+AKzk7ewiyX9qkdYb9AMA7au3SGOE05OTvE2rvLDP/6T7O3vU+Q5y9mYu49P6Ha77xa7wWDA57/6TVaiytWX/2DnfO/B2zx8+00+/RN/+d2i9K2M6SyNaLfXmfSfsFyu3o2n/G53y9+pCNbrdQ4PD/ndL3+dzAnfPbR8r0YjH4b957MUrY8unhXqjwC+nXQShlVatYB+XHDjhVeZDM5ZXjwgi5fYzU0y4WLSIULaZW6z7ZIVOSaN0UWKsD2kW0Uvhui4ZEVLy8W4FYTjYdIIO6hhggZGWjitLcjjMtUpj9GWg9GKfDlF6OKpW5aDdH0EBjU5w/j1smsWZWTkt7o8HB/j+MhKC2nZFLN++ZmcAGE7iGoDFgOKeI7T3sFqrKPTFWo5Q3g+anJRMrYrdUSRI6pljrTtbiBstwzxaO2UB4lZD9IIIy20ylF5gVNfx6qtgSkoJj1QOcJ20Gjy0ROc9es4jXX0coRyXPBqGEBnMfnlISqa4m7dxq42wA0wQpRe3LaHOb8HRYrV3CxNSCoh2vFQy8nTznaAtOzyUIREFClGV8F2kJU6UIaPSNtHiG9QPCX+CVH+0KIVwmjy3kOk7ZS69CzC8isIx4FkiVOtlbv++QAhJZX2Gvn0gvT8Hnm8RBiw6128RhehFNliglUpqHS3MbNLsov72OYqejHAtwS63uFhb876aZ958iUEgtkyLS1N3SperQ6uh9/ZQ2mBMZr5eIgRNtVWl8XYEC9n7OwfcLC3z+GjQ06ODqnt+yT5I+LVknx6wSys8JWHPa5d2aFTDfjYJ15l0O/hZHNevHmV3//yV8mbuzz3/CtlAAtQazZ56Yd+nF6vR7Iac/u552i0uigh6F0OuP/Wa1yMFzTcgDjLsW2bTqfL+sbm+/bIwAfqmXf3r/La2/e5HIzY3tkFRJkxXQ8ZXJ6zeeUGudLvpnN9r7vl9xbBwWDA737+9/mtL36Ny8iwvb2Dun+Xg6vXaHW637XG+pn9559/PCvUHwF8J9LJwf4ei7sPOD87ZnJ2zMXZGap9QHPnNsP+ORXnJtHghGIxQHohOAEmS9DzIXgVTJFRrKaISQ8ZdhB5irEdyBJ0XnZdWkjsoIb0Kjhbt1DpkmJ8Wjp6rWbY1SbS9XE2bkA8B9vGWbuOsC3UcoLOIhAW6cUDZLUJwkJNe9jNddytW2Vxlu+UpKrVqOzobRuUQs0HqPoadmunZF+bDLVYoKYD3CsvIYzGWA75sCSNGa/cw+ssKk1SjEZiUFoh/BC3UpqGICTFaoyaj5DVemnFGXYQtQ7FclJmP0sB0ie5eIQuUqyggRaiNGMJ21hBjXT4BDuolweRZIWaPqIYPcFubuFt3iinDkWGgVLHnccIAfXrrwKG6cOvY4octRwD5Q+1VWmQxXOK6Rmy2kGGLWzbLsfytS7YHjx5g2JwXLLMR0/KvbRbxXUriCLBrBLUcoqJZliuQ7W5TV5r4pmcXC1J7Sr+1lW8ehdRaaPdMjglnw3wqk10siBbzUmjJUGnQ62zQdUq3ey++fAMYTm88MLzXCkMF7MUp7nJ/OQRTdcijqdM+4rx+WMsYDyZsLg8IxkPkDu7tBsV3p6cEWcZQZ4TLS9BpaxtbLFx6+MY22UUz5mcPeHqzhYH12/S753x6PExq1VMsOFhMGRRjFI5luXgBxW69ZBe/zHj6QynUuPscsh4tmC6jAjrda5ur7PE5427D97dJ793jwx8oJ7ZcT067Q6Xo+m7XbMQgoOr11i8+SbH994smedCslos/tQEq2+RRoexQTd2ufPCTaQ0DC7PWTx1U2t1un/iPfgz+8//NfCsUH8E8J1IJ2FY49ruJt/8+td5+JXfZBRpRNAgWi4AiR9UyHRKMek9zZcGtRiiihRbNVHRrNzbqhzyFOEHYPmYZF6mN8VL3NZ22WFnEdnFPcodnIW0XbJkidPcxF2/Uu61ixQpZfl6aWOyiGIxRFSe7rSFRC2H2O3tcvebJ+W+1wvAdnDau2XohuOSCQsRTchGp6h4QTHvY/K07CodF5NFqMUYlSegFU5zE8ty0aLAUO7khVtBbFwnHxyVCVmLMUIriuUEvZq8u/sljTHJEpXH5XSguQfCwmpsgh9imzLaUq0mIARCSIsijKcAAHlnSURBVLRSmOWIZPAEe/0K6Ck6WSAsD3fzBlbYxagUk8ZI20fWAwwGlSxL1r1l44chWTQreQOOC8mSfDEgG51TRFOEZSPyBGFVMAjMYozJEyzHx9q8VrLMMUi/Qjq5IPOrOEGIMBpL5wSdDbZ3dnGEIkzWufHJv8D5W1/m5HLI7nOv4HkesRZcFBGptkFnJXPeCVhEMcpIJmfHCCuhvr7GZDwmXNsDx2G2WLFz5SrxvbtMdUKRRqhkReCHnL79BSa9ExpXX0RPB4hkxvXnnse3Jb/7m7+BqXZpb1eod7dItcEqEnS8wPV9kDaXJ5ckFz1+90tfYzBdUHUk88sn2L6Pnc956wu/gfDrSNtHFwkmmbPeCMhrAfHFI+5dnrLQLq7UmNWM/StXuP38C4S1Budnx+/uk799j/xBeuawVmej2+buwyPy/A92zq1OlxdfeIEv/N5vInXG4MjHs60/FcHqvaTRnSubXCzu41crWFKyc/UWZ4/vc/T4kGa78yfag/8gOJ89w4eDZ4X6I4IPIp3c2Qg46qyRtNvETshCOyzyHnm8QtTXkXYFWWli8hxZ71AMT4gvH6KjOVa9U7puZRGWFBTLc9S0X9qH2g5WpY50/HLEm0WldjqaIywXy31a1LMU6deehlaUEZA6mpbSKGlhV1oIKUtGdrJEtHcRwiqDJ6SFjhZINwCtUekC227h1NfJhUCnMcViiM4zhOUg3QC9GqFWs3J8rAqKZInd3i+Jar37CL8G0kEICUZDnmLVuwjHp4hm2O1tFAZZaZb2nxhQBWbaw6gc4dcQjoeaX2J0Dm4VFU3LUXNjC+lXkWi0X0EvRxTjU6ywg0ojZFB6bpsiRhiD3eiiswTpBti1NaL7v098eVROCPIcPRuXO3ApMMkUYQeIPKKYXuB297Hr6xCE2G6AMbq0ZS0y1PSydHjDIMMu1mqGLaGxdUBeFOSTC7L+EX2TE7oW67Uai7MHLKKMWqNJJ/TQwmbe72EXMVmSY7wqs+E5JpphB1WklKSrGUMVsRqc0RtNeP5H/zLttS0WUcTO1ibXb91mcvkbVLIxx199TKXeLWNPpUQtRtjpgmvbXT716R+h9+SQN+4fEhUamUcsesds33mFaq3G2dEhk8tztLSZzebsHdyifnAdr7vBdDrktDdAJSuS1QqtDMIquQpa5eVhzxJc293kh29u8ZV3DqnV1nAsSbDd4cb1q9Tq5Qj6vftkYcz79sgfpGcWQrC5scnx/Tc5Oz7EtZ13u9LJeMCrd67x8u3r1Ov1PzXB6r2kUSMEjiXJkpSgUnJIOhvbjE/us1zMkUL+sXvwHwTns2f4cPCsUH+E8O2kE8dx+O3f/T1M0MR31yiw8TONiebI+jpOc5Pk/D5Z/3FJ3HJ8rMY6ajXB3bxZummh0EVekrcsF2H7JYGsUsNu72BXm4iggUkWZP0jTJGhshgRdiGalv7eXljuUaVEL4aIagsraJBf3EWrFBXN0dGs/AxeBWwXVI4VlD9qorWNTpdlIlUaYwU1hOVh4kuKaQ+rvoYMQlAau9IsvcfDJtnwDL0Ykp18kzxooKI5MpphSQd75zZ6OcZu72K1NtF5Sv7oK+TDE+zGBk53D2k5SL+KTpZoVZQxm6OT8jAhbUyRoWf9cucs7dI4pN4FlWGyFMufkk/OMEqXBcMUmKLscIwoc41NusIYgwkp792rAxrjVhHuEhWv0ItLrOY6QXcH41lox8EO6gjXRRj1dH1RLd3JlmN0ukCEXbLBY2xddtWBBfHFfaL5DG000nJZDXtIX6Ku3yZXGpkvcasN1GpCq7sJNQ+TuFjSYjw8Z3n8BiJZYPkhdtjEdX1WUcIyjSmmb3M5WbK+ucPGepeWB7YlubqzTsP/GA8eH1Op1hilAj9OKbKUzVDyqR/6JI1GizPh8NwPfZa3vv4l1lo7zJYrPKGwpYUX1OifP8JyXKqBx86NFzBFjusHdLeuMD47YnDymKyqePVzf4M8XaHyHOtpytU3futXuFVx+Cs/9RfJpMf2jRdwPZ9H9+8xiMowDSEEru+RK02eZ4wHvfftkf8oPXOSRvzYqy/QbFa/AzP71Q9tdPxe0qhlyZKHMu6zHVxBCPD8CoU25FnKZDz8Y/fgPwjOZ8/w4eBZof6I4b2kk+l0yniRYLkOWZESLaeMej3S+RA77IJtle5kgM4i7LB0yBL+OXZ7B+mHoBUSg0lWyEoDYVnkg8dYzQ2sagvh+khpoR0PK2yVxav3CJNFCFnaddp+DRUtsCwLwibkScmUXo4xwkIt+gBILywlVPG8jIcMW5gswmluotIF2fk9iuWYQlpgOahoho7nqNUEu76G09pC+HV0uiSfXVBM+ziNTayghtYF0nLB9UoSmetDkWG3Si23SVYI6WDiOdrxUVMbwjWkG6CWI0w0xekekI2O0NEMZ/MaxWgFTmmYYtIVdmsTp70D0kYMj9DTABl2sLeuk58/Qi0mJRFv/WrpH+74gEHFC/Lhcalzd1zyxRATlVataIUxgrzIMckCv9qgqLcpMBgD0vYgzxBuBWk7KGkhnQA7qJHrAjProbViNT2nSGNMUCNYO6De3UJHY8JagzRJsOzSDc5yXEiXnBzepdLaxG2t00ASL2eoehNZ7yA7u1h+HV0kaHGB295FRAuU36I/XTAd9WF+yed+/DME1So6aPO5Gy+ws9bim3cfUWl2GY7GTKZThpc9/EqNOI5xgpSqpVnb2qKhDEkekw2fEJ8fMjq8z8bV2+zd+jhho0087SOk5OLsmFqtQrWzie/C4d032Nw9IAgbxMslJ4/foF1zOdi/RZ7ntBp1gqBKtVbj4Np1Fm++ydnj+3Q2ttFaoLKEs+NDuoF43x75j9Mz/+inP0X3+yxP+nbS6JW9Xfpf/yb3357QXdvC9T1UlnL65DHrVfuP3YP/IDifPcOHg49koV4ul/yzf/bP+C//5b8wHo+5c+cOP/MzP8Pf/bt/94983S//8i/zX//rf+UrX/kKZ2dnbGxs8JnPfIZ/8S/+BTdv3nzfcz/3uc/x27/923/oGn/lr/wVfu3Xfu1DvZ/vFVmWkRmIZnPOnzxkph2SaIlKI1gMMPnTDs/2AJCWi4qGoHJMunwq+zRobRCiDMxQtoewfYxlU0x7OFs3UdG0tBzNIkR9DXP+DsVsgNvZKnfNXhXpBeB4OEEDrRV6cIhGIIzGWbuCTmKkXynZzn69DKmY90vJlQBUgfXU0lONTtHJEqRVMrqDBnZzC3fjBsK2yEZnFGd38faex928jTDmD/TSyzG4Aenpm8iggTG6zMpurONuXENnq7L4qZzs7C1UfR1dZAitsVubqNWo3GePfYrJOcINsFvbSCdA+iHSdkszGctDVurIIseyPHKd4dTWn5qeSGSlgQk7YNmoWR8Vz/B2niu12NEMbA+7tY1ZjLAcB3/7FsmkRzaf4nhVkniO5YaI2hqWdLD8KvmkRz46QRsByzG2H9JstjBFjIPC7bxAKn1q29dorO+QTgdYUrB48hbKqmLXu7iehwjqLJZjLh/cJbd8bFsijKGzsUfqtVBOQJ7nZJNLZKWFqXex/BmO4+B1dnCzOZmTkERLrEoTbIdOo8rOzjYXoxm19X3WNzY5PnxE79FbkC5IJ0PCasgLt67TqIU8GUyQXogbWNhBWBrBWD4FksHlOYGOef1rXyJPYsKKyyTKeenmBnGyYPToNTKlcS3JXivk1U9/DjUf4Pv++zrjVqfLSy++yNHjQ8Yn9zk/P2OjIrj13Cd4/s7tP6Sj/pOYenw/R8TvJY220jWOjx6TRitGgxGnj+6RTMfc2Kxz+2NXeeHbPv8fd72PqvPZM3w4+EgW6p/+6Z/mK1/5Cv/6X/9rbt26xX/6T/+Jv/f3/h5aa/7+3//7H/i6n//5n2dzc5Of/dmf5dq1a5ycnPCv/tW/4tVXX+WLX/wiL7zwwvuef+3aNf7jf/yP73vso7TLcV2Xy7NT7j06ZCaqqGoLO9xETXulSUkWlxabjbVShmRZqGiKXW3ibtzEaW+j4znFbEA+eFxqk1VePldYZJeHZINjLK+CMRqjNSaPKSYXuI0ObnsXkgXGDTBOANEcZUpXMJ3EJZPZ8bE7B+jFCHRKPjrBqnexgvrTXbNVRmU6Lt7aVYRXJclitFaY1RQrXCvNU1SGXWthhAX9I9z1q3g7L5S7clWgTCldsoWkiGfIosy81vEcabsYUyAtuwzccH2E00ZnaVlY6xugc9RqigH8Ky8hjIE8RascMCDA6KLcES97qPjpbj2PyXsPsCoN3K1bmGyFjpeoyRn0H5eFOovLEX5QL0lwOsfxQ3SyKjtrt4LWBtneJbt8SLEcYnWvITBkvQcle95yyk5eOhTjxyhh8Kt1MlVQDVsEtRbVzausstI8JV7Oyx1+vELUN8GycNSSaHhCZgR7t1+hd35KPLpkvpiXcjvLRTa3KKIFshIi3BHu+gHS8SCok5zfxfIrrO9fhWzGa2+8TXttnVsvvszB/h5hGP7BuHbnCs+9+AqeWvHi7ev0Li543J9x4/p1Dvb34Ktf53e+9jqJXUeonO3NDbqdBr2jB5h4ylqrQXdrn+c//iI6T8vM6aDB/mbIZreJ4zgEQcD6+jrRcsU4GuF53h/qjOvNFjdv3eHw4TvsVLf58R9+levXr3/HTvRPaurxYWiSvxO+RRp9/D9+k//xta8RrF1h4+bLbNyUnBw9ZHl5zNX97p9YVvXM/vN/HXzkCvWv/uqv8uu//uvvFmeAn/iJn+D4+Jh/8k/+CX/n7/ydcgT7HfDf//t/Z319/X2P/eRP/iQHBwf8+3//7/kP/+E/vO9vQRDw6U9/+vtzIx8C0jTl7TffZCF87PY+Ok1Q2YpieonV3il3s8sxdthBRXOy6SWWW0ULWWqWXR+JxrY9dDJHpREmzyjSBY7WCCnLZCzLKXfJ0iplW8bgNncRbgWlFCaaYeLTcq+rC7BdiukFRhfIagMwZXKXZSMdn3w+wuQZOl7B/7+9/47S7CrvtOFr75OeHCuHruoc1S0JFBGSQCbD2OIdRhiTZY/Hy+EzjAe/NtEz2GC87EFrlhkPYyzhBYbPDMjCBuYzSAQJISGMkFqiu9WxunLVk/OJ+/vjdBdqOqijuoBzrdVL1D5x16nDffbe9/376TpCSoz8CIFn43cboTiL0wuNJTQZulL1WnjtOng2yu2ip4oIwwolNHUT5dlII0YAiHYFXBffKyOFRBvaiAhA6xsLzT18D0UHoWl4HRtZm0NJHanK4cdFqojyXGSnAXYLb/koQjeQdhvVbYaj61QBf6kKQqIME02EU93CiuMJLZwREBrKdzHXXIGQYC9PhdajmoGnx9CtBMbgOoJ2FeXZGIVhvF4LuzyNFbiY+Unc0hH8IEAm0+j5YYJmGb1VQqb68Hs1utVl9HQfbquNHkAsmcHzPFpzBzCVTyBEWDKmupi6Rax/GF3XwrruxjJufZGgWcPLjuMjMYWOj4ayOwiljiUihr9bLZ6Gbj3UgheKarXCWH+aDWtGj0loKvoKBeb3PsOhAx3yuSKJeJxUKkMiUSXtHqZbz9Nu5kgk42zcsJ5GuYTTdNDGBrGDLmNrhlhaCkgXBrnm+usRCGYO7WPNYJF0IklXWnR6Nrs2hgYbPz0yFEKcOulyOMu2zdc8Z4B7LlGPS12T3NfXRyGdIp3OEotb1JfmMDTJ+pEiE9ftorw0z55n9tPf339WATaS//zFYNUF6nvvvZdUKsUb3vCGE9rf8Y538KY3vYlHH32UG2+88ZTH/nSQBhgZGWFsbIzp6elLcr+XCqUUX/qn+zi8UMF2LLxGFczEiruUOiYlqQKfwOnhO138+iJ6dgBNz4QZy0IgrOSKNaQ39wxeu0rg9HDm9xBbsws9NwR2l8BzkFYCrGRo4mE3CeIpgvoSJDJoyTwyO0jgtPDrywS9FipQuLUF1PJRJAphJVBWAhkQTg1LDTyHwLWxZ/bgLB8Ft4vXKoNmhr7UiQxGcQ1ecBjVrYeJaEFAIBTKboUj+WM2CtKMIawUfnMZzBiaZqA8GxW4+I5CVabxOzWU66LFEigkym7j6wZSapAqohkJvFJYn+wsHwnX8XUT4XQRmgFGApHM4s0fwK3MHLPBzOMtHzqWAV5A+C5mPlw7d6oLKxKhRv8Egd0FFGZhHC07gBDgej5uZT6U/TRMhJXELU+D0yXwfGQqH06Z91pIFHp+FC2RglgcdaxEyddjdOoVnPp+PN9DJyCez+C328T7RrGkQatcZXK4H2nGsAMBQscOFMpIoUkdt9MK5VU9G+XZBAQo14HAQ+CjaRpGPE4mGSNvSaTXz9bJUcpLCwQKjkzP0Oo49DxFbXmGAz98hLGMgT2UZiylkVo7yuHZo/zrnqeYnVumf2CAnZs3UuzbxdSRw+w7OMXSoqLR86BtM3v0KHarimY32LZjB6Vqg0bTZr4VMFlvoEt5ypHh8ZFxrVajVCoBYQC80Nmw56MmuV6v0wskN99yK0pIPM9F1w1SqSQgMDT9nDO1n2um4FLNEEQ8f6y6QP3UU0+xdetWdP3EW9u5c+fK9tMF6lNx6NAhpqam+JVf+ZWTth08eJBCoUCj0WBiYoI3vvGNvO997yMej19QHy4G3//+9/k/X3uAppYiOTRGo+vg2118u4uWyKLnBvA7LdzqPG5lDuV2Ub6HXhhB12MoIcKMZaWQQgNNDw0qAh9pJRBCQx4b7RJPIdpVvPIMyncx8qPYCwehNo9ybYSmgRT4rRKBAtxuqMPt2filaayJnchkWKalAp/AqOGVZ/A6VTQrFSpspfL43Sa4Ei3Tj9eooATg+WC30ZJ53PoiwjAJlIJWFd+IIfKj4XS954RT90IQdFvIwEPmh8FuIzQLt3QEJTWs4gQil0S5Lfx2M8xi79RRnQbWqI6+dl0Y4J02ge/g1pfQlI/XaeA7XYJOgwAf5fnIeDYsOdON0KazU8fK9YOWwuobw/cV0mzgNxZCm8/cECImw3pwXQ8/PDQDkcpDc4n2M99FKIHfrqNZsVCZLJYGp0Pg9lCBj5EfCZ+lo4U5B0aczuIRlNPDLs8hCuNYySwymSZIJmg3p2g89Qia8gh8D7fXptezcYRJr93Gri2SzPXjel28bg1/uoZeGEMm89Bphl7fsRR2ZR5dgC8MnG6LRqtFutdlsdrmye9+kZJrkB2eZHB4BFOEH06ZpMXkmmEmhwrMlmrI4hpu3H4j5UqJ7/3bE8SSaZqdFq3pHnpxDVeNbGLm8AGqe/YyW6nQmNrN6GAfQ2MTLJTrGPhksJmdPsohy6UvnzvtyPDZblfhKPLgBY18L0VN8qkC5E8ytZOnnBk830zt080URKplPx+sukBdLpdZt27dSe2FQmFl+9nieR533nknqVSKd73rXSdsu+mmm7jjjjvYsmUL3W6Xr33ta3zsYx/joYce4pvf/CZSylOe07ZtbNte+bnRaJz1/Zwtvu/z//3ivSx2JInBcWR+BLvp4HXDQB0gwhGiGQvXlZ0ugdNDSEHQqeOoGloyH3pQOx18BEKT4c9BFyM7iJYsgB4LtbBVECaNofC6LTQpUZ06TquEnsih5YYAgVA+AhDmEMKwsI8+hcgU0QpjGIl0KEHqdAg0K1zv7bTQ04PI3CAi8BBOF1+T4fSwFcMrT+PF0nhOB82MgWYSdNv4jWUE0LO7mI6NlkiHtpeeE7pYNZcxR7djZPrwjmWeKyUwMv0YwxvR4im8dg2v8yNELI2ZyNLrtbCXjhA4bczhTejJPJpu4bk23emn0RJZpO/iySaeHd5P0K4AEj2eQsbS4DtovgtGDE0IPKeFapfx2jVAQCwVZp07duiCNbg2FC7pNEMJ0iD0mpaBizm8HpnIEQBSM9AyfXiNEr3ppxC6hZ4uEnTq4XKAq1B+AAEYgY8nNFSnSbuySGd5GhRofo943xhtmUIvDhN0Ojj1KmjxsN4+UASyiVubCfXOM02U06U79SRGbhCcHqTzeJ0GraUWhiVYt3kTZnEYo9hG1trYvS5HDx2g224SC7rs2LGLZVtw/7cfojC5hfGJPhSKQrGfoeFRkn1jPP7dryP1GNdfuQkpBcl0jsWlZUqVKlZmiOSadYxv3YoUivLiHKpZYuPoAC+78QX09/efcvR3KUa+F7sm+XQBcnRo8HnL1I5Uy35+WHWBGjjjF+u5fM3eeeedPPjgg3zxi19kfHz8hO0f/vCHT/j51a9+NZOTk/zBH/wB9913H7fffvspz/uRj3yEP/mTPzmrezgflpeXeeBb3+G7uw9Cehjf6dGZPYjbdfE0i8B3CTo1gk6dIPDRYklUMovmA8pFL4wfk7PU0LIDSDOB167glaZRKFTgYmSHQsGTeDZcV9ZNfCuB9APgcJhJrmlouoHQwhIjIz+CjKUIuvVjZVX1MBNcCoLmMspKoCXz+FYcGiWM3ABIHS2ZRdNN0FPh9HttiaBXJ5YboTe9G3f5KFJIRDJHEDQQSqCcLm5tET03iO12EWYcEXi4S4fxe23Moc2hmAsKLVWkN/0kgdNBWBmCTi30c24sEXSaWP0ToQqZ0JCZIqpdpXf4RwjlhzaVnQpCKQK3i64yyGQOTTOQArBSCK+HQKHFU2iBjz3/DFo8QdCtYzfK4DsQAAQIu43UDILeIvZCO8xI1y1kPI3RP4Hm9MJ1YRR+o4QRS6Kl+xGGhdB0lBNOScdGQ2tS2+lgDEwSdBpI3SAzvBan26Izsy/8kNT0sCTP95COjlUcw41l6ZSnwyx+t0d63RX43Qbt2UMESmAOrido11CtcpiB367glaexCqPY3TrCrZHfuI5rr7ySTDLJQsclMTTB5s2DTE0dRlc+W154M91GBeix3HN56sHvs6srWai20aWgkEmiBw7zs0eQZhIRS9DrdUgkksSSaWrLs7SDOPmhtUyXmqj9hyhk0wz2j3BgYY5C2mP9+vWn/Fi+VGpcF7Mm+UwBslw/SEwGLFziTO1Itezni1UXqIvF4ilHzZVKqJl8fGR9JpRS/Pqv/zqf+cxn+PSnP80v//Ivn9W13/zmN/MHf/AHPPLII6cN1H/0R3/Eu9/97pWfG43GSR8B58vxF3zfYhPZN8mazdexND3F4tPfw5ExAs0INa51E6d0FOXZ6MU14f/5J9Poqb7QLSuRJXDdsGxICPz6YihmErhIK43Wt4agWcKtzqKniyiVCK0flYfQ9XAKPT+MObIZv1lF6kZYE0yoqy2cLn51PpTcNOIE7Rqepodry26XwOlgFMfwe13QdLx2FSMzgDATGIVR7MVeaOMYS5LYeA3KC32fpdMLnaHsNnphBAhXp+m18Z02yumi5cfCdXgzgVdbDD2jA4F/rD9+Yz6cZei1QhUyMxYKqGgaupVE9k8irP3Ys3tDpbJEnvj4NtxOCxX4CDOJkcjg2x00IZHZgbBszdDRk3lMTdKd3UPQrIMRwyiO4JdmMfMjyHQRFQRIM47XbdE98H3MgbWhcprQQDORsWQ4sxFL0SvPoQdBaI8JaPFUqCMeC+0wpZUM1+y1GLhdOu0mUuroiRR0GxgDG8iObaRXnqNx4Ac0p/ciNB27VUP4LsmRDVi6Rk8IjEQGPTeC1T+J26rilo5i5AYJem16iwfw22U0t0OhkOKWG65laGiIR37wQ7pmnuV6E+ouLgaJVJZ4Kk08EWdp/xO4fkBLZvBiOUY3X4Xd67C8OIffaNCqVFhcrJLpG8Gxewgk+3/8OL1uj/TgKEEARiqLmcqx1Ggxc/TfGMuaJLIZGo3GKUeul0qN62LVJJ9NgEx7dZJB95JmakeqZT9frLpAfcUVV/C5z30Oz/NOWKfevXs3ADt27Djj8ceD9N13382nPvUp3vzmN5/zPZxu2hvAsiwsyzrncz4Xz37B16zbiPn4AeKxGG63iTkwib00R6ActHQ/ge+hOT3wndDAQQUYA+uQAxsBhVedw+80w+xn3wl9lJvlsGwq049ql/CqswROLyzxMmMgBDLVF2aWtysYhdFQutPzwvVcz0az4gihkPF0uH7qdJBWInSfcm20RC70xY5n0fKjyMp8qLVtmAS+i+w2Q0OQZgmkhjWwDn14M/7y4dDkQwhEPBMKpHRb4ag+UUBaCfx2BXwXv13Fnv0xwoiHZWaGFY7shYaWKaKZCY7ZUUHghaPzhWfw2hVIZDA0HSPdh+obxykfxRpcT3x8B0z9CL9Vw6vMIM0YgduFWBaZ7kdJDVVfxkeEKl7dLn6zhJ4uhtaeyQKxwgh+o4SIpdD7JrBSfXQ1HWlY+O2wZE5Iwqlw10aPpyCWxDRNet02BIpYfgRfKdz6Il51AT07iLQCpK7hNBrhyDtmYhRG8coKI5HFdRx8P0BPFZC6STxbxBxaj92qoxVH6QYObquGZlpY+X5kzEJ5CTzC2vp4/xp0XRJUpjG6JYrZFMVikb379rFY7zC8bRttZdEkhpQ65eoyw80GuXyRSrWKmczSNzSEHRjYjkM8mSZTHOSpw4dpLs3RqDapVspo3TLjE2txyjMUhidYf82LWJqfp1ZeoKW7xGMWQod8LoMV1087cj2Xke+5JFFdrJrkswmQlaNtrt68jtmFxUuWqR2plv18seoC9e23387//t//my9+8YvccccdK+2f/vSnGRkZ4brrrjvtsUopfuM3foO7776b//W//hfveMc7zunan/70pwEuS8nWs1/wAEU+abI4tQ8v8ECPYQ5vxO11Q9nQ0tEwQziVR0tmwszj5UOhB7Nh4js2wjBDq0gzhlYcx1ueCj2TyzPIgQms8R0g9HAKvVMNNbenf4xyumFJkdPDXdwfCpe0qgSei7CSYa2y3cO323jtahj4nQbSTKAVhglaoV+yX5kL1cRiqbDuWGooTcf3nFCty+kek+H08FWAsJLoiSzK7SIzAwSze8LkLCOOFKy4ewkziYwn8dsNlOsgpIZdmUMIoNNEpPvQYmmECkDqoRHG7B78XhtNge+6oDz8dh3l2CAE9vJh0EyIJTCKo6HntQpCb2mnBa4DVhKvUYJELhRWyfQhPQe328RrlnE0I/zAcB282hyyVQZNAyOG8GyklUDLDYemHX6AHk9jTz9JzNDRZZJ2vUZv4QBeu45yu2ixNPGhDWipHHZzGdltHjMTGcBKZGhWFwl8D7vbxqkvgtPFGFyPSOeRdg9VL4elbGaaQI+jOjXiiSQ910G4Pcx4gsLwJFY6RyPo0Fg6QDqdwUsWuPtTn8QqjiLNONrCEp1mjQ5x+ia3UO81aDQa6FJg2w6pnEF/Pke318PzPJqNOoePTKHSA6Skxni+h5I6Q0P9dCpzqECRzefRdYN0vkAhYTA4OIBlWcTjm1ieegbP9E87cj3bkW+j0WDPM/vPOonqYtUkn22AzGQyrF+//pJlY0eqZT9frLpA/apXvYqXvexl/NZv/RaNRoMNGzbwuc99jv/7f/8vn/nMZ1YyJe+8804+/elPc/DgQSYmJgD4vd/7PT71qU/xzne+kyuuuIJHHnlk5byWZXHVVVcB8OCDD/Knf/qn3H777axbt45er8fXvvY1PvnJT/LSl76U173udc97v39aB/jq7Vv4yrcfpV6qIjIjaPEUvu/jLE/hzO5BT+XQ030E8VQ4ou22wnKjZAHNSiFjyVDNq9MM3bN0M1TdctqhLzUCIRT60FoCfxw1vRtVmQvrap0ugVNFxrNhOVEyi7s0RdCqgJQoN6yHlmYCZ2YPwkriJ7JQnUfZHdylKRQB5tBG8B2CRgktNYmWHUTUF9A089hUto3XKhPYHWQ8E05z26GloJBaKKupAqSVQi+Oo9ldvOoCyu6iuk28VgnVFqFBxsA6vOZymOWdKmBkB8Nku04dr7aElsjhLx8hMONwrF6cwMcpHT0mBONg5IbRzCTK64USoek+fNcO18EP/xAtO4SeLqKbcXzDQvNdAiMOTgevU0MvrkF1G8fEUhLhjEW7gTk4ES4xBB6alSDoNhDxJCKRod2skcgWkV4P23UxzBh6fhAZS2Lm+vFcG6nHMXLDqE4Dv7EMsTgB4PU6uJUF/PoSUpNoCALHRSkRlux1mhAP8JTE73VwmxVUAEGrSiKRwIwn6NaWaM0fRjhdrr7lZZTKFY50AnKTV+E3S9hegJ7uo31kP14Q0Ffsp+d6zB/ah9OskJucoDC+hempwywvzNHr9rCFSWGojyNPTjE5kEMIQWl5kaXZeZrNBqnCIEe/8w3yfYP09fUxW2qga4KEqVE6eoSrr9ty2pHr2Yx808Jj975DtOW5JVFdjJrkcwmQz1XTfSFEqmU/X6y6QA2hFOh73/tePvCBD6xIiH7uc587QULU9/1QjEOplbZ//ud/BuDv/u7v+Lu/+7sTzjkxMcGRI0cAGB4eRtM0/tt/+2+USiWEEGzcuJH/+l//K//5P//nM059XypM08TQBKXlJaxYjG1bt7Bn3z4O7HkKv91D65/ArczilqeJDW/GGNqIFk/jNkoEdg+P0E/Zrc1jjWxBGCZ6uh+ZcsPA6XbR4hm07NrQBcvtIGJpgnaYqW0WxkPzDd1AKHAr03j1Rcy+NQg0QIUj+HR/GHw9h6Dbolv6PrRKqMBBlmfQ0kW8XhMtngodtZw2IhbWiPqNJYJ2PRz5Z/pB+fiNUlglbcTQzBiua4MAoZuhYprbQ5gxUD5IgZYZQIulQ4EVBHgeem6A2PoXhmvZ3Tp+q0Jn4QCYVpjNHUsidCtMbEv1Efg2QjPDmvDaElo6gVYcJ77hOmQsiV9bwKvOoZSPCFz8RonAcTDjabR4Jkywa1Vw7W443R6bxD7yJF5jCatvPPS2dnoEi4cIvB7oFn6niTAtEBJpJnHLc6DAd206lQV6paMQL6B0E5nKI3wPe+kwxNLg9jDMGDKZpTu7j3anGuYdKAUojFx/OLLvtqDbBq+HNEy8Zgm/UwXfDQN3bZahkTWU6i3iqSJ+Y4He0iyaU2PnC65meGQEx0iR6CqsdI7AsOhWZkn3jWBaMeyFQxATzB04Qp8VMJJPMjYxgafgik2TSKl4/PAsZmGY5tI0BUuwdcMkU0dn8ZVGrDhKpd5GM5O0Zg7jeh6DI+PkBobpNOs8s/8pmD/I0OtuOu3I8rlGvomgE3pHixgDw+O4vofqdkmlU2eVRHW26mWnY7UEyEi17OeLVRmoU6kUd911F3fddddp97nnnnu45557Tmg7Hoifiw0bNvCVr3zlAu7w4uM4DouzRzn49GEKw2twHZt6oxGOONERvTZ+vYSRGcAY2YJmWHjVObzKLEJqWP0TeM1KGAikDLOky9PIRAY9P4IWS+O1y+FaMR7CiCPiafzaIsIwQjtFz0ZIHT0/gogl8VtVeouHUG4XI9OPMJOoTu2Y3KiPcnuYxbFwfTqeJXC6KM8LM5FF6LSlggAtkcVrLCGERB67Lp5DYDsEdicUL4mnQI9DMItfXwp1wI+ZiqjAJ7Bt/MYiQgX4Xg+vVSFwushkDqROUJ1DS+Uxx3cQNEvYUsOrzBEUcwQL+9FzA6E7lVIIaWIObcCrLaDH06HgiWaF9p5GDHLDKMfGbSwS+P7K/emFcYzcAH4tNMogkUN5NjgOynNC5TY9RtAqEdgdAs/F77WOra97aKli+PHhhYYmsb5hYiJAWSnsbg+vNkegC3RNEGBgLx5EaSZaMk9icDJ09bJbeHZAamwrgdvBse2wXE9oePVFfLuLkcxhZYpouo6wWxjCoDpdp3PoR3iWYmLdZhL9o1QXj9LtlpmYnODKF15LpVwlPzhKsVQioQUE6Qy95jKqPk+fGVBTbVR1hrGU4OUvfxWNep1DU4dYMzbCjm1bCYKAUrNHcXSS8txRxoa3UC6VmWvYpAfXIHs9jOkDdNt1Nlx5Pb3qMksHniBoLKNpkJMOubWTdB13xRHrVJxp5Ds6tJ5vPfo4TaGYLu/B9QOMY05Vk2vGzyqJ6kJGuqspQEaqZT8/rMpA/YvG8vIy3/3Bj9ALIxRUnQDBXKnG0aUG1sgmOqUF/OpcmBmdyCKPOU959SVkLI2WzIUZzvH5cBqXAAwTzYoTODZCBpDIoqozKGmCEhC4qF47zNzWLJTdwne6aFYKEKFTVboPNbcHZXeQxXGEF05VC2EgEyms0a0o5eM3S8hYWEftLBxABD7W5C6EEcOvzqGli6AZBE6HoNtALewHIx7KidodNCFQ0kC1S6GbltNDM+N4x+qpVa8F9cVwTdkw8ZYOoVuh/rhM5kMTDgFueRbRLKGnCui5IbxWCWf/I+DbqHYDt1EGqWGObkHPhBnywoqHQddzCTpVAk2HY6N4IbWw1C3wQdNBQNBt4jaWQw/reJbAd1CNCn67jF8YReu1QlcyzQhFWoRCdVsE3SZ+q4qWyGGkMqRGN6ApF7c6h1crHSupk+jKRTodUGDFUziNZfAdbLeNho/htjCKI2QKRey2RvPIk0gjgW+3UbpFbGg9qdGNmOk8mm6QNHUSdgmrvYSsTTFqdlg48CilZzQy6QRr8gluftnLSSVTLC2VEZ7HYDFLIp0iVegnpftsmhwlYRo888OHwO7Qn7awlENG9xjS26R1hS41PASGUJRnp8gaAVY8xvd+tBtzZAvJwhDxwKM7uZHZI4epLS8zsXETbrPE8FAfTrdDrphkw9q1LFWXnzMb+XQj3z179vD0/sNkN15N30DoSOX0bJYqSzT37mfbxnWXPIlqNQXIC50hiFgdRIH6MvPsbO8rX3g1tUqZPT9+imf+7bv0fANiWdDL2EtTyFgcle3Hdzp41TkQKpSCdDoIzw7rYwMXLd2PsnsQzxD4HiJwUNLCa1WRrodMFdDTxXBKWGrIZAGvNotq1wiEht+q4NTmCZwuWiyLMhLI7AB6ZgBRSWDP7kEfnAjXyHt1AqERdKrhSDXTh714GLe+jCYlfq+FXhgPVdD0UODDK02jpQ2kZuLUpwg6DfxeExH4iGP12Kpdo3vg+xB4oRJbfgw9P4K7fDhMUFMK1WsiU1m0WAahGyANlN3Btzv4vTb02uiJTPgxkxsIVdnMBEGrQqBbaFYSpXxUq4YIAtzKHKHVlwo1vgP/mP64g9dYRsv0YWSHUK6DnipiDKxFWkncygx+r4lXnUU3TLTYmjApLz+MEU+DGcdtLB8zUdGQySLKStArzxB0u9ieg4ynSA6uJSY9jEQGEU9hN6qgabidJprysCTo6Rz9ExtQzSqlI09hpgqYmT56zQpepxFeTymU0PHsLr1mnaQFQ5uvwp/WeMd/uJ14PM4Pd+8hSBToYJHN9tHr1GmUF8jrBlu2bmexVKa2OIepSRKJJE6ng0Rx3c7NXP+CnWQyGUzTxHGcMGnr6F5sz0fWZ5DSZMdNt/L0nr10lc74yARSk5TmlxgeGsZK5amVFlncvxs9sHFiijUjw0yuXUcml+fIU4snBdLTZXA/O5grpTg0dRRPmhQL/cQTocJgPBFnJD7B3OwUz+zfz0jy0idRraYAeSnXwiOeH6JAfZn56XKOfLGPbL6Ag45VGESvt0OpzG6bwO6ieh2c5SME7SpSD0t1jP5JUIROUEJA4BN4NqJTw6/OgNCRsQS4Dm57Fi0RjsJV4OM7HQKnHY5skwUUKhwxVmbDWmYjFpZTOV386hyBZ4e1wL12+LGACjPQE1mkGScwDER1HtoVeu0auF0gwMiNhq6bUiCsBH4QIIIgrLNuLCOcLkamL7SXNC2UOQKN5dCBynMRRhxltwjsNsbQBlR5GuXa6Kl+tFgKv10O65edLqodrlPLeAatfy0ycJG6hRISLTdE0CyF10zmwnIpu41IZsJ6cMNEzw6FGuGtKiIICAiNQey5A+B7oT66EQMpQ3MOz8XoX4vw3TBLvr4QyrQaMTRdI2hVkJ4D8TSYMdz6EoGTxXdsZCIPrRIiUASBhyt1VG0B4WRAmijPwasvI00DTXpIK0VtborG9D5ELEP/5FaSo5tpluYp7fshnt3DXp7Cr80hrTi69PGsPhzbRrkeh2aWuGrnVv7dq17GUqnMtx75N/Y+Nsvw8AijGRM9YTI4Mkoilebp3Y8jlEdt3qAyf5SNfXFe/pKbTtLU7+/vXwlIjZ2beXLfQeZmjlKuNckk0rTrFWy7hxnYDI2M4i9XyQ+toXL0x/TpHte+4GqGRsYQQtBuNk/KRj5bGcx6vU7bUaxbM05laY54ctNKYBQC8vl+DvzwO2y+ev3zkkQVBciIi0UUqC8zJ5dzKGbn5um6Pr2eg+v7+NUF9Gw//rGRp1+ZQWoaxppdyGQRv1Uh6NZRvVbogex08RqLYda0EQ8zuY/VWmtOB6+xiN+uIM1kGAStOObgRvRMFmfxAH67hpYuYg6sBWngmnGkmQAUfq2KgtBw49jUsJbMIbMDBM0KShHWMidyGLqOEDqYCZQAmcyjnB5+bw6h9QicDnp2EM/pENgteqUuscCHY4peen4ILbkNr3w0nHL3XJQmkfVFArsTqnl164hMEemlwnKoZvmY65aPMOIY6QLKtUPjCamD3TpmntHG79Sg2wIJwkwS2KFdpVedx2+W8e020oiTvuLlYDfoHPw3nKVjdqGC8GMplg5L05xOaAJyLEHMTOaRgUcsWyTAJ2hV6ZaOhiYgQkN4Dno8CZ6DDHzM4iimrmMkc9BYxO22UIgw76Bbw2vZEEshHY/awjRBoIjlx+h2uuj1Evm+QZpHLEimsVJ5dNxwicR3cNBJGh7jG9czseMappsNKo1pXvTCKxkdHuLB7/8Qx0ixZcPNHDh0mEN7ngTdYMPYACN9BdqNKhs2DvOyW150SuObZwekgYEBstksDz/yfZ4ozRD0fBb3t5hYv5nhkUnSmSz1Vodyt0uv3WZo48hKkD5VstW5yGA6joPrKzZs2cqPf7yH2cPPUBwcwYolsHsdSvMzyF6dyTXj0dRvxM8UUaC+zPx0Ocfs7Bx79x+m0ajT7UmcdiOcch3agNeoYh/5t5WsZyXAby6GCVeug9E3gZbK4zUrBN0mwumi5UfRUnns+f0gNaSVDI0v2lWUECgCRKBQTgvXs3Grc6GspZlECANhWpj5Ebx2DSEF0ozjBz7CjIejvUYJs39iJekL1wHTQgYexuAm0E1U4IQqYq4NuhXKd9o25shmpBlHNyzsxQNIpRBmAnNgbZiwVnbR4kn0ySvDtdzqIspughDhujehOAhKIWIJhDSPrSdLVK+DPr4GPZEDJM7CM2H5l2khnB6B6xA0lvGqC2j5EaTbQ2gGItWHP7+XwO6Ga93pIppQGEPrcetLqKXDuPWF8GNE1SDtIuJZlNAIvE44vR3LHNMhL9NbnkY3DWLjW/FnQuUwr9MMn5/XxbQSmMk8mtSQVgoNhTm0lphS2K0G3YXDmFaM+OhV9Ho9XLuFkegLzVEy/dgBiFaL2sJUuMTRqeFoGr1WFVPXSOaLFGI6GRWwc8s2BkdGgVEO7d/Dnmf2c/OLbiSbzR4bsZbIah5OeQakJDM4RMzVmRjNnZOJQ39/PzffdCOVZpcglmV6bgFhSHRNEvg+uVScQ3sfpbM0xdCLX0AQBKdMtjpXGczj71I8luCKHTs4cvgQleln8AKFLgU5QzK+cS0jIyOX4lWOiLhkRIH6MvPsco6iP8zuvfuZ7/iY6SLdVueY7GQK/ABv6UBos2iljvk29xCpPoRpIVSAQKKUCDORAx+nsUwsN0zQroHngt9BxDNomX4C3UToMYRh4Ldr+K0ayrcJOg303HA4fU6A6LUQCPRkHq9bw2uW8WsL4ei9OI7UDQLfRTMTx8qwwizvMCiaCD9AS4Wa425pNiw1GtwQTqEbVpgIlu7DUEGY0dxYwp6VyHgmNJtIFsHrIYTEGJjEbyyBNEL/aKkh4xkCu4u/PA1Om8DpovevDT8WjATCMEMrR8NEdVu4rTJefTlUb+u1EEYM5Tl0938PpI6eyOI7XayBtVjDG9F8B7+xiG23wgx1IZF6DC2RIaziU3jNEjKRBSXw6svoThd/OYFnd5FCByOO5jokcn0YfRM09j6KIjTjUCgSmQJ2u4JTX8DVDexEFj/wodeiV1siPbkDfXgjCdfBtbsESuHVFpFGDKe2jGuYYflZPI2m69i1eaTTwUolKRo5hiybiYFBduz6Sbbxs7Off3o91TAMAFzXPe+11Vwux7o1w0w3A6655hqmjhw+IWiOxgP6tq4hFnQ58tQPTplsda4ymCeURm3cypWFIq1mA9d10HWDpYVZ1mS0qHY44meOKFBfZlbKOb7/ON976EGqQQwjlgYhcRslRDyP36qHI2ClMFNFZGEEx7MJOi0Cs4IM0iANfKcDjWW8+iIoiA1vJja8Eb9dQ9QX0QqjaOkCRn40XHcGAreL0Ez8XhvluwSuTeD7CNXDndmDlu1HCBlKf/aaBHYP5Xu4lVmU1NDMOPox446gWwcEZt84fq+N0GL4jRmU1EJVT68X6lkPb8aZ24NAQwUeSvnIWArRP4Ga/jEiFg8DWTwdWlQGXpjZrhkor4ffqSE8D9IFRDKPTOYI7Ba+6yCTRRAyTAnrNghcD9WpI3w//IAIAvzmEl67TqB8hNMNp9o1Ez2eQssOIQWYw5uRQoLwQGrhunIQIKw4KB/lewjNBD8IbTh9H+W7KCHB9xCeTbxvgkA38aqzeO0aZjKFU5rFTOcQiSxeo4RXW8AJfPxOHbe+hO85mPlhrFQWQYA1vBFzeEvoamaYGOkivjQQvocAHKnhdlskcn243SbS72F2ywwWsjTbDayuyRXrdrBtxy7yxb6Vv7uflpC82Oupzy5TqlaW2bhpM/VGg0a1TLNRY9vVO7jp2qtWEtJO9UFwrjKYpyqNSiRTK6P1FL2odjjiZ5IoUK8C+vv7uWLzOp586mkMFac+9WPqM4cRRgIRT+MuT4XJSwBWAs0KFY+85hLKd5DGMZ/mXhsRzyB0HZnKhcIZZhpVOoqeG8bsm0ApL9TIDnxEph/RaYQezG6PoFNHKZ+gWULLDoAmw6ly3cKvzYduWKaFNrgOmczjH9MQV04X5ftIMxaKhlgJfHsK8BG6iYinwilxKfEdG69VCVXEggWEmQz75XQR0kBIgZ7uQymBHk/jVudDo5FMP4HfQTMSBKaHVz+MCjy8dhWhFBgW6AZ+cxmvPI1IFHDL08fMPzKhylhtHmW3kMkCZiKH36ohpMSrzSGkxMiPIhNpcGyk8gkCj6DXRWommgB0DZ8YfqOE2T+JzAzidavIdh2vPodbmQ1V4BIZuvMHkc0qWElM4aNZsTC4+g7Jtbtwm2VUYwnSfaBrmANriQ+uDfXOAeE5+PUFDCuOzPQj3R5ucxm9mEM3DLRsP81Dj+M0SuixDLaU4Ds4dot4EEqbxg0DM56g1naYOnJ4JVkRnh8JyeNlSt979DEe/sY/U272UCqgLxVjMr/xOT8OzkcGczWVRkVEXCyiQL1KyGQyrNuwiVhxhAP7n2G+2o+ndAIEwoyhep3QPCMIcOb3hLXGVhpjcD1aqkDQbeDVFkJpTyuFjGfxSkfRCmvwuy30ZDbUmdaSocqXpiMCHyUFXm0er7aI0E2QBl5tHi2ZRR/cHq6pVmdAqTCBSzdCERMrCb5HQFgiJhNZAreL1y4jPRu/U0W5DjKWQddDNynldFFK0dv/MG6zhDmwLjT6SOQQIpQmVYGH320jUJDtQyYL2HN7cRuLSM08Nu3fQ2aG0NN5/FYVtzqLtJIEvRZ+u4Y04uhWAqFp2KVpdCuBV50j6NZAtzCS+TCZjgBhJJBCIg2TwOuhmseSsOw2Wm4UKQXYLaRvwzFbT5HpI/BsnPk9KAVSN5CxFFpmECuVJVfoJ5FK0lqcoXNM+1xLZNESaRLpLDhN2ktHMNIFhO+D0DCsGJomEXqMTrOKoWnIVBFVnsfrNNATOexOG5nqYsTiuAF4no/qNNALo5jJNK5yUZ6DkR5DGYLhwX7SAxOkRtYyUymx8OijXLFjB6Pj48+rhKQnNIYmN7KtOEAqk0XXdBYXZnjoOTyRz1fl62KURp2LoUdExKUmCtSrBNM0sQwNQ5MkUimkEcNdmEZZSQLXCWU0rTReq4xyepiFY+VOdicc+XWbBHYLPJsgUEgrjt8q0/7+l9CSGWQ8hd+poZwe0opjDG2EY5rdgeegxVIIMx5O7+oG0krh1xcI4lncbgsJGOkCenYwlAU1Ewjl47ldAiGBgKBdxT70BAofEGipPJqTQek6QWMR5QcITeK1ahj9azH6JhFSgO+GWtwItHgW5fbw7Q6B0w1lMFtVtGw/Mj+KIMDvgrTbKD+FsJIIPYZy3dBf20qFamNChEpoZgK/sRyOrFNFZBCEU+FKoWf6kLlBNEMPs9rdHp7dJtB03LlnkEtH0OIppNTwmhXcegkRzxAf3YzvOchkAalb6IaJkgbSnCfZP4YSAYKAgS0vpHbgh3SrDoNja5CpAnHLoLkwRatdwgt83F6HWHEUS5c4vQ7K9wlcm1a7gSYlhqETVGbxNZPA7uC0KmGynPKhVyc2vIHE6CbiwkVPxAncAoX+QYqZJL25Z/AaS+zbp2Mmc1SXakxP//8YGxlkw1CabS+89aIHn2cHOMMweHrvPjoywRVXnRhok+nnlvO8EJWvC5nKP9tysIiI54soUK8Sstksg/kU3/q3R5mZnsXVLIyh9XQXp1C9Blq6D+V2cZcOY+QHEVJDyxRCcRA3rJ82jBh+r0XQrhH4DkZ+NNR47jVCJS0zHqpt+X4ojqICglYVCZDMIZDoZhe/XcG3O9Br4s3tQ3UbxNZeiVEYRUv349XmUSi0zCC+28OffwZ9aDM6isDz0KROEHh49UXs2b3IRA7cLlqmH/QU0oxh5AYRglD8w27hVudB05GxFG51lqDXxdc0lN1GZgeQQuLXQ8lP3UqhdHNl6hrPBqmHGePxJEbfODKeR9lN/MYyjgglNmUsiVeawtct9EwRLTMAQYBCoFBh0pcZJ+g2QrtOXQ/10J0uSpgQS6OlcliD63BbNUQ8jerUwjI1r4emAqQAmchTnnqCfKvE5FCBBS2gXZ4n3q2jZ1KkcfDzOax0jm5L4Fl6WCpmpkgUBhGJPD6z+HabXqOG1mogjyX1+c0F7F4L6XWQyiM1vJaY8MlnMuhWDKdRJp7tI57LMr//cdIxA/2YME4ylaU5u0i3ZaJU6pz+Ps9mhPnTAc51ehydmmL7NTeftyfy8z2VfS7lYBERzxdRoF4llEolqtUqP3rsUQ5NzxKMX01QXw61ohulUNwjP4q0kqG9o2mGNcqOTWC3QQXIdBGlG/jVWfTsWvS+LCqepnfg+yi7i9usoKfySD2GPbcXpIlbPgzSwBhYhzjm76yn+xCxeOjEZVh4dR0hNJTnAgHKd0NFs3gSLZ4JRUoClyAIsIY2oiXzBL06XnkWRzNRvTbSTBBbf22YADW/j8DthXrfnWaouOZ0wbBQmhGumSuBkUhhrr8Oe+bHOPN7iY1uxRhch5EdRfk9nLl99Ob2oZTCbyyFI+RkHi09gNQkwTFzD6RB7+iPCOw4yusRtCv4BEgEerqAZsaR8SxuZRqZ6SfoNDGG1qPnRsLEs9oCet8Y0u0hBXSPPo3I9GHFx1FBAHYbSYDrdGjPPYOZLtAtzZJyEuhD20jk+pk/tBfVaxLXBelUkljMZNNVL+TgwcMs1toMTO7ARlJudpExg9TgGnynQ6O+CJ6NvTyFHniYyQy9ZhVdBOhmgqT0SVgirDuXApFIEihBs9nA63YpjuzkhS+6lV431AVfTsBN119DrVo+42j22SwvL/Pjvfs4NLtE13aIWybrRgfYtmXzStA6VYBbnJ9lef88+w8dIpFKnZDMBs/tiXz840Apxc7t24ALy0R/Ls61HCwi4vkiCtSrgOP/J7dkayQKQwRiFqe2RO/Ik0jdCMVD+sfRc8MIwwSlkPEcyu3h9VqhrrTQIHCh1wrlNVUAUiKVj1Ecx5l/BiOWIGiW8Tr1MDnMdVC+g5Yfw69Mg+eiZQeRZgKpaQgrgYpnwIihpQt4zTLoBgQB0kqGYh+GhUjm8Nt1gLBdCJTQMHLDoSiJkPiNEnp2gKBVDS03Y2mw23h2E9oVArsdHpvMIzQd4dhhuVNjEb82G9pgajp4Ln6rhApcZCJHbHwHvcWD4DvIWAqpGQgChB5HExq+10W5HUBgZAYQxXGklcBM9eG3Svi1OfRUAZ8A4FiZmhuukTttsDsABL6P6jbASuBUFxGtMsJuY+RHVjTApa5hpIrEC4PQLpMZHadt9VErHcXKFrnqhlvRpUJ0G7jdJvMLi9RKi0hh0Tc6TrlSwas08G2PWMzCcdokCkNodhPltJCBgy59DNFjdO1G2q0OSUswPD5J4LkEyqfcaKMQaNIjm4qzftNWpBAkEkmECkglE5hWjKHhMQ7tfZyRAwfo7+8/beBbXl7mq/d/i4OLrWOJiglUw+Xw4n6OzM7z6ttupa+v75QBLpMrMDKxlmbX5sjhQ+QKxROucaaEtjNNP18qta9zLQeLiHi+iAL1ZebZX/EjYwXK1X9GaXGaex8ELYaZLqCbCYzCGrxmCacyg6YZYWazboV+0aYVrhlbKdzqAkGvSdBrIwcmkbqFNpIDu4NnN/E7FTSpETTKEEtgrtmJDAL8Vomg0whdtVRAEM9BuwbIsNZY6OD1cOYPIJNhnbSwO3j15XD6OQBrdBuaFQv1GnUzdMrq1pFWCtVr4S4fAUAY8VAgRY9BrwOagQD8TgO3OovqNkMvayFRnWooIFIYASnRUsWwZtmzUb6H8hyc6jwqlkFY8fBeHRulGaEpiOOgUOipAmYyGwqdODZKCvTsAJ4K8NtVvHaTAIWMm0gzFibLKR+haRj5oXDNO7YGaRgErosShA5h7Qp+p47fWCaeHySzZhvN2X0EvRaJ/ABGIouhaaRTMVLZHNlCH/XFGUxNcfjAftqVJVLFPipzh2n2AiQK0a3SKTcInC6JbJGEbzIycS1Bt4F0Oywfeopi/yBj4yZz9Rq96jyj4xPE4knc2hKO0yQTE1gD/WSL/St/Z+XFOfozKfwg4MCRKfb+eD+dbo/+YuGUa7BKKb736GM8caREds1misXBFZOLcnmRJ47sI//oY7z4RTecMsClUkkKmQQtN6DSaNFqNkhnwsSvIAg4uP/HDMYClFInuGVdrunncy0Hi4h4vogC9WXm+Fd8LNXPEz98jCOHDtFaLqOEjp5II5KF0LWquQSei5kdJOi1cCozmMVxRKYYrjW36wTlGVSvhZEfDYOnEshYMqxJThfQrAR+bRGVKoTJZa6Nu3iQ2NBGYhNXhjaSZgLluzgLe0GpsPbY91DdBl6nGep6t1IIGZpWBJ0G0kqEFpB94yjXJug1wlVf3yNwe2hGnMDp4kw/jdG3Bmkl8CqzBL0WMpZGzw+jrDhesxzWYhux0K86CPBKh8L141gKqVuhUchxQRUVoFSAlBJlWgSdRmgzaVhhDXV1LlRE82yEpqGZMVTgofsuqlUmiGfC30FpBiPbf8yOswxOL6wl7zXR4ln8bj0s8UpkMAgQsSVcJ1Rl84XCK00Ty/ZhxRJ0Z/dAfZGh4THWrRlj9uhRJkcHScXGSWDTLs3i2h161TJXrB9jX7dEoEFvZh/Vah0fjZhu0gs8+jbuQgpIBB0KE5soH3iS0sI0I1uuJCYgk81RrR5g7sDTzE8dIhaziPkdkpYkY2UpjIxjd7q4MgzSMb9DoW+cp/YdoNr1yPaPsO6KazB045RBsFar8fie/cT61zM6NsnxGBxPxBmNT2J3Ozy+Zz9bNm04TYATTK4Zp97ay9TBWerVtSSSKeZnjvLow9+m02qyfnIC+zuPMFTMsG3zptOOzp+P6efzKQeLiHg+iAL1ZcZxHErlKvWlJlXfwvV9hB5DS4aZxKpVIdB0dM3AGFiLEhJnfh9+q4qyu6F3s6ajnB74Lgow+iYIeg2Cbp0glcOvzofqZCrA7FuD1jcOKsBdnkKzUijfAUE4ne6FU85mcYyg00YbmECicBYOErTKYSnQyCaU0w3vwXVQuhUGbacbeia7Dlq6D6+xBEqBaYU11O0mpqZh9K0BqYX65G4PZ/FgKHiiaZhjO6BTwZl5CmGlUIFAqgBVXyKIpVCBF05xC5BWArddw++2wqxuu4PbaSBblXCGQZMopUD5mMkcInDRrCRaLAG9JkII/FgKmcwTeC6a3T6WdBYjaByTCfUdhApAC9W68HtYuX4MaeG1SrjNKrrysPw2KREagiRySZTfxS5NE5cek1uuotesMDG5Ft0wwrXimOKGa15AXId628a2MgSeR8OTKCOGrTq0ygvENOgfGcHzApZmDhNPZLj25pez8MwTNEsLpPv6MRyXeq1B3HcYG+hjNKOxdcM6Ds8vs/exBxgZGaU/k2Jy7XaOzi3QwcTSFP0DfWRzeYQQK0Hw6b372KXruK7L9PQ0pUaXjdvX8NMxUQgYGl7DgamnaR4z0jhVgMtmc2xYM0pv/gCthSN8d/e/8aOnnsKP5xmd3EAvXmCuHVDp1ak0HueKTesu2/Tz+ZaDRURcaqJAfZkxDIPlpQXs3CTJTJKe60OyALUlvNY8gWYQG96EsJJgxMLaZ89FSB3Ztwbpu6ACAmkg9RiivRwqiLkO/vJRfLsTjqjNZFjW4zkI3w/XfK00Wv8k2O1wjVlK/PJR9P51aKkhXDmLHkshrBSitoyeHyLwbIJui6BdDddlM/0ou409+zQcEysRZgLl2fj1RVTgoxznmGHIKCKRwy3PoHqNUNhEt9DdXjitG8+hJ3P4vTxOZRahGWhmgsBph+VIgYu/fBgCH7M4hl9bwlvYj1udQegWXq+NHnioWAbltEObysYS0u1RuOYVuIGi1w3FWcxkjsC18Sqz+M1llIJup0FqdBPJkW04pWk8r4f0YwSBj3A6qG4DJRXx4kioj94uoRkaZibF8OAAE9t3ML52HSYeT37/u6yZmKTla2E/pEA3jBPWilUQsG5inEp5iYeeOEBgZokXh5DpPpzFWbrleXrdCl5/P6VDTyGcNlfccDOZVIqpbofhzbu4emI9nufRqlfpVRd54a4dtJs1xtOSG667hoceexzHSLJuwxZ8pZhfKuMqSdYImFy741nuUoKYleDbD3+Hw7NLGGaMcmmJ2ZmjDNVLJNMnZ4krfJQKSKfTDBZ6pw1w3XaTW69/AcODA9z9uS+QXrONK665CSsex+nZVCpLuF4Pmh5yzz5sl8sy/Xwh5WAREZeSKFCvBqQE3WBu6iDNVgeVjIdJXsk+sOuIWDKcfq2beL1mGNQ0nWB5CuJppG6inDaesxQG29pS6J8cS6DsFioAIVRoZKEb6FaSwLPBsEJBj3iaoDZPICW+3cHQNISQaGYS5dgEjo0IXIzsMG59HqV8hGmhJ3PgOvi+i5ASe/pp3EQOzUoiE5lwdN1rHqv9NTBSBWQyS+DZofxoegAtlgSp0Tu6+5gQi4ZMZBFCQreJMbIJYa3Fq88hrRQCgbN4CL++hFI+XnkWmcihHzMqCTw3VPZSPkGrgt+sIDQNiQLNRAVtZDyDjCfwStMQuGixNL7vI3ptpGcTT+fxu006R5/GDqZCxbXiCLomIJ6lV10ksHvITo2RvhzDawfYsXECkR1i3fr1dDtdBvv2IvFJxeMcmTnC5GCBeDz5k7XidJJms8aGyTHquTRLXcly0+HA3FHq81MgBP0DQySsUYLaHHEdMmNjbNq0kbmZIyBgdGId8WQYQFPpDAtuj3giQSadYenoXq68YgevfdlLwqSs6X2UqjUq04fZvG0n69ZvOCELu1ou8czBQ8y0AsYSBfrG1pAcGEN/8iCPP/JdXnRbikz+J/srpVicPkJfKkZ/fz/5fP6MAW7r5iv5/r/9kJZIcsULbySRDBXpnu0VbfgdKq0eKHXZpp8jZbOI1UgUqC8zruvSPzjEXLvFt756H7bjIowuRrYfv91ApIqoICDoNlC5IaTU0ItjECj0TBGZHURP5FGBi1edwy5NI5RCi6eR2T40M0XQreNV55HJHJqMh8lPtQUwY2Fmt+vg91qhN7OU+N0mym6HameaiVChgImIxZHdOFKAkjpaLInSdBQBmtvD71QJOjWCXgPqc+jJIkqIcFQbT+M7bURtMZyO1oxQKU03UYiwFlrTQSn8To3A6WKNrcUc2YK0EmiJJF51Ac/phlP67Uo40tcNtOwgqtvAGt2C3jcRWloq8OoLYX2102LxyW+j58eQxVE0AjpTu/GVQs8Nh0sFnRq96aewG2Uacwex8oNY8RROu4kVixFPJMiv2UDQbuIHAc1KD5nKIITA0gU7r7yKo9OzzB56Btv3Wb92gl63zdG5OTS7g++nmJs6RKOyiO60UGPDpOgxNryOpWqLV77qNSghOHp0mgMHD3FkYYn5Uo1uxyfWq7L96p24SJYXZzHdNrl8ASv2k1Gn07MxNImuG8Ti8ZVR58DAwIpK1/LyMnFDZ2zLNlKZzMqxSimeeuJx9h6ZJxAmB+crLNW75NJxtu/YwWNPPs2Tjz7E1Te9lFg8id3rUF6Yo7s8xXW7NpLL5RBCnDHAGYbB/HKNVKZALH7iaFkIKBQGqC8cJqEFDGbjLFzG6eeLoWwWEXExiQL1ZcY0TUxNMnPkIJVaA4QE3w/1n4c34rVr+M0ympVA6BYBrVAmMj8M0kJ1m7iBQo+lEVYSKSW95hLm2A6s3BDO8hEw45hD6xFmGn1wPapXx2tVUJ0a7uJhRDKH8j1QAZqZQsRSBI2lsBxLaAjDQkvmwv9tJkEYqMDB73XQpCDo1PEbJWSqgD42EZpieA7K7aIPbcJZPoy3sB/lOniNZZRuht7S3QYqnsZvLOPbLfRjyV3e0mFQCmNoEzKWQvWaCN1EH1iHSGRCTXMVIK04ePHQf9roxxpcjzAsAqeDZibRkxmkFEinRbCwn97R3QSVBQzlkugfJzs0gWekUbE0KpmCXhPZLqHXZ9H0ANlrYLpN+gvrMWMCvzyDURglZqWwYgmaS9PUSjP0m30IqbF+cpIfPf593FaT9NoJihmdvNCptwz2P/kge1s9dF1nsJhjJAlbrryZTCZzLBEriaZpbNu2jW3bttJqtZienmZ6do7ZQ/sY60tTXl7Gby2zY9cu9u0/iN3rEE+mUQoqlSUG0nFSqSTtZuuEUedxla5sNsvc4hLTCzMk0z8JgjNTh3lizz56iWEm14wyuXkTTs9hubJEoGmsnxhj9tA+jj75CPF0LjQfcVrsWj/Cjddft3KeMwW4paUlAiGJx2Mr933CexCzaHe6DKQVO7ZuYfczhy7r9PPFNimJiLgQokB9mclkMrTrZQ4fOUKgW2C3UU4XrX8Sc2gT7p5vIXUNfWAdSBEGtV4DLZZBS0jc8hJeYyksWzJjoQ+174HdIrC74NlhmZSU+O0SWjODcroI30Mh6M48jZQagedgjm1DeDaqXUbpMYy+idAiUjfAiOHVFkAIZGoMXRvAa5YINA3l9FBConwXv76AFkuBYRI4Hbylg6GWdmYAoRthElmzhNRMevP70LsN8BzQrXDqur6Is3AwFFIRhDKmx2qZpRlDMyykZaG6LaTvEPgueA5aMo+e6Q9H00GAlkiB76PHM1ipLK3GEl6jAu0yItuHSBbwAoXbWEKXGkgdyzQZGttOUtkk4nFmnAqam2J0dICZ2Vk8JUMzE8MkmUqjJU2kOYSZMNn96HfYuX0bv3TtFYwND5HJZDBNE9u2+cZ3HqY4sZFcoY90JovvebTqFfYenuYKwzhFIpYglUqzdes21oyNMZ01uOkFVyCEYPe+Q7Q6LZKGZHl+hr7hCarVZeLKZnLNRpTitKPOU63BWvE4e5/eTanRZdPGYdasGUeT2rOmpGHUMkgFHQYyBnosIGHFWTu+lu3PEjx59jVOFeBM0ySXSdPxO5QX5xhdu+mEYGt3e7Sry4yuXc/69et/4pEdTT9HRESB+nLTaDRCI4x2Fc/1UFYcYdsozcTv1kHqod9yt4FXXSBolTH6J9CLIwglkL6HFU+D1JHxVFijDKHVommg50fQi+MIz6U79SOc8jRSamiFYXQzAYsHwlpoI463eBChxwjsNubgWmRmABUXBI1lnMX9eLVlYpM70XSTwLVBauB0QTcwBiZRjSWkpqPnBsN1YKHj95qhLWUsHSqsCYWeHULE0/jlWezZpwm6baRuEvhO6MjVaWCNZgl6rVB33Iwj4xmEbuIuHwKnhxSCdK5Ip7ZMoDyEEGhBqKzmdEIvZ4IAzYxhN5bplReQSpEY2YhMF0lsuAbl9rBLM3RLMximifRtNNdBlx6jxTTpF9zEwp7H6O/LYyvQ+teRTGYwYxau47JwZC+b+wa4+foXYJdnuf7KbaxZs2YlACml+M53H0al+rhy44nTuAODQxzav4eZ+QUG86kzZBrPsG50gL6+PlzX5YrN65iZX8Auuxzd/wy1+SkmJyfYtHEjutQ4tH/PGUedP70GW603WJg9ynBflrGBIqnkT5LGjk9JL09V2DA5zktvfCHxePy8poKz2SxDxQzlrofVbjN7+BmKgyNYsQS9bod9T/6AIcvjhVeH9x1NP0dE/IQoUF9mHMeha7t06lXsRhkVyyADF688RdBYDOuKPQdn6QhSgDW8Ab04jpYawJvfh2aYyOwQym6H5VCGhZYbCmum6yWUEBgIlG6gjARBZQbSRaTnQdBC+D5Gqg8lFFIp3OYywkjgt+sIoRGg8EpHccvT6LkR0Ax600+C0Al8LyyTimfBtyE3gtAt3NIMWiqH366AbqLFM6H3creOAIJeBz0XZpA7pRmk1BCJHFIpRKYvVEzrNvCbJaw1VyAQoQ1nbRa/voh0bTKFPCObdrC05zGUMOgp95h06kAorykCgsDG6zZwyjNo3Qr9228gv/4qluZn8Zol0GNoyTyoAJpLpFNx1m3cSMxpsf3qa9j91FMkEnGyRkBJk6SzaXyh0W23qS4cZcBw+KVbbmNsbJwj3TrxePyEQHI2SldLR/dy9bYNVE4z1evXF6h5cb7+4KM/UejKp7j1hhdy4wt2cuToNE07oDp94KxHnc8OgrOzs2EegRan3Kqj+gdPuFfDMikvLnD18OQJHyHnyspovvE4AHavQ2VqH91uj1ajwlAC/p9Xv4KBgYETjommnyMiokB92Wk0Gjz22Pc5MrOA77nQraMlcwSdJpgOev9agso0RrqA0iz0vjWhIEdjEeJp9EwRPJcgVYBWhaDbAsMELYbfOoRyethSRzktVLOKsNKhJaMVRyZyKKkhRVi2peVHCI48juo1UYDfa6I8JxT/MBLge6h2nQCFHoshnA6BUsh4GgIPvTCC0Az8ahDOBijQ4hlQAaJdx8gM4DVKCCMWulfFksiRzfiNBeg1EIZFImYhxjYi8kPYtSXcw48jExkUAdgdTNVDGgEJ06Q9/QyDhQztdpvA97HL0yi3S3pwgngyRXPhCE5zCbO7zOD6ray56sV4QuJ36th+E5FI0nU9NNPAcToUixMYmiSdTlJr1OhPCKzRAQq5NNVaE81t4vgBbrPBxoLBbTe/iomJSdrH6oh/OhP5bJWuMpnMKROxMjKgohRNPXtCAJ+en6byzCFuuuYqtm7del6jzmcHwcLBaWSqn/aRIyeMdO1eh7mpQ8SDFtu3br7g0eyzR/ML5Qa1RhMZNxnevIVrX3D1CUE6IiLiJ0SB+jKilGL300+zZ/9hbCOBkh2w24jsMFoijV4YQUsV8TQtTNDyPdBNhGHhl2dC6cVMXzg9rBkIw0K4XVSvhee5oOlo+SG0VB6CLHq6H6d0FDSDwPeg10TXDEQsGSZoSR2p6ZAZAsGxJC6L2JpdeKUjeM1l3NpcmOBlxlG+e8w6UuG7vdAqE0FgxhC+A8JB2W20eBozU0AzE7imhVudJ+g10HMDJDJ9BLrA79Yx42niukZsYAwXHfQ4yrXRgl7oHY2N2auSy6XRZY9WpYw1NIoTOATzh/GFhWqW6LQW6QSg7Aayucza8SFSfSMMjY1Sa9voBCxNH8L3XXRfEYunaVsmXmMBZ9klObmWgbiAwSKj64qkM2n8doPZ9jJrhscprhtk66aN5HL5M2Yin4vSVS6XO2Gq1zAMnnjqaRpa+jkVui5k1Lki8tHssGP7dqaOHKYy/QxeoNClQLZK3HT1dtavX3/e13g20ZR2RMS5EwXqy0itVuNbDz9G0wnCjOtYEiUlWiKFliqgZfoQbg+hGch0EW95CtUshw5TQNBrh6NfJcIFRd9BywwRtErHTDIUAolyeujZfpAaslXGb5YQQuK5NtbIRkQih2qWcef34rWq6Kk8yunguzYyliZolxCGhTG8GZwuXvkoQbeJliqC7+J1ahB4eNW50Lu5XcMw48RHN4HUQwcwPGKDGwj2P4rQJCLXh2XGKKTjmAmF52h0tTQohdtqkBheh9dpoRf70JVPXJckYyZxr4iJy9DkZgLPoa+vn2ajwdTBZ1g+ug/Pb+G0e2gSiqkYQ+s2cfWNt/D40/uJawIvHsOMT5DMFKgtTlFbXqS3vISoznDlzhu58eZbSabStOoVkpbODddcRV9fH+Mjwzz02OO4Zoa16zcRSyRpN5tnzEQ+V6WrZ49ya7UaS9XWJVfoenaCWbWyzMZNW/B8j1ajTqW8RP9IhhuvvfqiBtJoSjsi4tyIAvVlpFQqcejoDLYfIFJ9CH8JiUDLDSE8B6EkvtNDMyyMgbXHhE1shJVAKh8tkQuds3QL1WuBZqJlB0IFr3YN5Qdo6SJGdojA7eJ3GqHsaKsK0kDqOl55Bsoz+L0Ofn2ZwO3g6VYoBJLuQ/XaONX5Y4IhoT+zEhJ5TPDE79Qx4hn82hx+axn0OBqKRCaHJsDI5ul0q4BC1GZQrRLW4CT5tTvIpVKk4jqqsYhlV6m2ujRVHLtVI2ZIMpuvwLFd0ukkuVyewO1RfuKbDK3fyJqNWxhMaqxfO4nneWjaqziyfy8Jt87I0ACxWIzh4WGmpmc42gwYnptnZvYIY9uvplZr0InHMdP9jMVMestTDBdHuemFO/HbVRy7ftJa74YNG56VibzvrDKRL0Tp6vk0iDghwWz6J33bMpw9yagjIiLi+ScK1JcRpRStVgdfmig/wOu2MMxY6NAUeCi7hZ4dgsCDTgM9N4wz8+NQecuIIYSGs3wUIUDEMujZAZTTwmsu47UraJkBhGEik1lwzFDHW2rhWrMKkHoMZcSRhoUmZKh+JgXYDdzKPM78AYSuo6X7UUJDoDAKwxi5IehUiesgcgUCoNdLholehs7g5BaKI8OUlpfxlhsYzUV8JVGleQZGJ4kPTpIdHqddnkM3TDbt2EkMh8bcIQ4vN1ly6sTtGkbcxLI0kqkUtuPQOPQEOh7F4VESwmVyzSSp1E+mlNdt3Erl6F6uvvrqlRFbKpWi+tjjDA4PMr97D9NPKfrG16Okh2a5aMpjZO0Ab/1/3snIyMgZp2PPZ9r2fJWunm+DiGhKOiJi9RIF6suIaZoESuG5fpiwpRTK8/AaVaQU+E4HM7MRITW86gIEPjKRxWsshkplgQLPQegmmpAoz8arzIXryGb8mCZ3Hcc/EGY2K4WWKqJcG7c8jev0MAvDyGQepQKM4jhCSNzqPNKo4nYaxEY2ERvbirJ7qPo86Wwf6UIfdmUOS4LXqaOLgJgRkOzPMDZYRI9L8GoIwyU91Ed25xbmD+7FqQcMbdxF2wnQNJdsPsnVO7YwNjZGt91k3mlhJVKo1jLDQ0XiuTyNrs3soR/RrS6Tlx36B4fZNNrPurWTZLO5E36fpxplHg+UhcwzmG6Hx3c/zczM0+imyWAxz7aJIV72kpvZunXrWT2z85m2PZ8geDkMIqIp6YiI1UkUqC8jlmXhex4ylYfSLLG+MbxOg6BThXQf0u4Q2DZ6Oo9MFXDmn8HvVFG+wm83COw21uhWjKFN+I1FVLuK162jUARODy1fQBgmwoyDFppDeAsHUJqGzAwQVOcJhA6+g9RjEPgEzSWEACNTRAQ2eqeEVpvGSueJ5bNYZoCFS7xQQDpdTM3GjMXoCJsX7NzFa173y7TqNQ4f2M9Te/fRUS4x32Y0a1FY/wLWXXkThw4+w2y5wcZN6xgbGwt/F7EEuhVjJG4wsHM9TgDlxiwpx+Ga0QSbb7yB7Vs3s3dqnvH160imMyf9Pk83yjweKHft2M6v9nosLS0hpSSdTjM+Po6U8pI/63MNgpFBRERExHFWZaButVq8733v4x//8R+pVCps2bKF//f//X954xvf+JzHLi0t8Z73vId/+Zd/odPpsGvXLj784Q9z2223nbTvN77xDd7//vfzxBNPkEgkeO1rX8vHPvax561MZHl5GSOZJtbu4eaGQkfIVBG/UcJvlhGxZDh6bi0TuL3QNUvoiGQSKaDXquKWpgja1VAvGwVOF79dR0/mkbpB0OsiYmnwAtzFgzilabREFk1I9NGN6MkCdGqY8QS+3wNdMjjYj1T9dJcNTN8GZ5n+XD+aFZZCCUeSTiUZGR0lYY4RtCqkBgzWb9lELpcnny8wNrGWtRs28uSTT7JY77Bly2Z8JXB6XeIxizQdcG26nS5mzKJeqVBZmmfjljW8/FfeimEYlEolAPqeldns+A8zPT9zzqPMZwfKoaGhS/1oLwqRQURERASs0kD9+te/nscee4yPfvSjbNq0iX/4h3/gV3/1VwmCgDe96U2nPc62bW677TZqtRp33XUXAwMD/PVf/zWvfOUr+cY3vsEtt9yysu+3v/1tXvWqV/Ga17yG++67j6WlJf7wD/+Q2267jR/84AdYlnXJ+ymlxNR14vEEjpbE6TTQBybDDOpeG6c0DWZ8JbsaTSK10JM5MOLIZBYldPxuAyF1ArdHb3kKhMQojISJYO0aamk/yunhtxv4XhfdTKGn8kivjZUpkN1wBZpQGE6LsWLokmRXZmnrXTasn2Tzlh10um1mFkocOlyjMf8UsVwB02gxNFjgqmu3snH9WvYenj5h9Fco9jMyPEDMP8hAQjJ1dJpyucyWrVu5asONVOsNqktHcTyfyvxRNvbFefmtN618KOXz+ZN+Z79oo8xo7TgiIkIopdTlvoln89WvfpXXvOY1K8H5OC9/+ct5+umnOXr0KJqmnfLYT3ziE/z2b/82Dz/8MDfccAMAnuexa9cuUqkUjz766Mq+1157Le12myeeeAJdD79XHn74YV70ohfxiU98gt/6rd86q/ttNBpks1nq9TqZzMnTsWdiamqK//Jf/4In5lq0ZZpmrYwxvAW3cpSg18a3O+B7GOkCMpFHKZ+gXSOwWyjXRijCmmXPJehWsUuz6Ok+rMkr8cpHQ+9pFSBcGzwb0zKQvRZW3Aq9oIVGYnw7/ePrSFs6w7k4g/0FEtInrhzGUoKhkWGWa21s18ezu+RTFuOjI6TTaYQQK6NdIQTLy8vh6K/S/ImKViHN1k0bMU2Tubk5Hn96HypZZGhkDbFEnNLyMvMzU2Skw8tuedFZzWac7jpRhnJERMTPCucSO1bdiPree+8llUrxhje84YT2d7zjHbzpTW/i0Ucf5cYbbzztsZs3b14J0gC6rvPmN7+ZP/7jP2Z2dpbR0VFmZ2d57LHH+MhHPrISpAFuvPFGNm3axL333nvWgfpCGB8fZ/vaEfYu7ENPWnTqoNwOWjKH16yiGxayMIpSHkGvgd9roTyXwGkTNMsEvh+aYTgtgkYJLV3ETKRQS/sJWlU0p83w8CDbr97B1k0b2Lx2jK2bNiKEYGp6hid+/Aw/2ncQv3WUgeQww7kC/UmNmKYzlE5y07Ea4rMdzT3X6C+Xy9Hf33/SVO620dw5BdlolBkREfGLxKoL1E899RRbt249IYAC7Ny5c2X76QL1U089xYtf/OKT2o8f+/TTTzM6OspTTz11QvtP7/vd7373gvpwtkgp+fe3/zIP/dt/YyFwSMZ0bLcTmmHkBrAXDkG3gUzm0aSOCnyE0FCOjWt3MTXIJxO84Jorecsb38iRuSV+vHcf7Uad8eE+Xn7bbWzZsoVEIoFlWScEs+uuU7zimNbz03v2Ue+6BFIjl5QMFTMnBM5zTYI60/4XK8hGGcoRERG/KKy6QF0ul1m3bt1J7YVCYWX7mY49vt+Zjj3+39Pte6Zr2LaNbdsrPzcajdPuezZs376d/8+db+auT32Wnu/SXVzC71SxrCRBtg97/gB+bR5PqdAistdEBj6DhSIv2LmF//DvXsWrXvHycxr5wk8CXS6XY9u2bc/r6DQKshERERFnz6oL1MBzBpiLdezp9j3TOT7ykY/wJ3/yJ2e8h3Plta99LWvXruUf772PR5/4MYeOHMVuasQlWP1pdEeQSGfJZLMU82k2r5vgxTfewAte8ALy+fwJU8vnQxQ4IyIiIlYvqy5QF4vFU45oK5UKcOpR8LkeWywWgVOPziuVyhmv8Ud/9Ee8+93vXvm50WgwPj5+2v3Plu3bt/PBrVuZnp6m0WgwMzNDPB6nUCgwMjJCtVoFOCF5KyIiIiLi559VF6ivuOIKPve5z+F53gnr1Lt37wZgx44dZzz2+H7P5qePPf7f3bt38+pXv/qkfc90DcuyLlnplpSSiYkJIOzLs+nr67sk14yIiIiIWN1cekmmc+T222+n1WrxxS9+8YT2T3/604yMjHDddded8di9e/eeUIbleR6f+cxnuO666xgZGQFgdHSUa6+9ls985jP4vr+y7yOPPMK+fft4/etff5F7FRERERERcZ6oVcjLXvYylc/n1Sc/+Un1wAMPqN/4jd9QgPrMZz6zss873/lOpWmaOnLkyEpbr9dT27dvV+Pj4+qzn/2s+vrXv65uv/12peu6+ta3vnXCNb75zW8qXdfV7bffrr7+9a+rz372s2p8fFzt2LFD9Xq9s77Xer2uAFWv1y+84xERERERvxCcS+xYdSNqgC996Uu85S1v4QMf+ACvfOUrefTRR/nc5z7Hr/3ar63s4/s+vu+jnqXXYlkW999/Py95yUv43d/9XV73utcxPz/P1772tRNUyQBuvfVWvvrVrzI/P8/rXvc6fvd3f5eXvOQl3H///c+LKllERERERMTZsOqUyX7WuBBlsoiIiIiIX0zOJXasyhF1REREREREREgUqCMiIiIiIlYxUaCOiIiIiIhYxUSBOiIiIiIiYhUTBeqIiIiIiIhVzKpTJvtZ43jS/IWac0RERERE/OJwPGacTeFVFKgvkGazCXBR9L4jIiIiIn6xaDabZLPZM+4T1VFfIEEQMDc3RzqdPmejjOOGHtPT0z+zNdhRH1YHUR9WDz8P/Yj6cOlRStFsNhkZGUHKM69CRyPqC0RKydjY2AWdI5PJrMo/pHMh6sPqIOrD6uHnoR9RHy4tzzWSPk6UTBYREREREbGKiQJ1RERERETEKiYK1JcRy7L44Ac/+DNtAhL1YXUQ9WH18PPQj6gPq4somSwiIiIiImIVE42oIyIiIiIiVjFRoI6IiIiIiFjFRIH6Ami1Wvz+7/8+IyMjxGIxrrzySj7/+c+f1bFLS0u8/e1vp6+vj0QiwQ033MD9999/yn2/8Y1vcMMNN5BIJOjr6+Ptb387S0tLl70fX/rSl/jVX/1VNmzYQDweZ3Jykl/7tV9j//79J+176623IoQ46d8rX/nKy9qHe+6555T3JYRgYWHhpP0v5bM43z6c7nd7qn5c6ufQbDZ5z3vew8tf/nL6+/sRQvChD33orI9fDe/FhfRhtbwTF9KH1fJOXEgfVtM7cTGI6qgvgNe//vU89thjfPSjH2XTpk38wz/8A7/6q79KEAS86U1vOu1xtm1z2223UavVuOuuuxgYGOCv//qveeUrX8k3vvENbrnllpV9v/3tb/OqV72K17zmNdx3330sLS3xh3/4h9x222384Ac/uCiJEufbjz//8z9naGiI9773vaxbt47p6Wn+7M/+jKuvvppHHnmE7du3n7D/unXr+OxnP3tCWy6Xu+D7v5A+HOfuu+9my5YtJ7QVi8UTfr7Uz+J8+/CJT3ziJAnbTqfDK1/5Sl7wghcwNDR0wrZL+RzK5TKf/OQn2bVrF7/yK7/C3/7t3571savlvbiQPqyWd+JC+nCcy/1OXEgfVtM7cVFQEefFV77yFQWof/iHfzih/WUve5kaGRlRnued9ti//uu/VoB6+OGHV9pc11Xbtm1T11577Qn7XnPNNWrbtm3Kdd2Vtu9+97sKUJ/4xCcuaz8WFxdPapudnVWGYag777zzhPZbbrlFbd++/YLv91RcSB/uvvtuBajHHnvsOa9zKZ/FhfThVNxzzz0KUH/7t397QvulfA5KKRUEgQqCQCml1PLysgLUBz/4wbM6drW8FxfSh9XyTlxIH1bLO3EhfTgVl+uduBhEU9/nyb333ksqleINb3jDCe3veMc7mJub49FHHz3jsZs3b+aGG25YadN1nTe/+c18//vfZ3Z2FoDZ2Vkee+wx3vKWt6DrP5n8uPHGG9m0aRP33nvvZe3HwMDASW0jIyOMjY0xPT19wfd2tlxIH86WS/0sLnYfPvWpT5FKpbjjjjsu6L7OlePThufDankvLqQPq+WduJA+nC2r+Tmcisv1TlwMokB9njz11FNs3br1hD9QgJ07d65sP9Oxx/c71bFPP/30Cec43b5nusbZciH9OBWHDh1iamrqpCk+gIMHD1IoFNB1nfXr1/Pe976Xbrd7/jd/jIvRh9e+9rVomkahUOD1r3/9Scdc6mdxMZ/D/v37efDBB3njG99IKpU6afuleg4Xymp6Ly4ml+OduBhc7nfiYvKz+k4cJ1qjPk/K5TLr1q07qb1QKKxsP9Oxx/c707HH/3u6fc90jbPlQvrx03iex5133kkqleJd73rXCdtuuukm7rjjDrZs2UK32+VrX/saH/vYx3jooYf45je/+Zyi9JeqD8fXE6+//noymQy7d+/mox/9KNdffz3f/e532bVr1wnnuFTP4mI+h0996lMA3HnnnSdtu5TP4UJZTe/FxeJyvRMXwmp5Jy4mP6vvxHGiQH0BnGla5rmmbM7l2NPte7GmhS6kH8dRSnHnnXfy4IMP8sUvfvEk288Pf/jDJ/z86le/msnJSf7gD/6A++67j9tvv/3cb/ws7/NM2175yleekN15880385rXvIYrrriCD3zgA9x3331nda6L8SwuxnPwPI9Pf/rTbN++neuvv/6k7Zf6OVwoq+m9uFAu9ztxvqymd+Ji8LP+TkA09X3eFIvFU34xVioV4NRfmed67PEMy9Pte6ZrnC0X0o/jKKX49V//dT7zmc9wzz338Mu//Mtnde03v/nNADzyyCPncMcnczH68GwmJye56aabTrivS/0sLlYfvvrVr7KwsMCv//qvn/W1L9ZzuFBW03txoVzud+JiczneiYvFz/I7cZwoUJ8nV1xxBXv27MHzvBPad+/eDcCOHTvOeOzx/c507PH/nm7fM13jbLmQfsBP/g/p7rvv5m//9m9X/sDPhQudWrrQPpwKpdQJ93Wpn8XF6sOnPvUpTNPkLW95yznfw+We4ltN78WFsBreiUvB8/1OXCx+lt+JFS5fwvnPNl/96lcVoD7/+c+f0P7KV77yOctpPvGJTyhAPfLIIyttruuq7du3q+uuu+6Efa+99lq1Y8eOE873ve99TwHqf/7P/3lZ+xEEgbrzzjuVEEJ98pOfPOdr//mf/7kC1D/90z+d87HP5kL6cCoOHTqkUqmU+pVf+ZUT2i/ls7gYfZifn1e6rqv/8B/+wzld+2I9h5/mXEtqVtN7cZxz7cNqeSeezcUobboc78SzOd8+rLZ34nyJAvUF8LKXvUzl83n1yU9+Uj3wwAPqN37jNxSgPvOZz6zs8853vlNpmqaOHDmy0tbr9dT27dvV+Pi4+uxnP6u+/vWvq9tvv13puq6+9a1vnXCNb37zm0rXdXX77berr3/96+qzn/2sGh8fVzt27FC9Xu+y9uN3fud3FKDe+c53qu9973sn/PvhD3+4st93vvMd9YpXvEL9zd/8jfrXf/1X9eUvf1n91m/9ltI0Tb30pS9Vvu9ftj7cdttt6k/+5E/Uvffeq+6//3718Y9/XI2MjKh0Oq127959wjUu9bM43z4c56Mf/agC1L/+67+e8vzPx3NQKvzo+MIXvqD+7u/+TgHqDW94g/rCF76gvvCFL6h2u33afqym9+J8+7Ca3onz7cNqeifOtw/HWS3vxIUSBeoLoNlsqt/7vd9TQ0NDyjRNtXPnTvW5z33uhH3e9ra3KUAdPnz4hPaFhQX11re+VRUKBRWLxdT111+vvv71r5/yOv/6r/+qrr/+ehWLxVShUFBvfetbTyms8Hz3Y2JiQgGn/DcxMbGy3/79+9WrX/1qNTo6qizLUrFYTF1xxRXqT//0Ty/ax8b59uH3f//31bZt21Q6nVa6rquRkRH15je/We3bt++U17mUz+JC/p6UUmrTpk1qcnJyRSTip3k+noNSZ/67OH7fq/29ON8+rKZ34nz7sJreiQv5W1Jq9bwTF0pkcxkREREREbGKWSUr5RERERERERGnIgrUERERERERq5goUEdERERERKxiokAdERERERGxiokCdURERERExComCtQRERERERGrmChQR0RERERErGKiQB0REREREbGKiQJ1RETE88qtt966aiwQz4dvfetbCCH40Ic+dLlvJeIXhChQR0Q8z/zoRz/iP/2n/8S2bdvIZDKYpsnw8DAvf/nL+fjHP35K28BfNI4cOYIQ4qz/TU5OXtTrT05OXvRzRkScL/rlvoGIiF8UgiDgPe95D3/5l3+JruvcfPPNvPzlLyeRSLC0tMTDDz/Mu971Lj7wgQ9w6NAh+vr6LvctXzZyuRwf/OAHT2ir1WrcddddTExM8Pa3v/2k/SMifl6JAnVExPPEe9/7Xv7yL/+SF77whXz+859n/fr1J+3z2GOP8Z73vIder3cZ7nD1kMvlTppaPnLkCHfddReTk5PRtHPELxTR1HdExPPA/v37+Yu/+AsGBgb42te+dsogDXDNNdfwwAMPMDw8vNJ2fBr47W9/O3v37uX1r389fX19CCE4cuQIAJ7n8d//+39n165dxONxstksL3nJS/jKV75y0jU+9KEPIYTgW9/61knb7rnnHoQQ3HPPPae8/qFDh/j3//7fk8/nSSaT/NIv/RJPPPHEKfvy0EMPccstt5BMJikWi9xxxx1MT0+f/S/tLHn2mvH3vvc9XvGKV5DL5VbWwc+0pvzsvj3756mpKaampk6YXj/V8T/84Q95xSteQTqdJpvNcvvtt688k4iIi0U0oo6IeB6455578H2f3/zN33zOKW0hBJqmndR+4MABrr/+erZv387b3vY2KpUKpmmilOKOO+7gS1/6Eps2beK3f/u3abfb/OM//iOvfe1rueuuu/i93/u9C+7DkSNHuO6669i2bRvvfOc7OXjwIPfddx8veclL2LNnD4ODgyv73n///bzqVa9CSskdd9zByMgI999/Py960YvI5/MXfC+n4uGHH+bP/uzPeMlLXsJ//I//kaNHj57zOY5PuX/84x8H4Pd///dXtt16660n7PuDH/yAv/iLv+DWW2/lN3/zN3n88cf5p3/6J3bv3s1TTz1FLBa7gN5ERDyLy2yzGRHxC8FLXvISBagHHnjgnI89fPjwigfv+9///pO2//3f/70C1C233KJs215pn56eVgMDA8owDHXo0KGV9g9+8IMKUN/85jdPOtfdd9+tAHX33Xef8vof/ehHT9j/fe97nwLURz7ykZU23/fVunXrlBBCPfjggyvtQRCoN73pTSvnOt/fwy233HJC+ze/+c2Vc37qU5866bjj2z/4wQ+e9pxve9vbTmifmJg4wT/6dNf7/Oc/f8K2t7zlLQo4yUc8IuJCiKa+IyKeBxYWFgAYGRk5adsDDzzAhz70oRP+PfTQQyftNzQ0xPve976T2o9PU3/sYx/DNM2V9rGxMd71rnfhui6f/exnL7gPa9eu5b/8l/9yQtudd94JhGvrx3nooYc4dOgQr33ta7nppptW2oUQ/Nmf/dkpZwsuBldddRXvfOc7L8m5T8XNN9/MHXfccULb8es/+/cREXGhRFPfERHPA0qp02574IEH+NM//dMT2mKx2AlBDmDXrl0nBOLjPP7448Tjca699tqTth2frv3Rj3507jf9U+zatQspT/y2HxsbA8KM7OMcX7N+8YtffNI5JiYmGB8fvyTruKfq/6Xk6quvPqntVL+PiIgLJRpRR0Q8Dxxfv52dnT1p24c//GGUUiiluPvuu5/zHD9No9E47bahoSEA6vX6ud7ySWSz2ZPadD381vd9f6Xt+LUGBgZOeZ7T3euFcqnOezrO9vcREXGhRIE6IuJ54MYbbwTgm9/85nmf43RqXplMhsXFxVNuO96eyWRW2o6Pij3PO2n/ixnQl5aWznhPF5vT/X4udX8jIi41UaCOiHgeeNvb3oaUkk9+8pOUSqWLeu6rrrqKbrfL97///ZO2ffvb3wbgyiuvXGk7nnV9qtH9448/fsH3s2vXLgAefPDBk7ZNTU1dkhKtM3E+/dU0LRoVR6waokAdEfE8sHnzZt797neztLTEq171Kg4ePHjK/c5nbfNtb3sbAH/0R3+E67or7bOzs/zVX/0Vuq7za7/2ayvtL3zhCwH4+7//e4IgWGn/3ve+d1GSzm666SbWrl3Lv/zLv5yQFKeU4o//+I+f9wC4efNmUqkUX/7yl6lUKivti4uLfPjDHz7lMYVCgVKp9AsvPBOxOoiSySIinic++tGP4roud911F5s3b+aWW25h586dKxKiP/rRj/jBD35AJpNh586dZ33et7zlLXzpS1/ivvvuY+fOnbz2ta9dqaMul8v85V/+JevWrVvZ//rrr+eGG27ggQce4IYbbuDmm29mamqKL3/5y7zuda/j3nvvvaB+Hp85ePWrX80v/dIvrdRRP/DAA8zPz7Nz506efPLJC7rGuWCaJr/zO7/DRz/6Ua6++mp++Zd/mWazyT//8z9zyy23nPKj6aUvfSk/+MEPeN3rXseLX/xiTNPkpptuOinBLyLi+SAK1BERzxOapvHxj3+ct7zlLfzN3/wN3/nOd3j00UdxHIdCocAVV1zBX/3VX/GWt7zlnHS+hRD8n//zf7jrrrv49Kc/zf/4H/8D0zS5+uqrefe7382/+3f/7qT9v/zlL/Pud7+br3zlK+zevZtdu3bx5S9/mbm5uQsO1AC/9Eu/xP3338/73vc+vvCFLxCPx7ntttv4whe+wFvf+tYLPv+58uEPfxjTNLn77rv5m7/5GyYnJ3n/+9/P6173Or74xS+etP/73/9+qtUq//Iv/8IDDzxAEAR88IMfjAJ1xGVBqDPVjURERERERERcVqI16oiIiIiIiFVMFKgjIiIiIiJWMVGgjoiIiIiIWMVEgToiIiIiImIVEwXqiIiIiIiIVUwUqCMiIiIiIlYxUaCOiIiIiIhYxUSBOiIiIiIiYhUTBeqIiIiIiIhVTBSoIyIiIiIiVjFRoI6IiIiIiFjFRIE6IiIiIiJiFRMF6oiIiIiIiFXM/x8NKcKhTugudAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1535,7 +1546,7 @@
}
],
"source": [
- "classn = 'L2_3IT'\n",
+ "classn = \"L2_3IT\"\n",
"crested.pl.scatter.class_density(\n",
" adata,\n",
" class_name=classn,\n",
@@ -1556,14 +1567,14 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-30T13:05:25.638048+0200 INFO Plotting heatmap correlations for split: test, models: ['biccn_model']\n"
+ "2024-10-09T14:39:12.997222+0200 INFO Plotting heatmap correlations for split: test, models: ['biccn_model']\n"
]
},
{
@@ -1585,7 +1596,7 @@
" x_label_rotation=90,\n",
" width=6,\n",
" height=6,\n",
- " log_transform=True\n",
+ " log_transform=True,\n",
")"
]
},
@@ -1598,7 +1609,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 36,
"metadata": {},
"outputs": [
{
@@ -1637,27 +1648,27 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-30T13:05:33.257814+0200 INFO Calculating contribution scores for 2 class(es) and 1 region(s).\n"
+ "2024-10-09T14:39:18.002301+0200 INFO Calculating contribution scores for 2 class(es) and 1 region(s).\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Region: 100%|██████████| 1/1 [00:04<00:00, 4.32s/it]\n"
+ "Region: 100%|██████████| 1/1 [00:04<00:00, 4.25s/it]\n"
]
}
],
"source": [
"# random sequence of length 2114bp as an example\n",
- "sequence = 'A'*2114\n",
+ "sequence = \"A\" * 2114\n",
"\n",
"scores, one_hot_encoded_sequences = evaluator.calculate_contribution_scores_sequence(\n",
" sequence, class_names=[\"Astro\", \"Endo\"]\n",
@@ -1681,21 +1692,21 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-30T13:05:37.580861+0200 INFO Calculating contribution scores for 3 class(es) and 1 region(s).\n"
+ "2024-10-09T14:39:22.257945+0200 INFO Calculating contribution scores for 3 class(es) and 1 region(s).\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Region: 100%|██████████| 1/1 [00:03<00:00, 3.74s/it]\n"
+ "Region: 100%|██████████| 1/1 [00:03<00:00, 3.71s/it]\n"
]
}
],
@@ -1720,7 +1731,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 39,
"metadata": {},
"outputs": [
{
@@ -1733,7 +1744,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAE4gAAAJQCAYAAABiXI7zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hcdd034M/sbnY3vZKEFBJKaKGFXgVEOkgRpKo0ffQVQcEG6iMqIvCIggUbJUiJlCCgVJWO9N4JkNAS0pNN3WyZ94+T3WRJAkmIJsp9X9dcyZ7zO+d8Ty8z85lSuVwuBwAAAAAAAAAAAAAAAAAAAAAAAICVrmJlFwAAAAAAAAAAAAAAAAAAAAAAAABAQUAcAAAAAAAAAAAAAAAAAAAAAAAAwCpCQBwAAAAAAAAAAAAAAAAAAAAAAADAKkJAHAAAAAAAAAAAAAAAAAAAAAAAAMAqQkAcAAAAAAAAAAAAAAAAAAAAAAAAwCpCQBwAAAAAAAAAAAAAAAAAAAAAAADAKkJAHAAAAAAAAAAAAAAAAAAAAAAAAMAqQkAcAAAAAAAAAAAAAAAAAAAAAAAAwCpCQBwAAAAAAAAAAAAAAAAAAAAAAADAKkJAHAAAAAAAAAAAACvM8OHDUyqVcswxx6zsUvg3st4BAAAAAAAAAABWHAFxAAAAAAAAAADAR97gwYNTKpXe93X++ee3th8zZkxr9zFjxrQZ1zHHHLPIsO3atUufPn2y995759prr11iHS0hWx/0Gjx48FLP2913371U4yyVSsu41Ph3WNw2UVFRke7du2e77bbLT3/608ydO3dllwkAAAAAAAAAAMAKVLWyCwAAAAAAAAAAAFhVDBkyJL17915sv/79+y/TuHr37p0hQ4YkSerr6/Pqq6/mtttuy2233ZbPf/7z+f3vf7/EYWtqarLlllsusf/qq6++TLW02GGHHZZrOFa+hbeJpqamvPnmm3nooYfy0EMPZcSIEbn77rvTuXPnlVZf165ds9566y33tgkAAAAAAAAAAMACAuIAAAAAAAAAAADmO/3003PMMceskHHtvffeGT58eOvfTU1NOffcc3P66afnD3/4Qw499NDsvvvuix22b9++uf/++1dIHQv7V4yTf4/FbRO33357PvWpT+WJJ57I2WefnR//+McrqbrkoIMOykEHHbTSpg8AAAAAAAAAAPDfpGJlFwAAAAAAAAAAAPBRUFlZmdNOOy077rhjkuT6669fyRXxn27PPffM1772tSS2JwAAAAAAAAAAgP8mAuIAAAAAAAAAAAD+jbbaaqskyZgxY1ZuIR9g+PDhKZVKOeaYY1JfX58zzjgj66yzTmprazNw4MCccsopmTVr1vuOY1mGa2pqyo033pjjjjsuQ4cOTdeuXdOhQ4dssMEG+eY3v5lJkyYtdhq77LJLSqVS7r777rz00ks59NBD06tXr7Rv3z5bbLFFrrnmmvet8W9/+1sOPvjg9OvXLzU1NenXr1923XXX/PrXv059ff0i7V966aUcd9xxGTx4cGpqatKzZ8/su+++ufPOOxc7/sGDB6dUKmXMmDG56667svfee6dXr16tNX9YH7Q9TZkyJd/5zney0UYbpWPHjuncuXO23Xbb/OEPf0hzc/Nih5k3b17OOuusrLfeeqmtrU3//v3zxS9+MRMnTswZZ5yRUqmUM844o80wC28vi/P888/nM5/5TAYMGJDq6ur06dMnn/rUp/LQQw8ttv0xxxyTUqmU4cOHZ+zYsTnuuOOy+uqrp7a2NkOHDs2vf/3rpVo+AAAAAAAAAAAA/4kExAEAAAAAAAAAAPwbzZ49O0nSoUOHlVzJ0mloaMgee+yRH/7wh6mtrc3gwYMzduzY/PznP89BBx20woYbN25cDjzwwFx22WWZOnVq1llnnQwaNChjxozJ//3f/2WrrbbK+PHjlzi9xx9/PFtttVVuv/32DB48OJ07d84TTzyRww47LFdcccVihznxxBOzxx575M9//nPmzZuXTTbZJNXV1bn33ntz4oknZty4cW3aX3PNNdl0001z6aWXZsqUKdlwww1TXV2dW265JZ/4xCfyy1/+con1jRgxIp/4xCfy8MMPZ6211sqAAQOW2HZZvN/29Pzzz2eTTTbJWWedlVGjRmXw4MHp06dPHnnkkXzhC1/IYYcdlnK53GaYxsbGfPKTn8x3vvOdvPLKKxk8eHB69+6diy++OFtvvXWmTJmyzDXedNNN2WKLLXLFFVdk1qxZ2XTTTVMul3P99ddnhx12yB/+8IclDvvGG29kiy22yIgRI9KvX7/07NkzL7zwQk488cT8+Mc/XuZaAAAAAAAAAAAA/hMIiAMAAAAAAAAAAPg3mTdvXu68884kyWabbbZyi1lK1157bSZNmpSXXnopzz33XF566aU88MAD6dKlS/72t7/ltttuWyHDde7cOcOHD8/EiRMzduzYPP7443nxxRczbty4nHjiiRkzZky+/e1vL7HO0047Lcccc0wmTJiQxx57LOPHj8+3vvWtJMm3vvWtNDU1tWl/wQUX5Ne//nU6dOiQyy+/PBMmTMijjz6aMWPGZOLEiTnvvPPSsWPH1vbPPPNMPvvZz6aioiK///3vM23atDz55JMZN25cbrrppnTu3Dlf+9rX8vTTTy+2vu9973v5/ve/nwkTJuSRRx7Jm2++me22226p1sH7ufXWW5Msuj3NmjUrBxxwQN55552cdNJJmThxYp5//vm8+uqree655zJ06NBcd911ufDCC9sMd/755+f2229Pjx498sADD+Sll17Kk08+mddffz3du3fPb3/722Wqb+zYsfnMZz6T+vr6nHzyyRk/fnweffTRvPvuu/nxj3+c5ubmfPnLX84zzzyz2OF//OMfZ8cdd8y4cePy+OOP55133mmt+cwzz8y0adOWqR4AAAAAAAAAAID/BALiAAAAAAAAAAAA5jv22GNTKpUWee2yyy4farz19fV5+umnc+ihh2bUqFHp0aNHvvCFLyyx/RtvvLHYOlpeX/3qV5erjvcb54EHHrjYYRobG3PZZZdl3XXXbe227bbb5oQTTkiyIKDsww7XtWvXfO5zn0uPHj3adO/WrVt++ctfZuDAgbnmmmvS2Ni42OltuOGGueCCC1JbW9s6rz/60Y/St2/fjB07tk0A2Zw5c/KjH/0oSfLb3/42Rx99dCoqFnycrkePHjnllFOy2mqrtXb7wQ9+kPr6+pxzzjn5/Oc/36b9/vvvnx//+MdpamrKL37xi8XWt88+++R///d/U1VV1VpfTU3NYtt+kKampowePTrf+c53cvnll6eioiLf/OY327S55JJL8tprr+Wggw7KBRdckC5durRZVldddVVKpVJ+9rOftXZvbm7O+eefnyT5xS9+ke233761X8vyb25uXqZaL7zwwtTV1WWzzTbL+eefn+rq6iRJRUVFTj/99Oyzzz5paGjIT3/608UO37NnzwwfPjzdunVr7falL30pm2++eebOnZu77rprmeoBAAAAAAAAAAD4T1C1sgsAAAAAAAAAAABYVQwZMiS9e/depPvGG2+8zOO67LLLctllly3Sfdttt81vfvOb9OnTZ4nD1tTUZMstt1xi/7XWWmuZ60mSHXbYYYn9Ntxww8V232yzzRZby1ZbbZUkef3111focHfeeWf+8pe/5JVXXsmMGTNaA8mmT5+e2bNnZ9SoUdlggw0WGe64445rE9qWJO3atcumm26ad999N6+//nqGDRuWJHnggQcyefLk9OvXL0cdddRi61jYvHnzcsstt6SysjLHHHPMYtt88pOfzFe+8pXcc889i+3/2c9+9gOn835aQgPfa4011sj//d//Zc8992zT/frrr0+S1kC+99pkk00yePDgvP7663n77bczYMCAvPDCC3nnnXfSsWPHHHrooYsMs84662SnnXbK3XffvdR133HHHUmSE088cbH9Tz755Nxyyy2t7d7riCOOSMeOHRfpvtVWW+WJJ55Y4nYEAAAAAAAAAADwn0xAHAAAAAAAAAAAwHynn376EgPAllXv3r0zZMiQJMnUqVMzatSoNDQ0ZO21115swNnC+vbtm/vvv3+F1LGw5Rnn2muvvdjuLUF6M2fOXCHDzZs3L4cddlhuuOGG961nypQpH3p6L774YpJk6623XiRUbnFeeeWVzJ07N9XV1dlnn30W26ZcLidJ3nnnncX2/6B1/kEWDg2cM2dORo0alRkzZqRXr17ZdtttF2n/7LPPJkn+93//N2edddZixzlp0qTWmgcMGJBRo0YlSdZff/1UV1cvdphNNtlkmQLiXnnllSRLDiAcOnRokmT8+PGpq6tLly5d2vRf3u0PAAAAAAAAAADgP5mAOAAAAAAAAAAAgH+BvffeO8OHD2/9+6233sohhxySK6+8MrW1tbnoootWXnHLoGPHjovt3hKs1hKM9mGHO/vss3PDDTekb9++Offcc/Oxj30sffv2TU1NTZJkxx13zAMPPJCGhoYPPb26urokSbdu3RY7zHtNnz49SRFi98ADD7xv27lz5y5TfUvrvaGBM2fOzCmnnJI//OEP2WefffLYY4+ltrZ2kZoff/zxDxz3nDlzkiSzZs1KknTu3HmJbd+v3+K0BLi1BLq9V58+fVr/P2PGjEUC4pZ3+wMAAAAAAAAAAPhP9sE/fQoAAAAAAAAAAMCHNnDgwIwcOTIdO3bMxRdf3Cbsi+TKK69MkgwfPjyf+cxnMmjQoNZwuKQI2FtRWkLOpk2btlTtO3XqlCTp379/yuXyB77+HTp16pTf/OY32XzzzfP888/npz/96WJrHjVq1AfWu8suuyRZEMbWEuq2ODNmzFjmOpNkwoQJi+0/fvz41v8va/gcAAAAAAAAAADAfysBcQAAAAAAAAAAAP8mAwYMyFe+8pUkyXe/+92VXM2qZcyYMUmS7bfffpF+kydPzjvvvLPCpjV06NAkyaOPPprm5uYPbD9kyJC0a9cu48aNy5QpU1ZYHR9WZWVlzjrrrCTJT3/600yfPr2134Ybbpgkee6555Z6fOuuu26S5KWXXkpDQ8Ni2zz77LPLVGPLOF944YXF9n/++eeTJH369EmXLl2WadwAAAAAAAAAAAD/rQTEAQAAAAAAAAAA/Bt99atfTW1tbe6555488MADK7ucVUb79u2TJOPHj1+k33nnnZempqYVNq0ddtghvXr1yjvvvJMRI0Z8YPsOHTpkzz33THNzc37xi1+ssDpWhD333DPDhg3L9OnT86tf/aq1+8EHH5wk+cUvfpFyubxU49pggw3Sv3//zJw5M9ddd90i/V9//fXcd999y1xfkja1Laxleba0AwAAAAAAAAAAQEAcAAAAAAAAAADAv1WfPn3yuc99Lkly1llnreRqVh077rhjkuTUU0/NzJkzkyTlcjl//OMf89Of/jS1tbUrbFq1tbX53ve+lyT5n//5n4wYMaJNiNrUqVPz85//PBMnTmzt9qMf/Sg1NTU588wzc/bZZ2fOnDltxjlu3LhccMEF+e1vf7vC6lxa3/zmN5Mk559/fmbPnp2kmK+11lord911V4466qiMGzeuzTAzZ87MNddck1NOOaW1W0VFRb761a8mSU466aQ89NBDrf3efvvtfPrTn06pVFqm2r70pS+lS5cueeqpp/K1r30t8+bNS5I0Nzfn3HPPzc0335x27drl1FNPXeb5BgAAAAAAAAAA+G8lIA4AAAAAAAAAAODf7Otf/3oqKipyyy235Kmnnlqk/7vvvpsdd9zxfV8tIWrL4oPG+eqrr66AuVs+P/jBD1JTU5Obbrop/fv3z5ZbbpkBAwbkc5/7XA4//PBss802K3R6X/nKV/KlL30ps2bNypFHHpnevXtn6623zpprrpnVVlstp5xySmbNmtXafrPNNsuIESNSU1OT0047LT169MiwYcOyzTbbZI011ki/fv3y1a9+NWPGjFmhdS6NQw89NGuuuWYmTZqU3//+90mSTp065eabb86aa66ZESNGZMCAAdlwww2z7bbbZr311ku3bt1y2GGH5Z///GebcX31q1/NHnvskUmTJmW77bbLBhtskM033zxrrrlmJk+enC9+8YtJksrKyqWqrV+/frn88stTXV2d888/P3379s3WW2+d1VdfPd/61rdSUVGRX/3qV9lkk01W7EIBAAAAAAAAAAD4DyYgDgAAAAAAAAAA4N9snXXWycEHH5wkOeussxbpX19fnwceeOB9X42Njcs83Q8a5/KEzq0oW2yxRe69997svvvuaW5uzksvvZTevXvnF7/4RS677LIVPr1SqZQLL7wwN998c/bbb7+USqU8/fTTaWhoyM4775wLL7ww/fr1azPMQQcdlBdeeCEnn3xyBg8enJdffjkvvPBCOnTokIMOOiiXXXZZvv3tb6/wWj9IZWVlTj311CTJeeedl3nz5iVJ1l9//Tz99NM5++yzs9VWW+Wdd97JU089lXnz5mXnnXfOT3/60/zpT39qM66qqqr85S9/yZlnnpkhQ4bk9ddfz7vvvpvPfe5zefjhh1NTU5Mk6dy581LX98lPfjKPP/54jjrqqNTW1uapp55KuVzOQQcdlPvvvz9f+MIXVtCSAAAAAAAAAAAA+O9QKpfL5ZVdBAAAAAAAAAAAALDq23///fPXv/41f/7zn3PggQeu7HIAAAAAAAAAAAD+KwmIAwAAAAAAAAAAAD7Q22+/nXXWWSeNjY15++2307dv35VdEgAAAAAAAAAAwH+lipVdAAAAAAAAAAAAALDqOPPMMzNq1Kg23V5++eUccMABqa+vzwEHHCAcDgAAAAAAAAAA4F+oVC6Xyyu7CAAAAAAAAAAAAGDVMHjw4Lzxxhvp1atXBg8enOnTp7cGxq211lq59957079//5VcJQAAAAAAAAAAwH8vAXEAAAAAAAAAAABAq4svvjjXXnttnnvuuUyePDkVFRVZc801c+CBB+bUU09N9+7dV3aJAAAAAAAAAAAA/9UExAEAAAAAAAAAAAAAAAAAAAAAAACsIipWdgEAAAAAAAAAAAAAAAAAAAAAAAAAFATEAQAAAAAAAAAAAAAAAAAAAAAAAKwiBMQBAAAAAAAAAAAAAAAAAAAAAAAArCIExAEAAAAAAAAAAAAAAAAAAAAAAACsIgTEAQAAAAAAAAAAAAAAAAAAAAAAAKwiBMQBAAAAAAAAAAAAAAAAAAAAAAAArCIExAEAAAAAAAAAAAAAAAAAAAAAAACsIgTEAQAAAAAAAAAAAAAAAAAAAAAAAKwiBMQBAAAAAAAAAAAAAAAAAAAAAAAArCIExAEAAAAAAAAAAAAAAAAAAAAAAACsIgTEAQAAAAAAAAAAAAAAAAAAAAAAAKwiBMQBAAAAAAAAAAAAAAAAAAAAAAAArCIExAEAAAAAAAAAAAAAAAAAAAAAAACsIgTEAQAAAAAAAAAAAAAAAAAAAAAAAKwiBMQBAAAAAAAAAAAAAAAAAAAAAAAArCIExAEAAAAAAAAAAAAAAAAAAAAAAACsIgTEAQAAAAAAAAAAAAAAAAAAAAAAAKwiBMQBAAAAAAAAAAD8G51xxhkplUq5++67V3YpAAAAAAAAAAAAwCpIQBwAAAAAAAAAAMB/uL/85S/5yle+kh122CEdO3ZMqVTKGWec8b7DjB07NieffHI23HDDdOzYMX369MmOO+6Yyy+/PE1NTctcw+jRo/P5z38+gwYNSk1NTfr06ZNdd9011157bZt2s2fPznnnnZcjjzwy66+/fioqKlIqlTJmzJgVOn/19fX54Q9/mHXXXTe1tbVZffXVc8IJJ+Tdd99dpG1LaN/7vY4//vjW9mPGjPnA9pWVlW2mscsuu3zgMJdffvkitT366KPZZ5990r1793Ts2DFbb711rrrqqved9/czYcKEnHLKKRkyZEhqa2vTs2fPbLfddvnNb36zSNtf/vKXOfbYY7PJJpukqqrqA4MN77333nz961/Prrvumq5du6ZUKuWYY45533qam5vzq1/9Kptssknat2+f1VZbLZ/+9KczatSo922/+eabp0OHDunSpUt23nnn3HTTTUucxqhRo3LsscdmyJAhad++ffr375/dd999icPMmTMnP/vZz7L55pune/fu6datWzbddNP8+Mc/zvTp0993fpLk2muvbV2nf/rTnz6wPQAAAAAAAAAAwHtVrewCAAAAAAAAAAAA+HDOO++83HPPPenSpUv69euXV1999X3bv/7669lmm20yefLk7Lnnntl///1TV1eXG264IZ/97Gdz55135tJLL13q6f/tb3/LgQcemCTZf//9s9Zaa2Xq1Kl55pln8ve//z2HHnpoa9sJEybk61//epJk0KBB6d69e6ZMmbJC56+5uTkHHHBAbr/99myzzTY5+OCD89prr+XSSy/N3/72tzz88MPp27dva/tddtllieO66KKL8s4772TPPfds7datW7d8//vfX2z7xx57LDfffHOb9klyzDHHLHY6DQ0N+clPfpKKiorstttubfrdfffd2XPPPVNdXZ3DDz88Xbt2zfXXX5+jjjoqY8aMyemnn/6+y+G9nnrqqeyxxx6ZOnVq9t133xxyyCGZOXNmXnzxxfzlL3/Jl770pTbtTzrppCTJ6quvntVWW22x4XoLu+SSS3LZZZelQ4cOWWONNVJXV/eBNX3xi1/MH/7wh2y44Yb5yle+kvHjx+fqq6/OHXfckX/+85/ZcMMNW9uWy+V8+tOfzsiRI7P22mvn+OOPT319fW688cYccMAB+eUvf5kTTzyxzfgffvjh7LrrrmloaMgnP/nJfOpTn8qECRNy/fXX54ADDsgZZ5zRZl02NDRk1113zcMPP5zNNtssn/vc51IqlXLXXXflu9/9bkaMGJFHHnkkHTp0WOz8TJgwIf/v//2/dOzYMbNmzfrA+QcAAAAAAAAAAFicUrlcLq/sIgAAAAAAAAAAAD4qzjjjjPzgBz/IXXfd9b7BZMvivvvuS9++fbPOOuvk6quvzhFHHJHvf//7OeOMMxbb/v/9v/+X3/zmN7ngggtaQ8CSZNq0adlss83yxhtvZMyYMRk0aNAHTvutt97KRhttlD59+uTvf/971lhjjTb9GxsbU1W14LdMZ86cmQcffDBbbLFFevTokb322iu33357Ro8encGDB6+Q+bv00ktz3HHH5fDDD89VV12VUqnUpvtnP/vZXHbZZR84b+PHj8+AAQPStWvXjB07NtXV1R84zP7775+//vWvGTlyZA4++OAPbD9y5Mgccsgh2X///XPTTTe1dm9sbMz666+ft99+Ow8++GCGDRuWJJkxY0a22267vPzyy3nhhRcyZMiQD5xGy3AbbbRR5syZk7///e/ZZJNN2vR/73pKkptvvjlbbLFF+vbtmy9+8Yv53e9+977b7WOPPZb27dtn/fXXz6OPPprtttsun/vc5zJ8+PDFtr/rrrvy8Y9/PDvttFP+9re/paamJknyj3/8I7vvvnt22mmn3HPPPa3tr7vuuhx66KHZYYcd8re//S3t27dPkkyaNClbbrll3n333bz00ktttqN99tknt956a2688cZ88pOfbO3+5ptvZuONN05DQ0OmTp3aOu1rrrkmhx12WA4++OCMHDmyTb0HHXRQbrjhhlx22WX57Gc/u9h5+tSnPpXHH388hxxySM4777yMGDEihx9++GLbAgAAAAAAAAAALEnFyi4AAAAAAAAAAADgv8l9992Xgw46KH369ElNTU0GDhyYgw8+OPfff/8iba+55ppsvvnmad++fVZfffWcdNJJmTNnTps2d999d0qlUs4444w8+OCD2XPPPdOtW7fW0LMk2WmnnTJkyJA23d7P66+/nqQIz1pYt27dssMOOyRJJk6cuFTjOuuss1JXV5ff/va3i4TDJVkkdKxTp07Zfffd06NHj6Uaf7Ls8/eHP/whSXL22We3GebYY4/NBhtskKuvvjozZsz4wPEMHz48jY2N+cxnPrNU4XBjx47Nrbfemt69e2f//fdfqlovuuiiJMnxxx/fpvudd96Z1157LUceeWRrOFySdO7cOd/73vfS2NiYSy+9dKmmkSQXXnhh3nzzzZx99tmLhMMli66nJNl3333Tt2/fpZ7GlltumaFDh6aysnKp2respzPPPLM1oC1Jdtttt+y55565995788orr7R2v+GGG5Ikp59+ems4XJL06tUrX/va11JfX7/IMnn99ddTKpWy1157tem+xhprtAbmLbwttOwbe++99yL1tuwvEyZMWOz8XHXVVbn++uvz+9//Pp06dfrA+QcAAAAAAAAAAFgSAXEAAAAAAAAAAAAryK9//evsvPPOueOOO7L77rvn1FNPzcc//vE8/fTTue666xZpe9xxx2WDDTbIl770pXTv3j2//OUvc8IJJyx23P/85z+z8847J0m+8IUv5LDDDlvuOocOHZokue2229p0r6urywMPPJA+ffpkww03bNNv8ODBKZVKGTNmTGu3crmca665Jj179szHP/7xPP744/nZz36Wn/70p/n73/+e5ubm5a5xec2dOzcPP/xw1ltvvQwaNGiR/nvssUfq6+vz0EMPfeC4LrnkkiRZ4jp5r+HDh6epqSmf/exn065duw9s//bbb+eOO+5I3759s++++7bpd/fdd7fW+14t3e65556lqitJrr766pRKpXzqU5/Kyy+/nF/+8pc599xzc9NNN2XevHlLPZ4V6e67707Hjh1bQwkXtueeeyZpO4/jx49Pkqy55pqLtG/pduedd7bpPnTo0JTL5dxxxx1tur/11lt57rnnsvHGG6dXr15t2ieL7htJcuutt6ZUKmWXXXZZpN+7776br3zlKznuuOMWu84AAAAAAAAAAACWxaI/+QkAAAAAAAAAAMAye/bZZ3PyySdn9dVXzwMPPJDBgwe39iuXyxk3blyb9n/729/y+OOPZ7311kuS/PjHP85mm22WESNG5P/+7//Sr1+/RdpffPHFOe644z50rd/4xjdy00035eSTT86tt96ajTfeOHV1dbnxxhvTrl27jBw5Mh06dPjA8YwePTpTpkzJVlttlS996Uv57W9/26b/sGHDctNNN2XAgAEfuual9dprr6W5uTlDhgxZbP+W7qNGjcruu+++xPHcd999eeWVV7Ltttu2hoa9n3K53Bood/zxxy9VrZdeemmam5tzzDHHpKqq7cf5Ro0a1abehXXv3j29evVqbfNB5s2bl2eeeSarrbZafvWrX+V///d/24T3rbXWWrnhhhuy8cYbL9X4VoRZs2Zl3Lhx2WijjVJZWblI/4XXU4vVVlstSbHdbbDBBm3ajx49OknyyiuvtOn+ox/9KPfff38OPvjgHHDAAVlnnXUyceLEXH/99Rk0aFCuueaaNu3322+/7L///hk5cmS22GKL1lDGu+++O6+++mouvPDCbLnllovU+z//8z+pra3Neeedt6yLAgAAAAAAAAAAYBEVK7sAAAAAAAAAAACA/wa//e1v09TUlDPPPLNNOFySlEqlRQLfTj755NZwuCRp3759jjjiiJTL5Tz++OOLjH/YsGErJBwuSfr27ZsHH3wwn/jEJ3LLLbfknHPOyW9+85tMmTIln/vc5zJs2LBFhvnHP/6RF198Mf3792/tNmHChCTJE088kSuuuCKXXnpppkyZktGjR+fzn/98nnzyyRxyyCErpOalNX369CRJ165dF9u/S5cubdotycUXX5wkOeGEE5Zquvfcc09ee+217Ljjjll//fU/sH25XM6ll16aZPGBckszHx80Dy2mTJmSpqamTJ48OT/4wQ9y7rnnZvz48Xn77bfzve99L6NHj87++++fuXPnLtX4VoTlWU977713kuTss89uU+vkyZNz/vnnJ0mmTZvWZjwbbrhhHnrooWyyySa57rrrcvbZZ7eu22OPPXaRAL5SqZQ///nP+frXv54nn3wyP//5z/Pzn/88Tz75ZA488MDstddei9T6xz/+MTfddFN+85vfpFu3bku/EAAAAAAAAAAAAJag6oObAAAAAAAAAAAA8EEeeeSRJMkee+yxVO0333zzRboNGDAgyaIhV0my9dZbL39x7/Haa69lv/32S6dOnXLvvfdm2LBhmTZtWq666qp85zvfyW233Zb7778/7dq1ax1m7bXXXmQ8zc3NSZKmpqb86Ec/yjHHHJMk6d69e37/+9/nmWeeycMPP5z7778/O+644wqr/1+trq4u1157bTp16pTDDjtsqYZpCR1bXNjb4tx5550ZPXp0dt5556yzzjrLXWuLG264IU899VSbbrvsskt22WWXNuvpxBNPzKmnntra5oc//GFeeeWVXH311bnuuuty9NFHf+ha/lWOOOKIXHrppbnrrruy8cYbZ6+99kpDQ0NuuOGG9OnTJ0lSWVnZZpjHHnssBxxwQIYOHZrHH38866+/fsaPH58LL7wwp5xySu67775cf/31re3nzJmTww8/PA8//HCuuuqq7L777imVSvnHP/6Rk046Kbfeemseeuih1v1h7Nix+epXv5rDDz88n/zkJ/99CwMAAAAAAAAAAPivJiAOAAAAAAAAAABgBZg2bVpKpVJWX331pWrftWvXRbpVVRUf6WpqalqkX0sA1opw7LHH5o033sjrr7+evn37Jkk6deqUb37zm5kyZUrOOeecXHHFFTn22GPfdzwLz8PiwrH233//PPzww3nsscf+bQFxLTVNnz59sf3r6uratFucESNGZPbs2Tn++OPTqVOnD5zmtGnTMnLkyHTp0iWf/vSnl6rOiy66KElywgknLLb/0szHwvNwww035LLLLluk3S677LJU6+nqq6/OY4899m8LiFue9VRVVZVbb701Z599dq666qr8/ve/T9euXXPQQQfl61//etZdd92sttpqre0bGhpy2GGHpVQq5YYbbkiHDh2SJGuuuWb+7//+L2+99Vauvvrq3HXXXdl1112TJD/5yU9y00035cYbb2yzrA499NB07tw5e++9d374wx+2Luv/9//+XyorK/PLX/5yBS4dAAAAAAAAAADgo65iZRcAAAAAAAAAAADw36Bbt24pl8sZN27cv2T8pVJphYxnxowZue+++7LBBhu0hsMt7OMf/3iS5PHHH//Aca2zzjqprKxMUsz/e7V0mzNnzvIXvIzWXnvtVFRUZNSoUYvt39J9yJAhSxzHxRdfnGTJ4W3vddVVV2XOnDk54ogjWkPI3s/UqVPz5z//Od26dcunPvWpxbZpqW9x8zF16tRMmjSpzTwMHz485XK5zeuMM85IknTs2DH9+/dPsuqsp44dO2b11VfP6NGjFxuIuKT1VFNTk+9///t5+eWXU19fnwkTJuR3v/td3nnnnSTJlltu2dr2pZdeyuuvv55tttlmsetlcdv6zTffnCStgXEL23XXXVMqldq0f+qppzJp0qSsttpqKZVKra8f/OAHSZIjjjgipVIp559//lItFwAAAAAAAAAAgERAHAAAAAAAAAAAwAqx9dZbJ0nuuOOOlVzJ+5s3b16SZNKkSYvtP3HixCRFENcHqampyfbbb58keeGFFxbp39Jt8ODBy1Pqcqmtrc3WW2+dl19+OW+88cYi/e+4447U1NRkm222Wezwzz77bB599NEMHTo022677VJNc1kD5a644orU19fnqKOOSvv27RfbZuedd26t971aurW0WRotYWirynpKivpnzZqVBx54YJF+t99+e2ubpXHllVcmSQ4//PDWbi3bess2/V6L29bfb5hJkyalXC63aX/44Yfn+OOPX+Q1bNiwJEWo3PHHH5+NNtpoqeYDAAAAAAAAAAAgERAHAAAAAAAAAACwQnzxi19MZWVlvvvd7y4STFYulzNu3LiVVFlbPXv2zHrrrZc333wzF110UZt+dXV1Offcc5MUwVYLe+211/LSSy+loaGhTfcvfelLSZIzzjgj9fX1rd1feumlDB8+PJ07d85ee+31r5iVJfrCF76QJPn2t7+dcrnc2v3SSy/Niy++mMMOOyxdunRZ7LAtYW/HH3/8Uk3rqaeeyhNPPJFNNtkkW2655VINszTT2G233bLWWmvlqquuylNPPdXafcaMGfnRj36UqqqqHHPMMUs1vaTYPpPk7LPPzrRp01q7v/vuu7ngggtSUVGRT33qU0s9vhWhZT1997vfbQ1mS5J//OMfuf322/Oxj30s6667bpth6urqFhnPddddl0suuSRbbbVVDj744NbuG220Ubp27ZoHHnhgkaC9sWPH5sILL0yS7LLLLq3dd9hhhyTJD37wgzQ1NbV2b25uzv/+7/8mabtvnH322bnooosWeX3yk59snceLLroon/jEJ5Z+wQAAAAAAAAAAAB95VSu7AAAAAAAAAAAAgP8GG2+8cc4///ycdNJJGTp0aA488MAMGjQo7777bu69997su+++Of/88/8l077hhhtyww03JElGjx7d2m3MmDFJkh133DEnnHBCa/vzzz8/+++/fz7/+c9nxIgR2XzzzTNt2rT85S9/yfjx47Pffvtl3333bTON3XbbLW+88UZGjx6dwYMHt3Y//PDDc/311+e6667Lpptumj333DPTp0/PyJEjM3fu3Pzxj39M9+7d24zr61//eiZNmpQkefbZZ1u7derUKUkR7Lb++usv9/x99rOfzdVXX50//elPGT16dHbZZZe8/vrrGTlyZAYOHJhzzjlnsctx3rx5ueKKK1JdXZ3PfOYz77vMW7SEvS08/ffz+OOP5+mnn87mm2+eYcOGLbFdVVVVLrroouy5557ZaaedcsQRR6RLly65/vrrM3r06Jx55pmLhKe9n+233z6nnHJKfvazn2WTTTbJ/vvvn4aGhtx4442ZMGFCzjrrrEXGd/bZZ+ell15Kkjz44IOt3YYPH946zzvuuGNr+/vvv781dHDixImt3VqC7NZff/18+9vfbm2/66675oQTTshFF12UYcOGZd9998348eNz9dVXp0uXLvnNb36zyHxss802GThwYDbYYIPU1tbmkUceyd1335211lor1157bSorK1vb1tTU5LzzzssJJ5yQvffeO/vuu2822GCDjB8/Pn/+859TV1eXL3/5y9l4441bh/nOd76Tm266KX/84x/z+OOP5+Mf/3hKpVLuuuuuPPvssxk8eHC+9a1vLfVyBwAAAAAAAAAAWB4C4gAAAAAAAAAAAFaQE088MRtttFHOO++83HrrrZk5c2Z69+6dbbbZJp/+9Kf/ZdN96qmnctlll7Xp9vTTT+fpp59u/XvhALO99torDz30UM4999zcd999uffee1NTU5MNN9wwp512Wr785S+nVCot1bRLpVJGjBiR7bffPhdffHF+97vfpaamJttvv31OP/307LzzzosMc9111+WNN95o023kyJGt/z/mmGPaBMQt6/xVVlbmxhtvzDnnnJPLL788P//5z9O9e/ccc8wxOfPMM9O3b9/FzssNN9yQyZMn59Of/nR69er1gfM+d+7cXHnllampqcnRRx/9ge2TZQuU23XXXXP//ffn+9//fq655prMmzcvQ4cOzY9+9KMcddRRSzW9hZ133nnZeOON8+tf/zrDhw9PqVTKsGHD8tvf/jYHHXTQIu1vu+223HPPPW263X777a3/32WXXdoExL366quLrKfXXnstr732WpJk5513bhMQlyS/+93vsskmm+R3v/tdfvGLX6RTp07Zf//98+Mf/3ixAXiHHXZYrr/++jz00ENpaGjImmuume9+97v5xje+kS5duizS/vjjj8/gwYNz/vnn56GHHsott9ySjh07ZtNNN80JJ5yQz372s23aDxw4ME888UTOOuus3Hrrrfnd736XUqmUQYMG5ZRTTsnpp5+enj17LmkRAwAAAAAAAAAArBClcrlcXtlFAAAAAAAAAAAAAAAAAAAAAAAAAJBUrOwCAAAAAAAAAAAAAAAAAAAAAAAAACgIiAMAAAAAAAAAAAAAAAAAAAAAAABYRQiIAwAAAAAAAAAAAAAAAAAAAAAAAFhFCIgDAAAAAAAAAAAAAAAAAAAAAAAAWEUIiAMAAAAAAAAAAAAAAAAAAAAAAABYRVSt7AL+0zU3N2fs2LHp3LlzSqXSyi4HAAAAAAAAAAAAAAAAAAAAAAAAWAWVy+XMmDEj/fr1S0VFxRLbCYj7kMaOHZuBAweu7DIAAAAAAAAAAAAAAAAAAAAAAACA/wBvvfVWBgwYsMT+AuI+pM6dOycpFnSXLl1WcjUAAAAAAAAAAAAAAAAAAAAAAADAqqiuri4DBw5szS9bEgFxH1KpVEqSdOnSRUAcAAAAAAAAAAAAAAAAAAAAAAAA8L5a8suWpOLfVAcAAAAAAAAAAAAAAAAAAAAAAAAAH0BAHAAAAAAAAAAAAAAAAAAAAAAAAMAqQkAcAAAAAAAAAAAAAAAAAAAAAAAAwCpCQBwAAAAAAAAAAAAAAAAAAAAAAADAKkJAHAAAAAAAAAAAAAAAAAAAAAAAAMAqQkAcAAAAAAAAAAAAAAAAAAAAAAAAwCpCQBwAAAAAAAAAAAAAAAAAAAAAAADAKkJAHAAAAAAAAAAAAAAAAAAAAAAAAMAqQkAcAAAAAAAAAAAAAAAAAAAAAAAAwCpCQBwAAAAAAAAAAAAAAAAAAAAAAADAKkJAHAAAAAAAAAAAAAAAAAAAAAAAAMAqQkAcAAAAAAAAAAAAAAAAAAAAAAAAwCpCQBwAAAAAAAAAAAAAAAAAAAAAAADAKkJAHAAAAAAAAAAAAAAAAAAAAAAAAMAqQkAcy2zjjTdOqVRK+/btU1dXt8LGe8YZZ+SMM85YYeMDAAAAAAAAAAAAAAAAAAAAAACA/zSlcrlcXtlF/Cerq6tL165dM3369HTp0mVll/Mv99RTT2XYsGGtf1988cU57rjjVsi4S6VSksQmCQAAAAAAAAAAAAAAAAAAAAAAwH+bpc0tq/g31sR/gcsvvzxJ0q1btzZ/AwAAAAAAAAAAAAAAAAAAAAAAAB+egDiWWlNTU0aMGJEk+dWvfpXKysrcc889efPNN1dyZQAAAAAAAAAAAAAAAAAAAAAAAPDfQUAcS+3vf/97xo0bl759++bwww/Pxz/+8ZTL5Vx55ZWLbT9r1qz88Ic/zCabbJKOHTumtrY2AwcOzC677JKzzz47DQ0NSZIzzjgjpVKpdbhSqdTmNWbMmCTJ8OHDUyqVcswxx2TWrFk5/fTTs+6666a2tja77LJL6/DlcjlXXHFFdt5553Tr1i3t27fP+uuvn29961uZMmXKv2z5AAAAAAAAAAAAAAAAAAAAAAAAwIclII6l9sc//jFJcthhh6WysjJHHXVUkuTyyy9fpG1jY2M+8YlP5Pvf/36ef/75DBw4MBtvvHGam5tz33335bTTTsusWbOSJGussUZ22GGH1mF32GGHNq/a2to2454zZ04+9rGP5eyzz05VVVU23HDD1NTUJCnC4Y4++uh85jOfyb333puePXtmww03zOjRo3Puuedm8803z+uvv/4vWT4AAAAAAAAAAAAAAAAAAAAAAADwYZXK5XJ5ZRfxn6yuri5du3bN9OnT06VLl5Vdzr/MzJkz06dPn8yePTuPPPJIttpqq8yYMSN9+vTJnDlz8thjj2WLLbZobT9y5Mgccsgh2XTTTfPXv/41AwYMaO03ceLEXHXVVfn85z+fDh06tHYvlUpJipC3xRk+fHiOPfbYVFZWZu21184NN9yQDTbYIEkyd+7c1NbW5le/+lW+8pWvpHPnzhk5cmR23333JMm7776bQw45JA888EC22WabPPTQQyt8GQEAAAAAAAAAAAAAAAAAAAAAAMCSLG1uWcW/sSb+g40cOTKzZ8/OOuusk6222ipJ0rlz5+y3335Jkssvv7xN+1GjRiVJjjvuuDbhcEmy2mqr5eSTT24TDrcsmpqaMmLEiNZwuCSpra1NuVzOueeemyT54Q9/2BoOlyR9+/bN1Vdfnerq6jz88MO58847l2vaAAAAAAAAAAAAAAAAAAAAAAAA8K8kII6l0hIAd+SRR7bpftRRRyVJRowYkcbGxtbuAwcOTJLcfPPNmT179gqtZejQodl8880X6f7iiy/mrbfeSm1tbT7/+c8v0r9///751Kc+lSS54447VmhNAAAAAAAAAAAAAAAAAAAAAAAAsCIIiOMDvfPOO7nrrruSLBoQt/fee6d79+6ZMGFCm9C1Aw88MIMHD84dd9yRfv365fDDD8+vf/3rPP/88x+6ng022GCx3V955ZUkyRprrJGOHTsuts3QoUPbtAUAAAAAAAAAAAAAAAAAAAAAAIBVyb8kIK6+vj6NjY3/ilGzElx55ZVpbm7O5ptvnvXWW69Nv+rq6hx66KFJkssvv7y1e8eOHXPffffl2GOPTXNzc66++uqceOKJ2WijjTJ06ND89a9/Xe56lhT+NnPmzCRJ7969lzhsnz59kiQzZsxY7ukDAAAAAAAAAAAAAAAAAAAAAADAv8pyB8Tdf//9+eEPf5hp06a1dps8eXL23nvvdOrUKV26dMl3vvOdFVEjK1lL8NsTTzyRUqm0yOv3v/99kuTGG29MXV1d63ADBgzIJZdckilTpuShhx7K2WefnS233DIvvPBCDjzwwDz88MMrtM5OnTolSSZMmLDENuPHj0+SdO7ceYVOGwAAAAAAAAAAAAAAAAAAAAAAAFaE5Q6IO++883LZZZelW7durd1OPfXU3H777VlrrbXSrVu3nH322bnuuutWRJ2sJE8++WSee+65lEql9OnTZ4mv6urqzJkzJyNHjlxkHFVVVdlmm23yrW99K48++mgOP/zwNDU15ZJLLlmhta677rpJkjfffDMzZ85cbJvnn3++TVsAAAAAAAAAAAAAAAAAAAAAAABYlSx3QNxTTz2VnXbaqfXv2bNn55prrskee+yRl19+OS+//HLWWGONXHjhhSukUFaOyy+/PEnysY99LO++++4SX6eeemqb9u9n2223TZKMHTu2Tff27dsnSebMmbNctW6wwQZZY401Mnfu3Fx00UWL9B87dmxrgN2ee+65XNMAAAAAAAAAAAAAAAAAAAAAAACAf6XlDoibMGFC+vfv3/r3gw8+mLlz5+bYY49NknTu3Dn77bdfXnrppQ9fJStFU1NTRowYkST5zGc+875tjz766CTJ3Xffnbfeeis///nPc/7552f8+PFt2r355put4W2bb755m35rrbVWkuSee+5ZrnpLpVK+8Y1vJEm+//3v5x//+Edrv/Hjx+fwww/PvHnzsu2222bXXXddrmkAAAAAAAAAAAAAAAAAAAAAAADAv9JyB8TV1tZmxowZrX/fc889KZVK2XnnnVu7derUKVOnTv1wFbLS/O1vf8u7776b2traHHLIIe/bdsMNN8ywYcNSLpdz5ZVX5o033sjXvva19O3bN2uuuWa22WabbLDBBllrrbXy3HPPZaONNsopp5zSZhyHHXZYkmS//fbL5ptvnl122SW77LJL3n333aWu+ctf/nKOPPLI1NXV5ROf+ESGDBmSLbbYImussUbuu+++rLHGGrnyyiuXfWEAAAAAAAAAAAAAAAAAAAAAAADAv0HV8g64zjrr5Lbbbkt9fX0qKipy9dVXZ8MNN0zfvn1b27z55pvp3bv3CimUf7/LL788SbL//vuna9euH9j+6KOPzpNPPpnLL788I0eOTPfu3XPnnXfmtddey1NPPZXu3btnq622ylFHHZXjjz8+7du3bzP8t7/97TQ1NeVPf/pTXnjhhdTX1ydJ5s6du9Q1l0qlXHHFFdlrr73yhz/8IU8//XTeeuutDBo0KAceeGC+9a1vpWfPnsuwFAAAAAAAAAAAAAAAAAAAAAAAAODfp1Qul8vLM+BFF12UL3zhCxkwYECqq6szevTonHvuuTn11FNb26yzzjoZMmRIbr311hVW8Kqmrq4uXbt2zfTp09OlS5eVXQ4AAAAAAAAAAAAAAAAAAAAAAACwClra3LKK5Z3A8ccfn2984xuZPXt2pk2blv/5n//JV7/61db+d911V15//fXstttuyzsJAAAAAAAAAAAAAAAAAAAAAAAAgI+UUrlcLv8rRjxv3rzMmTMnHTt2TFVV1b9iEquEpU3iAwAAAAAAAAAAAAAAAAAAAAAAAD66lja3rOJfVUB1dXW6du26XOFwM2fOzFe/+tX069cvtbW12WyzzfKnP/3pA4e7/vrrc8QRR2SdddZJ+/btM3jw4Bx11FEZNWrUIm132WWXlEqlRV577bXXMtcLAAAAAAAAAAAAAAAAAAAAAAAAsCIse3rbe/z5z3/OiBEj8tJLL2X27Nl59dVXkyQvvfRSbrrpphx11FHp37//Mo3z4IMPzqOPPpqzzz476667bq666qocccQRaW5uzpFHHrnE4c4555z07ds33/nOd7LWWmvlrbfeyllnnZXNN988Dz30UIYOHdqm/VprrZUrr7yyTbdu3botU60AAAAAAAAAAAAAAAAAAAAAAAAAK0qpXC6Xl2fA5ubmHHHEEbnuuuuSJO3bt8+cOXPS1NSUJBk/fnwGDBiQH/7whznttNOWery33HJL9t1339ZQuBZ77LFHnn/++bz55puprKxc7LATJkxI796923QbO3ZsBg8enM9+9rO56KKLWrvvsssumTRpUp577rmlrm1x6urq0rVr10yfPj1dunT5UOMCAAAAAAAAAAAAAAAAAAAAAAAA/jstbW5ZxfJO4Oc//3muvfba/M///E+mTp2ar3/962369+nTJzvttFNuvvnmZRrvn//853Tq1CmHHnpom+7HHntsxo4dm4cffniJw743HC5J+vXrlwEDBuStt95apjoAAAAAAAAAAAAAAAAAAAAAAAAA/t2WOyBu+PDh2XLLLXPhhRemS5cuKZVKi7RZZ511Mnr06GUa73PPPZcNNtggVVVVbbpvsskmrf2Xxeuvv5433ngjQ4cOXaTfa6+9lh49eqSqqiprr712vvOd72TOnDnvO776+vrU1dW1eQEAAAAAAAAAAAAAAAAAAAAAAACsCMsdEPfqq6/mYx/72Pu26dmzZyZPnrxM4508eXJ69OixSPeWbssyvsbGxhx//PHp1KlTvva1r7Xpt+OOO+ZnP/tZRo4cmZtuuin77LNPzj333Oy1115pbm5e4jh/8pOfpGvXrq2vgQMHLnU9AAAAAAAAAAAAAAAAAAAAAAAAAO+nankHbN++ferq6t63zRtvvJFu3bot87hLpdJy9VtYuVzO8ccfn/vuuy8jR45cJMjtzDPPbPP3Pvvsk8GDB+frX/96brzxxhx00EGLHe9pp52WU045pfXvuro6IXEAAAAAAAAAAAAAAAAAAAAAAADAClGxvAMOGzYst99+e+rr6xfbf8qUKbntttuy7bbbLtN4e/bsmcmTJy92fEnSo0ePDxxHuVzOCSeckCuuuCLDhw/PAQccsFTTPvroo5MkDz300BLb1NTUpEuXLm1eAAAAAAAAAAAAAAAAAAAAAAAAACvCcgfEnXTSSXnrrbdyyCGH5J133mnT77XXXstBBx2U6dOn56STTlqm8W688cZ58cUX09jY2Kb7s88+myTZaKON3nf4lnC4Sy+9NBdddFFr6NuyqKhY7sUCAAAAAAAAAAAAAAAAAAAAAAAAsNyWOwntgAMOyLe//e3cfPPNWWONNXLeeeclSXr37p1111039913X7773e/m4x//+DKN96CDDsrMmTMzcuTINt0vu+yy9OvXL9tss80Shy2Xy/n85z+fSy+9NL/73e9y7LHHLtO0L7vssiTJtttuu0zDAQAAAAAAAAAAAAAAAAAAAAAAAKwIVR9m4LPOOiu77rprfvWrX+Xhhx/O3Llz09zcnL322isnnXRS9txzz2Ue5957753dd989X/rSl1JXV5d11lknI0aMyG233ZYrrrgilZWVSZLjjz8+l112WV577bUMGjQoSXLSSSfl4osvznHHHZeNN944Dz30UOt4a2pqMmzYsCTJfffdlx//+Mc56KCDstZaa2Xu3Lm59dZb8/vf/z4f//jHs//++3+YxQIAAAAAAAAAAAAAAAAAAAAAAACwXErlcrm8PAO++eabqa6uTt++fVd0TZk5c2a+853v5JprrsmUKVOy/vrr57TTTsvhhx/e2uaYY47JZZddltGjR2fw4MFJksGDB+eNN95Y7DgHDRqUMWPGJEleffXVnHzyyXn66aczadKklEqlDBkyJIcffnhOPfXU1NTULHWtdXV16dq1a6ZPn54uXbos9zwDAAAAAAAAAAAAAAAAAAAAAAAA/72WNrdsuQPiKisrc8wxx+Tiiy9e7iL/GwiIAwAAAAAAAAAAAAAAAAAAAAAAAD7I0uaWVSzvBHr06JEePXos7+AAAAAAAAAAAAAAAAAAAAAAAAAAvMdyB8TttNNOeeihh1ZkLQAAAAAAAAAAAAAAAAAAAAAAAAAfacsdEPeTn/wkzz33XH7wgx+ksbFxRdYEAAAAAAAAAAAAAAAAAAAAAAAA8JFUKpfL5eUZ8LjjjsuoUaPyz3/+M3379s2mm26aPn36pFQqtZ1AqZSLL754hRS7Kqqrq0vXrl0zffr0dOnSZWWXAwAAAAAAAAAAAAAAAAAAAAAAAKyClja3bLkD4ioqKpaqXalUSlNT0/JM4j+CgDgAAAAAAAAAAAAAAAAAAAAAAADggyxtblnV8k5g9OjRyzsoAAAAAAAAAAAAAAAAAAAAAAAAAIux3AFxgwYNWpF1AAAAAAAAAAAAAAAAAAAAAAAAAHzkVazsAgAAAAAAAAAAAAAAAAAAAAAAAAAofOiAuKuuuip77LFHevfunZqamqy22mrZY489ctVVV62I+gAAAAAAAAAAAAAAAAAAAAAAAAA+Mkrlcrm8PAM2NzfnsMMOy/XXX59yuZz27dund+/emTBhQubMmZNSqZQDDzww1157bSoqPnQO3Sqrrq4uXbt2zfTp09OlS5eVXQ4AAAAAAAAAAAAAAAAAAAAAAACwClra3LLlTm775S9/mZEjR+ZjH/tYHnzwwcyaNSujR4/OrFmz8tBDD2XnnXfODTfckF/+8pfLOwkAAAAAAAAAAAAAAAAAAAAAAACAj5RSuVwuL8+Aw4YNy9y5c/Pss8+mqqpqkf6NjY3ZZJNNUl1dnaeeeurD1rnKWtokPgAAAAAAAAAAAAAAAAAAAAAAAOCja2lzyyqWdwIvv/xy9t9//8WGwyVJVVVV9ttvv7zyyivLOwkAAAAAAAAAAAAAAAAAAAAAAACAj5TlDoirrq7OrFmz3rfNrFmzUl1dvbyTAAAAAAAAAAAAAAAAAAAAAAAAAPhIWe6AuGHDhuWaa67J2LFjF9t/3Lhxueaaa7L55psvd3EAAAAAAAAAAAAAAAAAAAAAAAAAHyXLHRB36qmnZvLkydlyyy1z3nnn5bHHHstbb72Vxx57LD/96U+zxRZbZMqUKTnllFNWZL0AAAAAAAAAAAAAAAAAAAAAAAAA/7VK5XK5vLwDX3DBBfnGN76RpqamNt3L5XKqqqpyzjnn5Gtf+9qHLnJVVldXl65du2b69Onp0qXLyi4HAAAAAAAAAAAAAAAAAAAAAAAAWAUtbW7ZhwqIS5LRo0fniiuuyFNPPZW6urp06dIlw4YNy5FHHpm11lrrw4z6P4KAOAAAAAAAAAAAAAAAAAAAAAAAAOCD/NsC4j7qBMQBAAAAAAAAAAAAAAAAAAAAAAAAH2Rpc8sq/o01AQAAAAAAAAAAAAAAAAAAAAAAAPA+ljsg7mc/+1l69eqVsWPHLrb/2LFjs9pqq+UXv/jFchcHAAAAAAAAAAAAAAAAAAAAAAAA8FGy3AFx1157bTbZZJP069dvsf379euXzTbbLH/605+WuzgAAAAAAAAAAAAAAAAAAAAAAACAj5LlDoh75ZVXstFGG71vm6FDh2bUqFHLOwkAAAAAAAAAAAAAAAAAAAAAAACAj5TlDoibPXt2Onbs+L5tamtrM3PmzOWdBAAAAAAAAAAAAAAAAAAAAAAAAMBHynIHxA0aNCj//Oc/37fNgw8+mAEDBizvJAAAAAAAAAAAAAAAAAAAAAAAAAA+UpY7IG6//fbL/fffn0suuWSx/S+66KLcf//92X///Ze7OAAAAAAAAAAAAAAAAAAAAAAAAICPklK5XC4vz4ATJ07MsGHDMm7cuOy8887Zfffd079//7zzzju54447cu+996Zfv3554oknstpqq63oulcZdXV16dq1a6ZPn54uXbqs7HIAAAAAAAAAAAAAAAAAAAAAAACAVdDS5pZVLe8EVltttdx11105+uijc/fdd+fuu+9OqVRKS97c1ltvnSuuuOK/OhwOAAAAAAAAAAAAAAAAAAAAAAAAYEVa7oC4JBkyZEgefvjhPPbYY3nkkUcybdq0dOvWLVtvvXW23HLLFVUjAAAAAAAAAAAAAAAAAAAAAAAAwEfChwqIa7Hllltmyy23TGNjY5599tkkSUNDQ9q1a7ciRg8AAAAAAAAAAAAAAAAAAAAAAADwkVCxLI1Hjx6dSy65JK+88soi/f7617+mf//+rWFxq6++eq655poVVigAAAAAAAAAAAAAAAAAAAAAAADAf7tlCoj7wx/+kM9//vOpqalp0/3VV1/Npz/96UycODFrrLFG1l9//UydOjVHHXVUnnzyyRVaMAAAAAAAAAAAAAAAAAAAAAAAAMB/q2UKiLv//vuz6aabZtCgQW26X3DBBZk7d26+/OUvZ/To0Xn++edz7bXXpqmpKb/61a+WuaiZM2fmq1/9avr165fa2tpsttlm+dOf/rRUw06YMCHHHHNMevXqlQ4dOmS77bbLP/7xj8W2/fvf/57tttsuHTp0SK9evXLMMcdkwoQJy1wvAAAAAMD7aWxMbrkl+frXk733TrbdNtlww2SzzZLdd09OO61oN316cvnlybHHJjvtlGy0UbLWWkXb3XZLLrig7XjrG+szc97MzJw3M43Njf/2+QIAAAAAAAAAAAAAAAAAVryqZWk8evTo7LLLLot0v+2221JdXZ2zzjqrtdvBBx+cnXbaKffdd98yF3XwwQfn0Ucfzdlnn5111103V111VY444og0NzfnyCOPXOJw9fX12W233TJt2rRccMEF6d27d379619nr732yt///vfsvPPOrW3vueee7L333tl3331z4403ZsKECfnWt76V3XbbLY899lhqamqWuW4AAAB4553k8ceTV15J6uqSWbOK7l26JKuvnhx9dDJ1anLttckjjySvvpp07ZrU1iZVVUWAUJcuyZVXrtz5AGApzZ2QvHl1MunBZNabSXXXpNSu6FduSFb7WKb3/1Y+8YnksceKY/zZZxchcb17J83NydixycsvF+eOj30sGT8+WXvt5Gc/S3bYIenePZk3L3njjWTh37eYMGtCtv7D1nlz+pspp5wD1z8wIz89MhWlhX4XpGluMu25ZMYrSUNd0jQ7KVUl7bok7fslq+/x711eAAAAAAAAAAAAAAAAAMAHWqaAuEmTJmXgwIFtuk2bNi2vvfZadtppp3Tu3LlNv8022yyPPfbYMhV0yy235G9/+1trKFyS7LrrrnnjjTfyjW98I4cddlgqKysXO+zFF1+c5557Lv/85z+z3XbbtQ676aab5pvf/GYefvjh1rbf+MY3su666+a6665LVVWxGNZcc83ssMMOueSSS/KlL31pmeoGgCVqmpvMfD2Z/VbSNKf4u1SRVNQm1d2SnlsnlbV5553khReSt94qgmQaGpLKyqRUKgIEdt89mTkzue665MUXi/8PGZK0b59UVCTlclJfn5x6arLaait7pvmXaaovtqWGGUnz3KTcnFTUJO06J+37J+06rewKgSSZ9UYy7dkFx/6UimN/krTrmqxxWFLV/l8y6ZbzQX19cS4plYpzRfv2xf9ZTuVyMu2ZpO7FZM7YpLkxqahKUpGkOanpnTl9j85nPpOMHFks75/8JPn0p4vzcmVlMm1a8vrrybPPJnvumUyfngwbllx/fTJ4cNvJzZix4P9NzU05676z8ujYR1NRqkj/zv1zzu7npFO1Yz7ASjfn3eT2LYpzw8BPJTv/JanuntS9kjTXF+ePhqm57pqmPPZY8UzzM59J3vvocd11i9fJJxfhcEnyrW8ln/zkgja1tcl66xWvJKlvrM/BVx+cN6a/kd/v9/vcOebO/Om5P+W7d343Z+02/4c8Xvxp8uz3i3PW0O8mPbct6is3J/MmJzNHty2kXC7uWZvnJs0NRZBcVYfinsOFBPDvtLTHnHL5X1sHAAAAAMBKNnZs8tBDxY/PTZpU/ABdu3bFY9Tm5qRXr+TYY5Obb04efrho161b8UNFlZXFZwsbG5P110/mfzQfAAAAAAAAgP8QyxQQV1VVlWnTprXp9uSTTyZJttxyy0Xad+q07F9W//Of/5xOnTrl0EMPbdP92GOPzZFHHpmHH34422+//RKHXW+99VrD4VpqPvroo3P66afnnXfeSf/+/fPOO+/k0UcfzU9+8pPWcLgk2X777bPuuuvmz3/+s4C4/0TNTcnUJ5IZrySNM5Pa1ZOqjklavkjWXATnlCqT1/6Q1L2QdNs06bJ+UlGdNNQlKSflpqTndnnh3WG54YbktdeSHj2STTZJOnUqPlBRKiVNTcmaaxYfnrjzziLQqU+folttbdG9XC4+VLHpposGPvw3e/vt5Pnnk4kTiw+W9Oq14MMo5XKx7HbYoQjNYBXRMDOZNzVpmp2UG4svipcqklK7IsSmfZ9lGt3MeTNz1bNXZdyMcamtqk1lRWWO3uTo9O3U919Tf3NjEcQzb3IxL5U180N4SsW8VNYmPTZfhvE1FeOaN634Qn9zQ5JycfyoqElq+yQ1PZIk5XI5z054NpNnT06SdKvtls36bpZSy5dYn/1B8uLZRRjctpcVx536icmUJ4pjVf2kpLI2+x+zdf7612I/uemmZMcdiw9ytXyIa8qUpK6uOJ7U1yf9+yejRi15P5o4seg/ZUqxz3XtWuyPLUFy5XLysY8VbUdPHZ1zHjgnU+ZMSa8OvTJh1oR8bduvZYc1dmgzzlenvJrfPPqbVJQqMrdxbrrWds2Xt/pyVu+8+tIv24+ocrmcmfNmtv7dqbrTgm1kaU28P3nsy0U40QbfSlbfqzjPTf5nEeAwb2rSdcOk377JhLuLfaKqU9K+X1LRLq0BRuWmpOfWaW7XK2+9VYRPTJuWVFUlNTULtpHm5uLcdfvtyd//nrzzTrLbbkW32toF7Robk49/POn7L9q9V4bm5mTOnGLeGhuLbi3Lp+ajlovRNK8IO5k3tTgethxbU05SkXTon7RfcAyob6zP3Ma5SZKaqprUVtUuMsrxM8fnqmevSlO5KXMb56Z/5/45bKPD0qFdh3/PPH0YjbOTKY8ns98s9qWa3sV1ZKmiON+UG5Puw5JnTk9eu6hYNh+7Oem2UTL9hWTyw8VynPlaMv3ZIlBm/D+KwMde2yTVPVPsp/Nfpco09z8kf72lMo8/Xhzbhw5NVl990WurDTdMzjwzeeSR4txw9NHJoEFJh/mLdebMZN68ojvLoVxO/rZdsQ57bpNsPyLpOLg43ta9VByHZ7yUqY1v5O67ByUpPmj96U8X66tFr17J2msnTz9dHGuS4njart2ik2y5VZ0yZ0qOHHlkbn/t9vxkt59kSI8h+cyfP5N73rgnfz7szxnSc0gy663k3duTWWOK4377fsW22bK/Njcmq+3Yev3CyvXEE8mf/pS88krSr1+yxRZFGHDF/AzJlnvN7t2Te+8t7q86dSrOwQsHAzc1FceEwQPmJDNGFdeVzfXF9UGpJVi/nJTaZXaHbXL++cWXAWbPTvbYY8GxpKKi2B4bG4tA4muuKUIMGxuTrbcuttuW0OLm5uJcuM8+K2nhrQwT7kle/X1x7F5972LfLzcVyzvl4l5h4EFJ16FLNbqGhiIocuLEIgiyffsFx/SkWK8bb1x8YaOpqWgza9aC65JSqTg+1NYW4ZMfqeuSlW3hhb1wGFG5MWmeV/y/skNSOf8mbeL9ycR7k9GXJUk+uffkrLdej7z8crGf7bxzstdeSefOxegmTy6CwL/wheTyy5OpU5Of/azY93faqVjnzc3Fdfm4cclWW5XzpZu/lAfeeiA92/fMK5NfSffa7kmSn9z/k2y42oY5epOjk9HDi3v9rlslQ75chL29dX0y/s7W2lJRnUx5JHn3b0V43KCjiuu82W8X98WNM4p74Q1PW6qA29deS375y+J817lz8olPLDiWJMV8dO6c7Lff8q+O/ziNs5KpTyaz3ymOIbW9i/C9JAueR26dtOuy1KNsbi6OETNnLnrvUlub9Oy54Hriv8HC99WlUmnVCMqd+kwy4a5k7vik0zpJTa/5AcKlBfcH/fdfEBTN4i3x+FpefLv3dH/88QXXVgMGFNdWnTu3vbZaa62k5S2suXOLfaehodhvyuXi+FRTUzw/q65ewfP3EVNfXwRhz51bLPumpmLVVVcX17Tdu7dt33JdWy4veHbp+gY+4hpmJnPHzX9/pmGh55Ep/t95neKalZVv5uhkzOVJ3ctJ53WTzkOKe4vmeWlzjTtnXDL6j8Vzq757JB0GFtdJLe/NNzckAw/JQ88Nzj/+kbz5ZnEftNZabd9zb2oqfmhhUPHoLc3l5kyYNaG1nN4de6fiP+W6q9xc3BvUTyreKyxVLvQspzmpqE1zt2G57bbiOdLEiUWIQ9++iz4X3m234jnOSy8V7wn261ecbxd+llNRUdyXAQAAq5h5U5Nnz0gmP5R0WCPps2tS1SWZ/UZxT9XcmHRcIzc8c3wO/XQpjY3JIYckl1xSPANtM6p5yemnJ+ecU/x93nnJKacsedJNzU0Z/tTwnPPAOdl2wLZ5cdKL6dm+Z875xDnZtO+mre3K5XLueeOeXPP8NenXuV/emv5Wth+4fY7Y+IhUV3qYCh95TfOKY1njjOIZT7lx/mfPq4rPbXcY6H0yAAAAYOWYNy2Z807x7KLcPP/7tS0fTiwXn3Op6bUSCwQAWDbL9BWxddddN//4xz/adLvjjjtSKpUWG9o2duzYrL76soXGPPfcc9lggw3aBLclySabbNLaf0kBcc8991x22mmnRbq3DPv888+nf//+ee6559p0f2/bBx54YIn11dfXp76+vvXvurq64j/zpif1DfMDIqrS+qHnclPx/4qaNFZUZ0b9jDSXm1NbVdv6AeWWcIx2Fe3SuaZz5jXNy8x5M1NVUdXmDfTmcnNruy7VnVKa+mQy+63ik70dBhVvpDXOTJrmJA3Ti1p67Zikef4H6CuL0KSFA2Kaizfimio7ZOrcqUmSrjVd23x4esa8GWloakjH6o5pX9Uh9fXFl3yamxf8slyLli8qT2+ckAfefCBPjHsiU+dOzUa9N8qEWRMyefbkDOgyIDussUM277t5qiqrUt9Yn4bmhiRJu4p2aWxuTDnl1vlvV9Fu6UJ0Zr+VvPrbIqBhtY8VYXDl5mTyg8UH1Ge/VYR0bPCt4ouxjbPnvwlZOT/QYVTxQYu5E5M+z2Vc3YV5/fXii9udOy/4UtJ7/3388eTBB4sv7e+//6JlFR/QLmfy7Cl5c/qbmTxnchqbG9OnY59MnD0xpZTSo32PrNF1jfRq3zOlplnz3yCtWhDoU26cvz01Jikl1d3mbxRNxbw0NxTrNCnaV7RLKmrSXFGVmfNmZl7TvNRW1aZdRZE80dDckLmNc1NdWZ1O1Z1SUS4vCAVr+RJj5idIpbn4u1SVvHNTMumB4oP9PbctvoAxb0rxAf5ZbyQV1Zk74As577wBee654gt2J5yw+C90TZ1afFn42WeLyey0U/Hl9pZtquV7fvvs15iJsyZmwqwJmdM4J52qO6WyVJnp9dNTU1mTXh16pXfH3qmpn1CEJjVMK76w365rMU+Ns4obuXJTEZzUcXCxj5Qbi/Czhd94bppT/F3ZMSk3JE3zg3Aqa4vtpNyy3zQkpVLKlR0zfd6MTJ49ObMaZqWiVJFO1Z0yfe70VFZUpktNl/Rs3zO1VbWZ1TArdfV1mdc0L+0q2qVdZbvMmjcrVRVV6VTdKZ1rOqe6VFlMd34gTGttbdZDRSZPbZdx44pgh06dijCJqqoFy6xcLrbZpnbTWvfdhUN3GpsbM3XO1JRKpfSo7piKZ76bTLq/2GcGHZ7U9i3W55xxyfTnkop2adj4rDw97a088OYDeWP6G+nYrmMGdRuUp999Ol1ru2aTPptkh4E7pH279rnoiYsy/KnhWb/X+tlnyD7pVtstN758Yy4aflH2GbJPTtz6xKzVbc1Fd5QWC3/Jc+HuS/yyaHPy9OnFvl7dI1n7hGKdzXit+BLRtGeK/WHDb+fNpqq8NOmlvDvz3VSUKtKvc7+MmTYmtVW1GdhlYNbvtX56l2em9Mx3i7DJ3jsnfXdP2nUuvuAya0xxLOkwMJPX+Wquef6aXPvCtWnfrn12X2v3tKtol9teuy0z6mfkUxt8KodtdFh6DzioeIgw/fniy/YzX59/YGhKxlxRrOcu6+d739s6665bBAJccUXxRfoOHYp9oiWwY7/9kgceKL70+uKLyaGHJhts0Dasa9685DOfKYIERo0qtoXjj190H0ySSbMn5bx/npcrnr0iHxv0sew7ZN90qu6Uv7/+93zuhs9lmwHb5Hsf+15qq2pz3j/Pyy2v3pKd1tgp+w7ZN/VN9bll1C3Z4ZIdcsRGR+SkbU5Kn059imNry5d/stA3Ouefb4rAhGX4cFjjnGJ85cb39CgVx6tl+PJ8i9mzi+XU1LTgizFVVUU4R3V15n+rZm4RsNJyHk+K+amoSirbZ9ysSXl83ON5edLLmdUwKxv02iBv1b2V+sb6DOgyIJuvvnmG9BySZ8c/m5tH3Zwnxj2RmqqabD9g+/zz7X9mXtO8DOs7LPsO2TfDeq2Tijf/VJy/anolXTcuQiXmvFMcv+ZNTmpWS9Y4LBlwYNJhQDL33WTqU8V5vXF2MvG+Yr+tn1S0fePqZM7byZrHFMuqfnKxDU5+pJivAQflkvu/luuvLwLiDjkk2WabhZbuQt+5bglGXfj817ILtnRvLjfnmfHP5b437suoKaNSSikbrrZhnnr3qXRo1yEbrrZhdhq0U3pXrZ0HHijl7beL5T5kSHEca/nyb8v6GLpxY+rq61qPm7VVtSmllNkNs9Ousl261nRN19quqZr2dDLujuLL+D22LEIWmuuLfW72W0Whq++VdNtk/vG1PP88V1Gs13JzWo6vjc01+fkFlfnHP4ovWx1ySLLOOsV2UVlZfHF85swixKPHwvlKSzo2zX4neWNEcX3ReUjxBbmKquLYOndCcc3WdcOk13bJ+LuLddp1w2IbKDfNv7acUOw7PbZMem45f9ts2SeaFgrzLD5UVa5on3/cVZUnnyx+LXjTTYvw2urqtmFCGw9tTI+Kp4twsop2RfhHRXXx5cvmuUVYWWVtcV545rvJzFHFNWX//YrQoWnPFPM3++2kpmfqNvxe7njtjtw66taMmzkum/bZNB3adciDbz+Ynh16Zve1ds/e6+ydGfNm5NeP/Dq3vHpLtuy3ZQ5Y74BMnTM1N71yU3764E9z7GbH5vhhx2d2w+w8+PaDeW7Cc6mrr8vGvTfOm9PfzOyG2Vmj6xrZbuB2Gdprk4y8tiqPPlqEqWy/ffHFt6qqBdemDQ3JdtsVIb4TJxbH0f79i2Nry5fOm5uL14DBc/P4uMfywJsP5O26t9O7Y+/07NAzz014Lj3b98wW/bbIDgN3yGp1TxQhQbPfStb5QrH+G6Ym018sAj+a5iSr75mse3Lxod3pzxbXp53WLpZ1S1BxZW3SdaNiHc8aU+ynmb9D1b1WfNh33O1JVefMLQ3OE09skyeeKL5gP3TootdW5XIRZDB0aLGdzplTXK/X1RXHvJb9q7KyCHG99417c9fou/L2jLczuOvgdKzumOcmPJc+HftkxzV2zMfX/Hh6VlUW+1bT3OKar6K62Oaa5xXbSbmc1PbJ7KYemTu3WL7V1W1Djlq0bINz5xbH38XdR5TLSceOSWV5zoLzSKlqoeuhxgVfCq7uXuwbLdd0LcfoJK3XxKV2xfbass8k86+tW5rNm58EUTM/VHox+/V7r0mG/TQZc2WxX798fnE8LlUV0xg9PKnumX6b759nnhmUK68s7hMOOKAIqWgJgGpqKpbDhRcW18FXX508+mhxH9GrVxFKUVVVLM8OHZKf/Pb1HDHyiLxT907O3PXM1FTW5M3pb+ZHu/4olzx1Sfa5ap8MP2B4dqicWlxnzBmXDDqy2J7mji+O/RMfKJbT4KOT9U7OBymXy5nTOCfT507P7IbZaS43p1N1p8xumJ0kad+ufbrUdEn7qvaZOndqyuVyurfvnqqKBffwcxrmtN7Tdm+/DF/afu9xbuFzcMv9bOWiwZOLH1dzcY4sNywYvuhRjL9UkVR1nn9eWEZLOvYvqd172syZU+yfM2YU+8N795mWv++7L7n11uJe84ADFj/JcnNz8uz/FuGFNT2TtY5PUkpmvFoEfE57qrj+WnO1VFWt1WbfW1x5dXXFF7HfeKNtQPp7vftu8thjyYQJRbtBgxZck7aMs3PnpHf/WZndMDvVldXpWtt1oXkoZ/KcImC5S3XXpLldGhqK5VFVtSBEamFVVcnUuZPTXG5O19qubZ6X1DfWp66+LhWlivRo3zP19QvCSFq+EP3e5duuXTKvaV7qG+vTVG5KZakyFaWKNDQ3pKJUkerK6tRU1qRUMf84Udk+rdtk8/wPOb97R3HtUdGuuM5/+8bi2q3PbkWodMP0pH5KMuPlpFSR5rVPzA/P3zT//GcRnPL//l/xhfeWa66WdTF7dnL22UVAYJIceeSCL8ZXVBTH0hkzimNHa4hNubnYf5rqizorqot1X9GSyNW04LhZbmq7cFuCsBcO/mqaW7zKjSmug6uLYLH3fni7cc786+bGhcbzntDXcrm4N2+el2T+/W5F7SJBY01Nxbw3Ni5Yf22u0xceV7lhwXyUKovjfmVtHnuiKpdfnrz8cjJwYLLttm2vN5uakjXWKLa1u+8uwtbWW68I72zffsF6aG4urlWXKuy/w4Bkz8eLYIRJ/0z+vlOx/lt+jKDHlknHwVmtT3WeeCK5/vrihwZ++tPkO98prlmqqop7+623Tn7zmyLkaOTIot1ppxXPUFrOn6utlhx0UPJ8u+H5yyt/yfYDt88Fe13Q+izvoPUPynE3HZfT/nFaNu2zaTbe7Z7k9UuSSQ8ld+2RdFqzWE8pJx0HFT+w0HFw0jSrOG40z5sfQD2tuGadO6645q7ulll9jss1twzOSy8VdW+5ZRFC1nJsabm2Wn/94rzeocOCgLKWoPKF98fnn09uvLF49ta3b3H92rHjgmNPuVx0HzZs4e118cfgcrnttUa7dovu/0lSWdWcCbPH5bWpr2XirIlJktU7r563695OdWV1+nbqm7W6r5XVqqpTGv/3Ihi4ZrUFy23uhGK9NtYltX0zb/W983bd23lr+luZOW9mcZ9SUZVJsyelY7uOGdBlQAZ0GZD2Y/9aPAOYNzlZ5/8VBdePL8InJz9S7BsDP108u5z0z2I777Flcd3TUFesi1mjk1JVmgYelbN/OSh33FEcC448sljmLc8QWu5ddt550SCmJVrsOXihIJaK6kWvmZZlfC33LvPv5csV7fP69Ddz7xv35pnxz2TmvJnZfPXN89Kkl9LY3JghPYfkY4M+lo1W2yhPvPtEbn7l5jwz4Zl0bNcxW/ffOve9eV/K5XK26rdV9l1332zce+OlDmEvl4tr5XnzFoSDtWxKFRXzg9Or52TsjLF5d+a7mds4Nz3a90hDc0Nm1M9Ip+pO6de5X/p26pt2k/5ZBD43Nxb3faVSca04681k3K1FaHtFddJv7wUFLO11xBI0NRXrt6lpQajZ4s6biwsgfj8tz/wbG9sGGVdWJu3blzO9YVJGTRmVt+veTn1jfdboukbenflumspN6d2xd4b0GJLVOw7MHbdX5KWXinDTTTct7p8Xft7b1JRstVVxTltRZs9eEJbYUvvCWhb5lVcmI0YU1zn77Vccw7p0KeprOQcNHVoc+1sCFxc+jrz3ecjYscV0m5qKfe2990LlcnHMbgmgTxZt0/L/luXR0FAcy1qui1pC0yorizYrcrk1NxeBo3V1RX3dui0ail8uF+fHhx8uzpnlcvGspOU6ceHn+FVVyf/9X/LMM8W14YEHLggkTor5qq4u5uGyy4pz9ZprFufq7t0X3Ac1NhbXPU1NxfXwuHHFMW7QoLbn6qamZN11i2UzfXqxT3frVox/4WvYcrkY/9IE/81tnJsZ9TNSUapIzw492/Sb3TA7s+bNSrvKdulW2+1DLv1l19xc3BdMm1ZsHz17LvihhxblctK9R1Mmzh2XMdPGZNrcaWlX0S492vfI2BljU1tVm76d+mZwt8HF+xj10zNt7rTMbZyb2qraVM1/P6ldRbt0re2abrXdUl1uKs5DzfOKa7yKdvMPnPPv0ZOkqlMm13XKlCnFeu7UacE5aeHr3A4dinP/a68V62zIkOIYsfCPmjQ1FdvYe7/gvFgNM5Opjxfn5uruxfsaFVXzr2FmFdczNT2SzusVz/obphdB/+26JCkX94tNs4rzVO3qxf1U/cTierr1Ocj894Oa5hTTrO2d+or2mTFvxiLv4TY1N7Uuy841nTNz3szMaZiTmqqaNvfLjc2NqW+sT/t27dOxXcfMmDej9e+F35ud1zQvjc2N6VTdKe0q2mXGvBmtz0qrK6tTVVHV+h5T55rO6VrTNZUVlZnbODdzG+emslSZ6srqlFPOvKZ5KZfLqa2qLZ6zLs05s1xO3ry6uC6Z/8NaxXuCk4tlOXNMUtU+cweemN8M75tHHimOiR//eNtndM3NxXo98MBim221pPPhpAeT588qnjsOPrII6W9qLNbhjFHFe4DdN8+kAYfl/jfvzyPvPJJJsydl6GpDM71+esbNGJf+XfpnxzV2zDb9t8nbY9pnzJjiWNe3b7HNtdTWct3fp0+SmumZ1zQvHdp1aLNe5zXNa72n7VLTNQ0NxfwkC84R712cFRVpvSdNFv+srKIiKVU0ZVZDcc/c1NzUur4amhpSVVGVDu06pEO7DmlsqGwN3ayuLup/77mpqiqpb55dPD+vaNd22yw3tW6L7Su65K67ktGji/11gw2KY+d798ONN2nKrObicwM92vdo+7mB+hkLtvV504p1NfvtpMt6SUrF/jftqeI5Rf2U4j22gQdnwTOe+YU3zi7eAxl7a5Lih55eeunEPPts8VxijTUWbB4Lv/9ZLpfz2NjHc9PLN+WxsY+lS02X7LTGTvnn2//M1DlTM6zvsHxyvU9m89U3z8uTX86j7zyat+reSruKdhncbXBemPhCOlZ3zPq91s+W/bZMl/TPiy+WMnlysRz79VtwLmmZZrt2yaAB8+b/yFbT/M+DzL8Aa3nveH6oW0OpOJbObpidpnJT2le1T2NzYxqaG1rfl+9Q1T4Vz/2gCBqu6pSs/fniPmDW6OKZ/bSnklJl5q7xjTz88Pp5/PHiPLf++ot/RjN2bPG+4osvFtv4pz61aJtlMW9ecf2y8Da38LOklnDd115LXn21OKb377/guq/1faPmYr/r3mMpjzlLcWx6d1w5V19dXEfU1hbXlS3bcEttNTXFNUJLsF7nzsX2tPAPbpXLxXXgnDlFu8mTi3U/YEAxfEs5zc3F9Uy/fkszC+U0lZvS0NSQpnJTSimlqqIqjc3FhWBlRWWqKqpSkYrMaZyTWQ2z0tDUkMqKyrSraJe5jXNTKpXSvqp9OlZ3TPWs15NRvyme7/bYKum6QZJS8d7E7LeLe8TVdsyMgUdkbuPc1FTVpEtN2/dMp86Z2nouad+ufeuz6ZZj2cLXthUVxf14y31BU9OCgMaF79GTBd2Xar02zX/fuOXZTct75M3zn+uUqtJY1THT507P9PriWNx+/vOiOY1zimeK898TrCxVtT53WHKocDkplVMul9Ncbk6pVEoppZTnH4NKKbV2K7V572DhHwJqKp51pWLB53IWXlgLz1/LvXOpVFxDtHzOp1SZBe9Dzm9Xmv85nKbZRffK9sW1S+tndebfO1fOP2E2zV3QrlSZ1h8Xar0G67h8z7ZXhKaW94masuC9mcxfp6WkoiZNFTVpaG5IQ1ND6+e/WvaTlmev7UpVKc0dW1zPlRuL5y8VNfPfh5pXnFNKlUnntZftmUSLJVxvvP128Xxu1KjiGnWLLRb82F7Lvt+5c/Ee49KYNq14zZtXHGsWDjdtKaF9++L8+847xf1y//7FNN77+aj+/ZfzhzY/5HsWSdv9v+W4sLCamqSmeqHnPS0/sNii5fMgVR0zc3a71mcuLfdx771+adeu7f1vy4/ZLFxqy/Ar0uTJxfvoLfcuHTu2Pab9f/buO86uqt4b/+ecOVNTSQgJgQQIvYmgAhY0qBQVVLBRr1jQ37V3RVHAq9gu1+fqIz4iXuEaQBGwYEEFBEEBqQpKLwEJpCeTKZl2zu+Pk2lpTEKSmYT3O695ZZe19/6eM2fO2mvttb+7er2ykq6apXmy+cm+MX7bjNomC9sWppJKxjeMz3ZjtstWDVvlnvn35E+z/5QHFj6QYqGYvSbtlTueuiOjakdl38n75uU7vDw7j56UwoKbqv2sdROq1+CLtdVz265l1c96/aQsH//KLFxYja1UqsbWOxas9/0rlZJi/erbp+VKOYvaFyWpPthyeffy/vPAAX3xPZWetHS2pFgoZquGrbKwfWEqlerrqq3p71Dq6unKkuVLUigUMrFx4ro/AHETamvrH8va2Dj4nDnp/8x1dFQ/c0n/9eve9b2fuQ394IDe775ypdpp1Xtu3Tvfe21qbuvc3PHUHbl/wf1Z1rkse2y9R+Ysm5P2rvZsN3a7HLDtAdl94u7pqfSktbO176F9jbWNae+qtlnrS/UZVTsq9TX1aetuS3NHc/UcI4U01jamtbM1NcWaNNU2ZWz92NSXO1No/md1PFHdVtV2caFY/Vz2jketm5jK+H372prFQjH1pfpUKpV09HQMbmsmK31HDKinVoy1TE1TFnW2pqfckzH1YwY9cLCn3JNF7Yuq4xlXaoc8a93tK8Y+tFfPwXuvN/fWOZVydWxgTUN17HC5ozr2tKa+v/7tqb7nqZ+YO/8xPnffXf1O2Wmn/kTOA9uaO+xQ7Rvss6bv6mJdtQ7srQd769ZyV3Uc2eI7ktrxee1r3pHvfrcmN9xQbTN95jPVeqP389778NgvfKF6XvvXv1avvzzwQPXBdr3Xanp6qm2LXV9xWz599afzdMvTeeMeb8wLtn1BZu44M9c9dl2OvOjInLTvSTntZafl7/P+nm/85RuZ2zI3h0w/JAdse0BKxVIuvufi/J9b/k8+evBHc9xeb07doluqY7SLtdXxMTWN1eso3a3Va6o1jemZcmSebl+cx5c+nqUdS/vO9Z5uebqv32rauGkZVTuqr9+qd8xYTaGm2m+1YszY+IbxKRQKae1sTWtX9TPV+9ns7OlMbU1tRtVWx8w+cH9N7ruveq1t2rTq72Xlh3dNnVrth/zXv6p19bRp/Q94G/h7nTq1+v4vWFDdbsqUVeu6cjmZNr2c1q7V9OV09Y8XHls/NnU9rdVrzF3LkoZJ1c9n7/WV7hX9Vo3bZkH79Dz9dLUNM2rU4PHCvd9fo0ZV0jiqO+3d7X19QXU1dekqd6VSqaS2pjYNpYbUF2tTaHu8+nspFKt1U7F2xVjJFZ/1YilpnJYs/Vv1XK12bLXdWqipjmfraa9+T9SOTWvTy/LEE9W+l1Kp2m858Lu09zt40N/DWixe3H9u1dS0pnOrSuobquf8A79fB04XC8UUKkmhp6V/rFHvQxZ7z71Trv7N1Y5NOdX9VSqVVFLp218hhRQLxdQUawacj1fSPy629/yqd6xSMV2VSpo7mlMoFAZ9z/XeA1IqljKmbkyKheIqbZXKiu+HSioprNh3oWd5/3frwAdFDmi7lEvj09pW7Hvg3MCxG8lK9Vzv9f1kRful98O7Yux6sTYtlULumXdP7ltwX5YsX5JpY6elq9yVuS1zM7FpYvaatFf23HrPND5+SfUaebmzOk519Ixq3+HyuSvGqXYlu76vOq514U3VILZe0c/YsWDFGM/Hq+Madn3fij/KtmpcvQ9GLHdWzzXLnUmxlHnLpubC/y3mnnuqn7mXvrT6uRvYN1BXl7zy1V1Z1L4oi9oXZXn38r4HOi/rWJb6Un0mNE7IxMaJqS0UV4yj6BrQnluh97u/1JS2cjmtna3VcSSl/o7OnnLPoDGt5XJh0HW23vc/6f/6H1KbOqn2dS+5e8X44a2rD54tFKt9Al3Lqu9Jw+Rq23XRbdX3dPQu1b/rSne1TOfC6vs3ft9q3dY2u9p+bZxarffKXdX9dC2tHnPsHtVzgiFo6+rvj6ytqU0hhZQr5XT2dPaNNSsV6vse2lQoDL6uMbCNUFdXPafr6qq+P7316srX1IZ6rra2cQO93yelUtLa3ZyO7o40lBoG9al2lbv6zqXH1o1ZcY7T+12yIpnAwO+SQk1SGpX29v42Tk3Nqr/rQiGpq+9Jc0fzGu8nKxVLGVs/tnpG0NevUFzpg9R7EbFaofV+f1WPUf0u6T1/LxaKqVSq39MDz5lXHkvRex1n5bbganW3Vcc7951bNa6oLDv7xwXVjqv+TS1/qvq9Uz+x+pnrHX/a07ai0bdt9TPa+1ntuz7TtaJeaqu+36N2GHLfwNLlK/qYahtTM+BvuqOnI93l7jTVNqWhpqmvj6z38zCw/6v399X7sPHez+bAdkTv+9Z7zf6ZVCr9Y3u7u1dtu/Qev6FhaA8CHNhv3rv96gy1KdfSUn0ASUdH9fX0XusbqLe/uPfva3Vj/HrfzyF/1w3RUP6+SnVdWdqxNIUUVukrbe5oTiWVjKsfN6jtu1a9Y/F66/+BD4Hs6wcZnWVd7YOut/bqKnf1XQMcXTtqRTurd3xd74MHV/0u6e5O35js3tc7UKmUlOo7sqyzel17TF3/hdVKquchSbVvoDTU/sNy14rYCivqwt7zjUp/n1+hbsXiNfWV9sZQTFd3oW9c7Or6cqvLK31tzUKhkLqauhRS6KtH1um65jroHRfTe31t4DlEb2xDHm8z8H7OYl3/77X33qdKOSnWpVwaldbO1r62Sn1NfSqppKO7+r3UUGpIU21TCt3LqvV3pWdF/29t+u5L7qmev1XqJuZfTzVk4cLqa5k4sf/cb2BVMXZs9T7X2bOrf7O7715tMw78PPX0VMdM/vWv1WtNpVJ1vqlp8HWB2trqtZIHH6xeE2psrJ7fD/zu6+3HGz26Wqarq7p+5fP53us4DQ1Zbf3VO917ftx7bb2r3JVCCqmtqU1Xz4r7j1e8lzXFIX7hDBzLlmRQgqDevoFibcqlUWnraktHd0dqa6rXXXvbmoN+X71/u5VKBj3wrPeaQDL4fPsZrDy2aI3n80N6reXq33TvxgNj6/uw1/SPLR6C1bWXkvS1mZJCli3rP98YWJ8N/BvrfUj6Mx9wxd9X772/q/3erK3+37Go+jusHdM/pqXclb77c+vGp7umKcs6lqWSSuprqmM4esdS9F6baqptqr5Tfe27NVwTKtaktXVwP+PK39XVz3olyzqXDerbqP4Wqn//5Uq5ei9xsbTi91Ue/B3cF0sh/ffT9I7DXOkEd+C93+WOFWO6K4Ovf/XmEkiq908MvE+997Pae/7Ze9yahrR3L09bV1vfGJnecfadPZ0ppPqQ3yHXrd1t1XZguaN673bvOXi5q79NWjs27YW6zGudl0Xti9JV7urr7+7o7khTbVO2GbVNtmqYkHv/WZPZs6vnMTvs0N+X03sfbqWSbL99JalryZLlS/ruhRldNzrLOpf1xb9V41YpdzTmrrsKmTu3+lb0jlNb+V7HHXfuyKNLHs3Dix5Oc0dzJjZNTKlYytMtT2dM3ZjstNVOmbHVjFQqlTyy+JHMXjo7rZ2tmTJ6SpZ3L09zR3PGNYzLTuN3yg7jd8iyJXVZtKj6XT1mzOrbTKNHldPQeW91LEGhWD2HLtb13zPQvaw6P26fanu8N69E7fjqZ6X33oGejup7PnaPof2+NqBKpXqN/4knqmOLtt++v17qfX8rlWo/5g03VPs029qS5z1v8DiEpPpdeeCBQx2DdEvyzy9Xr69PPy7Z+qDq53DZ/UnzA9UxceOfl0x6WTVvQvucar9Fw5TqtdCOhdV+i3JPst1R+dO9L81NN1Xvo9lrr2of4sB7unv7XreeXB1r1NsnV1us7btumiRNtU2D+hbWpvee8t4xSCs/gHdgG3fIv4zev/XCSo2b6kRSqEnPin6szp7Ovmu7XeWu9JR7UiqWqrkqamoH9Q3U1dT11em97a/RdaPTUGoYNI6q9/rowP7U3nOwzp7OvjEXvX183eXuFAvF/mP0tK146GjnijHatdW4e79LUklqx6WnOGaVBxev/FasbvmzUa6U097VPx6kVCylVCylvbs9pWKpbzxIqW9MZlf1OkTvvY69OV8q5aTUlI7ymEHjd+rqBp+n9Z7TtnT1j3sbVdffdu691le9x2rC0McM9qwYC9Cbf6WvfTDgs1Oo7R8zMLBPra/fNUmhlCefrs8991T7fceNq55XDhynXC5Xx/1MHfd49e+tp6P6PVfT2F+fdy6pxjB2j2r/QfvT1Y0bpwz4Puys9pkVS8nYvarjQLuWVt/b2vEr6siBfeB11WsZvefbfa81GTzOoyaLltTmvvuq/daNjdXrAr2/i963rKkpmTCpI4uXL+67LjCmbkxfu7Ch1JCtGrfqG+O56tteGdrvZ2U9y6v3My+fV/17aJxS/d10Nff345fGJJNeMvT9dS2r1hs1DSvOt3r7ovvHqrQsb0pra/X7qb5+8L3rA8/7h3L+2tOz6nj81X3WJ0ysXndZ2rG071y9tlib1q7W1BZr+667dLbX51//qp4f1NX1j+8fqL5+pfwAa7Pozmq90dNRvVektKJ937O8+jkr1CTbzBxSn2ql0t8mTQb3nwysvoZ83t+1rH/Mc+91zr4+uo4V58ITsqR9QpYsqR574HWXpL8ebmrqH5vRe94/UP81jKxy3r/yONrev4kN2pwvr/hb7au/BrZx+r9zhtzG6W5d8ZkuDDhnXnF+XO5M35ixclf68owMvM+93J2+eyhrx624xjbwfvhVr7ukdigD44emUKlUKs9crOrss8/O6aefnlNPPTXvf//789BDD+Wd73xnKpVK5syZk1GjBne67rbbbpkxY0auuuqqIQe0pm2eeuqpTJ06NWeffXZOO+201W5bV1eXd77znfl//+//DVp+00035SUveUkuvvjiHH/88bn44otz4okn5qabbsrBBx88qOx73/veXHDBBYOSwA105pln5qyzzlpl+ZFHHpnaIfYCdRe7013sTrGy4uJeISn1lFJT6f/QlQvldNZ0prumO7U9tekpVs9+6rrrUiqv7yC/Slb+W+q9tJgkPYWetNe1p62uLTWVmtSUa9JR6khDV0MaOxtT11OX7u6GdHaOSaVSSk1NR0ql9vRV1isUCuXU1HStZ4wUC+XUFCrVL9VKkpV+a+VKMra+My/f4clsO7otjy0Zk8eXjk1XuZiJjcszrqEjo+u6sqCtMX+avV11m0I53cXuvgvGlVRSKpdSrGzAs9fNRGOpK/Wl6t9TR3cpPZVCagqV1BR7O6eS1q5SypViev9mqt/DK39VFlKubNjO5g2tXCinpaElyxqWpbPUmaaOpiyvW55UkjHLx2RM+5jUltfxblFYi60almdMfWcKSRa116e7XEypWE5tTSV1NT0pJFnYXp/Onmeux4qFcnbeamlG1XWlvas281ob01UuZlRtd+pqetJY253uciGPLh63mtptVS0tU/Pkky9Pa+vUNDYuyIQJ/0xtbUsKhXIqlcKKeq09+07/W/bYelHqSz15aNH4LF1el1KxklF1XZnQuDylYiUPLhyfp1rWYxA6PAs7jV+aXScuSalYzsOLxqe5ozZ1NeU01nZnYuPy1BQr+ef8rbKgremZdwbDoK1tUnp6GlKpFFNfvzjFYrW9MOhmy9LyjG1YnlKxnO5yMR3dNakkqa/pbW9UUq4U0lUuZuqYttQWe9LcUZeWzur5TGNtT0rFckrFcpZ3l7KsozZj6rtSU6ikpbM23eVCioVKSsVyaqqjqLK8u5Tl3cN0E9UWoKPUkSVNS9Lc2JwUkqaOpixrXJa6rrqMbxufsW1jU6oM7f2d0Lg8u0xYksZSd55cNjpLlld7tEbVdmdMfWfqasqZ29KY71583TPu6/VHH53xDcvTWOpJuZIs66xLT7mQ2ppySsVKagrVz9SS5fXpeQ62iTalSippr2vPsoZlaa9rT2NnY3pqetJd7M6ojlEZ3T469T1Du8CVVPtTljYuzbKmZX37aK1vTamnlLHtYzO2fex695kM7MAsDOH8ciTYfuyynPL8ezNjq6W586lJufPpSWnrKuUF287PLhOWZIfxzXmyeXTOuv6g7Dh+WepqejK3pSnLOuuSVNJY6s6ouu7UFnuyqL0hL5w6L6/d9bGMqe/MBXftlaeWjcqouq5sP7Ylz58yP/U1PfnDI9Oz4/jmHLTd0+kqF3PJ3btnUXt9Jo9uz5TRrTlwu7npKRdy0d93z5G7zs5uE5fkqWWj8vP7ZqS5oz47jG/OtqNbs/c2i9JTLuTs6w/JTXe9I4sW7ZUk2W67G9LYOH9FPVFJuVxKT09DXrDHr3PYjMez/diWPLBwfB5bUu0H2bppeSY2tmdMfVeeWDo61zw6fVh/J7A5aqrtyoytlqax1J2F7Q1Z3N6QcqWQUXVdaSh1p76mJy2ddXmieWgXJaaPa87OWy1NqVjOo0vGZVlHXUrFnjTW9mRi4/IUC5U8sHB8FrZv4Dt8h6Czc3Sam3dMd3dTSqW2NDXNTU3NisSaSZLqTff19c2bPLZ1Vb2qU1ztfd+FQiWFwtAu+zQ3T8+SJbumq2tURo+ek8bGeamp6UihUEmlUki5XEpdXUvq65du0PifK8rlYnp6GlMuF1MoVFIsdq7md1NJR8dWWbDgeenoGJ+GhsUZM2Z2SqXl6b32Uu236kxT09whHfeXV175jGVev7qn3TxHDHx/Br4PPYWePDL5kTw45cGMWT4m2y7eNvVd9Xl6/NNZMHZBJrRMyN5P7J3RHaNXu7/n8nv6XFNJJV01XekudqdULqWn2JNCpZDantpB13q7C93pKnWlXCyn1FNKd013iuViartrB7WVu4vd6aqpJk+pKdeku6a639ru2hSzfm3WcqHcf4NppbDe+3muqKSSzlJnltcuT0+xJ3XddeksdaamXJOGrobUddcNWzuxXC6mXK5NpVJMoVBOodCf8Lv/xrFyCoVyego96Sx1pqfY0/+ZqxTXa3xBZ01nmhub09LQkppKTeq669Ja15qGroaMaR+T0R2jN5u2M+umOrCulEqluGLgXnmlAVuVFeebq8nMyybXU+jJ/LHzM3fc3CxrXJbxrePTVdOVtvq2jGsblylLpmRiy8S0tkxNW9vklMu1aWycn/r65r4++iQpl2tSKrWnVFr9OKm1WdO5VbFQSUOpOzWFan9/z4rPVKnY3wvXUy6kq7yB7xYdooZSd0rFciqVpKtcTKVSvX7QN0avkiFd0153lRRXjD8ZeLtY7+0+5VX6q9c+zmtTG1XblYlN7aktlrN4eUOWd9ekWKikvqYntTXVsU7LOmvT3DH0Pl+GX0fHmHR2jk+5XJva2pbU1ramtz3aO+i6WOzONqObM6quK5VKIYuX1w+67lJXUz1HWdDWkK6e2pTL/TcLrL6Poic9PU0pl0tJyqmp6VxRtwy4+S2F1NR0buyXv1laXlqetvq2tNe1p76rPj3FnvQUe9LU0ZRRHaP6xoJ11nRmed3ydNZ0pr67Pl011ZtpGzobUt9VX01cWtueuePmZuGYhemu6c5WLVtl8ejFKfWUMnHZxExeOjmNXYP78db03T+U/oh1sa7t7EqlesPryv1l1QHpzl02hHLK1XtxU1mlrTm2viNj6qrXdpZ21KenXEzNimv3tcVyioVk8fK6tKSchWMWZuHohems7cy41nFpaWxJKslWrVtl62Vbp6nTuBdg89bXf1jTnZqemlSK1Ruqantq17mPpqm2K6ViOeVKIZ091bZLqVi9QbF6rlZIe3cp5XIxlcqazsGq0/Wlzoyp70xtsZK2rlK6ysUUktTW9KS4onxnT03aup4748obSt1pKHWnWEjau0rpqSQ1hVTbi6m+m+3dpXSXi+kudKeztjPdxeq9Pd013SlUCqnrrkttT+1zsq+s97NeKVRSLBdTLpZTLBdTKpc2m/ejq6YrHaWO9BR7Uttdm65SV2rKNanvrk9tz9D/FsrlUjo7x6Rcrkmx2LPiOl/PoDKFQqXvHqtB95MVqt8RpZ7SkMfZsXZdxa501nb23TPVVdOVUk8pdd11g67jsHmo/n2NTqVSSqHQk1KpfcX9H/39FoVCUlPTmZ5CT5bXLk9HbUdKPaWkUP17q++qT0NXwzr9/rduak9jqTvlSiFLltelXCmmtqYnpWIltSvuPVvQ1pCeSjHdxe50ljpTLpSf1fWZ7u7GtLdvnZ6eutTUdKa+fkkKhRXJe1bUTIVCOaXS8nQXu9Ne256O2o7UddelXCynp9iThs6GdX6tw62cciqFze+6ZiHVPrGaYnVse0+5MKivN6n29/bed1hJpe/e4F415ZrNps4cbs92fG+p2JPRdV0pFStp76pJd7lYTUZTrCYAKRSq58K99xSs8vuqJDUVv6/NXU+hp298R6VQTcxd6tlw566reyZWd6E73TXVLCDFSjE9xZ7UlGs2qzZE799DuVBOsVJMuVBOTblms6prYDiUC+WUC+X+/JKV4maZz6Gy4t+KFK6rrC+nnO6a7up3Q6UmPYWe1FRqNuj3K71jxlcdOVBYcc2mra4tbfVt6Sx1pqGzIZ21nSlUCn3XDn1nA/Srq+lZcW9xId3lQiop9F0jSVbkyqwUM76hI7XFcjp6atLRXZNypbptsVDt6+0pV6/PjK2vXsdpX3HdJUlqiz3VcQpJOnuKae9+5r7mrq6uXHXVVVm6dGnGjh27xnLr1IP80Y9+ND/5yU/y/e9/P+eff/6KF1jJN77xjVWSw91222156KGH8t73vnddDpEka81y+UwZMNdl2zWVXds+TjvttHzsYx/rm29ubs60adPyk5/8ZK1vNAyHTwx3AAAAABvSRc9c5JcbPwoYGbpaktkXJ4vvzGH7N+SwcftUn65dLCUrnla669g9M+sD+w9tf+Wu6hOo2x7PR2a2VJ940fekxOqTX/ae9PLqEzAW/jVp+1c+fXip+rTq3qcDrXjqzxc/eHSyfH6y+M5s3f5U9j2mfsUTgnufZFdOSqNy0YdfvlIQu64huI/2Tb10LS/hw0N7pQDwnOecuWp178OcZXPy2Ws+m/sX3p+dxu+UhiUN+cHLf5DX7vradd4XAMBzifMhgOeejfndr14BAAAAAAAAALZ0zc3NGTdu3DOWW6cEcY2Njfnzn/+cb37zm7n55pszYcKEvOUtb8nrX//6VcrecccdecMb3rDadWszceLELFy4cJXlixYtSpJMmDDhWW87ceLEJFlj2bUdo76+PvX1nnQKAAAAwDCqHZ3s8p4Nt79ibTLhgOrPWo1Opr7mmffXMCnZ9vANEhoAwKYydczUXPDGC4Y7DAAAAAAAAAAAAAAAgHVLEJcko0ePzuc///lnLPee97wn73nPut+kuu++++aSSy5Jd3d3SqX+8O6+++4kyT777LPWbXvLDbTytr3/33333Xnta1+7Stm1HQMAAAAAAAAAAAAAAAAAAAAAAABgYykOdwArO+aYY9LS0pLLL7980PILL7wwU6dOzUEHHbTWbe+7777ccsstfcu6u7sza9asHHTQQZk6dWqSZLvttsuBBx6YWbNmpaenp6/szTffnPvvvz/HHnvsBn5VAAAAAAAAAAAAAAAAAAAAAAAAAM+sUKlUKsMdxMoOP/zw3Hbbbfna176WXXbZJZdcckm+//3vZ9asWTnxxBOTJO9617ty4YUX5uGHH84OO+yQJOno6MgLXvCCNDc356tf/Wq22WabnHvuubnyyitz9dVX5xWveEXfMa677rocdthhOfroo/O+970v8+bNy2c+85mMGzcut912W+rr64cUa3Nzc8aNG5elS5dm7NixG/7NAAAAAAAAAAAAAAAAAAAAAAAAADZ7Q81bVtyEMQ3ZFVdckZNPPjlf+MIXcuSRR+aWW27JJZdc0pccLkl6enrS09OTgfnt6uvrc8011+TQQw/NBz/4wRx99NF56qmn8tvf/nZQcrgkmTlzZn7zm9/kqaeeytFHH50PfvCDOfTQQ3PNNdcMOTkcAAAAAAAAAAAAAAAAAAAAAAAAwIZUqAzMsMY6G2omPgAAAAAAAAAAAAAAAAAAAAAAAOC5a6h5y4qbMCYAAAAAAAAAAAAAAAAAAAAAAAAA1kKCOAAAAAAAAAAAAAAAAAAAAAAAAIARQoI4AAAAAAAAAAAAAAAAAAAAAAAAgBFCgjgAAAAAAAAAAAAAAAAAAAAAAACAEUKCOAAAAAAAAAAAAAAAAAAAAAAAAIARQoI4AAAAAAAAAAAAAAAAAAAAAAAAgBFCgjgAAAAAAAAAAAAAAAAAAAAAAACAEUKCOAAAAAAAAAAAAAAAAAAAAAAAAIARQoI4AAAAAAAAAAAAAAAAAAAAAAAAgBFCgjgAAAAAAAAAAAAAAAAAAAAAAACAEUKCOAAAAAAAAAAAAAAAAAAAAAAAAIARQoI4AAAAAAAAAAAAAAAAAAAAAAAAgBFCgjgAAAAAAAAAAAAAAAAAAAAAAACAEUKCOAAAAAAAAAAAAAAAAAAAAAAAAIARQoI4AAAAAAAAAAAAAAAAAAAAAAAAgBGiNNwBbO4qlUqSpLm5eZgjAQAAAAAAAAAAAAAAAAAAAAAAAEaq3nxlvfnL1kSCuGdp2bJlSZJp06YNcyQAAAAAAAAAAAAAAAAAAAAAAADASLds2bKMGzdujesLlWdKIcdalcvlzJkzJ2PGjEmhUEhSzc43bdq0PPHEExk7duwwRwgArExdDQAjm7oaAEY2dTUAjGzqagAY2dTVADCyqasBYGRTVwPAyKauBoCRTV0NACNHpVLJsmXLMnXq1BSLxTWWK23CmLZIxWIx22+//WrXjR071kkRAIxg6moAGNnU1QAwsqmrAWBkU1cDwMimrgaAkU1dDQAjm7oaAEY2dTUAjGzqagAYGcaNG/eMZdacOg4AAAAAAAAAAAAAAAAAAAAAAACATUqCOAAAAAAAAAAAAAAAAAAAAAAAAIARQoK4jaC+vj5nnHFG6uvrhzsUAGA11NUAMLKpqwFgZFNXA8DIpq4GgJFNXQ0AI5u6GgBGNnU1AIxs6moAGNnU1QCw+SlUKpXKcAcBAAAAAAAAAAAAAAAAAAAAAAAAQFIc7gAAAAAAAAAAAAAAAAAAAAAAAAAAqJIgDgAAAAAAAAAAAAAAAAAAAAAAAGCEkCAOAAAAAAAAAAAAAAAAAAAAAAAAYISQIG4DamlpyUc+8pFMnTo1DQ0Nef7zn58f//jHwx0WADznXHfddSkUCqv9ufnmmweVveOOO/LqV786o0ePzvjx43PsscfmkUceGabIAWDLs2zZsnzqU5/K4YcfnkmTJqVQKOTMM89cbdl1qZe//e1vZ4899kh9fX122mmnnHXWWenq6tqIrwQAtkxDratPOeWU1baz99hjj9XuV10NAM/etddem3e+853ZY489MmrUqGy33XZ5wxvekNtvv32VstrUALDpDbWu1qYGgOFx11135XWve12mT5+exsbGTJgwIS9+8Ysza9asVcpqVwPApjfUulq7GgBGjvPPPz+FQiGjR49eZZ22NQAMvzXV1drWALB5Kw13AFuSY489Nrfeemu++tWvZrfddsvFF1+c448/PuVyOSeccMJwhwcAzzlnn312Dj300EHL9tlnn77p++67LzNnzszzn//8XHrppVm+fHm+8IUv5JBDDsldd92VSZMmbeqQAWCLs3Dhwpx33nnZb7/98sY3vjHnn3/+asutS7385S9/OZ///Ofzmc98JocffnhuvfXWnH766XnyySdz3nnnbaqXBgBbhKHW1UnS2NiYa6+9dpVlK1NXA8CG8d3vfjcLFy7Mhz/84ey1116ZP39+zjnnnBx88MH53e9+l1e+8pVJtKkBYLgMta5OtKkBYDgsWbIk06ZNy/HHH5/tttsura2tueiii3LyySfnsccey+mnn55EuxoAhstQ6+pEuxoARoInn3wyn/jEJzJ16tQsXbp00DptawAYfmurqxNtawDYnBUqlUpluIPYEvzmN7/J6173ur6kcL0OP/zw/OMf/8jjjz+empqaYYwQAJ47rrvuuhx66KH56U9/mje/+c1rLPfWt741f/zjH/Pwww9n7NixSZLZs2dn1113zUc/+tF87Wtf21QhA8AWq7fboVAoZMGCBZk0aVLOOOOMnHnmmYPKDbVeXrhwYbbffvv827/9W773ve/1bX/22Wfn9NNPzz333JO99tpr07w4ANgCDLWuPuWUU3LZZZelpaVlrftTVwPAhjNv3rxss802g5a1tLRkl112yT777JOrr746iTY1AAyXodbV2tQAMLIcfPDBmTNnTh5//PEk2tUAMNKsXFdrVwPAyHD00UenUChkwoQJq9TN2tYAMPzWVldrWwPA5q043AFsKX72s59l9OjRectb3jJo+Tve8Y7MmTMnt9xyyzBFBgCsTnd3d371q1/lTW96U9/FhyTZYYcdcuihh+ZnP/vZMEYHAFuOQqGQQqGw1jLrUi9fddVVWb58ed7xjncM2sc73vGOVCqV/PznP9+g8QPAlm4odfW6UFcDwIazcsKZJBk9enT22muvPPHEE0m0qQFgOA2lrl4X6moA2DS23nrrlEqlJNrVADASDayr14W6GgA2nlmzZuX666/Pueeeu8o6bWsAGH5rq6vXhboaAEYmCeI2kHvuuSd77rnnKhchnve85/WtBwA2rfe///0plUoZO3ZsjjjiiNx444196x5++OG0t7f31dUDPe95z8tDDz2U5cuXb8pwAeA5a13q5d729b777juo3Lbbbputt95a+xsANqL29vZMmTIlNTU12X777fOBD3wgixYtGlRGXQ0AG9fSpUtzxx13ZO+9906iTQ0AI83KdXUvbWoAGD7lcjnd3d2ZP39+zj333Pzud7/Lpz/96STa1QAwEqytru6lXQ0Aw2fevHn5yEc+kq9+9avZfvvtV1mvbQ0Aw+uZ6upe2tYAsPla90eqsFoLFy7MjBkzVlk+YcKEvvUAwKYxbty4fPjDH87MmTMzceLEPPTQQ/nGN76RmTNn5te//nWOOOKIvrq5t64eaMKECalUKlm8eHG23XbbTR0+ADznrEu9vHDhwtTX12fUqFGrLav9DQAbx3777Zf99tsv++yzT5Lk+uuvzze/+c1cc801ufXWWzN69OgkUVcDwEb2/ve/P62trfnc5z6XRJsaAEaalevqRJsaAIbb+973vnzve99LktTV1eVb3/pW3vve9ybRrgaAkWBtdXWiXQ0Aw+1973tfdt999/z7v//7atdrWwPA8HqmujrRtgaAzZ0EcRtQoVBYr3UAwIa1//77Z//99++bP+SQQ3LMMcdk3333zac+9akcccQRfevU3wAwcgy1XlZ/A8Cm99GPfnTQ/GGHHZb9998/b37zm/P9739/0Hp1NQBsHJ///Odz0UUX5dvf/nZe8IIXDFqnTQ0Aw29NdbU2NQAMr89+9rN597vfnXnz5uXKK6/MBz7wgbS2tuYTn/hEXxntagAYPs9UV2tXA8Dwufzyy3PllVfmzjvvfMa6VNsaADa9odbV2tYAsHkrDncAW4qJEyeuNuPtokWLkqw++z0AsOmMHz8+Rx11VP7+97+nvb09EydOTJI11t+FQiHjx4/fxFECwHPTutTLEydOzPLly9PW1rbastrfALDpHHPMMRk1alRuvvnmvmXqagDYOM4666x86Utfype//OV84AMf6FuuTQ0AI8Oa6uo10aYGgE1n+vTpeeELX5jXvva1+e53v5v3vOc9Oe200zJ//nztagAYAdZWV6+JdjUAbHwtLS15//vfnw9+8IOZOnVqlixZkiVLlqSzszNJsmTJkrS2tmpbA8AwGWpdvSba1gCw+ZAgbgPZd999c++996a7u3vQ8rvvvjtJss8++wxHWADAAJVKJUk1S/3OO++cxsbGvrp6oLvvvju77LJLGhoaNnWIAPCctC718r777tu3fKCnn346CxYs0P4GgE2sUqmkWOy/1KCuBoAN76yzzsqZZ56ZM888M5/97GcHrdOmBoDht7a6em20qQFgeBx44IHp7u7OI488ol0NACPQwLp6bbSrAWDjWrBgQebOnZtzzjknW221Vd/PJZdcktbW1my11VY58cQTta0BYJgMta5eG21rANg8SBC3gRxzzDFpaWnJ5ZdfPmj5hRdemKlTp+aggw4apsgAgCRZvHhxfvWrX+X5z39+GhoaUiqVcvTRR+eKK67IsmXL+so9/vjj+eMf/5hjjz12GKMFgOeWdamXjzzyyDQ0NOSCCy4YtI8LLrgghUIhb3zjGzdR1ADAZZddlra2thx88MF9y9TVALBh/cd//EfOPPPMnH766TnjjDNWWa9NDQDD65nq6jXRpgaA4fPHP/4xxWIxM2bM0K4GgBFoYF29JtrVALDxTZkyJX/84x9X+TniiCPS0NCQP/7xj/nSl76kbQ0Aw2SodfWaaFsDwOajNNwBbCle85rX5LDDDsu///u/p7m5ObvssksuueSSXHXVVZk1a1ZqamqGO0QAeM444YQTMn369LzwhS/M1ltvnQcffDDnnHNO5s6dO6hj4qyzzsqLXvSiHHXUUfnMZz6T5cuX5wtf+EK23nrrfPzjHx++FwAAW5jf/va3aW1t7bvo/89//jOXXXZZkuS1r31tmpqahlwvT5gwIaeffno+//nPZ8KECTn88MNz66235swzz8y73/3u7LXXXsPyGgFgc/ZMdfX8+fNzwgkn5Ljjjssuu+ySQqGQ66+/Pv/n//yf7L333nn3u9/dty91NQBsOOecc06+8IUv5Mgjj8zrXve63HzzzYPW9w7O06YGgOExlLp69uzZ2tQAMEze8573ZOzYsTnwwAMzefLkLFiwID/96U/zk5/8JJ/85CczadKkJNrVADBchlJXa1cDwPBpaGjIzJkzV1l+wQUXpKamZtA6bWsA2PSGWldrWwPA5q9QqVQqwx3ElqKlpSWf+9zncumll2bRokXZY489ctppp+W4444b7tAA4Dnlq1/9an7yk5/k0UcfTUtLSyZMmJCXvexlOe200/KiF71oUNnbb789n/70p3PTTTelVCrlla98Zf7zP/8zO++88zBFDwBbnh133DGzZ89e7bpHH300O+64Y5J1q5e/9a1v5Tvf+U4ee+yxTJkyJe94xzvyuc99LrW1tRvzpQDAFumZ6upx48blXe96V+68887MnTs3PT092WGHHXLMMcfks5/9bMaNG7fKdupqAHj2Zs6cmeuvv36N6wde6temBoBNbyh19eLFi7WpAWCY/PCHP8wPf/jD3HvvvVmyZElGjx6d/fbbL+9+97tz0kknDSqrXQ0Am95Q6mrtagAYeU455ZRcdtllaWlpGbRc2xoARoaV62ptawDY/EkQBwAAAAAAAAAAAAAAAAAAAAAAADBCFIc7AAAAAAAAAAAAAAAAAAAAAAAAAACqJIgDAAAAAAAAAAAAAAAAAAAAAAAAGCEkiAMAAAAAAAAAAAAAAAAAAAAAAAAYISSIAwAAAAAAAAAAAAAAAAAAAAAAABghJIgDAAAAAAAAAAAAAAAAAAAAAAAAGCEkiAMAAAAAAAAAAAAAAAAAAAAAAAAYISSIAwAAAAAAAAAAAAAAAAAAAAAAABghJIgDAAAAAAAAAAAAAAAAAAAAAAAAGCEkiAMAAAAAAAAAAIAN4LHHHkuhUMgpp5yyTtsVCoXMnDlzo8QEAAAAAAAAAADA5keCOAAAAAAAAAAAALYIvQnaBv7U1dVl2rRpOeGEE/L3v/99WOKaOXNmCoXCsBwbAAAAAAAAAACAzU9puAMAAAAAAAAAAACADWnnnXfOSSedlCRpaWnJzTffnEsuuSRXXHFFrr322rzkJS/ZKMfdbrvtcu+992bcuHHrtN29996bpqamjRITAAAAAAAAAAAAmx8J4gAAAAAAAAAAANii7LLLLjnzzDMHLTv99NPz5S9/OZ/73Ofyxz/+caMct7a2Nnvsscc6b7c+2wAAAAAAAAAAALDlKg53AAAAAAAAAAAAALCxffCDH0yS3HrrrUmS7u7ufPOb38x+++2XxsbGjBs3Loceemh+/etfr7JtuVzO+eefnwMPPDATJkxIU1NTdtxxx7zxjW/Mn/70p75yjz32WAqFQk455ZS+ZYVCIddff33fdO/PymVmzpy5ynEXLlyYj370o9lpp51SX1+fbbbZJm9729vyz3/+c5Wyp5xySgqFQh577LGce+652XPPPdPQ0JAddtghZ511Vsrl8vq8bQAAAAAAAAAAAAyD0nAHAAAAAAAAAAAAABtboVDom65UKnnb296WK664Irvttlve//73p7W1NZdeemmOOuqo/Pd//3c+9KEP9ZU/7bTT8vWvfz0777xzTjjhhIwZMyZPPvlkbrjhhlx77bV5+ctfvsbjnnHGGbngggsye/bsnHHGGX3Ln//856813oULF+bggw/OQw89lJkzZ+a4447LY489lssuuyy//vWv84c//CEvfvGLV9nuk5/8ZK677rocddRROfzww/Pzn/88Z555Zjo7O/PlL395Hd4xAAAAAAAAAAAAhosEcQAAAAAAAAAAAGzxvvWtbyVJXvSiF2XWrFm54oor8opXvCK///3vU1dXlyT53Oc+lxe84AX5xCc+kaOPPjo77bRTkuT888/Pdtttl7///e9pamrq22elUsnixYvXetwzzzwz1113XWbPnp0zzzxzyPF+6lOfykMPPZTTTjstZ599dt/yU045JUceeWTe/va357777kuxWBy03e23356///3v2XbbbZMkn//857Prrrvm29/+ds4444y+1woAAAAAAAAAAMDIVXzmIgAAAAAAAAAAALD5eOihh3LmmWfmzDPPzCc+8Ym87GUvy5e//OU0NDTk7LPPzgUXXJAk+frXvz4oYdr222+fj370o+nq6spFF100aJ91dXUplQY/k7VQKGTChAkbPP7Ozs5ccsklmThxYk4//fRB64444ogcccQRefDBB/OXv/xllW0///nP9yWHS5Ktt946b3jDG7Js2bLcf//9GzxWAAAAAAAAAAAANjwJ4gAAAAAAAAAAANiiPPzwwznrrLNy1lln5Vvf+lZmz56dE044IX/961/z4he/OHfeeWcaGxtz4IEHrrLtzJkzkyR33XVX37K3vvWtefTRR7PPPvvk85//fK6++uq0trZutPjvu+++tLe358ADD0xTU9OQYux1wAEHrLJs++23T5IsWbJkQ4YJAAAAAAAAAADARiJBHAAAAAAAAAAAAFuUI444IpVKJZVKJZ2dnXniiSdy0UUXZd99902SNDc3Z/LkyavddsqUKUmSpUuX9i371re+la9//eupra3Nl770pRx22GHZeuut8/a3vz0LFizY4PE3NzcnyTrF2GvcuHGrLCuVSkmSnp6eDRUiAAAAAAAAAAAAG5EEcQAAAAAAAAAAADynjB07NnPnzl3tut7lY8eO7VtWW1ubT37yk/nHP/6RJ598MhdffHEOOeSQ/O///m9OPPHEjRLfwFiGEiMAAAAAAAAAAABbDgniAAAAAAAAAAAAeE7Zf//9097enr/+9a+rrLv++uuTJM9//vNXu+3UqVNz/PHH56qrrsquu+6aq6++Ou3t7Ws9Xk1NTZKkp6dnSPHtscceaWhoyK233pq2trZ1jhEAAAAAAAAAAIDNmwRxAAAAAAAAAAAAPKe8/e1vT5Kcdtpp6erq6lv+5JNP5r/+679SKpVy4oknJkk6Ojpy7bXXplKpDNpHa2trli1bltra2r4EcGsyYcKEJMm//vWvIcVXV1eX448/PgsWLMhXvvKVQeuuvvrq/Pa3v80uu+ySl770pUPaHwAAAAAAAAAAAJuX0nAHAAAAAAAAAAAAAJvSySefnCuuuCK/+MUv8rznPS9HHXVUWltbc+mll2bhwoU555xzMmPGjCRJe3t7XvWqV2XGjBk56KCDMn369LS0tORXv/pVnn766Xz6059OXV3dWo/3yle+Mpdddlne8pa35LWvfW0aGhqy77775nWve90at/na176W66+/Pl/60pfyl7/8JQcddFAee+yxXHbZZWlqasoPf/jDFIueEQsAAAAAAAAAALAlkiAOAAAAAAAAAACA55RCoZDLLrss//3f/50LL7ww3/72t1NXV5cDDjggH/vYx/L617++r+yoUaPyta99Lddcc01uuOGGzJs3L1tttVX22GOPfO1rX8vb3va2Zzzeqaeemsceeyw//vGP8+Uvfznd3d15+9vfvtYEcZMmTcott9yS//iP/8gvfvGL3HDDDRk3blze8IY35Iwzzsg+++yzQd4LAAAAAAAAAAAARp5CpVKpDHcQAAAAAAAAAAAAAAAAAAAAAAAAACTF4Q4AAAAAAAAAAAAAAAAAAAAAAAAAgCoJ4gAAAAAAAAAAAAAAAAAAAAAAAABGCAniAAAAAAAAAAAAAAAAAAAAAAAAAEYICeIAAAAAAAAAAAAAAAAAAAAAAAAARggJ4gAAAAAAAAAAAAAAAAAAAAAAAABGCAniAAAAAAAAAAAAAAAAAAAAAAAAAEYICeIAAAAAAAAAAAAAAAAAAAAAAAAARggJ4gAAAAAAAAAAAAAAAAAAAAAAAABGCAniAAAAAAAAAAAAAAAAAAAAAAAAAEYICeIAAAAAAAAAAAAAAAAAAAAAAAAARggJ4gAAAAAAAAAAAAAAAAAAAAAAAABGCAniAAAAAAAAAAAAAAAAAAAAAAAAAEYICeIAAAAAAAAAAAAAAAAAAAAAAAAARggJ4gAAAAAAAAAAAAAAAAAAAAAAAABGCAniAAAAAAAAAAAAAAAAAAAAAAAAAEYICeIAAAAAAAAAAAAAAAAAAAAAAAAARojScAewuSuXy5kzZ07GjBmTQqEw3OEAAAAAAAAAAAAAAAAAAAAAAAAAI1ClUsmyZcsyderUFIvFNZaTIO5ZmjNnTqZNmzbcYQAAAAAAAAAAAAAAAAAAAAAAAACbgSeeeCLbb7/9GtdLEPcsjRkzJkn1jR47duwwRwMAAAAAAAAAAAAAAAAAAAAAAACMRM3NzZk2bVpf/rI1kSDuWSoUCkmSsWPHShAHAAAAAAAAAAAAAAAAAAAAAAAArFVv/rI1KW6iOAAAAAAAAAAAAAAAAAAAAAAAAAB4BhLEAQAAAAAAAAAAAAAAAAAAAAAAAIwQEsQBAAAAAAAAAAAAAAAAAAAAAAAAjBASxAEAAAAAAAAAAAAAAAAAAAAAAACMEBLEAQAAAAAAAAAAAAAAAAAAAAAAAIwQEsQBAAAAAAAAAAAAAAAAAAAAAAAAjBASxAEAAAAAAAAAAAAAAAAAAAAAAACMEBLEAQAAAAAAAAAAAAAAAAAAAAAAAIwQEsQBAAAAAAAAAAAAAAAAAAAAAAAAjBASxAEAAAAAAAAAAAAAAAAAAAAAAACMEBLEAQAAAAAAAAAAAAAAAAAAAAAAAIwQEsQBAAAAAAAAAAAAAAAAAAAAAAAAjBASxLHJzJw5M4VCIdddd91whwIAAAAAAAAAAAAAAAAAAAAAAAAjkgRxPKMdd9wxhUIhhUIhH//4x9da9r//+7/7yhYKhU0U4fAY+L70/jQ2NmbnnXfOO9/5zvzjH//oK3veeeelUChk2rRpKZfLz7jvO+64I4VCIaVSKU8//XSS5IILLug7Tl1dXRYuXLjG7bu7u7PNNtv0lT/zzDOf9esFAAAAAAAAAAAAAAAAAAAAAABg45MgjnVy8cUXp6enZ43rZ82atcZ106dPz+67756mpqaNEdqw2XXXXfPSl740L33pS7PzzjvnX//6V374wx/mBS94Qa688sokyVvf+tbU19fnX//6V66//vpn3Gfv+/jqV786U6ZMWWV9V1dXfvKTn6xx+9/97neZP3/+er4iAAAAAAAYRoXC0H4AAAAAAAAAAAAAAABgCyVBHEO2++675+mnn87VV1+92vX3339/brvttuy+++6rXf+///u/ue+++3LggQduzDA3uc9+9rO58cYbc+ONN+aee+7J448/nle/+tXp6OjIO97xjrS0tGT8+PE5+uijk6w9iV6S9PT05Mc//nGS5OSTT15l/a677ppCoZAf/ehHa9xH77o1/S4AAAAAAAAAAAAAAAAAAAAAAAAYmSSIY8hOOumkJGtOcNablGx1Sc2eSyZPnpwf/ehHqa+vz8KFC/OHP/whSf/7cvnll6ejo2ON219zzTV56qmnMnr06BxzzDGrrJ8+fXpe/vKX5+abb85DDz20yvply5bll7/8ZXbaaae89KUv3UCvCgAAAAAAAAAAAAAAAAAAAAAAgE1BgjiG7BWveEWmTZuWn/3sZ2ltbR20rlKp5KKLLkpjY2OOPfbY1W4/c+bMFAqFXHfddatdf+utt+akk07K9OnTU19fn8mTJ+clL3lJvv71r2fp0qV95S644IIUCoWccsopaW1tzWc/+9nstttuaWhoyMyZMwfFNGvWrLziFa/I+PHj09jYmD322COf/vSns2jRomf9fqzNlClTsuuuuyZJHnzwwSTJa17zmmy99dZZunRprrzyyjVu25uA79hjj01TU9Nqy6wtWd9ll12W9vb2nHjiiSkUCs/qdQAAAAAAAAAAAAAAAAAAAAAAALBpSRDHkBUKhZx44olpbW3Nz372s0Hrbrzxxjz22GN54xvfmDFjxqzzvr/+9a/noIMOykUXXZSlS5dm3333zZgxY3Lbbbfl05/+dO68885Vtmlvb8/LX/7yfPWrX02pVMpee+2V+vr6JNXkcCeddFJOPvnk/OlPf8rEiROz11575dFHH83Xv/71HHDAAXnkkUfW740YokqlMmi+trY2b3vb25KsPrFbkrS1tfW9tyeffPIa9/2Wt7wlDQ0Nueiii1ZZ17vv3iRyAAAAAAAAAAAAAAAAAAAAAAAAbD4kiGOd9CYt+9GPfjRoee/82pKarckvfvGLfPrTn06xWMw555yTBQsW5LbbbstDDz2UJUuW5LzzzsvkyZNX2e7yyy9PS0tL/vGPf+Sf//xn7rjjjvziF79IknznO9/JxRdfnDFjxuT3v/99Hn744dx+++2ZPXt2XvrSl2b27Nk54YQT1jnWoXr66afz0EMPJUl22WWXvuX/9m//liT57W9/m8WLF6+y3c9//vO0tLRk6tSpeeUrX7nG/Y8bNy5HH310Hnroodx00019y//1r3/luuuuy4EHHpjdd999Q70cAAAAAAAAAAAAAAAAAAAAAAAANhEJ4lgne+21V/bff/9cc801eeqpp5IkHR0d+elPf5ptttkmhx122Drv87Of/WyS5IwzzsjHPvax1NbW9q1ramrKqaeemj333HOV7Xp6enLJJZcMWtfQ0JBKpZKvf/3rSZIvfvGLg2KaMmVKfvKTn6Suri633HJLrr322nWO95nMmzcvJ598cjo6OrLVVlsNOv6BBx6Y3XbbLZ2dnbn00ktX2XbWrFlJkhNPPDHF4tr/PE866aQkg5P1XXTRRSmXy33rAAAAAAAAAAAAAAAAAAAAAAAA2LxIEMc6O/nkk/uSsyXJr371qyxZsiTHH398SqXSOu3roYceyj//+c/U1dXlIx/5yDptu/fee+eAAw5YZfm9996bJ554Ig0NDTn11FNXWb/ddtvlTW96U5Lk97///Todc3XOPvvsvOxlL8vLXvay7LPPPpk2bVquvvrq1NbW5vvf/37GjBkzqPzJJ5+cpD8ZXK958+blD3/4w6Aya/Oa17wmW2+9dS699NJ0dXX17bNUKuW444571q8LAAAAAAAAAAAAAAAAAAAAAACATU+CONbZ8ccfn5qamvzoRz9Kkr7/TzrppHXe17333psk2WuvvVZJpPZM9txzz9Uuf+CBB5Ik06dPz6hRo1ZbZu+99x5U9tl48MEH8+c//zl//vOf8+CDD2bKlCk56aST8te//rUvEd1AJ510UgqFQv785z9n9uzZfct//OMfp7u7O/vtt1/23XffZzxubW1t3vrWt2bhwoX5zW9+k7vuuiv33HNPjjjiiEyaNOlZvy4AAAAAAAAAAAAAAAAAAAAAAAA2PQniWGdTpkzJq1/96tx1113505/+lN/+9rfZY4898sIXvnCd99Xc3JwkGT9+/Dpvu6bkby0tLUmSbbbZZo3bTp48OUmybNmydT7uyn74wx+mUqmkUqmko6Mjs2fPzo9+9KM8//nPX235HXfcMS972ctSqVRy0UUX9S2fNWtWkuTkk08e8rF7y86aNWu9tgcAAAAAAAAAAAAAAAAAAAAAAGBk2SgJ4jo6OtLd3b0xds0I0ZuE7OSTT05nZ+d6JyUbM2ZMkmTJkiUbKrSMHj06STJv3rw1lpk7d+6g429qve9Xb4K4Bx54ILfeemuKxWJOOOGEIe/n4IMPzq677porr7wys2bNytixY/P6179+o8QMAAAAAAAAAAAAAAAAAAAAAADAxrfeCeJuvPHGfPGLXxyU2GvhwoV5zWtek9GjR2fs2LH53Oc+tyFiZAQ65phjMnr06Dz++OMpFAo58cQT12s/e++9d5Lkn//8Z5YtW7ZBYtttt92SJI8//nhaWlpWW+Yf//jHoLKb2lvf+tY0NDTkn//8Z+68887MmjUrSfLqV78622677Trt68QTT0xHR0fmzp2bN73pTWlsbNwYIQMAAAAAAAAAAAAAAAAAAAAAALAJrHeCuHPOOScXXnhhxo8f37fs4x//eH73u99lxowZGT9+fL761a/msssu2xBxMsI0NTXl4x//eF71qlflve99b3bYYYf12s/OO++cffbZJ52dnfnWt761QWLbc889M3369Cxfvjznn3/+KuvnzJmTyy+/PElyxBFHbJBjrqtx48bl6KOPTpLMmjUrF198cZLk5JNPXud9nXzyyXnVq16VV73qVTn11FM3aJwAAAAAAAAAAAAAAAAAAAAAAABsWuudIO6uu+7KIYcc0jff1taWSy+9NIcffnjuv//+3H///Zk+fXrOPffcDRIoI8+ZZ56Zq6++Ot/97nef1X6+9KUv9e3vW9/6Vrq6uvrWtbW15fzzz8+999475P0VCoV88pOfTJKcccYZueaaa/rWzZ07N8cdd1w6Oztz8MEH59BDD31WsT8bvcngzj333Dz88MMZNWpUjjnmmHXez4wZM3L11Vfn6quvzotf/OINHSYAAAAAAAAAAAAAAAAAAAAAAACb0HoniJs3b1622267vvmbbropy5cvzzve8Y4kyZgxY3LUUUflvvvue/ZRskV7wxvekK985Svp6enJhz/84UyaNCkvetGLsttuu2X8+PE59dRTM3fu3HXa5/vf//6ccMIJaW5uzqtf/ersuuuuecELXpDp06fnhhtuyPTp03PRRRdtpFc0NEceeWS23nrrLF++PEly7LHHZtSoUcMaEwAAAAAADLtKZfDPMy0HAAAAAAAAAAAAAACALcx6J4hraGjIsmXL+uavv/76FAqFvOIVr+hbNnr06CxevPjZRchzwmc+85n85S9/yVvf+tY0NTXlb3/7W5qbm/OiF70o3/jGN3LAAQes0/4KhUJmzZqV//3f/80hhxySefPm5R//+Ed22GGHfPKTn8wdd9yRGTNmbKRXMzS1tbU57rjj+uZPOumkYYwGAAAAAAAAAAAAAAAAAAAAAACAkaBQqVQq67PhQQcdlMWLF+fuu+9OsVjMPvvsk7q6utx99919ZU488cTceOONmT179gYLeKRpbm7OuHHjsnTp0owdO3a4wwEAAAAAABi5CoVnLrPypavebdbvkhYAAAAAAAAAAAAAAACMGEPNW1Zc3wOceuqpeeihh7Lrrrtmzz33zEMPPZRTTjllUJlbbrkle+211/oeAgAAAAAAAAAAAAAAAAAAAAAAAOA5Zb0TxL3rXe/KJz/5ybS1tWXJkiV573vfm4985CN96//4xz/mkUceyate9aoNEScAAAAAAAAAAAAAAAAAAAAAAADAFq9QqVQqG2PHnZ2daW9vz6hRo1IqlTbGIUaE5ubmjBs3LkuXLs3YsWOHOxzWw5133pkPfvCDQy7/7W9/O/vvv/9GjAgAAAAAALZQhcIzl1n50lXvNhvnkhYAAAAAAAAAAAAAAABsMkPNW7bRMrfV1dWlrq5uvbZtaWnJ6aefnksvvTSLFi3KHnvskc985jM57rjj1rrdFVdckZ/+9Ke59dZb8+STT2by5Ml56UtfmjPPPDO77rrroLIzZ87M9ddfv8o+jjjiiFx11VXrFTebp6VLl+bPf/7zOpUHAAAAAAAAAAAAAAAAAAAAAACAjeFZJ4j72c9+lksuuST33Xdf2tra8tBDDyVJ7rvvvvzyl7/MiSeemO22226d9nnsscfm1ltvzVe/+tXstttuufjii3P88cenXC7nhBNOWON2X/va1zJlypR87nOfy4wZM/LEE0/k7LPPzgEHHJCbb745e++996DyM2bMyEUXXTRo2fjx49cpVjZ/M2fOTKVSGe4wAAAAAAAAAAAAAAAAAAAAAAAAIIXKembGKpfLOf7443PZZZclSRobG9Pe3p6enp4kydy5c7P99tvni1/8Yk477bQh7/c3v/lNXve61/Ulhet1+OGH5x//+Ecef/zx1NTUrHbbefPmZZttthm0bM6cOdlxxx3zb//2bzn//PP7ls+cOTMLFizIPffcM+TYVqe5uTnjxo3L0qVLM3bs2Ge1LwAAAAAAgC1aofDMZVa+dNW7jYe9AAAAAAAAAAAAAAAAsJkbat6y4voe4Jvf/GZ++tOf5r3vfW8WL16cT3ziE4PWT548OYccckh+/etfr9N+f/azn2X06NF5y1veMmj5O97xjsyZMye33HLLGrddOTlckkydOjXbb799nnjiiXWKAwAAAAAAAACe89qfSub+MelaNtyRAAAAAAAAAAAAAAA8Z6x3grgLLrggL3zhC3Puuedm7NixKRQKq5TZZZdd8uijj67Tfu+5557sueeeKZVKg5Y/73nP61u/Lh555JHMnj07e++99yrrHn744UyYMCGlUik777xzPve5z6W9vX2t++vo6Ehzc/OgHwAAAAAAAADY4sz5bfLrPZJrX5n8evdkwZof6AYAAAAAAAAAAAAAwIaz3gniHnroobz85S9fa5mJEydm4cKF67TfhQsXZsKECass7122Lvvr7u7Ou971rowePTof/ehHB6172ctelv/6r//K5Zdfnl/+8pd57Wtfm69//es58sgjUy6X17jPr3zlKxk3blzfz7Rp04YcDwAAAAAAAABsFrrbkr+emnSteGha+1PJn46u/g8AAAAAAAAAAAAAwEZVWt8NGxsb09zcvNYys2fPzvjx49d534VCYb3WDVSpVPKud70rN9xwQy6//PJVErl96UtfGjT/2te+NjvuuGM+8YlP5Be/+EWOOeaY1e73tNNOy8c+9rG++ebmZkniAAAAAAAAhqJS6Z8eeM1n4HIARob7/itpf3Lwso75yd9OSw6+YFhCAgAAAAAAAAAAAAB4riiu74b7779/fve736Wjo2O16xctWpSrrroqBx988Drtd+LEiVm4cOFq95ckEyZMeMZ9VCqVvPvd786sWbNywQUX5A1veMOQjn3SSSclSW6++eY1lqmvr8/YsWMH/QAAAAAAAADAFqPcndz/zdWve/oPmzYWAAAAAAAAAAAAAIDnoPVOEPehD30oTzzxRN785jfnyScHPzX84YcfzjHHHJOlS5fmQx/60Drtd9999829996b7u7uQcvvvvvuJMk+++yz1u17k8P98Ic/zPnnn9+X9G1dFIvr/bYAAAAAAABskb7x52/kvVe+N++98r3p6uka7nAA2JgW3JR0LhruKAAAAAAAAAAAAAAAnrPWOxPaG97whnzmM5/Jr3/960yfPj3nnHNOkmSbbbbJbrvtlhtuuCGnn356XvnKV67Tfo855pi0tLTk8ssvH7T8wgsvzNSpU3PQQQetcdtKpZJTTz01P/zhD/O9730v73jHO9bp2BdeeGGS5OCDD16n7QAAAAAAALZ0//v3/815d5yX8+44L4vaJQ0C2KLN+dVwRwAAAAAAAAAAAAAA8JxWejYbn3322Tn00EPzf//v/80tt9yS5cuXp1wu58gjj8yHPvShHHHEEeu8z9e85jU57LDD8u///u9pbm7OLrvskksuuSRXXXVVZs2alZqamiTJu971rlx44YV5+OGHs8MOOyRJPvShD+UHP/hB3vnOd2bffffNzTff3Lff+vr67L///kmSG264IV/+8pdzzDHHZMaMGVm+fHl++9vf5rzzzssrX/nKHH300c/mbQEAAAAAANjizG+d3z/dNj+TR08exmgA2KgW3DTcEQAAAAAAAAAAAAAAPKetd4K4xx9/PHV1dTnssMNy2GGHbciYcsUVV+Rzn/tcvvCFL2TRokXZY489cskll+S4447rK9PT05Oenp5UKpW+ZVdeeWWS5H/+53/yP//zP4P2ucMOO+Sxxx5Lkmy77bapqanJf/zHf2TBggUpFArZdddd88UvfjEf//jHUywWN+jrAQAAAAAA2JxVKpUsaFvQNz9weqRYsiT53veShQuT449PVjw3CIB1VSkni+8avKxQrC5fH4XCEI5ZeeYyAAAAAAAAAAAAAADPIYVKZf1GWtfU1OSUU07JD37wgw0d02alubk548aNy9KlSzN27NjhDgcAAAAAAGCDW9y+OBO+PqFv/tI3X5q37P2WZ7fTgQmD1na5qrfcWsrMm1dNCDdnTnW+WEwuuCA5+eRnFyLAc9Kyh5Nf7dI/v80rklf8Onn6muQvxyV1WyVvfHLo+9tICeL+++b/zoV/uzBJ8p3Xficvnvbidd4HAAAAAAAAAAAAAMCmNtS8ZcX1PcCECRMyYcKEZy4IAAAAAADAZm1+2/xB8wvaFgxTJKsql5NTTulPDte77F3vSv7+92ELC2Dztez+/ulCKXnhuUlpVLL965MDvrnaTXp6kp/8pJqY84tfTBYv3vhh/m3u33Ln03fmzqfvzKNLHt34BwQAAAAAAAAAAAAA2ITWO0HcIYcckptvvnlDxgIAAAAAAMAItHJCuJUTxg2nSy5JfvvbVZd3dSXnn7/p4wHY7C2f1z+93euTcXv1z+98ajL+eats8qEPJccdl8yalZxxRvKiFyVPPLGexy93JXd+IrlsfHLlLsmD5yaVyirF5rbO7Z9umbvKegAAAAAAAAAAAACAzdl6J4j7yle+knvuuSdnnXVWuru7N2RMAAAAAAAAjCDzWwcnhFs5Ydxw+t731rxuNfmEAHgmywckW5vy6sHrCsVk948NWnTxxcm55w4u9vDDyfHHJz0963H8v38hue+cpGtp0vJwctv7k7s+vUqxgUnhBiaLAwAAAAAAAAAAAADYEpTWd8Ovfe1r2WefffLFL34x5513Xvbbb79Mnjw5hUJhULlCoZAf/OAHzzpQAAAAAAAAhsfKCeHmt81fQ8lN65FHkhtuGO4oALYwy+f1T094warrBySNa29PPvjB1e/mz39OlixJJq7LsefdkNz7tVWX3/eNZLvXJdu8or9o67zVTgMAAAAAAAAAAAAAbAnWO0HcBRdc0Df91FNP5amnnlptOQniALYsi9sX51N/+FSS5PlTnp/3H/j+YY4IAAAAANjYVk4It3LCuJXdcUfyu98l06Ylb35z0tCwceK6+uqNs1+A57SOAcnWxu616voBD4279NJk0aINeOz7/jNJZfXr2v7VN1mpVDK3dW7f/MBpAAAAAAAAAAAAAIAtwXoniHv00Uc3ZBwAbCYeXfJozr/z/CTJS6a9RII4AAAAAHgO6E0IN75hfJYsX5L5rfPXWPYLX0j+4z/657/0peS3v0122mnDx3XddYPnjzgiefe7k1mzkl/8YsMfD+A5YfmKBHG145Pa0Wst+qMfDWF/lQEJ3wYklxu0vPe4c349pBCXdixNZ09n3/y81nlrKQ0AAAAAAAAAAAAAsPlZ7wRxO+yww4aMA4DNxJxlc1Y7DQAAAABsuea3VRPC7T5x99zy5C198yv74Q8HJ4dLkvvvT173uuT225PGxg0b10039U/vsEPy4x8n48cnb3pTcuyxG/ZYAM8ZvQni6ieutVh7e3LjjYOXjR2bdHVV162zp69OKj1DKrpyQri5LXPX44AAAAAAAAAAAAAAACNXcbgDAGDzsnKCuEqlMozRAAAAAACbwoK2BUmS3Sbu1je/ct/g4sXJhz60+u3vvTeZv/qccuutpyd54on++TPPrCaHS5JCIfl//y8ZNWrDHhPgOaFjaAni/vKXpKOjf37//ZOnn04WLEje9rb1OO686wfP73Biss8XkroJqxRdOSHc3Na5rlkBAAAAAAAAAAAAAFuUZ50g7uKLL87hhx+ebbbZJvX19Zk0aVIOP/zwXHzxxRsiPgBGmCebn+yb7uzpzML2hcMYDQAAAACwKcxvrWZ3600Q19nTmWWdywaV+d73kpaWTRfT009Xk8QlSbGYvOENg9dPnpy85z2bLh6ALUbHioyedWtPEHfPPf3TdXXJZZcljY1JU1Ny4YXJfvut43EX3tI/vf0bkxf/KNn3rOSIW5P6rQcVnddaTWI3edTkJNV6qbmjeR0PCABsMQqFZ/4BAAAAAAAAAADYzKx3grhyuZy3vOUtOfnkk3P11VentbU1U6dOTVtbW66++uqcfPLJedOb3pRyubwh4wVgmM1ZNmet871aO1tz/4L7c/+C+7OwTRI5AAAAANicLWhbkKQ/QdzAZb0uumiThpTHH++f3nvvZKutVi0zY8amiwdgi1ApJ+Wu6nT92hPEzZ7dP/3a1w7+zq2vT/7rv9bx2K29OywkL/i//YlcRs9IDvqfQUXnts5Nkuy+9e4ppDBoGQAAAAAAAAAAAADAlmC9E8R9+9vfzuWXX56Xv/zluemmm9La2ppHH300ra2tufnmm/OKV7wiP//5z/Ptb397Q8YLwDCb0zK0BHFXPnBl9vjOHtnjO3vkyzd8eVOEBgAAAABsJPPb5idJth+7fRpLjdVlrfP71j/2WHLPPf3lGxuT738/+cEPkp122jgxPfFE//TznrdxjgHwnFPu7p+uHbfWogMTxB1xxKrrX/nK1SfvXK2ulqRrSXV64kFJ03aD1089Kpn08r7ZuS3VZHBTRk/JhMYJSZJ5rfOGeDAAgH7d3c9cZkQpFJ75BwAAAAAAAAAA2CKsd4K4Cy64ILvvvnv+8Ic/5KCDDhq07sADD8zvf//77L777vnhD3/4rIMEYBMp9yTzb0yeuCJpeXS1RZ5sfnKt870eW/LYaqcBAAAAgM3L8u7laelsSZJMbJyYiU0TkyQL2hb0lbnhhsHbXHRR8u53J+98Z/KXvyTTpm34uAYmiJs6dcPvH+A5qTIgQ0qxtn/61v8v+fn2/T/z/zIoQdxKQwb6dzHUEQnt/+qf3volq64vFJJR/ZVJbzK4SU2TMmnUpCT9SeMAAIZi1qxku+2S2tpkzz2TH/94uCMCAAAAAAAAAAAYbL0TxN1///05+uijUyqVVru+VCrlqKOOygMPPLDewQGwCXU1Jze8Mbn6kOTGNyVXzkj+ckJ1+QBzls1Jkmw3ZrtB8yuTIA4AAAAAtgwDE8FNbJqYiY3VBHHz2+b3LX/44f7yL3lJcswx/fNTpiTnnbfh43r88f7pbbfd8PsHeE4qd/VPFwaMBehYlLQ/2f9T7hiUIG6nnZ7lcdsGJIgbu8czFp/bWk0GN6lpUiY1TRq0DABgbbq7kw9/ODn55GTOiiEv992XHH98cvbZwxsbAAAAAAAAAADAQOudIK6uri6tra1rLdPa2pq6urr1PQQAm0pXS/KHlyZzfjV4+exLkpvf3jfb2dPZd9Pn/tvun2TNCeJmL5292mkAAAAAYPMyv7XaJ1hIIVs1bJWJTdUEcQMTxw1MEPemN626jyOPTLbbbsPGNXdAHqApUzbsvgGesyrd/dOFmjUWa20tZsGKaqCxMRk37lked2CCuMZnzvrZlyBu1KRMGlVNEDevdd6zDAIAeC4499zkW99a/bpf/nLTxrLRFApD+wEAAAAAAAAAAEa09U4Qt//+++fSSy/NnDmrTwz01FNP5dJLL80BBxyw3sEBsIncd06y9J7Vr1vef5flU8ue6pvef0o1QdyTy55c7WaPLXmsb3pR+6I0dzQ/+zgBAAAAgE2uNxHcVo1bpaZYk4mN1QRxvYnjksEJ4l72stXvp2bNeYbWS0dH/7QEcQAbyMCkcJXyGovNmVvfNz116gbIL7KOCeJ6k8FNapqUSU3VBHFzW+aubRMAYEtWqfT/rGV5a2tyxhnDEB8AAAAAAAAAAMB6WO8EcR//+MezcOHCvPCFL8w555yT2267LU888URuu+22/Od//mde8IIXZNGiRfnYxz62IeMFYEMrdyUPfHtIRecsqyYFHV03OrtM2GXQsoEqlUpmL5k9aNnK8/3H70ke/G5yy7uSOz6WPH1t/4BdTzMGAAAAgGE3v62aCK43MVzv/72J45LBCeJmzNg0cXV29k+PGrVpjgmwxSvW9k9XutdYrK29f6jBts+cz+2ZdQ140FDDM++wNxncpFEDEsS1ShAHAFucDTxu5IorkiVL+ue33jo59dTkkEM2bNgb1RCT4QEAAAAAAAAAAJu/0vpueNRRR+Wb3/xmPvnJT+ZTn/rUoHWVSiWlUin/+Z//maOOOupZBwnARvT0NUnnwv75PT6RzHhnsviO5G+fGVS0NxnctqO3zZTRUwYtG2h+2/y0d7cnSSaPmpy5rXPz2JLHsu/kfQcXbJ2d3HRSMv/G/mX3fzOZ+rrkJRdvgBcHAAAAADxbvYngJjZNHPR/b+K4lpZk3rxq2YaGZOLETRNXR0f/dG3tmssBsA4KA75Qy11rLNbZ2Z8gbsyYDXDc8oCsn/UTqv93tyUtj/QvL41ORu+Y9q72LOtcliSZ1DQpk0ZVE8TNa523AQIBALZkP/tZ//T22yfXXJPstlt1/oILkvPOG5awAAAAAAAAAAAAVmu9E8QlyYc//OG8/vWvz6xZs3LXXXelubk5Y8eOzf77758TTjghM2bM2FBxArCxLLy5f3rX9yf7f6M6PW7PZJtDk7v6k4D2JoObMnpKX4K4ua1z013uTqnYX6U8tuSxJMmYujHZZ5t9MvfRuZm9dPbg4/Z0JNe9Jmm+d9WY5vw6WXL3s39tAAAAAMCzNr+1mghuYuPEQf/3Jo6bP7+/7PTpSaGwaeLq7u6fLj2rK14AzxFD+YIu9/RPd7essVjHgARxGyRJ58AEccW66v9L/5H8/sD+5dsemcz87aBEcJNGTcqkpmqCuLmtczdAIADAluzvf++fPvvs/uRwSXLKKck222zykAAAAAAAAAAAANboWd8us9NOO+Xzn//8hogFgOEwMEHbHp8YvK5pavLC7/TNPrnsySTJtmO2zbajt02SlCvlzG2Zm+3GbtdXrjdB3LRx0zJ93PRBy/o8/P3VJ4cDAAAAAEaU3kRwE5smDvp/fls1M1xHR3/ZTXkz/cCERAOTxQHwLBSKSaEmqfQknYv6l4/bO2l7ou/BQ93d/cnmNkiSzr4EcYVqDGvRmwiukEImNk7MpFHVBHEDE8cNNGdOctZZyU03Vedf/OLkIx9J9txzA8QNAGw2WluTRx6pTjc2Jm9606plXvvaTRvTIENJ5lupDG1fK5fr3fdQtwcAAAAAAAAAAEaEtY+sBmDL13xf9f8xuyWjd1x1fd24vsk5y+YkSaaMmpKJTRNTKpYGLe81e8nsJMn0cdPXnCDuof/XPz1un+TQa5JX/SmZ8c7+5ZVK/89Aa1oOAAAAAGxwvYngJjZOHPR/b+K4gQni6us3XVx1df3TnZ1rLgfAOqqrfs+nY2H/sn3PSF5ycd9sbW3/NZoNkqSzULNi4pmv/8xtqSaIm9A4ITXFmkxqqiaIa+5ozvLu5YPKfve7yW67Jeedl9x9d/XnvPOS/fZL/vSnDRA3ALBGTy17KnfPvTt3z707rZ2t67eTDThu5N57+4vvt1/S1LR+IQEAAAAAAAAAAGwq650g7r/+67+y9dZbZ86cOatdP2fOnEyaNCnf+ta31js4ADayck/SfH91esxuz1i8NxHctmO2TbFQzORRkwct79WbDG7a2GmZNnZakmT20tn9BToWJkv/UZ1umpYcdlMy5ZXJNockB/0gefFFA24EAgAAADZH5XJyxRXJm9+czJyZnHhicumlSU/PcEcGrKuVE8Rt3bR1kmTJ8iXp6ukalJytVNp0cQ1MENfSsumOC7DFa9im+n/nojUWqa8r901vkCSdxdr+6craM87Na52XJJk0atKg/5P+5HFJctVVyfvel7SuJh9NV1fyr389i3gBgGf04as+nOf9v+flef/vefnVA78a7nByzz3907vuOnxxAAAAAAAAAAAADNV636bz05/+NM973vMyderU1a6fOnVqnv/85+fHP/5xPvShD613gABsRMufTsod1enROz9j8SeXPZkkmTJ6St//Ty57sm95r8eWPpYkmT5ueqaPm15dtiJpXJJk8d/6p3f9QFI7evCBdjxhnZ7yDMAm0PZksui2pNyVjN0jGbd3UigMd1QAAIxQ996bHH988re/DV5+8cXJ61+f/OIXwxMXPCcMta22Dv1vC9oWJEl+fv/Pc//C+7Nk+ZK+dQvbF6aubkrffPfac/psUA0N/dNPP73pjguw2Rr43T+wvli5TmjYJlma6gN/1qC+vj9B3JIlGyC24oCsn91tSd24NRad21pNAjepqZoYrjdxaVJNHrfD+B3S05N87GP929TUJKeemkybllx3XfKHP2yAmIFh1d1d/f4ZNy6prX3G4sAwuP2p2wdNv22ftw1jNIPbjbvsMnxxAAAAAAAAAAAADNV6J4h74IEHcuKJJ661zN57752LLrpofQ8BwMbW3do/3bR9//T8vyRdS/vnt3lFUmrKnGVzkiTbjt42SX+iuN7lvWYvmZ0kmTZ2WqaNm5akehNpa2drRtWNSpbcNWDfL199bJIOAYwMy+cnd5+RPPKDpNzZv3zsHskLv5tMnjlsoQEAMDItXZoceWTy+OOrXz979qaNB3j25rfOT5LcNue23DbntlXW1df3J4jr6Nh0cQ18htFTT22647KZGUpfsweWwGD11cRr6VxYfWBEcdXMS6Oaevqm58xZZfW6K9b3T3fMqyaIqx2TTH5lsuTupGN+3+p5rfP6pm98/MYkSVNtU9q62vqSx91+ezVpcVJNHHX99cmLX1yd/+xnk0svrSaNAzaiodbB61BXVyrJX/6SnHNONfF4uZzU1SWHHpqcdlryilc8y5iBDWZx++I8sviRvvk7nrpjGKOpam/vn9566zWXGzZDTeYLAAAAAAAAAAA8Z6x3gri2traMGjVqrWUaGhrS0tKyvocAYGPrWd4/XdPQP33nR5OFf+2fP/rhtNRtk+aO5iT9ieF6E8UNTBBXqVTy2JLHkiTTx03PtLHT+tbNXjo7e03aK1lyT/++x+65gV5MkpZHk/v/T/KvnyWdS5LGKcmklye7vi+ZcEBfsbktc7Pvd/dNkuwwfofceuqtGy4GgC1Jd3ty3RHJ4jtXXdd8X/LklYMSxC1oW5AHFz6YpFoHbDd2u00UKAAAI8lXvtKfHK6hIfn0p5M3vCGZOzf5n/9JHnhgeOMD1k25Us7C9oVrXL+gbUF2GtC1OHfuJghqhWn9XY8SxAFsSA3bVP+v9CTLHkrGrXotZ7sp/RlBn3qqmqSpWHwWx2zsTzaa9qeTMbtWH1LxymuSG9+SPHFZ3+reJHA3PH5DDvnhIYN205s87oYb+pe98539yeF6vfWt1ZiBzcvnP598+cuDl3V2Jr/7XTUZeW9iSGD43fl09fpisVBMuVLOHU/dkUqlksIwPixwYIK4urphCwMAAAAAAAAAAGDI1jtB3A477JC//OUvay1z0003Zfvtt1/fQwCw0Q18yvDaB+EOTAL31yf/mocWPdR3Y+iTy57sW7ewfWFau1qTJNPGTcuoulGZ0Dghi9oX5bElj1UTxHUtrhaum5jUjatOdyxImgfcId4wORmz89BfyuOXJX85rnqzUq9ly5JlDyZzr0le/2jf4utnX5/5bfOTJPPb5mfOsjmZOmbq0I8F8FzxwH/3J4erm5js8bFk9Ixk6T3Jw+evUvw7f/1Ozrz+zCTJKc8/JT98ww83YbAAm59585KLLkpuv716Y9r22yeHHZa85jVJTc1wRwew/i7rz92RCy+sJt/odeSRg5N1ABtBpTJ4vvfm+5WXD9Hi9sUpV9acQWd+2/y8aIf++SeeqB5qU9zzP316//STT665XK9yOfnTn5L//d/k/vuTnp5k112To49Ojj02Ka33VTNGtIGf/YEfzPX8m4DnhPpt+qeX/G21CeLq6yuZOjWZMyfp6koWLkwmTXoWx2waMK5g+dNrLTq3Zc3ZSHvXDTznfN3rVl/2WSW0Aza5X/xicHK4PfaotjEXLEh+85vhiwtYvdvn3J4kOXTHQ/PHx/6YxcsX59Elj2bGVjOGLaaBbb6enjWXAwAAAAAAAAAAGCnW+1aXo446Kt/85jfzP//zP3nnO9+5yvrzzz8/N954Yz784Q8/qwABnrPKXUnHoqRYSuombJw7KmsaBhyvY61FByaIe8+v3rPGdbOXzO6b3n5s9WaeaWOn9SWIS5J0t1X/L43q38nc65I/v6V/fpf/L3nRd5/5NSRJ6+zk5rf3J4eb/Kpkm5lJx7zkyV+uUvz6x65fZf74fY8f2rEAnktmX1L9vzQmOfL2ZNSAO/73/HSy6LZBxa997Nr+6UevTaVSSWFTZAQAGAmG+n1XqaSrK/nEJ5Jzz026uwev/ta3ko98JPnmNzd4hDwbXc3J7J8kj/84aXsiKTYkY3dPph6V7HBcUlM/3BHCiPHII8nDD1end945ectbVi1zyCGbNibg2VnQtmCt6+e3zs/o0cnkycncucny5dUkHc8qSdAQTZvWP33nnWsv+69/JW98YzU570C33JLMmpV8//vJu9+9wUOELUd3W7J8XvXct2FyUpBZa4vWMCBB3Lzrqu2e1dhhh2qCuCR58MFnmyBuwJd627/WWnRe67w1rpvbWk0QN7BeeMELnkVcwPobapLWIZb7xjf6pz/ykeQ//7P/IQvLliXnnffswgU2rNufqja+Dt7+4MxZNif3Lrg3t8+5fVgTxDU19U+3tg5bGAAAAAAAAAAAAEO23gniPv3pT+fHP/5xTj311MyaNSuHHXZYtttuuzz55JP5/e9/nz/96U+ZOnVqTjvttA0ZL8CWb8FNyQPfSZ78edK9YkRq7fhkyquT538tGb0BB8vWDBj92v50/3TTtOrNN+39id8GJoFb2cB1vUngRtWOym8erD6qvTc5UF+CuPQO7F9p8P/6evRHSc+KpHMv+Hay2wf61+3/X8kTlw0qfv3saoK4GVvNyCOLH8n1syWIA1hF+9xkyd+r0zueNDg5XJLUjkkmH9o329bVlpueuClJUiwU8/jSx/Pw4oezy4RdNlXEAJuNj388+fa3q9M1NdVEJbvvnjzxRPKrX1WTqjCCLP57cv2RSftTg5cvvbva1hi9Y7LNK4YlNNhoutur7ezacdXE9evg+gE52Q85ZOPkuwc2rflt89e6vjeB3M47VxPEJdVEkZsiQdz06f3TDzxQPf7kyYPL/O1vyZ57JkcdVZ1Okm23Td7xjmrZ++5LfvzjVfOUsPmYNy/5xS+S3/ymmqiqpibZZZfk8MOTN785aWh45n0MtKh9Uf40+09JkunjpueAbQ/YCFFvRub8Nnnw3OSpq5LKigzXtWOTKYclB/x30rTd8MbHxjEwQdzjP02ed3ZSP2GVYjvskNxU7RLMTTclL3nJ4PU9PUm5nNTWDuGYjdv3Ty9ee9bP3iRwq9ObPG7Jkup8TU0ydeoQjg+MaAsW9H/fTJqUfPWr/cnhkmTMmGqfGzBy3PHUHUmS/Sbvl4cXP5x7F9ybO566I2/ZezVPE9hExozpn37ssWELAwAAAAAAAAAAYMjWO0HcpEmT8sc//jEnnXRSrrvuulx33XUpFAqprLiD5sADD8ysWbMyaVPcAQSwmWjtbM39C+9PkmzdtHWmj5s+uMCjs5Jb3p5UytX50TOSYkPS8nA18cAOJ2zYBHGNU5JCqXpTV+sj/ctfdlky97rk2v7EP082P7nG3SxqX5T2rvY01jb2JYFr7WrNmy5906Bys5fOrk6UViSm62reEK8imfOr6v9N2ye7vm/wumIp2eG4vtkFbQvyj/n/SJJ87OCP5QO//UBfwjgABljwl/7pSYc8Y/EbH78xXeWubD92+8zYakb+NPtPufbRa1ebIO5Tf/hUfnn/L5MkZ808K2/b520bLGyAke7pp5PvfKc6PXp0cuONyX779a9vaUluv314YmM1yt3JjcdWk8MVapJdP5BMf3O1HbX4juTh84c7QthwOhYlD/x38sQVydJ7qssKNcnYvZIZpyR7fCxJ0tWV/Oxn1YSWN9xQTbzR1FRNvvSa11TX99p7703+KmDzNZRsihspg9myZckf/pBcdVXyyCPVZD5TpiQHH5y87W39CeDWpDeB3M47J39Z0ZS88cbq9gNVKtV9l9b7ytSqJk1K6uqSzs7q/GWXJe9/f//6hx9OLrwwecUr+pPD7bdf9ftrYGKAr3wleWqlXLBsHn7wg+QDH1g1yfJNNyU/+lEyY8aqCaueyYV3XZiP/b5a7+0+cffc+/57+x6C8pxz338ldw7ItjNu7+q58LL7kycuT3b7kARxW6rRA/r0Ohcld5+RvPDbyZK/DSq2w4BnSlx55arJmS66KHnd65KJE4dwzIbJ1fPPSk8y99rqtbJCcZVi3eXuLGxbuMbd9CaP660b6uqGcOx1MHt28tvfJn/+c/+58O67J0cckbz0pRv2WEC/q6+uJpxMkle+MqmvH954gLVbunxpHlz0YJJkvynVBHE/vufHuf2p4e383mOP/ukHHxy+OAAAAAAAAAAAAIbqWd2Gs+uuu+aWW27Jbbfdlr/+9a9ZsmRJxo8fnwMPPDAvfOELN1SMAFuM793+vXz899W7Y/bZZp/8/f/7e/+NZV0tyW3/X/WGl9EzkpdelkzYv7quZ3n1ZqvGqRs2oGJtMmbXpPneZNlDay06Z9mcta5/quWpzNhqRn8SuNXoTR6X+hXJQ7uWJh0Lkvqtk0kvTV7+q+SOjyQta49lkJ7OZOFfq9PbHLram4UG+tPsPyVJZmw1I8fueWw+8NsP5L4F92Vuy9xMHj156McdoKO7Iy2dLUmSUXWj0lBqWK/9AGxynUuqN1s235uUO5ParZJxeyZbvzTpHHCT5ZgVN4RWysm1r+pfXrdVcsgVSZJrH702SfLyHV6eGeOrCeKuefSavOcF7xl0yI7ujpx3+3lZ2rE0SXL+nef//+yddZgcVdaH32qX6XGfuCdESbCQBNvgGhwWZ9FdlhV00cVtWXZx33xICAS3QJAQ4p5MXGcm49oy7VX1/XF6uqcjMIHg9T7PPNNSXV73nnvuOb+zS4G4+2ffn+w7rh93/Y7CqgYGBgY/J7YXbOmw87f7fMq/U8msf/hDujgciGjcQQelr3bdOvjqK6ipkd8WFcHo0bDPPmA279nDMNiO+i9EsBtgxD0w+JrUd/n7Q7/LQI2k/yZUDy0LRRDb7AR3LxHSMO++KkFbmwjszJ8vr+126N0bxo2D4cO7piVkYNAlgtUw40BoT4zps0eIvyDmlTH3lskw6K/U18PRR8OSJbJYhxiGoogo1Oefw803p1brdHZ9F2IxaGgQIY/sbPkz7nEDgx+eDz6A886D5sQQUFEgN1dsjylToL0dCo5oTC6vkHowdcTO6RCQ69s3td5p0+Dvf0/f1nvvwciR0GMPDu1MJujVC9avl/e33gonnADdukEkIsc2apQIFHXwj3+ki8MBZGXJn8Eviy++gIsvltfZ2XDnnXDiieBwwOrVMHnydxMknLp6avL1uuZ1rGxYyfCi4Xtkn39ufLb5M55c/CQAB/c8mCv37aSwGKqFZdfK6+yRMO71lI8oHpKiNvb8H3eHDX48MgeCySY+Q4ANj0LdpzvM33QWiJs5UwQ4xydqTTQ2wg03iEBclzCZZR4sWAWhaqj5EMqO3WGxpmBTsg/aGfUBEYhzu0U8MhyGePz7C5RGInDFFfD886nPLJaUAOqdd6bG+wYGBnue6k61zLb3pxkYGPz8WFq3FAC31U3fnL6MKJIHd3HtYnRd/8kEmIcOTb1etUr6ccP/ZGBgYGDwayUel3mXSARycsT/afR7BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBr88vmcYtDBmzBjGjBlDPB5n5cqVAMRiMaxW655YvYGBgcHPnqZgE7d/eTsAuc5cbjv4th0CWnVd54VlLwCSSFneUM7i2sWMKU0IalZNg3i7vB71cEocDsDsgF5nf+f9UzU1mSxjVszp+5Y5SISBvCtTYm07oSbwzQJxNf4a+uT0SYnA7YTkd9mdkum8a6BwPDhLoOwYKL+tC0fUiZgXOhKBXN1Sn399KlS/l3p/6OdQMJaZW2cCMLb7WEo8JfTO7s2Wti18VfEVp+516u5tO8FVH13F00ueBuCsYWfx8qSXv+UXBgbfg3gImuZC0xwI18pn9kIRHSk+TAS7DAy+jXgQFv8Jtrwoom8AFg+o7fK+eCJ079QmarHU64YvU6/thcmXn235DIAJPSbQO6c3zIIvtnyBpmuYOol3frjhQ7wRLz2zerLNt43Pt3xOrb+WEk9J2i5ubdvK9TOuT/Zfuc5c7jz0zj1y+AYGBgY/JV9/nXp9xBHfvOwHH8Cf/wybEvpkiiKB+21t8v7xx+Hyy3+Q3TToYNubiRcK9D5/x+8VE1gSClh1n4mARuuSHZezeODEarCKGo2uQ0WFiGw1N4vQX1GRiOaUlYmAwTXXwBNPiNAAQF4eWK1QVyfvW1tFCMXAYI+w6o6EOJwC46ZB95NS36lRaJTG609/SonDXXEF3HefCFsChELw+uuSbNRBa+s3bzYahWeegTffhHnzIBhMfVdcDNddB1df/b2PzsDgl0FnUdnOvrvtRWj3IJs3i5hWPC42xn/+A6edJuJaoRB8+qnsSnlCAG5U8SiWXJrq56779Drun3M/jUERkOvXL7XuefPgtdfg9IQe+LZtcNll8vme5sADUwJxzc0iEHfGGTB1KixaJAJxCxaklv/d7/b8Phj8NDz0UOr1iy/Kte9g/PiUSNXuUNFWwbxt87CYLBzZ70jeX/8+U1dN/dUKxN03+z4+3fwpIGJxF466EKc1Yd9ufRn0hDG6zxMpcTgQG7j3OT/y3hr8qJiskDU0fXzjX7fDYqNHp78//XSYPl3svEsvFaHz3SJziAjEAcy/EI5YBNYs8K9PLtIhAAdwdP+jsSXEuGv8NSyoXkBDuxikJSXSL+i6iEYO/5bHWNd1/rf8f8TUGBaThfNGnpfm17zmmpQ43GGHwYMPisiMoojAzEsv7eaxGhgY7BbRaOq1EYpkYPDzZ0mt2BDDioZhNpkZUSwCcS2hFiq9lfTMTqjMairUfgwNX0DrclCDYHZBRi/IHwt9Ltij+1VaKj7VtjaoqoIVK3YUnWxqgvwfQAc5GhUf2MyZMkZtbhbR89JS2HtvEdYtKfn29fxQqCqsXSvFSmpqxFeQmwuDBsHYsSkfoIGBgYHBz5tYDJ57Tgp4zJ0rBUA6KC6Gv/5VxrcGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBr8cdksgbsuWLXzxxReMGzeOAQMGpH33/vvvc9FFF9HUJIlCOTk5PP7445x22ml7bm8NDAwMfqY8uuBRHl34aPL9YX0OY0LPCWnLLK5dTHlDOdmObE4dcirPLHmGF5a+kBKIa5qdWFKBksPlZagWaj5IrcTdC4p3L4PRG/bS+5HetIYlK/ujsz/iyH5HphbIHCT/dQ02PgN73bDT9VT7pCz7yOKRaclwU1dNJRwPJ7//JoG4hvYGQrEQzpyRqQ/rZ4hA3HfFbE+9jnlTr7UYaJFOC0oy7cwKEYg7sPuB8r/HgWxp28LMipnfSSCuOdjM5BWTUVCwmCxMXTWVByY+QKmndLfXZWDwrWx7GxZcApFGsGZC9kiwZUHzAlh9N4y4Fwb95QfZdIeISU2NBMVrmoiUDBwIhYXf/nuDnxlL/gKbnxdRm1EPQ98L5Z5So5L06VsHFldq+Q4xQhDxuMBmCGxKftQaak0mekzoOYFumd0wK2Yag42UN5Sn9RuvlL8CwHkjzmN21Ww+2/IZr616jav3vzptF59Z/Aw6OsOLhrOifgXPLnmWWw66JZnwaWBgYPBLxe9Pvc7L2/Vyc+fCccdJH9ynD/z3vyJmYrNJIP/MmSLkYvAD0yFM4CwGR4G8rvsclv41tUz3SVByJHx5hAhoFIyHobdB1hD53rcGqt8HFFRVxHceegiqq0VIoLgY3G6xs4JBERF86SV48kn5+TnnwD33iHAcSPLiu+/KvWBg0CUCW2DTsyIy7S0HNQQmh4is54yCMY/D1oSaRfeT08XhAMw2KD6ULVskoQigVy9pl0wpvQycTjj3XHjrrdRnixbterficZg4Eb76St4ff7wIipSUgNcLCxdCS8v3PnoDA4Nv4MEH5VkE6WvOPTf1ndMpzyXAF9NFAC7PlW68dLxvSgjIbS/Gde65IhppNsv6a2v5QTj4YHjhhdT7JUtSYpYddE6ENGyoXwfhMHz4obzOzYVjjtkz631j9RsAHNzrYC4YeUFSIO6OQ+6QwivbFYb53vyAIpDfxqaWTXy6+VMcFgf9c/uzsmElb6x+g3NGJITfmubKf2s25O0rrwNboHZ6aiVZg6HwoB91vw1+RPL22bkAdidGj5Z21ZuYnqmt/XYhtm+kcDzUJe6xSCO81xsUc1oBi/r2lEDcO2e8g8UkIQ+fbvqUw186nKZgE3EtzoEHWigvl+UWLPj2/fpww4dc8E5KhCbPlcfxA6UzrK+Hp6VOEAUF8P77IqjawfDhcP/93/GYDQwMukROp/pI27b9dPthYPCzoSt26U9oay6uXQyIgOtZ085CR0dBQUdnce1iEYgL1cPMo8XeUCxQepQURdPj4lOtfGOPC8Qpigi8dhRyueMOKXjQcTrr66VYwauv7tHNUlEBRx4pAmwARx0Fxx4rfuGqKpgxA0455acTiHv5Zbj+emlfTSbo319E8lpaRJD9uuvgrrt+mn0zMDAw+E3QskSKCzfPl7lJPS5i6e7e0PNM6HFKl1ajadLHfCb1HTn6aDjzTBEj9ftlzubbCvsYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGPz82C2BuGeeeYb77ruPzZs3p32+ceNGTjvtNMLhMD179sTlcrF27VrOPvts+vfvz6hRo3ZrpwKBADfddBNTp06lpaWFQYMGcf3113PGGWd8628bGhq49tpref/99wkGg4wYMYI777yTww47bIdlZ8yYwc0338zy5ctxuVwce+yx3H///RQaKicGBga7QSAa4L8L/gvAOcPP4f9W/B/3fn3vDgJxzy99HoBTBp/CBSMv4Jklz/BK+Ss8dMRDOCwOUBNiZopJgl8B/OthwR9SK+k2abcF4h6Z/wit4Va6ZXZjm28bt355K0f0PUKS2QByR6cWXnkzOEugx+nQuixtPTX+GgD+sPcfuGKfK5KfL6pZxOrG1dT4a9B1nQpvBQCH9T6M7lndAQjHw0wpnwJAhbeCQdmdsnDWPwb9LpPtfhcsHrDlQbQZ/CmxIobdBmXHw4KLkh+1hlpZUb8CgPKGch6a8xCtIYl66hCO212eWfIM4XiYYwcci8fm4dXyV3l84ePceeid3+14DAx2RXsVzDkT1DB0OxH2nwxWT+r7eDtEE1F8US9UvyPJmqEaiDRLVLstFzz9YMg/pOp6FwgG4b774JVXYONGCQQfMEASxRsaJIj900/hICMP9JdDqE7E4QD6XgKDrk59Z7ZB/v7y116Z+rxxjoiFKCY45BNYdQ+suDH59cyKmWi6htvqJhgLsqFlA31y+rChZQOfb/k8KRDnDXt5b917AJwy5BRKPCV8tuUzXln5SppAXFSN8uzSZwF45MhHuPyDy1nbtJa3177NaXv9ggSotTh4V0OkCWJtksxqz4OMvuAo3nnyjqYmbIE9nHBuYGDw/diDyXb5+anXFRUwZszOl7v55tQqn3tOhE86cLsloN/gR8CUEKSOtskFURQRpm5bnlombx8ov0PE4ez5cNAH6XaasxiKDgHg7jvgllvk4zPOEKG40oS2tKbBYsmb5Jln5H+vXvD882Dp5MHLzk4X8DFIJxiEjz+Wv02boLlZRIEyMqB7dzj7bBEh+83QMEvEC9WQiLfs/YiIz+txEfxtmCliwPGEclL2sNRv518EzQuTb1f4PkbT5IY95JB0cbjOdHynaSL+FgyCy7Xjcs89lxKHu+giePbZ9O9PPPG7HfLPnlCdiJ1EW8Xus+WCuydY3D/1nhn8Bpk9O/X62GN3vVxjUATi8l35aZ/nOUUgrrFdvu/RA0aMgOWJbjIahauu2nP7uysmTky1O7uioEAE7wG2bIG+fX/4/TL4YQkEUvZyQUG6vfR9eG3VawCcNOgkjuh7BA6Lgw0tG1hWt4xRJaN2tPs7xgrfNh7o6nI/Ik8vFrWrSYMnMb7HeC7/4HKeXPxkSiCuowCLYpY+C2TeYNHlqZX0/YMhEPcjEowFqQ+IOFqWI4tcZ+4Pu8GSo2DjU9+4iNksYuYdQsLfm+3vJ12Tv040tDcAkOvMTYrDARS4RdRbR6c52Mz48UU8ldj9556DCy9Mt2HjcRHu7tkTdF3nrlmiejKxz0Q+3fwpd826i+MGHIeiKCxYAJHEI3HUUenicD80sRjMmycJ/tu2iVBLOCzCfL16wVlnwbCEGR9Vo1z98dW0x8S+v/OQO5NzdQYGPwThsIh719XJvRmPy73ZsyeMGiVj8T3F2LGp119++c3LdvhYPvlE5rY6fAMuF3TrJkUZDN+awS+eznZlZ//1ruzVb1vXHhacW1wjjs5KbyWV3sodvps0eBIsv0HE4SwZMHEuZA9NX0nMzw/BhAkpgbhp0+D88+Hvf5d57+uvl/HFnuaPf0yJw732Gmxfb1fXQVX3/Ha7wowZ8Pvfy+t995X969Ur9b3PJ+28wY9PLCb9l9MJdvu3L29gYPALZfW90icC9DwLep8n840xL7StBN/qLq9q8uSUONw558D//pfexZ9wwh7cbwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwODH43dSpf4+uuvGTFiBD179kz7/JFHHiEcDnPllVfy3/+KSNKbb77JKaecwqOPPspzzz23Wzs1adIkFi5cyL333suAAQN45ZVXOPPMM9E0jbPOOmuXv4tEIhx22GG0tbXxyCOPUFhYyGOPPcaRRx7JjBkzOKiTcsnMmTM56qijOOaYY3jnnXdoaGjguuuu47DDDmPRokXYjagaAwODLvLskmdpCbUwvsd4/nPUf3hzzZt8tPEjVtSvSArihONhXi2XEsNnDz+b/bvtT+/s3mxp28Lba9/mjKFniGgTiKiAfwNkDQbPQNjvBVj7L/Cu3O19aw218q+5/wLg7dPf5tTXT2VB9QI+3PAhxww4RhYqOUqSkOPtsu35F8hfJ3RdTwrElWSkC7kVZxQnBeLawm34Ij4A7j7sbvYt2xcAVVN5fdXrqLrK1ratDMofBPljoWmOCLtNHw173QxaVI59d1AUKDkSKl6G+hkiaOTuATkjwexMW3RW5Sx0JGj5sYWPpX1X3lBOU7BJEl3j7VDzETTOguA2EfXRYhKY7CiGXmdD8WHE1BiPLngUgMtGX4bHLgJxTy56kn+M/wdOa/r2DQy+F1tfEnE4gOF3iehIzAebOqko2Ash/wD49AARHCg8GAb+BTz9wWSDcJ2ImWjRnW6iI6a/c3DgJZdIxXCAf/8brrwyPeE2EPjmBGyDHxdNk2DPGTMkKaulRa6n1SrXt6AAHr29gj56XH7QWbBz+j7gW5N6f9xmuXf8G2DrZBh6M9iyd7rdz7d8DkB7rJ0xz6QrHX225bOk+Ntba98iokYYkDeAoYVDKXQXcuWHV7KwZiEbmjfQP6+/LLfmLRraG+id3ZsJPSdwwcgLuG7GdTy56MlfhkBctBWW/BW2vSXviyeCsxRQ5Dn0lsPBn8j53Pwc1H4sCdYWN5gTwiBaFFzd4ZCPd3vzqiqJGn6/JA2YzZCTAyUlYLPtqYM0MPiN0dVkuy5w1FEivArw9ttw8sk7X25NpyZ5n312ezMGe4rcvWHbmyKu1bYScoZD6dEwqRG+PBJaEopuHYJxWcNS4nDrHpG/BJEB/+TOOyXTzu2WJA2rNbUpk0mu9VdfpZIBR43ac2InvwWqqmDcOKisFLvn1lth/HjpB9vbYcOG36DtuvgquX8zB8Mhn4LJKuOIeBA8A8Qn0Hl8EGlOvTYnVN0S/giPO5L8qrFx15vMzpZ7ef58aG2FG2+Ef/0rJcbh88F//5sSkIJdt4XfFU2Ta+73S1OdkQGZmelNeKW3kjtm3gGAzWzj3t/di8fu2cUavydqBFbdARWvQbAC8g8UW0+xQKRBRIUnvJMu0Gfwy0OLiU9JsYht33HD7eEk+z1JZ3Ebn2/XyzUFRVmtQxCugw7BuKZgE7quoygKZ5+d/nz/GJSUwJFHwocf7nqZY45J2VdvvgnXXPPj7JvBD0dOjgjQeL0i+tfaKp99H7a0bmFhjYijDi8aTmOwkX3L9uWriq+YumqqCMT9SojEIzy/TAoInD/ifMaUjuHqj69mTtUcVtavZFjRMPELgfjwQ/XgLJKCM/tPhvLbILB51xsw2OPous5Z087inXXvANAtsxsrLltBjjP9xo+pMQ753yHMqZoDwImDTmTaadNSRYN2h6JDxX7UYjv5UgFnGSDCa3tMIC7vAHB1k7mZXdAhklfgSldv6fy+vr2egw4qQlGkm503Dy6/XES6MzJg82Z5f955ImT15dYvmbttLkXuIqadNo2Bjw5kQfUCPtvyGb/r87s0n1ogsIeONcGK+hVsaJa5sb0K95I5tARr1ogfoaJC+rs//QlOOQU8HmhrE6GZbdtSAnH3zLqHJxY9QZmnjGp/Nc3BZt47873vdv0NDL6B2lqZL/roI3l/zDEwZIj4O6qq4I03RJBiT471hg0TQeLKSrE3Z8wQgcrOrFsHhYVwxBEyR+JywdVXi1B8bi6EQiIYV1+/5/bL4MeluRmWLJEiVj6fiFK73VBUBKNHpwoxGHSiq77tPegD90f8rG9ev8vvl9QtkfVWSgwNxYenxOEq34Dm+amFe50jPtk9yLnnwt13p95Pnix/HexpgTi/H95/X14XFsKpp+64jKL8dH7ge+5JvX744XRxOBCfWmbmj7pLvz50DVqWQNPsRAySNxGD5AZHkfho88Ywbx783//JHEFlpRQ8yc6Wts7nE4H8RGiuwQ/JD+DL03SN898+n1WNqwA4a+hZ/G3s33ZYLhKPcNVHV9EaluKQf9n/LxzQ/YDd2pbBLwz/Rlhxk7we9DcY9aC8jgcBHcqOk/e6zrZqhVdekTZi/XqJA3E4ZO5FVWVeJhRKrXrSpG+/nVVN5dL3L00WBL541MWcPvS3VGXJwMDAwMDAwMDAwMDg10ssBuXlMt/o9cocp8kk/qYePeDQQ2VsaWBgYGBgYGBgYGBgYGBg8Mtgt0KLtmzZwsEHH7zD5x9//DE2m427O0VPTZo0ifHjxzNr1qzd2qEPP/yQTz/9NCkKB3DIIYdQUVHBNddcw+mnn455F96H5557jvLycubMmcMBBxyQ/O2IESO49tprmT8/FUB2zTXXMGDAAN544w0siQir3r17c+CBB/L8889z+eWX79Z+GxgY/DaJqlEemvsQAKcOORVfxMfxA4/n1fJXuW/2fbw8SVSV3l77Nm3hNgDu+foe7pt9H+G4CD29sOwFEYjreSasvEVWXP5PGPsKOIuhz/lQ9XqaQJyuS8LHhg2SABIMivPW4ZAkuGHDoKwMHp73MN6Il6P6HcXo0tFcM/YarvjwCm758haO7n+0JIRYXND7Atjw6C6PszXsJaJKInhxRnHadx2CcTWBGra2bU1+3iOrR/K12WSmLLOMSm8lFW0SUET/K0UgDiBUC4uu6PJ534Fux4tAnK7C7NNgzBOQOwqibWmLzdw68xtX81XFV0zqMQZmjINglQRZ7XUzZA6SxPi4HwJbJCEKmLZmGtX+alxWFzEtRlu4jVxnLs2hZl5e+TIX733xdz8mA4PtMXXKQEs8j8RDUPMh+NZCqBpy9hahqUgjmB1w8Efy379B2pEO/BvwKwN46imYPVsmfXr2hPx8CTzXdQkyPuWUlDhcbi5cddWOwYMZGT/sYRvsHuefL0HjIMmOF1yQSo7WdQkkz7T3gc02EQJpXZr68ZAboWEmrH8k9YNuk2DNfRBpgk/HwtBbRciiZVHadjsE4nbGzK0ziWtxLCYLL6+UG2pjy0Y894j4hqaLSssrK1/h1oNvBeCJRU8AIjZw51d3JpM+v9j6BWub1jIofxB1dfDSS7B4sSR0du8u96PFIoIg4TDcdRf07v2dT+d3Z8EfoGoa2AvgqJWSQB1ugFBNp4VMMOtEqPsUMvrAITNEHFZTISFmSrhOEgYU07duUtfhuefghRdg6VIRFDrgAHl2dR2amkTI5aWXfogDNjAw2B1OOkmSFtvbpZ89+GBpvztcHYsXw4oVMHw41CSaja+/lsTWXaLFRZwhuA3UdrEVTFYROHaViT1r8N3ocXoqMWPZNTDhXTDb5U/ppO6W0U/GEP71oEbBbIO8/WDAVfI7PY4e8yeF38zmlFjW9gwcKGO7cBjmzJH/nQV8vhdqVO6ReDCxIw6wZoHp16FCd+ONYu8APPHEjonog36Lj0L7Fvnv6Zccy7LyVlj/XxlDAxzwEhSMg8avZdww7J9gy4Ix/4XmBfDJfgCM2z9It27ij5g+HTZtgr590zenaXJvX3qpCMQBPPKI3MvHHSdJ+K+/LuIWEyemfrd+vQhf7JQuJuStXw8PPijiHw0NIhZYViYCuT6f2EI33yx2UjAW5MQpJ7K0biknDDyBd9a9Q02ghmmnTcO0ve2lxcUfEA/KOTPZwZoJlt0QhV92ndjZJrvYh5kDRagv3EmVwJrd9fUZ/Dxor4K1D0DjbFCDIsBtywV0iHpFnHHc63s0yX5Pc+qpsGCBvH7mGRGG3x5dh8Z2UYXsEITrIM8lgnExLYYv4iPLkcUll8Cdd36z4NwPwZVX7logzmqFs8+WNgLgjjtg6FARlVMUabveflv626OP/tF2+TfLtm0wd674o5qaJIHVYkkJ3B9+eHofsSvMZvF7/Pvf4sd64IF0kQeQpNhoVITkusLrq1P+s/EvjE/7burqqdx92N17XmTpJxKRfGvtWzQFmzApJj7b8hlfbv2SQnchVb4qnlr8FI8e/Sj0PAvW/Vt+UH6r+N3dPaD3ObDhMUMg7kfmqcVP8c66dxjXYxyH9DqEO766g0vev4Spp0xNuy9v/fJWZlfN5vS9Tqcx2Mhba9/isYWP8cd9/7j7G7V6oNe5UuBge3qdDZkDABmv9u0r9uHO2K3HxmSG3ufBqrt2/n32COobxYYqdBemfdW5n6oP1DO8L5x1VsrH/fTTMGWK+EsrElNV550n/++aJdu7YOQF6OhcOOpC7pp1F3fNuovf9fkd48eLWExjo/Q31dVia3ZG11PHqmnS3tXXyxxeJCJtnccj4kUdv11Rv4Jxz4/DYXEQVaNYzVbmXTSPvrliaF94YWpfP/wQRo5M3+Yxx6Rer2pYxV2z7iLDlsGci+Zw7CvH8sGGD5hSPoUzh52563NuYPAdOOUUGeeBjMH22++H36aiwO9/n+rvJ02CG26QsWRLC0ydKnNeBx0k4nAA//kPXHRR+no61ZU0+BkRVaOc9/Z5LKqR+ae9S/Zm8omTsVukuOfy5dImLlkC/fvLdR0wQEQA29tlnshqNQTifi4sq1uGjo6CwgMTH0j6WlY2rOSFZS+wuGYxOqBYs6RAWsyb+nG0Rea2q0UUl/z997hA3MCB4qd/6609utpd4nDIHGYgIImYwaDMEfxc6Oyn7vBfG+weuq4TjInP3aSY0otJRprhyyOk2Eze/jD4WpmzsbggHoD2CtAivPcenHii2JHHHgszZ8o8b2e8Xgx+DH4AX96dX93J/634P04YeALlDeVc8+k1jCgewe/6pKvdXvXRVTy95GkmDZ7EB+s/YFblLBZfsphSj9HB/dyIx6VgwYYN4gcNBqUNdTrl2R0zBgqLujAYrvk4NVeT06kwwXt9JV4kwcohMSYcbKGtTeaQp00T/+b2Y9Cnn06tYv2utVqT3PT5TTy39DlOHHQiX1d+zQXvXMCg/EGMKB7x7T/+GVEXqKM1JMKKJZ4Ssh3Zye9iMXjvPZmzWrNGxua5uenxcRdcABMm/EQ7b2Dwa0ENy1yqGpY4N4tb4lWMogUGBgY/EZF4hA0tUpjFYXHQL7ffDsvouhRirq+XOcVwWOYfMzMlpqWo6MfeawMDA4M9g6ZJYd2HH5bx6rnnShxG//5injU3S8zGhAnig3rjDVi2TMZPfftKrJ3JJGPf7Gx4dNephgYGBgYGBgYGBgYGBgYGBj8iu5X92dTURPfu3dM+a2trY9OmTYwfPx6Px5P23ciRI1m0KF084tt46623yMjI4NTtymVecMEFnHXWWcyfP5+xY8fu8rcDBw5MisMBWCwWfv/733PjjTdSXV1NWVkZ1dXVLFy4kHvuuScpDgcwduxYBgwYwFtvvWUIxBkYGHSJV1e+yjbfNgCu+vgqrvr4quR3U8qncOchd9I7pzfPL30egCx7FuUN5Wnr+HTTp1R6K+mR1U/EBypfg8op4F8nwjyKCdpS4nDPPy/B7g0N4qg980wJYLXbZWKqoUEcto6cZv4979+ACJ8VPlBIXIsDsKR2Ce+ue5cTBp0gK93rH5IE3jkxuYOcUVTH4sm3JZ6StK87BOKqfdXJapJWk3WHxJzumd2p9FamROR6ngEbHpcKuTvD1W3nn++M7qdAwQRo/EqqSU/fW5KutUjaYjMrRCDulgm3cP2465Ofn/TaSUzfNJ2ZW2cyydokwg4Ag66BvH0kcGHW8XJ+Ik3g7AYTv06e32AsyEmvnZS2rUfmP8JFoy7a8wmDBr8+NFWe+/rPJeA9e7gIA5jMgCKVozMHiVjkqjskQH7J1SLi4O4Oh86ARVfK8wTgSSg0qGGpNJs9VMRLrJmw9iFJ3Ox9AcddfwwzE5qJX38NBx64467pulQG+vxzSa754AMJRt5+mXhcki7kvZ4UwFQUBYdlT6mZGHwbsZhM0IEkFVx+uQSfdqAoIgQIBdD3YrlnNj0rgjZ9zoduJ0rgaYdAHMCQ66DiVQhWgm8NzDljh+3WBeqSla7fPv1tBuRJYmgwFmSfZ/bBH/WzqGYRPbN6JoXk9i7ZG0tCiKY11Mq65nW8vPJlbjnoFtY2rU221wtrFrKwZmHa9p5a9BS37v8wI0ZIn5efL4lBP6ukn6gEnmJxibgKSFX4qtdh68vSPw2/G5rmynfZI0UcDmDtg1Dzvgi0ABz0IZQeha5LYHFLiwSoRqPytd0uSSVz58If/iCfnXEGvPrq9zwGXQfvKhGgDNeC2Sl9q2IS0To9DmXHgz2vy6usqRHRnsZGSYpVVZlANpnkGMYeoOMJfCztYahWkoxtOaB0ag8z+kDxREkMaporYrCZAxNBhRZAl33L3Rfyf4SsRAOD74DbDf/6l4gn6TpcfDHcfjv06wdVVbBxI1x2mQirfPqpPCvnny/CF0ccIeIWjY3SPxcVqhzi+RNseRGcJSL2mTlI2vN4UMQp/Rsgo29KGMpg9/D0g17nwNb/g7pP4N2eUHqMnGNvp7HdkOuh4QsR7Z13Loy4WwTicsfAihtAjeOwq/ztb3D//dKmX3kl3HuvBNF0sHGjBBr+9a+S8FxfD8cfL0I2w4dLssK6dSJic/XVXRTr9a2FFbdAy0LI2gsKDxIRU8UsgkaRJmnTs4ft2XP3EzBkSOr1woWSLL6zIVlDg9i2q1dLUl2/fiLUYDbLcxmLiX08atSOv/3F0ecCEXapmyFiwIUHwd4Pw4h7YGonY3Hw9dB4rPTBn+wLA6+WtqN5QXIRm03nn/+UhOxYDPbdF/7+d9h7bznPS5aIGG15uQhtTJsm5xnkeizsZNaVlMA114ggldcL//gH5OWJWJXdLm3fypWS0HRsFxLy4nERJGhrExu4pib92eqMrutc/O7FLK1byuVjLuehwx/ihCkn8Pbat7lj5h0iWhxpFnHI+s/Bli3PiLNUhLvViDw32cOh9MiuXYdQtfy3uFL+jtblsPEpqHlPxOIG/Q1GPSi2ZHulbEOLiLAzpoSgo0cSSQ1fw8+DL4+QcVLuGDhqhfS1dTPETnUmVF+8qyBn5E+6m9/EpZfCY4/B1q0i5lhXJ+OJkhJ5jj7+GAYPhiaaAMhzptv/nd83BZvIcmSRlQWPPy7iHdszbBgUFu74+Z7g6KPFZnrxxfTPPR74859lPHzllXK8fr8s36+fBPavWydCZZ0TKA12H68XVq2Se8frlfa8QwRZ0+S+WrZM+g5dh7/8Ba6/Pn08HwjIX1f561/hlVekb7/nHvFxnXii9AWrVomf5M03YRfTijswddVUAEYVj6J7Vmo+9P3177O5dTNLapcwunR013ewK/xAIpJRNUpDewMANrNtB3/9k4ueTGxG54E5DyRfA0xePpl7f3cvGbljoPhwsYM3PgWty6Soiq5BYBdKYAa7TTge5rpPr+PtdW/TJ6cPNf4aHpz4IMcNPC65zJrGNfx1+l8BuHT0pfTI6sFTi5/ijdVv8MKyF7hw1IWAzDfd+/W9ZNgyuHKfKwlEA3xV8RV/++RvHNj9QEaVfAcDd9htUqBHDac+s+fDiHuTb81msQPHjxe7rDO///2OwhbfyuBrxYfWvjX986xhMPRWGt6XefwCd0Ha13aLnhqp0AABAABJREFUnUx7Jr6IL3n/P/SQJDZsk6k8fL4dRUznb5vPZ1s+A+De2fdy7+zUsX259UvmVM1hbPex3Hor/PGPMhe3zz4yVzdqlDy6S5fKOZg8WQqtzJwJPXrI8gMGyNhNVaG2VkQETjtN5tWOeeUYQvEQH5z1Ab6Ij+NePY6jXzmaORfOIc+VR7dOU2WbNu0oENeBqqlc/N7FxLQY40rH8dGGjxhTOoaVDSu56uOrmNh3YlJAb3s/Yywm67DZpN8sKtq1oLmBQQcd/mmQPv/H4h//EHGHlSvFprvxRvnrYNCgjnkQYd26dPHGzrS2wiefiG+gsVGKzXT4BkDaszFjYJ99fxox198SUTXKaa+fxjvr3uGuQ+/CYrJw3YzrCMVCvHHaG9jMNi67TPwOAK+91jWfTVOwKRkfUeAqwGzaeTFSgz3P4trFAPTL7cffxv4t+fmqhlW8sOwFGoONbPNto/ugv0txjfrPYO2/of8V0O8SiZuZlv2D7uNDD4nAZW3tjt/tyqf0XbFaJSHzmmtkfuy00+C//4U+feT7WEzGMn37iv3wY3PTTTBjhry+6ioZYw0enPq+oUH+hg798ffth6CiQvzwtbXSn20/dt1vvx2LYnwT7dF2LvvgMl5e8TIH9jiQ2ZWzue3g27hpwk0ijlj9rojDAQy/C4oPlTnP2adJgYGYF+wFzJ//MZrUVePgg3duQ3dV/NzgJ6DD2NiJTTB943Ru+/I28px53H3Y3Wxo3sCJr53ImdPOZOmlS+mWKUb/04uf5uklTzOscBhPH/s0zy19jutmXMepr5/KF+d9gc2cKioZVaMsqV2SHMfvXbJ3UlTVYCcEayQOpmmuxB/kjJJCsSZLKvah5Mh0P66uiW9eiwKKzA2YbKAo3HGHFCrw+8XPdeyx4vey2STxvr5e/FuFXfH5xNvB3VPEIjc8BqVHyz6eUCVzk/NlvD9njkJbm/zk0EPFz9oZk0n6kL/8RQootbTAbbfJ+O7000WsVNNk/mbrVpl7fGvNW9w7+166ZXbj4SMeZlbFLM59+1wmTZ3Eoj8sIseZk9hdnacXP811M65jcMFgVtSv4Jzh5/DwEQ+nBDG9q6DuMxnH2/PAlifzkIoiRXgchdB90ve/ljth6qqpXPDOBQwtHEp9oJ64FmfaadPYr5vEixxzjMy5gxQ/mjhxx/FBhy8jGJT+oalJ+uxoVC6XzSbj+iFD0uOwDAx+82x7V9pX/wYoOULmTi0eQIG4T+ZbhyTitJsXSHHumFfiWDtiwdAkJq3Hqd+woXQ2bRLRx6oq8bcVFEgchckk7x0OKRph8OPQ0N7ArIpZgBSTP7zv4bisLkD6nq++EkH/igq5ViUlqeuladLGnnGGzEkuWiRzTL17S0xoZzu9tFTmf7qCrouQ/ObNMvcZj4vd3+Hz1HXxZXf4Xtc2reWVla+g6zqKonDm0DMZXDB41xvYCfG4HOf8+RIfmZcHxcVyrB3HkJUlx/qbQlOl4Hm4AbRwwrZC4lAtGRKTopihbZnEtkcawexOFLlUxCZDk7itrjitE3ZWjb+GU6aewrK6ZRzR7wjeXvs214y9hnsOuwezycymTRJz9eWXYi9deWXKjx+Py72zevXO2xJVlT+zOXWPGhgYGOxxkmPSGKBIMeNO8b/NzWILdcTjdx67eDzSTt15pyx7yCE7xtF0MG2aFAQCyUv8v//bedsWCEgM4KJF0rf26yd9nTkx7FNVGZMed9yOvzUwMDD4paBp0rbW1Mg8ckcshckk48z8/PSiaW3hNlpCLQBk2jN3KLwLIlo8eflkmkPNAAwpGMJxA44zco0NDAwMDAwMDAy+M7slEGexWGjrmGVOsHTpUgDGjBmzw/IZXcpSTae8vJzBgwenCbcBDB8+PPn9rgTiysvLGT9+/A6fd/x21apVlJWVUV5envb59svOnr0LsSIgEokQiaQEh3wdEeThJlAaJGnPZBdxAkVJOJl1CZS3ena+UgODnwO6JgmuWiQ1mQKJQA1zQnTDyAbojKZr3Df7PgBuHHcjpww5Jfnd9Z9dzyebPuGhuQ9x7YHXMmOzRFPOPH9mWoXF0U+PZkntEiYvn8xNE26C/V6QIJ8tL0LrUvnrwOyC/LE0z0tVhS0okImpoiJxNoTDKcfDQ3Mfwh/1s1/Zftxy0C3J1UzfOJ3/LPgPt355K8cNPE4CEp3FcPh8+PJo8K1ObbPbibDvc9RUpbK4izOK085Dx/saf01S/K17VvdkFegOemT1YHbVbLZ6ZRkUExz8ESy8XJKLksfphKG3weBrvuUKdEIxwYR3YNEfRVxPV1PicIoJup+K11bK0jo5nwf1OiitYu+4HuNEIK5iJhz+ADR8BZWvwtyzoO8lIjzT7zLY/HwicFNh3rZ5zK+ej9VkZdlly8hxSFBUe6ydEU+OoLyhnM+3fM5hfQ7r+nEY/CpZXLOYpxY/xabWTRw/4HjeXf8u/XL6cemYS9m7ZG8IbBCBt1ibiBIO+JMEy23+H7QuEUECxQJHLZVnZv7FIob4Xi9w9ZCgmsBG2ZglA4b8A4LV8lx9sp8kbWb0kXXEg8n9uvzyVNLL/feL4GTv3tJ+BIOSMNezJ0yZIgGEb74pkzajR0vAm8slgeCLFsmk0UEHq7y55k0emPMAvoiPEwedyOTlkxlZPJJrxl7Dwb0O/uGcmJoqwQO6BnQEUipyzGZHl8UTgkE5H+3tqcq+HeJVui4O327dftxkp93BapXJtyuugLVr5VqdeWbqura2SjLU738PI0f9S3606RlYfp38KeZUZWJbrkwk2nISIoR/grrp6Rt0lsLwu/hiyxeAiKAeO+DYtASb4UXDWV6/nM+3fI7L6kLTNfrn9mfBxQuS90NdoI7Sh0rZ0LKBRTWLeGnFSwAc3vdwPj774+S63ln3Die9dhIvLn+Rfx58F2ef7eKxxySw9b//lSDOoiIJqvH5JKj14IOlr/zR2fc5mPt7EUH9eJQIvjpLJaC4IqHcpphg3DRY8AfY9iZ8dbwIn7m6Q7eTkwJx7UEzxx0qSSoZGfDUU1LBq2OoFYlIUNGECRJANHWq3Ae33CIJ8Lm5cv82NcmExWWXQSAa4KUVL/HMkmcYXjScHEcOn2z6hLOHnc3Fe18sybUr/gGr75Fn6HdzIHeUCJU0L4DGWSJiYrJBr7O/9XTE43DAAdJeuFySwHfYYfIa5HlrawNbrALmnCXt4YA/S3toy4GKKSKg0vB54tyZYe45Mvm9z5MSAKSYZLnmebJs42zIn7JHL6uBwZ7kkkskEOOf/5Q2u6pK/kD6nYEDpR3/7DMJSFu2LBUk2BEkCfDs0yqH9N0Aakjabk9/+WuaK39rZLxC9jAo2IkarAG6rlMbqMUf8QMintEjq0d6wui+z4hA1KZnRTR68/Op7+z5UHgwlBwO+/8Plv49Ifr9mviH9Lj0r4oZbLnccYfYEo88Im36//4niYBut9hftbUiJHDHHRIcet99krTQkbjQgaLAn/7UxYNsXgg1H4gY3PA7oeh3oMeg8g3YOlkE5FqWwPhp3+dUficaG0UwccMGOQcnngg5OXKfd7jVNE369K5w3XWSkPP003LuPvkExo2Tdba3w/r10o+2tKQCn15+Wbbb0S+BjK23F7b4xTL8TogHYPML8NnBIhLo6iH3QwcmK5QdAwe8Asv+Bv71sOiK9PW4e4E1iwsuEDv5H/+QoNjOifiQSlI0mcQuuftuud87i/04HGKnFhbCrFlyL8+cCeecI+OS3Fy5jtGoCM1tL1K9MywWsX9uv118Jn/+s1zXsjJ55nw+EeIYPx7eqHmQV8tfpWdWTza0bOD4KccDkix+28zbGFE8ghMLu0PVmxBpEPG8Xr8HRxFseFKSlutngL0QTqjo2nUY/agkQTR8AR+NhB6niVBcwTgR3elg9pni13D3hnGvS5se2Cpjvur3RFR8kENsM4OfngF/kkR27ypYc79cT7NDEgy/SkQ9Ost+1gJxHo8koV91ldjpr70mf5155BFoDDQCkOfaTiCu0/vGYCN9cyWD+uyzJdHjH/9ILTt0qIxVHD+gjvx//ysCPcuXy/uMDHjrrZRIyH/+A927yzHV1kpC+MaES8XtThcT+UXwDcnHPzYffAAnnCDju5NOgueek/63A10Xv0tbmwQKNzWlkitCIemHIxFJoLXZJGlmezoOs7Obp3t3mDNH+pJPPpF+Zdas1PcORxcFdYGNLRuTQhavnPwKg/IHJb87+MWDmVkxk9dWvbbnBeL2MMFYkGeXPMsDcx6g1FPKYb0P48lFT7Jft/34x/h/MK7HONY0rkmK82/404bks6tqKr0f6U2Vr4op5VO4eO+LYdwb4rusnCLFWZrnpzZmzRRR5C7S0ADV1WIXOBwpEZ4Ou0/XxffW2S77tVPeUM6Z086kvKGc4wcez8Q+E7nn63s4fsrxXD7mch48/EHMipkzp51JKB7iyH5H8skmsR0O73s4U8qncNVHVzGuxziy7Fmc89Y56OhM7DORRxc+mlzuww0fcvobp7P4ksV47Ls5X+3qJnM2yxPJnLYc8Wm5ytIW239/aV//9KfUmPXww+HJJ7/DibFmwv6T4YuJqbmenFFSSMHipL5dih0VuHZ0/BW6C/FFfMlliookMe+668TX3ZlDD5WxxuVf3Q3AWcPO4o/7/DH5/ZOLn2Ty8sncPetu3j/rfa68UtqUW24Rf9xVV6Wvz+OR/mX5chlTdOsmYsqdBeJaW6Ut9Ef8HPvqsWzzbWPfsn2T840ji0eytG4pJ752Ip+e8ynPPuvAZpP+7PTTxQc6cqRsy+uVdvT44yE47FHmbZtHv9x+jC4ZzcaWjeQ585jQcwJfVXzF1R9fzRMTX+L442HBAvn9k09KAofLJc9hOCw+1dzcn68P3GAP8j3tiGnTxL81Y4aMuydNkrkjt1vu8TVr5J494YQ9t8sg9+vnn4tA4+TJ6UJ1JpMUV/jb32QfnnpKhDu++ELGgrm5Yo9s2iTJyNGoiGcAPPusJHx2FntIFmrZDTHXhvYG3l33LptaNrF3yd4srFnI8KLhHDvgWLId2Z1+qrO1bSuNwUZMigkFhYH5A8mw7X6M1S+dmBrjjDfO4J1179Anpw8bWjYA0DenL++tf4/TXj+NqadO5T//sXH++dLunXuuFN0YMEDuufZ2aZf79oXDDtP5cuuX3PP1PSytW8qloy/lgw0fEIgGuO7A6zhn+DmGgM6PQIddPbJ4ZNrnA/MHYjfbiagRFtcupvvAv8ic0NqHYOlfpNCGs0zEckDmfszuH2Qfe/eGxYulWEHnMMFx48Rnu6f561/F9r37bvjwQ/nLyxMboaZGkoy++uqnEYg76CCJBbj2WpmLGDJExlr5+eJHragQH+BdtzTLXGHcD9Ysie1RFETYI2HQZw7YszvX1fiCLvZnF18s41UQH/IFF6QEG0Ds2I6w0LgWZ0H1ApbXLadXdi8qvBX0yenD+B7jk/FGa5vWcsrUU1jVuIpDeh3CUf2OoinYxK1f3srsqtm8dNJLFPQ8C+o+lTmDBRdJ7JFnQCIG6QXxFzpLuflmSbB9+WWxXRcvlvnVnByx06qqZLzc2ddi0HUCAbnHV66U2+Wyy9LFZDoKIx500J61hSu9lZz95tkoisL+3fbn+hkyrhrXYxxfV37Nqa+fyszzZ7K4ZjF//PCPeGweSj2lnP2mzMEPKRjCnKo5XP3x1Tx+zOPEtTgvrXiJ22fejoLCJaMv4fmlzxOOh7l5ws2cP/J8rGYrMTXGtDXT+NfcfxFVo0zsM5GXVr7Eob0P5a/7/zXl29DiMu+vhhKxIkr6c2fLAYu0w3EtzobmDYTjYXR0XFYX/XP7p+bTNr8oRd7iISlcY8uVObVglWxDj0Gfi1KF835MGr+C9f8R4fMDXoKSowANKqfCtrfFv9uyRETi1v8XIvWw1y0SaxX3g3cNBCukeF3fS2htnUgoJKvOyxM7s2Mc5XRKm97l+8jihvHviBBc01x4uwxy9wF7LvjWyTKKmYsv1tmwScZx//63zClOmCBtdTyeSly9917x9/7xj2I3n3++/OXlyXMQiSSKEY9dx3lvn4fVZGVY4TCu/PBKAMaUjmFRzSJ+/9bvee/M9/BFfFzy3iW8vvp1+uT04cyhZ5Jpz+SpxU8xp2oOr53yGoOzSmHGQRBthp5nw9BbpZBi9QdybutFkJ2C8ej2fBbXLuaVla+g6RpDC4fy+ZbPOaTXIZwy5JQ0UboltUt4Z907ZNozybJnsb55PUf1P4oJPSdgMVlQNZUbP7uR++fcj9vq5rDeh+ENe3ly8ZNMeHECjx/9OBftfRHHHy9iPT5fyvfdrVsqPq66Wt7/+c9yzhwOWW7vvWXsbDLJeWtrS/k7fpPoeiouTzGxQ3uxh2hqEt9ERwGS7Gzp/zr7DwsLpX/UdI3yhnJWNayiwF1AQ3sD/XL7pRUt3V1CsRCBqExqmk1mchw5v9mkbV3XWdmwkhmbZ1DgKiAcDxNRIxzR9wj65/WXharfldhWVw/oda4IxPlWS3tWfntCILJI2mDfWsg/EA56X2IvGufInHTDTLm3skd0yZacP1/G+LGYiJ28/rq0cZ3paKN1XWdt01qmb5qO2+rGYrLQEmphYt+JDCsc9p2ubSQeodJbiaZLg1DgLiDXubvVMXaDWEBE9dRgKp8DExIjq0tf7V0t8SDheunL7AWyfEfxDV2FgvFdLxjYlfOi67RH2/nX3H9x/5z76Zfbj/NGnMdDcx9C0zX+efA/OX/k+SxeZObYY2Xcfthh4lctK0ttQtOkfX3jDbjoIunTLrtMxLry8lLLxeM7Fv34Jk48Ed59V15Pmyb+qc5iN6oqPp/2aDt3fHUH/5r7L/rl9uPaA6/lgTkPcM/X9/DX/f/KzQfdTIYekQI6/o1SsDN3tMwHty1PiPeIEOqMtWdxwgmy3pNPlmMtKEg/Vr+EJVEfqOfxhY/z7NJnmdhnIuF4mLnb5nLZ6Mu4dMylP+w9tSeI+aCtXAre2bLE7lMsif4h0Vg7S+S8rbpDztPYKdJGRFvBu1IKEoXroeeZYn/VfSKxEYd+LnMSrculjaj7RM6xp3+XfXRzq+Zy8tSTqQ3UcuyAYxlZNJKV9St5YM4DLKtbxpRTplBdncvixWIf7bOPCH109uO3tYlt9d578PDDEmty0EEiPJuVJX1TPC5/xcW7LuzyayUaFTsqHJZ7W9NSl8Rslv77h4wJMDD41VL+T6h4DdAkVs3VDUI1IijuXw9qCHXIbRxy4l7MmiXP2VtviT9z+7GLxyNFIR5+WMQwL7hA5hgLC2W5pqZUTsmhh8pYaOZMKQY5erQ8x6oqsZ1NTdIPX365tHtXXSW5Kvn5qWc/FpN+7q23pO2sqZG+f9gwGScrSkpIrmdP8c0aGBgYfBsxNUaFtyJZDCrHkUNRRtF3Wlc4HmZ25Ww2tW6iR1YPKtoqGFE8gjGlY7CYLKxaJfZec7PYhy++mMrDg1TMG0j+9INzHuTpxU9z3MDjyLJnMXn5ZM4ceiY3jL+Bfrn9APhww4dc/fHVVPmquGn8TWxs3cgNn93A7/r8jkeOfIQhBUN2uq/fGV2XObdIk/hok+KiHfM4msy5Ob/bOexSfMEu7HRdl35m3Trx+QwfLv5UqzV9zNStm8zZbdkiNufo0WJ/m80pP76qwogRYpN/K4HNUPsJhGsl5siRCEgM1ZIcV3sGQvavpEKSQRqqKs90h1/cZpM5oc5+xrw8sZv2NK2hVr7c+iX+qJ9sRzbNwWbGdh/LgLwBv1lf4x5F10VIWYsCWqeqkSZp98x28V2EG8VHZurUHioJMXqzUzQ1ukgkIu1XKJQSje+wcXVdYpnyd9QJNTDYgWhUYjBCIRlHWa3puXPw885l0HWZo6yrE59vZqbc/53jwDVNYlLNlq75mQ12H0XXu37mRo8eTSAQYN26dcnPbrjhBu6//36mTp3KySefnLb8BRdcwKxZs9jYkWHTBQYMGECfPn34+OOP0z6vra2ltLSUu+++mxtuuGGnv7XZbFx44YU8uV2k+dy5cxk7diyvvPIKZ555Jq+88gpnn302c+fOZf/9909b9tJLL+XFF19ME4HrzG233cbtt9++w+d3XDKCXLfGltYsvBEbZkUn0x4hyxHFatJoDjlY1SjOeh0dhV3f1G2uNuqy63DEHGSGMpOfx8wxWt2tuKIuujV3I8cWZ2BeK/muMJquEIha0XQFm1mlwB2iPWplVmUpFpOeWC6EDgRjFjRdwWWN47TECUStvFdZxNbCrQD0auyFRU1Njm7L3UbIFiLfn09mU19aWwcSDudhMsVxueoxmxOdKAAmrFY/scJV1GXXYY/ZyfenejXVrFKfVY9ZM9OrsRf1WfX4HX6yglnkBVIzdEF7kLqsOmyqjV4NvTDrqVmZd997L/n6+E7lBVzWGPuV1ZHtiNDQ7qLS6yGimslxhHHbYnhsMcJxMwuqi7GYNEyKjqYr6MlroWPqGFDoCi1tvWhpGUw87sbtrsHjqcJkipM0/jFhNofQNAteb3/C4RxMpjgORwsmUwxF0RLtkhl3RhV13ZcQtoYp8BWkHavX5aU2uxabaqN3fW9MKPTI8tMnx0uOI4LDomI2aURVM4Goleagk/nVRTgtKv3z2ijzBMiwxbCYNOKaDNjaYxZq/W5mtbqoyqvCrJkpaylL3nc6OtW51agmle7N3dnLodEvtw2rWWNzaxb+iA2LScNljZPrDGNSdDa1ZuKwqBRnBDErOvXtLiJxM3aLitWkkmmPoeoKqxtyaWjrSTTqQdMs2O1tmM2RxGBNBxSZ93G2oCgakYgHr7c/7e0lxONOVNWOomhYre24XHW4e33GttxtmDUz/er7YdJTomNb87cm780CvySBlGQEGFzQSpY9gssaR008G43tLtY3Z9MalpF5lj3C4IIWumf6sZk1IqqZpqCTTS1ZVPlSVr3FpDG8qJG+OV6sZg1/xMbWtkzWNOXQbopTmV8pz01DL6xaqiKHz+lL3ut5/jwashowa2Z6N/ROe/6bMppozWjFEXXQvaV72v08prSeXGeEqGqixp/B6sYcoolnMx63EQj0IBAoJR53o6p2NM2MyRTDZguQnbOGpt5ziJvjFHoLyQqlysjGTXG2FG4BoHtTdxzx1AyM2xpj37I6nNY4axpz2dImv/M7/NRl12HSTfStTy+V23GsJs1EVjBrp8cD0OhppM3dhjPqpFtLt07f6IwsbqJHlo+2sJ0ltYUEol0Zpe+cIneQUSUNOCwqTUEHqxryaA07CFlDbMvbBkDvht5YtFQ7F7AHqM2pRdEV+tb3RUHBZY0xKL+FPGcEty2GSdEJxSy0hBxUejNYqYRpde/8WKtzqgnag2QFs+jenovTGses6ERUM6qmoChgUnQsJmk7gzEL1XWjaW8vJR53kpOzBrvdi6KonfwnCnZ7G7GYG6+3L+FwDqBgt7diMql0iGLpupnc3HJisUzicVeiEowPkym+gy/G6mymNaOVVncr9pidjHAGZs2M3+knaAviCXvI8+dhVa3ETXE0k4amaJg0EyjIa92EWTNj1swUuEIUukNYTRotIQdR1YTFpGE1a7itcXSgyuvB3+n67qpNt5g09iuro8Adwhexsbk1k1DMQqY9itsWJ9sRQdUUZleVoHVqF3a1vljMSShURDzuTDwnfhQl1umqKZhMMex2Hz2yfPTK9pPnDBHXTMQ0E7qu4LbFCMUsrGnKZUksTn1WPc6Yk4xQKlkjZo7R5m7DHXFT1lJGc0YzXrcXd8SNI5p61sK2MO32drLbs8n352M1afTN8VGc0U6GLYbZpCfuFZ1I3Iw3YmdBdcegU6ckI8jgghay7BE0XaE1bKfS66GiLTPZrzkscYYUNJPrjOCxRVF1BX/ERo3fzZa2TKKqBV030d5ejM/Xi1jMQzzuQNfNmExR7HYvublrcDqbAGl3WlsHEw7nEI1mAQo2mw+3u5rM7A005G2j3d5OZjATezwV6dhubydoD5Ldnk1OWwnB9jJiMTegY7d7E32m3inJV8fmaiDgCOB3+omb4jhiDky6iaAtiFkzkxHOwBP20NMdpn9eGy5rjC2tmfijYoM5rXKPmBWdLW2Z1AXc9M9toywzQJY9QjhuQdXlPHlsUQJRK4trilldMZZIJBtNs5CdvR6LJQzoKErH86XgcDRjNqfUQnZ1z3Vcg365bXTLlL7aZlbRdAVVUwhEbVT73WxsyWZQfguF7hBR1UxryI6qm9B16JXtw2rW2NiSxYp66ed6ZPkYkNdGpj2K0xInrpnwRWzUtztZ15RDe0yer1Aoj7a2fsRimcRibnTdhMXSjtPZRF7eaiyWUHIfhxY2U+oJYFZ0fBEblV4Pm1uzUDs9WwAD81oYkNeGpitUej2sbsxF1U277MsA6rLq8Dv9ZIQz0NFpd8g9UuRLdypX5FcQtUTJ8+fhc/qIWWIU+ArIDmYnl9HQ2FS0CRQoaynDFXWhqjb8/h4EAt2Ix53E4w5AwWIJYbe3UVCwFIslTHt7CT5fT0KhAuJxB5pmA/TkcoW9PqaisAJN0ShpLUnrI+qz6olYIhR7i+mrORic30qOM0xdwI0vYfe7bTG6ZQawmjQ2tWaypFaOL9cZZlB+C5n2KC5r6nrV+l3J5xB0umcG6J3jJcMWw2FRiakmvBF7crlgOBOfrw/hcA6q6ki0YWrC3lTQdTOFhUswm6PE4w58vt60txcnbCtHJ9uqnsyiRdTk1hA3xclpz0HRU3ZJm6sNXdEpaS3BFXNS5mmnLDNArjNMXDMR1xQ0XSHDFiMSN7OpNZuNTYWoqj3Zdkif1DE2kHWbTDF0XcHn60MolE80monFEsZkitFhH2qamcLCpbgcbfTN8VLiCeK2Sjut6gomRUfVTHgjNuZvK8ZhidMnx0tRRginJZ5czqzoRFUz9e1OyhvysZpU+a1uQtNlj8ym1AggpinEtfRyZx3P9fbPNECeM0S/3DaKMoI4LSpWs0pcMxGMWWkN2VlWl48/Km1gPO6grW0AXm8fYjF3YqzQTHb2RjIztybXGYlk09o6AL+/B6pqx2SK4XI1kJOzjkjhKuqz6rGpth1ssG052/A7ZSxV2lYKQLYjzPCiZnIcYTJsseQ9VxcQW7g9ZsPn60kg0I1wOA9dB4sl0uleMpGXv4K6vjOJm+OUtJWkPYcBe4CqvCpMuoleDb3YUrgFXdHp2dQTVzSVwd/kaaLR04gj5qB3Y/pM/jed3+KMdvrkeClwhdB0hahqSt5zUdXM1rZMVjXmdXF9Ov1yvXTP9JPjjBDXFFRN2jW7RcUfsbK4toiWkGOHde1q/34IdB3a2gbi9fZBVe04HM3k56/Ebm9LWy4UyqWlZS/C4Vx03YTd3kp29iYyMqpQFMh3BRP2Sxi7JY7VpCXuTQveiJ2V9XmE4jJe8fl64vX2JRqVPkJRtESfXkN29rrEdvJQFA23uxqLJZzoC3V0XcFk0vB4KtE0sSVAw2TqLNIKHQlhdblVeF1ePGFP2hhAQ2NDyQY0RaNbczc8EQ+6ruD390juWzzuTPRfIRyOFgoKlqC4mghbw0QtUVDAFrMRtUZRdAVr3Ioj5sCm2ggESvD5ehGJyDjdZvOiKFrC5pBxc0HJXPxOPz6nD0VXcEVdmFUzAUeAuDlORjiDrFAWVjU1znNbY+xTVkeOQ+yJCq+HdU05aX2mSdHpk+NlQF4rDotKKGahPjEe7TzO0TRz4nj7EY1moCg6dnsrmZlb8Hgq08YBPl8v2toGJNqSjjZiDQWZjYwuaSDLEaXKm0F9uwtVUyh0h/DYo7itcfxRK3OqSnFa4vTKlvbVaYljt6joOkRVM+0xK5XeDFpCDgbmtZLnCuMN2/FHbaiJIL4BeXJPrmrIY11zDr2zvfTI8pPrDAMkz4HFJOPmJbUFtIQc9M7x0SPLT44jnNimHFgobqYtbGdeVTHN3t4EAqXEYh6s1gBWayB5z4kPQaGkcDmDC1opcktyaHPISUw1oQOlnnY8tih1ATezq0oT581EW1tfgsFiolEPqurAbA7jdDaSnb0Rh6OVUCiPQKA7oVB+0hfR0YcpikZeXjkZGbXJa9aVNsJtjbF3SQNlmQFMio43bGdrWybrmnOIa+m2VVtbP5qbhxKLubFa28nM3EJe3qqE70lQVQtNTcPx+aSNsNl8ZGVtIjd3LTW5VficPjJDmZS1potzbCjeQNyU3o67rDEG5LXRPdOP1awRjosfZHNrFk3BVAa8gs7gghb65HixmHS8YRtb2rLY2pao9k7HvQmBQBktLXsRi7kxmyNkZGwjN3dtwleYIhr1UF+/D9FoJg5HC/n5S7Hb/Tss09IymGCwCE2zYrUGyMioIidnQ9o5+TY0zUQg0A2/vyexmAtVTbUldnsb2QVLqC5bha7oSZuyA6/TS0NWAxbVIv5RRad3jo/ShO/NYREx5Zhqoj1mpSnoYFl9HjFLjKgliqZomDUzCgoxUwyzbsYat2JTbUl/Voc/KssexW2LEU+MDeoDLja3ZhLTzPTNaaPQHcJljdEes6Jqct7zXGGCMSsr6/PYWLsXfn93YjEPDkcLNpsvYR/qiYlrE1lZm7FYUj7ub7uHTYrGsMJmSj3tZDkiKCC2a8C9QxvWeX3f1GcWZ7Szb1kdHluMQNTKlrYsVjXkEtcV1pWuQ0enW0s3POGULy6uxNlQIoIAZc1lVOdVA+LL6ezD8jv8bMvdhqIrDKwdmOZv29WxBoP5NDcPIxr14HC04vFUJMak0NHmmExRbK4Gua7mKJpJw6pa0dBQTSpm3YwtbsMat2LChMWk0ifHR7fMQLJ9VTWFYOIe2dCy47n7Pui6gtfbm0CgG9FoJjabP9FuSl+s6ybM5ij5+eW7ve543ElT03CCwaKkvZGTsx6Xu4aNxTLHU9paijuSSs7X0NhUvEm+aynFHU1P3Pf7u9PQMAqns5Hi4gWJ8cIPi6aZqK0dSyzmoahoPk5ny06XaWoaQSBQhq6bcbtryM9fmfADpAiFcmlo2IdwODdpGxUULMdmS7Vhuq7Q1taPlpYhxGIZmM1R3O5q8vNXpi0HEIu5qK4eTySSi9PZRFHRfOz2HTNa/P4yGhrGEI+7cLnqKCpaiM0W2GG5rvBtz34kkonX2yfhl3ShqjKekXazldLS2Wiahba2AYRCBUSjGVgswYT9pwEmFEWle/fPiUSy8Pl6Eg7noaoOLJZgmk/FZvNRWLgUTTPR3l6aaMcyicftaJo16dvOytqIomjJds7pbMJma+vUHyhJH03n/iQa9dDYOCpxvVTc7lpyc1dhtYa6dK46+gGzZqZPQ5+075K+j5iD7s3dd7GGH5Z43EFrq1wHsZv8ncbg4hsoKPmahqKNRKwRcgI5abasz+kjbAuT589D0RWaMpuwxq30auqVtp36zHp8Lh/usDs51gTxoY0prSc7YQtv82WwpimHuGZG0yzJ8YH0Rym/dgqNlpbBhMMFqKot0U+F6PC9iW9QweFowmJJ2RJd6b/65PgYmNdKliMi9nPCB7quOYdgzJq27LgetZR6AoTjFjY0ZyfmbtN3Nt8VYr+yOrIcEYIxK1vbMilvyCOumVhfsh5VUSltLU2bd9HRWVu6FpD2sCa3BpA5V2csZWsFrUEqCkRgtk99H7blbUMziT/KEUv1c02eJvxOP56QB1fERX12/U7nmGqzawk4AmSGMjGr5p366HR0KvIriFli5PvyyQl2Um/cDYYXNVGc0c6imvSx9PYEAmU0NIzG7a6hsHBxsh34LuS7ghzQrY76dheLaorQEuOJqtwqwrYwOYEc8gPp0VVVeVWErWFyA7lp87EgNnhr6wBAISdnLVlZm9BMKpsLN6f5HDsIWoNJW6RPfZ/kfLXYwt1paRncyRauJidnDRZLFF03EQiUEQiUEo1mo6p2VNWKyaRiNodwu2sx9fqCFk8L9pidHs0pJZjO16uzf1RVrbS2DiIcziMazUDTbFgsQVyuBrKy11JdVo5qVneYE4xYImlzmXo4+1v8jBZySuZQUbJexuwt3bDFU7ZMfVY97fZ2cgO5SR+v3RxnZHET+a4QmXZ5fsWOdLGhOTvpK3Nbo4wobiLfFcZjixLXTLSF7VR6M9jYkk1MMxOPOxO2TndiMXfC72hKzlkUFC5iW595qIpKWUsZmeFULEVnv1W/un60O9ppcbegKRquqAtXxIXP5SNijeCMOMlpz8EZcybmSHon5t1InJMOP4eC2RyhqGgRADmOMMOKmshxRMiwxdB0BX/USkO7HOsqR4v4QUIeurWm/CBxU5yNxRvR0enV2ItBrhi9c3w4LXHq212EYhYsJg27RaVvjpeIaubryhKqW4tpa+tHOJyPqto6zR3qSV9efv6KZPyGomhkZFQl/X0pdDIzK3bxpO2Ippnw+3vg8/UiGs1O+NQtmM0xbDYfubmrk+uLxZy0tg4iEskhGs1A1y1YLO24XI3k5KzDam3v8nZ3l0gkm/r6McRiGdhsbeTnr0iz/XTdlLBzSjr5BiI4HE1kZ2/E6WwmFMrdzjfQuQ/TyM1dg8ez7Vv3RUen1d1KS0YLjpgDV8SFWTMTN8UJOoLJ+Q9P0EPAGaDN3YZJN+GMOLHH7AScAcLWMM6ok+z2bBxxR3KOqXtmALctht0stnRUNeOLWKn0ZvJZPLxT3xvApqJNRM1RirxFeNrKaGvrn5gjcSZiOKLJ+0TXzXg8WwgEeiTH5Tk5a7Hb29KeB103JebJUnOs39RXl3lk7iPXGSEYsxCJm9F0hUx7FLtFpbHdyQfNLhozG7HGrfRs6pkW07Kz9jAczqWtrS/RaFbCfrVisYRlzJ+zlmDBOlozWnFGnGljzaglSpu7DUfUQVlrGSbdRK4zzIC8VgrdQVzWOJZEXI4/YqMx6GRZXT5xzUy2I8KQgmbyXSHc1rjEDcQttIXtVPvcrGuWWDCLSU30l0GyOrWHNX530j8PUORuZ0hBC1mOKG5rLDmH2xh0sqE5G1/ExoC8VvF52WU8rWoS25TvChGMWVhaW0Bt4KcVFMy0RzigWx25zjBR1US1P4OV9fm0x6zf2Fdvzd8qdok/n5z2RNtrVhmY15qcGw3FLNQFXGxsyU6LLfgh0DQLdXX7EA4X4PFsJT9/5U7tl2/yg6iqDZ+vF35/j2R7k9Z/FSzH5RLxWl1XCAS60do6gGg0E0XRcThayMrahNtd/UPorHQZXYdQqJDW1gGJuQgLVqsfj2cbWVkbGFpUT3FGEB2FrW0eInEzHnsMtzVGUUaQuGZiaU0hayoPIBQqRNMsZGZuSYwh1U7bMeFw1OPzDSAUykfXTbjdNYm5iM5tDmRlbd3jxxgIlBEMlhAO5wJ6oj3sGLuayMxaj1KwjmZPM4qu4I64scfsRM1RgvZEmx7IIyOUQVV+FXFznKK2IjLCqWeyJaMlaZt3a+mGgoLbGmPgTmKQWsN2tvky2JaIVVNViUMMBosS/k1HIpallaysLZhyN1CTU4Ou6GQFszCrYqNGrVG8Li+uiIvS1lKqc6sJ2oLkBfIo9BUm9y1iiYj9i9iHHfGi28/1dR679K/tj0VPzZ93dT6tK/7Dri73Tdtsbe1PINCNWCwDt7sGm82f5lPWdQW3u4ZYzJ14TrMSc2Ppc0e6biIvrzwtHuT7sqsxto7OlsItqCaVorYivC7vTtvNmCmWvEbdm7rTmtFKwBHAE/Kk+eiCtqBsJ+KmsK2Qupw6QrYQWcGsNHve7/AnfQO94i5GFjfjtsao8bupC7jQkX5a/OESV7ysKRuvy4vP6cMat8q9rpCcT/MEPWSFssi2aPTN8ZLrDBNLzFFrupKIffET1xRWN+Yx3+RP2i9Z7amxS9gWpsnThCPmoGdTz7QY0T0xh+u0iA1enCHzZMn4HV2hPWql2p/BltZM+uR4KXSHsJlVvBF78hiKM4JousLGliw2tWYTizkJBLonY/1SYxeJScvLW4nT2bwbe6hT6A4l5+kA2qMW6gJuNrZkJed5Nc2Mz9ebQKCMeNyViIOTuVCPp4qsrM3JNUajGYl5l+LEvEs7GRlVZGevpyGvKnkvFXtTSVCaorG5cHMybsTr8iZjIPP828V3Z9dhVs30bOqJXVHom+OlKKMdT2LuQ9MVzCZpX/0RG/Nq89mW0Zzcri1uQ0FBVVQCjgCqSca0jpiDhqwGQrYQnrAHe0zGlDFzDJ/Th0WzUNRWRMgeosnThD1mp3tz96QdqSoqWwu2opm0pM9a0ywEAmUJf2NGsq82myPYbH5yc8ux2QJ4vX0S424PVmt7oi0RH6i0ESswm6PoCf+AosS3sxukD8MUIWqLELKFiJvjydjKiCWCWTNjj9lxxpy4FIUBea2UZAQxmzRaQw5imvg+yxIxSFvaMpmzeQjtiXg7m82XGBt2bqtMWG1eLHYvcVMc1aSCAmbNjKZo6OiYdXNiP0zYzRoWk/jjVD0l9qogc906ksUzuEDux/aolYZ2JzHNRIYthtMSx2WN0x6zsqCqG+GwjDMURe3ks0ydD0WJ7zAvuCva2vrQ3i73d0ZGVdJvkYpFMGG1tRLzNNDskWfMFXHhjDoJW8ME7UFUk0puIJfscAbF7hBuWzwxH2dF1UzYzCoWk4bNLDEVlT4XAUcQv8NP3Cxxita4lXZHuwhiRlzSZikyhrBbVNqjFqKJPthq1hKxSeCPWqmPK7RktBBwBHBGnWSGMomZYgScAWLmGDntOWS3Z6MrOlFLlJg5hqZoyRhdFLCoFmxxG3bNwr6l9ZR4grRHrWxsySIYs+Cxx5Lx/ZoO87YVEwjl0Nran3A4n3jcidUa6BRXLG1Z9+5fJuNy8l1ix0fV1DgNdGr8Gcyuz6Yxq5GIJUJGOCPptwzZQgQcAVwRFwW+AqyalVxnmJ5ZPgrdIewWObearhCJm/FFbKxtysEbsdM3x0uhOygxZ4k4alMizjMQtbKstgCzScdhiaPpCqG4BVVTsCbuV7OioeoKzUEnsbgTn693IgbNg8kUS953um7Gag2Q3+0rGjMbCdqCZIQzcEbFRxu2hgk4Atjjdgq9hRRaNYrcQRwWlZaQg4hqxqzoWM0qLmscBagNuKmL63hdXkK2ELa4jYxwBmFbmLA1LLHzoSzpI3VzWhzsztj+8131cx1+KLc1TqU3g6agE0WR+WaPXfwEbWEbFd5M+uW2keOIEIpb8IZt6KT6YLNJY0trJvXtbnKdYawmlbawnZgmx2oxaTitcXQd6gKu5Nj1m9DQqM6rJmwNk9OekxYb7Xf6k219kbcITbUmYgYLiEYz0XWlkw0GdruXkpJ5xGJOfL5ehEKFiVimjpgRAJ2MjG3k56/61n0DkvFHwWBRIr9Hw2Tq8IOI3ZeTW05rt2WEbCGy27PT7PmAI9Ap36GUfrkS2y05YRKroukK2Y4wBe4QkbiFTzf3IB63J4+1I0Y65aNTcDgayew2m5qcGhQUcgI5yf5LUzRa3a0oKJS1lFFohhxnJBmDE1VNmBPPgtMq93t9u4M2TSdoDxKxRtAUDUfMQcQSScZUuaIu7FEnoWBJwndnTsRtR9heu8HhaO2SPz/XGWJgXhsee5QafyqGNs8VJs8Zwm7RqPG7WVJbQO9sH0UZwWS8gKpLPyfxqAobWrKp9GbSO9tLcUaQTHuUcMJ/pAMeW4xgzMLKhvy0uJZdETfFqcivQDNpO/j7GzIb8Loknr+ktQR0c9KPL3Hj2/vx68jLK8fv70kwWJiwDwKd4spJzKm3pdlg32S7BgIlyXlUu70lMYepJc67kngmWrs0T6aqVny+3kSj4iN3OJo6jW8TNgk6bndd2j7savwVjzsTPg0rJlM84WPu3KdLHHAg0B2fryeqasfjqcTpbOoUBwy6bsVq9WO1popW7u4YcvvlNM1ELCb7pigkctPSx22KoqPb/DR7mvG5fGm+Qb/DL+OjUBa5/ty0nK9vOiceWwS3TfqCYEzyDjr6JJtZQ9Mlfi2MRtQSTevHY+YYiq5g0aRP95hgeFFjMiavw7YqcofIdkTIdkQIRK28vnyfRCxZJnZ7GxkZlQlfbOq6mkxRLJ4aGjMbaXe04w67yQhnoCkaAUcgmbORF8hLi4Xf9XXQGVHURLfMAJqusLUtk2DMIvmm1jg5DslXXVxTwKCCNvKcYdpjVmr8buKaiSJ3kEx7JJn39kb5MBqbhibmLFQyMmowm8OdfC/IPZa/lsq8Sky6iSJvUZpfuD6rHk3R6NHcI+05/qbr1dV7qbl5GMFgIZpmw+PZitUa2sEH7vFUpvkVdrU+p0VyB9y2GP6IjWDMig7YzWoyD9QbtlMVcBE1R4lZYqgmFYtqQUffIQbJbVHpl+slzxVGQU+OqwHKMgNE4mbKG/LY5s3uFI+fhcUSSjyHqbiB/Pxl2O3+RIxqT/z+7skxpKJoiZySRgoKViTzOv3+3gSDBaiqY7u8zhry81cRi7k69dVyXVL9hsQUZ2ZW4PX2JhLJS+STtib64MTV1U24XI3YMqqJWCM72MK6omNRLWKTq1ZCthBep/hMrKoVd8RNwC7+CGfUSWYwE1ds5/fIzq5X9yyJAfRFbLRHrWg6OK0qdnNc4iQjNip9bmKWWHLfLJoFXdFRFRWTbpLrpVpxW2VcJD4+M6puwqTomBQdm1nyif1RW3Lc8E37pusmfL4eRKPZaJoZp7MZszmC9BGpZVyuurS++puea4spFfPduXfvnDfdcX9tv77tny9VUVFN8qcr+k7HmibVjKbKfCKYknnV6eiJvMZvtzcy7RGGFTaT5wrT2O6gKehE1RUy7TEybFEcFpX6gIs1Tbk4LHL9oqopGWcpdpNsJ6Ka8ZqiNHmaCNvCuCNuMkIZxCwxAvYAEWuE3EAuue25DM71UuIJYFKg1u8mHDfjSMQDZtplfntxdTFVdWMIBosSsS9bEuOvWOJaSQyNJ3MTujmGZtLQFR10MGFCVVQUFEya5GLaTDoZto45KlMyztisaJhNEs8bUc2JnO52HBaV5mBq7GIzqzg7jV3s5jiF7hBmk0ZLyEkkbsJqlr7LZZWcns2tmVjNGs5EPGwwZiGuKVjNOiZFw2rS0XRoCtlpdfppzmjGrJtxh904Yg58Th8hWwh7zE6eP2+H53BXSB6OF489Sl3ARSBqw6RoOC1xPPYYZkWn0uthY7sNn8tHu70dq2rFE/YQtUQJ2oIoukJmKJOMoIdIqCgxX2jHbvd16m9S95jV5iXgaaIlowVr3Ior4sKm2ohYI7Tb29EVnTx/HhnhDGLRzEQblks87sBqbe/kk5B4qJzuX1KdWw0K5Pnzkj5MHZ3mjGbxR7WWEjPHaMhqwBq3pvnnVUWlPrseBYVuzd2gPZ9YTObYzeZQwjednpNhtYTondtCjjOCrkNLyEFMM+FIjMFd1jgxVaHKm8GwohY89ijNQQc1fjdaYj7UbYuRYYsRU03JOPsfG7+/e9KP73A0dYrL6Oi/FFyueoLBEoJByf91OpuwWgN0tIcy3jaRmbm1S3HlbmuM/nmt5DojtEettIXtaLrkEhVnBLGbVeoCLlrDDvrntuK0qpQ35NEetWC3aGTao+S7JO5wa5uHpVv3TsRQeHC767DbO+tImNB1Mw5nPc3F65Lx/Z3HmkF7kDZXGxnhjOTcUQe7atPjcQd+v2g1KIqGw9Gc1reK703F5Wro0nWwmlRsZhmDdIxtFUV0NcyKho5CRDUR05RkHjmASTclXyu6gkk3YdJNxE1xolaxhXV0rKqVmEVsYatqxRa3YVatxGJutIQdLuOWdP8hgNkSImqJJuO2TZoJE6b0ePy4DY9VJdsRwWrWCEStxFQTSsK/YTNrKOh4I3aq6ocRCJSiqg4yM7ckYh+28zNa/V2OLe0KqqLSkiFxQ66oC1fYhVk3E7QFaXe0Y4vbyPfl41Jt2MyicRLXUrmOJqVD40SXeZZAcWIuQPzCNpu3k8aJkozJjWXW0pjZiGbScIfduCIuopYoAUeAqCWanJfvyj1nM8fpn9tGtiNKKC5aCqqmJPOiO3yjqxvzMJu0pGe54xiA5P2p6Qpx1ZKwD8zIsyxtXPqcuIbbFsVhiSdz6bWEbaUoOlaThg4EohYG5rVRltlOXDNR0eYhGLPgtMZxWFRyHBF0YFVDbkJjJJqch1U1E9mOMG5bPBmzNndbERYTiXzVlG2kKOIrVxIaNL5AcUJrxoXd3poYL8SSx9oxxrE7WtHR0RV9pzpCJt2UnBOJm+Mp+1ezoCri0zdpJqyqNW0s923Xa0SRxOK1xyzUB1zENDOZ9ghOSxynVaU9amV+dfFO17e93ee0xBPPl/wuppkwKRILI88XeCM2GtrKEm21C7vdi9XaEX8o6+m4N7viG9A0M01NIxK2lZWsrK3J9SXOnMQdZG0ibkmMIUyatEWaibg5jkk3YVEtWFUrZt2czFlLz3FMsTsxGdmOMJn2KCZFJxC1EddEM6PDDgOob3cmtV++iXjcTmPj3gmfdpzs7A2YzeHEPqViqF2uxi7tm0nREnpJJGKKOj6HjmPXdBPhqOSXa5oZsznWae6rYzkFxRRDs0SS4zRd0bHGrcQtqfbdHrNjijppaR5OJJID6Hg8FYl8pfS+2u2u3cl44LvTcawKJLUXOtqajuOV9tT0jetJ55vGJYn5C0sMq1lH1SCumcUqTIz7OnSqwnHRPbEm7PmoKkWWLCYtMU+qE1PNXYp9isVifPzxx3i9XjIzM3e53G4JxN19993cdNNN/OEPf+DKK69k48aNXHjhhei6Tk1NDW53evLPrsTevokBAwbQt29fPvroo7TPOwTi7rnnHq6//vqd/tZms3HRRRfxREeZ3wQdAnGvvvoqZ5xxRlIgbt68eey3X3pl+0svvZT//e9/hMPpiUAdRCKRNPE4n89H9+7dv/VE7y6rGlZx7+x7mb5xOhfvfTFfbP2CQDTA9QdezxlDz8CMBp8dAk1zoHACjHpYKq20LpWKP95yUXoe8Cf4bLxUV+1/JYx6UKrWVL8PwUqpMqeGYJ+n+HjTdM6cdiZt4TYuHX0pPbN6cv+c+2kLt3Ht2Gu553f3sG6tiU8/FTX/7t2laqir0xhO10W9ecAA+GTTJ1z10VXU+Gu4/eDbmbNtDtNWT+P3w3/P/RPvpzijmFAsxF+m/4WnFj9F35y+3DThJqaUT2H6pumM7zGelye9TPes7ZJtvqUqM7GAHJOWcHDpulSkUSxgzUhWNewKodDOVV07Np2dLdUNvvhCKsKfeCL06iVqwh2VhjQNBg4E1V3F0a8cTXlDOaNLRjOxz0RmV81mVuUs+uT04cOzPmSgOxu+PBLalkHp0bDXzZDRFxq/htqPYNMzstKDPoTZp8p1HfmAVF00u2DD41D7MTTOgsyBcNRyZmyewYXvXEhtoJabxt+Ejs5ds+6izFPG8yc8z6G9D+3y+diT+P1w3nnw9tuiEHr99XDggaK6rOtSaWLrVqlgeMUHV/DEoicocBXwuz6/Q1EUFlYvZEPLBg7pdQgfnv0hjkgDzDpRnoHcfaDX78HVXS7Ykqulakb/K+V8LboStv4PdA1yx4C7F2gRqE4YGPs+A30vho1Pw7LrRD19e6zZMHHOT1PV0uBXSUeFFb9fFKXtdlH+NSXsEU2TyodXXQXz5knVpdtvlzbH7U5VfPF64eCDpYpVV4mpMRbVLKIt3IbNLEbGPmX7kGnfc/3ad0YNQzwoit56avIFxQwWF1j3sEz7witg4xPyjB+5FDJ6gW+99Lc1H0I8AD1Ohz7nsaphFQ/MeYCPN37M+SPPZ8bmGZgUE9cdeB0nDT4Jk7I7xqTBroiqUSJxsb1sZht2y3co1zzjIKkInLUX/G6WVE5sXiiVaqvfkWUG/kVsqq7QlVFgzXT4+mS5Z0Y+KP2SxSV9y7a3oGm2VL4c9aBUUg5tk0qarjJRqfetTajZx8QmsGbB7FPAvwEKD4buJ4vtp2sw73xRtB/5AAz+++6fn18x1dVSAXLxYlFP//e/YcwYaU8VRaq4bN0KY8fC+ub1XPzuxcyqnMWFIy9k75K9ueGzG3Db3Dx61KOcPORk8G+SeyncIPeTvQDQIOaXa6GrUunQ/dMkixvsIXZV3WbuObD1JbHPR/9Hqsj4N4rtvvgqWWbCu7RnH8c118Czz4qav9sNffrIGGHLFlH6r6iQvv3yy6FjuFxaKpWGNA02bJDfrttWT5//9CEYC/Kvw/9FcYY45VRd5dL3LyUYC/L1BV9zYMkwmHMm1HwkVSx6nA7u3nIsq++RKjf9r+SEOx5NVkj98EM46qgdD19V4b0NbzPptUnkufIYnJ+ydze3bqbaX83jRz/O5ftczvNLn+eidy8i15nLmNIxOCwOmoPNLK5djN1sZ9YFsxhWtF0F2l2d37X/hqV/ARSYOBfy94NQPdRNh8bZEK6D/LEw5Lqure+T/aB5AeTtBxPeA0eBrKdtBWx9WZYZcQ8UdaHt/5VUJJg6Ff76V2kbhw2DSZOk0pLJJNUbli6FyZOlYt+eYptvG3s/tTfNoWbG9xif/Lw13MqK+hUc0/8Y3jvzPd56S+GKK6C+Hg45BM49N1V5y+uFzZtlvDisCwWNt22TiocrVkgVlttvT1WBBxnf+3xwxBF77jh/UsINUu1LDYm/Q7GQml7RxO6xd7EcTc2HMi6OeaHbidLPRZplPA2gx6HbSbDwEqnknTMKJrwr1SobZ0uF3w6/xdBbYeXNYm+VHi1+q4y+UPW6LLvxcVnu6FVSZfnbaFsJGx6Tal4lR0HmYDm+1qXS/2pxyN1b9vuH4pv8UVoMFv9Zjl/fyaSzNRtOqABrJq++Kj6QysodFxsyBFatkj7gH/+AJ56QylXbc/LJcNVDX3HQiwfhtrq5f+L9yUmkbb5t3P313eQ589j8580/j3GdwR5FVeHll2H1ark/Dj1Uqo9vXyVv1CixQ5J80z286VlY/g+INMg4JXeMtCl1n4JvDWQNg6NXpP/mmyoChhtknFL7MTtMntgLYP/JDHvnGsobyrnnsHu4flzK3z+7cjbjXhiHgkLztc0c/tLhLKpZxA3jbuDKfa5MLnfj5zcyeflkThlyCq+f+vrO9227/dN1aGiQqnDt7dLn2e3ph+J0Sr/xc6W8XCrOr10rfeXZZ4uP2mpNXXunU3xDBt+d9evh0kulcuX2t7jNJmPMoUPhqafg5pvFp7c9Fos8o/aEG+O55+CGG9KXdbvhgQdkXAAy73LttfDqqzIu6MDlgv/8By666DsczC6eh3BYbKbXXpN75u675b7pqBjt9cp4OT8f9t9f+qZ994Xp0+We64ympXyYBj8M4TDstZfYxfn58OmnUk2183kPBuV+65ib+tXwTf1XzUdimwa3gb0Q8saAJRNaFkJgk8z9HL9Flq2dDov/JL61zngGwJjHofgwiHphwR9g25tiY3bGlgv7Psu+H9/DwpqF3DLhFm4/5Pbk12ub1jL4MRk/b/zTRo599VjWNq3locMf4q8H/DW53AOzH+DaGdeyV8FelF+x+2KeBgY/FsvqlnHa66exoWUD5ww/h/277c/tM2+nKdjEDeNu4PaDb8dsMsOSv8LGJ8U3WnYsZA6RSqxb/g/866B4Ikx4HxZdLn41gOLDZXyoKLD5BRmDDvo7t73zAPfcI5Uyr7sOTj0VyspkPB8IiD+jpATeqnmEq6dfTe/s3uxbtm9yn5fULmFDywbuPvRubhifKjhY66+l2l+NSZFAu4H5A3FZJcBh9mzxjzQ0wMSJ4j/u2Kamic3Y3g49S33w9aliH7t7Qe9zEr43C6y6A/zroedZNI18hHHPj2N983pGlYyiT04fVE3l68qvaQw2csO4G7j7sLth66synjXbIP9AsGZCuF7mBnQNFBOB3FM59HA3ixdL//zSSxKD4XbLqQuHobVVYjaWLJHzo6piI2ZkpPqIjoCo4cO7du0/+EBshMZG8Z1cdZVU9XS7ZZs1NWI7jBmzB240g11T/T7MOUPiQUY9DD1OlYrGVW/C5uelryuYwJyB93Dg8wfitDh5/JjHMStiCDS0N/D3T/+O2+pm858389j9hUyZIr6IW24R+y4zU2zWWEzmp/v0kXkUr1fsio6Qqc5VjxVFnsO0iuy76qsbZ8PMY+QZH3439LlQ4nVqP5GYJv96cBTBsNt+6LO5I1oM5p0HFa+KLTDsdsgeBtFWic1ZnmhDjlkLK2+ByqmQ0Q8GXi0+KYsbtv6f+KosGXCqH9Y8CKvuktiS/ANlrsjigup3xf7IPxAOfA1mnQAtiyFnb+h1TmI+SYGlf5Pz0u9yqWK/7W1pb343S3xvbeXgWw0NX8m8ea9zoHD8ro7wh0UNw6I/wtbJibisTphsMPQ22GvnhV9/jTzxBFxzjfQXF1wgvu2ePaWt7Oi/ioslbuy3wtq10t74/dKHZWXtWDF6wIDUeNlg9wnHw7y55k3eWP0GY7uPpcZfQ2u4lfNGnMdBPQ9CURRW1q9k7PNjUTWVvUv2xma2oaOzqWUTVb6q5Jhm32f2ZWHNQm4/+HZuOeiW5Dbu+uoubvriJvYu2ZvFlyxO34Fvi93cfrlvm2frynLfsM05c2DdOpn7HzhQxs0WS8pXqmnQv7/0fQY/PZqu8diCx7jpi5vIdmRzxyF38PTip5m7bS5X7nMldx56547zGl295wwMfmlUfwBrH4L2LTDgz5DRB7QwtC6HaIvM/5adAN1P+qn31OA74I/4WVK7BB2dmBoj15nLyOKR4k/ZXdSIjA93GkPrZFNlJiNGiE06apTkNZSl1xcjFAJn01vw9ST54IBXoNeZknNR+6Hkk4SqwdUD9rrx+x6+gYGBgYHBT4Y/4mfutrlEVRHas5ltjO0+lgzbT1hsIR6SvIHgNsl9cfUQP5oaAhSZl3QUoLr6U10NTU3io/V4UrGcHX4VhwN6JOoO1QfqmVU5C4vJQiQewW1zM6HnhNSYqiv5Dp3HWLom/j69k3CGYgYlIarXslCOQTGLz9LsSM2p6jpYM/FqfZk1S3xiFouMxzMy0v3MVqvEW6xuXM3VH1/N51s+56r9rsKkmPj3vH9zaO9D+feR/2ZIwZDve+Z3ONTFiyUOor1d8rCyssR/0LFvqirz8mk+cIOfHFVTaQ41o+s6iqKQ78o3crV+a+haYiwEop7y3QJjtvm2MW/bPFxWF/6In6KMIsZ2H5vMo/wuxGLif9QSxbhNppRv8teCruusalxFlbcKh8VBTIsxomgERRlFP/WuGRjsGXRNYp5jXvG9mJ2iRwEJW0kXnQJz+sRWx/wDpJ5/kH7r2SXPcvMXN5PlyOLvB/ydRxc+SrWvmlsOuoUr97kSq9m6+7aagcE3oOs6y+qWsaB6AaWeUmr8NfTJ6cOEnhO+Wy62gcFPRDy+c9vqpyy0Z2DwY+Hz+cjKytqzAnGhUIj999+flStXoiSeJF3XeeCBB/jb3/6WtuyiRYvYd999d/rdN3HAAQegqioLFixI+3zVqlUMHTqUp556iksuuWSnvy0pKWH8+PFMnTo17fMPPviAY489lunTp3P44Yczffp0jjzySD744AOOPvrotGVPPfVUZs+eTU1NTZf2t6sn+rsSVaOomjjMnNadZGnHgzIhF22VCUAtBiaLONrs+TJhrIYlSTdYJUHFJlsnA1WTRNy8fQDY2LKRE6acQF2gjv65/VnZsJLnj3+e04ee/p32P6bGmFI+BW/EC8CY0jHs323/HZabtnoaN35+IyUZJVR4KzhvxHncPOHmnU+E/oIDPrxhLydPPZkvt37JlftcyVOLn2Jk8UjePfNdCt2FENgqgn7BbRLQOfwuCQhtXiSDi7hfBhr5B8Kya6HhSwlE7XYiOIrluqshiDRKMmfRwQD4Ij5u/vxmqnxVAPTI6sEdh9yBx76HhZV2g/ffhw6R11NPFbGCXaHrOue/cz6Tl0/m7wf8nRHFIzj3rXPZv9v+fHLOJ+Ks//oUqJomAjqTGiVAuu5zKL9N7v94AAb8UQZoa+6Xc3XwJ6mgWV2H16zioN7nKXl+vj5Zvss/EIZcD55+0LIE5p4tn0+cC/k73s8GBj8W0aiIwsUScddWqySM/uqSAH9MYj4RxvCukvbU3VMmtRQl4VSOQ8+zwZ6b9rMOc0oxRho/TyItUPeJJJtoMXCWJiYsTSlBkQFXfvt6dgf/Jlh0hYi2Fv8Ouk0SQTfFLPZbJCEwln9A19Y3fR9oWSQJdkeXyz1ZMUVESBq+knvTEIjbgW3b4JhjRCSod2949NEdBeIqKmD0aFle13WeWfIMi2oWYTFZyLJnce2B15LjzPlJj8PgR2ZXSQhfHCliZVlDYb/nRBgpWAXhRhFpDFZB2fGc94dsJk+Wn1x/Pdx0U7o4y+LFkmw3fryIANlskuB5yinpQ51ly2DkSLj202t5YM4DmBUzfXL6AFDtryYYC3J438OZ/vvpsPByScY1O+C4reAsgtYVUDlFEgbD9dD/StoHP8rMmbBmjQhxFRenJ4zGYjBhggQ4XD/jeu6bfR/HDzyeqadM5c8f/5mnFj/FeSPO48UTX0zu5z9n/pNbv7yV4wcez9PHPs3+z+1Pjb+Gj8/+mEN6H9L186vFoP5zsd0jTRJAYrJLu4meEMw8Ssa4XVmfby1UvpFINCwEZ7fEhLApFZQy8Kod9+9Xypo1kggcj0tA8IIF4iT9MZixeQZHvHQEhe5CFv5hIQurFzJp6iR6Z/dm8SWLyXHmkJUlom1msySN7SmROlWV9Uajcn8rigRJZWQYyWffi5YlIrToXycJ8e4ekhTfYVvpqojvlt+WEmTse4mMqS1usb2iLWJf973wJz2U3eKb/FFL/gLr/i2v97pZROedpXL888+Xzyc18b8peZyfeOt2i7DTAQdI0Nns2TB/PmzaJImk//d/stzQoXDZZTBokIiMfvGFBAJOnQrHvHIMH274kDxnHqNKRgHw+ZbP0XRtBzESA4Nd3sPNC+DTA+SZHHY7DL1FntPWZbDuYah4Reyfo1fufH079OlxWV/LInmfM0pEQOJ+Gb9oMRhxLxdv3MBzS5/j5MEn88ZpbyR//p/5/+HPH/+ZAXkDWPfHdfxv2f84/53zd3lYX573JQf1Oqhrx/orpmMi1HBLfH8qK2GffUQoBsQ+PukksR3Ky+H11yW5avFiuDLhSujdG269VcaWFgssXy5CjlOniu1x330yNtgZ/fuLIJ3PJ0Ida9bsfLmTT4Y33tj5dzvQhRuhsUFn1CgJzO7WTcTw+mxnancEMNXVSbJ1ZaX0WUVFqQn3jmW+k3idwW6h65LwXlkp92dHUaOOhHebTXwgnYs6/SrYVZserIYPBiUKepwB+/9PhJa0GJT/E1bdKckVJ1RAy1KYMVbmS3dG6bEifPzF4VA/Qz7L6CdCx2pIBGDUMAy5kcuqmnlq8VOcMPAE3j7j7eQqXit/jTOmnUG2I5vW61q58bMbuefre+iZ1ZMDuqf8f3Oq5lDpreTmCTfzz0P+uQdPlIHBnicQDXD5B5fzyaZP6JXdi8b2Rp469ikm9p0oC2x6HhYkOoCDPoLSI0VkfNtbUiilZaEIxOWPhfLbxcdz+AIR9w7Vie9m/vkiSj7ob5xw24PJwgZvvAHHHy/zXh3EYjK+d7l0Jv7fRD7b8hlnDD2DP+37J55d8iwvLHuBsd3H8tX5X+12snVtrfy1taV8CCaT+CeKimCv0J9gw6My9j2pVuaRW1fA6rtlvj5cDz3PgrEvU+mtZOxzY2kJtfDl+V8yeflkHlv4GH/Y+w88fdzTu30dwmHZt+ZmmROMRqVptNslOWzw4D07L3jppfB0Yjefew4u/AUN239VNC+AueeK76XfZTLHZM8HtV2S98P1Usgub1+OfvloPtr4ERm2DHpl9wJgTeMaVF3l+gOv557f3ZO26kBAhAE6ElY65pc7kvR2m28U1I+L6FmoRvpsVarGoljFR5Q5SAon/dgEt8H7/aV/H/AnKQgD4scJ1aaWcxTBvHPl9fi3odsJ8nr26SLOEA+KCNyAP0khSIAxT0D/yyTps2WBxKbUfChtoaubiM1ZM+GkRrFdGmbCyltFNC4eEIG4MY9JoZPARrnWJofEgWEiWcW351mJz34C5vweKhI+v+wRUtRKscgcRbBS4pfGv/XT7NtPwJFHipA2iJDz73730+6PgUFn3l4rBaEG5g9k4R8Wcu/X93LXrLuYNHgSb5z6Boqi8Mg8Ed/NsGVQ6ilN/rbGX0MgGti5n/lnJhBn8Mukxl/Ds0ueJa5J0Z0TBp7A6NLRP/FeGRj8DNATRdG/Y7K7wW+XSARWrpRYuaYm8eF3+PE7xGROOQUZD7UulxgnSCQ9m4FEYdT8sVKg3sDAwMDAwMDgR2LG5hlUtEkB2x5ZPVLzUAYGBgYGBgYGv2C8YS8fbvgQTddQFIUj+h5Bnivvp94tAwMDAwMDg58pP4hAHEAgEODhhx9m3rx55Obmcuqpp3L88cfvsNzTTz/NRx99xP3330///v27vP5LLrmEV199ldbWViydspWnTJnCmWeeyezZsxk7duxOf3v44YdTVVXFmu0yaO69915uuOEGqqurKS0tpbq6mm7dunHvvfdy3XXXpS07aNAgevTowSeffNKl/f2hBeJ+CsLxMPWBegA8dg+5ztxv+cWPwK9IDTmmxnh33bvEtTiKonDcgOPSxf/iIQkCbVsuwadaNBXYaXZCwTgoO67TCgMJgcCgBAeY7WDNBlvOzz4j8IUX4JlnUuIX48ZBXp5cysZGCXZ/5RVZVtVUznnrHKZvmo5ZMdMvtx8fnf0RWY4sWWD9Y7D4j4ACB06F7pNSQogA0TYRR3x/gIgqFh0GhyYSfZbfCKs7BUbv85QIaTTPFwGKo1eJ2AaIaNSHQ+W1IRBnYGBgYPBt6Bq0Vyb66vZEX+2QftrZDSxdVMBZlEhAs2bBITMgbwxoKugJhch4O1gydqhIYSCsXi2J/BUVksweDEqCn8cjAllGIvtvnN0Za7QskUSt9i2SrCUrECEzdw8q7H+kVy/5dOBAWLt256t76y2YlCjKe9ZZIh6xK5qCTfR+pDeBaIBlly6jd05vejzcA2/Ey/yL57Nv2b4w9xzY+pK0AyfWgjUD2qugeW5qRRn9IXfUtx9rAlVTOeKlI/hsy2ecPexsXl75MiOLRzLnwjk7iJdf8t4lPLPkGfJd+TQHm3l50sucOezMna+4q8kgXWVPr+9XytatIjLV3g4DBsDChfBjujDu/OpObv7iZo7pfwyLaxfTGmplzkVz2Ltkb0DEU668UgKVJ06E886TCo1OJ3i9Iph1wAEiXmjwCyTeLv6NeDDh47BKNVRHkSQD/1LYVQJatBXe7iZ+mV7nwAEJldDmRVD3KayQCuvqCU30GZxHZaUkX8+dmxKp7aCxUZL+hwyRTQwaBEuW7CiaGIvJOlbUr2DUU6NwWpxsvXor87fN59hXj6VHVg/W/3G9UfHJIJ1d3cOr74XlN8jrY9ZIgn6kWURyOvD0hwOn7Hx92/fB1e/DVwnf5aC/wagHU9+9WSBCsCPu5ZlQLpe8fwkem4f9uu2XXGR983oqvZWcM/wcJp80mUg8QreHu9EUbOKP+/yRsd3H8u76d5lSPoVhhcNYcfmKrh+rgUEX+Mtf4N//ltfXXQf33pv+fXu7iGqMHCnCaQ4HbN4MJSU7X9/mzTI2iMdTn+XmiihuLJYSiLvmGniw0+Ny6qkiKr1liwhKT5iwGwJxXaS1VcYmS5fChg0ipt5RfELTRIDm4YfFZ29g8JOxqzZ9wxNSnAFg4jzI30/szdc72ZcdAnGfHyaC5CBiVYOuEUGWxVeJ+ErpsTDkBphxoCzT61zY/8XUtt/rC4HNMORGno735NL3L6XIXZQmkvD5ls+Zvmk6B/c6mC/O+4JFNYvY55l9dnlYSy9dysjikd/9vBgY/BxYeg2sTXReJ9WLQH+oFtb9J7WMp7+ILDZ8KRWVT6iUz2s/gTUPpJbrcSp630uYPVt8FmvWiICV05kSuNd1uOQSEb6v8lYx7IlhhONh3j3zXSa9NglFUVh26TL65vbd88e66p7E2E4Rkbu8MdLmdCRTgwg+OcUgWN24mvEvjCcSj9Aea2fS4ElMPWXqbgvX/RRoGrz6Knz5pRReycgQO6dDhC4WE9/NBRf8pLv52yFUD741EGsT/4quiSCZNQdyRoA9jyW1Sxj99Gg8Ng8VV1ewpW0Lo58eTZY9iy1/3vLDF8D5pY6/WhbDhsclJsTsgoy+4ldXoyIQm9Ebht4Gs0+DmvdlrDzo71L8yeKW6xGsBEsmNH6Vijc5oRpcpSK6MO/81PayhoKnr9gfKCI41xH301HQRA1JjMvP2V/WXgHv9gZ06HYSjJuWugdmHifn6jcmEBeNwmuvia+vvFz87rm5qf4rEoFzzhEhOQODn4I7Zt7BLV/ewn5l+7GgegHDi4Yz+8LZuG3S1tQH6in7VxmqrlKcUYzb6iYYC1IbqMWsmKn6SxUlnu2cHoZAnIGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYHBHuEHE4j7ofnoo484+uijmTJlCqeffnry86OOOooVK1ZQWVmJeRclkJ944gmuuOIK5s2bx377SVJZPB5n5MiRZGRkMG/evOSy++23H8FgkGXLliXXN2/ePA444ACeeOIJLrvssi7t769RIM7A4McmHoeaGkmKCwQkUDI7G8rKJMGuy9R8CJWvQ9Ns0GISOKtY5LXZDmNfhQV/gMZZ4O4tSa9muwTwq8HUejQN3i6S1/2vhDGPyuuvT4WaDyQwFwyBOAMDAwODHw8tDpuehW1vi+CTLQ+ciQre0WZJCpo4F+w/A2FfA4PfMOvXi/gDiGDE0qU7X+7dd+GEE+T16afDlCk7X66Df3z2D+7++m5O3+t0RhWP4vrPrueY/sfw/lnvywKhevjyCBGZzhwEvS8QoWOTFcJ1Uv13wJ8ga/BuHU9jeyOXf3A5UTWKSTHxryP+RZ+cPjssp2oqqxpXoes6TquTAXkDdms73wtDIK7LzJwJN9wA8+dDQQEcdRR06yYJvrW1IkL15Zfg/gHyD3Vd54oPrmB9y3oAzh9xPueMOCdtmXhcKlovXiwCWT4fqKqIeZaWwtFHQ1HRnt83A4Mus6sEtKa58GmimMU+T0O/P8jr9weBf11ysekeL0ceJ77DY46B99/f+WZuvhnuvFNeP/gg/O1v37xb5751Lv+34v+47sDr+HzL5yysWciLJ7zIeSPP252jM/gt07ocpo8BPS7J7iPv31FANx7aUdx6V31wh3Ct2QUn1YkgZLQVwo3w6f7yesS9rMg7ihFPjtjlbj161KNcue+VANww4wbunX0vJw8+mTdOe4N9ntmHRTWLePKYJ7l0zKU7/thIGDX4jqgq5OdDWxvYbFBfL37q7Zk1SwTbAI47Tuz7XXHVVfDf/8rr3Fx4/nkZCwSD8Pjj8L//wfLlUFgoNhDAiy+KYG4Hra0iDveHP+yBgzQw+KWxqza9bgZ8kagev+8z0PdieR1t6/RbkwiuvJkvvrP8sfC7r1PrnHWS+NpKjxVRmPWPgGKGE6pE5EkNQ8wHn+wrYihDbmRRwUnfKPz2twP+xoOHi2BWz3/3pNJbyd8P+DtH9T+KD9Z/wL/mybh601Wbvv+5MTD4qQlWw8ejINIohbmG3S4CSBY3hBtEgNHdXcZMCxKd2P6Todfv05/tqFd8WBbXbm3+pRUvcc5b52BSTGi6xlPHPsUloy/ZgwfYCV2D8jtg62QRhSsYn/C92eX4vath1L+gZGLyJ+3RdsLxMADZjuxfhDicwS+XSa9N4q21b3H7wbezon4F09ZM47aDbuPWg2/94Tf+axl/aSpoEXmut39e2yug8WspCBVrAzUibZ2jCAonyHF/sq+Mqwf+BUbcK2K0HahRKThjz4WqaRLT0vi1fOcsFvsj5pP3494QEbqfK6vvh+WJQqxHLoec4RBpkeNZdSe0LPzNCcQZGPwSeGzBY7SF2wA4Z8Q59Mjqkfb9kS8dyfRN07n1oFu57eDbkqJyE/tM5JNzdlJk2RCIMzAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDDYI/xiBeIADj/8cBYtWsR9991Hv379ePXVV3nmmWd46aWXOPvsswG46KKL+N///semTZvo2bMnAJFIhNGjR/P/7N13mB1l/Tfgz256SDYhDVKAEBIIJXQpAhJAOkgRpCooyE9FmihSJSggoKiIggoK+NJEqvRO6CX0DoEkhARSSe/Z8/4xZDdLsskmJNlNuO/rOtc+M/PMzPdse87MOfOZCRMm5IILLkinTp1y2WWX5c4778xDDz2U7bffvmofjz32WHbeeefsvffe+clPfpKRI0fm1FNPTZs2bTJgwIA0a9asTrUKiIMGrFSa94LWsS8mD++QzJpYXAzU6yfFB/hLlcmkD5KRjyd9fp3c0bXov85JyaZ/KNrvX56Me716W+uekrTqvkyeCgDUUDmzuFikrFHSpKK44BVoEHbbLbn//uJl6JVXJj/4Qc3lY8cWIcjbblsEyDVqlPztb8mRRxZByUkRlPXss0WfJPls6mdZ85I1M3HGxLRt3jZjp47Ni8e8mE07b1pz45+9UlwkP+3T4qKssrIiULL1WsnqByVN2y7lZ78MfPH1/fw0vNMcDcq4ccXv3tixRbtRoyIIpWfPpHfv+q4OGrDaLkCb8G5y9+d/PH1+nWxwVtGe+H5xwfDn/nb9evnxscVrtjPPTH7zm/nv5ic/SS6/vGj/97/JAQcsuKzB4wZnnb+sk9mVszO7NDt9OvXJKz96JeVeH7Iohvwnee30ZNKHyUprJCtvljRpk8wYXby+6HVsst4va65T24Wb92yYjH89abtRsvsrxby3f5e8ckp1n40uyOzeP0+bC9pk8szJ8y3phR++kM27bJ4k+Wj8R+lxSY+Ul5XnrkPvyq7X7pq2zdvm45M+zkpN55Ns6oJRFtPIkdWBtOuvn7zxxvz79e+f9O1btPfdN7ltAdkHffpUb+fGG4uA6Lm98koRTLd58eueTTctAnOBzy3of/rThyVDrk8atShC0TtuVxz3Th+TfPZScaOgJm2SJ/cv+m99XdL90Or15w6Imzm+uLlQy9WTfYYUywf+PXlhrhuKrXd6pq//q7T+bevMrJw533Kv2/+6HNqn2MeJ952YS567JIf2OTTX7X9dDr754Pznzf/UCJGD5d7UEUVo2rA7iwCl6aOTVCZNVy6CFze6IOm4TfLun5P3/5pMfC9p2S1p1bO4ydfUj4tjp91eTtr2WeTdPzP0mcysnJlGZY2yzerbLPnnNz+TP0qmflIEH6dUPNeVuhchT1BP3hj5Rjb620Zp1bRVJs2YlJWbr5wPT/gwFc2WwWeYHH8Vht1VBKSNeS5p2i6pWLcITJ82MpnwVrLpJUnP+YRYzpqcpHzeUPaG6rmjkg//Vbwv+Z1pRcDnqCeTh7ar7iMgDpY7c4J31+u4Xt78yZvZ8PIN8/rI12u/EYmAOAAAAAAAAACAJaKuuWWNl2FNdXbrrbfmjDPOyK9+9auMHTs2vXv3zg033JCDDz64qs/s2bMze/bszJ1v16xZszz88MM55ZRTctxxx2XKlCnZeOONc++999YIh0uSvn375p577smvfvWr7L333mnZsmX22muv/O53v6tzOBzQwM0vPKLdZskebxQX9ox+Knnx+OJDt42aJy26JitvnDTvmLReJ5n4bjLi0SI8rqw86fXjZf4UAGC+ypskzdrXdxXAfFx1VXL44ckjjyRHHZVcdFERCtG0afLhh0XYw8CByT33JCeckNxyS/LDHyYnn5yssUZSWZkMGlT0/+yzYpsrt1g5v/j6L3LR0xdlVuWsHLT+QfOGwyXFa9mVN16WT3fZc9HHl9a2bbLDDvVdBSwnagul/OLFaB22Kc4xvPeXpPthRRB9617VfSZ+kNZtqgPbRo2qfZdrrlndfuWVhQfEdW/bPZfsdkleGPZCkuR7G31POByLbo2DiseYAUVAx7QRSWlmEXaxzs+S9l+r+7ZKs4uvTVpXz1tpjWSVHeea7p5G5Y2yeZfN039I/5y89ck5bovj8tyw53LQzQeleePm2WiVjaq6r95m9ey9zt65/Z3bc9itxQ1kjtzoyPmHw8GX0LJldXvcuNr7bbZZ0q5dEbj74IPF13bt5u03blzy5ptFu2PH5MAD5+2z8cbJhRdWT++882IUDiuaur4G2/raZLUDkuF3JcPvTj64MlVhTa3XTtpvnYx8rHqdjp+nsE98P3n1tGTM89XLKj8P9m26cvW8pu2SNutXTzdfJc0aN8t6HdfLqyNezQadNsi6HdbN5JmTc8/79yRJjWP1/dfdP5c8d0nuG3hfps2alvs/uL9qPqwwWqySrPuL4rEg6xxfPCYOTKYOS6aNKt57bd4pqeidNOuwWLvferWtF2u9L2Wl1YsHNCAbdNogx2x6TO7/4P60b9E+J2x5wtINh6vrWP1V0nWv4jHl42TSoGT6yOL4uGm7IhSzthsPNl7OjmvLGs09UXxpuXqy/pnVsyvWW6YlAV/efr33y0pNVspbo97KrW/fmtdHvp6WTVouvWOXuowjdV3/qzbeAAAAAAAAAABfSWWlkk9JfBl1TeIDljPvX54M+EnRXuOwpM85Sas1k9nTktHPJiMfSTY8t35rBACgwXr99eSpp5KXXkrGj08aN066dUs23zzZd9+kSZOi3+TJyYAByRtvFO0WLYqguC22SFZdtV6fAgB1Nfbl5NGdkxljkvJmyarfTFp2S6aPTcY8m7RZP6M3uDfduiXTpyerrFKEhs4dRDTHyJHJ6qsX/Tp1Sp57LunevWafjz4q+kC9mnMh5hffXui/ZzL8nqRJ22T/UUl57feo+eWDv8xFT1+U/dfdP7d855b86dk/5aT7T8rW3bbO00c9XaPvwx8+nG/+v28Wu05Z3jvuvfRs13PBtc2vPliIrbdOnn22aD/7bLLllvPvd8EFyWmnFe0NN0zOP78IjmvcOHntteTaa4vX/fvsU/TZbbfk3nvnv60f/Sj5+9+L9k03zT9IDr5S6hIKUNf/788fk3xwRdH+zvSkUdPiPZ4H5wqV6rJXUt40+fjWpHGrZP/RSaPabyb2gzt+kKteuSpHb3J0rvjWFXlk0CPZ6d87pVXTVhl/6viqsN7KUmU6X9w5IyePTL/t+6Vf/37p3Kpzhv1sWMrqGnwAANCQvH9ZMuDYor3jI8kq7kQCK4rDbj0s179+fVZZaZWMmDwiB29wcG749g3z71zXc2+1nT8EAAAAAAAAACBJ3XPLar86C+CrrOePkonvJ+/+KRlyXfEoa1Tc5Tkp7vIsIA4AgFr06VM8FmallZLtty8eACyn2m2S7PlW8uHVySf3JmOeT0Y9kTRtn7TdKFnziHTokBx2WPKvfyUjRiR7752ce26y1VbJ1KnJ008XoUD/+EfSr18ROjRyZDGW7Ldfsu66ydixyWOPJR07JvfcU8/PGWqz2gFFQNzMccmQG5I1v1tz+cxJRQhPo6bZsluRvPXi8BeLr58UX7fsOm8i1049dsp9h92XylJlWjZpWXs4HHxJP/1pdUDc976XXHVV8vWvF9PjxiX//ney887Jqacms2cn551XBMLttde829pkk+r2hhvWvs9Jk6rb7kMEWTrhAWXlRThckjRqkbReu3pZy25Jh68XAXGzJiVDb026HzJvTaVZSXmTbNZ5s1z1ylV5dcSrSZJXPy2+brTKRlXhcElSXlaefdbZJ1e8dEUufOrCJMm+vfcVDgcALL9WPyh56cSkcmby2plJ33uTJnMdxIx/K0lZ0mbd+qoQWEyH9SkC4kZMHlE1DQAAAAAAAABAwyAgDmB+ysqSTf+QrHNC8vEdyZjnklmTk6YrJ23WT7rsUd8VAgAAAA1F807JeqcUj1r8+c/Jxx8nDzyQPPJIEThUXp5UVhbLu3Qpvp56atKzZ/KnPyXPPJP8v/9XvY0mTZKf/WzpPQ2oVW1hNl+cP2N88uppybQRyfNHJ2OeTTrvkVTOSEY/kwy6JtntpaRl16oguCHjh2TMlDFVQXFzguO+aNeeuy6xpwO1OfTQ5Iknkr//PXnvvWSbbZJVVkmaNSv+h1dWVgfInXFG8T/50UeTJ59MPvssadEiWXvt5JvfTG6/vXq77drVvs8WLarbU6culacFX11N2hZfS5XJlGFJy67Jyhsle71bs9/MiUnTdsmMsckLP0wmD0q67VvcNGjMc8n7lydbX5u0WTebdt40SfLmqDdTWarMayNfS5Kq+XPbf939c8VLV2TqrKlV0wAAy61m7ZPev0jeOj8Z/XRye7eky+5Jo5bJuNeSz15Ktr1ZQBwsh3ZZa5cctP5BmT57epo2aprdeu626Bup6/nDpREKDgAAAAAAAACwAhMQB7AgK62RrHN8fVcBAAAALOdWWim5774iHO6WW5L+/ZPx45M2bZKNNkoOPri67wEHFI9Ro5LXXisCg9q3T/r0SVq1qr/nAAvVpCL5xv+Sx79VhMS9f1nxqKG4KLRrRdd0bd01wyYOS/8h/fPumCKsZ05w3CKpywWoLj6lDsrKkr/9Ldlvv+T665M770xGjCiWde+e7LFH0qtXdf8WLYp5e8znfiJ1/fWbExCaFP/z9933yzwDoIb2W1S3Rz+drH7g/Ps1aZ1sc1PyxL7JrEnJa2cUj/nYaNWN0qisUabMnJL3x7yfVz99Ncn8A+J2WnOn7LTmTpk+e3qaN26evt37fsknBABQzzY6L2nWMXnvT8nkIclHN1Uva75q0nK1eisNWHyNyxvnxgNurL1DXcPfAAAAAAAAAABY4gTEAQAAAAAsA2VlyU47FY+66Nix7n2hwWi/RbL3oOTj25KPby2C4hq3TtpskKy2f9KyOg1ry25b5ta3b82VL12ZylJlOrbsmDVXXrMei4fCrrsWjySZNi1p1Chp0mTRtjF3oOfo0bX322GH5Ne/LtqPP75o+wAWYpUdUgSTlpL3L09WO6BmgMGsycm0kUmrNZNVd0r2fDv58Koi6GTap0mjlkmb9ZNu+yat1kqStGzSMut0WCdvjXorL37yYt4a9VaSZLPOm82z+yaNmuSh7z209J8nAMCy1PvEZJ0TkjHPFiFxZY2T1j2TthsmZeX1XR1QX9ycAQAAAAAAAABgqRAQBwAAAAAA1G5RL/Bs3CLpfmjxWIAtumyRW9++Nfd/cH+SIjBumdQHi6B588Vbr2fP6vYrr9Te7+tfT1ZaKZk8OXnkkeTJJ5Ntt61eXlmZPPxwsvPOi1cHfKU1a5903DYZ9UQy8tHk8b2S9U5PmlQU897+fbLRb4uAuCRp2S3Z4KzisQCbdt40b416Kze9eVOmz56eFo1bZL2O6y2DJwQA0ECUlSUdti4eAAAAAAAAAAAALDVu2wkAAAAAACxzcwLhKkuVxXTXxQyIgwZoyy2TRo2K9osvJjNnzr9f06bJfvsV7VIp2X335LzzkieeSP7972TrrZO//33Z1AwrpE1+n5Q3KdrD70ke2ja5d8NkwLHJ5EGLtclNV900SXLP+/ckSfqs0ieNyhstkXIBAAAanFJp4Q8AAAAAAAAAAJYKAXEAAAAAAMAyt3mXzVNeVv02hYA4ViStWiUbbVS0x41Lrrpq3j6PPlp8/e1vkw4divakScmZZybf+EZyxBHJ888vk3JhxdV+i2Sbm5OWq8+7rGn7pNVai7zJTTsXAXEzK4vkxzmBcQAAAAAAAAAAAAAAsCQ1ru8CAAAAAACAr55WTVtlr7X3yoeffZiylOVrXb9W3yXBEvXNbyYvvVS0TzopmT07+cEPkhEjkj/9Kbn33uTtt5Nu3ZL77iuWvfbavNtZb71lWjaseLp9K+m8WzLkumTcG0l5k2TlTZKueyeNWy7y5jbpvEnKUpZSSkmqA+MAAAAAAAAAAAAAAGBJKiuVSqX6LmJ5NmHChLRp0ybjx49PRUVFfZcDAAAAAABAA/DJJ8laayVTp85/ea9eyXvvVU+XSsmttyZ33pmMH5/06JF85zvJllsum3qBuut1aa8MHDswSTLghwOyWZfN6rkiAAAAAAAAAAAAAACWF3XNLWu8DGsCAAAAAACAr4TOnZNLL02OPrpu/cvKkm9/u3gADdv/2+//ZeTkkUmSDVfZsJ6rAQAAAAAAAAAAAABgRSQgDgAAAAAAAJaCo45KunRJTjghef/96vmrrpqcf3791QV8OVt126q+SwAAAAAAAAAAAAAAYAUnIA4AAAAAAACWkt13T3baKbn//uSTT5LVVkt22CFp3ry+KwMAAAAAAAAAAAAAAKChEhAHAAAAAAAAS1HTpsnee9d3FQAAAAAAAAAAAAAAACwvyuu7AAAAAAAAAAAAAAAAAAAAAAAAAAAKAuIAAAAAAAAAAAAAAAAAAAAAAAAAGojG9V3A8q5UKiVJJkyYUM+VAAAAAAAAAAAAAAAAAAAAAAAAAA3VnLyyOflltREQ9yVNnDgxSbLaaqvVcyUAAAAAAAAAAAAAAAAAAAAAAABAQzdx4sS0adOm1uVlpYVFyLFAlZWVGT58eFq3bp2ysrIkRTrfaqutlqFDh6aioqKeKwQAvshYDQANm7EaABo2YzUANGzGagBo2IzVANCwGasBoGEzVgNAw2asBoCGzVgNAA1HqVTKxIkT06VLl5SXl9far/EyrGmFVF5enm7dus13WUVFhRdFANCAGasBoGEzVgNAw2asBoCGzVgNAA2bsRoAGjZjNQA0bMZqAGjYjNUA0LAZqwGgYWjTps1C+9QeHQcAAAAAAAAAAAAAAAAAAAAAAADAMiUgDgAAAAAAAAAAAAAAAAAAAAAAAKCBEBC3FDRr1ixnn312mjVrVt+lAADzYawGgIbNWA0ADZuxGgAaNmM1ADRsxmoAaNiM1QDQsBmrAaBhM1YDQMNmrAaA5U9ZqVQq1XcRAAAAAAAAAAAAAAAAAAAAAAAAACTl9V0AAAAAAAAAAAAAAAAAAAAAAAAAAAUBcQAAAAAAAAAAAAAAAAAAAAAAAAANhIA4AAAAAAAAAAAAAAAAAAAAAAAAgAZCQBwAAAAAAAAAAAAAAAAAAAAAAABAAyEgbgmaNGlSTjzxxHTp0iXNmzfPxhtvnBtvvLG+ywKAr5zHHnssZWVl8308++yzNfq+9NJL+eY3v5lWrVqlbdu22X///fPhhx/WU+UAsOKZOHFiTjnllOyyyy7p2LFjysrK0q9fv/n2XZRx+dJLL03v3r3TrFmzrLnmmjnnnHMyc+bMpfhMAGDFVNex+sgjj5zvcXbv3r3nu11jNQB8eY888kh+8IMfpHfv3llppZXStWvX7LPPPnnxxRfn6euYGgCWvbqO1Y6pAaB+vPLKK9lzzz2z+uqrp0WLFmnXrl223nrrXHvttfP0dVwNAMteXcdqx9UA0HBceeWVKSsrS6tWreZZ5tgaAOpfbWO1Y2sAWL41ru8CViT7779/XnjhhVxwwQVZe+21c/311+eQQw5JZWVlDj300PouDwC+cs4///zssMMONeZtsMEGVe133nknffv2zcYbb5ybbrop06ZNy69+9atst912eeWVV9KxY8dlXTIArHDGjBmTf/zjH9loo42y77775sorr5xvv0UZl88777ycddZZOfXUU7PLLrvkhRdeyJlnnplhw4blH//4x7J6agCwQqjrWJ0kLVq0yCOPPDLPvC8yVgPAknH55ZdnzJgxOeGEE7Leeutl1KhRufjii7PVVlvl/vvvz4477pjEMTUA1Je6jtWJY2oAqA/jxo3LaqutlkMOOSRdu3bN5MmTc9111+W73/1uBg8enDPPPDOJ42oAqC91HasTx9UA0BAMGzYsP//5z9OlS5eMHz++xjLH1gBQ/xY0VieOrQFgeVZWKpVK9V3EiuCee+7JnnvuWRUKN8cuu+ySN998Mx999FEaNWpUjxUCwFfHY489lh122CH//e9/c8ABB9Ta7zvf+U4effTRfPDBB6moqEiSDBkyJL169cpJJ52UCy+8cFmVDAArrDmnHcrKyjJ69Oh07NgxZ599dvr161ejX13H5TFjxqRbt2753ve+l7///e9V659//vk588wz88Ybb2S99dZbNk8OAFYAdR2rjzzyyNx8882ZNGnSArdnrAaAJWfkyJHp1KlTjXmTJk1Kz549s8EGG+Shhx5K4pgaAOpLXcdqx9QA0LBstdVWGT58eD766KMkjqsBoKH54ljtuBoAGoa99947ZWVladeu3Txjs2NrAKh/CxqrHVsDwPKtvL4LWFHcdtttadWqVQ488MAa87///e9n+PDhee655+qpMgBgfmbNmpW77ror3/72t6vefEiSNdZYIzvssENuu+22eqwOAFYcZWVlKSsrW2CfRRmX77vvvkybNi3f//73a2zj+9//fkqlUm6//fYlWj8ArOjqMlYvCmM1ACw5XwycSZJWrVplvfXWy9ChQ5M4pgaA+lSXsXpRGKsBYNno0KFDGjdunMRxNQA0RHOP1YvCWA0AS8+1116b/v3757LLLptnmWNrAKh/CxqrF4WxGgAaJgFxS8gbb7yRddddd543ITbccMOq5QDAsnXsscemcePGqaioyK677ponn3yyatkHH3yQqVOnVo3Vc9twww0zcODATJs2bVmWCwBfWYsyLs85vu7Tp0+Nfp07d06HDh0cfwPAUjR16tSsuuqqadSoUbp165af/vSnGTt2bI0+xmoAWLrGjx+fl156Keuvv34Sx9QA0NB8cayewzE1ANSfysrKzJo1K6NGjcpll12W+++/P7/85S+TOK4GgIZgQWP1HI6rAaD+jBw5MieeeGIuuOCCdOvWbZ7ljq0BoH4tbKyew7E1ACy/Fv2WKszXmDFj0qNHj3nmt2vXrmo5ALBstGnTJieccEL69u2b9u3bZ+DAgfnd736Xvn375u67786uu+5aNTbPGavn1q5du5RKpXz22Wfp3Lnzsi4fAL5yFmVcHjNmTJo1a5aVVlppvn0dfwPA0rHRRhtlo402ygYbbJAk6d+/f/74xz/m4YcfzgsvvJBWrVolibEaAJayY489NpMnT84ZZ5yRxDE1ADQ0XxyrE8fUAFDffvKTn+Tvf/97kqRp06b585//nP/7v/9L4rgaABqCBY3VieNqAKhvP/nJT7LOOuvkxz/+8XyXO7YGgPq1sLE6cWwNAMs7AXFLUFlZ2WItAwCWrE022SSbbLJJ1fR2222X/fbbL3369Mkpp5ySXXfdtWqZ8RsAGo66jsvGbwBY9k466aQa0zvvvHM22WSTHHDAAbniiitqLDdWA8DScdZZZ+W6667LpZdems0226zGMsfUAFD/ahurHVMDQP06/fTTc/TRR2fkyJG5884789Of/jSTJ0/Oz3/+86o+jqsBoP4sbKx2XA0A9eeWW27JnXfemZdffnmhY6ljawBY9uo6Vju2BoDlW3l9F7CiaN++/XwTb8eOHZtk/un3AMCy07Zt2+y111557bXXMnXq1LRv3z5Jah2/y8rK0rZt22VcJQB8NS3KuNy+fftMmzYtU6ZMmW9fx98AsOzst99+WWmllfLss89WzTNWA8DScc455+Tcc8/Neeedl5/+9KdV8x1TA0DDUNtYXRvH1ACw7Ky++urZfPPNs8cee+Tyyy/PMccck9NOOy2jRo1yXA0ADcCCxuraOK4GgKVv0qRJOfbYY3PcccelS5cuGTduXMaNG5cZM2YkScaNG5fJkyc7tgaAelLXsbo2jq0BYPkhIG4J6dOnT95+++3MmjWrxvzXX389SbLBBhvUR1kAwFxKpVKSIqV+rbXWSosWLarG6rm9/vrr6dmzZ5o3b76sSwSAr6RFGZf79OlTNX9un376aUaPHu34GwCWsVKplPLy6rcajNUAsOSdc8456devX/r165fTTz+9xjLH1ABQ/xY0Vi+IY2oAqB9bbLFFZs2alQ8//NBxNQA0QHOP1QviuBoAlq7Ro0dnxIgRufjii7PyyitXPW644YZMnjw5K6+8cg477DDH1gBQT+o6Vi+IY2sAWD4IiFtC9ttvv0yaNCm33HJLjfnXXHNNunTpki233LKeKgMAkuSzzz7LXXfdlY033jjNmzdP48aNs/fee+fWW2/NxIkTq/p99NFHefTRR7P//vvXY7UA8NWyKOPybrvtlubNm+fqq6+usY2rr746ZWVl2XfffZdR1QDAzTffnClTpmSrrbaqmmesBoAl6ze/+U369euXM888M2efffY8yx1TA0D9WthYXRvH1ABQfx599NGUl5enR48ejqsBoAGae6yujeNqAFj6Vl111Tz66KPzPHbdddc0b948jz76aM4991zH1gBQT+o6VtfGsTUALD8a13cBK4rdd989O++8c3784x9nwoQJ6dmzZ2644Ybcd999ufbaa9OoUaP6LhEAvjIOPfTQrL766tl8883ToUOHvP/++7n44oszYsSIGicmzjnnnHzta1/LXnvtlVNPPTXTpk3Lr371q3To0CEnn3xy/T0BAFjB3HvvvZk8eXLVm/5vvfVWbr755iTJHnvskZYtW9Z5XG7Xrl3OPPPMnHXWWWnXrl122WWXvPDCC+nXr1+OPvrorLfeevXyHAFgebawsXrUqFE59NBDc/DBB6dnz54pKytL//7986c//Snrr79+jj766KptGasBYMm5+OKL86tf/Sq77bZb9txzzzz77LM1ls/5cJ5jagCoH3UZq4cMGeKYGgDqyTHHHJOKiopsscUWWWWVVTJ69Oj897//zX/+85/84he/SMeOHZM4rgaA+lKXsdpxNQDUn+bNm6dv377zzL/66qvTqFGjGsscWwPAslfXsdqxNQAs/8pKpVKpvotYUUyaNClnnHFGbrrppowdOza9e/fOaaedloMPPri+SwOAr5QLLrgg//nPfzJo0KBMmjQp7dq1y7bbbpvTTjstX/va12r0ffHFF/PLX/4yzzzzTBo3bpwdd9wxv//977PWWmvVU/UAsOLp3r17hgwZMt9lgwYNSvfu3ZMs2rj85z//OX/9618zePDgrLrqqvn+97+fM844I02aNFmaTwUAVkgLG6vbtGmTo446Ki+//HJGjBiR2bNnZ4011sh+++2X008/PW3atJlnPWM1AHx5ffv2Tf/+/WtdPvdb/Y6pAWDZq8tY/dlnnzmmBoB6ctVVV+Wqq67K22+/nXHjxqVVq1bZaKONcvTRR+fwww+v0ddxNQAse3UZqx1XA0DDc+SRR+bmm2/OpEmTasx3bA0ADcMXx2rH1gCw/BMQBwAAAAAAAAAAAAAAAAAAAAAAANBAlNd3AQAAAAAAAAAAAAAAAAAAAAAAAAAUBMQBAAAAAAAAAAAAAAAAAAAAAAAANBAC4gAAAAAAAAAAAAAAAAAAAAAAAAAaCAFxAAAAAAAAAAAAAAAAAAAAAAAAAA2EgDgAAAAAAAAAAAAAAAAAAAAAAACABkJAHAAAAAAAAAAAAAAAAAAAAAAAAEADISAOAAAAAAAAAAAAAAAAAAAAAAAAoIEQEAcAAAAAAAAAAABLwODBg1NWVpYjjzxykdYrKytL3759l0pNAAAAAAAAAAAALH8ExAEAAAAAAAAAALBCmBPQNvejadOmWW211XLooYfmtddeq5e6+vbtm7KysnrZNwAAAAAAAAAAAMufxvVdAAAAAAAAAAAAACxJa621Vg4//PAkyaRJk/Lss8/mhhtuyK233ppHHnkkX//615fKfrt27Zq33347bdq0WaT13n777bRs2XKp1AQAAAAAAAAAAMDyR0AcAAAAAAAAAAAAK5SePXumX79+NeadeeaZOe+883LGGWfk0UcfXSr7bdKkSXr37r3I6y3OOgAAAAAAAAAAAKy4yuu7AAAAAAAAAAAAAFjajjvuuCTJCy+8kCSZNWtW/vjHP2ajjTZKixYt0qZNm+ywww65++6751m3srIyV155ZbbYYou0a9cuLVu2TPfu3bPvvvvm8ccfr+o3ePDglJWV5cgjj6yaV1ZWlv79+1e15zy+2Kdv377z7HfMmDE56aSTsuaaa6ZZs2bp1KlTDjrooLz11lvz9D3yyCNTVlaWwYMH57LLLsu6666b5s2bZ4011sg555yTysrKxfm2AQAAAAAAAAAAUA8a13cBAAAAAAAAAAAAsLSVlZVVtUulUg466KDceuutWXvttXPsscdm8uTJuemmm7LXXnvlkksuyfHHH1/V/7TTTstFF12UtdZaK4ceemhat26dYcOG5YknnsgjjzySb3zjG7Xu9+yzz87VV1+dIUOG5Oyzz66av/HGGy+w3jFjxmSrrbbKwIED07dv3xx88MEZPHhwbr755tx999158MEHs/XWW8+z3i9+8Ys89thj2WuvvbLLLrvk9ttvT79+/TJjxoycd955i/AdAwAAAAAAAAAAoL4IiAMAAAAAAAAAAGCF9+c//zlJ8rWvfS3XXnttbr311my//fZ54IEH0rRp0yTJGWeckc022yw///nPs/fee2fNNddMklx55ZXp2rVrXnvttbRs2bJqm6VSKZ999tkC99uvX7889thjGTJkSPr161fnek855ZQMHDgwp512Ws4///yq+UceeWR22223HHHEEXnnnXdSXl5eY70XX3wxr732Wjp37pwkOeuss9KrV69ceumlOfvss6ueKwAAAAAAAAAAAA1X+cK7AAAAAAAAAAAAwPJj4MCB6devX/r165ef//zn2XbbbXPeeeelefPmOf/883P11VcnSS666KIagWndunXLSSedlJkzZ+a6666rsc2mTZumceOa92QtKytLu3btlnj9M2bMyA033JD27dvnzDPPrLFs1113za677pr3338/Tz/99DzrnnXWWVXhcEnSoUOH7LPPPpk4cWLefffdJV4rAAAAAAAAAAAAS56AOAAAAAAAAAAAAFYoH3zwQc4555ycc845+fOf/5whQ4bk0EMPzfPPP5+tt946L7/8clq0aJEttthinnX79u2bJHnllVeq5n3nO9/JoEGDssEGG+Sss87KQw89lMmTJy+1+t95551MnTo1W2yxRVq2bFmnGufYdNNN55nXrVu3JMm4ceOWZJkAAAAAAAAAAAAsJQLiAAAAAAAAAAAAWKHsuuuuKZVKKZVKmTFjRoYOHZrrrrsuffr0SZJMmDAhq6yyynzXXXXVVZMk48ePr5r35z//ORdddFGaNGmSc889NzvvvHM6dOiQI444IqNHj17i9U+YMCFJFqnGOdq0aTPPvMaNGydJZs+evaRKBAAAAAAAAAAAYCkSEAcAAAAAAAAAAMBXSkVFRUaMGDHfZXPmV1RUVM1r0qRJfvGLX+TNN9/MsGHDcv3112e77bbLv//97xx22GFLpb65a6lLjQAAAAAAAAAAAKw4BMQBAAAAAAAAAADwlbLJJptk6tSpef755+dZ1r9//yTJxhtvPN91u3TpkkMOOST33XdfevXqlYceeihTp05d4P4aNWqUJJk9e3ad6uvdu3eaN2+eF154IVOmTFnkGgEAAAAAAAAAAFi+CYgDAAAAAAAAAADgK+WII45Ikpx22mmZOXNm1fxhw4blD3/4Qxo3bpzDDjssSTJ9+vQ88sgjKZVKNbYxefLkTJw4MU2aNKkKgKtNu3btkiQff/xxnepr2rRpDjnkkIwePTq//e1vayx76KGHcu+996Znz57ZZptt6rQ9AAAAAAAAAAAAli+N67sAAAAAAAAAAAAAWJa++93v5tZbb80dd9yRDTfcMHvttVcmT56cm266KWPGjMnFF1+cHj16JEmmTp2anXbaKT169MiWW26Z1VdfPZMmTcpdd92VTz/9NL/85S/TtGnTBe5vxx13zM0335wDDzwwe+yxR5o3b54+ffpkzz33rHWdCy+8MP3798+5556bp59+OltuuWUGDx6cm2++OS1btsxVV12V8nL3iAUAAAAAAAAAAFgRCYgDAAAAAAAAAADgK6WsrCw333xzLrnkklxzzTW59NJL07Rp02y66ab52c9+lm9961tVfVdaaaVceOGFefjhh/PEE09k5MiRWXnlldO7d+9ceOGFOeiggxa6vx/+8IcZPHhwbrzxxpx33nmZNWtWjjjiiAUGxHXs2DHPPfdcfvOb3+SOO+7IE088kTZt2mSfffbJ2WefnQ022GCJfC8AAAAAAAAAAABoeMpKpVKpvosAAAAAAAAAAAAAAAAAAAAAAAAAICmv7wIAAAAAAAAAAAAAAAAAAAAAAAAAKAiIAwAAAAAAAAAAAAAAAAAAAAAAAGggBMQBAAAAAAAAAAAAAAAAAAAAAAAANBAC4gAAAAAAAAAAAAAAAAAAAAAAAAAaCAFxAAAAAAAAAAAAAAAAAAAAAAAAAA2EgDgAAAAAAAAAAAAAAAAAAAAAAACABkJAHAAAAAAAAAAAAAAAAAAAAAAAAEADISAOAAAAAAAAAAAAAAAAAAAAAAAAoIEQEAcAAAAAAAAAAAAAAAAAAAAAAADQQAiIAwAAAAAAAAAAAAAAAAAAAAAAAGggBMQBAAAAAAAAAAAAAAAAAAAAAAAANBAC4gAAAAAAAAAAAAAAAAAAAAAAAAAaCAFxAAAAAAAAAAAAAAAAAAAAAAAAAA2EgDgAAAAAAAAAAAAAAAAAAAAAAACABkJAHAAAAAAAAAAAAAAAAAAAAAAAAEADISAOAAAAAAAAAAAAAAAAAAAAAAAAoIFoXN8FLO8qKyszfPjwtG7dOmVlZfVdDgAAAAAAAAAAAAAAAAAAAAAAANAAlUqlTJw4MV26dEl5eXmt/QTEfUnDhw/PaqutVt9lAAAAAAAAAAAAAAAAAAAAAAAAAMuBoUOHplu3brUuFxD3JbVu3TpJ8Y2uqKio52oAAAAAAAAAAAAAAAAAAAAAAACAhmjChAlZbbXVqvLLaiMg7ksqKytLklRUVAiIAwAAAAAAAAAAAAAAAAAAAAAAABZoTn5ZbcqXUR0AAAAAAAAAAAAAAAAAAAAAAAAALISAOAAAAAAAAAAAAAAAAAAAAAAAAIAGQkAcAAAAAAAAAAAAAAAAAAAAAAAAQAMhIA4AAAAAAAAAAAAAAAAAAAAAAACggRAQBwAAAAAAAAAAAAAAAAAAAAAAANBACIgDAAAAAAAAAAAAAAAAAAAAAAAAaCAExAEAAAAAAAAAAAAAAAAAAAAAAAA0EALiAAAAAAAAAAAAAAAAAAAAAAAAABoIAXEAAAAAAAAAAAAAAAAAAAAAAAAADYSAOAAAAAAAAAAAAAAAAAAAAAAAAIAGQkAcAAAAAAAAAAAAAAAAAAAAAAAAQAMhIA4AAAAAAAAAAAAAAAAAAAAAAACggRAQBwAAAAAAAAAAAAAAAAAAAAAAANBACIgDAAAAAAAAAAAAAAAAAAAAAAAAaCAExLFQ3bt3T1lZWa6++uqF9r366qtTVla2wMd99903z3r9+vVb6HplZWXp27dvkuTII4+sU/8vPgYPHrxkvzkAAAAAAAAAAAAAAAAAAAAAAACwBDWu7wJYMXXq1Cm9evWa77KVV1651vUqKirSp0+fWpfPWbb22mtnm222mWf5gAEDMn369PTq1SudOnWaZ3nz5s0XVjoAAAAAAAAAAAAAAAAAAAAAAADUGwFxLBW77757rr766kVeb5NNNsljjz220H6nn356Tj/99Hnmd+/ePUOGDMnpp5+eI488cpH3DwAAAAAAAAAAAAAAAAAAAAAAAPWpvL4LAAAAAAAAAAAAAAAAAAAAAAAAAKAgIA4AAAAAAAAAAAAAAAAAAAAAAACggWhc3wWwYnr11Vdz6KGH5tNPP01FRUU22WSTHH744VlrrbXquzQAAAAAAAAAAAAAAAAAAAAAAABosATEsVS88soreeWVV6qm77jjjvzmN7/JOeeckzPOOKP+CgMAAAAAAAAAAAAAAAAAAAAAAIAGrLy+C2DF0rZt2xx33HF56qmnMmLEiEybNi0vv/xyvvvd72b27Nk588wz85e//KXW9fv375+ysrJaH3/605+W3ZMBAAAAAAAAAAAAAAAAAAAAAACAZaxxfRfAimXffffNvvvuW2PexhtvnH//+99p3759/vSnP+XMM8/MEUcckdatW8+zfkVFRfr06VPr9rt27bqkSwYAAAAAAAAAAAAAAAAAAAAAAIAGQ0Acy8w555yTyy+/POPHj88jjzySffbZZ54+m2yySR577LFlXxwAAAAAAAAAAAAAAAAAAAAAAAA0AOVLY6PTp0/PrFmzlsamWY5VVFRk/fXXT5IMHDiwnqsBAAAAAAAAAAAAAAAAAAAAAACAhmexA+KefPLJ/PrXv864ceOq5o0ZMya77757WrVqlYqKipxxxhlLokZWIE2aNEkSAYIAAAAAAAAAAAAAAAAAAAAAAAAwH4sdEHfxxRfnmmuuSdu2bavmnXzyybn//vvTo0ePtG3bNhdccEFuvvnmJVEnK4DZs2fn3XffTZJ069atnqsBAAAAAAAAAAAAAAAAAAAAAACAhmexA+JeeeWVbLfddlXTU6ZMyU033ZRddtkl7777bt59992svvrqueyyy5ZIoSz//vnPf2bcuHFp1KhR+vbtW9/lAAAAAAAAAAAAAAAAAAAAAAAAQIOz2AFxI0eOTNeuXaumn3nmmUybNi3f//73kyStW7fOXnvtlXfeeefLV8lyYcKECTnkkEPy/PPP15g/e/bsXHHFFTnhhBOSJEcddVSN3x0AAAAAAAAAAAAAAAAAAAAAAACg0HhxV2zevHkmTpxYNd2/f/+UlZVl++23r5rXqlWrfPbZZ1+uQhqM4447Lj//+c9rXX777bfnxhtvzI033pi2bdtmzTXXTOPGjfP+++9n3LhxSZLdd989l1xySa3bePnll7PtttvWurx169a59957F/s5AAAAAAAAAAAAAAAAAAAAAAAAQEO22AFxPXv2zH333Zfp06envLw8//nPf7Leeutl1VVXrerz0UcfpVOnTkukUOrfpEmTMmnSpFqXN2vWLBdddFGefvrpvPHGG/nggw8yderUtG/fPnvuuWe+973v5cADD0xZWVmt25gwYUKeeuqpWpe3adPmSz0HAAAAAAAAAAAAAAAAAAAAAAAAaMjKSqVSaXFWvPLKK3PMMcekW7duadq0aQYNGpSLLrooJ598clWfnj17plevXrn33nuXWMENzYQJE9KmTZuMHz8+FRUV9V0OAAAAAAAAAAAAAAAAAAAAAAAA0ADVNbesfHF3cNRRR+UXv/hFpkyZknHjxuX//u//cuKJJ1Ytf/TRR/Phhx9mp512WtxdAAAAAAAAAAAAAAAAAAAAAAAAAHyllJVKpdLS2PCMGTMyderUrLTSSmncuPHS2EWDUNckPgAAAAAAAAAAAAAAAAAAAAAAAOCrq665ZeVLq4CmTZumTZs2ixUON2nSpJx44onp0qVLmjdvno033jg33njjQte79dZbc8ghh6Rnz55p0aJFunfvnsMOOyzvv//+PH379u2bsrKyeR677bbbItcLAAAAAAAAAAAAAAAAAAAAAAAAsCQsenrbF9x222254YYb8s4772TKlCkZOHBgkuSdd97J//73vxx22GHp2rXrIm1z//33zwsvvJALLrgga6+9dq6//voccsghqayszKGHHlrrehdeeGFWXXXVnHHGGenRo0eGDh2a888/P5tuummeffbZrL/++jX69+jRI9ddd12NeW3btl2kWgEAAAAAAAAAAAAAAAAAAAAAAACWlLJSqVRanBUrKytzyCGH5Oabb06StGjRIlOnTs3s2bOTJCNGjEi3bt3y61//Oqeddlqdt3vPPfdkzz33rAqFm2OXXXbJm2++mY8++iiNGjWa77ojR45Mp06daswbPnx4unfvnu9973u58sorq+b37ds3o0ePzhtvvFHn2uZnwoQJadOmTcaPH5+KioovtS0AAAAAAAAAAAAAAAAAAAAAAABgxVTX3LLyxd3BH//4x/z3v//N//3f/+Wzzz7Lz3/+8xrLV1lllWy33Xa5++67F2m7t912W1q1apUDDzywxvzvf//7GT58eJ577rla1/1iOFySdOnSJd26dcvQoUMXqQ4AAAAAAAAAAAAAAAAAAAAAAACAZW2xA+KuvvrqbL755rnssstSUVGRsrKyefr07NkzgwYNWqTtvvHGG1l33XXTuHHjGvM33HDDquWL4sMPP8yQIUOy/vrrz7Psgw8+SLt27dK4ceOstdZaOeOMMzJ16tQFbm/69OmZMGFCjQcAAAAAAAAAAAAAAAAAAAAAAADAkrDYAXEDBw7MN77xjQX2ad++fcaMGbNI2x0zZkzatWs3z/w58xZle7NmzcpRRx2VVq1a5aSTTqqxbNttt80f/vCH3HLLLfnf//6XPfbYIxdddFF22223VFZW1rrN3/72t2nTpk3VY7XVVqtzPQAAAAAAAAAAAAAAAAAAAAAAAAAL0nhxV2zRokUmTJiwwD5DhgxJ27ZtF3nbZWVli7VsbqVSKUcddVSeeOKJ3HLLLfMEuZ177rk1pvfYY4907949P//5z3PHHXdkv/32m+92TzvttPzsZz+rmp4wYYKQOAAAAAAAAAAAAAAAAAAAAAAAAGCJKF/cFTfZZJPcf//9mT59+nyXjx07Nvfdd1+22mqrRdpu+/btM2bMmPluL0natWu30G2USqUcffTRufbaa3P11Vdnn332qdO+Dz/88CTJs88+W2ufZs2apaKiosYDAAAAAAAAAAAAAAAAAAAAAAAAYElY7IC4448/PkOHDs0BBxyQYcOG1Vj2wQcfZL/99sv48eNz/PHHL9J2+/Tpk7fffjuzZs2qMf/1119PkmywwQYLXH9OONxVV12VK6+8sir0bVGUly/2twUAAAAAAAAAAAAAAAAAAAAAAABgsS12Eto+++yTU089NXfffXdWX331XHzxxUmSTp06Ze21184TTzyRM888MzvuuOMibXe//fbLpEmTcsstt9SYf80116RLly7Zcssta123VCrlhz/8Ya666qr8/e9/z/e///1F2vc111yTJNlqq60WaT0AAAAAgCXtlVeSnXdOundPfvazZOrU+q4IAAAAAAAAAAAAAAAAAFgWGn+Zlc8///zssMMO+ctf/pLnnnsu06ZNS2VlZXbbbbccf/zx2XXXXRd5m7vvvnt23nnn/PjHP86ECRPSs2fP3HDDDbnvvvty7bXXplGjRkmSo446Ktdcc00++OCDrLHGGkmS448/Pv/85z/zgx/8IH369Mmzzz5btd1mzZplk002SZI88cQTOe+887LffvulR48emTZtWu6999784x//yI477pi99977y3xbAAAAAAC+lBEjkm9+Mxkzppj+4x+TDz5IbrstKV/s234AAAAAAAAAAAAAAAAAAMuDslKpVFqcFT/66KM0bdo0q6666pKuKZMmTcoZZ5yRm266KWPHjk3v3r1z2mmn5eCDD67qc+SRR+aaa67JoEGD0r179yRJ9+7dM2TIkPluc4011sjgwYOTJAMHDswJJ5yQV199NaNHj05ZWVl69eqVgw8+OCeffHKaNWtW51onTJiQNm3aZPz48amoqFjs5wwAAAAAfDUMH57065c89VSyzTbJ+ecnHTpULy+Vkv32S+64Y951//GP5Ic/XGalAgAAAAAAAAAAAAAAAABLUF1zyxY7IK5Ro0Y58sgj889//nOxi1wRCIgDAAAAAOpq+vRkiy2S116rnrf++smTTyZt2xbTjzyS7LTT/Nffbbfk3nuXepkAAAAAAAAAAAAAAAAAwFJQ19yy8sXdQbt27dKuXbvFXR0AAAAA4Cvn9NNrhsMlyZtvJj/7WfX0//t/y7YmAAAAAAAAAAAAAAAAAKBhWeyAuO222y7PPvvskqwFAAAAAGD5Ne6N5MnvJA/vkLzzp6RyZo3FgwYlf/jD/Fe9//7i6/TpyS23LN0yAQAAAAAAAAAAAAAAAICGbbED4n7729/mjTfeyDnnnJNZs2YtyZoAAAAAAJYvU4YnD2+fDP1vMvKx5OWTkif2qxESd/XVC9/Miy8mEycutSoBAAAAAAAAAAAAAAAAgOVA48Vd8cILL8wGG2yQX//61/nHP/6RjTbaKKusskrKyspq9CsrK8s///nPL10oAAAAAECDVColzx6RzBhbc/7wu5M3z036nJMkuf76hW/qySdrTq+ySvKDHyQPPFCExwEAAAAAAAAAAAAAAAAAK77FDoi7+uqrq9qffPJJPvnkk/n2ExAHAAAAAKzQRj2ejHho/svGPJ8kGTo0GThw4Zt6+uma09dck+y6a3L22cnuu3/JOgEAAAAAAAAAAAAAAACA5cJiB8QNGjRoSdYBAAAAALB8+vCqhXbp37/m9FprJf/+d/LWW8lJJ1XPn/u060EHFeFwSdKsWfKvfyUnnvjlywUAAAAAAAAAAAAAAAAAGrbFDohbY401lmQdAAAAAADLn1JlMuzOhXYbMKC63bhxcv31yRZbJF//erLKKsmPflQsGzasut/BB9fcRvfuyRFHfPmSAQAAAAAAAAAAAAAAAICGrby+CwAAAAAAWG6NfyuZMbZ6unHrpPNuSZM2Nbp99FF1e999i3C4Ofbeu5g3bVoyZkz1/G98Y97d7bNPzenJMyZn1ORRGTV5VGbMnrHYTwMAAAAAAAAAAAAAAAAAaDi+dEDc9ddfn1122SWdOnVKs2bN0rFjx+yyyy65/vrrl0R9AAAAAAAN16gnq9tl5cl2tyV97032eDOpWLdq0dCh1d2+GPKWJKeemgwfXj3dvXvSrt28/cq/cEb3tIdPS6ffd0qn33fKfQPvW7znAAAAAAAAAAAAAAAAAAA0KIsdEFdZWZkDDzww3/3ud/PQQw9l8uTJ6dKlS6ZMmZKHHnoo3/3ud/Ptb387lZWVS7JeAAAAAICGY9KH1e2eP0lW3alot+yabHd70qh5kuTjj6u7bb31vJtZbbWafXr0qNvuh06oTp4bOn7oAnoCAAAAAAAAAAAAAAAAAMuLxQ6Iu/TSS3PLLbfkG9/4Rp555plMnjw5gwYNyuTJk/Pss89m++23z+23355LL710SdYLAAAAANBwTJ0r1a374TWXVayd9D45M2YkI0YUs1q2rD38bdiw6vYqq9Rt93OHws0dFgcAAAAAAAAAAAAAAAAALL8WOyDu6quvzjrrrJMHH3wwW265ZY1lW2yxRR544IGss846ueqqq750kQAAAAAse6NHJwMGFF+BWkz5PCCuUcuk3WbzLu+4bYYNS0qlYrJz56SsbP6bWqyAuAkC4gAAAAAAAAAAAAAAAABgRbPYAXHvvvtu9t577zRu3Hi+yxs3bpy99tor77333mIXBwAAAMCSNXFicsopyS67JN/9bvL44/P2qaxMfv3rpFOn5GtfKwKt/u//kilTln290ODNCYhrs35SPv9zpUPnym1bddXaNzV2bHW7LgFx02dNz8jJI6v3M15AHAAAAAAAAAAAAAAAAACsCOZ/xWIdNG3aNJMnT15gn8mTJ6dp06aLuwsAAAAAlqA33kgOOCB5993qeddem5x5ZhEIV1aWTJtW9Ln77uo+s2Yl//hHMnx4cuedy75uqBdlZQvvUzk7mfp5QFyLLrV2+/TT6vaCAuJmzKhud+q08N1/POHjGtNDJwiIAwAAAAAAAAAAAAAAAIAVQfnirrjJJpvkpptuyvDhw+e7/JNPPslNN92UTTfddLGLAwAAAGDJ+OSTZJttaobDzXHuucmc+wD88Y81w+Hm9uabS68+WC5NG5VUzizaLTrX2m369Or2KqvUvrm5A+JatFj47r8YCDdswrBUlioXviIAAAAAAAAAAAAAAAAA0KAtdkDcySefnDFjxmTzzTfPxRdfnAEDBmTo0KEZMGBAfv/732ezzTbL2LFj87Of/WxJ1gsAAADAYjjjjGTChAX3mTw5+e1vl009sEKYPqq63XzVWrvNHfzWqlXtm5s5s7rdpMnCdz90fBEQt077dYr1K2dmxKQRC18RAAAAAAAAAAAAAAAAAGjQGi/uinvttVf++Mc/5he/+EVOOeWUGstKpVIaN26c3//+99lrr72+dJEAAAAALL6xY5Prr685b4stkmnTktdeq553yy3JxInV0+uvn5xySjJkSPKnPy2TUmH5UjlX8lvzTrV2mzsgbkHBb3MHxDWuw5nboROKgLjeHXpn2MRhmTRjUoZOGJrOrTsvfGUAAAAAAAAAAAAAAAAAoMFa7IC4JDnhhBPyrW99K9dee21eeeWVTJgwIRUVFdlkk01y6KGHpkePHkuqTgAAAAAW0223JdOnV09fckly/PFF+667koMPLtr331/dZ731kieeSFZeuZg+9NDkyCOXSbmZNav4WpeALKhXcwfENWpe3e6/dzJ5cNXkzKnPJWmZZMG/13Mvmz174bv/eMLHSZKurbuma+uueXfMuxk6fmi26LpFHYoHAAAAAAAAAAAAAAAAABqqL32Z7ZprrpmzzjprSdQCAAAAwFLw8svV7f33rw6HS5K99kquu65ov/FG9fxf/ao6HC5J1lor+de/lm6dTz2V/OxnyYABxfTWWydnnZXsuuvS3S/MV6lU3S4rm//8kY/P1adJdXvi+8nEd6smGzeurGovKPitadPq9syZCy9x6IShSZKuFV3TteLzgLjP5wEAAAAAAAAAAAAAAAAAy6/y+i4AAAAAgNoNHpx897tJjx7J6qsn3/528vjjC12thtdfr24fffS8y/fZJ2nWLHn77WK6WbNk773n7der16Ltt65KpSIYbtttk+efTyori8dTTyW77ZY8+ODS2S98ebWEyH1B07my4xYU/NZkrn7Tpi1870PHfx4Q17prurbuWmMeLC/6Xt03XS7uki4Xd8lnUz+r73IAAAAAAAAAAAAAAAAAGoTFDoj7wx/+kA4dOmT48OHzXT58+PB07Ngxf/7znxe7OAAAAICvsj/9KendO7n22mTQoGTo0OTWW5Ptt09uuaVu2yiVktdeq57edtv593v//ergql69kpYtv1Tpi+S665I//rH25ePHL7taYJGUN61uV9ae/Na0aXWQ3NSptW+u6VybGzVq4bsfOuHzgLiKuQLiJgiIY/kxbda0PPnRk/lk0if5ZNIneW3EawtfCQAAAAAAvqIqK5NXXy1usPXmm8U0AAAAAAAAACuuxQ6I++9//5sNN9wwXbp0me/yLl26ZOONN86NN9642MUBAAAAfFXdfXdy0knJ9OnzXz5y5FwTMyckr52V3LFaclPL5K51kpdOSqZ8nGHDknHjim6rrpq0bj3/7b31VnV77bWXxDOomxkzkjPPrJ5u1iw55ZTkkkuSvfZadnXAYilrUt2unFFrt7mD30aMqH1zbdvWrV+STJk5JWOnjk2SdG3dNV0rBMTRwEwfk7x1UTLgp8UY9cmDSeXsGl3eGvVWZpeq57064tVlXSUAAAAAADR4pVJy223JJpskG2+c7LJLssEGxfu687ux2JgxyZ13FjfqevrpZNasZV4yAAAAAAAAAEtA48Vd8b333sthhx22wD7rr79+rrvuusXdBQAAAHwlDBlShH21a5f06JGUldV3RdS32bOTk0+unl5ppeTUU5O11io+wH/FFXN1Hv928vD2yfRR1fMmvpe8+14y/O58uup7VbN79ap9n599Vt3u0ePLP4e6eu654m8gKcLhnn462XTTYvr445P//Cdp0qT29aFelc+V/DZjbK3dOnaorGp/+mntm+vatbq9sIC4oeOrg+C6VnRN19Zd55kP9eadPySv90tmTaw5v80Gyc5PJU0qkiSvflozEO6L0wAAAAAAQHHDrfPPn3f+Bx8kZ52VfPvbxfSYMclvf5v87W/J5MnV/bp1Sy69NNl332VSLgAAAAAAAABLyGIHxE2ZMiUrrbTSAvs0b948kyZNWtxdAAAAwAqrVEpuvjn5wx+SZ5+tnt+tWxEMduKJ9VYaDcBrryXvvlu0mzcvQtTWX7+YPuSQ5Ic/TAYNSlI5O3nqOzXD4Zq0KQJ5SpVJ5cxMmVK9qEOH2vc5dWp1u6JiiT2VhXrqqer2UUdVh8PNcdBBSWVloGFq2ra6PXWu5Le+9yaf3JsMODZJstpqix4Qt6B+STJ0QhEE16ppq1Q0q0jXimLlTyZ9klmVs9K4fLFP/cKX88G/kpdPnv+y8W8kMydWB8SNKALhOrTskNFTRldNL7K6pOuWSou3bQAAAAAAWNomvp+MfCKpnJas1D3puF3SpHWS5PHHa4bDtW2bbL99MmpUzc8aTJiQ7Lhj8V7zF338cXLjjQLiAAAAAAAAAJY3i32V4BprrJGnn356gX2eeeaZdOvWbXF3AQAAAMulmTOTu+9ObrghGTYsadEi2WST5PDDkw03LPocf3zyl7/Mu+7HHyf9+gmI+6p7/PHq9ve/Xx0ON8eGG37+uzT0f0XYTpK0WivZ6uqk47ZF+M6gfycfXJlp06rXa9as9n3OmFHdbryEc6Xuef+evDj8xSTJoX0OzVrt1qpaNndA3B57zH/98vIlWw8sMS06JylLUkqmzZXo1mrNpEV12lu3rtUBcZ98Uvvm5j6VOmTIgnc9dHwRENe1ddcaXytLlRk+cXhWb7N6nZ4CLFGzpiSvnFI9vdqByVo/TCqnJx/fngy6ukb3OYFwB6x7QP724t/yxsg3BBwCAAAAAPDVMWlw8tKJybD/JZnrRieNWiQbX5Ss/dP8/vfVs7/5zeJzCHNuDPb228l55xXts86qGQ536KHJVlsVNx677rql/DwAAAAAAAAAWCoW+yqrvfbaK3/84x/zr3/9Kz/4wQ/mWX7llVfmySefzAknnPClCgQAAIDlyYAByf77J0OH1pz/0EPJ735XzH/++ZrhcHvumXz728mkScn//pe88MKyrZmGp3//6vZOOy2g44iHq9vb/Cdpt1nRbtI6WfvYZPUD03Suu8bPmlX7ppo3r27PHRa3JPR7rF9eGF78Yjdp1CSnbntq1bKXXqrut+mmS3a/rIAmvFcETE14J0lZEYzYeddklR2SsnpIEixvkrRYNZn6Sc2AuC9o2TJp3z4ZMyaZMCEZPjzp0mXefl2rM+UycGAycWLSunXNPqVSUlaWDJ3weUBcRbHSKq1WSXlZeSpLlRk6fqiAOJassrK69Rt+fzJjTNFe65hki79XL+u6V9LzR0njlkmSUqmUVz8tAuL2X3f/XPHSFZk+e3reG/Ne1uu43pKsHgAAAAAAGp4Z45NHdkgmD5532eypyagnM3PNn+bRR4tZTZsm11xTHQ6XJOuuW8ybMSO56qrq+bfemuy3X/V0v37JXXctjScBAAAAAAAAwNK02AFxv/zlL3PjjTfmhz/8Ya699trsvPPO6dq1a4YNG5YHHnggjz/+eLp06ZLTTjttSdYLAAAADdawYcluuxUBQEmyyirJAQck5eXJU08VQViVlcnf/la9zm9+k5x5ZvX0ccclDzxQc7vvjXkv975/b5Jk8y6bZ5vVt1nKz4T69tZb1e3NN19Ax5GfJ8m1Xqc6HG5uzTulRYvqyfHja9/U3P0++6xOZSZJ3n23+N2eMiXp2DHZYotk1VXn2tbUzzJg+ICq6Yc+fKhGQNy4cZ+X2jzp3Lnu++UrZvaM5PkfJoP/Pe+yd36XbPaXIhSxPrToVgTETXinOr1tPlZbrXp8eO65mhflJMnYsUm7dknbtsXfRalUjB277Vaz34MPJrvskgwdXwTEvTP6nXz7pm8nSXVA3IQvpJTCsjLyser2uj+fd3n76kHt4wkf57NpxYCzSedNsnb7tfP26Lfz6qevLnpAXKlU3Z77b3Du+fNZZdKkZPLk4u9u7qDUr6oZM5JPPy0CZTt3rvnaAAAAAACAJeztC6vD4Trvnmx8YVKxbjLpw+I9sSnD8txzxbnsJNlyy/nfgKhRo+SJJ4obDyVJ377zvg9VUZEcemjNeU999FQGjh2YJNmt525ZpdUqS+ypAQAAAAAAALBkLHZAXMeOHfPoo4/m8MMPz2OPPZbHHnssZWVlKX1+wdUWW2yRa6+9Nh07dlxixQIAAEC9+uy15KP/FKFcsyYmTdombdZPun4r6bJb/vrX6vCfPfdMbr65ZtjIffcVgRuPPVZMt2mT/PKX8+5ml11qTv/l+b/k0ucvTZJ8Y41vpP+R/eddqXJ2MuqJZPjdybSRSaNmSau1klV2SNp9rdbAIhqmOR/eT2qGrdUwe0Yy/o2i3X6LWre18srV7Q8+qH2fnTpVt99/f8H1lUrFneh///vkzTfnXX7yycWyJHls8GMppZR2Ldpl7NSxefKjJzN15tS0aNIipVIydWrRTzAPC/TaGdXhcCutkax5RNK0XTL+rWTozUnlzPqrrWW3ZOwLybQRyeQhSavu8+222mrJK68U7bvumvfCnEsuSc45J+nWrTo48eabawbEjRiRXHHF5wFxn4fADZ84PLe+fWuNbc0Jj4NFUiol415PJn9YTLfolrTtU7ym+GLQ2pzXFV+c/3Df4muzjkmrngvc3asjXk2SrNpq1XRo2SEbdNqgCIgb8WoO6XPIl3wytRs8uAjrve225L33inllZUmfPslPf5r88IdLbdcN1gMPJP/8Z3LPPdUXGpaXFyG1F15YXEwIAAAAAMAS9vHtxdeV1ky2u604H58kFWsnG56bzJqaV/9e3X3LLWvf1IMPVre/+c267f7oO4/OO6PfSZJc9M2L8ottflH32gEAAAAAAABYJhY7IC5JevXqleeeey4DBgzI888/n3HjxqVt27bZYostsvnmmy+pGgEAAKB+lUrJq6cmb19UPa+8WVI5PRn1eDLk+pS+PS433li9+C9/mTfwarfdiuCNmZ/nGG2/fdKkycJ2Xcrt79xeNf3kR09m1ORR6bjSXIHsY19MnjwwmTxo/hvZ+Zmkw1YLf540GHPn7dSa7TdrrhS5lt2q2wOOTUY8UjXZ42vXpVmzTTN9ehGKM2NG0rTpvJvbYIPq9sIC4s47LznrrKLdvHmyzz7Juusmo0YVFx8MHFjd9+FBDydJDlr/oNz2zm35dNKneXro09mpx04pK0tatEimTEmmTSuetyxD5jFrajLwb0W73WbJTo8njVtWL9/0D8mUj+untqTm39/Htye9T5xvt25zdbvppuSMM5IePYrp559Prr66CIhbY43kjc+zH6+6Kjn66GSrrZLKyuTHP64OVZwTEDc/C1oG86icnbz7h+T9vxYhh3Nr1CLZ4sqk+6F129b00cXX1j2r/6EPvycZ8p/qPqt/J+m6Z179tAiI26DTBlVf//vWf6uC45aGxx5L9t67OgStc+di/Bo7tvi7u+GGr15A3NlnJ7/+dfX0ppsW35ePPir+Nz39tIA4AAAAAIAlbtLgZMLbRXu1/avD4ebWuEUmTKierPXGYkmGDatub7TRwnf/zuh3qsLhkuS2d24TEAcAAAAAAADQAH2pgLg5Nt9882y++eaZNWtWXn/99STJzJkz02RhV7kDAADA8uDj26rD4brunWx4XtK2TzJ7ejLmueSj/2TIkGTQ5/lsvXsn3bvPf1OjR1e35wQDLciLn7yYoROGpqJZRdbtsG6eG/Zc/vfu/3LUpkcVHWZOTB7brQhkabpy0uc3Safti0CX8W8kH/0nKVsih/8sQZWVRRDNk09Wh7a1a5esv36yww5J69bJJ58UfUeNSrp2nd9W5kqRq5xZ3Z7ycTKh+sP8jcumZv31k5deKvb72mvJ/HL911gjWWmlZPLk5IMPit/VDh3m7TdqVPKb3xTtlVdOnnkmWWeduaoqJW+/XT390IcPJUm2X2P7jJ06Nv958z95eNDD2anHTlXbmBMQ98knSZcutX/f+Ir65N5k1udpTuucVDMcLkkar5RUrDPvestKy9Wr22+dl6x+YNKya1KaXaPbxhtXtydNSg47LLn77uLv5eCDi7/PpAiDu/vuol1ZWfQ78cQiYPS++4qw0SQZOl5AHEvIKz9P3v1T0W6/ZbLat5NmHZPJg4twtymL8PtUNR7NlfY5/s1k8L+rp9usVwTEfR4Et0HH6oC4JHnl01cW62kszMyZyXe/W/z9lZUlV16ZHHFE0qhRsXzUqCJAbnkzdWrxaNly3nDihXn11epwuK5di/8zG25YvfzDD6tfjwAAAAAAsARNmuuOW+2+Vt3+4Mpk1pSqyUblP01SniSZXfOtpxqmTatu1+Vc8W1v35Yk2W717fLU0KfyzMfP5JOJn6Rz687z9D370bMzZuqYJMk5fc9J+5btF74DYJkbP774/MYrryQTJxY36+vRI9lmm+LzIEmKG0d99lIy8vFk6vCkrDxp3ilpu1HScdt534sHAAAAAACg3i3SFeKDBg3Ko48+mm233TZrr712jWV33XVXjjrqqIz+/Er3lVdeOZdddlm+853vLLlqAQAAoD68f1nxtUXnZOvrkyatiulGzZJO30g6fSNjX6ru3q1b7ZuaE0KSVIcBLcjt79yeJNmt527ZeJWN89yw53L7u7dXB8QNvq4Ih0uSra9NuuxRvXLrtZJu+yx8JyxTDz6Y/OhHRehKknTqVNzt/bPPkqFDi2U9eybvvVcsf+mlWgLiGreubk8bUd1uuXrSqmeNiwr69Cm2kyQ33DBvQNzbbydrrplssEHy3HPF7+YNNyTHHVez3yOPJC+/XATaJcnRR9cMh0uK0J311ivaH0/4OO+OeTdJ8o01vlEVEPfQhw/l/J3OT5Jstln1He1feklA3FfViBHJgAHJW28VIYXNmhX/SzffPFl39pvVHTtuW3ydMT55/6/V85uvmqz1g2Vb9Bztt6xuTx+d9N+rCIn78F81um2/fc3Vnn02aT/X9TNzfve33bZmvw8/TI4/vua88dPGZ+KMibWWtKDwOKhh6ifJe38p2t32T7b9b3EhyBx9+iUzJ9V9e00+H5umjZxrZnlS3qRmmGlSFRD34icv5oR7T8jIKcU6n076NCMnj0ynlTot4pNZsNtvTz7+uGgfcEDygy/8y+jYMTnwwCW6y6WiVEr+979inH7mmeSjj6qXdemS7Ldf8pe/1G1bc/fr169mOFxSXDRUl0BjAAAAAAAW0ey5Et3K57oh+2tnJdM+rZpst/KxVe057y/PT+u53joeM2bhu7/tnSIg7nsbfS+zS7Pz9NCnc8e7d+RHm/+oRr/nhz2fXz/+66rpbhXdcuq2py58B8Ay89lnxWc7brih+KxH48bFZ0xKpeK9sWbNipv2ZdSTybNHJJM+TFKWtFwtaVJRBMXNGJtsdmmy9k/r++kAAAAAAADwBYsUEHfFFVfkwgsvzIdfeId54MCB+c53vpNp06ZljTXWSMuWLfPOO+/ksMMOS69evbLJJpss0aIBAABgiSgrW3ifyspkZP+i3XG76nC4Tx5MJrxd1W2l7JdktSTJuHG1b27u8Ks33lj47ud8MHvPXntm41U3zumPnJ4HP3gwE6dPTOtmrZNP7i06Nl4p6bx70Z78UTLmueqNtForabfpwnfGUvfee8meeyYzZyadOyc33VQzDGr48GTIkOSJJ5J77inm9e+f7L33fDbWqFlS0TuZ8E4y7tXq+Ztfmkx4N7m7d9WsuQNfLr88OeigZIstiumPP0723Td58cUiSO65z391zj032XHHZP31i+n7709+9rNkq62qt7XNNgt+vg9/+HCSpFe7XuncunO+scY3khRhQOOmjUvb5m3z9a8XQTdJcvfdyV57zbud2bNrhivW1ezZxV2yx40rPgTdsWNxl2wajvffT3784+Th4lclvXsna61VfFj9ww+TDz5IZgyYO1Tq8//bM8clr51RPbvdZvUYEPe1pLxpUvl5cuK4V4rHF6y9dhEG+emn8yyqYYstkubNk2nTau8zdEJ1AFzf7n3T5PMLh0ZMHpHXRrxWYzks0NBbk9Ksot37pCIcrnJWMvH96j6NmlW//lmYivWSsS8mU4YmsyYXr0/WPbl43NqxKtR28ozJeX9MsY8nPnoiT3z0RI3NvPrpq9l5rZ2rpkulUt4eXbzualLeJL3a91rkp/rcXC+NdtttkVdvMH70o+Qf/yjaO+yQnH9+0r17Ed761lvFo66ef766vcsuS7RMAOCraPa0pFSZNGqx4HNupVLxtS7n5RqaKcOSqcOS6Z+nLTRtV9ygoVmH+q0LAACoF6VSMmlS8d5vRUXxfmSSuh3vjHi8uj31k+p2m/WLwLgpxXs9W29dqlr09NO1b26DDarbzzxTvB9cm48nfJwXhr+QJNmj1x4ZNXlUnh76dG5757Z5AuIuee6SJMX7UY8Nfix/feGvOXnrk9OkUZN5tsvSMXt28bO/665k0KBk9Ogi7Ktt2+J91SOOqH7vn6+eUin5zneShx4qps86KznllKTV52/tTZyYPPBAkhnjkv57F++zt9s8+foNSeue1RuZ8FZxXgcAAAAAAIAGZ5EC4p588slstNFGWWONNWrMv+SSSzJt2rQce+yxufTSS5Mkt956aw444ID85S9/yT//+c9FKmrSpEk588wzc9NNN2Xs2LHp3bt3Tj311Bx88MELXXfkyJE55ZRTctddd2XKlCnZaKONcu6552annXaap+9DDz2Us846K6+++mpatmyZvfbaKxdddFE6deq0SPUCAACwnCqVak7P+aD23PMrZyel2UW7vHn1/CHXJ4Ourppcc6seWXnl1fLZZ8nLLxeBVG3bzrvLr3+9+CDmpEnJU0/V3i9J3hvzXt4a9VbKUpbde+6eDi07pFtFt3w84ePcN/C+HLj+gcnsqUXnxq2r6x/9dPL0IdUb6nXsVy8gbtLgZPjdydgBxZ2OZ04oApyadUzarJesf3q9lHXBBcUFAkly0UU1w+GSIkCwS5ekvLx63hVXJCeemHTrVj1v6NDknXeSnTtt/3lA3GvJZ68lK2+Y+dl77+Tkk4v21KlJ377FNqdNS66+urijdJLst19y5ZVFe+TIor7DDitC6+66K1lzzSK4ao6JExf8fB8eVKR+zS7NznH3HJdSSilLWSpLlXls8GPZt/e+NULm/vWv5Mgjky23rJ73738XF1Tsu++C9zXHp58ml16a3Htv8sorSYcO1cGMw4Yl7dsX37sVSqlUBDHNHJ9UziwCmZq2S8oXI1VvGZoypQhMfP/9ZKWVkjvuSL54Cm/48CRT5vrlnzwoWWn1pEnbZMNzk2H/S8Y8n3rVqHnSaYfk0/sX2K2srPhw/p//vODNtWyZ7LNP8p//1N5n6PjioqDysvI8+N0H07i8OM376KBHs+O/d8zIySMzfdb0NGvcbJGeCiuYulyA9vpvqtvNVy2+Th+d3LNe9fw2GyR7vF63fXbqmwz+f0nl9GToLcma35tvtzdGvpFSSvNdliSvjqgZEHf969fn8NsOr5p+/MjHs90a29Wtps/NPbZW1vH6ltvfuT1vjSoS177Z45vZoutSvMKqDj+vxx4t1QiHe/DBmgGqO+ywaLuce91ZsxZt3drMmJEMGFAEz44dWwS1lpUl7doVryP237/mawkAYDn22avJh/9MPrk/mTq8OBZt1DyZOTFp1j7Z7K9J552TUU8ng69NRj6aTBuVpFSEHaQsWWmN4oLkVmtWbXbMmGTUqOJ1xKxZxTmBrl2L1xNLy0cfFcem48cX5+yaNk06dSqCvrt1LSXvX5YM/Fsy/o2kda+k9TrFeabpI5NxbyTb/CfpvAiJu6XK4vv32cvFeatZk5LyZkXQXMU6SadvLL0nCwAALLZSqXjP9Oabk0cfLd5PbdeueP9//PikWbPkb39L9pj78wZzn/ude/6sydU3IBr1ZLL2scX8HR9KBv07efaIJMl66xXvdQ4fnrz+enEzlLnfS02K90fnvjHKHXcU70U3bVqz36xZRYjd7e/cniTZtPOm6dK6S/Zce8+c/sjpeWTQI1U3+UqS4ROH56Y3b0pZynL1Pldn12t3zbtj3s1t79yW76z/nS/xnaSuPv00+eY3kzffLN5DPOaY5MADkzZtis+avP56ccMtAXFfXU8+WR0Ot+OOya9/XXN569bJt7+d5J2ri3C4JNn8r0U43Ozpxc0H52jcchlUDAAAAAB8FZVKxWf4y8uXz/uKAtS3RQqIGzRoUPr27TvP/Pvuuy9NmzbN+eefXzVv//33z3bbbZcnnnhikYvaf//988ILL+SCCy7I2muvneuvvz6HHHJIKisrc+ihh9a63vTp07PTTjtl3LhxueSSS9KpU6f89a9/zW677ZaHHnoo22+/fVXf/v37Z/fdd8+ee+6ZO+64IyNHjswvf/nL7LTTThkwYECaNXPxJAAAACkCltpumIx7NRn7fBEYV94o2eCsZPWDkv67J0maNi3l298uwrVmzy4+cD3XYXKSIpyqoqL4cPbNNyfTpyfHHVesM+cwdNq0IjzolFOqP5hdXlaenf5dpCaNmzYuSXL7u7cXAXFtNkg+fTCZ9mkyZVjSsmvSaftk+3uTF49NJn1Ytf9Sqfjg+BtvFIFgkyYVHwJv2bK46HXzzYswrTmmzpxaFd7Sssn8Pwj65sg386dn/5QkadGkRc7f6fy0atrqS3zDF8H8Av2S5P3Lkxd/mqQ8We/UpOePkuarJKVZydRhyfg3l0198zFqVHV7TmjZ/Gy6abLaakUQ3IQJyde+Vvw+9ehR3PH9oouS885Ldt5zx2Tg34uVnj0i+fr1SZt1k9nTamyvV68iFO6xx4rpqVOT3/523v3uskv1fpPiQ+V//WvNPt/8ZnLZZUX7lluSww/PfJVKpaqAuA8/+zB/eeEvNZY/9OFD2bf3vtlyyyIwZtCgIlRmu+2Sn/ykuPj7wQeLx3//W/v3am6jRxchjIMGFb/Ljz6afOMbNX9Vhgyp27aWCx/fkXxwRTLqqaTlasVF5I1aJrMmJlM/SdY4JFnn+KWz71JlMm1EceH/7ClJWeOkSUXxt9aobufVHnqouAA/Sfbaa95wuOTzv5MpeyUpS1JKBl5R/I9r2iZZ/4zi/96XCIibOLH4PZ80qfjf3bx50rFj8b96kd50WvO7Cw6IKytSmH7wg4UHxCXF39UCA+ImFH+knVt1rgqHS5KuFV2r2h9P+DhrtVtr4TtjxVWXC9CGzPWLNv7N4mKQJhXJ1/6WfHRTMuKRRdvnKnMllL16elKxbtL+a8U+S9WpbK+OeDVJ8fpi087VIbYfjP0gn0z6pGp5koyZMiYn3n9iylKWX+/w65z16Fk55q5j8sr/vbJIIYjbbZf87ndF+3//S44+esH9n/v4uRz43wPTvkX7jJ06Nn95/i959UevpuNKHeu8z0VSh5/X8xdVz+7bt2bA2+LYfvsi2DgpvicnnvjltnfFFcnPf168dtlhh+Sgg4rXl40bF6+BXnuteK0hII7lWl1fIHzxGKWB+t+7/8v9A4vXMD3b9cyJW52Ysvk9x8pZxUXLsyYlKUuatKoZUg589Yx5IXlo2yLIoNdPkz5nF+FmSfE/cMpHxXHikP8kT39+I8CNLkh6/l/StG0xPXtG8Rq06coZOTI5++zkgQeK82d9+yY9eyYtWhSvLQYOTI4/vgjTXlJKpeTCC5PLLy8C4rbfvjiH0L59Ee7//PPFseI/Tr368/NMKcLsVj/oC6/XKovvQ10Nvyd5/ujiuL3bfsmqOxdBeZWziqC9j/6bdPpGZs9OHn+8CH94550ibGL27OK1VaNGxXmT3/ymuNAbGrzK2cnsycWNWBq1KAIRvY4AAJZDv/510q9f0T7uuOSss4r3leYYObJ43V4njVcqbrry6QPJ0JuT8Wcmbdafp1tZWbL77smce7V/5zvF5wt23jmZPLm42dY11xTvIffokXz4YTJ4cHLUUcVNtdq2LY5/7rgjeeSR4n2q2965LUkyeNzgbP6Pzas+EzCrclbueu+uHL5h8Qbw5S9cnlmVs7JHrz2yRts1csxmx+TkB07OJc9dIiBuSRh2Z/Lx7cmY54rXyE3aJOWNi9fNs6cnm/wuxx67dd78/OMN118/73Hxd/wYvhoqZ38eMD+x+N0ob1qcX2naLp9+Wn1stdpqC9jGjNHV7Tk3jZoyNLlvo+r57bdMdnl2iZZeZzMnFJ9/GP10MnlwMa+8SfG1rFGy6i5Jrx8vnX1Xzi6+FzPHF+fBy8qTxq2Kzz406+D4FQAAAJZHMyckIx9Pxg4obpw9c0Lx+Y4mnx/zr35wcd3N1BHJqMeTz15JZnxWnH9JedKkddKic/E5l2YdFrY34AtKpeT224ub7jz/fHGtZLduxY1tKiuLa8f22Sf52c/ms3LlrOKcoPNyADUsUkDc6NGjs9oX3jkaN25cPvjgg2y33XZp/YVPnm688cYZMGDAIhV0zz335MEHH6wKhUuSHXbYIUOGDMkvfvGLHHTQQWlUy1VP//znP/PGG2/k6aefztZbb1217kYbbZRTTjklzz33XFXfX/ziF1l77bVz8803p3Hj4tuw5pprZptttsm//vWv/PjHS+kNJFiSSqVkxpjiwGT2tOLgpLxpceDRrEP1G6MAwEJNmJA8/HDy9tvFxWBt2hQXn5WXfz7kziguQFtllfqulC9j1qziZ1leXpxQKi+v74q+OqZPL/62hg1LpkwpTuyVSsXfWdu2ySabFO0Ga62jkxePSya8k7x2RrLhb5JWPYoPBM7lRz9Krrqq+ND3b39b3MX5sMOKc5JPPlkse+ONIjjj1luLk5rXXltc7PmtbxVBRfffX4R3nXJK9QezZ5dm5/WRr9fY193v3Z0Zs2ek6VpHJ+/+sZj5/NFFQFiLzsXjtTZV/f/73+Tkk4vgr913Tw4+uAgNa968uNj144+LZXMC4i5/4fIce8+xWbXVqvlk0ifpt32//Gr7X9UICxg6fmh2u263jJkyJsdsdkwuee6SvDvm3dx5yJ1p2ugLtyNfVkql5KWTiuOj1fYrflZJ8uFVxRs8c7R/KWm36fy3sRTtu29xgjspfh922GHec9alUtKkSfE7NCd87dNPi2CpeXTbL2nVM5k0MBn3SnLvBkmLbkVg4BdcdFFxN/kFZVU0blxcHL2AfP7svXey+urF3/TttxcXIx93XPG3XFlZXLg8YEDyzYPfyfCJw5Mk262+XcrLin+6IyePzNuj364Kj2vSpAi/+/w0UGbOTC65pPb9X/nSlTnlwVNS0awiE2dMzJ93+3MO2/CwJMXf0qBBRb9ddiku7p5bWVnSvXv19PRZ03PMXcek/+D+adGkRTq07JAbv31jjZCtBuuT+5Mn9i3aX/t70vOY4oPLIx6q7tNoKSTwfPJg8ua5RWjmqt9M2n2tuFghpeJD6VM+Tr52efE3+NnLxf/NqZ8WF8t/HpKW8sZJ615ZY429qzY7cGDxv3O+p/1adin29emDyZDrkmbtkrWOKUKspg5b5Kfw2mvFBTzPP1+Ec875nW7evBijPvmkCELcdddF2Gi3/YoL+ifPJ4Gw54+qAhA22ig58MD5hx5uvHF1e489it/f/v3n7bfjjsX/3yTz/K52bV09PXTC0OqAuMpZyfRRxfmjyunFz6JRi6TpysUFSNSuVFlcaFE5rbggp7xpEcQ4VzDftFnT8uO7f5wBwwekcXnjrN5m9Vy9z9VZucXK9Vh4HXXbpziPOH10EejWbrOkZbfiAw0T3ln0gLhWaybd9k8+vrX4+3xgiyLMdua44n/E5179tAiA23HNHXPnIXdWzf/dU7/LKQ+dUrU8SU5+4OSMnjI6P978xznzG2fmmY+fyT3v35MLnrwgZ/c9u86l7bFHstZayQcfJHfeWYTFHXtsEZSbFP+HHnusCI4bP218DrnlkMyqnJV/7/fvDBg+IGc8ckaOuP2I3HXoXVVj2rK2zTbV7QceSE47rRhHF9dPf1qMuaVScVHjWmsV36dGjYoxvX//4nXpHnssfFsDBybHHFO0N9igOL72vvyimT27eM03blxxvDRzZvHarHXr4lxE27b1XeFyrC6/jJ+/SK4sVebMR87Mne8VxzQVzSpy9T5XZ422a9ToN8+2FxYIV1u/RahtSXvwgwdzwE0HpHvb7undoXcuG3BZps6amtO3O73oMGV48sbZyagnk/LmRUhv807FxXEzJxZjR++fFSHFtZS8ov4fmDl7Zv771n8zbVYRzP3NHt/M6m1Wn6ffgx88mF899qs0KmuU2aXZOXeHc7NTj/mkIsPyaPB11aFoffolzdonE95NnvludZ/2W1aH9Lfokqz3y6I9/J7krblS61c/OLsfcmxeeqmYfOWV4thpQa586coce8+xWbn5yhk7dWx+v8vvc/yWixaQftVVxeuppAiq/2JAfpWnPz/OLm+SrPbt4p/byP7JM4dXv0e/2gHJFn9f+E4rZyVPHlgEra/27WTbm4v5H99RfP+SpPkqmTj8w+zy7R559tkiwPyf/yzOc1RUFF1mzChefzX9/PTbpElFAMTIkcXriOnTi3PfK61UhFUs7PsJS1zlzOSdi4u/92mfJu23Lm5s0qh5cbH9zAlJ592Tbt+q0+ZmzCgCTV5+ufjdb9euCHOc8x7PzJnF+ZJddlnMelf0Fy+wAKVS8vTT1X9flZXJyitXn6edNasI3d95m2HJoGuKi2NKM5OV1izOk5WVF+NbaXay6cX1+lwAvpRSqXjv67NXPr8BW+nzUNtGxf+4svJkraNz+eWdqlb5zW+KzxbNrVOnLJq1ji4C4kqzkge2TNb6YdJqrWT43TW6nXlmEQ42dWrxHu0uuxTnDSdPLv53r7tu8VLm17+ufn/52muL96V79y5uoPXJJ8VNPcZMGZP+g4s3oMZOHZuxU8fW2Ndt79yWwzc8PNNmTcvfXyyOc94Y+Ua2+dc2mTRjUpLk6aFPZ8DwAdm8y+aL+ISXf6VSMnZscS53zvFXWVnxeZd27YqArjq9rHzvL8VnUJKk731F+NX/Z+++w6Sszj6Of6du77v03jsoioANVMCCvWsSNZbYYmI0iV1MrDHGqHntiSX2bkSxghVRRIr03hbY3ndndsrz/nHv7uzCAosCC/j7eHE5O/PMM2fKc/q5T7gSKpbXHRAFbzL5+bGndGytIWzHsfHFaNjaxm5/w5usqrKx1xUrbDO3+vYo2Dhsv34/oZ4usPIZWP6ozQdpf6wtWvYmWZsrWAieRMaMuYm0NAss//77dq23b9/0NI4DrvZHw4I77I61r0D/ayGpG5ycB7OvgdXP7fa31yBQAB+NtPy3/TG2kVVSV7vfiVg/SqDA+mB25hhd8WyYcy0UzoC2Y6DN2LqAcG6oLbUNEPr+weYryM+XE4WyhVCxzNbtRGrsGnTH2ZqdtMGQuR+RCCxdaoFaCwutzA4GbawvOdk2zjzssNZ+MyIiIiIisqeIRGwe+4IFtvYhHLbxfa/X+vuiUTjtNBgwoLVTuvsUFdnm84sX29qmrCyb2+/x2OcVCsF117VwE72Cr+CzY21cuu8foPflkNjZ+rZqy6zN70mAVc/CNxfWjXPdDz1+bcHjXC4LFle5CnATjcKsWfZ9rVxpaUlMtLQ5jn1fp5768/q+Wo1Tt2alaq31p0Zs/h7eRFvTktIbPHENh5aUWB9mIGDfk99vc28yMvaANaWRAISr696DY/MpvCnQWmvxdrLGG+7cfLNtHLr5WqFwGOtzWfJPC+boSbTN6b2JgMvmpkWDsP8DDd+riMjP2Q4FiPN6vZSWlja5b/bs2QAccMCWg7zJyclb3Lc9b775JsnJyZx++ulN7r/gggs455xz+Oabbxg9evRWn9u3b9+G4HD1af7FL37BDTfcQG5uLh07diQ3N5eZM2dy1113NQSHAxg9ejR9+vThzTffVIA4aT3hGhvIDRZapc4THxvMdKK2+CYagdl/gKIZ0PkM6HCsLTQuX2LPCZVYBajbua36Vnarmk02UaZyJfjSbSGr22efnRO1CTRtxtjiBMexin+o3O6Phu04lxe8CeDP0sRfEZGfmZISm5CWn2+LpWbN2nJHTcfZZetxt696PeR9ah2Q/kzrbHR7Abd1QjoR6HBMy4LAOA5s+hiKZ1p5mNLbOsBcbsBl54rLskW/e7myMutM+uorm3Bz4onQtat1mkNsouYll6jo30Lep7D8MahcBu0m2IRAorZwq75u1eVMCwCyHaGQBSKbPNk6Uv/1LwsGV9+ZWl0NBQX2XSS4C6FsEQTzrW7mSYz9NolCXA5ktNJqxp4X287NeZ/AontgxeOQ0rdJoBOA4cPh8cftdxWJwP/+Z/82d9BB8Nhjdpzj2CTuf/0r9nhaGmyo2MCM9bYz7/vnvk/fbFt0XxupZeijQykLljFt1TQm9JoAA2+ygE0b34e3u9rO4i4PlM1vOOedd1oAOIC//33rgw+O43DXl3dx49QbGdlpJM+d/By/e/93TPpsEsU1xdx/9P24XW6KqosY/9x41pev54JhFzC221i+XPslH674kAvevoD/nvzf1gme4nLZAts1L1ggg4LpkD0K2o2zPO/jQ+24Tie2PEDcjwnasJUAEOefH9sF5bnnYNkyGwxq187Ko2+/tcm6995rwQXnzrXbzUlOxto9B78En4y13YqcqJUX9bwpDTsWHXigLSi+7DK75hobM8YG0MCu2aVL4bbbtnxbJ55oA4+vvWbBYgoL4ZZb4PbbLd3FxRbo8MQTwXWQBYDrnt6dzy+IBeeblzePoY8OZXHhYnLLc+mY2pGzzrL3es89zZe3mZn227z989u55dNbGNttLP858T/88s1f8os3f8Gmyk1cM/oaJkywPGb2bLv2nn3WPt/6vL+y0h479FAoqSnh5JdP5rM1n3H/hPsZ2nYoJ750IqP+PYop505hYJuBzX/wewpvsuWVThiCRfbdE7VFAxvehY1TbCDzxLXbPdUO+eY8qNlok6MPftV+6+vfsuutaKYdk/sufP87qFwBHU+wAZmkrpamQJ5NmC2dx9D+h3LDDenceafVv44+2n6fPXrYaVautGBNDz6IBcH75DCrFy19yP79SBdeaEEMwX53Q4b8lA+kjjcRRj5j1yKNfsRZI2FY04v40Ufh669t8Lpe27bwyCOxv91uC1YweLANStY75BD4/e/h4nfrAsSlNF0JkuRPIi0ujbJgmQWRm387rH7WBsf6Xm35YG0pBPIhUmX/HzzJAsVJTNVaCwhbOAPSB9minLgcy18jQetTShsI3X9BYXUhJ710EtPXTefRiY/SIaUDp796OqP/M5r3znmP7hnbry/tCMeBZ56BqVNhwwYLGNa1qy2ycbnqur3CMHGiTY7YLk88HPAwTD8HyhfC5L6QeYAFYiz8+scl8sBHbCFd5Qr7u1F9BIDETszNs6Bwg3IGNXloUBv7e1HhIoLhIF+u/ZJn5j4DwGsLX2Py0skNC9Du/PJOzhh4Bv1z+rcoWR4PvPyyBcotKLBgvH/5i03GLymxa3LsWLjwQodL372UVaWryIjP4PkfniccDePCxZTlU/jnjH/yh1HNbVe26x18sO2U9o9/WDvnkEMsgGzXrhYwYeFCmxzz9NObPXEr9ZKePa3uetll1n464QRrE7dpY4GdS0vhjjtaFiCuQwfYf3/4/nubsDRligXabDyYX1hok3PifiZj9DU1Fshv/nz7fHv1suvS44ldr/X1r1tusTrKhAlWX+zY0R4Lh60On59v9ZedKRSy76qgwNLn81k9rz5QfjQKo0fH0rhXa/zbb1y33+yaqAnVcN5b5/Hqwle54ZAbOKnfSRz7wrGM/PdIJp89meEdhrda2nZUKBJqWNzrdXvJSmxaKMzMncnJL59MKBri0gMupWNKR75Y+wU3Tr2RNkltuGj/i2Dun21RoDsOTi22+k7ZAgsKVbHUJidt/IDXP+rL889b22bkSAtCVD9hsb5cOugga4N8+aXltzk5FqC3cfD+cNgWR+XktPBNOlFbFFhbXBegKVS30tFjk4ESOlgfV/3nWX9MNAw4df0Ocfb+akug4AsL9uv2W8B1l7fpGFPbI8CXwqqSVZzzxjnMz5/PvePu5Ynvn+CaD6/h3yf8m1P6n9KQvMe+e4wr3ruCUZ1H8exJz/LLN3/J0c8fzSPHPWKf749QWF1IfpWtCk7yJcUCFzZSWVvJS/NfoixQRtSJ0i65HWcMPIM4788k85Wtqq21wLCff25t93HjrA/c54vl/fX9eImJFjBzyrIpLChYgN/jx+1yc8bAM2iX3M5O2P1XtkA5GoR5N1u7IrkXjP0IvrkA1r9p49c9L4L8aVCzAZY8CD0vtOspawR8NNom+WUdRPfuNASI++EHaws1nogZjVo+Eh8f67c6pMshPHvSs1wy+RJ+9/7vKKgq4C9j/9Jkc4NtGTDAFvDX1Fg5nJu75WL70lJI7/s7WPeqLfycdRUMuAFyDoMT11kbMP9T62uvs6hgEY9+9yiJvkSKa4rpl92PS4ZfQpI/yfKo7NEW3L1kDpQvhdQ+thFFuBq+toj9Zb0PZtEiaxxnZ1sA8frgcGD554ABsGSJBX/47jsLOn7bbbYhRHKyfWYVFfZ972yOY8EQNm2yunQ4bGmqDzTsOJa+HQ6OIfuOVc/C3LoIjEdMhbZjbS7MgtttLkyw0PqJGgWIW1e2jpJACQAZ8Rl0TosN1J1+eqyf/d13t99GcRyHlSUriTgRADqndibBV7dDTaQWFt5pff2eBOs39mdZYPNoyMbJ/JmWfzUKDi+yr7rgAutrAvv/L3+55ZBIJAJMHm19YzmHwhHTwO2BDVNszDlUF7mm+Hvyw/szb56VEaGQlQU+n50zGrVzHXZY3fiG7BFCkRCPz3qcVxa+wrC2w5iTN4fTB5zOJcMviW0G1YrBzX9Ook6UJYVLCEVDAHRN60pafNp2niXbFY1Y33flSgiV2XiIO66uze9Y2Z82EBbfa2NP3iQY97VtfFKxxDYvAutXKJ3PH/94BNdea3ddfbUtaOraaF+BFSusbtxlyzjyzet8ms1FWPGEzcdY8s+mj7vtOuzWDV56yQK8BerWu1VUxA6rnwp/zjlNx5dLS2HGjNhxLhdMXjqZiBOhbVJbvvr1Vw1tqK/WfsWv3voV7y9/n5pQDS8veJmC6gKyE7M5pMshsY/UiTI/fz4PfvMgz578rLVrSmbbRkVx2TY+3XgOkj8dchrtfrKXKiyEiy+28Zm0NFvQ1q+flWkul43nrVxpfeXellQj6xcuQt1n5rJ+ro1TYNXT1l7ufCr/+MdrHH64tV3PPdc2mRs1yjYUKS21NnRioo0XgAUA/HDFh4SjYQCGdxjOgJy6ySHRECz+h7VjXV6rp/uzrE1bP//Mn2l15PmTbJwouafNvY7PqdsULGjBulL68dqsX3DeeTbv58wzbTyhW7fYuEBVlaVxR4XDttFrKGS3o1E7Z1yctY1btHFOuAaWPgCF023uUc4hNj8uUh279hM7QscTf/yksV0daLp6PXz7a+uf7Hct7Fd3YS97GCoX20ZPQE6PC/jXvzpy/vmQl2f9AxdeCH36WBIXL7bF1bNmHQLdfgmr/wtz/gTFs6DNYTbvoGLZj0tjsMjG/0Nl9vvCFfs8PAmQPszyg8Am68sNV8SCboId70uz8cqauk0QU/tCYl0muvLf9jvMrWsQnloK/p1YNs693jbLim8Hh7xpi28Lv4Z1r9vch2jQ+rt6X7rdUzmOBTb/4gsbwx0yBDp1ivWB1/eVH3fclsFFZecLBi2wQFmZ9YuGw/YdeDw27tW5cwvbJBXLYepYux57XWab5iR0tDk54Urr38j7mKlz9uPss20879hjbQ5Vjx51/axRS0fj/LCqtopXF75KSU0JDg5tk9py2oDTmvbjhyqbXl9OGHDZPDFPAqT22+F+i/qNssPhugXYWJ4aF7eVzRxFRH4kx7H6a3W15TeRiJWHPp/ljfUbObZGugoKrG5fXm55IsTGoxISbHyqfnMeERFpPYFwgI9XftywcWOfrD4MabszJnvvOY44wuZvgG3Ge/jhTevlkQiEQ1FY9ri1XZ2wzVOIy4qNaToRC1zd5Swbt9lDRSI2TzE/3+YX+Hyx8rZ+nmJOjo0flZXZvNbp07ecb9AwDNGSvpiFf7e53gBdz4K0AVC1Dhb8xT7PypU2dyWhk322vjToerbFbyj8Glb+B9a+ZmPIfa9m/J/+wSe2NIb334cjj2zaB1gfwG5nCwZtrVlxsfW1ud32r37cLT39Z7Zh4Ion4YdbrU9q/39Cxn5A1GJrhKutj7rjCfzzuYN4+mlbE3XxxTb3OivLfnuBgH2eQ4a0UkC/vGm2iUPpD9DtHJuz7/ZBda6tsaktsfU3bQ6losI2g6jfdNrVuOvNY/Pf27VrhfcQrraNNcuXWD6U1KVuTbMbqOt7TR9MJNKj4Sn186Y353IBn59k4zjpw2DcDLtz08eQ/3lsbVzBF9DuqJ33HiIB2PSJzYd1wrY5mjex6dhRal/LO6SJcNiurQ0bLE9PSLB/9X2gkQj07bsD42Qi2xOqsP766jV2bca33Wx+d8TGOnyp2z/X5pxobENElzsWmyhcbWO3RTMt9lDmATaWh0PD+GdSV3vd3WyHeoT79OnDJ/U1mDoffvghLper2aBtGzZsoP3mWxBtx/z58+nfv3+TwG0AQ+pWas6fP3+rAeLmz5/Poc2skKl/7oIFC+jYsSPz589vcv/mx3711VdbTV8wGCTYaBV1eXn5dt6RyA4IFsGMX0HpfMgcDj0usIykZLZFmq5YYgM6w+6tW9BbbIOlVashmGSNkoLPbMJF1oifV4C4/E9hxb+hZj30ucoqgMEiKJ1nk3ScMPS40Cpoyx+zQf6el0BKH/sMazZYhTQahsG3QU7z+cyeoD6YTX206vqJlI253RqoExFpULkSqtdZHp/Y2crS+ujxtSWAQ3rqYJ54Io3nn7dJUZdeCoMG2SQQr9cGAGtr4cort9xhc7dY97oFOgpXQ+8rrJFRnWuLcTe8a5NXIzXWMbQ94Qo7V9G3tvAspa81iIq/tcBcxd+CNxWO+jy2iHYniDpRygJlFNcUUxWqIsWfQjgaJhAOkBqXSmZCJsn+5BYv3msJl8u+P48nVi5Go9YRUd8ZKlsRqbbfSrja/na5IFRjnXfr37BGbLSWGZW38N131lHft69NnkpIiO3QUltrk52OP946u5cvt0A/GzdaYAiPJ3Z99exYAHMvsB03s0ZA13Pq6sLf22Sr8sU2eHHI662zKMsTB2OmwKpnYM2LdYGQZljnQc6h0PF4+z8WpGP0aHjiCXjxRXu/cXEWtOqXv4zlIxddZAM5Dzxgk7mLimwy65gxNpn8f0tsgmOHlA6M7zm+yfVxRPcjeG/Ze7y1+C0LEDfkrzahdeXTNmG4aIblDSl9rRO012/4+GMLQvf11xb8o29fW2AaF2ffQTAIF1zg8CF/5L6v7+OoHkdxZPcjeXXhqxzS5RDivHE8+O2DlARKePDoBznuheNYXLiYq0ZcxfAOwykLlnHVQVfx3LzneOGHF2iT2IZ/TPhH0+t6K8FJbFLbRgu648+sC5TtssV6kZq6ichpDYHOtuugp2zAJvdt+Oo0ez1fipUFCe0hubeVCY1tKxjDTgza4PHYpNA334xNDv3zn+1UyclW/hx/fOz4v/0NzjjDjvnqK7u2hg+338gZZ9QdlDkcJi61wY41L9jigaRuFgSv3zUWQLvOBRfEJgT/8IMNpl18MVx/fWyQyuWyxQwHHghXXWUDcr16WSCdX//ajjnwQNsB6dln4fXXLbjXmjUW/PHooy344ROrrA9pTLcxTT6DQW0GkZmQSXFNMZ+s+oRfDf0VYJPZTz0VrrkGvvnGjj3kELjxRjjs8AiXv3slj856lGN7H8vIjiP579z/Mr7HeBJ9iVz70bXkVuTy9/F/58sv3Tz3nAWmuekmK7+9XntfPp9N4nny1TUc+8KxLC1ayh9G/oHSQCmfrfmMq0dezWOzHuPg/xzMm2e+ydjuY3f4O/6pqqvhvvvs+66osM+za1fLX12uWL559tkHE3fU53bdr34WVj0FcW3s+qlea4MU2aO2+3o77Ihptjil6FsL2JbaDzxJEA1Y/0VCe8t/BtxgO49Xr7PjE9rZD71qJax5yYJtdT2HO+5I56ij4PnnbUH7WWdZmeF228L8ESPqXje5O0z43gJ0rvyP9ZO4PNau73Cs7ezVQpMnW947c6ZdR0OGxHYZq/98TzvNgvTskDaHw4jHbSJ5NGQDxUPvBl/TmcWZmZaGK6+0PHnUKAvQtPkgSPfutvj5qqusDD3pJAsi5/PBunILENcptROb65jakbKCMjumU1f7LQTybfKw22914JpcGyT1Z0DbI5ssyN4bOQ6sXm11kpoaW3xTX5evfzwcjn3P2+X2WQe+Nxlwx4LCVa22Tv6y+ZDSh2WpB3HsC8eyrmwd14y6hvXl61lfvp4/jPwDj3z3CCP/PZJ3zn6HER1HbO8VTcUKew0nbAMGnkT7LUWDNrkch3DSEFavzmD1apuwWF8U1dd76ycv7pAup1tf44onYP3bUPA54LIB265nQ7df7dj54tvAMfPs2l/ygAX/jcu231rf3xPNGsG8PNugZXDbwU2eWh+cMxwNM3vTbH4z+TcAPHj0g5w16KyG4/4+/e/8bfrfuGTyJXx2/mctDko7fLiVX888Y2XxzJlWHqam2oSbSy+Fp+Y8xUvzX6JHRg+eP+V5PC5rTPxqyK84+eWTue7j6zi86+E/LlDUTgj+dN99tnjkxRdtYd8VV1j9wOezuveJJ+7Y+S66yAI6/fe/VjdZvtwmxLZrZ3nkMce07DyJiVbXf+YZm7B06aX2FlNT7bcZCtn198EHrRMoJC/P/tXUWF6QktJ0EVkkYgGtduZE5FWr7HuaN88WAfXubeWb3x9bgOE4Vs7vv39dMVllgf7y862eXr9Ao36R6c4SCFh97dtv7bv54x8tffXBJmtrYzuR/lwUVBVw4ksn8vX6r7nsgMvwuD28s/QdLjvgMv47778c9vRhvHTqSxzf9/jtn6yVhKNhpq2axssLXmbOpjl0S+/GsHbDeHfZu8R54pjQcwJnDjqTUCTEsS8cS22kln9O+Cfp8ekEwgHun3A/t356K7+Z/BuyErI4efhD1m4q+MoCbWcMq1us6rHdGh0Hcg5tWKhZv5gI7Lr3emOLriIRC9L52WeWx1xat57O54uVX81mi1vLNyuWw3eXW5nc9khbyBnfxiZOVSy1IKVJXW3B44LbrW+h44nW3+D2W39h2XxblNhxorXtVzxp40r9rgFcNmGsfFHdQnAXBPJ5JZjGxe9cTPvk9lx54JVU1VZxSr9TmJE7g1NfOZVLh1/KvePu5dZPb+UfM/7BuB7jGNFxBP+e/W/GdBtDgi+Bi9+5mGVFy7jjyDtYWLCQz9d8zqKCRST4EuiZ0ZPvN35PZkImB3Q4gEO7HkpqXCpvL36b5354jvXl6zmk8yG0S27HO0vfwev2ctqA0zh70NkAPPTtQzw15yn6ZvXlrEFnUROq4bFZj3H9J9dz2QGXcekBl24RLFB2rvJyq2sUFMQCAiQmNg2E6PG0PF+fOhXee8/a24MGwcCBVs+t73sLBm2yYu/e2z9XOGwTHEtKLHh6Pb8/lveDTbR+4fvnuO/r+4j3xjOh5wSGth3Kcz88x11f3sVxvY/jD6P+wICc/eHoWbDiP7Zhwbv97ATuOKvDpg+zvplu51jAxtXP2cLsH26xY9we66fJOggyhvPCC9Yu/PBD65O49Vbrs6hvpwWDcPsdUd53rubBbx9kfM/xHNblMF744QXGdB1DvDee27+4nfyqfB4+7mE8LZj8PHKk9Wc884z1zwwfbn1lSUmxsnrAAHjhhRFw9Oy69zrF+gYjAWs3uP2Wt7Q5nIUFC/nr53/lwxUfcljXwzhz4JmsLl3NKwtf4Z6v7uHa0ddy2QGXkXTYW5bnbHjP2tW+VGt7RIK2IDmlF516ZjJrlvUvfvON9cP07t20TzUQsA0oJk6030VpKUybZvW5hLo4WPXt68NaOBfp22/hjTesHtOtm/VnpqbGgn4Gg/b7nTLF6jmbNll98tBDY8FmQyE7rj5oxe5WP0G2utquv/T0puPp0ails7DQxoNKSy1oe/v2sboQ2PvIzNyBwKUtFAgHKA2UUhYow+P2EO+NpyJYQbw3nvT4dNLi01pn040fa2tldffzbZxhwxT47krbqMOfadd/2UKoWgXZoyipKeHVha/y/A/PUx4s5+ieR+NyuXh/+fukxKVwzqBzOGPgGTzwQAbdulkwx5tvhnfesXp9XJx9V7W11qbrtN9Cnp/3PB+s+IBkfzLH9zmeGbkzWFq0lP3b78+5g89lbOfReCJBGyt0+wG31W8CeTb5N+8T6y9pP76uP6C0bhOOLBtPi9RYHhAJ2LhBat/d+5mL7GQ332zlyJw5Nob03XdNr69QyBZNTDjkVVj6Lwtw+uWpkNLLgiiFayyITVwbatuczHWTrL8lELC2JsTy4VAotkBmxQpb5ONyWT4cFxebNN54MdDOtHKlvW5pqeX7bdrE6kL1/YeZmZCUGiSvKo+CqgJqI7VkJmRSFiwDIDsxm7ZJbS3wa0vUbITF90PpHAsukjXCyv2qVTZXLZAHqf1YlXQL77xjaUxPtzI4LS3WvxkKWZk8fCfGLXcch9cWvsYNU2/A6/ZydM+jGd15NB63h4dnPsw/Z/yTO464g9MHno77x4yTbW1M8Mce9xNEIrZQobDQvudOnaye0HgOQSRi/co7c75ddaiaBfkLmJ8/n8LqQrqld6M6VE1hdSEdUzsypO0Q+mT1YWXJSv47979MXjaZFH8KJ/c7mVkbZzE3by4Dcwbyq6G/YlyPcawrX8fnaz5n7qa5BMIBhrUbxty8ufg9foa0HcJhXQ+jZ0bPnTrnYo/Xkve68RMLdFW5EnpdasGworU2plU8y8ZMcg62oC+hSrv/h1staJy3rnGw/GFrv/S9mmuuOYIDDrDx0WnT7LoMhawOHg5bv+r99+/AwheXyzZJ6niibVRXNMPGxpN7QofjbC5s3fyIE06wfOKee2wjsqIie73jj7fx1PrT/e1vFqzrzjutP7aqyurxp5wC110Hl0x9E4Djeh9Hz8yeDUlpn9ye30z+DdWhaj5Y/gEPfPMAAFeNuIqbD7+54bjp66Zz8H8O5qX5L3Hv2Em0XTgJir+3McOuZ1t6S2ZbwKni78GXQvTgV1lcWcQ3679hRckKknxJdEztyIL8BWQmZDKs3TAO7HggGfEZVIWqKA2UUh4sJ8GbgNvlpipURZIvifT4dFLjUlvld56SAgccYG3/ggLrx61vd7hc1g6qXwQaioSorK2kKlSF1+3F4/IQCAeI98aT7E8m3huPq981Nq66/m2YXrf41J9RV+cM2Bho+jAOHGRtl+eft3rwlVdafhYK2Wv37GkbkHy/8Xv+9e2/mLpqKoPbDuacQecwddVU7vjiDjqmduTKA6/k+F7j8AaLbMzJn2H1YJfbxqbKF9qCOH8GpA+xurLLG1t1GA3bGHTxLNskKLEzhx/+C666ysY7lyyx8df27e16qC/z27a1OQot8e9/27+lS+33Onq0tdP9fqtblJdbGTmwJfu8RYMW0KlqHSR1xgKXeaw9UjrPrjV/pm0S5W3BwEDhN7D4Pij7wQLopQ20c1atsbn9oQrofAqh7r9mY+VGcstzqaitIDsxm0A4QFVtFdmJ2XRK7UR2YnbLfsOJnWDsJzZ+t+Fd+44SO9v4YSCvbmzeIt3/4heWH/3737ZJxz/+Yb9Jr9fa92PG1J1z5NPQ/hhY95ptyr72JXsfCe3s/q5nt+DDrbPoPlj5pP02+v3BFksGC+1zz59m9/e5CnLfsr4jfxb0udLyt6rVtmFXUV0Ey/3+DuO+svn9mz6BKUPqFpYm2Dh3QntI6s7GPB//etQ2GfD5bDF2u3axReW1tXb/KadsLdGbGfVfWPx3CyT44UGQPji2iKxiScPGphXBCpYVL2NlyUoqayvpktaFgqoCwtEwnVI70SerDxm+dkyf7mL6dPutDhlil059fTMU2sFYgtUbLDBe1Wr7zFJ62TUZLLDPJFRm+W6nFg4MBouhtqhu/lWWtWedqPXjRartdnwbK/v2cvfea/19eXmW/4waZXmJz2f9omvWWJ+jJ66GguoCCqsLCUfDZMRnUBIowePykJ2YTZukNiQkdrL6w8YPLO9Y+ZTlHZEqmzdQ8DnEt2PIyD/ym99YcIeNG+31O3Sw/DAatd9mRgakdtjEv779F/+Z/R/6ZPXhzIFnEowEeeS7R7juk+v4zfDfcNkBl5G1/kULBhkJQN/fWeDacGXdRtNTLY/r81tob5Naok4Up1F92uVyNfQv1dRYX+vHH1tb6KyzLIBkSkpsc9+KCvjVr1o4ThqqsHREqu235E2ysiQSsD6TaMgCKyR22AXf7u4VDFo9qn4sPj6+6WJ8iM1F2x7HgUWLLLBDRYXNB0pPj23eFYlYXbJ9+5YFLywutvrgwoX29+jRsQDtEBufO/roHX7bsivUlti4QvkSK9PSh9i1U73e1gQGCiChA3mpl/Lll7aZTWKize+tHxOoH2+Ni2ulIBbhKhvXKJlj/aSZB1og6OpcK1+qc8GfwcqEm7hlkocvv7Q+lnPOsbpIYqK9h/rxqWNOKuf95e8zeelklhcvZ3CbwbhcLublzaNXZi8m9pnI0b2OJjVus8XdP6EPIRCAyy+38aBwGH73O5tHWh/wubbWxjz69WthgLhAvo2jBzZZcNuEDtYWqi2tW+tZbePVLV2bGAnUBdx1wF2X4ThRGgJsAFHieeLfHqZOtfJm3DjLT5KSLC+pH58ZP37n96vt9SIBu9aiwbo5gQmAq25NUa19xp6Elq+dqVgBlcvtvMk9rL8vWmt/B4uAKKQPtUDb2xEM2njw0qX2O91/f+ufrf8dhsP23Y4a1cJg5OEauy6jtVa3dcfZe3XCNubhRCwP2omBlx3HNr8sLbW8qk0bKzfrAxjV52H1Zd92Va+Hta9aX05qH2sfu/2x/tT6zX27nL7T3gOOY3l14XT7jHIOsTnOtcWWj1euAHccNZ1/ywOPt2PGDKv3T5hg62fq6wn1Y1ann97CDVSr1loAnJpcG29K6GR1q2CRzbkMV9sGx0ndbf5KqMJ+c75UyyPCVZZGJ1IXQNhn7TLHsfq9p27sPhq2tUE4lme1oB3sOA5FNUWsKV3DpspNeN1eMhMy2Vi5kURfIp1SO9ElrQuJvhZOtiueXTenfI1tqJbU1dIZyLP+8kgA2o1neXwvHv3uUd5Y9Abd0rtx7uBzmZ8/n7989heS/clcdsBlnDbgdF56Lp4PP7Ry88gjbd5k/WaW4bBdT2PHtmz9X/0as/ripf63u8VmOtSysGAhszfOJrcil/bJ7fF7/KwuXU3b5LYMazeMwW0Gxzat2o6777bx/vnzLcj0lCl2nfj9sbnsJ58YZph7jbUNvXWFlsttc6PKF8LGD63+ndrfPsfKVfZ3Wn+b2x8stPZjsNCe3/0XLfu+Nre1MrgFDV0n6vDnP1s/ZWGhrRMZMiRWF67fHKBdO5tL/8orlidecgn07x8r5+o/k+uug9SWjFk4juXruW/DV2faOgR/Zl3gF4+ttUkfCkPvtOts08fw0SjLc3xp9jl7EywvT+nN7bfb2MKCBdY/+/HH9n3Vr8WqrbX+214Dy1lTuoYNFRsIRUO0S25HXmUeXreX9intd2hjmIULbVP5JUusv/myyyzPqZ9/Ggzu4OYM+Z/b+H2wwPrE49vXra0ttrl4ThS6nklVUm/WlK1hffl6AuEAHVI6UFBVQNSJNryHzITMFvVvFRfbvJd58+zvww+3/sLN2y4Tj4+wvnw9K0tWUlBdQEZ8Bn6Pn02Vm8hIyKBHRg+6pHXBnzbIAiWWzrO+sXCVnSiQB2ueszzPk0CXLgfRo4fly8XFVk6Vl9vr1tba/VtUKXd0/Guz48LRMIsLFzNrwyzWlK0hIz6DzIRMlhYtJTsxmyFth7Bf+/1I9aZYGROXZWVzbbGdoGq19QXVlkKkhqfePZSHHrIgXCedZPPGs7Nj+VxVlc0B26kB4qIR6/NwonXXSn0AprqAlI5jf5d8b2sEKpbaBqMut9U9CmfY5mKBAsg5hNtue4whQ2wTwJdftnZsp07WX1L/PZxwAlxz8Ru2sUnxdzDtKMvTvEmWjg1TbA1Cl7O2m/wdUrHM1iWVLYAOE63/DSyAX+lcK6PTBsBhb+/Ul91UuYmv133NnE1zKAuWMaTtEFaWrKQ2UkvfrL6M7jyavtl9WzZvKFQBue9YPSUuu+5zq+s7rm+X+LNanvcXfGlz4yqXWx94cg+rQwQ2Wns2EoCuZ3L/iyfx8sv227zwQpt/5/XG5oxFIj/pI/pJgkGbgxAOxwKU168lrJ+H4HK1zkb35eW2VmPBgtgcjLZtY/X++nnYE49vYSdy3ufWf1i+GDocY2uBnIjVpcsX1X1f5zCn5ExmzrR1CT16NF2bGI3a63bubH2Ze6y1L9s4SbAQ+v8ZqKsvVyy2vlKw333PC7d/rmgIfphkc0DdcdDpJBuLqc619kbpXKtrD7kDSuba32kD7DXdXhu/KJ1n8z/isuHIz22T5bIF1oebPqRuTec6+xcstjW/fa7YaR+Hy3Fa3ity5513ctNNN3HxxRdzxRVXsHz5cn7961/jOA4bNmwgKanpgECfPn3o0aMH77//fosTtLXnbNy4kQ4dOnDnnXdy/fXXN/tcv9/Pr3/9ax599NEm93/99deMHj2aF154gbPPPpsXXniBc889l6+//pqRI0c2OfY3v/kNTz/9dJMgcI1NmjSJ2267bYv7b7hgf9qlRiiojqcsEIfLBQneEMn+MF53lLyqRBaUJVCYWkhxcjEBX4C0mjRCnhA1/hoSg4lkV2STWZFJ1B2lMr6S6rhqwu4wicFEan21RF1R4sJxJNckkxyK5+xByxiYU0x1yMvMDW2prPXRK7OM9slVDGxTRE3Iy33ThzG2+wZ6ZJSxoSKJH/KzqQl5GNy2iE6plXRNq6Aq5OWSKYeSm7GBddnrcDkusiuySQwmsiFjA9Vx1bQrbUeXwi7EVWewZs2xFBf3o6Ymh9TUNcTFleJyWW7tOB5SUtYS3/815nSdg9tx06G4A/6I5U4V8RWsz1pPm7I2DF0zlMr4Sla2WUl5YjkZlRl0KO1AUXIRRSlFuBwXPfJ70K6kHW5iBdn/3nmn4fYJjVfNAxnxAY7ssY5h7Qpok1SDC4faiAevO0plrY/lxel8tLILJ/RdSefUCr7b0JZ15cl43Q79s4vpnVVKalwtczblcMu7v2Dt2nFUVnYmOXk9GRlL8PkqcLsjOI6baNRLcvIGXK4I69YdQUVFV7zeGlJTV+L1Buo+ExeO4yYnZza+7AWUJZZRHVdN1BUlOZhMVVwVLsdFQm0CadVpJNYm4qJxxu3gcTmWyTouos7WM3WPy1ZqRRwX1J0j6ooS8AUI+AJE3BF8Eas1hzwhPFEP8aF44mvjSfRGOabXaga2KSYroYYNFcnURtw4uBiYU0RlrY83FvUi4rg4rGsumQkBFhZkUVQdT7w3TEpciCO6r6Mi6Oehb4byzcr9CQYziUZ9xMcX1H0eDhYVExzHjd9fwpo1x1Fc3J9wOJHMzAUkJBThckVxuaI4jkUKbt9jMmuz17I2ey0JtQm0K22HL+JjQ8YGKhIqaF/Snm4F3Uis3bwzwcHrdqwTqdFnsjm3y8HtigIuwtHYcUm+EHHeiE3+j3iIOi7crihuF3jdURxclAV9VPkCVCRUEPAFcDku4kPxVMdV44l6SAgmkBJIwRvxkp+az6aMTVT7q0kJpJBQm0BBSgEex0NOeQ7tStrR3Q/D2uWTnRhgbVkKJYE43C5I9teSHh/E646yojid+flZgBun4X3Vf7ax9+hyOeSnbWRhp4W4cNG2tC0pNSkEfUEKUgsoTSql16ZedM/vzvC2RYzplkvHlErWlydTEognEnWRmRBgaLtCSgNx3Dh9CJO7f0utt5b9Vu1Hak2so31xx8XkpeXRpbALXQq7ML3vdFyOi/1W7ddw7Ts4zOs6j6q4KoasGULn4k4c1nUDw9vn0TOzjIqgn0DYQzjqpmNqJVW1Pj5c0YWPVsZWyGzr2j+say6jO28gLa6WBQWZlAbiiPNESI8PcmjXDVTW+rhr+n5MTl/FhowNdCjpQHIgNnpWkFJASXIJ/XL7Mai4K32zS8hMCFAe9FNcY59Hkj9EvDdMnCdCWTCO70uTWNZuGbmZuWRXZNO2tC0uXOSl5VGYUki70nb03tibsW3KGdt9HVkJAb7JbUdhdQKpcUHaJ1czouMmoo6LNxf35OXvD6OqqgOhUCIJCQX4fJW43ZEm3218fCHV1e1Zt+4Iysu7NeS5Hk+w7rpxEY366NPnZWpqssnNPZyysh6EwwkkJW3E7Q43XF+O42bAQXcyu9tsSpJK6FzUmaSgleO13lrWZa3DE/Ww3+r9wIHven4HQLeCbvWXMlF3lFVtVhEXiuPAFQdydtd8RnfeiMftMHlpNyqCfrISA+Qk1jC4bSGhiJv/LenBrI1tW/S99skq4Yju6+iVWUZlrY/imnjCURdZCQE6plZRWB3PXz4bQW3Eu93zhUJJrFp1LKWlfaitTSU9fTl+fxkuVwSXy8FxPCQk5NG9yzTivWE8bis/IlEXbpddU1635bM1IS8zus5hU/omOhV1YtC6QQ2vU5Jcwje9vsEb8XLYwsP4oesPFKQW0KWwCznlsc79/NR81mWvI6c8hwNXHEiyL8SRPdYxvH0+7ZKr8Xui1EbceNwOZQE/a8pSefCbYQ3Pb59cycXDF9A3q4TaiIeFBZn8b0kPlhRlNByTk1jN+J5rOaTLBjITAgTCXtaVJ/Ntbls+XtmF6pCVCVVV7cjNPZxNm0ZQVdUex3GTkFBIVtYCevZ8i6SkjQ3nzMvbn+XLT6eiogsuV4SMjCX06PE/ktvN5JPBFgDm4MUHk16T3vCc9Znrmdt1Lv6wn0Nmns6K5adTUtIHlytKu3YzSEgowu222XHRqA/HgQ6dPiXoCxL0BQm7w3ijXlyOq6H8igvHER+Kp19mGQd2yCMrMcCiggxKAvH4PRFS42ppk1QDwDfr2zX6XGLlaqxMcuGw9TI2GnUDrrrrcUvb+g2nxwc5ort9r22Sqkn2h4g4LoJhD/lViXy/MYdXF/YhM6GGI7uv54C695LiryXquCgLxrGhIompqzrx5dqOTc7twsHjdog61KU9lv7CwsFs2jSCkpL+BIPpRCL+hus/IaGAwYMfJTV1TZPz1ZeHUcfd8Fkk+kIc2CGPtsnVlAYsLaGIm8yEAIm+MIm+MMU18Xyam0Neeh6b0jcR9AZJr07HG/FSmFKIL+KjbVlbK7/DPhyXg8txNanbOThE6+oxbsfN4g6LWdl2JdkV2fTIi+0UUBlfycJOC0moTWD0okNZv/RMiooGUVubSrt235CQUNDwW7LvzkObNrPw+6uavFdrzHsBpy4PgKAnyMJOC9mYsZF2pe3IrMzE7bipiK9gY8ZGfBEfQ9YMob/bz3G9V9Ers4y8qkTWlqUQdVz43BFGd95Ioi/M52s68vwPthgy2V/L8X1WMbb7etLigpQH/SwuzOTjlZ2Zm2d5QoI3zLieazigQz49Msrwe6JU1fpYX57M/Pws3lvWldKaFDZsOISCgqGUl/cgEvHX5f0RHMeD31/BAQfcid9fRSiUxLp1YyksHEZpaW/C4QQ8ngDJybm0bTuTpOH/x/c9vscf9jN2wVi80Vge+kXfLyhPLKfvhr70yuu12a/d6lb2m2u+k6m+bmLljOWdVrdrvskZjdrs+vrvoZkzNlsXbp9cxSn9l9MtvZzlxeksL04j4rjom1VKj4wy2iRVs7IkjZfm9+G4PqvpnFrB3LwcNlQk4XNH6ZhaybB2BSR4w3yxtiNPz/mxsyUc3C5nq59H08/GDUS3O/7hOG5crlgEhihRu25w4d7sdbb1GNBwTW8/ba6617XvYfNrsnH7pPFjLseFU/fdbuu4zR/bHlfd59o4r7bfFdvMr7fPfk/bahu0Jsub3Ljd247AYT04rq1eV3VH1bUSWjDg5mzvXC0/rrn3EHVFcdgy79/eY/WvaXl1/btq2W9za7+5aNRdly/Z+9jR66tLWjnjeqzloE55pMUFCUY8rC9PZvbGHD5Z1YXimnj8njDje65l//YF9MosJcEbpibsJa8ykUWFmUxZ1o0V+V1Zu3Y8ZWU9CQYzSE5ej8cTaNTX4KNXr9dJTs5t8tlaG9DSUt9ubo67ru29+fW/f/s8RnXaRJ+sUkJRN9UhL+GomzZJ1QTDHqava09JIJ7xPdeQ5Avz9pIebKpMJMVv9apemWW4XA5fre3A1+s3Hy23MiISdW3zd1dff9necfZ9ebZRPsTea7TumqhXWdmBNWsmUFbWE7c7RGbmIny+qrrPy8Fx3CQnbyAnZ84W57P80IPLFd4Jm7zH8q/tHvkjr8Mfe33F6pFb5qkHdMjj0C659MwsIz0+SJwnQk3YS2F1AmtKU3hqzgDKg3FEIn7Wrz+cgoL9KSnpRyiUhMcTJClpAzk5s+nb96VYWqJeVq48gbVrxxMMppOQkE/Hjl/Qo8fbeDy1hMMJbNhwMHl5B1JZ2ZHa2lTC4QS83hoSE/Pp0uUjunb9oOF826p/N/6s7HpxNYy72ncaxXGFWdVuJcvaLyOjMoPsimz8YT8BX4D8tHyq46rpv74/nYs7b3FetyuKi8363lqSlzgu+mSWc0yv1XRJq2BJUQYbK5LwuqMk+0Mc0mUDbpfD5KXdeWdpff13x9oulgdvr27Vcs1dXz/9fC3Lt3dHfaOxn1J+DW9XyBHd19MmqZpFhZkUVCUQ540Q7w1zdK81VNb6eGr2AGZu2LXbs9V//zvju68/HzStl4bdYQK+ACFPiKgrij/iJ+wJ4+Dgi/iIC8Xhi/i2UQaz1bKrJdd14+M2PyYUSiIQyCQcjsfrDeD11jSMV1ifD3g8tfh81Q3vz64XV8PfsWstyqpVx1NQsB+BQJa1oZI2NOp78xKJ+GnT5jsKC4eRnz+cqqp2pKSsIzExD7c71ND3Fo166dXrtS3qd/XlDUS3WfeLlUtbL/e39pk0d8z2jmuatvq8xCEUSmLFipMoKemD43jJyZlNXFxJoz41+xw7d/6UYDCFDRsOo6BgGJWVHQmHE+vKrihebw3t2n1L//7P4jiwadNB5OcfQElJX2pqcohGvfj9FSQn59Kt23u0b/81lZUdG9rCgUAWoVAK0agHn6+ahIQ8+vZ9gfz84RQXDyAcTqRHj/+RlLQRlytMfZ+q47hJS1vZ8P1vS32+DeBxPM0+trX2164WiXhZvPiXlJb2Jhr10bnzJ8THl2zxXrOy5+L2WZ9YS/LXH9PW9LiiLWqb1fdB1/9Wmj8mdj3+1DpYfR0Htj2e1vi4bdVL7Tjrc29c9kfq8pfmyp76x1pafu3ocdv7vnBotu8Ntl62bS+PGNYun8O6bqB3Zilp8UESvGECYS/FNSpa+UwAAE5cSURBVPGsLUvhuXn9WLRuf3JzD6e8vCsul0Ny8jo8ntpG+aGP/v2fxusNtuh10+KsT3VExzyyE2tIiasFXJQH/WysSOSrdR34R7CCNTlryCnPYcSKWCDeiCvCx4M/JuwJM3zlcPyrDmf9+rFUVHTF7y8nNXVV3ZhltKGPsG3bmcSlr6DaX02ttxbH5RAXiiPoC+JyXPjDfhJqE3DVZLJixamUlvbGcVy0bftdo/zQxhmjUS+dOn0W+x6brZdaf1nAX83KtivJzcgloyqD9qXtibqibErfRFliGZ2KOtEjvwdx4bhG54NY35ur7lxW/hclF7GqzSoq4ivsfCXtKUwtpCi5CE/UQ/f87rQvbb/F77a5vtLGv7/N88NtPQZW76vvw9kW67fafh+NfYauhjJzR/oGwK4Jhy3zIJfjov6/5rSsTRptqKM3PG8b9cjGecSW/SAt77faXt0KGn+v265vtET973jz31zzr1mfpzdff9nRet/mx0Uifqqr2xIKJeFyOfj95XVjArGxcpcrSnx8SaM02TW4eftw8zTWv8f64+rbkHbc9j4lU+OroTK+koAvYGvraxOo9lfjdtzE18aTHEgmLhy31d9w4zzdCxzTaw1D2haSmRBgdWkqgbCHiOOmf3Yxyf4Q32/M4a7lbZjVcxb+sJ9eG3s1nC/sDrO0w1I8UQ8jl44kJZhCYeFg8vIOpLi4P7W1aXXvzaK7er0B+vX7L/HxhaxbN47y8m6Ew4mkpKzZYhy6V683SUzMa9mHsplttqubK7+28Rhs2ZfzU/oPbZxsa/1WTt3jdtvYbyXquIj3humSVkmSv5byYBzVIa+tN/BGSPBG8LijDfMXRnfeSE5SDYsKMimuicfrjpIWHyQnsQaP22FmbltWlqSS7A/hcTtUh3yEoy48LqvD+D02h6UkENeiMfLN/dTjkv21dE6tJMkfojQQR1Wt1ybPeiIk+MJ43Q4FVQlMTV3LyrYryazMZNSy2AYWAW+ATwd+SsQdYfSS0RyZVsvYbrm0SapmSVEGhdXxeN0OCV7rZ62o9fHod4OZn5+93bTtyHvduHEk+fkHUF7eFa83QEJCfsNYajTqJT6+qEn/1rZUVbWlqqojoVAicXEl+P0VjeZ52O80Lq6U8vLu5OYeTmVlJ/z+8rrrq7YhL4pGfXTqNJXExIKd+l6bO257bcP6dG+/r7Rl/cLbqvfH+r63zKvB2eoY/fa05L02l/e7XFEcIjjulvVbFaQWsC57HdX+atKq08iuyGZT+iYq4ytJr0qnS1EXMqoymrxu07bLlmP9sc+lcRkcK7uiRKn11hLyWh+NN+Il6o4SdUXxRD34wj78ET9VcVXkpedRlFxExB0huyKbioQKgt4gKTUptCtrR0ZFRsNL76q+t92l/jOjmbofbL5Wp/n+Y7seW172t8Q2y7lGdced3YYMe8IEvUEingg44I16CXlCuB03vogPf9hPjj/MoV030D65io2ViWyoSCYSdTXMWUnwhVlfnsxHuTlsyNjAhowNALQpb4ODQ0FqAS7HRYeSDnQoic0PdjVbA6/nYl3mOhZ0XkBSIIm2ZW3xRXxE3VGKk4rJT8unR34P+m7ou4v7Xyz/AprMF23uOI/L3s/2xt03b7v8FK76MqRFY0zuZuve2zuuJX3gNJqO+uPqVk3nIG3rOY375dyOe+vHNUp32BOmKLmIkuQSgj7L28KeMDW+GhJCCWRVZJFRmUF1WQ8qKrpRW5tMYmJ+o/nusXpdQkIhNTVZ1NS0IRyOJzExH5+vivo8ob68SkzMw+NpuktP43Z1fbm1zfe6nTHy+rnM2+97azousOvqwk3Ttnl9futp826zX7Cl6tt19eM49b/j0oRSNmZspDi5GF/ER055DkXJRQR9QdJq0mhf0p7Mysxm3qvNAW/8XqNEqUiooDyxnIAvgC/iwxf2URVXhS/iIzmQTFp1WkM+V29r/Yxby/ub67eIuCMNfReNf/sux4XH8TSbF9a/7rbzL9PS/o3N6yNFyUXM7DkTT9RDr02x+WNRd5Rl7ZbhjXg5aPlBpARSNjuX09A31JJ5+7F+3K330bq301/S+Ddi5bn97iKuCNVx1VTFVRHyhPCH/bgcF0FfEF/ER2IwkaRgUrP9W831gW+tX3h719fOGsN1YXNdbD6Iq8ln3C29nIM6biI7sYZlxekNbc3UuFqyEgJ43FHmbsrhh/xsrH1bP6/E3kHDK9TVTRvnA1tra0SJkpuZy/J2y/FFfGSXZ5NRnUF+aj5FKUX4wj56b+xNakE/Vqw4ibKyHrjd4boxprKGfNiu7TA5OXOprOxAKJSM2x0iLq60bsyt7lN2XHg8tQ19Pjuq6fhX3TqVn5hvuth+X14sP4zlXz+2H6S5MYv6Wld9PuLCZXVGnIY+Jlfd73jL3+aWY4LQ9Dvfmvrfwrbm+EUdF+2Sq+mVWUqSP8T68mSqQz587ijx3jCpcbW4XA7Li9MprI4nzhPB7YLaiJuI42r4nXrq0lUV8japj23rt5mfls+6rHUE/AHSqtPIqMxgU/omquOqyarIonNRZ3xFvVi16nhKS3vh8QTJyZmN31/e0BfoOG48nhrat/+moZ5HM+V2/avuaB2wcb9l/VjrT22T1Kczlh9uu4928/ZybW0K1dVtGsbcY+tYAKKAfSaFhcPYuHEU1dVtycxc1GRMyMZJ3GRmLmmy9qCltva91tYmU1g4hJqaNrhcYVJS1jeZE2B5SYjEjKUUJxdb/dAbJCmYhINDdVw1caE4MqsyyazMbDJnelufycCcQrqlV+DzRFlTmkJN2EuiL4zfEyEzIUAk6uardW1ZGVfO2uy1VMVXkVadRpvyNmxK20RFQgWp1al0KexCVlXjgFNN8+Jt9Q1s+Tux77XWFyQ/NZ+C1AKr/1SnEfaEqYqrIjGYSJvyNuSU52zxXrfG6442qYc2zP8m1p6ujdT3tZvGdaFtlf31denY2Ib1Df2UfuGdaWv54Y5qWlbbeevL1ShRgr4gIW+IiCuCN+rFwSHijjSsi/GH/bioL2NoaIfUp6a+DrD5OPjm80rr8yTHcVNe3pVgMA1bJ1WExxOkcR7jOG7i4/MIh1OIRn2A07A2ARr3pTh4PLVEIr6GsafYZ1XfcLT3H416CYeTiEa9uN21eDz1Yzg0fLYuVwi8QWq9tYTdYRyXgzfitT4MaOjf8kV9hDyhhrlKAL6Ij1pPLS5c+MI+4kPx+KJNo3Ruu69023UhBxdBd5jipGJKk0oJeoMkB5OJuCIE/IGGvCS9Mh2v4204R3Nz/Oq//x0pWxtSWbcOY/P5wjtWPmz/vW7e7txafljjq6E4uZjyhHLCnjCpNalUx1UTcUVICiaRUZlBWk1aQ31j63M3txxnbFnf9tbzTa87QqLP1u7b+j93w/Eet7X/akIeqhwI+AIEfUEi7gj+kJ+IJ9LQv5oQSiAuFNekzhSr6zhNvtMtUreV+d0RV4RN6ZtYn7mekDdERlUGyYHkhjVXbcva0qm4U8M6zvrX3Lzev+XrOo3yii1/c1um355Tf2/95+fe7HXqr+bY8S5CUVeL6szNtau2r/57rS9/Yt9rS8bcm29/xfL0hvwQx8ZwE+rGcKkbw42rxh11k1CbYGO4ofhG48qxNG5+3TmucIvmC4c9YUqSSihLKrM++UAKIXeIoC9IfCiejMoM0qvTm/3sYuMCW29DNtf31vznG8urtxebYHfbkTLY1p05O6XvtaV9b566fovt9dFu/n392Lbmjs7xtD6fWL7akvJm83NvnudEG/KSlr+HsDtsZbqnbt5BxMYiXLgaxiI2r5Nu2ZcTG/9qyfXV3Hyb7a11jL12/evujLUizZx/G3njtudkNh6LaGk/WKwtWu2vpiiliLKEMsKeMOnV6VTGVRJ1RUkKJpFVkdWkrIZt/+YalyHNxWK0+n/z3wNsb9ylcX/Jjo9DuxrlzY3ry/VH2PpThyRfBJ/H5geGopZXeurKdU/dGomK2s0jhMXqdY1fNxLxEgql1K3PjuDxBBq1t+vnKkXAX0VVXBU1/hoi7ghxoTgi7ghhTxhf2EdSMIn42vhdODbbtM7UfD3ix59vW+XI1vrxWyIa9bJhw2gqKzsTicQ1ivsQK8Mcx01Gzmw2ZeayLmsdEXeEzMpMkgPJbMzYSMAXoG1Z24YYGVu2kzb/LW/Zl7O1urDbFW3on4o09LPV9ePU9c6Fo03rEC3N01val9MyLfu+YvMjXI3mIVg5HHbb+HLYEybqiuKL+Cx/rxtrjgvH4Q37CIWSiUb9dX22gc3aKlZ3tn6b2Otu7TP5MeUXNN9X+uM5xMY2tn2+5saYtjzX9vt8tiYUCvH+++9TVlZGamrqVo/boQBxNTU1jBw5kh9++IH6yK6O43DvvfdyzTXXNDn2u+++Y8SIEc0+ti19+vShZ8+eTJkypcn99QHi7rrrLq677rpmn+v3+7nwwgt55JFHmtxfHyDuxRdf5KyzzmoIEDdjxgwOOuigJsf+5je/4ZlnniGwle2Mg8Fgk+Bx5eXldO7cebsf9C6x7nXI/8J2Wsk8AOIyafiBOFGLjtr2SFjzvO3Y5fZZRGNfaqPjIpDYEbJjE/K+3/g9q0pW4XK5SPIlMbb7WPweG9j8wx9sdzuAhx+2iMNbU1BVwEXvXMT7y9/nriPv4uOVH/Pp6k/5+/i/c/mBlzc5dkXxCv635H/4PD4C4QAjO43kkC6HNH/irUXhrd4AHwy33Rc6nQzDH7L3Vr4EVvwbFt9rEZ6PnV+3+8Yii6qe0tsiMbrcdaVQxHYvTu6xxUvXR6P2eGK7RZ52mu0GCLab9vjxFpW6XmWlnTYlZYvT7Tk+PdYiXSZ2sc/HlwJ5n9pvbP3rtnvAoJuh9AeLspncwyJfJve0aPzV6yyKfG0J9Lu2RTscrF5tu298+aVFFv3zn20nu/od2SsrLXrxCSfY8aFIiLcWv8X68vX4PD4SfYmcPuB0UuL25A92S4FwgOIai+gc740nMyFzl75eMBzkH1//g3/N/BdH9zyaaaunMarzKO456h46pXaynWr/19Uinvb9Pexfd4GvfMaiBgfqBmeG3sX/Vk/nxJdOBGBst7GkxKUwd9Nc1pStoX92f7675DsSfYn8Z/Z/uPB/F+J2ubl0+KXEe+N5eu7TFNcUc8n+l/DY8Y/BvJtgwR0WXXX8N5AxFMqXwvq3YNlDFqG216VwYKP8fGvXfjQCX54CG96zKKpDbredEcoWWLTWUDmEy6HfNeDP4K+f/ZVbP72V4/sez11H3sVpr5zG+vL1PHfKc5zQ94Qd/oyXFy/nni/vIRgJ4nVbZ/2fRv+J/jn97YD8z2HNCxYxOudQ28EPx6Lv4oAThs6nt+i6ycuz6yUUsii9K1Y0v3Pt9OkWTT0ctp3Sp0zZ+i42kWiEu768i9s+u40zBp7B4DaDuXnazZza/1Qenfgo6fHpAKwqWcXxLx7PipIVPH/K8+RV5nHllCs5pMshvH7G62QnZkNtmUXprskFl8ei37q8WJkTtfy17ZHgacFWWaULbRdAJwyDboXBk+z+BXdZxN3Cr+3vY3+I7dgHW/2dPPSQ7fLjOFaW3XGH7dDRWDDY8sjPueW5DHh4AOXBcuK98cR744k6UcqD5QA8NvExLhl+CZW1lRz+9OF8v/F7jul1DKf2P5XXFr3G+8vf54AOB/DpeZ+SRAg+ONAia7cZAwc+ajt/1GyCVc/C3D/b53hWXeCr1S/AtxfW/YYac9nnNOgW+919dpztGNecHr+Gg/7Ns8/ajgr1VZvkZNu9IC/Pfmf33287DQQCFmn+gw+aP9306XD1gpF8k/sN1x18HX8Y9YeGx34z+Te8ufhNLtrvIp444Ykmz6uttd9pJGJfnd/fwh2XWltLeoGqN8D7+1nk6fbHwLB7IHUAuD3w3RUWnTt9KBz8Cnx4oOVVHSbCwBtstwmXBz49Goq+gW6/hFHPtihpf/qT7YAItqvG735n+QbYd7pokUUWb9t26+f4Kapqqxp2T0/yJbV4V4vGok6UU14+hbeXvE3/7P5ctP9FLCxYyL9n/5u0uDSmXzidATkD+O9/Yzsujh5tu2H4/bGd5UMhOOYY23mxpd5f/j6Xv3s5KXEpDGk7hNcXvs6Nh97Inw7+Ez6Pz+qU319tuyGMegGyR9q1WDjdducJFkDWQRZ1vXQ+fDLGdmBqzgGPQMfj4ZPDrD7l9tuO0Mk9bFexVU8BUDPifcacM4Fvv7Vr9LnnbNeHxrsnrV9vOy3Nm2eP5efb/cOH205xkQjMnWs7mxUWwsgn7XrtkNKBeK9lhpFohDVla2if3J7lVy1v+U4+raFmo0VWL5lru7ikD7X6fLiahvImfajlncsetnp/mzG2gxRYndWJWhnT/ljIGNKa70ZE9garX4RvzqvboRHbRYWo5ScAPS+CoXfBx4fa7hueROj2C6vTRWth3s3ghKkd/H+0PfRySkutj2DdOkjb8aJyx614Er692G4f/i50ONbqmmtftrKt7AfocBwcPtnaYjUbbccYT92u8IC1XaK2+6e3ZTubtYbnn4dbboGVK+H88+G882z3t/h4qxuUllqdf/Dg1k7pHui738Kyf9kOcfvfb3XYuCzbCWjaODvmmB9YXjiIo4+29ijYLjJD6orSefNg1SrrOwNYvBgmTowd29i4cbZr9ogRVpfJyrId8I44wm5XVVndNRCAE09s9MSW7s61HUsKl3DJ5EtYVLCIXw39FY989wgT+0zkgaMfoF3yLgjmtfxxWHiX1ReH3Wu7z4erbees+npk17OsX0P2Ht9fAyuftD7nYX+DlL7WJ1K1CkKVtotn39/brkKydTu6695PuPZ3VP0OtvW7mXk81hZbuhQOPdTaXoMGwZtvQq/NYmyXlUFqasu6EH60lnwmPzHfLCy0frRvvrG/jz/edhys71cL29weRo+2f/n51s//6KPWP1m/02NhoY0JDBtm7dYPP7T7jz7axgDatLHP7LvvrM9i0CA480z77I88Em67DYYOtXZxaantnJqRYbumr1xpr1tebuny+axvIBq15++/v30Xe7vvv7fPZ9Mm+7zat7f32ni35SOOaDo+JfKTzLsZFtxuO6Xv9w/odCLEtbF+lilWoV7a9Wv6HzqSaNSu0dmzW5jvbXWsdz28v7/VjdoeZf3daQOs3+yrM2HDu9D+aJYOfoB+/+qHy+XiV0N/1TAhalPlJqYsn0KPjB4s++0yzjrTzWuv2Uu8/jqMGQOZdcNy0ajlTfHxLcsjqqtt5+aZM+32oYdafli/o3F9f+S557bo021QUFXAk98/SXWomogTITMhk4v2v6hhbGZHrSheweSlk/G6vQQjQUZ3Hs3ITiO3/0QR2bMsuAvm3WC3j11oO7wHCmDpQ7ZrdLDQ2pXD7uGD5R9w0ssn4XV7+e/J/2VDxQZ+O+W3tE1qyye/+oT+Of259Vb4y1/sdNdcY7uqZ8fibVFQABUVVgerqbF61saNrbNjruyAlhS6sYiH2z9uJyoLlNHnX33Ir8onLS7WARqKhqgOVXPO4HN4/pTn4auzYd2rkNrP5nil9LY5XpUrbJw7UAB9fguJjbYq/ok7t//f/8GVV9rta66Bv//9p77b7QuFYOBAWLbM6utff71l/2Q4bMn0NZ5K8RPf61aP243t6p+LjRUbmbNpDg4OHpeH0Z1H71Hz2WpCNUQc69xI8iU1zPsV2VHLi5dTUmNjY9mJ2XTP6P6jzrOyZCXnvXUeP+T9wKQxk3jku0cIhoM8fdLTjOk2ZiemWET2dY7jsL58PVEnisvlomNKRzzuH7MwXTY3M3cmxzx/DNWhal489UUKqgu4dPKldE3vyke//IgeGVuusZCfn3A0zAs/vMAnqz6ha1pX1pev58yBZzKh1wTA+hseeghmzbLmyBFH2PiG11u3YDdq8z1PPbWV34jskzZVbmJhwUIAfG4fIzqOIM6rzi5pxk7qL9lYsZGZG2baKXFxcJeDd/lasXpRpy6IgGv3b3QmIiLbl1uey6rSVYCtJd6//f7Ks0VEZPdrhXkDIrvC8uLlrCxZCUCCN4FRnUfhdbcsQHqDlo6X65rYOXbSGrB9XXl5OWlpaTs3QBxAZWUl999/PzNmzCAzM5PTTz+dE07YMqDO448/zpQpU/jb3/5G7969W3z+UaNGEYlE+Pbbb5vcv2DBAgYNGsRjjz3GJZdc0uxz27dvz6GHHsorr7zS5P53332XiRMn8sEHHzB+/Hg++OADjj76aN59912OPfbYJseefvrpfPXVV2zYsKFF6W3pB72vCIdtse3XX9vEtS5dbLFO/UBNOGyT2n7xi9hzpiyb0hAQ68COB9Inq8+Ov3BLMtpVz8PXdbPuD58CHY622zPOj2UWvmQ44P92/PW3Y+VKW7S6Zo0FNoNY0I64OFvk1LPnTn/ZnWfNS/Dd5TbBsv910PaIusBOLlvwXrkaOp1gQZiiEQsIF9hkwQkjQQti402yhcOpfXf45UtKbBAwELAgRR4PJCbaxONdFcBGGimZA2tfgbL54MuAhA4WwAiXBUBI7GiTboGrplzFQ98+xAXDLuCvY//KoEcGEQgH+PaibxncNjaD9bLJl/HorEe5dPilHNTpIC54+wJGdhrJZ+d/ZgEn598OP9xsgSuPmAo5h1hwsSrr8CIatqCXjQM1bq8CEK6x5wfy7LcZrbVgBt4kiG8DaQMbDn1r8Vv838z/w+1y43V7+dtRf2Ngm4FbnnMPNG0aPPUU/PCDXSdDh9q14nbbhP1g0AJCXXedLU5NS4Prr4eRI2NBkoqKYO1a+OUvY+f9fuP3zNk0B4D2ye05pvcxW7x2RbCCy9+7nDWlawhHwwxvP5z7JtzXEER0p4rUwve/twBJCR2g929tYrg3CaJB+57dPuhyRtPnbeN3snKlLd5ascIWkqamNi2/+vXbsYkGD898mCveu4IRHUcw48IZPPDNA1z9wdUc2uVQPjv/s4ZJtXmVeYz+z2jWl6/nziPu5IapN9A5tTPTL5xOm6Q2sP5/8EVdxIODX4Uup9ntr86EcFXd+/LCYW9B1Rp4dwBEqptPVMb+MO5rC/wY2ATeFBh2N3Q6BXBg2gQLANL9ApZl/Yf+/W3xaFoaPP44nHyyTToPBGDyZFscN3GiBZF74onmXxLgk09gpv8ervuk+SC+AO+e8y7H9j52q4/vcxov3jlukf1+a/Lg49EWvCoatnwpvh2sftYCZp5WBp44KJgO319lCyDClS0OEBcO24QZx7Hfd1nZLn6Pu1BVbRWHPX0Y32/8nieOf4K/ffU3VpWuYsq5Uziqx1G79LVrI7UNk5oTfYlbTt6PBC2gY+Vq+34iNXa/Jx58aRZ42ZsM7w+zYKUA6cOg8ykQKrMFXNFaGHq3nWfFk7bQdvw3tqALLDDPW7bYZWmnT+l3+OE4ji2knz27+XRHo7aYZOFCq0u9/vpmwVSw+mr//vDZ6s8Y88wYvG4vr5z2CilxKZz7xrnkV+U3BLgUEZE6wSJ4u5MFBE3pCyOfgey6zQY+GAHFMy1AnC8NFt9XFwT726bBJ19JtPJi+EM89+2V/P3vsGABTJhg/9q0sTK8osKCxp155pZBZn6SZY/Cd3UR/sd8CO3HWeCi0rmxY3ypsXJoH1Bebn00ZWVWtw2FrJ6bkmLBttvtgvhfe7VGdQ/6/9naEABfnwcFn1k7BOCYHzjy1EFMnWp/PvAA/Pa3TZthM2ZY+zMYtPbqkiXNv+TQoXDggfDkk/b3Cy/A2We3IK07cXDAcRxyK3JxHAev20v7lPY/6XwtEq6q22ih2tq2uGL1yMQudf0xsldxHNugoGZDo75St9Xx/RkWyEG2bS9dyB4IWLCu5cshNze2kN/jsfZZQoJtkNLc5g77gvpg/+66+Yo332yBPgHuu882aGjO/ffHHrvqKitLmtOzp/XlgW1k0KbNzku7iLRAJACvJlmQ6J4XwYi6zuHvroD1b1tAVIAjpjJ55liee84CN2ZnW3Ch+jGLqirLL++5Z7PghVvL+7//Ayyp28jolEIbdyxbYH3l1etsk432R8OYKUx8YSLvLnuXzIRMBuQMAGD6uulEnSj/nPBPfjfyd4AFVWw8hltba3mzy2X94kceCZ0Uy1VE9jThagsynjfNNurLGgHxba3fKVxl/7qeaWPswCcrP+GEl06gc2pnCqsLSfAlMPVXU+mdZXO1une3YL2w7brVJ5/YRpFz51pefuihkJNj9dyKCgusee21dj6R7fn39//moncuokdGD6b+aiqLCxdz9PNHk+RLYsmVS+iY2tEODFVAxfJYuzpaNwfJk2jzlnJGNz3xTwyaVlhobZJ337U6wa9/bfWXlBQbay0qsvbOtjZM/TFCIfj2W9tQYe1auy8+3uYrRKP277zzoEPHHzExfy9tV4vIz1vUiTJt1TRqI7W4XC4O7nzwHhVYUUREYHHhYsb9dxzBcJCqUBW9MnvxwS8+2DWbbYmIiIiIiIiIiIiIiPxM7bIAcbvaJZdcwosvvkhJSQlebyxa40svvcTZZ5/NV199xejRo5t97vjx41m3bh2LFi1qcv/dd9/N9ddfT25uLh06dCA3N5dOnTpx99138+c//7nJsf369aNLly58+OGHLUrvzy1A3B4tEoTPjoW8qbar7MCbIH2IBccJV9gOs94UaD++tVO6Z4qGLUBY2UILXhKurAv8lgIJ7aDdeAtaIz9rwXCQg548iLl5c+mf3Z9FhYv41zH/4ooRVzQ5LhQJMeaZMUxfN504TxwZCRnMumQWHVIa7eycOxk2ToHiWeD2W+Avl9cCJzlh2yG6ccBBRYjdqmDQ/r/5Lu7l5TBvni2mrKyE6mqb5JyWBp07w7hxuz+tOywahvJFUL3e8vJI0PIif6bl9UldWy1pjuNwyFOHMH3ddO484k7u+eoeAuEAcy6dQ7/sfk2OXVa0jKs/uJqIE8Hj8vDA0Q/QM7Mucmi4BqaOhaJvIG0QDLsXsg4Ab6rlxZUrbSJ8zsEw6yoLLgW20HzgTTYxftHfLfBbxv4w6NZYwLkDHoHel8YS8tEhUPgVdL+Aq174Dw/Vneqhh2I7pW9uyRIYMMAmpQOcfz789a+Qnm4BC6+7zp7faehS+v7LrtmuaV2J98ZTFixjU+UmUuNSyb82/+e1+1rx9/DRKAsE1u8aGHJH03I0Grbf9OJ/wILbARcctxhS+9jCn5pGwYp9qRbosgWuvhr++U+7ff31tti6PgBKNGrfZ1bW3rGwemPFRo55/hhKAhas7aZDb+Li4Re3cqpaaNNUmHak3e72SwsmVF+OvZEDwUIYchcsuM0W3HY+HQ6pC3L9w22w/i0onWN/H/4eT753DH/6kwXVHTvWgll26mSLRgoKbAHuyJFw+un2lBNOgLff3nYS6xfR/nXsX+mf3Z/TXj2Nvll9WXD5Au2mKyLS2NKHrA4GcORn0Oaw2GMfjoKiGRYwIW+q1duyD4ZxX9rj8/8K8ydZUAWwNk4fq3QFg1ZPLy+3oAnRKCQnWxndtesuCCaz/m1Y9wYUf2uBTH1p1g5zIlYWDb4N2o7ZyS8qe41wNUzuZYHi2k2Aw9+1QGWhcgscX2feonSG7mc/zgMPtEWtW/PQQ1YXrTdunAWAy821oHDp6bahwj332OP33w+///3Of2sishfQQvZ9wsqVMGoU5OdDjx7wyCPWfvX57PGCAgtKMmkSvPee3ff55xZ0pDkXXxwLIvp//2fB9jYXiey7AfhE9ghThkLpPEgfCkd9aZtwRSNANHaMy7vFJl+OY0HhwIJlNmtref+yR2xDK4Cxn0C7I6wfNVgYO8YTB/4Mpq6aypHPHklWQhbr/7CeuZvmMvLfI0mLS2P9H9aT7E/+0W9dRGSP4zi2eZQTtWDUzex8u7x4ObnlFsCzT1afJkHQp02zDQkKCmC//eCKK2wzmaQk65tassQ2oDnooNj5IhEbW66qspdPSrLNiURaKupEGfHECGZtnMUzJz3DG4ve4O0lb3P72Nu58bAbd+xkP2Y38xa0NTdssH9VVbYZn89nfVZdulhwxD1aS3e0bgm1s0VERERkKwLhADUh2zw12Z+Mz+Nr5RSJiIiIiIiIiIiIiIjsW/baAHFTpkzh2GOP5aWXXuLMM89suP+YY45h3rx5rF27Fs9WVnw88sgjXH755cyYMYOD6mYuhsNhhg0bRnJyMjNmzGg49qCDDqK6upo5c+Y0nG/GjBmMGjWKRx55hEsvvbTZ19icAsTtYRwHir6FvI+hchXUFltQHW8KJHSATic1XcwtIjtsSeESnvj+CQByEnP48yF/bva48mA568rWAZCdmE3b5LY7/mI/ZqKvyG60sGAh+z22H7WRWgBuG3Mbtxx+y46fKBqqC5r4PlQss/IrUmPBOxI6QNezods58L/uULXadkw/Zh6k1AWZ++4KWPawBYjLHA4r7Brl9CrwJkLJXFjyT9jwHgTzofsFDLzwPyxcaIetXw8dOzaftH/8A665xm43F3SqstIWj3ToAAMfHsjCgoU8efyTXLj/hfz+/d/zwDcPcNags3jx1Bd3/HPZ2+V/AUsfgI0fWn6W0tu+09oS+x73uw+6/QK+PNW+G38WdDvXgmO64yCwCUpmQ98/QE7zAZKb8+GH8L//wZdf2mKfUMgCSDqOBRV7/HEYMmTXvW0BZl8Li+8DlxsmLoPkHrHHGgLE3Qk/3GQLurqfByOftsdXPWsBI+v1vgLSBhCJwNy5MHs2FBdDWZn9rDIzoXt3KCqCiy6yp1x7Ldx777aTOD9/PkMfHUpaXBrtU9qzsGAhb5zxBif3P3mnfhQiInu9L0+Hda/Z4tvTqyzzXf82fHW6BSrAsQBxhd9YwN70IXDMXHtuxTIoXxI7V9ogSO7WGu9CZPsKv4YZF0DFEkjtZ4Hi4nOsXVK5EsJVvF3yNiedZIdfeGEscE9zDj4Ypk+321deSUNwarBFt3ffDTfcABMnwtSpFuDn/PPhiCMsoHFVFSxeDImJChwnss9TgLh9RlERvPQSfPyxBRkpLbWvze22DSuOP95u33mnHX/XXbbxQHOCQdug4MUXLfhc797Wl5GSYuedP9/6q1o4lCciP0bFCut3zvvEAky3G2ebWERrrW+zZkOs7bOjtpb3O44FiFv5H+tX63gSpA2w/vBgvgWs63kJdLb+q2GPDmNu3lyeOekZPln1Cc/OfZZrRl3D38f//Ue/bRGRfVVtLXzzDXz1FWzaZHWq2loL+talC5xxBvTq1dqplH3N9HXTOfg/B5OZkElxTTHd07uz8IqFxHvjWztpIiIiIiIiIiIiIiIiIiIiIiIirW6vDRAHMH78eL777jvuueceevXqxYsvvsgTTzzBc889x7nnngvAhRdeyDPPPMOKFSvo2rUrAMFgkOHDh1NeXs7dd99NmzZtePjhh3nnnXf4+OOPOfzwwxte49NPP2XcuHEcf/zxXH755eTn53PdddeRlpbGd999R1xcXIvSqgBxIiIiP2+LCxdTEawAYFi7Ybtul8RAAbzZxm53PQdGPx97rHGAuMROkPs/iMuGUwrs8dx34PMTYsd3v4Dev/wPy5fbn8XFkJHR/MseeyxMmWK3P/wQxo3behJvnnozt39xOyf1O4k3z3yT3g/1Znnxcl4+7WXOGHjGj3vf+wInCsEiqC2yQDK+NEhoD25v7JjKlbDhXaheb8HDHMe+w5Te0PlUiMtsvfTLjvtotAVZSeoGJ6yy+9a+AssegcKvLCjk0Lth08cW2DihAxy7APzpP/olZ8+G/fe32wccADNnbv85v3771zw15ykARncezVe//upHv76IyD7r8xOsLpXQHk7aYPcVfAnzGgUF7nAceOJh1pX294GPQa9Lmp6nfCkkdwe3dtSWPVzJPCiZZe2PcDl4kqyukrk/P6wb3BBoePhw+O675k8RCFggoNpaC/C2YYP9vTXz5sE771gwocJCqKiwAEBdu8Ipp2y7DSIie6mWbArRUnveEJdsQ2WltVmXLAGvF666ygLHtW1rQUpmzQK/Hy5pVJVatco2NygutsBx6ekWKL1Xr537UxKRrQgWQ/F3ECyAULm1feLbQ9pASOr84865veCgtWWw6QOoWlvXVxoFf4ZtmNL2qIa+0mfmPMP5b5/P4DaDWVa8jFAkxMrfraRLWpcfly4RERHZ6W6eejNz8uYAcPkBl3NM72NaN0EiIiIiIiIiIiIiIiIiIiIiIiJ7iL06QFxlZSU33ngjr7zyCsXFxfTr14/rr7+es846q+GY888/n2eeeYZVq1bRrVu3hvvz8vL405/+xOTJk6murmbYsGH89a9/5aijjtridT766CNuueUW5syZQ2JiIhMnTuTee++lTZs2LU6rAsSJiIjIbpE7GT4/3m6Pfgm6nhl7rHGAuNR+sOYF8CTCaWUWhCxYBKXzYscntOf0C/vx2mv25+uvW+CF5qSmWoAGt9sW6qakbD2J32/8nuGPDyfZn8xXv/6KoY8OJd4bT8EfC0j2J/+kty+yV5ncDyqWQPZoGFcXdG3R32HOH2PHDL0b2hwOn4yBaBBS+kLf31lQwEgASudC3jQ44uMWv+zEifDuu3b7t7+F226LBX/ctAn+97+mi+wD4QBF1UUApMWn6ToVEWnO7Gth8X2AC05YDUlbCTQQDcG3F8OqZ+zv5F6Q1t+CHZQvhsrlcGrJTwoGKrInGDcOPq6rntx3H/z+99ZWqPfVVxAOw5gx9veYMTBt2m5OpIiI7NEqKuBf/4L33rNgo4FA7LH27eGmm+Dyy1svfSKyi7QkouMOTluojdTS9Z9d2VS5CYAzBp7By6e9/GNSJyIiIiIiIiIiIiIiIiIiIiIiIiIiIrJb7dUB4vYmChAnIiIiu0Xj4FLjZ0LWAVCdCx+NhNpSCFdagLhel8DMS+24sR9Buy2D5IIFaTjiCLs9YIAFeWjfPvZ4fj6sXQsHHmh/d+oE69ZtP5nd/tmNNWVrGN9zPB+u+JCJfSbyztnv/Lj3LLK3em8IlP0AWQfB+Bl2X8F02PRB7Jh24yHnYCj6DuZPsmBwkerY4y43tBkDR3zS4pctLoZzz4X33687hcuu60gE8vIgMxOKin7yuxMR+XkpmQfvD7Xb3c+Hg/5teXS96vXg8kJCO/u79AfY+CEUfwuhcvAkQFJXyB4FnU9r+lyRvdDKlXDMMbB0qf3dtSsMHmz1jrlzrc3wwANw1VX2+LXXwr33tl56RURkzxYKQUGB/T8jwzYqEBHZER8s/4C5eXMBOKHvCfTL7tfKKRIRERERERERERERERERERERERERERHZvpbGLfPuxjSJiIiIyI8Vrozdjs+x/zthC0rSWOfTYdZvIRqCWb+DQ9+A1L72WCQAa16EjOGMHTuECy6Ap56ChQuhWzc46iho0wbWrIEvv4S//CV2Wr+/Zck8ud/J/PObf/Lhig8b/hb52UnuZgHiyubbtej2Qc5o+7e5rAPg8MkQCUL5IghXgTcFknuAL3mHXjYzE6ZMgQUL4KOPYOZMqKiA5GTo2xfGjds5b09E5GclYwh0ORPWvgyrnoaCz6HDRAsKVzoX8j+DIz6OBYhLH2z/RPZRPXpYILiXXrKgtNOnw+efQ2Ii9OkDl1wC5eWx4zt1ar20iojIns/ngw4dWjsVIrI3m9BrAhN6TWjtZIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsEgoQJyIiIrI3cCKx257ErR8XlwlD7oI510L5Qni3vwUpcXkt+FSkBsZ+AsB//gOHH27///JLeO+92Gl694YDDgCXCxwHSkpalsyT+1uAOACPy8MJfU/YwTcqsg9ofwzkvmPB3jZ+AB0nbnmMEwWXO/a3Jw4yhu2Ulx840P6JiMhOMuq/FnB3xZNQuRKWPhh7LLELxLdtvbSJtIL4eDj/fPvXnEmTYre96n0WERERERERERERERERERERERERERERERERERH5UbRET0RERGRv4E2K3Q6VQ3wOJHSAYxfE7vck2P/7XwOJnWDJ/VD0DZTOqzvABdkHQ3L3hqecd579KyqC1ashEoHOnaF9e3u8Rw9YscICxK1YAT17bjuZh3Q5hMcnPo6DQ3p8OtmJ2T/5rYvsdTpMBNdvLbDjtxfDiCcsSJwThYIvYP5fYOSzkNixtVMqIiIt4fbB4Ntg0K1QNBNqNoDbDym9IbVPa6dOZI+T1KjpUl7eeukQERERERERERERERERERERERERERERERERERHZmylAnIiIiMjeIKFD7HbZfEjpacFK0gY0f3zXM+1f5WqoXgeeOAti4s9o9vCsLPu3uSOPtMBwAB98AJdfvu1kul1uLh5+8fbfj8i+LKkz9LsGFv0NApvg8+PBmwzREESDrZ06ERH5sVxuyD6otVMhssfr2CgG7rx5Wz9OREREREREREREREREREREREREREREREREREREts7d2gkQERERkRbIGhG7XTyr5c9L7gZtDrXnbyU43LYcdVTs9h13wPr1TR9/+2349tsdPq3Ivm/oXTDwRgsMBxCujAWHS+kbu19ERERkH3PwwbHbaiuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIj8OC7HcZzWTsTerLy8nLS0NMrKykhNTW3t5IiIiMi+ynHg9UwIlUJSVzh2EXgTYo9HAlC2CDL326kvW1UFffrAhg32d0oK/OY3kJEBU6fCJ5/YvyOO2KkvK7LvqC2Fda9BdS740iDrQMgeDS5Xa6dMREREZJfp0gXWrbPbH34I48Y1fXzJEujbd/enS0REREREREREREREREREREREREREREREREREpLW1NG6ZezemSURERER+LJcL2hxqt6vWwOcnQOUqiIZg40fw4SjI/3Snv2xSEjz2GLjrao0VFfD3v8ONN1pgOBHZDn869LwIBt8K/X4POQcrOJyIiIjs8448Mnb7/PMtuDRAdTXcfz+cd16rJEtERERERERERERERERERERERERERERERERERGSvoQBxIiIiInuLPr+P3c77GN7pAS/HwafjoXTOLnvZiRPhrbegf/8tHxsyBPr02WUvLSIiIiIie6E//jEWZHrDBgsY164dZGbCH/4AgUDrpk9ERERERERERERERERERERERERERERERERERGRP523tBIiIiIhIC7U7ArpfAKueanSns1te+vjj4bjjLFDc/Png8cCoUTB2LLhcuyUJIiIiIiKylxgwAG67DW6+OXZfXl7rpUdERERERERERERERERERERERERERERERERERGRvowBxIiIiInuTEU9AxjD44WYIldt9Li90+wV0P2+XvrTbDaecYv9ERERERES25aaboFs3uP56WL8+dn+bNnDDDa2WLBERERERERERERERERERERERERERERERERERkb2Cy3Ecp7UTsTcrLy8nLS2NsrIyUlNTWzs5IiIi8nMRLITi2eByQeZw8Ge0dopERERERES2UF0N770HeXnQtSsceSQkJLR2qkRERERERERERERERERERERERERERERERERERFpHS+OWeXdjmkRERERkZ4nLhvbjWjsVIiIiIiIi25SYCKed1tqpEBERERERERERERERERERERERERERERERERER2bu4WzsBIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJiFCBORERERERERERERERERERERERERERERERERERERERERERERERERGQPoQBxIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJ7CG9rJ2Bv5zgOAOXl5a2cEhERERERERERERERERERERERERERERERERERERERERERERERERHZU9XHK6uPX7Y1ChD3E1VUVADQuXPnVk6JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOzpKioqSEtL2+rjLmd7IeRkm6LRKBs2bCAlJQWXywVYdL7OnTuzbt06UlNTWzmFIiIisjmV1SIiIns2ldUiIiJ7NpXVIiIiezaV1SIiIns2ldUiIiJ7NpXVIiIiezaV1SIiIns2ldUiIiJ7NpXVIiIiew7HcaioqKBDhw643e6tHufdjWnaJ7ndbjp16tTsY6mpqaoUiYiI7MFUVouIiOzZVFaLiIjs2VRWi4iI7NlUVouIiOzZVFaLiIjs2VRWi4iI7NlUVouIiOzZVFaLiIjs2VRWi4iI7BnS0tK2e8zWQ8eJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMhupQBxIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJ7CAWI2wXi4uK49dZbiYuLa+2kiIiISDNUVouIiOzZVFaLiIjs2VRWi4iI7NlUVouIiOzZVFaLiIjs2VRWi4iI7NlUVouIiOzZVFaLiIjs2VRWi4iI7H1cjuM4rZ0IEREREREREREREREREREREREREREREREREREREREREREREREREREBd2snQEREREREREREREREREREREREREREREREREREREREREREREREREREjALEiYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsIRQgTkRERERERERERERERERERERERERERERERERERERERERERERERERkD6EAcTtRZWUlv//97+nQoQPx8fEMGzaMl156qbWTJSIi8rPz6aef4nK5mv03Y8aMJsd+//33HHXUUSQnJ5Oens4pp5zCypUrWynlIiIi+56Kigr+9Kc/MX78eHJycnC5XEyaNKnZY3ekXH7ooYfo168fcXFxdO/endtuu41QKLQL34mIiMi+qaVl9fnnn99sO7tfv37NnldltYiIyE83depUfv3rX9OvXz+SkpLo2LEjJ554IrNmzdriWLWpRUREdr+WltVqU4uIiLSOOXPmcNxxx9GlSxcSEhLIzMxk1KhRPPfcc1scq3a1iIjI7tfSslrtahERkT3Hk08+icvlIjk5eYvH1LYWERFpfVsrq9W2FhER2bt5WzsB+5JTTjmFmTNncvfdd9OnTx9eeOEFzj77bKLRKOecc05rJ09ERORn584772Ts2LFN7hs0aFDD7cWLFzNmzBiGDRvGK6+8QiAQ4JZbbuHQQw9lzpw55OTk7O4ki4iI7HOKiop4/PHHGTp0KCeddBJPPvlks8ftSLl8xx13cPPNN3Pdddcxfvx4Zs6cyU033URubi6PP/747nprIiIi+4SWltUACQkJTJ06dYv7NqeyWkREZOd45JFHKCoq4ne/+x0DBgygoKCA++67j5EjR/LBBx9wxBFHAGpTi4iItJaWltWgNrWIiEhrKC0tpXPnzpx99tl07NiRqqoqnn/+eX75y1+yevVqbrrpJkDtahERkdbS0rIa1K4WERHZE+Tm5nLttdfSoUMHysrKmjymtrWIiEjr21ZZDWpbi4iI7M1cjuM4rZ2IfcF7773Hcccd1xAUrt748eNZsGABa9euxePxtGIKRUREfj4+/fRTxo4dy6uvvsppp5221ePOOOMMpk2bxooVK0hNTQVgzZo19O7dm6uvvpp77rlndyVZRERkn1Xf7eByuSgsLCQnJ4dbb72VSZMmNTmupeVyUVERnTp14le/+hWPPfZYw/PvvPNObrrpJubPn8+AAQN2z5sTERHZB7S0rD7//PN57bXXqKys3Ob5VFaLiIjsPPn5+bRp06bJfZWVlfTq1YtBgwbx8ccfA2pTi4iItJaWltVqU4uIiOxZRo4cyYYNG1i7di2gdrWIiMieZvOyWu1qERGRPcPxxx+Py+UiMzNzi7JZbWsREZHWt62yWm1rERGRvZu7tROwr3jzzTdJTk7m9NNPb3L/BRdcwIYNG/jmm29aKWUiIiLSnHA4zOTJkzn11FMbBh8AunbtytixY3nzzTdbMXUiIiL7DpfLhcvl2uYxO1Iuv//++wQCAS644IIm57jgggtwHIe33nprp6ZfRERkX9eSsnpHqKwWERHZeTYPOAOQnJzMgAEDWLduHaA2tYiISGtqSVm9I1RWi4iI7B7Z2dl4vV5A7WoREZE9UeOyekeorBYREdl1nnvuOT777DMefvjhLR5T21pERKT1baus3hEqq0VERPZMChC3k8yfP5/+/ftvMQgxZMiQhsdFRERk97riiivwer2kpqYyYcIEvvzyy4bHVqxYQU1NTUNZ3diQIUNYvnw5gUBgdyZXRETkZ2tHyuX69vXgwYObHNe+fXuys7PV/hYREdmFampqaNeuHR6Ph06dOnHllVdSXFzc5BiV1SIiIrtWWVkZ33//PQMHDgTUphYREdnTbF5W11ObWkREpPVEo1HC4TAFBQU8/PDDfPDBB/z5z38G1K4WERHZE2yrrK6ndrWIiEjryc/P5/e//z133303nTp12uJxta1FRERa1/bK6npqW4uIiOy9dnxLFWlWUVERPXr02OL+zMzMhsdFRERk90hLS+N3v/sdY8aMISsri+XLl3PvvfcyZswY3n33XSZMmNBQNteX1Y1lZmbiOA4lJSW0b99+dydfRETkZ2dHyuWioiLi4uJISkpq9li1v0VERHaNoUOHMnToUAYNGgTAZ599xv33388nn3zCzJkzSU5OBlBZLSIisotdccUVVFVVceONNwJqU4uIiOxpNi+rQW1qERGR1nb55Zfz2GOPAeD3+3nwwQf5zW9+A6hdLSIisifYVlkNaleLiIi0tssvv5y+ffty2WWXNfu42tYiIiKta3tlNahtLSIisrdTgLidyOVy/ajHREREZOfab7/92G+//Rr+PvTQQzn55JMZPHgwf/rTn5gwYULDYyq/RURE9hwtLZdVfouIiOx+V199dZO/x40bx3777cdpp53GE0880eRxldUiIiK7xs0338zzzz/PQw89xPDhw5s8pja1iIhI69taWa02tYiISOu64YYbuOiii8jPz+edd97hyiuvpKqqimuvvbbhGLWrRUREWs/2ymq1q0VERFrP66+/zjvvvMPs2bO3W5aqbS0iIrL7tbSsVttaRERk7+Zu7QTsK7KyspqNeFtcXAw0H/1eREREdp/09HQmTpzIvHnzqKmpISsrC2Cr5bfL5SI9PX03p1JEROTnaUfK5aysLAKBANXV1c0eq/a3iIjI7nPyySeTlJTEjBkzGu5TWS0iIrJr3Hbbbdx+++3ccccdXHnllQ33q00tIiKyZ9haWb01alOLiIjsPl26dOGAAw7g2GOP5ZFHHuGSSy7h+uuvp6CgQO1qERGRPcC2yuqtUbtaRERk16usrOSKK67gt7/9LR06dKC0tJTS0lJqa2sBKC0tpaqqSm1rERGRVtLSsnpr1LYWERHZeyhA3E4yePBgFi1aRDgcbnL/Dz/8AMCgQYNaI1kiIiLSiOM4gEWp79mzJwkJCQ1ldWM//PADvXr1Ij4+fncnUURE5GdpR8rlwYMHN9zf2KZNmygsLFT7W0REZDdzHAe3OzbUoLJaRERk57vtttuYNGkSkyZN4oYbbmjymNrUIiIirW9bZfW2qE0tIiLSOkaMGEE4HGblypVqV4uIiOyBGpfV26J2tYiIyK5VWFhIXl4e9913HxkZGQ3/XnzxRaqqqsjIyODcc89V21pERKSVtLSs3ha1rUVERPYOChC3k5x88slUVlby+uuvN7n/mWeeoUOHDhx00EGtlDIREREBKCkpYfLkyQwbNoz4+Hi8Xi/HH388b7zxBhUVFQ3HrV27lmnTpnHKKae0YmpFRER+XnakXD766KOJj4/n6aefbnKOp59+GpfLxUknnbSbUi0iIiKvvfYa1dXVjBw5suE+ldUiIiI711//+lcmTZrETTfdxK233rrF42pTi4iItK7tldVboza1iIhI65k2bRput5sePXqoXS0iIrIHalxWb43a1SIiIrteu3btmDZt2hb/JkyYQHx8PNOmTeP2229X21pERKSVtLSs3hq1rUVERPYe3tZOwL7imGOOYdy4cVx22WWUl5fTq1cvXnzxRd5//32ee+45PB5PaydRRETkZ+Occ86hS5cuHHDAAWRnZ7Ns2TLuu+8+8vLymnRM3HbbbRx44IFMnDiR6667jkAgwC233EJ2djbXXHNN670BERGRfcyUKVOoqqpqGPRfuHAhr732GgDHHnssiYmJLS6XMzMzuemmm7j55pvJzMxk/PjxzJw5k0mTJnHRRRcxYMCAVnmPIiIie7PtldUFBQWcc845nHXWWfTq1QuXy8Vnn33GP//5TwYOHMhFF13UcC6V1SIiIjvPfffdxy233MLRRx/Ncccdx4wZM5o8Xj85T21qERGR1tGSsnrNmjVqU4uIiLSSSy65hNTUVEaMGEHbtm0pLCzk1Vdf5eWXX+aPf/wjOTk5gNrVIiIiraUlZbXa1SIiIq0nPj6eMWPGbHH/008/jcfjafKY2tYiIiK7X0vLarWtRURE9n4ux3Gc1k7EvqKyspIbb7yRV155heLiYvr168f111/PWWed1dpJExER+Vm5++67efnll1m1ahWVlZVkZmZyyCGHcP3113PggQc2OXbWrFn8+c9/5uuvv8br9XLEEUfw97//nZ49e7ZS6kVERPY93bp1Y82aNc0+tmrVKrp16wbsWLn84IMP8n//93+sXr2adu3accEFF3DjjTfi8/l25VsRERHZJ22vrE5LS+PCCy9k9uzZ5OXlEYlE6Nq1KyeffDI33HADaWlpWzxPZbWIiMhPN2bMGD777LOtPt54qF9tahERkd2vJWV1SUmJ2tQiIiKt5KmnnuKpp55i0aJFlJaWkpyczNChQ7nooov4xS9+0eRYtatFRER2v5aU1WpXi4iI7HnOP/98XnvtNSorK5vcr7a1iIjInmHzslptaxERkb2fAsSJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOwh3K2dABERERERERERERERERERERERERERERERERERERERERERERERERERMQoQJyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyh1CAOBERERERERERERERERERERERERERERERERERERERERERERERERGRPYQCxImIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7CEUIE5EREREREREREREREREREREREREREREREREREREREREREREREREZA+hAHEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiInsIBYgTEREREREREREREREREREREREREREREREREREREREREREREREREdlDKECciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgeQgHiRERERERERERERERERERERERERHaC1atX43K5OP/883foeS6XizFjxuySNImIiIiIiIiIiIiIiIiIiIiIiMjeRwHiREREREREREREREREREREREREZJ9QH6Ct8T+/30/nzp0555xzmDdvXquka8yYMbhcrlZ5bREREREREREREREREREREREREdn7eFs7ASIiIiIiIiIiIiIiIiIiIiIiIiI7U8+ePfnFL34BQGVlJTNmzODFF1/kjTfeYOrUqYwePXqXvG7Hjh1ZtGgRaWlpO/S8RYsWkZiYuEvSJCIiIiIiIiIiIiIiIiIiIiIiInsfBYgTERERERERERERERERERERERGRfUqvXr2YNGlSk/tuuukm7rjjDm688UamTZu2S17X5/PRr1+/HX7ej3mOiIiIiIiIiIiIiIiIiIiIiIiI7LvcrZ0AERERERERERERERERERERERERkV3tt7/9LQAzZ84EIBwOc//99zN06FASEhJIS0tj7NixvPvuu1s8NxqN8uSTTzJixAgyMzNJTEykW7dunHTSSXz++ecNx61evRqXy8X555/fcJ/L5eKzzz5ruF3/b/NjxowZs8XrFhUVcfXVV9O9e3fi4uJo06YNZ555JgsXLtzi2PPPPx+Xy8Xq1at5+OGH6d+/P/Hx8XTt2pXbbruNaDT6Yz42ERERERERERERERERERERERERaQXe1k6AiIiIiIiIiIiIiIiIiIiIiIiIyK7mcrkabjuOw5lnnskbb7xBnz59uOKKK6iqquKVV15h4sSJPPDAA1x11VUNx19//fX87W9/o2fPnpxzzjmkpKSQm5vLF198wdSpUznssMO2+rq33norTz/9NGvWrOHWW29tuH/YsGHbTG9RUREjR45k+fLljBkzhrPOOovVq1fz2muv8e677/LRRx8xatSoLZ73xz/+kU8//ZSJEycyfvx43nrrLSZNmkRtbS133HHHDnxiIiIiIiIiIiIiIiIiIiIiIiIi0loUIE5ERERERERERERERERERERERET2eQ8++CAABx54IM899xxvvPEGhx9+OB9++CF+vx+AG2+8keHDh3Pttddy/PHH0717dwCefPJJOnbsyLx580hMTGw4p+M4lJSUbPN1J02axKeffsqaNWuYNGlSi9P7pz/9ieXLl3P99ddz5513Ntx//vnnc/TRR3PeeeexePFi3G53k+fNmjWLefPm0b59ewBuvvlmevfuzUMPPcStt97a8F5FRERERERERERERERERERERERkz+Xe/iEiIiIiIiIiIiIiIiIiIiIiIiIie4/ly5czadIkJk2axLXXXsshhxzCHXfcQXx8PHfeeSdPP/00AH/729+aBEzr1KkTV199NaFQiOeff77JOf1+P15v0z1ZXS4XmZmZOz39tbW1vPjii2RlZXHTTTc1eWzChAlMmDCBZcuWMX369C2ee/PNNzcEhwPIzs7mxBNPpKKigiVLluz0tIqIiIiIiIiIiIiIiIiIiIiIiMjOpwBxIiIiIiIiIiIiIiIiIiIiIiIisk9ZsWIFt912G7fddhsPPvgga9as4ZxzzuHbb79l1KhRzJ49m4SEBEaMGLHFc8eMGQPAnDlzGu4744wzWLVqFYMGDeLmm2/m448/pqqqapelf/HixdTU1DBixAgSExNblMZ6+++//xb3derUCYDS0tKdmUwRERERERERERERERERERERERHZRRQgTkRERERERERERERERERERERERPYpEyZMwHEcHMehtraWdevW8fzzzzN48GAAysvLadu2bbPPbdeuHQBlZWUN9z344IP87W9/w+fzcfvttzNu3Diys7M577zzKCws3OnpLy8vB9ihNNZLS0vb4j6v1wtAJBLZWUkUERERERERERERERERERERERGRXUgB4kRERERERERERERERERERERERORnJTU1lby8vGYfq78/NTW14T6fz8cf//hHFixYQG5uLi+88AKHHnoozz77LOeee+4uSV/jtLQkjSIiIiIiIiIiIiIiIiIiIiIiIrLvUIA4ERERERERERERERERERERERER+VnZb7/9qKmp4dtvv93isc8++wyAYcOGNfvcDh06cPbZZ/P+++/Tu3dvPv74Y2pqarb5eh6PB4BIJNKi9PXr14/4+HhmzpxJdXX1DqdRRERERERERERERERERERERERE9m4KECciIiIiIiIiIiIiIiIiIiIiIiI/K+eddx4A119/PaFQqOH+3Nxc/vGPf+D1ejn33HMBCAaDTJ06FcdxmpyjqqqKiooKfD5fQwC4rcnMzARg/fr1LUqf3+/n7LPPprCwkLvuuqvJYx9//DFTpkyhV69eHHzwwS06n4iIiIiIiIiIiIiIiIiIiIiIiOxdvK2dABEREREREREREREREREREREREZHd6Ze//CVvvPEGb7/9NkOGDGHixIlUVVXxyiuvUFRUxH333UePHj0AqKmp4cgjj6RHjx4cdNBBdOnShcrKSiZPnsymTZv485//jN/v3+brHXHEEbz22mucfvrpHHvsscTHxzN48GCOO+64rT7nnnvu4bPPPuP2229n+vTpHHTQQaxevZrXXnuNxMREnnrqKdxu7RErIiIiIiIiIiIiIiIiIiIiIiKyL1KAOBEREREREREREREREREREREREflZcblcvPbaazzwwAM888wzPPTQQ/j9fvbff3/+8Ic/cMIJJzQcm5SUxD333MMnn3zCF198QX5+PhkZGfTr14977rmHM888c7uvd/HFF7N69Wpeeukl7rjjDsLhMOedd942A8Tl5OTwzTff8Ne//pW3336bL774grS0NE488URuvfVWBg0atFM+CxEREREREREREREREREREREREdnzuBzHcVo7ESIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiAu7WToCIiIiIiIiIiIiIiIj8fzt3SAAAAMAwqH/ri5eYgCAAAAAAAAAAAAAAAAAAnCAOAAAAAAAAAAAAAAAAAAAAAAAAIEIQBwAAAAAAAAAAAAAAAAAAAAAAABAhiAMAAAAAAAAAAAAAAAAAAAAAAACIEMQBAAAAAAAAAAAAAAAAAAAAAAAARAjiAAAAAAAAAAAAAAAAAAAAAAAAACIEcQAAAAAAAAAAAAAAAAAAAAAAAAARgjgAAAAAAAAAAAAAAAAAAAAAAACACEEcAAAAAAAAAAAAAAAAAAAAAAAAQIQgDgAAAAAAAAAAAAAAAAAAAAAAACBCEAcAAAAAAAAAAAAAAAAAAAAAAAAQIYgDAAAAAAAAAAAAAAAAAAAAAAAAiBisQKuFFKkofwAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAE34AAAJQCAYAAAB/DnItAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZhWZf0/8PczMzDDviiLgIKEC6Io7qYmZu6ZS+6aufbNX6WmbWaLlhlZlrbY4p4muZvlXu6m5K64ooAo+yIMO8zM8/vjOCMjoIAQaq/XdT0XzH3u+z6fszxnP5+nVC6XywEAAAAAAAAAAAAAAAAAAAAAAABglalY3QEAAAAAAAAAAAAAAAAAAAAAAAAAfNxJ/AYAAAAAAAAAAAAAAAAAAAAAAACwikn8BgAAAAAAAAAAAAAAAAAAAAAAALCKSfwGAAAAAAAAAAAAAAAAAAAAAAAAsIpJ/AYAAAAAAAAAAAAAAAAAAAAAAACwikn8BgAAAAAAAAAAAAAAAAAAAAAAALCKSfwGAAAAAAAAAAAAAAAAAAAAAAAAsIpJ/AYAAAAAAAAAAAAAAAAAAAAAAACwikn8BgAAAAAAAAAAAAAAAAAAAAAAALCKSfwGAAAAAAAAAADAe7r88stTKpVy9NFHr+5Q+C+y3AEAAAAAAAAAAFYuid8AAAAAAAAAAICPpT59+qRUKr3n5/zzz2+qP3r06Kby0aNHN+vr6KOPXqxtixYt0q1bt+y555657rrrlhpHY/Ks9/v06dNnmaftvvvuW6Y+S6XScs41/huWtE5UVFSkU6dO2W677fKLX/wi8+bNW91hAgAAAAAAAAAAsJJVre4AAAAAAAAAAAAAVqX11lsvXbt2XeKwnj17LldfXbt2zXrrrZckmT9/fl599dXccccdueOOO3LCCSfkT3/601LbVldXZ8stt1zq8LXWWmu5Ymm0/fbbr1A7Vr9F14n6+vqMGTMmjz76aB599NEMHTo09913X9q1a7fa4uvQoUM22GCDFV43AQAAAAAAAAAAaE7iNwAAAAAAAAAA4GPtu9/9bo4++uiV0teee+6Zyy+/vOnv+vr6nHvuufnud7+biy66KAcddFB23XXXJbbt3r17HnrooZUSx6JWRZ/8dyxpnbjzzjvz+c9/Pk8++WSGDBmSn/zkJ6spumT//ffP/vvvv9rGDwAAAAAAAAAA8HFTsboDAAAAAAAAAAAA+KiqrKzM6aefnh122CFJcuONN67miPio23333fP1r389ifUJAAAAAAAAAADg40biNwAAAAAAAAAAgA9oq622SpKMHj169QbyPi6//PKUSqUcffTRmT9/fs4888z069cvNTU1WXvttXPqqadm9uzZ79nH8rSrr6/P3/72txx77LEZMGBAOnTokNatW6d///751re+lSlTpixxHIMHD06pVMp9992Xl156KQcddFDWXHPNtGrVKltssUWuvfba94zx7rvvzgEHHJAePXqkuro6PXr0yM4775zf/e53mT9//mL1X3rppRx77LHp06dPqqurs8Yaa2TvvffOPffcs8T++/Tpk1KplNGjR+fee+/NnnvumTXXXLMp5g/q/danadOm5YwzzsjGG2+cNm3apF27dtl2221z0UUXpaGhYYltFixYkHPOOScbbLBBampq0rNnz3z5y1/O5MmTc+aZZ6ZUKuXMM89s1mbR9WVJnn/++XzhC19Ir1690rJly3Tr1i2f//zn8+ijjy6x/tFHH51SqZTLL78848aNy7HHHpu11lorNTU1GTBgQH73u98t0/wBAAAAAAAAAAD4qJL4DQAAAAAAAAAA4AOaM2dOkqR169arOZJls3Dhwuy222750Y9+lJqamvTp0yfjxo3Lr371q+y///4rrd348eOz33775Yorrshbb72Vfv36pXfv3hk9enR+/vOfZ6uttsrEiROXOr4nnngiW221Ve6888706dMn7dq1y5NPPplDDjkkV1111RLbfPWrX81uu+2Wm266KQsWLMjAgQPTsmXLPPDAA/nqV7+a8ePHN6t/7bXXZtNNN81ll12WadOmZaONNkrLli1z22235TOf+Ux+85vfLDW+oUOH5jOf+UyGDRuWvn37plevXkutuzzea316/vnnM3DgwJxzzjkZMWJE+vTpk27duuU///lPvvSlL+WQQw5JuVxu1qauri6f+9zncsYZZ+SVV15Jnz590rVr11xyySXZeuutM23atOWO8ZZbbskWW2yRq666KrNnz86mm26acrmcG2+8Mdtvv30uuuiipbZ9/fXXs8UWW2To0KHp0aNH1lhjjbzwwgv56le/mp/85CfLHQsAAAAAAAAAAMBHhcRvAAAAAAAAAAAAH8CCBQtyzz33JEk222yz1RvMMrruuusyZcqUvPTSSxk+fHheeumlPPzww2nfvn3uvvvu3HHHHSulXbt27XL55Zdn8uTJGTduXJ544om8+OKLGT9+fL761a9m9OjR+c53vrPUOE8//fQcffTRmTRpUh5//PFMnDgx3/72t5Mk3/72t1NfX9+s/gUXXJDf/e53ad26da688spMmjQpjz32WEaPHp3JkyfnvPPOS5s2bZrqP/vssznqqKNSUVGRP/3pT5k+fXqeeuqpjB8/PrfcckvatWuXr3/963nmmWeWGN/3v//9/PCHP8ykSZPyn//8J2PGjMl22223TMvgvdx+++1JFl+fZs+enX333Tdjx47NSSedlMmTJ+f555/Pq6++muHDh2fAgAG5/vrrc+GFFzZrd/755+fOO+9M586d8/DDD+ell17KU089lZEjR6ZTp075wx/+sFzxjRs3Ll/4whcyf/78nHzyyZk4cWIee+yxTJgwIT/5yU/S0NCQr3zlK3n22WeX2P4nP/lJdthhh4wfPz5PPPFExo4d2xTz2WefnenTpy9XPAAAAAAAAAAAAB8VEr8BAAAAAAAAAAAfa8ccc0xKpdJin8GDB3+gfufPn59nnnkmBx10UEaMGJHOnTvnS1/60lLrv/7660uMo/FzyimnrFAc79Xnfvvtt8Q2dXV1ueKKK7L++us3lW277bY5/vjjk7yTeOyDtuvQoUO++MUvpnPnzs3KO3bsmN/85jdZe+21c+2116aurm6J49too41ywQUXpKampmlaf/zjH6d79+4ZN25cs8Ric+fOzY9//OMkyR/+8IcceeSRqah45xG5zp0759RTT02XLl2ays4666zMnz8/P/vZz3LCCSc0q7/PPvvkJz/5Serr6/PrX/96ifHttdde+cEPfpCqqqqm+Kqrq5dY9/3U19dn1KhROeOMM3LllVemoqIi3/rWt5rVufTSS/Paa69l//33zwUXXJD27ds3m1dXX311SqVSfvnLXzaVNzQ05Pzzz0+S/PrXv84nP/nJpmGN87+hoWG5Yr3wwgtTW1ubzTbbLOeff35atmyZJKmoqMh3v/vd7LXXXlm4cGF+8YtfLLH9GmuskcsvvzwdO3ZsKjvxxBOz+eabZ968ebn33nuXKx4AAAAAAAAAAICPiqrVHQAAAAAAAAAAAMCqtN5666Vr166LlW+yySbL3dcVV1yRK664YrHybbfdNr///e/TrVu3pbatrq7OlltuudThffv2Xe54kmT77bdf6rCNNtpoieWbbbbZEmPZaqutkiQjR45cqe3uueee/P3vf88rr7ySmTNnNiUamzFjRubMmZMRI0akf//+i7U79thjmyVjS5IWLVpk0003zYQJEzJy5MgMGjQoSfLwww9n6tSp6dGjR4444oglxrGoBQsW5LbbbktlZWWOPvroJdb53Oc+l6997Wu5//77lzj8qKOOet/xvJfGZIDvts466+TnP/95dt9992blN954Y5I0Jdp7t4EDB6ZPnz4ZOXJk3nzzzfTq1SsvvPBCxo4dmzZt2uSggw5arE2/fv2y44475r777lvmuO+6664kyVe/+tUlDj/55JNz2223NdV7t8MOOyxt2rRZrHyrrbbKk08+udT1CAAAAAAAAAAA4KNO4jcAAAAAAAAAAOBj7bvf/e5SE3str65du2a99dZLkrz11lsZMWJEFi5cmE984hNLTFy2qO7du+ehhx5aKXEsakX6/MQnPrHE8sYEebNmzVop7RYsWJBDDjkkN99883vGM23atA88vhdffDFJsvXWWy+WLG5JXnnllcybNy8tW7bMXnvttcQ65XI5STJ27NglDn+/Zf5+Fk0GOHfu3IwYMSIzZ87MmmuumW233Xax+s8991yS5Ac/+EHOOeecJfY5ZcqUpph79eqVESNGJEk23HDDtGzZcoltBg4cuFyJ31555ZUkS08sOGDAgCTJxIkTU1tbm/bt2zcbvqLrHwAAAAAAAAAAwEedxG8AAAAAAAAAAADLaM8998zll1/e9Pcbb7yRAw88MH/5y19SU1OTiy++ePUFtxzatGmzxPLGhGmNCc8+aLshQ4bk5ptvTvfu3XPuuefmU5/6VLp3757q6uokyQ477JCHH344Cxcu/MDjq62tTZJ07NhxiW3ebcaMGUmK5HQPP/zwe9adN2/ecsW3rN6dDHDWrFk59dRTc9FFF2WvvfbK448/npqamsVifuKJJ96377lz5yZJZs+enSRp167dUuu+17AlaUzM1pio7d26devW9P+ZM2culvhtRdc/AAAAAAAAAACAj7r3/1lTAAAAAAAAAAAAlmjttdfODTfckDZt2uSSSy5plsSL5C9/+UuS5PLLL88XvvCF9O7duynpW1IkzltZGpOXTZ8+fZnqt23bNknSs2fPlMvl9/38N7Rt2za///3vs/nmm+f555/PL37xiyXGPGLEiPeNd/DgwUneSbLWmKxtSWbOnLnccSbJpEmTljh84sSJTf9f3qRyAAAAAAAAAAAAH2cSvwEAAAAAAAAAAHwAvXr1yte+9rUkyfe+973VHM2Hy+jRo5Mkn/zkJxcbNnXq1IwdO3aljWvAgAFJksceeywNDQ3vW3+99dZLixYtMn78+EybNm2lxfFBVVZW5pxzzkmS/OIXv8iMGTOahm200UZJkuHDhy9zf+uvv36S5KWXXsrChQuXWOe5555brhgb+3zhhReWOPz5559PknTr1i3t27dfrr4BAAAAAAAAAAA+ziR+AwAAAAAAAAAA+IBOOeWU1NTU5P7778/DDz+8usP50GjVqlWSZOLEiYsNO++881JfX7/SxrX99ttnzTXXzNixYzN06ND3rd+6devsvvvuaWhoyK9//euVFsfKsPvuu2fQoEGZMWNGfvvb3zaVH3DAAUmSX//61ymXy8vUV//+/dOzZ8/MmjUr119//WLDR44cmQcffHC540vSLLZFNc7PxnoAAAAAAAAAAAAUJH4DAAAAAAAAAAD4gLp165YvfvGLSZJzzjlnNUfz4bHDDjskSU477bTMmjUrSVIul/PnP/85v/jFL1JTU7PSxlVTU5Pvf//7SZL/+7//y9ChQ5slR3vrrbfyq1/9KpMnT24q+/GPf5zq6uqcffbZGTJkSObOndusz/Hjx+eCCy7IH/7wh5UW57L61re+lSQ5//zzM2fOnCTFdPXt2zf33ntvjjjiiIwfP75Zm1mzZuXaa6/Nqaee2lRWUVGRU045JUly0kkn5dFHH20a9uabb+bggw9OqVRarthOPPHEtG/fPk8//XS+/vWvZ8GCBUmShoaGnHvuubn11lvTokWLnHbaacs93QAAAAAAAAAAAB9nEr8BAAAAAAAAAACsBN/4xjdSUVGR2267LU8//fRiwydMmJAddtjhPT+NydGWx/v1+eqrr66EqVsxZ511Vqqrq3PLLbekZ8+e2XLLLdOrV6988YtfzKGHHpptttlmpY7va1/7Wk488cTMnj07hx9+eLp27Zqtt9466667brp06ZJTTz01s2fPbqq/2WabZejQoamurs7pp5+ezp07Z9CgQdlmm22yzjrrpEePHjnllFMyevTolRrnsjjooIOy7rrrZsqUKfnTn/6UJGnbtm1uvfXWrLvuuhk6dGh69eqVjTbaKNtuu2022GCDdOzYMYccckj+/e9/N+vrlFNOyW677ZYpU6Zku+22S//+/bP55ptn3XXXzdSpU/PlL385SVJZWblMsfXo0SNXXnllWrZsmfPPPz/du3fP1ltvnbXWWivf/va3U1FRkd/+9rcZOHDgyp0pAAAAAAAAAAAAH3ESvwEAAAAAAAAAAKwE/fr1ywEHHJAkOeeccxYbPn/+/Dz88MPv+amrq1vu8b5fnyuSTG5l2WKLLfLAAw9k1113TUNDQ1566aV07do1v/71r3PFFVes9PGVSqVceOGFufXWW/PZz342pVIpzzzzTBYuXJiddtopF154YXr06NGszf77758XXnghJ598cvr06ZOXX345L7zwQlq3bp39998/V1xxRb7zne+s9FjfT2VlZU477bQkyXnnnZcFCxYkSTbccMM888wzGTJkSLbaaquMHTs2Tz/9dBYsWJCddtopv/jFL/LXv/61WV9VVVX5+9//nrPPPjvrrbdeRo4cmQkTJuSLX/xihg0blurq6iRJu3btljm+z33uc3niiSdyxBFHpKamJk8//XTK5XL233//PPTQQ/nSl760kuYEAAAAAAAAAADAx0epXC6XV3cQAAAAAAAAAAAAwOqxzz775B//+Eduuumm7Lfffqs7HAAAAAAAAAAAgI8tid8AAAAAAAAAAADgf9Sbb76Zfv36pa6uLm+++Wa6d+++ukMCAAAAAAAAAAD42KpY3QEAAAAAAAAAAAAAq9bZZ5+dESNGNCt7+eWXs++++2b+/PnZd999JX0DAAAAAAAAAABYxUrlcrm8uoMAAAAAAAAAAAAAVp0+ffrk9ddfz5prrpk+ffpkxowZTYng+vbtmwceeCA9e/ZczVECAAAAAAAAAAB8vEn8BgAAAAAAAAAAAB9zl1xySa677roMHz48U6dOTUVFRdZdd93st99+Oe2009KpU6fVHSIAAAAAAAAAAMDHnsRvAAAAAAAAAAAAAAAAAAAAAAAAAKtYxeoOAAAAAAAAAAAAAAAAAAAAAAAAAODjTuI3AAAAAAAAAAAAAAAAAAAAAAAAgFVM4jcAAAAAAAAAAAAAAAAAAAAAAACAVUziNwAAAAAAAAAAAAAAAAAAAAAAAIBVTOI3AAAAAAAAAAAAAAAAAAAAAAAAgFVM4jcAAAAAAAAAAAAAAAAAAAAAAACAVUziNwAAAAAAAAAAAAAAAAAAAAAAAIBVTOI3AAAAAAAAAAAAAAAAAAAAAAAAgFVM4jcAAAAAAAAAAAAAAAAAAAAAAACAVUziNwAAAAAAAAAAAAAAAAAAAAAAAIBVTOI3AAAAAAAAAAAAAAAAAAAAAAAAgFVM4jcAAAAAAAAAAAAAAAAAAAAAAACAVUziNwAAAAAAAAAAAAAAAAAAAAAAAIBVTOI3AAAAAAAAAAAAAAAAAAAAAAAAgFVM4jcAAAAAAAAAAAAAAAAAAAAAAACAVUziNwAAAAAAAAAAAAAAAAAAAAAAAIBVTOI3AAAAAAAAAAAAAAAAAAAAAAAAgFVM4jcAAAAAAAAAAICV4Mwzz0ypVMp99923ukMBAAAAAAAAAAAAPoQkfgMAAAAAAAAAAPiQ+vvf/56vfe1r2X777dOmTZuUSqWceeaZ79lm3LhxOfnkk7PRRhulTZs26datW3bYYYdceeWVqa+vX+4YRo0alRNOOCG9e/dOdXV1unXrlp133jnXXXdds3pz5szJeeedl8MPPzwbbrhhKioqUiqVMnr06JU6ffPnz8+PfvSjrL/++qmpqclaa62V448/PhMmTFisbmMyvvf6HHfccU31R48e/b71Kysrm41j8ODB79vmyiuvXCy2xx57LHvttVc6deqUNm3aZOutt87VV1/9ntP+XiZNmpRTTz016623XmpqarLGGmtku+22y+9///vF6v7mN7/JMccck4EDB6aqqup9ExY+8MAD+cY3vpGdd945HTp0SKlUytFHH/2e8TQ0NOS3v/1tBg4cmFatWqVLly45+OCDM2LEiPesv/nmm6d169Zp3759dtppp9xyyy1LHceIESNyzDHHZL311kurVq3Ss2fP7LrrrkttM3fu3Pzyl7/M5ptvnk6dOqVjx47ZdNNN85Of/CQzZsx4z+lJkuuuu65pmf71r3993/oAAAAAAAAAAADvVrW6AwAAAAAAAAAAAGDJzjvvvNx///1p3759evTokVdfffU9648cOTLbbLNNpk6dmt133z377LNPamtrc/PNN+eoo47KPffck8suu2yZx3/33Xdnv/32S5Lss88+6du3b9566608++yz+ec//5mDDjqoqe6kSZPyjW98I0nSu3fvdOrUKdOmTVup09fQ0JB99903d955Z7bZZpsccMABee2113LZZZfl7rvvzrBhw9K9e/em+oMHD15qXxdffHHGjh2b3XffvamsY8eO+eEPf7jE+o8//nhuvfXWZvWT5Oijj17ieBYuXJif/vSnqaioyC677NJs2H333Zfdd989LVu2zKGHHpoOHTrkxhtvzBFHHJHRo0fnu9/97nvOh3d7+umns9tuu+Wtt97K3nvvnQMPPDCzZs3Kiy++mL///e858cQTm9U/6aSTkiRrrbVWunTpssSkeYu69NJLc8UVV6R169ZZZ511Ultb+74xffnLX85FF12UjTbaKF/72tcyceLEXHPNNbnrrrvy73//OxtttFFT3XK5nIMPPjg33HBDPvGJT+S4447L/Pnz87e//S377rtvfvOb3+SrX/1qs/6HDRuWnXfeOQsXLsznPve5fP7zn8+kSZNy4403Zt99982ZZ57ZbFkuXLgwO++8c4YNG5bNNtssX/ziF1MqlXLvvffme9/7XoYOHZr//Oc/ad269RKnZ9KkSfl//+//pU2bNpk9e/b7Tj8AAAAAAAAAAMCSlMrlcnl1BwEAAAAAAAAAAPBRd+aZZ+ass87Kvffe+54Jx5bHgw8+mO7du6dfv3655pprcthhh+WHP/xhzjzzzCXW/3//7//l97//fS644IKm5F5JMn369Gy22WZ5/fXXM3r06PTu3ft9x/3GG29k4403Trdu3fLPf/4z66yzTrPhdXV1qap657dHZ82alUceeSRbbLFFOnfunD322CN33nlnRo0alT59+qyU6bvsssty7LHH5tBDD83VV1+dUqnUrPyoo47KFVdc8b7TNnHixPTq1SsdOnTIuHHj0rJly/dts88+++Qf//hHbrjhhhxwwAHvW/+GG27IgQcemH322Se33HJLU3ldXV023HDDvPnmm3nkkUcyaNCgJMnMmTOz3Xbb5eWXX84LL7yQ9dZb733H0dhu4403zty5c/PPf/4zAwcObDb83cspSW699dZsscUW6d69e7785S/nj3/843uut48//nhatWqVDTfcMI899li22267fPGLX8zll1++xPr33ntvPv3pT2fHHXfM3Xffnerq6iTJv/71r+y6667Zcccdc//99zfVv/7663PQQQdl++23z913351WrVolSaZMmZItt9wyEyZMyEsvvdRsPdprr71y++23529/+1s+97nPNZWPGTMmm2yySRYuXJi33nqradzXXnttDjnkkBxwwAG54YYbmsW7//775+abb84VV1yRo446aonT9PnPfz5PPPFEDjzwwJx33nkZOnRoDj300CXWBQAAAAAAAAAAWJqK1R0AAAAAAAAAAADAR8GDDz6Y/fffP926dUt1dXXWXnvtHHDAAXnooYcWq3vttddm8803T6tWrbLWWmvlpJNOyty5c5vVue+++1IqlXLmmWfmkUceye67756OHTs2JTNLkh133DHrrbdes7L3MnLkyCRFUqxFdezYMdtvv32SZPLkycvU1znnnJPa2tr84Q9/WCzpW5LFkom1bds2u+66azp37rxM/SfLP30XXXRRkmTIkCHN2hxzzDHp379/rrnmmsycOfN9+7n88stTV1eXL3zhC8uU9G3cuHG5/fbb07Vr1+yzzz7LFOvFF1+cJDnuuOOald9zzz157bXXcvjhhzclfUuSdu3a5fvf/37q6upy2WWXLdM4kuTCCy/MmDFjMmTIkMWSviWLL6ck2XvvvdO9e/dlHseWW26ZAQMGpLKycpnqNy6ns88+uynxWpLssssu2X333fPAAw/klVdeaSq/+eabkyTf/e53m5K+Jcmaa66Zr3/965k/f/5i82TkyJEplUrZY489mpWvs846TYnwFl0XGr8be+6552LxNn5fJk2atMTpufrqq3PjjTfmT3/6U9q2bfu+0w8AAAAAAAAAALA0Er8BAAAAAAAAAAC8j9/97nfZaaedctddd2XXXXfNaaedlk9/+tN55plncv311y9W99hjj03//v1z4oknplOnTvnNb36T448/fol9//vf/85OO+2UJPnSl76UQw45ZIXjHDBgQJLkjjvuaFZeW1ubhx9+ON26dctGG23UbFifPn1SKpUyevToprJyuZxrr702a6yxRj796U/niSeeyC9/+cv84he/yD//+c80NDSscIwrat68eRk2bFg22GCD9O7de7Hhu+22W+bPn59HH330ffu69NJLk2Spy+TdLr/88tTX1+eoo45KixYt3rf+m2++mbvuuivdu3fP3nvv3WzYfffd1xTvuzWW3X///csUV5Jcc801KZVK+fznP5+XX345v/nNb3LuuefmlltuyYIFC5a5n5XpvvvuS5s2bZqSDS5q9913T9J8GidOnJgkWXfddRer31h2zz33NCsfMGBAyuVy7rrrrmblb7zxRoYPH55NNtkka665ZrP6yeLfjSS5/fbbUyqVMnjw4MWGTZgwIV/72tdy7LHHLnGZAQAAAAAAAAAALI/Ff8oTAAAAAAAAAACAJs8991xOPvnkrLXWWnn44YfTp0+fpmHlcjnjx49vVv/uu+/OE088kQ022CBJ8pOf/CSbbbZZhg4dmp///Ofp0aPHYvUvueSSHHvssR841m9+85u55ZZbcvLJJ+f222/PJptsktra2vztb39LixYtcsMNN6R169bv28+oUaMybdq0bLXVVjnxxBPzhz/8odnwQYMG5ZZbbkmvXr0+cMzL6rXXXktDQ0PWW2+9JQ5vLB8xYkR23XXXpfbz4IMP5pVXXsm2227blAzsvZTL5aZEcccdd9wyxXrZZZeloaEhRx99dKqqmj+mN2LEiGbxLqpTp05Zc801m+q8nwULFuTZZ59Nly5d8tvf/jY/+MEPmiXl69u3b26++eZssskmy9TfyjB79uyMHz8+G2+8cSorKxcbvuhyatSlS5ckxXrXv3//ZvVHjRqVJHnllVealf/4xz/OQw89lAMOOCD77rtv+vXrl8mTJ+fGG29M7969c+211zar/9nPfjb77LNPbrjhhmyxxRZNyRbvu+++vPrqq7nwwguz5ZZbLhbv//3f/6WmpibnnXfe8s4KAAAAAAAAAACAxVSs7gAAAAAAAAAAAAA+zP7whz+kvr4+Z599drOkb0lSKpUWS+R28sknNyV9S5JWrVrlsMMOS7lczhNPPLFY/4MGDVopSd+SpHv37nnkkUfymc98Jrfddlt+9rOf5fe//32mTZuWL37xixk0aNBibf71r3/lxRdfTM+ePZvKJk2alCR58sknc9VVV+Wyyy7LtGnTMmrUqJxwwgl56qmncuCBB66UmJfVjBkzkiQdOnRY4vD27ds3q7c0l1xySZLk+OOPX6bx3n///Xnttdeyww47ZMMNN3zf+uVyOZdddlmSJSeKW5bpeL9paDRt2rTU19dn6tSpOeuss3Luuedm4sSJefPNN/P9738/o0aNyj777JN58+YtU38rw4ospz333DNJMmTIkGaxTp06Neeff36SZPr06c362WijjfLoo49m4MCBuf766zNkyJCmZXvMMccsllivVCrlpptuyje+8Y089dRT+dWvfpVf/epXeeqpp7Lffvtljz32WCzWP//5z7nlllvy+9//Ph07dlz2mQAAAAAAAAAAALAUVe9fBQAAAAAAAAAA4H/Xf/7znyTJbrvttkz1N99888XKevXqlWTx5FVJsvXWW694cO/y2muv5bOf/Wzatm2bBx54IIMGDcr06dNz9dVX54wzzsgdd9yRhx56KC1atGhq84lPfGKxfhoaGpIk9fX1+fGPf5yjjz46SdKpU6f86U9/yrPPPpthw4bloYceyg477LDS4l/Vamtrc91116Vt27Y55JBDlqlNYzKxJSVxW5J77rkno0aNyk477ZR+/fqtcKyNbr755jz99NPNygYPHpzBgwc3W05f/epXc9pppzXV+dGPfpRXXnkl11xzTa6//voceeSRHziWVeWwww7LZZddlnvvvTebbLJJ9thjjyxcuDA333xzunXrliSprKxs1ubxxx/PvvvumwEDBuSJJ57IhhtumIkTJ+bCCy/MqaeemgcffDA33nhjU/25c+fm0EMPzbBhw3L11Vdn1113TalUyr/+9a+cdNJJuf322/Poo482fR/GjRuXU045JYceemg+97nP/fdmBgAAAAAAAAAA8LEm8RsAAAAAAAAAAMB7mD59ekqlUtZaa61lqt+hQ4fFyqqqike16uvrFxvWmNhqZTjmmGPy+uuvZ+TIkenevXuSpG3btvnWt76VadOm5Wc/+1muuuqqHHPMMe/Zz6LTsKSkV/vss0+GDRuWxx9//L+W+K0xphkzZixxeG1tbbN6SzJ06NDMmTMnxx13XNq2bfu+45w+fXpuuOGGtG/fPgcffPAyxXnxxRcnSY4//vglDl+W6Vh0Gm6++eZcccUVi9UbPHjwMi2na665Jo8//vh/LfHbiiynqqqq3H777RkyZEiuvvrq/OlPf0qHDh2y//775xvf+EbWX3/9dOnSpan+woULc8ghh6RUKuXmm29O69atkyTrrrtufv7zn+eNN97INddck3vvvTc777xzkuSnP/1pbrnllvztb39rNq8OOuigtGvXLnvuuWd+9KMfNc3r//f//l8qKyvzm9/8ZiXOHQAAAAAAAAAA4H9dxeoOAAAAAAAAAAAA4MOsY8eOKZfLGT9+/Crpv1QqrZR+Zs6cmQcffDD9+/dvSvq2qE9/+tNJkieeeOJ9++rXr18qKyuTFNP/bo1lc+fOXfGAl9MnPvGJVFRUZMSIEUsc3li+3nrrLbWPSy65JMnSk7K929VXX525c+fmsMMOa0ou9l7eeuut3HTTTenYsWM+//nPL7FOY3xLmo633norU6ZMaTYNl19+ecrlcrPPmWeemSRp06ZNevbsmeTDs5zatGmTtdZaK6NGjVpiosOlLafq6ur88Ic/zMsvv5z58+dn0qRJ+eMf/5ixY8cmSbbccsumui+99FJGjhyZbbbZZonLZUnr+q233pokTYngFrXzzjunVCo1q//0009nypQp6dKlS0qlUtPnrLPOSpIcdthhKZVKOf/885dpvgAAAAAAAAAAACQSvwEAAAAAAAAAALynrbfeOkly1113reZI3tuCBQuSJFOmTFni8MmTJycpEmy9n+rq6nzyk59MkrzwwguLDW8s69Onz4qEukJqamqy9dZb5+WXX87rr7++2PC77ror1dXV2WabbZbY/rnnnstjjz2WAQMGZNttt12mcS5vorirrroq8+fPzxFHHJFWrVotsc5OO+3UFO+7NZY11lkWjUnOPizLKSninz17dh5++OHFht15551NdZbFX/7ylyTJoYce2lTWuK43rtPvtqR1/b3aTJkyJeVyuVn9Qw89NMcdd9xin0GDBiUpksUdd9xx2XjjjZdpOgAAAAAAAAAAABKJ3wAAAAAAAAAAAN7Tl7/85VRWVuZ73/veYgnHyuVyxo8fv5oia26NNdbIBhtskDFjxuTiiy9uNqy2tjbnnntukiJh1aJee+21vPTSS1m4cGGz8hNPPDFJcuaZZ2b+/PlN5S+99FIuv/zytGvXLnvssceqmJSl+tKXvpQk+c53vpNyudxUftlll+XFF1/MIYcckvbt2y+xbWMSt+OOO26ZxvX000/nySefzMCBA7PlllsuU5tlGccuu+ySvn375uqrr87TTz/dVD5z5sz8+Mc/TlVVVY4++uhlGl9SrJ9JMmTIkEyfPr2pfMKECbngggtSUVGRz3/+88vc38rQuJy+973vNSVcS5J//etfufPOO/OpT30q66+/frM2tbW1i/Vz/fXX59JLL81WW22VAw44oKl84403TocOHfLwww8vlkBv3LhxufDCC5MkgwcPbirffvvtkyRnnXVW6uvrm8obGhrygx/8IEnz78aQIUNy8cUXL/b53Oc+1zSNF198cT7zmc8s+4wBAAAAAAAAAAD+51Wt7gAAAAAAAAAAAAA+zDbZZJOcf/75OemkkzJgwIDst99+6d27dyZMmJAHHngge++9d84///xVMu6bb745N998c5Jk1KhRTWWjR49Okuywww45/vjjm+qff/752WeffXLCCSdk6NCh2XzzzTN9+vT8/e9/z8SJE/PZz342e++9d7Nx7LLLLnn99dczatSo9OnTp6n80EMPzY033pjrr78+m266aXbffffMmDEjN9xwQ+bNm5c///nP6dSpU7O+vvGNb2TKlClJkueee66prG3btkmKhG0bbrjhCk/fUUcdlWuuuSZ//etfM2rUqAwePDgjR47MDTfckLXXXjs/+9nPljgfFyxYkKuuuiotW7bMF77whfec540ak7gtOv738sQTT+SZZ57J5ptvnkGDBi21XlVVVS6++OLsvvvu2XHHHXPYYYelffv2ufHGGzNq1KicffbZiyVFey+f/OQnc+qpp+aXv/xlBg4cmH322ScLFy7M3/72t0yaNCnnnHPOYv0NGTIkL730UpLkkUceaSq7/PLLm6Z5hx12aKr/0EMPNSUTnDx5clNZY4K6DTfcMN/5znea6u+88845/vjjc/HFF2fQoEHZe++9M3HixFxzzTVp3759fv/73y82Hdtss03WXnvt9O/fPzU1NfnPf/6T++67L3379s11112XysrKprrV1dU577zzcvzxx2fPPffM3nvvnf79+2fixIm56aabUltbm6985SvZZJNNmtqcccYZueWWW/LnP/85TzzxRD796U+nVCrl3nvvzXPPPZc+ffrk29/+9jLPdwAAAAAAAAAAgBUh8RsAAAAAAAAAAMD7+OpXv5qNN9445513Xm6//fbMmjUrXbt2zTbbbJODDz54lY336aefzhVXXNGs7JlnnskzzzzT9Peiicn22GOPPProozn33HPz4IMP5oEHHkh1dXU22mijnH766fnKV76SUqm0TOMulUoZOnRoPvnJT+aSSy7JH//4x1RXV+eTn/xkvvvd72annXZarM3111+f119/vVnZDTfc0PT/o48+ulnit+WdvsrKyvztb3/Lz372s1x55ZX51a9+lU6dOuXoo4/O2Wefne7duy9xWm6++eZMnTo1Bx98cNZcc833nfZ58+blL3/5S6qrq3PkkUe+b/1k+RLF7bzzznnooYfywx/+MNdee20WLFiQAQMG5Mc//nGOOOKIZRrfos4777xssskm+d3vfpfLL788pVIpgwYNyh/+8Ifsv//+i9W/4447cv/99zcru/POO5v+P3jw4GaJ31599dXFltNrr72W1157LUmy0047NUv8liR//OMfM3DgwPzxj3/Mr3/967Rt2zb77LNPfvKTnywxsd0hhxySG2+8MY8++mgWLlyYddddN9/73vfyzW9+M+3bt1+s/nHHHZc+ffrk/PPPz6OPPprbbrstbdq0yaabbprjjz8+Rx11VLP6a6+9dp588smcc845uf322/PHP/4xpVIpvXv3zqmnnprvfve7WWONNZY2iwEAAAAAAAAAAFaKUrlcLq/uIAAAAAAAAAAAAAAAAAAAAAAAAAA+zipWdwAAAAAAAAAAAAAAAAAAAAAAAAAAH3cSvwEAAAAAAAAAAAAAAAAAAAAAAACsYhK/AQAAAAAAAAAAAAAAAAAAAAAAAKxiEr8BAAAAAAAAAAAAAAAAAAAAAAAArGISvwEAAAAAAAAAAAAAAAAAAAAAAACsYlWrO4APq4aGhowbNy7t2rVLqVRa3eEAAAAAAAAAAAAAAAAAAAAAAAAAHzLlcjkzZ85Mjx49UlFR8Z51JX5binHjxmXttdde3WEAAAAAAAAAAAAAAAAAAAAAAAAAH3JvvPFGevXq9Z51JH5binbt2iUpZmL79u1XczQAAAAAAAAAAAAAAAAAAAAAAADAh01tbW3WXnvtptxl70Xit6UolUpJkvbt20v8BgAAAAAAAAAAAAAAAAAAAAAAACxVY+6y91LxX4gDAAAAAAAAAAAAAAAAAAAAAAAA4H+axG8AAAAAAAAAAAAAAAAAAAAAAAAAq5jEbwAAAAAAAAAAAAAAAAAAAAAAAACrmMRvAAAAAAAAAAAAAAAAAAAAAAAAAKvYhzLx26xZs3LKKaekR48eqampyWabbZa//vWvy93P9773vZRKpWy88carIEoAAAAAAAAAAAAAAAAAAAAAAACAZVO1ugNYkgMOOCCPPfZYhgwZkvXXXz9XX311DjvssDQ0NOTwww9fpj6efvrp/OIXv0i3bt1WcbQAAAAAAAAAAAAAAAAAAAAAAAAA761ULpfLqzuIRd12223Ze++9m5K9Ndptt93y/PPPZ8yYMamsrHzPPurq6rLVVlvlU5/6VJ555plMmTIlw4cPX644amtr06FDh8yYMSPt27dfoWkBAAAAAAAAAAAAAAAAAAAAAAAAPr6WJ2dZxX8ppmV20003pW3btjnooIOalR9zzDEZN25chg0b9r59DBkyJNOmTctPfvKTVRUmAAAAAAAAAAAAAAAAAAAAAAAAwDL70CV+Gz58ePr375+qqqpm5QMHDmwa/l5eeOGFnH322fn973+ftm3bLvN458+fn9ra2mYfAAAAAAAAAAAAAAAAAAAAAAAAgJXhQ5f4berUqencufNi5Y1lU6dOXWrbhoaGHHvssTnggAOy1157Ldd4f/rTn6ZDhw5Nn7XXXnv5AgcAAAAAAAAAAAAAAAAAAAAAAABYig9d4rckKZVKKzTsl7/8ZUaMGJHzzz9/ucd5+umnZ8aMGU2fN954Y7n7AAAAAAAAAAAAAAAAAAAAAAAAAFiSqtUdwLutscYamTp16mLl06ZNS5J07tx5ie3GjBmTH/zgBxkyZEhatmyZ6dOnJ0nq6urS0NCQ6dOnp7q6Oq1atVpi++rq6lRXV6+ciQAAAAAAAAAAAAAAAAAAAAAAAABYRMXqDuDdNtlkk7z44oupq6trVv7cc88lSTbeeOMlths5cmTmzp2bk08+OZ06dWr6PPzww3nxxRfTqVOnnH766as8fgAAAAAAAAAAAAAAAAAAAAAAAIB3q1rdAbzb/vvvn4suuig33HBDDjnkkKbyK664Ij169Mg222yzxHabbbZZ7r333sXKTznllMyYMSOXXXZZevXqtcriBgAAAAAAAAAAAAAAAAAAAAAAAFiaD13itz333DO77rprTjzxxNTW1qZfv34ZOnRo7rjjjlx11VWprKxMkhx33HG54oor8tprr6V3797p2LFjBg8evFh/HTt2TF1d3RKH0dwmm2yS4cOHp6amJhMnTkz79u1XSr9nnnlms38BAAAAAAAAAAAAAAAAAAAAAADgf03F6g5gSW688cZ84QtfyA9+8IPsscceGTZsWIYOHZojjjiiqU59fX3q6+tTLpdXY6QfH08//XSGDx+eJJk3b16uv/76ldb3WWedlbPOOmul9QcAAAAAAAAAAAAAAAAAAAAAAAAfNaWyzGlLVFtbmw4dOmTGjBlp37796g5nlTvttNPyy1/+Mh07dsz06dMzePDg3HvvvSul71KplCSS9AEAAAAAAAAAAAAAAAAAAAAAAPCxsjw5yyr+SzHxIVZfX5+hQ4cmSX7729+msrIy999/f8aMGbOaIwMAAAAAAAAAAAAAAAAAAAAAAICPB4nfyD//+c+MHz8+3bt3z6GHHppPf/rTKZfL+ctf/rLE+rNnz86PfvSjDBw4MG3atElNTU3WXnvtDB48OEOGDMnChQuTJGeeeWZKpVJTu1Kp1OwzevToJMnll1+eUqmUo48+OrNnz853v/vdrL/++qmpqcngwYOb2pfL5Vx11VXZaaed0rFjx7Rq1Sobbrhhvv3tb2fatGmrbP4AAAAAAAAAAAAAAAAAAAAAAADAByXxG/nzn/+cJDnkkENSWVmZI444Ikly5ZVXLla3rq4un/nMZ/LDH/4wzz//fNZee+1ssskmaWhoyIMPPpjTTz89s2fPTpKss8462X777Zvabr/99s0+NTU1zfqeO3duPvWpT2XIkCGpqqrKRhttlOrq6iRF0rcjjzwyX/jCF/LAAw9kjTXWyEYbbZRRo0bl3HPPzeabb56RI0eukvkDAAAAAAAAAAAAAAAAAAAAAAAAH1SpXC6XV3cQH0a1tbXp0KFDZsyYkfbt26/ucFaZWbNmpVu3bpkzZ07+85//ZKuttsrMmTPTrVu3zJ07N48//ni22GKLpvo33HBDDjzwwGy66ab5xz/+kV69ejUNmzx5cq6++uqccMIJad26dVN5qVRKUiRvW5LLL788xxxzTCorK/OJT3wiN998c/r3758kmTdvXmpqavLb3/42X/va19KuXbvccMMN2XXXXZMkEyZMyIEHHpiHH34422yzTR599NGVPo8AAAAAAAAAAAAAAAAAAAAAAABgSZYnZ1nFfykmPqRuuOGGzJkzJ/369ctWW22VJGnXrl0++9nPJkmuvPLKZvVHjBiRJDn22GObJX1Lki5duuTkk09ulvRtedTX12fo0KFNSd+SpKamJuVyOeeee26S5Ec/+lFT0rck6d69e6655pq0bNkyw4YNyz333LNC4wYAAAAAAAAAAAAAAAAAAAAAAIBVSeK3/3GNid0OP/zwZuVHHHFEkmTo0KGpq6trKl977bWTJLfeemvmzJmzUmMZMGBANt9888XKX3zxxbzxxhupqanJCSecsNjwnj175vOf/3yS5K677lqpMQEAAAAAAAAAAAAAAAAAAAAAAMDKIPHb/7CxY8fm3nvvTbJ44rc999wznTp1yqRJk5olU9tvv/3Sp0+f3HXXXenRo0cOPfTQ/O53v8vzzz//gePp37//EstfeeWVJMk666yTNm3aLLHOgAEDmtUFAAAAAAAAAAAAAAAAAAAAAACAD5NVkvht/vz5qaurWxVdsxL95S9/SUNDQzbffPNssMEGzYa1bNkyBx10UJLkyiuvbCpv06ZNHnzwwRxzzDFpaGjINddck69+9avZeOONM2DAgPzjH/9Y4XiWltRt1qxZSZKuXbsutW23bt2SJDNnzlzh8QMAAAAAAAAAAAAAAAAAAAAAAMCqssKJ3x566KH86Ec/yvTp05vKpk6dmj333DNt27ZN+/btc8YZZ6yMGFlFGhO6PfnkkymVSot9/vSnPyVJ/va3v6W2trapXa9evXLppZdm2rRpefTRRzNkyJBsueWWeeGFF7Lffvtl2LBhKzXOtm3bJkkmTZq01DoTJ05MkrRr126ljhsAAAAAAAAAAAAAAAAAAAAAAABWhhVO/HbeeefliiuuSMeOHZvKTjvttNx5553p27dvOnbsmCFDhuT6669fGXGykj311FMZPnx4SqVSunXrttRPy5YtM3fu3Nxwww2L9VFVVZVtttkm3/72t/PYY4/l0EMPTX19fS699NKVGuv666+fJBkzZkxmzZq1xDrPP/98s7oAAAAAAAAAAAAAAAAAAAAAAADwYbLCid+efvrp7Ljjjk1/z5kzJ9dee2122223vPzyy3n55Zezzjrr5MILL1wpgbJyXXnllUmST33qU5kwYcJSP6eddlqz+u9l2223TZKMGzeuWXmrVq2SJHPnzl2hWPv375911lkn8+bNy8UXX7zY8HHjxjUlptt9991XaBwAAAAAAAAAAAAAAAAAAAAAAACwKq1w4rdJkyalZ8+eTX8/8sgjmTdvXo455pgkSbt27fLZz342L7300gePkpWqvr4+Q4cOTZJ84QtfeM+6Rx55ZJLkvvvuyxtvvJFf/epXOf/88zNx4sRm9caMGdOUlG3zzTdvNqxv375Jkvvvv3+F4i2VSvnmN7+ZJPnhD3+Yf/3rX03DJk6cmEMPPTQLFizItttum5133nmFxgEAAAAAAAAAAAAAAAAAAAAAAACr0gonfqupqcnMmTOb/r7//vtTKpWy0047NZW1bds2b7311geLkJXu7rvvzoQJE1JTU5MDDzzwPetutNFGGTRoUMrlcv7yl7/k9ddfz9e//vV079496667brbZZpv0798/ffv2zfDhw7Pxxhvn1FNPbdbHIYcckiT57Gc/m8033zyDBw/O4MGDM2HChGWO+Stf+UoOP/zw1NbW5jOf+UzWW2+9bLHFFllnnXXy4IMPZp111slf/vKX5Z8ZAAAAAAAAAAAAAAAAAAAAAAAA8F9QtaIN+/XrlzvuuCPz589PRUVFrrnmmmy00Ubp3r17U50xY8aka9euKyVQVp4rr7wySbLPPvukQ4cO71v/yCOPzFNPPZUrr7wyN9xwQzp16pR77rknr732Wp5++ul06tQpW221VY444ogcd9xxadWqVbP23/nOd1JfX5+//vWveeGFFzJ//vwkybx585Y55lKplKuuuip77LFHLrroojzzzDN544030rt37+y333759re/nTXWWGM55gIAAAAAAAAAAAAAAAAAAAAAAAD895TK5XJ5RRpefPHF+dKXvpRevXqlZcuWGTVqVM4999ycdtppTXX69euX9dZbL7fffvtKC/i/pba2Nh06dMiMGTPSvn371R0OAAAAAAAAAAAAAAAAAAAAAAAA8CGzPDnLKlZ0JMcdd1y++c1vZs6cOZk+fXr+7//+L6ecckrT8HvvvTcjR47MLrvssqKjAAAAAAAAAAAAAAAAAAAAAAAAAPhYKJXL5fKq6HjBggWZO3du2rRpk6qqqlUxilVqebLnAQAAAAAAAAAAAAAAAAAAAAAAAP97lidn2SrLyNayZcu0bNlyVXUPAAAAAAAAAAAAAAAAAAAAAAAA8JFR8UE7uOmmm3LwwQdn4MCB6devX1P5Sy+9lHPPPTdjx479oKMAAAAAAAAAAAAAAAAAAAAAAAAA+EirWtGGDQ0NOeyww3L99dcnSVq1apW5c+c2De/UqVPOOOOM1NfX5/TTT//gkQIAAAAAAAAAAAAAAAAAAAAAAAB8RFWsaMNf/epXue666/J///d/eeutt/KNb3yj2fBu3bplxx13zK233vqBgwQAAAAAAAAAAAAAAAAAAAAAAAD4KFvhxG+XX355ttxyy1x44YVp3759SqXSYnX69euXUaNGfaAAAQAAAAAAAAAAAAAAAAAAAAAAAD7qVjjx26uvvppPfepT71lnjTXWyNSpU1d0FAAAAAAAAAAAAAAAAAAAAAAAAAAfCyuc+K1Vq1apra19zzqvv/56OnbsuKKjAAAAAAAAAAAAAAAAAAAAAAAAAPhYWOHEb4MGDcqdd96Z+fPnL3H4tGnTcscdd2Tbbbdd4eAAAAAAAAAAAAAAAAAAAAAAAAAAPg5WOPHbSSedlDfeeCMHHnhgxo4d22zYa6+9lv333z8zZszISSedtNx9z5o1K6ecckp69OiRmpqabLbZZvnrX//6vu1uvPHGHHbYYenXr19atWqVPn365IgjjsiIESOWOwYAAAAAAAAAAAAAAAAAAAAAAACAlaVqRRvuu++++c53vpMhQ4ZknXXWSZs2bZIkXbt2zdSpU1Mul/P9738/n/70p5e77wMOOCCPPfZYhgwZkvXXXz9XX311DjvssDQ0NOTwww9faruf/exn6d69e84444z07ds3b7zxRs4555xsvvnmefTRRzNgwIAVnVwAAAAAAAAAAAAAAAAAAAAAAACAFVYql8vlD9LB3Xffnd/+9rcZNmxYpk2blvbt22ebbbbJSSedlN133325+7vtttuy9957NyV7a7Tbbrvl+eefz5gxY1JZWbnEtpMmTUrXrl2blY0bNy59+vTJUUcdlYsvvniZ46itrU2HDh0yY8aMtG/ffrmnAwAAAAAAAAAAAAAAAAAAAAAAAPh4W56cZVUrOpIxY8akZcuW2XXXXbPrrruuaDeLuemmm9K2bdscdNBBzcqPOeaYHH744Rk2bFg++clPLrHtu5O+JUmPHj3Sq1evvPHGGystRgAAAAAAAAAAAAAAAAAAAAAAAIDlUbGiDdddd92cccYZKzOWJMnw4cPTv3//VFU1z0k3cODApuHLY+TIkXn99dczYMCA96w3f/781NbWNvsAAAAAAAAAAAAAAAAAAAAAAAAArAwrnPitc+fO6dy588qMJUkyderUJfbbWDZ16tRl7quuri7HHXdc2rZtm69//evvWfenP/1pOnTo0PRZe+21ly9wAAAAAAAAAAAAAAAAAAAAAAAAgKVY4cRvO+64Yx599NGVGUuTUqm0QsMWVS6Xc9xxx+XBBx/Mn//85/dN5Hb66adnxowZTZ833nhjuWIGAAAAAAAAAAAAAAAAAAAAAAAAWJoVTvz205/+NMOHD89ZZ52Vurq6lRbQGmuskalTpy5WPm3atCRJ586d37ePcrmc448/PldddVUuv/zy7Lvvvu/bprq6Ou3bt2/2AQAAAAAAAAAAAAAAAAAAAAAAAFgZqla04c9+9rNsvPHG+dGPfpQ//elP2XTTTdOtW7eUSqVm9UqlUi655JJl7neTTTbJ0KFDU1dXl6qqd8J77rnnkiQbb7zxe7ZvTPp22WWX5ZJLLsmRRx65HFMFAAAAAAAAAAAAAAAAAAAAAAAAsPKVyuVyeUUaVlRULNsISqXU19cvc7+333579tprr/z1r3/NIYcc0lS+55575tlnn82YMWNSWVm5xLblcjknnHBCLr300vzxj3/MCSecsMzjfbfa2tp06NAhM2bMSPv27Ve4HwAAAAAAAAAAAAAAAAAAAAAAAODjaXlyllWt6EhGjRq1ok3f05577pldd901J554Ympra9OvX78MHTo0d9xxR6666qqmpG/HHXdcrrjiirz22mvp3bt3kuSkk07KJZdckmOPPTabbLJJHn300aZ+q6urM2jQoFUSMwAAAAAAAAAAAAAAAAAAAAAAAMB7WeHEb43J1laFG2+8MWeccUZ+8IMfZNq0adlwww0zdOjQHHrooU116uvrU19fn3K53FT297//PUly6aWX5tJLL10s3tGjR6+ymAEAAAAAAAAAAAAAAAAAAAAAAACWplReNHMaTWpra9OhQ4fMmDEj7du3X93hAAAAAAAAAAAAAAAAAAAAAAAAAB8yy5OzrOKDjuzqq6/Obrvtlq5du6a6ujpdunTJbrvtlquvvvqDdg0AAAAAAAAAAAAAAAAAAAAAAADwsVAql8vlFWnY0NCQQw45JDfeeGPK5XJatWqVrl27ZtKkSZk7d25KpVL222+/XHfddamo+MD55f7rlid7HgAAAAAAAAAAAAAAAAAAAAAAAPC/Z3lylq1wRrbf/OY3ueGGG/KpT30qjzzySGbPnp1Ro0Zl9uzZefTRR7PTTjvl5ptvzm9+85sVHQUAAAAAAAAAAAAAAAAAAAAAAADAx0KpXC6XV6ThoEGDMm/evDz33HOpqqpabHhdXV0GDhyYli1b5umnn/6gcf7XLU/2PAAAAAAAAAAAAAAAAAAAAAAAAOB/z/LkLKtY0ZG8/PLL2WeffZaY9C1Jqqqq8tnPfjavvPLKio4CAAAAAAAAAAAAAAAAAAAAAAAA4GNhhRO/tWzZMrNnz37POrNnz07Lli1XdBQAAAAAAAAAAAAAAAAAAAAAAAAAHwsrnPht0KBBufbaazNu3LglDh8/fnyuvfbabL755iscHAAAAAAAAAAAAAAAAAAAAAAAAMDHwQonfjvttNMyderUbLnlljnvvPPy+OOP54033sjjjz+eX/ziF9liiy0ybdq0nHrqqSszXgAAAAAAAAAAAAAAAAAAAAAAAICPnFK5XC6vaOMLLrgg3/zmN1NfX9+svFwup6qqKj/72c/y9a9//QMHuTrU1tamQ4cOmTFjRtq3b7+6wwEAAAAAAAAAAAAAAAAAAAAAAAA+ZJYnZ9kHSvyWJKNGjcpVV12Vp59+OrW1tWnfvn0GDRqUww8/PH379v0gXa9WEr8BAAAAAAAAAAAAAAAAAAAAAAAA7+W/mvjt40riNwAAAAAAAAAAAAAAAAAAAAAAAOC9LE/Osor/UkwAAAAAAAAAAAAAAAAAAAAAAAAA/7NWOPHbL3/5y6y55poZN27cEoePGzcuXbp0ya9//esVDg4AAAAAAAAAAAAAAAAAAAAAAADg42CFE79dd911GThwYHr06LHE4T169Mhmm22Wv/71ryscHAAAAAAAAAAAAAAAAAAAAAAAAMDHwQonfnvllVey8cYbv2edAQMGZMSIESs6CgAAAAAAAAAAAAAAAAAAAAAAAICPhRVO/DZnzpy0adPmPevU1NRk1qxZKzoKAAAAAAAAAAAAAAAAAAAAAAAAgI+FFU781rt37/z73/9+zzqPPPJIevXqtaKjAAAAAAAAAAAAAAAAAAAAAAAAAPhYWOHEb5/97Gfz0EMP5dJLL13i8IsvvjgPPfRQ9tlnnxUODgAAAAAAAAAAAAAAAAAAAAAAAODjoFQul8sr0nDy5MkZNGhQxo8fn5122im77rprevbsmbFjx+auu+7KAw88kB49euTJJ59Mly5dVnbcq1xtbW06dOiQGTNmpH379qs7HAAAAAAAAAAAAAAAAAAAAAAAAOBDZnlyllWt6Ei6dOmSe++9N0ceeWTuu+++3HfffSmVSmnMI7f11lvnqquu+kgmfQMAAAAAAAAAAAAAAAAAAAAAAABYmVY48VuSrLfeehk2bFgef/zx/Oc//8n06dPTsWPHbL311tlyyy1XVowAAAAAAAAAAAAAAAAAAAAAAAAAH2kfKPFboy233DJbbrll6urq8txzzyVJFi5cmBYtWqyM7gEAAAAAAAAAAAAAAAAAAAAAAAA+0iqWp/KoUaNy6aWX5pVXXlls2D/+8Y/07NmzKQncWmutlWuvvXalBQoAAAAAAAAAAAAAAAAAAAAAAADwUbVcid8uuuiinHDCCamurm5W/uqrr+bggw/O5MmTs84662TDDTfMW2+9lSOOOCJPPfXUSg0YAAAAAAAAAAAAAAAAAAAAAAAA4KOmankqP/TQQ9l0003Tu3fvZuUXXHBB5s2bl6985Sv5zW9+kyS58cYbc+CBB+a3v/1tLrnkkuUKatasWfne976Xa6+9NtOmTcuGG26Y73znOzn00EPft+2kSZPyrW99K//4xz8yZ86cbLrppjn77LOzyy67LFcMAAAAAADvp1xOnn8+eeSRZPLkZPr0pL4+6dgx6dMn2XvvpHPnpKEhefbZ5IknkmnTkhkzklIpWWONpG/fZM89kxYtVvPEAAAAAAAAAAAAAAAAAACr1HIlfhs1alQGDx68WPkdd9yRli1b5pxzzmkqO+CAA7LjjjvmwQcfXO6gDjjggDz22GMZMmRI1l9//Vx99dU57LDD0tDQkMMPP3yp7ebPn59ddtkl06dPzwUXXJCuXbvmd7/7XfbYY4/885//zE477bTcsQAAAECSzJmTvPBCMmVKMmtWsmBB0qpV0rVr0r9/kdRn4sQi8c8zzxRJfWbOLJL/tG2brLVWcuSRRRIgAD4C6uYmbz2ZzBieLJie1M1KSpVJi/ZJq55Jr/1y7wPVOfroZMyYZIMNki9+Mdlyy6SmptgPPPdcsskmya23JqedViSG22qr5KCDkgEDksrKZNKk5B//SHbcMenUqRj1tc9fm9899rskSdc2XXPFflekdYvWzeMrl5N5E5MFU5OFs5I0JJVtkpquxadU8d+cWwAAAAAAAAAAAAAAAADAMliuxG9TpkzJ2muv3axs+vTpee2117LjjjumXbt2zYZtttlmefzxx5croNtuuy133313U7K3JNl5553z+uuv55vf/GYOOeSQVFZWLrHtJZdckuHDh+ff//53tttuu6a2m266ab71rW9l2LBhyxULACyThrqkfm5SbkgqWiaVNUmp1DS4XC6SwLz1VjJ3brJwYVJVlbRrl3TrlnTokLzxRvL008mrrybTpxdtqqqKf1u2THbZJdl669U2hQA0aqhP5o5NFs5YZNtfnbRol7TqkVS1fv8++PCZPy2ZPSpZOLNYrkmxP2/RIWm/QR57qk2+9rXksceSjTZKvvCF5BOfKJLzzJmTPPFEMnt28vDDydlnJw0NySmnFPXWWSeprk5qa5NRo5KKRXLwjJ85Pn9+5s8pp5yKUkWOG3Rc1mi9xmqZBQC8y+i/JI99Oamfl2z0naT7Z5LqNZOUkvlTk1mvZeGCunzuc9WZNStp3Tp5/PEi0ee7vfJKkRCuXE4GDiwShC7l8maSZNibw3LUTUdljdZr5MD+B+bX//l1Sinlrwf+NRWlimK/9eTXkwl3Ji07J732T1r3TEotkrqZyZw3k177Jl39CAbwIbTINbOlKpdXfRwAAAAAAB8CtbXJm28Wzx7MfftxhVatko4dk969i3tKL72UvPxyMnZsUW/+/OLZg1atki5dksMPf+97TwAAAAAAAAB8+CxX4reqqqpMnz69WdlTTz2VJNlyyy0Xq992SW86vo+bbropbdu2zUEHHdSs/Jhjjsnhhx+eYcOG5ZOf/ORS226wwQZNSd8aYz7yyCPz3e9+N2PHjk3Pnj2XOyY+BMoNyYK3igQbDQuTcl2SiqSiRVLVLmnVLal9OZk6LJk7rngRt0XHpFSRpJSU65OWnVLutktGjUqeey6ZMKF4x2zNNYsHHkql4n2yUinZZ58iCdPLLyeTJhXlHToUD0qUSkl9ffH3pz61mufLajB/fpG8at68InlVQ0ORnKqmJuncuXiQhI+vN2vfzD2j7kmSlFLKZ/p+Jmu1W2vVjrRcLl60b1jw9nc/SakqqWyVVLZchaMtZ25d8SRVKaW0arHIyj1nXDL8zGTKv5M26xYv01d3SernFLHWzU46b56HRu6V730vGTYs2Wab5Nhjk7XXLr4nc+cm48cno0cn//xn8vOfF13/7GfJSSclayyS82X27OI7t6i6uuI7WFdXzKLKyuJ7uOgDXC9NeSm3vnJrSqVSyuVyPrv+Z7PBmhssNq0j3xqZpyc8nSRpUdEin+n7mebTy6pTLicjfpeMv71Yd7runNR0eecF53JdkXSoz5FJw/xk1mvJ3InFulaqens/l2I/2bZP0n7Dpm5nzy4e9Fu4sNhvlUpF4qG2bYuyf/2reChwxoykb99iv9a4/jQ0FOvqUg65+Lgol4tta8PC4lipVCoSmFW0XLYX8d/l9emv56UpLyVJqquqs8M6O6SqYrlON1avcrnYftfPeXueNCSlyqSyOqlqm8wckTzx1WTKI8k6hxbJVKrXSGaNLhKFLZiWtN8g6fm55K2nivoLZxTHpRXVxfe13FDM6zW2TUNNj4wYkbz+ejJ5ctKiRZEwprLy7V1ffbL++sWwW29NRo4svpfrrVfsRyoq3g65Lvn0p4uHfVkBY/+ePHlqMuvVZODZSZcdk5adiu1t3Zxk/uSkbma++c2d0phH/KKLkm23Xbyrcjk55phiG1pZmXz720n37u8M79ChWIaNHnnjkXz+2s+nsqIy53z6nHzj7m/kD4//ITcdclM27b5pUWn+tKT2hWTexGL9qWxVrJdJsS61XifpNHDVzBuWS0NDcu+9RdKnCROKZd2tW3Gu1Hiu2dCQHHpo8b1/8cUiMXCpVDyw33iuWS4XyYEHD06RaHLB1GL7Uj+/2DYlxXlwZaukzTp5Y1xN/vnPYhvR0FAkJGzTpvk2YvPNi2OAhx9OxowpxrP22sWxY+M4G7clXbuuxpn431Q/L3ntomTyv4vvVOctkxbtF/l+1SVtP5F0G7zMXc6eXVxHmDKlOAZLivlbKhXLo3fvYvnwIbCsxzl3bp3UzSqOsTf+YVJRlYy7LXnjhmTS/Um5LlX1C7P55ifkgQeK5f7gg8keezQfRUNDsQ9YZ53i+z92bHEcPmBA89HV1RXtxs4ak33/um/m18/PCZufkG17bZt/jPhHrnvhumx434b50c4/Sl78eTL6z0XD3R5L2qxdJHt78efJ3PFF8rfxNUl11+T1q5Pal5J26ydt+rx9rNd4XFL39jHNmss0S/7972JbN2ZMsY/r06fYviy6Ldl77+bnsx975XJxvDB/SnHsUF70OLKmSAxc87+ycf2YKDck059LZr5SJHls2entBP+N59/1SceBSdu+qzfOD7tFN4TvTuK26N9LqbdwYXLjjcl//lNcnx8woNjuVFUV+9WGhqLekUeugtgB4H/dW88kUx9N5k4ojmdbdmx+Papl5+Ia2rh/JNOeKM6x229Q3LMvVSQpF/XarZeF7bfOf/5TXAeZNKm47tCxY/N7EZ07JzvvvJqmdVWpX7DIfc1ykaS7siapqMr8+ckzzxT3B6dOLc4XG6/lJMV14Q03LK4NjxyZjBtX1Gu8x7Nova22KhI8AAAAHzK1LyXjbk9mj05a90pquhf3eFN6+/7MwtT1PCJfP60y111X/EjsD39Y3Nft1Kk4Z5ozp7gf89ZbyRFHJCNGFOcJF19c/MhQ+/bFqGbPLs4bGi+1zq+bnz88/ocMnzQ87arbpVwu56RtTsq6ndZtFmK5XM4jbz6SSbMnJUm6tuma7Xptl9IKPC8EAAAAALBalMtJyklKK/QuJADAh8FyZWJYf/31869//atZ2V133ZVSqbTEZGzjxo3LWmstX0Kg4cOHp3///qmqah7awIEDm4YvLfHb8OHDs+OOOy5W3tj2+eefX2rit/nz52f+/PlNf9fW1i5X3CtN/bxkYW3xIHBlTfEQcOPBZuMBaFXb4mXT1aB2fm0eH/d4Hhv7WDrUdEjnVp3z0pSX0n/N/tm659ZZp8M6K/fGf7mcPHVq8uqfipckNzkrad+/SHww+/Vkwt1Fgo6BZyfPnlEk4uiyY9L/m0X9qf9JZryQTLovSTJqndtz2DFd8+yzxQvXP/950rNn8cJ7UiRimjkzue++5CtfSV55pXj5/XvfKx5Eb9myeAB9zpxFcvKUy5k+b3omzJqQmqqa1DXUpZxyerTrkbYtlz/54X9d7UvJ2FuLZAJdP5W06V08jD93YjJvQpH8pMPGufSWbXP22cmoUcnRRycHHljMu5Yti4dHXnutmEejRhUv5M2cmeyyS5FMaNGEAvPnF0kGOnUq5t2chXMye+HsVJQq0lBuSNuWbdO6ResitvoFyZw3ihiq2rz9wkBlsczz9tt9FTVF4r9VYM7COZk2d1qqKqqysH5haqpq0rlV51RWrLqfRmxoeOfz7nciKyuLlxuXyeihycu/KhJFfOL/ihfV6+cUL4JP/U/x//W/lrpuu+TxcY/nnlH35OWpL2erHlvl5Skvp7KiMp9e99P5VO9PpWNNx7w4+cX8/N8/z80v3ZxNum2SwzY+LFc9e1VOufOUfL7/5/PNT34z662x3opNdLNt3CLevCV59ntF4pX+30jW2DZJOZk1sviuzx2frPuFpO8xqZ1fm5envJyxM8emd4femTZ3WhbUL8gGa26Q3h16p7JUSob/qHgJpap9su5RxUNVc8cVL6689USRRGvTIXl9YUOuevaqXPP8NSmVStmp9075xyv/SM/2PXPEJkfk4AEHp3PdrGTu2GJ+dtik6Ktl52TCXcnkB4t53HqdVPd4Pe3bFw9azZ1b/DrnzJnvJGybObNI8rPvvsnw4cnTTyc33FC8rNG4bZo/v0gesdFGRdLKSy8tEkocf3yyww5F8sqWLYvt0pQpyZZbJnPbDc/ZD5ydO169I1v22DJfGPiF/PnZP+fHD/w4e623V87Y8YwM6Dogj775aM575Lz8a+S/sv062+fTfT6dS566JF++9cs5YfMT8v+2+n/p2uZ/6wX12vm1eWbCM3lu0nPp1qZbWlS2yJgZY7JRl42yWffN0rlV5zSUG/LEuCdy24jb8sibj2SLtbbItLnTMm7WuOzad9fstd5e6dupbzLpgWTmq0XHa26TVLYp9vH1s5N5k5M0JJ23SaY9WXxa90rarJO0XrtIKvjW08kb1xftW/VMnv5GUbb2AUn/bxVJHKYOK15Gn/5M0rAwwzv/LSefnDz0ULHOnHxy0q9f8dJQQ0OR5G3u3GTWrOTss4sEp4cdVuzrunQp1qX6+mLdbNUqaSg35NmJz+aeUffkmYnPZFD3QRk/c3xmLpiZwX0GZ3CfwenSumueeqpIcjN/ftK/f5FcbtGkquVy8fJW4/62rqEu8+reyWbYqqrVO9vWBW8lE/6ZLJheJKZo94ni+zl3XJFcq25W8eJ9lx2WaZnee29y5ZXFQ45bbVV8bzp3Lran9fVFUsUuXZINFs2JuLQX1MsNydhbin1TVdtkjW2KxDvzpyQLZyYLphTHbl12TKY8VCRsarVWkWSjosXb+9W5ycJZSVXrpOvgZbqoOHp0sX2YOTNZa61i39riXYeIrVola7Z6vdg2luuS1r2LpB4N84pxNrz9glnr3smLQ5LRVxXHmuufXLyUN29SsU2bdF+RWGjL32VKVef845V/5G8v/y0z5s3Idr22y/2v35/eHXtn3w32zR799ki7lu3y7zf+nV89+qvcO/re7LjOjtm217a57OnLsrB+YU7c8sQcv/nx6dSqU6bOmZphY4fl8XGPp3vb7mlV1Sojpo3IZt03yzY9t0nP9j3z5JNFUsLp04uX2zbb7J3jiMbku43r11tvFetcY+LZRZMmlcvFet+iZX1emPxC/jP2P5k0e1L6d+mfl6e8nI41HbN1z62zcdeN06JuZvLoUcV612WHpN+Xi+9h7QvFPmjak0Xyt4HnFIkYq9oW6+HCmcWLjLNGJOPvSqY9lnQYUBy/PHt6MntMstUfk7brFYkbpz1ezN95k5JuO+fnt52VCy4okoB+61vJQQcVLz1WVb2zj6iuLpId3HxzkSTm7LOLBCuN9ebNK+ZDZWUye8HsPDTmofxr1L8ybe60bNZ9szwx/on0bNczu6y7S7Zbe7vUVNW8a91+1773XRe6GxNVvXsXnRTzu/Elw4+EpR1vVHcptjXzJxXnF63XLrY5M19JRl2ZzB6VrH1Q/vrXnXLWWUVCn733TnbbrTifaEzmOnZssvvuxfb3pz8t6vXvX7y0us46xXpcW1s8mP3tbycvtb4oX7ntK+nbqW/26LdHRk8fnYM3Oji3vXpbtrtku1y676U5tM82yQOfK9bFPl9I1v9akdx68oPFMfyM4UVSwR1vWO7ZUd9Qn/Lby7+iVJGK0kdpYa4i75WcZBnqvfFGsewfeyzp1at4MH+ddYpjvXK5WE+mTy/Wkf/3/4qkT5/6VPL97xcJ4hY916yvTzLm2uTJU4pz303PfWe/N3NEMvn+ZM7YpNd+uezqL+WKK4p9xQ9/WGwjOnUq9hMLFhT7/srKYthddxUxXHhhsf42bk/nzy/K6+qS++8vtitJkWClcfvaqKEh6dHjI/b9X5J5k4vz4Cn/TtbaPWm7bpH4auw/inODyQ8W+/S9nkteH1rU77xlsZ2vqCqOBeZNTha+lbT9RK7/91459dRiPTj44ORrXyvOexuPN2pri2V7003JddcVL7vvsktx7N6hQ7G86uqKOr17F8uRd9TWJuefXyQKqK4uzp8az5dKpWIdnjOneNnlzjuLF+I7dSqO/Vq3br4LqKpK1nn3d3xp+4jZY5Jnv59Muje5bUDSbediPanpVqwDKaVUUco//pFccEFy223J5z5XbAM+8YkivmnTim3/NdcU+4Zf/apI/L3JJsV3rFev4ns4aVJxTPDgsFnZ75bPZeLsiTlxyxPTtmXbDJ80PCdueWJ+//jv8+MHfpwN19wwhw84ozivGH9n8q+dkh57FQkZWvdKJv4rmfF8cQ1l8kPJmOuKY+luOyft+hXHrlMfS8b8tUhSO3tU7n/r7AwfXpwnbLVVEVfj8WbjsVWHDsX24557iutAP/95cVzauC2ZN6+Y3rlzk9/9rpjuFi2Kdb1793fODxoairoDB77rUHhpy2E5zKubl9HTR2fczHHp0a5HaufXZkH9gvTt1Dfd23ZPRUrF+fq88cV3vMNGxXH6wtp3zjVSSjpvkVS1yby6eRlbOzazFsxKp1adMm3utHSq6ZQe7XqkRWWL4vrEQwclbz2Z9D4s+cSXimUw7fGk9sXi/K1F+yJx4BvXF/N+ze2Sdm+ffMwdW2znF85M2m+Yfw7fJRddVGxLttmmOI5YY41ivW1oKOZtly7F+vNhNmbGmDz4+oMZNnZYcW6cZNRbo7JNr22y4zo7Zu0Oa6eh3JCnxj+Vu0fencfHPZ4te2yZCbMmZNrcaflM38/kM30/kx7teqyS+Oob6jN17tTMq5uXlpUts6B+QTq36pw2LdoU17Un3J08/tXiXGDTnyZrbJWkVCQ/mfJoMmdMkfhti1+vkvj+26bPm56nxj+V5yY9l57teqZUKuWNGW9kk26bZFD3QenUqlOeeSZ59tliG7HBBsV+atFrlI3biI4dV15cb76ZXHZZcZ15rbWKY+0+fd750ZE5c4rjl+HDk7POKv5dd91iP9x4zbrxGKxly2JbtCzmzy+mc+HCYrvVokXzH1kol4vte8tV91sUH9iMGe+cL7duXXwaj90at+uNSYFffLGY3u22K+ZbY9LipNjudOxYvEj6yCPFseXBB79zHlRRUcynmTOLc59rrikSnNbUFOdLjYn6SqXiOGfevOL+wS23FNcw11yzGG+7du+c85fLRb99+hTjW/THDBrP+ZN39uk1NUuaAx8tdXXFetr4IzstW74zP5JiWlu2LJbZrAWz8tq01zJ5zuSs3X7tTJ4zOaWU0q9zv3Rt07Xp3ly5XM6M+TMyc/7Mpu1cu+p26VDd4Z37d+WGd34IoNzw9ggX2TGXqlKuaJk5c4pl0ZjgfNHE1knx/3nzinPiuXPf2RY07vcbp6GmpljW76tcLs7HF7xV7KMbX4qum11cW2n89aY2fd++UDTv7R8zqEjyrpWkVJlUfTR+3KSh3JD5de/co66uql515+lT/1NcF5w/JemxT3F8WG4ojo9mjiiOS7oOzj+Hfzp33VVsT7bbrjj+aNt2kZfI5xff6WaPASztvLpuTnGvd9KDReLU3ocW17ZnvVYcD9W+WFxv2/J3mVFXl0fefCQPjXkoNVU16dW+V56Z8Ew26rJRdlhnh2yw5gaZO6cikye/s41v3775utm4jWh8Af5/wciRxb5zzpziXLTx2mGjcrlYfsv0m30La5OnTivuw3UbnGzw9eL62dRHi/OMifcV9ba8MHnpl8Wx77pHFT+SVL1G8SML058urqm27JT7qp7ON7+ZvPBCkST7a1975zpIfX1xblFRUXwPnhz/ZG4bcVsefuPhbN5988yYPyNjZozJbp/YLXutt1f6de6XcrmckW+NzGPjHsvIt0Zmoy4bZWzt2NQ11GWrnltlUPdBqalqlXHjin1UXV1xTN2ixeLXjzt0WI77rsti/F3JM6cnM19O1vtq0mX74jrjrFeLc7C5Y5O1D8yvbjgxF15YLLPTT08GDVrydeH/+7/iGkJtbfLrXxfXkdq1K+rNn1+Ur2wLFxbHWPPmFfOqVavFt/2Vlcu4Li2jhobk2muL45J585LPfKY4Lln0nHTBguJ61PPPF8c6FRXF/YPGROSLHr9UVxfn3zNmFPNr442b32No/DGtHqvmdCMN5YZm979aVrZ85wdy6hckL51X3NNrtVay1p7F92vu2OK+waxXi3tOG3w9afEReM4ElqZuTpFIvWHe28+3VRfljT/yVy4X63hVm5U3yrrkL38pnvFauDDZddd3tiWN5s5958eVVpapU4trenPnFscejfuWRQ9Lq6uX8Vj43Zb1ngVJ3vlRrfr6d/b1i6qqKtaHcrmcyXMmZ9zMcWnTok3Tdrtn+55Zo9UaKZVKaSg35PlJz+e+0ffl2YnPZtBa7zwjsVPvnfKp3p/KGq06J9OfLX4QoqJFcSxU0bL4QY76ecWP+ZRKxT2Fypqm2JZ037Wi4p1zQT5+5iyck+cnPZ/nJz+fNVuvmerK6rxR+0bWX2P9bNJ1k3So6dCsfl1DXcrld+7hLukZxXK5nIWNPxaVpKqi6p1zyHK5OK6om1WsVFXtinW0XPd2srFycQ5dvcY7P3TxUdf443uLPf9QKqZx0eesy0v4Er59TWTCxFIef7w4zu7UqbjntOh1mnK52I50676MX9anvpWMvrK4F7HZz4pnEmaNSma+lIy6PElSkZbp0uXQdO1anBtNnlx86uqK7dacOcX9o003TT7/+eK62oQJxXnCyy8X+51SqYh53LjkG9+sz3UvXZ3v3/v91Jfrc+iAQ9Ovc79c9ORF+dOTf8oJm5+QM3Y8Ix1rOuaa56/JLx/5ZcbPGp/DNj4spZQydPjQdGvbLadue2oO2fiQtJw7trgf1rCw+MGsyup3fhC3XFfM97afSFp2TH1DfSbPmZypc6amQ02HzJw/M61atMpabddKdVV1s1mzMq6D1NYW98fnzCmuf665ZvN9cFL8XVVV3LuaN684L2jTpvl1q8ZziHnzinOh+fOLfXqrVu9cF25cZVq1WsbrkeXyO/uDcrmYb40/YF5USEpVaahondmzi3HW17+T6HvRaSiVluP8q9xQ7H/KC9+5Nvbue29Vrd953qlcX/xdavyOLPLdaNEx9Q2lLFhQrI+N1wbf3d2i1575aGgoN2TMjDFNP+zarU23jJ4+Ot3bds+Ga26YTq06Fc8jvTCkuHbX7TPJmtsW56qzXivujc6blHTaLFnzk8U9tYW1xTOQrXsW777Mm1zcm26Yl3TaIuk8qBh543Z6CdvhcrmU224vZcSI4th6hx2a32NofH6te/fie5wU94XnLpzb1E3blm2L+7cfduVycW22/u1fE6xqW3xfyw0pvoflJBXFs8Zzx7z9nGmb4pnFiqri+1t0VBx/tuxcPPNWP7foq7JVsc2pn5+m+V3VJmnZYYnhwGLK5WIf8e7va6mUpCKpqCyODRoWvF2v9M6PhjTuS0pVxf7vf0jjdmpJ56QVFcV+tHLxQ/v/irq64vpqY2zvPt5I3tm2AqtIufz2vr7h7X8XVUoqqjJ3XkXTcx4tWrxzTvLu5wZGjnznXGi99d55rmzRUbVvX1wnnTLlnXd7Go/dF71P1r590dfMmUV5z57N77s01ltzzXee+1jSu46Nz3NU/29t+oFFlRveOT4sNyzxOkjj8WF9Q32mzZ2WhQ0LU1mqTEO5IZ1bdW66fjRt2jvPILVr984PJCx6/NL4nEijhkW2raWUFnl+qtgeTptWbA97917ye2cdOxbbsBnzZmTU9FGZu3BuurXtlnEzx6VjTces23HdtGnZ5u0+yxk/a3xenfZqWlS0SKdWnfLGjDeyVru10rdT36Z34huPD+vqlnw5sqIiaZGZxfv8DQuKd50rWhTzq1yfpk5adizmZf2c4ji8ourt4+93HdBVtV38IO+/oLa2uH45d26xr2nfvvm7pEmxXxs9unh3Zvbs4rprjx6LP+fTocMyPudTNzd58uTi/b82fZI+Rxb33mePSma/kcx4tpgfA4ckY28u3rFsv0HxHkhlq+KdsYVvFdc3qtfMhOpD89hjxf6wc+civsbnSxqnoWXL4hkpVrHG89HGbUmjxnW7VLXa8qrQ3Ny5xT2KmTOL73LjeyeLbl+TpOua9UldbfGsTKmiuJbV7DnVcpEfpGF+cb2sYcHb18BaFsMa34VOivI0vHNtu7LmnWvbzTY67Zdpe1hXV+REmfX27bTu3d95TmnRbdMaa7zzXNv0edMzv25+KiuK/Venmk6L3f9YaWaPKfYRKRW5cipaFPccGha8M61t1nl737HylMvFvFn0+kbj/CiVim388j4/v2jOlEaNi6iy8p17DOVyOXUNdU11qiqqmuUrWjS2xnOSd99PaXw+7H3Nn1b8cFP9nCJvQ2XrJOXi3arGa2LVaxTzfnVY2vYweXsltT38uCqVy+8+dFy6c845J9/73vdywgkn5Ctf+UpeffXVHHvssSmXyxk3blzavOuK3/rrr5++ffvmjjvuWOaAltZm/Pjx6dGjR84555ycfvrpS2zbsmXLHHvssfnDH/7QrPyRRx7JJz/5yVx99dU57LDDltj2zDPPzFlnnbVY+ef23jVVVS3SUC415vx9+0tfzLaFDaXUVdRnYdXC1JfqU0oplQ2VqausS6lcSov6FmlR3yKlcikLqhZkQdWC1FfUp7KhMqVyKXWVdaloqEjLupZpWdcybarq06blwlRVlDN7QVUayhWpKJXTorI+raqKg/aZC1pk7sKqtKwsbvLUNVSkoVxKqVROKUlVRRHb3LrKzKlckFk1szKv5byUS+W0WtAqc1vMTSmlVC+sTtt5bVOzoE1mzeqZBQvaplyuSE3N9FRULEipVPRTrCGlVLeZkDnVxY2mmv/P3n/HaVbW9+P/627TdrawBXCpIiAgKKgUY8MCasQCRqVGlGi+RhM1tigqmNgTY9Rf9BM1CrqAUbAECyoKdhBFoiAodUEWli1smT53+f1xl5lhC7vL7s4CzyePYc99znXOue52rnre91hPCo12hSkZLY+mXqyna7wr3bVmQdVYJ5BEO/nmNyKKhUZmVMbTV2m+NsVCI/VGUq0XM1orZ+1oJbVG8xfEZ1TGM6OrmkqxnmKhkVqjkLFaKYNj5QxXy0kKrQt8b8bH+9NolFOvl5M0UiqNp1weSlfX2tZzL2RsrD+1Wm/q9XIajVIKhXqKxbFUKoMpdq3NaGU0tWItlVolxXqzhKkVa6mWqinXyuke7269r9WUCo0MV0up1osppJFSsZGuUnPQY/VIJUfsdk8eNXd1kuTGFbMzXK1kVvdYesvjmd83krFaKZfctFdWjTc/Y/VC84JdrBdTK9ZSTDHFejHlejmlRiHd5VpKhXrqjWKq9eZnuFhovp6FtF+bcrpK1cyoVNNdrqX9SW//v94oZGi8krVjXa2Jcl0ZH5+Zer2Ser2UpNh6TUbT1bU25fJoqtXuVKu9qdV60miUWgVo84iFQjVd3SuTrqGMlceSQlKqlVKul1MtVVMtVlNsNL8TlUYxM7vG01OuNeclVZsN01KxkXKxlu5SPdV6ISuHe7JT72i6S7WMVEsZrTXP2VWqp9z6HAxXyxkar2RGZTylYj2j1XKq9UKzslFopFJqvpZD4+UM1JKxyljqhXpK9VLKtXLqxXpqxVpqhVozb7VKGoVGqqVqaoVa83nUS1OWS7VSSo1iukvNz2yS1OqFNL+pjRQLzde4kWRkvDujozulVqukWKynXB5MsTipYprmZ6tQGcjanrVZ27s24+XxdI93p9AoZKRrJJVqJTNHZqZ/uD/lRnnK96ZUbKRUaJ6rVi9mtFbMwFglq4vjnc9qz/jEzJRqsZqRrpGkkfSN9mWop/nd7x3rTbk+USEYL4430yWZNTojveVaKsV66o1C69qUlFrf2fbnaXB8c2p2jfRVqunvGk+5WF/nOQyOVbI29YxWRlNsFFOpTlRUG4VGxspjKdaL6R3rTTHFlIu19Lc+U6VCPcVCUm8ktUYxY7VS7h0pZ0338Hqf62hpNGOVsRQbxfSN9nWuZe3XuKtUS6GQjNeKGa6WMzBWSb0xMbOlWu3O+PiM1OvdqdfLKRSqKZdH0tW1JsVibVK6noyP93XSFYvjqVQGUqkMtCrJhdb1a0br+lVqfbdqKRbH0tW9KsMz7r3f96t3tDfDrec6Y3RGipPyOloe7bx2O9W6s8uM4czoGs/gWCXD1XLqjaS7VEtXqZ5SsZ7Bsa4sHezbpHd0lxmDWThzMN3lWpYN9makWk65WE9XqfneJMkt987O6tGJRs//XnxxZ/mFL3hBZ7leL+fPf3561qzZO7VaT3ba6Y/p7l6VQqE9CSJpNErZ8xFX5bCFd2fnGcNZPdLMa7VezOzu0fRWqukt13LvSHeuuGte5zXpGevpvMeNNDJaGe2Uo7VirfP69I1NfBbqqWewZ7Dz2nc1SplRGUtPuZZysZ5aozjR6dO6fq0a6c5orfkedZeqmdk9nkqxlnKxkWq9kNFa87M0VmuO+BYL9czqHkt3qda5btVb5dzweDmD45XOa9Msv7rTaJTTaBST1FMsVlMuD6W7+77lXE/q9UqrnKulVBpNpbI21Z41GS+Pp1QvpXdsYhZ8rVDrvFZ9o30p1Jqf71qtK41GKcXieJJGpy6RFFKurEkqIxkrjaVRbKRYLzbrTMVq53GlVkmpXkp3qZ7+rub3qtFIqx5W6Hxvx2rF3DvSne5SPcVC87WtN6ZeWwuFZj1hrFZKvV5MtdqXarVdnrduBm29Jl1da1OpDG3SZ7hYaKS/a6xzHak3ip06YqlYT7VezMrhnhTS6DyHJKk1mh0TpUKjk254vJTH7rIi8/qGs3K4J8sG+1JrFDK7ezQzusbTXapl2VBvfnvXzqlWe1v5727lu5aJMqKQYnE0M3pXZWbrnLVGIdV6szxsJOnvGk+jkawZ7c7geCXFQvM17i1X11O3KmXNaCWru4aa/QNjPanUJ66vk6+H3WPdE9eSkRkpZuJaMlIe6Xx+usa7Oul6x3o79chGGp16as94Tyq1Smq1SqrVGalWu9NolFqfpYn3oFJZm2KxmvHxvjQalRQK1VbdNVNfk9JwxnrXdOpp5erE9bBWWvd7XC5OfL9KxXoKne9XMSPVUtaOdSWTrv29leZ71Lz2lzI4Xs7gWKVVzqd1vNF0leqtsnGi7jowVk613vxeN7+vM1vfn+bns1CoplQaS1fX2pRKY63vazFjY7NSq3WlVqu03vfxlMsjqXStyVDP2jQKjXSPd6dSm3i/2m2QYr2Y/vGe7NTTzPd4vZCRajmNRiGlYj3lYiOlQvOzuXxwZudcxWIt5fJQCoXapAHkZtujXi9neHhBqtXelErD6eoaTKHQ7mRpfjNKpZHM6783M7vHUio0MjheyXit0Kmb9JRraSRZPtSTeb2jmdMzkqR5fRyvF1MpNq93veVqao1i7ljdn/l9w5nZPZ5qvZi1o10Zrxc65VKl1HwOt62a2Xm/Nk2jVe9s1okbjWS0VsrQeCVD4+Upx6rVyqlW+1Ot9qReL7feq9Upl0enHLFZb25eexqNYsrlkXR3r06KYxPlxWhvyo2Jz2a1WM1wV/O70j/Sn0IKKRYarc9mtXPtr9Wb1/7J+Wu0vlcT1977PMNCs41SLTXfo1K9lEYaqRVrzbZrvZJyrZyx8lhW963OQM9AqqVqZozMyGh5NLVSLT1jPZk9NDv9I/351sXfvt9X9fgXPj8HLViZeX3DGauVcs9gX0arpfR3jaW3UktvuZrRWim/WbJz57uTbLjs7y1XM79vOD3lagbGujJaa14jKsV6esq1FAqNrBntzsrh6Y0A0az3tdtM5ST1VltzMF1dzfe+0ShkfLx/UtlU6qRr1v2GkjS/IzO7xlJufU8n6sKlDIyVM9aqRzQaxYyOzurUIRuNYorFakqlkXR1rW21LZqf3/HxWanVKqnXp15LurrWpF4vZXy8v1UvKE4q09PJd3fPigz1DGSgZyBj5bGU6qVUqpUMdw+nXCunb7Qv/SP9KdcmdyI3y+n7KhSaddQ1fWsy0DOQ8dJ4+kb7Ui1VM14aT1e1K7OGZ2XmyMyk1pV6vVmGN69J697AUSjUW3XBTdVuM1U79flqvXndHxirpFovpVysZ0aleX0oFRud8qFQaKTWupa2667rq4O1+xC6ugZSLg9Pqpf0pV4vtd77QitdNV1dq/OUvW/NobsuS1+lmj8u3ylrx7oyozKeWd1jeeLCpRkcr+QLvz0wpWIyu3u0Vf/oTrVeSk+5ea3oq1QzVmvWS5677+LsNnMgt9w7O7fcOyvj9WIOnH9vHjFzMAv6hrN0sC//+8d98sxH3pFdZgzlmrsXZOlgXyrFeh650+o8cs6azOgaz++Xzs91y+bmL/a4K3N6RnP1XTvn3uHuzOwez679g3nMgpUpFBr54S175JyfvCJLlx6RsbGZ2XXXKzNr1q0pl4dSLNZTr5dSq/VkZv+f86LH/F8OXLAy1Xoxf1g2N2tHuzK7ZzSzuseyy4yhDFfL+Z9r98vAWFdqtd5WX0N3Go1iq06XVl1gPH19yzvX6FqtO/V6aVJbq90nMZ7e3pWb8Rlp6i2PZ0arLVmrFzMwVs7AWNeUa1fzM1DM+PiMjI/3JymmUhlMV9fqda7N7XyOj89IUk9X10Cz/l2aaLO1y4G2dh2s0Cikf3TiLo+uUjX9XdX0lseTFDJcLWXNaHeq9Yl6WbFQz5yesVSKzfKy3kjG66UMteov9Uah9bnsadU3k6Q+pT7fLOtGJn3WJ19L0rqWDLf61Bqt9kFvq95SzMRE9aRYrKW3955NGlip14uta2m7XjhRD57Yv55aeTQjXSOd/ti2RqGR8VKzTtoz1pOuYtLfNZbuSf2q7WfZfH8LWTnSnYFCrXONa/fjNgqNVIvV1Iv1Tp1rcj2yq9Rs+xWSTn9ku53W7I+opqdcbfWRTL2WDFfLWTPa/Gw32/x9D7jt8sg5qzOvr/meLR/qzWi1mN5KLZVis/+5Wi/mhuVzO+3NjZnZNZonLLwnO88YzvKh3iwd6E29UczsntH0t9ou9wz25hd3z+u8D71jvVPa1cNdw816/1hPaq3+9Pu2NeuFeqf/uW+0L6XGRN42VD9oNIpZseLgDA7uklqtO/39f05X10Can+G06kiFzJx1a6qt/sh2v12xUWz27RVrnf7Idj9K+3vTVWr2dTXSqs+3yojx+tadmd28vnWl0SimVBqb9FlvtzjTWn//wzljYzOyfPnjMjw8P8ViLf39f065PNI6ZvM1KRarmbHTjc26ZyPpGZ/aDzJSGUkKzfZbqVa+zzWi3jlWUyGVylAqlcGt+pq0VatdGR+f1albTfTPN8/Z7LNu97t1tfqj29+bZnumUhns9Gc3969NqTM0+6/rnb6DRqPcKrfGp7zmzUAh4xkZmZfR0dmp1brS3b0qpdLIpLpJs25eLg9k+fInZO3aPVKvd2X27JvS1bVm0nkLaTSKmTfvulz8rW/e7+sw+XOfTHwn7ru+WRftb/UrVlufm6nPtVQaT7E41nlfa60xnUJhoi+nGaBgVcrl0XXa6RNt9XqKxfH09KxIoVBvXft7Wu9DcdLAeqNVVi/r1DebZXV50us70YYslUZa9elSyuXRlErD69T9mv1XE4P8G7pGJMmSnZbkpl1uyozRGZk3MC/lWjm1Yi2r+lbl3hn3Zq/le2WvZXtN6dPY2PG2pma9oa/1mRtOsTi6Tv9GoVBNrWuw2QfeGv9pqxfqqZaqnXKuVqxltDLaHKusNcuwWrGWWqkZ/Lt7vDtdjWLm9TbrBe12Zb2RVErNNke5WE+jkdwzMDtjY7M6n6VyeXhKv2vz2tT8PjXf02aZXyqNJpl8jUiKxWoqleFsip5yNTMqzfGA8Xop1Xrz2lQsNPtj6o1C7h3pzozKeLpK9YzXixkab/ZvVErNftV2P0wzXbXVV1DIeK2URpJSoZ5SsdnPN14rZPVYJSOVkYx2jaZabI6XFFKYqEOM9zSvk61x3WqxmkahkVK9lHqhnkahMTE211o3XhrvjOO1P3PtsaNKtdkHWi8209WL9c7+1WJzn2Jjoq+0UWikVqilXqg3J6k2CqkX6yk0Cik2mn2smzP22m7j9Faa45bF1rhLe1xncKySwfF2H11f63tdmtTv0PwOdnevTrm8ae9r0q63jnf6dJvjM4VWf1kx945WMjBpHHrKmEV7LLZaSddYf8bG+lOvNyd5lUqj65RLhUItxa7m+PhIeSS1Yi1dta7UC82xvnK9nJ6xntYYW7nV1ix0PuPr1lPrretaqfUaTP4uTD51LfVSLbVibZ0x3PYcglK9lEa1K2Ojc1OrdadQaLT63qpTbt4oFOqpdDXbye3PSalV/6gVa53+9Eqtkka93PoetusS4+tc+8vlkYz33pvVfasz2D2YWrGW/pH+DHcPp5Hm2MfsodmZMTqj9Xma3F5ujrU2xyya1432mG2zT22sU88sFJr9FiP3qTM1Gsn4+MxOf1qj0S7TR9PVNZhaz6pNGnepFqsTfc7VifHGeqE5VlhoFNI70pfa+MxOmd78jLRf33radatKeTC9XeMpFepppDBlDLdUaJaLjUYhQ9ViasX6lO9nIYVOn1p7LLnYavf0lifGNdvzNppjFcUMjlcy0uqnrteLrevsRF9Os194tNUv3Bwza9aFJvczFVpl/Gi6ulZPGWPckHY/VLv9tr7vTfOzXc34+MzUapUUCrWUy/dN1/xsttuGW0tz7sZEfXNyP2f7+9DTs6LVXprR+v6n1W+VTLyvhXR3r0y93tWqG7bHvcYnla+F1vE2rW+gnnqnzdBII6VGs0+1/Vko18sp1oudtmet1PxctK/99UK9004t18spJOmrVNNXGU+lWJ/U19Qery5m5UhXlvWvzNLZSzPSNZL+kf7MHJ6Z5bOWZ7w4nrmDc7PLql3SNbgga9bslbGxWSkWm/0d7Xk+7fHIZl1tZaevr30N7/zIXkvz+zixbmN1oVndo+mrNOthQ+Pl1OrF1hhDvTNPYMVwd8bTvF41WvW9YqM45dpYarTa2vWJmxOm1g2TTp/ipGvafcu8yfOSuku1zKg0+/BGqqXU6sUUCo3OfJBGI62x1EZrPlFzzLHeaPbDN+fSNM81XK20xhubn5t6o52f5lmLrfW1eiGzusdSKTX7jJrHa85LaNY36q2+pEpmdo+n3KqDjdeaZU97fKaQRnNe0/j2D1RQLDSyx6y1mdU9lmq9mFUjXanWi+kp11Ip1dJTrmW8VsyNK2enVmh03tdCY6JekkZSapRSrBfTXWxkZvdYukr1jFZLGa8XW3PZmv347fk7W7sff0PXkon+qHp6epZv0nWzXi+32jeV5meoNLpO+V8oNFrjlRuvC5dK1c2qM20ttVo5Q0OPaPVT1tPdvfo+c5CSpJF5s5Zm1/7B9JarWTvWleHxZjnV1XrvS8VGVo10Z8nqnTplSbE4tk5bsz3W0Bwbm5F6vZxyeWTK/MOp7b5qtpZarZzR0TmtvNVSqbTHKzszPZs5rAxmpDKSerGeSrXSqW+26+Xtuv9YaaxT3+gZm/ic1ov1zhhe32hfeovNMfhKsZ5ao1kHas/La45rFrJiqDdrh+Z32t2VykCr/JroG0iKKZaGM9o1nKHuoYyXxjvtgZHKSCcffWN9KdaLGekayVDXUKql6pQ5qe15X71jvamWqlk6e2mWz1yeQgqZt3ZeZ/yvXCtnl9W7ZP7a+VPal5vaDt7a6Tak2Yc+ozWPrjapv6z9uqU1VlSfVM5V7zOm3fy3WNzcsaONa7T+qxfqnaKh3X/cXm6Xe+2+zvb8vnb2R8sTc5CK9eImjeG2+wCqxWqn3V8v1ifqJbVyyvVSZnWNp7fSfK2a5WGh097vKVdTbxSybKg3Y/XmNbxdlhbSeg6NZrldbBTTVaxnft9IesrVjFRLGamWU28UOn3h5WLzmn7XSDkr+1dmZf/KjFRGMmO0OY98qHso3ePdmTswN/MG5uU73/zu/b6+m/p5KaSROT2j6WnNIxgcq6TWKHTmF7bL/jWjXZnZ3Z4j0ZynM7kMbs+RWDnck1qtPWev2d5sj6+2ryfFYi3d3as2KX9tlWIts3vGUmnVl9pzUNrj/O1xpub8rfZ8kObclFJpLJXKQKvN2MrJlHkjXa1yqjkeXK8MbnCMaaQy0rzW1UopNUrN9lej2Hmv2ga7BpvzwKtdmVGvpL+rWaY3Gsl4Z9ypkL7KeBqNQlaPVrK6VshopTlXolJrXl/rqafWah93VbtSqVYm+kFan9l2v1W9UE+p0WpXterW7f6W5D71yEZzfnShUc7Y2IzW/OR2O3hq2dLsPxyf1Baqtcr0qf2Mzfe52BmXKRbbc5DuU86VRlIoj3by3Okban2P2n075RSyU2tsYbxWbH1vku7W/MHmOF0hS1bPyujY7NTrXa15pMNT6uStdzyl8nCnPyPJxHyr9uvTqlv3V8bT31VNodDI2tGuTh23VKynuzV3bXC8nFIh6W3V54fHy6k1Cp3PZ2+lmkajkOVDvVk9uKDzWaxU2vNbp47NT7yeG1evl1p1tEqrDjU+6Zrebqc1OvOjpr4CjXXaAM3xzom5upPnY7fnF49WS6m2rs31NK/XnWt1o3nNa7fvJ/LRfF7r00gjY6WxjFXGOnPcS/XSRLldraS72t2pX9zf/RP9lWrm9IymUqpn7Wgl4/XmvSLlYr01htns21w9NCfj4+3+jZF1xiya78Nw9pyzOnN6RtNo9Z2O14rpbs3lbl8nb753VtaWJ/rYJve9tfue2veAFFrztme0+k3a/Rv1RqF1LS1n7VhXukvVzOiqtj5jE/ceFFvjnwNjzTkpzeM0MjheTrX1XEuFRmde5erRruac/tY4RLPPrPlKThmz6FmRRmU44+XxznewVCt12u2leimVWiXdSXaZMZK+SjWj1eacvnqjkN5yrdN+Ha2Wc+dAb8bL41Pu7UmjOa9w8r09xRTXaV+s895ucvdscw7Y5Psi6o1ip2+7u9Qsq5cP9aanXO2U6aPVUuqtMZeuUvN7XWulm9m6Vldbc8mSdL775WIjo7VSlg9tWgTsTt92a0y8XQdpFBqdz3qpVk6j1efSnL9T3cD8nVpqtZ7Uas3+rGZfV63zek3cMDr1u7/hMeFCp3+2PYZ63x+qSRqpF6sZrYx23td2GVQrNPuFu8e7013tTnerzVNIs2+g1ih07rGptK7HA2OVrBl4RMbGZqder7TGBEc7528/1+7uValVRjJWHptSV2tfI8q1cnMculGaNFe33dfQbEMkE3MIqo3m3SWNDVxjC41Cs3+y2tcpv9pjf/e9Ljfbb+PrPc6UY65Ttyq3+jfqnft2Go1C1o51ZVb3aCrFekaq5eb806RVP2yk2JpTvXqkK32VakrFesZrxdZ9Xul8/5Nm3WKkumk3qdYKzfGv8VLz+9/ue2svd1W7Uq5Wks58+Y3046c+aV59WnPNkok2ZHs+Si0Xf+vi9ew/1V8+768mjaeNp1IZnjTWX2jNta2lXF63nLuv5ue5uM7nej0pN3G+TSkjIzu15lnXU6msXae/N2mOHddq7XvlMqlNPaFZht9/n8rmGB6e1+r7LrfmN079DDcahVS6VqfaNdypzxbS7GsdLY92rtW941Pvl9mYnnI1c3tH0l2qZXC8fX9G83vfrl8MjHVlxWhzHu14ebwz1tduf7XnxHfVujKjUk1Pufl+j1bLrWtJs51RKTX7aVePdGVweOfWPNFSuroGWnXQqfXNSteajHYNZbhruPlcW/3Ko5XR5r0V493pG+vb5OfaehWT+9R37vuoPWaXNMdEGpO+B8VW4lq9kGrtvtf+yX0b7TpdNY3WNbfdZi7Wi1PGNYv14pRx+a2hXi9OmqtZW8/nvD2v9P7rrkmzD7y3Nbd9eLxZVpcmtTVrrXsYq4V653Mxua908hhuV7HeqfcNjZcz2hpfK7fqJKViPWO1UlYOzuqMa0yd5zF53sB4SqVqqy3UnUaj0qoftt+L5ntYqTTn/E/MoSlOus+inbaYcnlNGo2uzhzmYrG23nGXcnkoY2OzO/c6Nu9rq07JWzPdSKf8mtLX0F5uFJr1qjTn37Wv4+12YLu+0Zmrt4nj3/N6m/e6NRqF1pzfQiqleirFRqvfvpClg30Za7dTW/d+FxvF9Yz1Fabci1xvTMxVaN+f1B7f3hTrfjbbdYiJ7+amfzan3oO6vnsG2nMWN9SuWfeIE+/VfRVa/zWfQ6lz78h9++faedi0vrdmPWCijj9xzSlkok5db6RzT0+tUezUhcvFRuv+k+b9YyuGuzv3b0/+HrbnAbbf11Ka960kjdZ7Wujc59y+/tUbxdTqxSn3Sbe/L1PrnM36ZntMsJ56yvVyp83ebpOU66UpczEajYl7uieXsbV6IaVie93ksaiJ16R97p7WfV/VerH1Pjc/D8VCo9M+rtaL6So1P1PteAPtz057zupYrZjxRpqv26Q+jUax+XkoNorN+7wbm1beFAv1zO0dSaV1PWv3d7X7DttzkJYP9zTvayqNdfqBJs/BKdebdbpC6771+5uDVOoaTLV4nz7VVp9Se6y2XC+nPmlOYbO/b/L1sPl5KJXXpto92BkXaLcNU2iOdbb7t8rVcka7JuIIdPp7k87nsGe8J8WxGa17Oiqt+VJDmTzvuT0feEb3YGvssFm3Hq8VWn0DjU7fzdrR5rhhX6ttOHCfenpvuZp6I1k92r3JdeutqXlfSn9rTmmjNYfyvmNH1dZcwPb8o0rr2jd1vkJzjuemzY1Omv1D/V3jnfgJU+cglbJ6pNl32rxvcuo9goVWm2ysVsqKoY31C088h67ue5vf/Un9mVPmDbQ+c5tSfm3ten8zl+1yqvmovW7iSM2/erv+kvrEtT71TlyKYqNZVo+Xxzvtr/ZYRLsvplJrjlmk0Z5L1pxDODWv7XZVs29ucn9vu35QSKEzxlwuNLLTpGvJcOtex4k2abNPdeVwT+d12+BrselT6DZJu37TqeOm2U/drvO0x1NKjUJmtcYi6o1CK8ZFs75dKqZ1D3IhK4d7O/N7m+2sdfusk0YKlea44VBXc+ywq9aVQqOQ0fJoKrVK+sb61plnf3/PZFKLd51tbZ371lpzWNplZrNcal4cR6vF1j2VvZP61Nvfm4l5WTP7VmZWd/NeuOHxcmfeQFfr/s9iod66L66SmV3jqZTqGblP/JXecnO+12CrntdXad6HMTRe7tTTy8XmPadJ817UsVqxc+9dc+5pofMdacf5GBkvZbzzHJr3wrefw8Scm2Y7bbzVH9H+rrfLr3Z/Yle1q/M+bK24Or3lib7ZsdrUObT9XWOtObQ9m3TtnxyPoNYoZLRaSvM+/UannVNrFLNsYGZrzL3cGnMfuE/51czDfe+d3ZDx8b7OZ71cHp4056Kp0SimUBxNoTzWub4WMnW+VWfsqFbO6Mjczn1OzXvLxzP1e1Pc5DGL5msyEbtgfNI9+L2t+waHxstZNbJpc1qa80onWtvrvw7d9zq54bzN7R1NpVjr3O9Vb0yuW9Va4zjte40m7rGaOP7kMbDaJtb7y60x90KnXT25Ltru7113HOuBmOgnbNeZ11cmTo7TsjHNuEPNOUnj9VKnPdf+rCfN/vj+rmpmdo2lWGi02pDFTjujfU/5sqG+9LXmzjYazTlk1daYe7PPp97qx++53/yNj4/nkksuyerVqzPrfqLcblbgt+Hh4Rx11FH5/e9/n8m/HP+v//qvefOb3zwl7a9//escccQR6922Mfvvv38e9ahH5bvfnTrI3w789sEPfjD/9E//tN59u7q6csYZZ+TTn/70lPXtwG8XXHBBTjzxxPXuOzo6mtHRiYvNmjVrsscee2zSiwgAAAAAD1ijkVx7dnLX95u/cLb7Cc1fChlekoyuaP5iV6krOfCfksom/MR7dShZ8p1k7R+bv1TVv+/ErzynkTRqzV+86topWfLdZPCWpGeXpG+v1q/qFNP5xcnZhzR/OWbJt5OhO5I5j0t6d01SbB4n9ea/uzwz6dopo6PJqlXNX/MZH2/+wkoy8UsvCxc2f+Fr6vNv/bJlodjKIwDAA7d41eK85QdvyQ9u/kH+7vC/y5d+96U8cs4j84nnfSKH7nrodGcPAGC91oyuyZ1r7kySVEqVPGqnR6WwtWcqA/CQdsfqOzI43gykO79vfub3zZ/mHAEAAAAAAAAAPLStWbMms2fP3qSYZZsVxre3tzc///nP87GPfSxXXHFF5s6dm5e+9KV54QtfuE7aq6++Oi960YvWu21j5s2blxUrVqyzfuXK5i/uzp07d5vs293dne7u7s3KKwAAAABsNYVCcsh7m39tjUbSaP7afIqb+qs8LeW+ZM+/2rS0+7zi/tP0LUzmHLxJh+vuTnbZpfm3yQR8AwC2gb3m7JWvvvSrWTm8MtV6NW866k1ZMGPBdGcLAGCjZnXPyqwFfqgSgC23x+w9pjsLAAAAAAAAAABswGYFfkuS/v7+vPvd777fdK95zWvymte8ZrMzdMghh+SCCy5ItVpNuTyRvd///vdJkoMP3vDNpYccckgn3WSbsi8AAAAA7HAKhaRQme5cAAA86M3t3fAPRAEAAAAAAAAAAAAAAGwvxenOwH0df/zxGRgYyEUXXTRl/bnnnpuFCxfmyCOP3Oi+N9xwQ6688srOumq1mkWLFuXII4/MwoULt1m+AQAAAAAAAAAAAAAAAAAAAAAAADakPN0ZuK/nPe95OeaYY/La1742a9asyb777psLLrggl1xySRYtWpRSqZQkOeOMM3Luuefm5ptvzl577ZUkedWrXpX//M//zEtf+tJ86EMfys4775xPfepT+eMf/5hLL710Op8WAAAAAAAAAAAAAAAAAAAAAAAA8DC2wwV+S5Kvfe1rOfPMM/Oe97wnK1euzAEHHJALLrggJ554YidNrVZLrVZLo9HorOvu7s4Pf/jDvO1tb8vf//3fZ2hoKIceemi++93v5ulPf/p0PBUAAAAAAAAAAAAAAAAAAAAAAACAFBqTI6fRsWbNmsyePTurV6/OrFmzpjs7AAAAAAAAAAAAAAAAAAAAAAAAwA5mc2KWFbdTngAAAAAAAAAAAAAAAAAAAAAAAAAetgR+AwAAAAAAAAAAAAAAAAAAAAAAANjGBH4DAAAAAAAAAAAAAAAAAAAAAAAA2MYEfgMAAAAAAAAAAAAAAAAAAAAAAADYxgR+AwAAAAAAAAAAAAAAAAAAAAAAANjGBH4DAAAAAAAAAAAAAAAAAAAAAAAA2MYEfgMAAAAAAAAAAAAAAAAAAAAAAADYxgR+AwAAAAAAAAAAAAAAAAAAAAAAANjGBH4DAAAAAAAAAAAAAAAAAAAAAAAA2MYEfgMAAAAAAAAAAAAAAAAAAAAAAADYxgR+AwAAAAAAAAAAAAAAAAAAAAAAANjGBH4DAAAAAAAAAAAAAAAAAAAAAAAA2MYEfgMAAAAAAAAAAAAAAAAAAAAAAADYxgR+AwAAAAAAAAAAAAAAAAAAAAAAANjGBH4DAAAAAAAAAAAAAAAAAAAAAAAA2MbK052BHVWj0UiSrFmzZppzAgAAAAAAAAAAAAAAAAAAAAAAAOyI2rHK2rHLNkbgtw1Yu3ZtkmSPPfaY5pwAAAAAAAAAAAAAAAAAAAAAAAAAO7K1a9dm9uzZG01TaGxKeLiHoXq9niVLlmTmzJkpFApZs2ZN9thjj9xxxx2ZNWvWdGcPALgPZTUA7NiU1QCwY1NWA8COTVkNADs2ZTUA7NiU1QCwY1NWA8COTVkNADs2ZTUA7DgajUbWrl2bhQsXplgsbjRteTvl6UGnWCxm9913X2f9rFmzVHYAYAemrAaAHZuyGgB2bMpqANixKasBYMemrAaAHZuyGgB2bMpqANixKasBYMemrAaAHcPs2bM3Kd3Gw8IBAAAAAAAAAAAAAAAAAAAAAAAA8IAJ/AYAAAAAAAAAAAAAAAAAAAAAAACwjQn8tom6u7tz1llnpbu7e7qzAgCsh7IaAHZsymoA2LEpqwFgx6asBoAdm7IaAHZsymoA2LEpqwFgx6asBoAdm7IaAB6cCo1GozHdmQAAAAAAAAAAAAAAAAAAAAAAAAB4KCtOdwYAAAAAAAAAAAAAAAAAAAAAAAAAHuoEfgMAAAAAAAAAAAAAAAAAAAAAAADYxgR+AwAAAAAAAAAAAAAAAAAAAAAAANjGBH67HwMDA3njG9+YhQsXpqenJ4ceemi+/OUvT3e2AOBh5/LLL0+hUFjv3xVXXDEl7dVXX51nP/vZ6e/vz5w5c3LCCSfklltumaacA8BDz9q1a/O2t70txx57bBYsWJBCoZCzzz57vWk3p1z+5Cc/mQMOOCDd3d155CMfmfe+970ZHx/fhs8EAB6aNrWsPv3009fbzj7ggAPWe1xlNQBsHT/60Y/yqle9KgcccEBmzJiR3XbbLS960Yvym9/8Zp202tUAsP1talmtXQ0A0+Oaa67J85///Oy5557p7e3N3Llz86QnPSmLFi1aJ612NQBsf5taVmtXA8CO4XOf+1wKhUL6+/vX2aZdDQDTb0NltXY1ADz4lac7Azu6E044IVdddVU+9KEPZf/998/555+fk046KfV6PSeffPJ0Zw8AHnY+8IEP5BnPeMaUdQcffHBn+YYbbsjRRx+dQw89NF/5ylcyMjKS97znPXnqU5+aa665JgsWLNjeWQaAh5wVK1bkM5/5TB73uMflxS9+cT73uc+tN93mlMvvf//78+53vzv/9E//lGOPPTZXXXVV3vWud+XOO+/MZz7zme311ADgIWFTy+ok6e3tzY9+9KN11t2XshoAtp5Pf/rTWbFiRd7whjfkoIMOyrJly/LRj340Rx11VL73ve/lmc98ZhLtagCYLptaVifa1QAwHVatWpU99tgjJ510UnbbbbcMDg7mvPPOy2mnnZbbbrst73rXu5JoVwPAdNnUsjrRrgaA6XbnnXfmLW95SxYuXJjVq1dP2aZdDQDTb2NldaJdDQAPdoVGo9GY7kzsqL7zne/k+c9/fifYW9uxxx6b6667LrfffntKpdI05hAAHj4uv/zyPOMZz8hXv/rV/NVf/dUG073sZS/LZZddlptvvjmzZs1KkixevDj77bdf3vSmN+XDH/7w9soyADxktbsSCoVCli9fngULFuSss87K2WefPSXdppbLK1asyO67756//uu/zn/913919v/ABz6Qd73rXbn22mtz0EEHbZ8nBwAPAZtaVp9++um58MILMzAwsNHjKasBYOu65557svPOO09ZNzAwkH333TcHH3xwLr300iTa1QAwXTa1rNauBoAdy1FHHZUlS5bk9ttvT6JdDQA7mvuW1drVADD9XvCCF6RQKGTu3LnrlMva1QAw/TZWVmtXA8CDX3G6M7Aj+/rXv57+/v689KUvnbL+la98ZZYsWZIrr7xymnIGAKxPtVrNt771rbzkJS/pDCokyV577ZVnPOMZ+frXvz6NuQOAh45CoZBCobDRNJtTLl9yySUZGRnJK1/5yinHeOUrX5lGo5FvfOMbWzX/APBQtyll9eZQVgPA1nXfQDJJ0t/fn4MOOih33HFHEu1qAJhOm1JWbw5lNQBsH/Pnz0+5XE6iXQ0AO6LJZfXmUFYDwLaxaNGi/PjHP86nPvWpdbZpVwPA9NtYWb05lNUAsOMS+G0jrr322hx44IHrDCw89rGP7WwHALav173udSmXy5k1a1ae85zn5Gc/+1ln280335zh4eFOWT3ZYx/72Nx0000ZGRnZntkFgIetzSmX2+3rQw45ZEq6RzziEZk/f772NwBsQ8PDw9l1111TKpWy++675/Wvf31Wrlw5JY2yGgC2vdWrV+fqq6/OYx7zmCTa1QCwo7lvWd2mXQ0A06der6darWbZsmX51Kc+le9973t5+9vfnkS7GgB2BBsrq9u0qwFgetxzzz154xvfmA996EPZfffd19muXQ0A0+v+yuo27WoAeHDb/J9KeRhZsWJF9tlnn3XWz507t7MdANg+Zs+enTe84Q05+uijM2/evNx0003513/91xx99NH59re/nec85zmdsrldVk82d+7cNBqN3HvvvXnEIx6xvbMPAA87m1Mur1ixIt3d3ZkxY8Z602p/A8C28bjHPS6Pe9zjcvDBBydJfvzjH+djH/tYfvjDH+aqq65Kf39/kiirAWA7eN3rXpfBwcGceeaZSbSrAWBHc9+yOtGuBoDp9nd/93f5r//6ryRJV1dXPvGJT+Rv//Zvk2hXA8COYGNldaJdDQDT6e/+7u/y6Ec/Oq997WvXu127GgCm1/2V1Yl2NQA8FAj8dj8KhcIWbQMAtq7DDjsshx12WOfxU5/61Bx//PE55JBD8ra3vS3Pec5zOtuU3wCw49jUcln5DQDb35ve9KYpj4855pgcdthh+au/+qt89rOfnbJdWQ0A28673/3unHfeefnkJz+ZJzzhCVO2aVcDwPTbUFmtXQ0A0+ud73xn/uZv/ib33HNPLr744rz+9a/P4OBg3vKWt3TSaFcDwPS5v7JauxoApsdFF12Uiy++OL/97W/vtxzVrgaA7W9Ty2rtagB48CtOdwZ2ZPPmzVtvhNqVK1cmWX+0egBg+5kzZ06OO+64/O53v8vw8HDmzZuXJBssvwuFQubMmbOdcwkAD0+bUy7PmzcvIyMjGRoaWm9a7W8A2H6OP/74zJgxI1dccUVnnbIaALad9773vXnf+96X97///Xn961/fWa9dDQA7hg2V1RuiXQ0A28+ee+6ZJz7xifnLv/zLfPrTn85rXvOavOMd78iyZcu0qwFgB7CxsnpDtKsBYNsaGBjI6173uvz93/99Fi5cmFWrVmXVqlUZGxtLkqxatSqDg4Pa1QAwTTa1rN4Q7WoAeHAR+G0jDjnkkFx//fWpVqtT1v/+979Pkhx88MHTkS0AYJJGo5GkGVX+UY96VHp7eztl9WS///3vs++++6anp2d7ZxEAHpY2p1w+5JBDOusnu/vuu7N8+XLtbwDYzhqNRorFieEDZTUAbBvvfe97c/bZZ+fss8/OO9/5zinbtKsBYPptrKzeGO1qAJgeRxxxRKrVam655RbtagDYAU0uqzdGuxoAtp3ly5dn6dKl+ehHP5qddtqp83fBBRdkcHAwO+20U0455RTtagCYJptaVm+MdjUAPHgI/LYRxx9/fAYGBnLRRRdNWX/uuedm4cKFOfLII6cpZwBAktx777351re+lUMPPTQ9PT0pl8t5wQtekK997WtZu3ZtJ93tt9+eyy67LCeccMI05hYAHl42p1x+7nOfm56enpxzzjlTjnHOOeekUCjkxS9+8XbKNQBw4YUXZmhoKEcddVRnnbIaALa+f/mXf8nZZ5+dd73rXTnrrLPW2a5dDQDT6/7K6g3RrgaA6XPZZZelWCxmn3320a4GgB3Q5LJ6Q7SrAWDb2nXXXXPZZZet8/ec5zwnPT09ueyyy/K+971PuxoApsmmltUbol0NAA8u5enOwI7sec97Xo455pi89rWvzZo1a7LvvvvmggsuyCWXXJJFixalVCpNdxYB4GHj5JNPzp577pknPvGJmT9/fm688cZ89KMfzdKlS6d0OLz3ve/N4YcfnuOOOy7/9E//lJGRkbznPe/J/Pnz8+Y3v3n6ngAAPMR897vfzeDgYGcw/w9/+EMuvPDCJMlf/uVfpq+vb5PL5blz5+Zd73pX3v3ud2fu3Lk59thjc9VVV+Xss8/O3/zN3+Sggw6alucIAA9m91dWL1u2LCeffHJOPPHE7LvvvikUCvnxj3+c//iP/8hjHvOY/M3f/E3nWMpqANi6PvrRj+Y973lPnvvc5+b5z39+rrjiiinb2xPvtKsBYHpsSlm9ePFi7WoAmCavec1rMmvWrBxxxBHZZZddsnz58nz1q1/N//zP/+Stb31rFixYkES7GgCmy6aU1drVADA9enp6cvTRR6+z/pxzzkmpVJqyTbsaALa/TS2rtasB4KGh0Gg0GtOdiR3ZwMBAzjzzzHzlK1/JypUrc8ABB+Qd73hHTjzxxOnOGgA8rHzoQx/K//zP/+TWW2/NwMBA5s6dm6c85Sl5xzvekcMPP3xK2t/85jd5+9vfnl/+8pcpl8t55jOfmX/7t3/Lox71qGnKPQA89Oy9995ZvHjxerfdeuut2XvvvZNsXrn8iU98Iv/5n/+Z2267Lbvuumte+cpX5swzz0ylUtmWTwUAHpLur6yePXt2zjjjjPz2t7/N0qVLU6vVstdee+X444/PO9/5zsyePXud/ZTVALB1HH300fnxj3+8we2Th/C1qwFg+9uUsvree+/VrgaAafKFL3whX/jCF3L99ddn1apV6e/vz+Me97j8zd/8TU499dQpabWrAWD725SyWrsaAHYsp59+ei688MIMDAxMWa9dDQA7hvuW1drVAPDQIPAbAAAAAAAAAAAAAAAAAAAAAAAAwDZWnO4MAAAAAAAAAAAAAAAAAAAAAAAAADzUCfwGAAAAAAAAAAAAAAAAAAAAAAAAsI0J/AYAAAAAAAAAAAAAAAAAAAAAAACwjQn8BgAAAAAAAAAAAAAAAAAAAAAAALCNCfwGAAAAAAAAAAAAAAAAAAAAAAAAsI0J/AYAAAAAAAAAAAAAAAAAAAAAAACwjQn8BgAAAAAAAAAAAAAAAAAAAAAAALCNCfwGAAAAAAAAAAAAAAAAAAAAAAAAsI0J/AYAAAAAAAAAAAAbcNttt6VQKOT000/frP0KhUKOPvrobZInAAAAAAAAAAAAHpwEfgMAAAAAAAAAAGCH1Q68Nvmvq6sre+yxR04++eT87ne/m5Z8HX300SkUCtNybgAAAAAAAAAAAB6cytOdAQAAAAAAAAAAALg/j3rUo3LqqacmSQYGBnLFFVfkggsuyNe+9rX86Ec/yl/8xV9sk/Putttuuf766zN79uzN2u/6669PX1/fNskTAAAAAAAAAAAAD04CvwEAAAAAAAAAALDD23fffXP22WdPWfeud70r73//+3PmmWfmsssu2ybnrVQqOeCAAzZ7vy3ZBwAAAAAAAAAAgIe24nRnAAAAAAAAAAAAALbE3//93ydJrrrqqiRJtVrNxz72sTzucY9Lb29vZs+enWc84xn59re/vc6+9Xo9n/vc53LEEUdk7ty56evry957750Xv/jF+clPftJJd9ttt6VQKOT000/vrCsUCvnxj3/cWW7/3TfN0Ucfvc55V6xYkTe96U155CMfme7u7uy88855+ctfnj/84Q/rpD399NNTKBRy22235VOf+lQOPPDA9PT0ZK+99sp73/ve1Ov1LXnZAAAAAAAAAAAAmCbl6c4AAAAAAAAAAAAAbIlCodBZbjQaefnLX56vfe1r2X///fO6170ug4OD+cpXvpLjjjsuH//4x/MP//APnfTveMc78pGPfCSPetSjcvLJJ2fmzJm5884789Of/jQ/+tGP8rSnPW2D5z3rrLNyzjnnZPHixTnrrLM66w899NCN5nfFihU56qijctNNN+Xoo4/OiSeemNtuuy0XXnhhvv3tb+cHP/hBnvSkJ62z31vf+tZcfvnlOe6443LsscfmG9/4Rs4+++yMjY3l/e9//2a8YgAAAAAAAAAAAEwngd8AAAAAAAAAAAB4UPrEJz6RJDn88MOzaNGifO1rX8vTn/70fP/7309XV1eS5Mwzz8wTnvCEvOUtb8kLXvCCPPKRj0ySfO5zn8tuu+2W3/3ud+nr6+scs9Fo5N57793oec8+++xcfvnlWbx4cc4+++xNzu/b3va23HTTTXnHO96RD3zgA531p59+ep773OfmFa94RW644YYUi8Up+/3mN7/J7373uzziEY9Ikrz73e/Ofvvtl09+8pM566yzOs8VAAAAAAAAAACAHVvx/pMAAAAAAAAAAADA9Lrpppty9tln5+yzz85b3vKWPOUpT8n73//+9PT05AMf+EDOOeecJMlHPvKRKYHQdt9997zpTW/K+Ph4zjvvvCnH7OrqSrk89fdTC4VC5s6du9XzPzY2lgsuuCDz5s3Lu971rinbnvOc5+Q5z3lObrzxxvziF79YZ993v/vdnaBvSTJ//vy86EUvytq1a/PHP/5xq+cVAAAAAAAAAACAbUPgNwAAAAAAAAAAAHZ4N998c9773vfmve99bz7xiU9k8eLFOfnkk/OrX/0qT3rSk/Lb3/42vb29OeKII9bZ9+ijj06SXHPNNZ11L3vZy3Lrrbfm4IMPzrvf/e5ceumlGRwc3Gb5v+GGGzI8PJwjjjgifX19m5THtsc//vHrrNt9992TJKtWrdqa2QQAAAAAAAAAAGAbEvgNAAAAAAAAAACAHd5znvOcNBqNNBqNjI2N5Y477sh5552XQw45JEmyZs2a7LLLLuvdd9ddd02SrF69urPuE5/4RD7ykY+kUqnkfe97X4455pjMnz8/r3jFK7J8+fKtnv81a9YkyWblsW327NnrrCuXy0mSWq22tbIIAAAAAAAAAADANibwGwAAAAAAAAAAAA96s2bNytKlS9e7rb1+1qxZnXWVSiVvfetbc9111+XOO+/M+eefn6c+9an54he/mFNOOWWb5G9yXjYljwAAAAAAAAAAADy0CPwGAAAAAAAAAADAg95hhx2W4eHh/OpXv1pn249//OMkyaGHHrrefRcuXJiTTjopl1xySfbbb79ceumlGR4e3uj5SqVSkqRWq21S/g444ID09PTkqquuytDQ0GbnEQAAAAAAAAAAgAc/gd8AAAAAAAAAAAB40HvFK16RJHnHO96R8fHxzvo777wz//7v/55yuZxTTjklSTI6Opof/ehHaTQaU44xODiYtWvXplKpdAK7bcjcuXOTJH/+8583KX9dXV056aSTsnz58nzwgx+csu3SSy/Nd7/73ey777558pOfvEnHAwAAAAAAAAAA4MGnPN0ZAAAAAAAAAAAAgAfqtNNOy9e+9rV885vfzGMf+9gcd9xxGRwczFe+8pWsWLEiH/3oR7PPPvskSYaHh/OsZz0r++yzT4488sjsueeeGRgYyLe+9a3cfffdefvb356urq6Nnu+Zz3xmLrzwwrz0pS/NX/7lX6anpyeHHHJInv/8529wnw9/+MP58Y9/nPe97335xS9+kSOPPDK33XZbLrzwwvT19eULX/hCikW/5woAAAAAAAAAAPBQJfAbAAAAAAAAAAAAD3qFQiEXXnhhPv7xj+fcc8/NJz/5yXR1deXxj398/vEf/zEvfOELO2lnzJiRD3/4w/nhD3+Yn/70p7nnnnuy00475YADDsiHP/zhvPzlL7/f87361a/Obbfdli9/+ct5//vfn2q1mle84hUbDfy2YMGCXHnllfmXf/mXfPOb38xPf/rTzJ49Oy960Yty1lln5eCDD94qrwUAAAAAAAAAAAA7pkKj0WhMdyYAAAAAAAAAAAAAAAAAAAAAAAAAHsqK050BAAAAAAAAAAAAAAAAAAAAAAAAgIc6gd8AAAAAAAAAAAAAAAAAAAAAAAAAtjGB3wAAAAAAAAAAAAAAAAAAAAAAAAC2MYHfAAAAAAAAAAAAAAAAAAAAAAAAALYxgd8AAAAAAAAAAAAAAAAAAAAAAAAAtjGB3wAAAAAAAAAAAAAAAAAAAAAAAAC2MYHfAAAAAAAAAAAAAAAAAAAAAAAAALYxgd8AAAAAAAAAAAAAAAAAAAAAAAAAtjGB3wAAAAAAAAAAAAAAAAAAAAAAAAC2MYHfAAAAAAAAAAAAAAAAAAAAAAAAALYxgd8AAAAAAAAAAAAAAAAAAAAAAAAAtjGB3wAAAAAAAAAAAAAAAAAAAAAAAAC2MYHfAAAAAAAAAAAAAAAAAAAAAAAAALYxgd8AAAAAAAAAAAAAAAAAAAAAAAAAtjGB3wAAAAAAAAAAAAAAAAAAAAAAAAC2MYHfAAAAAAAAAAAAAAAAAAAAAAAAALax8nRnYEdVr9ezZMmSzJw5M4VCYbqzAwAAAAAAAAAAAAAAAAAAAAAAAOxgGo1G1q5dm4ULF6ZYLG40rcBvG7BkyZLsscce050NAAAAAAAAAAAAAAAAAAAAAAAAYAd3xx13ZPfdd99oGoHfNmDmzJlJmi/irFmzpjk3AAAAAAAAAAAAAAAAAAAAAAAAwI5mzZo12WOPPTqxyzZG4LcNKBQKSZJZs2YJ/AYAAAAAAAAAAAAAAAAAAAAAAABsUDt22cYUt0M+AAAAAAAAAAAAAAAAAAAAAAAAAB7WBH4DAAAAAAAAAAAAAAAAAAAAAAAA2MYEfgMAAAAAAAAAAAAAAAAAAAAAAADYxnbIwG8DAwN54xvfmIULF6anpyeHHnpovvzlL2/2cd71rnelUCjk4IMP3ga5BAAAAAAAAAAAAAAAAAAAAAAAANg05enOwPqccMIJueqqq/KhD30o+++/f84///ycdNJJqdfrOfnkkzfpGNdcc03+7d/+Lbvssss2zi0AAAAAAAAAAAAAAAAAAAAAAADAxhUajUZjujMx2Xe+8508//nP7wR7azv22GNz3XXX5fbbb0+pVNroMarVag4//PA87WlPy//93/9l+fLlufbaazcrH2vWrMns2bOzevXqzJo1a4ueCwAAAAAAAAAAAAAAAAAAAAAAAPDQtTkxy4rbKU+b7Otf/3r6+/vz0pe+dMr6V77ylVmyZEmuvPLK+z3Ghz70oaxcuTLvf//7t1U2AQAAAAAAAAAAAAAAAAAAAAAAADbZDhf47dprr82BBx6Ycrk8Zf1jH/vYzvaN+cMf/pD3ve99+fSnP53+/v5NPu/o6GjWrFkz5Q8AAAAAAAAAAAAAAAAAAAAAAABga9jhAr+tWLEic+fOXWd9e92KFSs2uG+9Xs+rXvWqnHDCCfnLv/zLzTrvBz/4wcyePbvzt8cee2xexgEAAAAAAAAAAAAAAAAAAAAAAAA2YIcL/JYkhUJhi7b9+7//e2688cb8x3/8x2af8x3veEdWr17d+bvjjjs2+xgAAAAAAAAAAAAAAAAAAAAAAAAA61Oe7gzc17x587JixYp11q9cuTJJMnfu3PXud/vtt+c973lPPvShD6WrqyurVq1KklSr1dTr9axatSrd3d3p7e1d7/7d3d3p7u7eOk8CAAAAAAAAAAAAAAAAAAAAAAAAYJLidGfgvg455JBcf/31qVarU9b//ve/T5IcfPDB693vlltuyfDwcN7whjdkp5126vz9/Oc/z/XXX5+ddtop73jHO7Z5/gEAAAAAAAAAAAAAAAAAAAAAAADua4cL/Hb88cdnYGAgF1100ZT15557bhYuXJgjjzxyvfsdeuihueyyy9b5e9zjHpe99947l112WV7/+tdvj6fwsHP00UenUCjk8ssvn+6sAAAAAAAAAAAAAAAAAAAAAAAAwA5phwv89rznPS/HHHNMXvva1+azn/1sLrvssrzmNa/JJZdcko985CMplUpJkjPOOCPlcjmLFy9OksyZMydHH330On9z5szJjBkzcvTRR2ffffedzqe2w9l7771TKBRSKBTy5je/eaNpP/7xj3fSFgqF7ZTD6TH5dWn/9fb25lGPelRe9apX5brrruuk/cxnPpNCoZA99tgj9Xr9fo999dVXp1AopFwu5+67706SnHPOOZ3zdHV1ZcWKFRvcv1qtZuedd+6kP/vssx/w8wUAAAAAAAAAAAAAAAAAAAAAAGDb2+ECvyXJ1772tZx22ml5z3vek+c+97m58sorc8EFF+SUU07ppKnVaqnVamk0GtOY04eO888/P7VabYPbFy1atMFte+65Zx796Eenr69vW2Rt2uy333558pOfnCc/+cl51KMelT//+c/5whe+kCc84Qm5+OKLkyQve9nL0t3dnT//+c/58Y9/fL/HbL+Oz372s7Prrruus318fDz/8z//s8H9v/e972XZsmVb+IwAAAAAAGAaFQr3/wcAAAAAAAAAAAAAAAAPYTtk4Lf+/v58/OMfz1133ZXR0dH83//9X0488cQpac4555w0Go3svffeGz3W5ZdfnmuvvXYb5vbB79GPfnTuvvvuXHrppevd/sc//jG//vWv8+hHP3q927/4xS/mhhtuyBFHHLEts7ndvfOd78zPfvaz/OxnP8u1116b22+/Pc9+9rMzOjqaV77ylRkYGMicOXPyghe8IMnGg+MlzWCFX/7yl5Mkp5122jrb99tvvxQKhXzpS1/a4DHa2zb0XgAAAAAAAAAAAAAAAAAAAAAAALBj2iEDv7F9nXrqqUk2HLisHWxsfcHKHk522WWXfOlLX0p3d3dWrFiRH/zgB0kmXpeLLrooo6OjG9z/hz/8Ye6666709/fn+OOPX2f7nnvumac97Wm54oorctNNN62zfe3atfnf//3fPPKRj8yTn/zkrfSsAAAAAAAAAAAAAAAAAAAAAAAA2B4EfiNPf/rTs8cee+TrX/96BgcHp2xrNBo577zz0tvbmxNOOGG9+x999NEpFAq5/PLL17v9qquuyqmnnpo999wz3d3d2WWXXfIXf/EX+chHPpLVq1d30p1zzjkpFAo5/fTTMzg4mHe+853Zf//909PTk6OPPnpKnhYtWpSnP/3pmTNnTnp7e3PAAQfk7W9/e1auXPmAX4+N2XXXXbPffvslSW688cYkyfOe97zMnz8/q1evzsUXX7zBfduB9U444YT09fWtN83GgvBdeOGFGR4ezimnnJJCofCAngcAAAAAAAAAAAAAAAAAAAAAAADbl8BvpFAo5JRTTsng4GC+/vWvT9n2s5/9LLfddlte/OIXZ+bMmZt97I985CM58sgjc95552X16tU55JBDMnPmzPz617/O29/+9vz2t79dZ5/h4eE87WlPy4c+9KGUy+UcdNBB6e7uTtIM+nbqqafmtNNOy09+8pPMmzcvBx10UG699dZ85CMfyeMf//jccsstW/ZCbKJGozHlcaVSyctf/vIk6w/YliRDQ0Od1/a0007b4LFf+tKXpqenJ+edd94629rHbgeHAwAAAAAAAAAAAAAAAAAAAAAA4MFD4DeSTAQj+9KXvjRlffvxxoKVbcg3v/nNvP3tb0+xWMxHP/rRLF++PL/+9a9z0003ZdWqVfnMZz6TXXbZZZ39LrroogwMDOS6667LH/7wh1x99dX55je/mST5z//8z5x//vmZOXNmvv/97+fmm2/Ob37zmyxevDhPfvKTs3jx4px88smbnddNdffdd+emm25Kkuy7776d9X/913+dJPnud7+be++9d539vvGNb2RgYCALFy7MM5/5zA0ef/bs2XnBC16Qm266Kb/85S876//85z/n8ssvzxFHHJFHP/rRW+vpAAAAAAAAAAAAAAAAAAAAAAAAsJ0I/EaS5KCDDsphhx2WH/7wh7nrrruSJKOjo/nqV7+anXfeOcccc8xmH/Od73xnkuSss87KP/7jP6ZSqXS29fX15dWvfnUOPPDAdfar1Wq54IILpmzr6elJo9HIRz7ykSTJP//zP0/J06677pr/+Z//SVdXV6688sr86Ec/2uz83p977rknp512WkZHR7PTTjtNOf8RRxyR/fffP2NjY/nKV76yzr6LFi1KkpxyyikpFjf+tTv11FOTTA3Cd95556Ver3e2AQAAAAAAAAAAAAAAAAAAAAAA8OAi8Bsdp512WifoWpJ861vfyqpVq3LSSSelXC5v1rFuuumm/OEPf0hXV1fe+MY3bta+j3nMY/L4xz9+nfXXX3997rjjjvT09OTVr371Ott32223vOQlL0mSfP/739+sc67PBz7wgTzlKU/JU57ylBx88MHZY489cumll6ZSqeSzn/1sZs6cOSX9aaedlmQiyFvbPffckx/84AdT0mzM8573vMyfPz9f+cpXMj4+3jlmuVzOiSee+ICfFwAAAAAAAAAAAAAAAAAAAAAAANufwG90nHTSSSmVSvnSl76UJJ1/Tz311M0+1vXXX58kOeigg9YJkHZ/DjzwwPWu/9Of/pQk2XPPPTNjxoz1pnnMYx4zJe0DceONN+bnP/95fv7zn+fGG2/MrrvumlNPPTW/+tWvOgHmJjv11FNTKBTy85//PIsXL+6s//KXv5xqtZrHPe5xOeSQQ+73vJVKJS972cuyYsWKfOc738k111yTa6+9Ns95znOyYMGCB/y8AAAAAAAAAAAAAAAAAAAAAAAA2P4EfqNj1113zbOf/excc801+clPfpLvfve7OeCAA/LEJz5xs4+1Zs2aJMmcOXM2e98NBXUbGBhIkuy8884b3HeXXXZJkqxdu3azz3tfX/jCF9JoNNJoNDI6OprFixfnS1/6Ug499ND1pt97773zlKc8JY1GI+edd15n/aJFi5Ikp5122iafu5120aJFW7Q/AAAAAAAAAAAAAAAAAAAAAAAAO5ZtEvhtdHQ01Wp1WxyabawdXOy0007L2NjYFgcbmzlzZpJk1apVWytr6e/vT5Lcc889G0yzdOnSKeff3tqvVzvw25/+9KdcddVVKRaLOfnkkzf5OEcddVT222+/XHzxxVm0aFFmzZqVF77whdskzwAAAAAAAAAAAAAAAAAAAAAAAGx7Wxz47Wc/+1n++Z//eUpgrxUrVuR5z3te+vv7M2vWrJx55plbI49sR8cff3z6+/tz++23p1Ao5JRTTtmi4zzmMY9JkvzhD3/I2rVrt0re9t9//yTJ7bffnoGBgfWmue6666ak3d5e9rKXpaenJ3/4wx/y29/+NosWLUqSPPvZz84jHvGIzTrWKaecktHR0SxdujQveclL0tvbuy2yDAAAAAAAAAAAAAAAAAAAAAAAwHawxYHfPvrRj+bcc8/NnDlzOuve/OY353vf+1722WefzJkzJx/60Idy4YUXbo18sp309fXlzW9+c571rGflb//2b7PXXntt0XEe9ahH5eCDD87Y2Fg+8YlPbJW8HXjggdlzzz0zMjKSz33uc+tsX7JkSS666KIkyXOe85ytcs7NNXv27LzgBS9IkixatCjnn39+kuS0007b7GOddtppedaznpVnPetZefWrX71V8wkAAAAAAAAAAAAAAAAAAAAAAMD2tcWB36655po89alP7TweGhrKV77ylRx77LH54x//mD/+8Y/Zc88986lPfWqrZJTt5+yzz86ll16aT3/60w/oOO973/s6x/vEJz6R8fHxzrahoaF87nOfy/XXX7/JxysUCnnrW9+aJDnrrLPywx/+sLNt6dKlOfHEEzM2Npajjjoqz3jGMx5Q3h+IdpC3T33qU7n55pszY8aMHH/88Zt9nH322SeXXnppLr300jzpSU/a2tkEAAAAAAAAAAAAAAAAAAAAAABgO9riwG/33HNPdtttt87jX/7ylxkZGckrX/nKJMnMmTNz3HHH5YYbbnjgueRB6UUvelE++MEPplar5Q1veEMWLFiQww8/PPvvv3/mzJmTV7/61Vm6dOlmHfN1r3tdTj755KxZsybPfvazs99+++UJT3hC9txzz/z0pz/NnnvumfPOO28bPaNN89znPjfz58/PyMhIkuSEE07IjBkzpjVPAAAAAAAw7RqNib9NWQ8AAAAAAAAAAAAAAAAPMVsc+K2npydr167tPP7xj3+cQqGQpz/96Z11/f39uffeex9YDnlQ+6d/+qf84he/yMte9rL09fXl//7v/7JmzZocfvjh+dd//dc8/vGP36zjFQqFLFq0KF/84hfz1Kc+Nffcc0+uu+667LXXXnnrW9+aq6++Ovvss882ejabplKp5MQTT+w8PvXUU6cxNwAAAAAAAAAAAAAAAAAAAAAAAOwICo1Go7ElOx555JG599578/vf/z7FYjEHH3xwurq68vvf/76T5pRTTsnPfvazLF68eKtleHtZs2ZNZs+endWrV2fWrFnTnR0AAAAAAIAdU6Fw/2nuOxw1eZ8tG6oCAAAAAAAAAAAAAACAHcLmxCwrbulJXv3qV+emm27KfvvtlwMPPDA33XRTTj/99Clprrzyyhx00EFbegoAAAAAAAAAAAAAAAAAAAAAAACAh4QtDvx2xhln5K1vfWuGhoayatWq/O3f/m3e+MY3drZfdtllueWWW/KsZz1ra+QTAAAAAAAAAAAAAAAAAAAAAAAA4EGr0Gg0GtviwGNjYxkeHs6MGTNSLpe3xSm2qTVr1mT27NlZvXp1Zs2aNd3ZYQv89re/zd///d9vcvpPfvKTOeyww7ZhjgAAAAAA4CGoULj/NPcdjpq8z7YZqgIAAAAAAAAAAAAAAIDtYnNilm2ziGxdXV3p6uraVoeH+7V69er8/Oc/36z0AAAAAAAAAAAAAAAAAAAAAAAAsC084MBvX//613PBBRfkhhtuyNDQUG666aYkyQ033JD//d//zSmnnJLddtvtAWcUNtfRRx+dRqMx3dkAAAAAAAAAAAAAAAAAAAAAAACALQ/8Vq/Xc9JJJ+XCCy9MkvT29mZ4eLizfaeddsqZZ56ZWq2Wd7zjHQ88pwAAAAAAAAAAAAAAAAAAAAAAAAAPUsUt3fFjH/tYvvrVr+Zv//Zvc++99+Ytb3nLlO277LJLnvrUp+bb3/72A84kAAAAAAAAALAV1UaSRmO6cwEAAAAAAAAAAAAA8LCyxYHfzjnnnDzxiU/Mpz71qcyaNSuFQmGdNPvuu29uvfXWB5RBAAAAAAAAAGArqY8nv3lD8pXe5H/3SpZ8Z7pzBAAAAAAAAAAAAADwsLHFgd9uuummPO1pT9tomnnz5mXFihVbegoAAAAAAAAAYGu66TPJnz7RXB66I/npi5NlP5vWLAEAAAAAAAAAAAAAPFxsceC33t7erFmzZqNpFi9enDlz5mzpKQAAAAAAAACArWVsdXLt2VPX1ceTK89o/gsAAAAAAAAAAAAAwDa1xYHfDjvssHzve9/L6OjoerevXLkyl1xySY466qjNPvbAwEDe+MY3ZuHChenp6cmhhx6aL3/5y/e739e+9rWcdNJJ2XfffdPb25u99947p5xySm688cbNzgMAAAAAAACboNGY+NuU9QBMnxv/f8no8nXXr/1Tcs9Pt39+AAAAAAAAAAAAAAAeZrY48Ns//MM/5I477shf/dVf5c4775yy7eabb87xxx+f1atX5x/+4R82+9gnnHBCzj333Jx11ln57ne/m8MPPzwnnXRSzj///I3u9+EPfzhDQ0M588wzc8kll+R973tffvvb3+bxj398rrvuus3OBwAAAAAAwEPZnWvuzCU3XZJLbrokf17z5+nODgDb2p+/seFtjdp2ywYAAAAAAAAAAAAAwMNVodFoNLZ053e+85350Ic+lEKhkBkzZmRwcDDz5s3LihUr0mg08u53vzvvfe97N+uY3/nOd/L85z8/559/fk466aTO+mOPPTbXXXddbr/99pRKpfXue88992TnnXeesm7JkiXZe++989d//df53Oc+t8n5WLNmTWbPnp3Vq1dn1qxZm/UcAAAAAAAAHgw+eeUn8w+XNH/E59+P/fe86UlvemAHLBQmljc2BLWp6QDYeobvSr6xcMPbj/5+8ohjtl9+AAAAAAAAAAAAAAAeIjYnZlnxgZzoAx/4QL73ve/luOOOS19fX0qlUur1ep773Ofmu9/97mYHfUuSr3/96+nv789LX/rSKetf+cpXZsmSJbnyyis3uO99g74lycKFC7P77rvnjjvu2Oy8AAAAAAAAPJQtH1q+3mUAHoLu+cl05wAAAAAAAAAAAAAA4GGvvKU73n777enq6soxxxyTY47Zer/6fe211+bAAw9MuTw1a4997GM72//iL/5ik493yy23ZPHixXnxi1+80XSjo6MZHR3tPF6zZs2mZxoAAAAAAOBBaNnQsvUu70gajWR4OOnrm+6cADzI3XvNdOcAAAAAAAAAAAAAAOBhr7ilOz7ykY/MmWeeuTXzkiRZsWJF5s6du8769roVK1Zs8rGq1WrOOOOM9Pf3501vetNG037wgx/M7NmzO3977LHH5mUcAAAAAADgQWZHD/z2m98kRxyRzJiRHHhg8rOfTXeOAB7E7v3t1MdP+GTy5P9Juhds/rEKhfv/AwAAAAAAAAAAAABgHVsc+G3u3LnrDdC2NRQ2Mgl8Y9smazQaOeOMM/LTn/40X/ziF+83kNs73vGOrF69uvN3xx13bFaeAQAAAAAAHmyWDy1f7/KOYMWK5EUvSn796+bjG25InvOc5OqrpzdfAA9aa66bWN7zZcn+r2/+e/R3k8KGpw7ce2+yatW2z16SXL/s+uz04Z2y04d3yhnfPGP7nBQAAAAAAAAAAAAAYDva4sBvT33qU3PFFVdszbwkSebNm5cVK1ass37lypVJsknB5hqNRv7mb/4mixYtyjnnnJMXvehF97tPd3d3Zs2aNeUPAAAAAADgoWzZ4LL1Lu8IzjgjufPOqeuGhpJXvnJ68gPwoNZoJMN3Tzx+3Acnluc+Idn379bZZXQ0edWrkgULkp12Sl760mTNmgeYj4FbkuVXJrWR9W6+a+CurBpZlVUjq3Lrqlsf4MkAAAAAAAAAAAAAAHY8Wxz47YMf/GCuvfbavPe97021Wt1qGTrkkENy/fXXr3PM3//+90mSgw8+eKP7t4O+feELX8jnPve5nHrqqVstbwAAAAAAAA8ly4eWr3d5uv32t8k3v7n+bbfcsn3zAvCQML4qabTG4Gc+OunfZ+r2A9+SFEpTVr35zckXvpDUas3HF16YvOAFyRZND2g0kt+8Mbl43+QHRzX/XXrZOsmWDiydWB5cus52AAAAAAAAAAAAAIAHu/KW7vjhD384Bx98cP75n/85n/nMZ/K4xz0uu+yySwqFwpR0hUIh//3f/73Jxz3++OPz2c9+NhdddFFe/vKXd9afe+65WbhwYY488sgN7ttoNPLqV786X/jCF/Jf//VfeeUrX7n5TwwAAAAAAOBhoN6oTwn2tnJ4ZWr1WkrF0kb22j42Y2gJgE0xcs/E8vyj1t0+Y6+kZ9fOw69/PfnP/1w32U9+knzxi8mrNvf8t56b/OnjE4+H70wuf27y7J8l8w7vrJ4c7G1yEDgAAAAAAAAAAAAAgIeKLQ78ds4553SW77rrrtx1113rTbe5gd+e97zn5ZhjjslrX/varFmzJvvuu28uuOCCXHLJJVm0aFFKpebNRmeccUbOPffc3Hzzzdlrr72SJP/wD/+Q//7v/86rXvWqHHLIIbniiis6x+3u7s5hhx22Bc8U4OHh9G+cnl/d+askyS/O+EXm9MyZ3gwBAAAAANvUqpFVqTVqnceNNLJyeGUWzFiw3vRr1yYXXZSMjCQveEGy227bJl+NRvM8AGxFI5OCqM1+zPrTlLo7ix/84IYPde+9m3vuZclvXr/u+vpY8vuzkqO/01k1OdjbiuEVGa+Np1KqbOYJAQAAAAAAAAAAAAB2XFsc+O3WW2/dmvmY4mtf+1rOPPPMvOc978nKlStzwAEH5IILLsiJJ57YSVOr1VKr1dJoNDrrLr744iTJ5z//+Xz+85+fcsy99tort9122zbLM8CD3ZV3Xpkblt+QJFmydonAbwAAAADwELd8aHmSpJBCSsVSqvVqlg0tW2/gtz/8IXnqU5OVK5uP3/Sm5Nxzk5e9bOvn649/TO6+e+q6gw5Kli1r/gGwBUbumVie8ciNJr366uSqq7biuW9blFQH17+tPj7l4dLBpVMeLxtaloUzF27FzAAAAAAAAAAAAAAATK8tDvy21157bc18TNHf35+Pf/zj+fjHP77BNOecc07OOeecKesEdgPYckvWLpmyfNCCg6YxNwAAAADAtrZssBlFbW7v3JSL5SwdXNoJBjfZ0qXJX/7lRNC3JBkZSU4+OVm4MHnKU7Zuvi6/fOrjl788ueCCZHg4OfHE5LLLtu75AB4WRicFfuuet9Gkrd9b27hJP9CWQmH969tu+9ImHLDpvoHflg4sFfgNAAAAAAAAAAAAAHhIKU53BgCYfgNjA1kzuqbzeHIQOAAAAADgoakd5G1e37zM62sGAWoHg5vszDOTxYvX3b9WS370o62frxtumFjeZZfkv/6rGVOory/50peSPffc+ucEeMgbmRT4rWvjgd8uvXTq4xNOSD7zmeTww7fgvKMrk3uv2eTkSwfuE/jtPoHgAAAAAAAAAAAAAAAe7B5w4Lfzzz8/xx57bHbeeed0d3dnwYIFOfbYY3P++edvjfwBsB3ctfauKY8FfgMAAACAh75lQ80gb/N652Ve77wp69ruuqsZbG17uv32ieWXvzyZPXvi8ezZyXves33zA/CQMDnwW/f8DSarVpMrrph4fOSRyfnnJ69+dfLTnzYfb5ZlP0nSmHi83+uSFy9JDv9/SbF7neTtQG+FFJqPBwR+AwAAAAAAAAAAAAAeWrY48Fu9Xs9LX/rSnHbaabn00kszODiYhQsXZmhoKJdeemlOO+20vOQlL0m9Xt+a+QVgG7hvoLeNBX77+e0/z2W3XpZf3vHLbZ0tAAAAAGAbWj60PEkyr29e5vfNn7Ku7cILk7Gx7ZuvO+6YWD722HW3v/Sl2y8vAA8ZtaGJ5e55G0z25z83g7+1fexjSXcrPlt3d/LFLybl8macd9XvJ5bn/0Xy+P9Ieh+R7Pu3yZH/PSVpo9HIPYPNAHX77LRPkolAcAAAAAAAAAAAAAAADxVbHPjtk5/8ZC666KI87WlPyy9/+csMDg7m1ltvzeDgYK644oo8/elPzze+8Y188pOf3Jr5BWAb2NTAb/VGPc849xl55hefmeee99w0Go3tkT0AAAAAYBtYNrgsSTKvd17m9c6bsq7tW9+aus+LXpR85jPJM56x7fJ1++0Ty4cfvu724haPbgE8jNXHm/+WepNS9waTLV48sbzbbslRR03dvv/+yctfvhnnHZoUzfPRb0yKk6LG7X1KsvuLOg9XjazKWK0ZbfQxOz8mSbJ0QOA3AHjYKhTu/w8AAAAAAAAAAOBBaHN+i3uKc845J49+9KPzgx/8IOX7/KT3EUccke9///t57GMfmy984Qt5wxve8IAzCsAD8OdvJit+lfTskuz50qT3EVM2b2rgt7vW3pXx1o1Ba0bXZNXIquzUu9O2yTMAAAAAsE0tG5oI/FYpVZIky4eXd7bX68lPfjKR/pnPTL761aRSSc44IznppK2fp5GR5J57mst9fcmCBVv/HAAPS41q899i18S6e69Jrv/IxOMFT83ixa/tPHzqU9cfT2XXXTfjvJ3Ab4Vk12PX3b7v/9dZXDo4EeTtwPkH5n//+L9T1gEAPGRtShA7P84IAAAAAAAAAAAPGcUt3fGPf/xjXvCCF6wT9K2tXC7nuOOOy5/+9KctzhwAD1C9mvz69clPX5z84QPJ1W9IvrVfcuuXpiRrB3rbe87eUx7f1+LVizf6GAAAAAB48Fg+1AzyNr9vfub1zkuSLBtc1tl+553NQGxtH/tYM+hbkhSLyWc+s5nBfzbBn/88sfyIR2zave8AbILWD/ukMGl8f3hJsviCib/lV+S22yY2P+YxW+G87cBvM/dPumavu704kZ+lA80gb3N752bX/mYBI/AbALC5brghOe+85OKLk6Gh6c4NAAAAAAAAAADAurY48FtXV1cGBwc3mmZwcDBdXV0bTQPANnTlGcmN/zl1XXUwueKvk4HbOquWDDQDvR2666FJkrsG7kpjPb8UvHjV4o0+BgAAAAAePJYNNYO8zeubl3l9zcBv7WBwSXLzzRNp998/eexjp+4/e3Zy+ulbN0933DGx/IhHbN1jAzysNarNfwuljSZbPGnoZ7fdtsJ524HfZux5v0nbQd52nrFzdp6xc3PdgMBvAMCmqdeT97+/Gbz21FOTF74w2Xvv5Nvfnu6cAQAAAAAAAAAATLXFgd8OO+ywfOUrX8mSJUvWu/2uu+7KV77ylTz+8Y/f4swB8ACs+HVy2xc3vL0+1lm8a+1dSZLDdj0sSTJWG8vK4ZXr7LJ49dRAb7etuu2B5xMAAAAAmBbtIG/zeudlXm8z8Fs7GFyS3HLLRNqnPW39x9jav/8zMDCxLPAbwNZU2KRUkwO/LVz4AE85vqb5lyS993+wdpC3BX0LsqBvQXPdoMBvAMD9azSSl7wkede7mgHg2pYtS170ouT226cvbwAAAAAAAAAAAPe1xYHf3vzmN2fFihV54hOfmI9+9KP59a9/nTvuuCO//vWv82//9m95whOekJUrV+Yf//Eft2Z+AdhUN//XJiddsrYZxPMxCx6TUqE0Zd1k9w30dt9AcB2NRnLj/0t+8OTku4clv/rbZPX1zW2Fwqb9AQAAAADb1LLBZpC3eX3zMq+vGfht+dDyNBqNJMnNN0+kfdSjtk+exiZ+ryI77bR9zgnwsFCsNP9tVDeabNWqieUHHPht+O6J5Z77j+bZDvK284yds/OMnZM0y6VavfYAMwIAPCg1GhN/97P+vPOSb3xj/Yep1ZKhoW2Xze3KfBsAAAAAAAAAAHhIKG/pjscdd1w+9rGP5a1vfWve9ra3TdnWaDRSLpfzb//2bznuuOMecCYB2Ez1WnLHRROPd3lW8qTzkvpoct37k5s/09nUaDQ6Qd4WzlyYXfp3yZK1S7Jk7ZIcssshUw7bDvS2a/+uuXvg7vUHfhtfm1zx18mfvzGxbtU1yS2fT560aGs9QwAAAADgARgeH87g+GCSZF7vvJSLzSGjkepIBscH09/VPyXw2557bp98TQ781tW1fc4J8LBQaE0NuJ/Ab6OjE8vz5z/Ac9YnHax31/tNvnSgGfhtQd+CLJixoHmIRj3Lh5Znl/5dHmBmAIAdxqYGJ7tvwLeNJPvgB9d/ik08xPSbnNHJr8+D5gkAAAAAAAAAAACbY4sDvyXJG97whrzwhS/MokWLcs0112TNmjWZNWtWDjvssJx88snZZ599tlY+Adgcg7clY/c2l2c8Mnn6t5NSd/PxEf+V9EzcHLN2bG3nBs9d+3fNrv27dgK/3dfiVc1Ab0/e48m56PqLOo+n+L9/mhr0ra1RTZZe+kCeFQAAAACwlSwfWt5Znt83P6ViqfN42eCy9Hf1Z+nSifR77LF98jU58Fulsn3OCfCgtqmBU35xavPf6lAzgMgG9tuqATjrkw5W6ptYvvofk6E/Tzw+4jNJ15wsHWwFfpuxIPP7JqLOLR1cKvAbALBBV12V/OEPE4+POSb58peTnp7k//2/5D6/aQsAAAAAAAAAADDtHlDgtyR55CMfmXe/+91bIy8AbC1rbphY3vc1E0Hf2g45u3OzzeQAb+3Ab/ddnySNRiOLVzcDvf3FHn+Ri66/KLetum3qcQdvT276f1vlKQAAAAAA286yoWWd5Xl981IsFDuPlw8tzyN3emRGRibS77rr9slXcSIbaTS2zzkBHhYKrWiajWpSHUgqM5MUkkIpadQ6ybZqAM7Jgd+Kkw521/eSNZOiszzhk0nSCfy284yd01XqypyeOVk1sipLB5YmG4j7VqslAwPJrFmbHgMPAHho+eUvJ5b32Sf51rcmAtj+4z9uv/YsAAAAAAAAAADApirefxIAHnQmB37b5Znrbi8Uk1JPkokAb7O7Z6e30ptdZ6w/8NvyoeUZGh9K0gz8liQrhldkcGxwItGt5yaNenO5a27y1G8mJyxLnvqNpP9RzfWNxtS/tg2tBwAAAAC2uuVDy5Mk/V396Sp1pVwsZ3b37CQTQeFGRyfS9/Rsn3y1b85PpgYfAuAB6pozsTy2svnvwuclJ1aTBU/rbJocgLNef4DnnBRQLoX7n5qwdKAZ+G1B34Ip/7YDwk12++3Jaac1y6c5c5L585N/+IdkxYoHmGcA4EHnd7+bWP67v5varkySk09O9t9/++Zpm9nQvBrzbQAAAAAAAAAA4EFliwO//fu//3vmz5+fJUuWrHf7kiVLsmDBgnziE5/Y4swBsIXWTgr81r/vRpO2A7zt2r/rlH+XDEy9vi9evThJUilWctiuh6WQwpT1SZLlv5hYfurXk91fmHTPT3Z/UfKcXyc7PX6Lng4AAACw4xgbS84/PznrrOSDH0x++lP3lMKD0bLBZnC3eb3zOuvm9TWX20HhJgd+q1S2T74m36A/MrJ9zgnwsNCz88Ty6Iajo02+Do+PP8BzFicdrF7daNJGo9EJ8LbzjJ2n/NsOCNd24YXN4C2LFiXV1mFXrkw++cnkFa94gHkGALa9rfyDgf/3fxPLz372+tMUp+vncQuF+/8DAAAAAAAAAAAedrZ4StNXv/rVPPaxj83ChQvXu33hwoU59NBD8+Uvf3mLMwfAFhq4tflvZU7SPXejSTcY+G3tfQK/rWoGeNt91u7pLndnl/5dkiS3rbptItGq1s8oz3lcsvPTpp6oa06y32s373kAsG3Va8mKXyVLvpOsvDqpP9A7OQEAeKhbtKgZZOOUU5J//ufkne9Mnva05Mgjk2XLpjt38BC3lW8Wbwd3qzfqWfS7RVn0u0Wp1WtJJoLCTQ72VqttnadxfyYHHLrnnu1zToAHtU0NnNK9YGLb2MoNHq67e2J5aOgB5q0wqSCpj244XZK1Y2szUm1G/FwwY8GUf9sB4ZLk1luTv/7rqcFJJxsbewD5BaZdo5GsWpUMDk53ToAN+dGtP0rxvcUU31vM8f9z/HRnJ9Vqct11zeVCodlvBQAAAAAAAAAAsKPb4sBvf/rTn3LwwQdvNM1jHvOY3HjjjVt6CgC2VK11J07fbhPrBm9Plnx34m/Nn5JsRuC31c3Ab3vM3qP576zmv+2AcBldngy39pn/F1v3+QCw9d3xteS7j02+f2Ty4+cn33tC8o3dkj98ZLpzBgDADurzn09OOy1ZvHjdbVddldx55/bPE7Dllg01g7vdseaOnPb103La10/r9AG2g8JNDv6zoQA7W9u8eRPLd9+9fc7Jg9BWDoQIDws9O08sj2w4smZPz8TyXXc9wHOWJkXz3EiwuSS5e2Dior+gb8GUfycHfvuXf0mGh5vLfX3Jv/1b8oc/JN/5TvLsZz/A/AL3b1PK4E39m2TZsuTss5Odd0522inp708OOij5+McFdIQdza/u/FUarf9+deevpjs7WbEiGWnGjs2eeya9vdObHwAAAAAAAAAAgE1R3tIdh4aGMmPGjI2m6enpycDAwJaeAoAtVWvNai1NujtnybeTX//dxOPHvDt57D9vMPDbXWvvSr1RT7HQjBF626rbkkwEfNtj9h65aslVnZtBs/q6iWPPPnDrPZdGI1n+8+TGTycDtySl3mSnxyV7nZzMO3xK0n/83j/mF3f8Ikny2Rd8NofscsjWywfAQ8lN/5Vc9f+tu350WXL9h5OD3jZl9aqRVWk0GikVS5nVPWs7ZRIAgB3J3Xcnb3zjxONdd01e//pmYJDvf7/5Bzy4LBtctuFtraBwkwO/rViR7LPPts5V80b9tgcccAiACd2TAr+t3fCPtz3iERPLS5ZsMNmmqcyZWB6eFM3zad9M7v5+8uvXdVYtHZgI7nbCV05IqVDKLffeMmVbo5FcfPHEYS64IHnhC5vLBx6YPPe5ybe//QDzDGx3v/1t8qxnJffeO3X99dc326FHHZUceeS0ZA1Yj6uWXNVZXrJ2Se5cc2d2m7XbRvbYtoaGJpZ33nnD6aZNozGxPDno5eT1AAAAAAAAAADAw84WB37ba6+98otf/GKjaX75y19m991339JTALClOhNECxtNlqQT+G3t6NpcftvluX317UmSWqOWZYPLskv/LknSCfDWCfzW+rcT+G1s1cRBZ0y6A3T5L5NGvZWdYjL/SZv+PKpDyc9f1gxaN9k9lyV//I/kmF90jldv1PPF//tiVgyvSJJcesulAr8BrM/wXcnV/zjxeJdnJbu9sBn07favNv+d5J7Be7LLvzXLglnds7LibStSLm5xMwLgIe/uu5Nzz02++c1k2bJk1qzmjalnnJE84QnTnTuALXfhhcnatc3lgw5KfvGLZPbs5uM3vzn5xjeSvr5pyx48PGzlm8WXDy/f8Lah5ra5cyfW3X57cvjhG9hhK9p116RSScbHm3Wrej0pFu9/vxUrmtemtWuTBQuSI46YuE4BkKRnUiSU1dduMNlee00sP+DAbz27JoVS0qglI5MCv83cN1nzxylJlw5OBH5r/8jPfbddf32yvFV8HXRQ8oIXTD1doZAcd9wDzDOwXQ0OJi95yUTQt0olOf74ZvvyZz9LbrppevMHrOtXd/4qSVIqlFJr1HLVkqumNfDb8PDEclfXtGUDAAAAAAAAAABgs2xxxIbjjjsuH/vYx/L5z38+r3rVq9bZ/rnPfS4/+9nP8oY3vOEBZRCALVDqaf5bH7vfpO3Ab5+/5vP5/DWfX2dbJ/Dbqlbgt9lTA7/dtuq2ZuLqpJ9RLk+60/uyY5Lq4ES+XjZp1u39+e2bJ4K+FSvJrsc2/13+y2Rk6ZTnd/2y6ztB35LkJ7f/JG960ps2/VwADxd//npSa12zD3pn8tj3TQQMOPjs5Jb/npL88tsu7yyvGV2Tq++6OkfsdsT2ySvAjqBw/8GU28FWPvvZ5O/+LqlWp26++urkC1+YegMaO5C1NyX3XpPUx5O+3ZK5T0jKM6Y7V7DD+cEPJpb/5V/WDab04hdv1+wAW8GywWUb3jbU3LbPpN93uOOObZ2jpmIx2X335NZbk1otufHG5NGP3nD6665L3vOe5OKLm8Hi2iqVZmDKD35w2+eZabCVAyHCw0L3gonlZT9rfl/W0+adHPjt9tsf4DmLpaR3YTJ0R/MHKTZi6cDS+9324x9PrHvqUzetyQ5sZfcta9tfxI2VwRspqy+8sFnvS5I990wuu2yiDlqvJ5//fNLT8wDzDGw1S9YuyZ/X/P/ZO+/4KMrtDz/b03svhN47SG+iYC+AomIXuz/1eu3lWq+9F6zXrtg7iBRBegm9Q0JCSO/Z3WT77vz+OLvZBBIMGsQyD598mJ2dnXmnveW853xPEQCndT+N7/d8z7ridZzd8+xjVqamYm9e7zErhoqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKyhHxm4Xf7rzzTj799FOuuuoqPvroIyZNmkR6ejrFxcUsWLCAZcuWkZaWxt13392e5VVRUVH56+J1Quk8qNkIPieEJEP8MIgfKYEv7UlA+M1REVynNYExFlx1gDjUK4rSKPzWEiXWEgalDgKgwCzCb3a3nQ0lG3B6nbLeLwjX7tE1zmrY96YsR3SBiT9DuD/ayOeB/PdBH9m4+dICifZJCEugylbFsoJl+BQfWo22fculoqKi8lenbJH8rwuFPvc1r7+1Ouh6dbPNF+cvPuSzKvymoqKicigLFsDVTarQE0+EM84Amw1+/hlWrDh2ZVNphYrlsOVuqFrZfL0uBPo/Bj1VIWkVlQAejwTfg3QfJ048tuVRUVFpH6psVa1+FxCF69IluK6g4GiXKEhmZlAAZPXqQ4XfqqshPh42bxbhn/p6WW8ySZmrqqCiApYt++PKrNL++Hywdi1s3w5OJyQnw4gR8nz8FlxeF4pfbMakN7VjSf+CeGxQMBv2fwS1W0BxizhXwmjodj3EH3esS6hyNNCHi03QawdHmYi/JY09ZLOOHYPL2dkt76oVzbiWCcsU4TfLrsP+sLyhdeG3ioYKfIqP/fuDcz4DB7bx+CoqKn9q5s4NLj/5ZHPhYa0Wrrzyjy+TiopK62QXS+egc2xnJnac2Cj8diwJa5KX0GI5duVQUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVE5En6z8FtiYiJLlizhoosu4pdffuGXX35Bo9E0BkwMGzaMjz76iMTExF/Zk4qKiso/gL2vwNb7wG0+9LusC2DU7PY9Xpg/8s1RJgFc+jDocoX8fd8RGiRKs85R1yjg1hKl9aUAmB1m6hx1ANy28LZDtnF6nJh0Tbxp3dbffw6l80HxyfKAJ4KibwBaPXSZ2WzzZQUSxTlz0ExeWPMCNfYadlbupG9S399fFhUVFZW/ExX+qPf4YaAP/dXNA8JvkzpPYmHeQhbnL+auMXcdsl1uTS6PLHsEgN4JvblzzJ3tV2YVFRWVY4nfzgE0D05vuh545pnmy7feGvx8112watVRKp/Kb6NyJSw5AXxu+ZwwEsKywHYAqtdC3dZjWz4VlfakPh8OfA6lP4lAvM4EEV0heSJ0ukRsBoiI0rx58nfggFRzHTrAmDEwaRJY/UP9rl0hJubYnY6Kyl+KtijiHNSnaE/27RMhjXXr5B2OioJ+/USctlcvqLRVtvrbgChcU+GN1atb3vaIxH/aSIcOweXvv4fLLmv+/bPPwmOPwTXXBEXfZs6Exx+HxEQp04YN8N137VsulT8GtxueeAJefRXKyg79/oEH4MEHj2yfDo+D5GeSsThFCSL/5nw6xnT83WX9S+Kshp+PB/O24DqtAaw58odGFX77u6LRQFgHsO6Rz5tugcnrAA24ahs3y2oyHbNmjbQhkcE8PPh8sHixCJ63ibAM+d9VA5bdEN2rxc3K61sXfvMqXmrsNVitCY3rYmPbePwjoLgYioqkHcnIgPT09m/jVFRUgni9MH++LGs0cPLJx7Y8Kioqv052iQi/DU4dzODUwQCsL1l/TJPyxcRIHaIoMg72ekHXzrkXVVRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRU2pvfLPwG0K1bN9auXcv69etZt24ddXV1xMTEMGzYMIYOHdpeZVRRUVH5U6MoCvcvuZ96Vz0ajYbHTniMEH1IcIP8D2HDjbIc2Q26XA0RncFeCmULwOto/0JF9Qgu1+dBTMviZyXWksPuJvB9gbngsNsdMB+gmymuyTH3BZePe1OCy/d/ePgyH0z5z/4FDaQcPnpIUZRG4bcJHSewsnAlKw6sYOn+parwm4qKyj8Xjx08VtCFgD5SIh58XnBVy/dRPYPb7nsbqtcEP3e/CWL6UWQpIqcmB4C7xtzFwryFrDiwQgQ/9aZmh/tgywd8sOUDAEw6E9cOvZbokOhDirW1fCs/5f4EwLD0YUzoOKH9zllFRUXlGFFeDj/7u69JSXDLLYduM2pUcLm+Hn78ERYtgi1bwGaD6Gjo0wemToWTTvpjyv2PZut9IvqmC4PjF0JikxtkL4WajUf18C4XrF8vggI+nzw3AwdCXNyv/lRF5cjIew+yrw6KHBqiQGuE2k1Q+AUkjIDYgXz8MVx7bVA8CSAiAlauhE8+aS5uGX1oF++weDxSz5lM8qeionL0sVrh8svhq69a/v5//4Ndu71U26pb3Uetoxa3102XLobGdevXQ2kppKYGt/N6RTDy9NPbq/RCU+G3OXPk2IFpp+xseP11uPRSEbUD6NED3ngjGNyv0cj26lTVX5MrroCPPpLl1FS48ELo1En63fPmQcnhzdotMj93fqPoG8DnOz7njtF3tFOJ/3xkF2fj8Xkw6AwMTTvoRdh0W1D0rffdYgcKTQF7OZT8AI7WRSFV/gbEDggKv9VsgGVniM2wiRBgU+E3h0Pex+uuC6575x0wm49E+C0zuFz4BUTf3+Jm5Q2tC7+BCMPp9UHhN6+3jcf/FSwWePJJ+Ppr2L27+XeZmfDhhzB+fPscS0VFpTkWi/yBCA6rIuMqKn9+1hXLIGxwymAGpgwEwOw0k1OdQ4+EHof55dEjLAy6dIHcXHA6JaFBp07HpCgqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKipt5ncJvwUYOnQoQ4cOxePxsG2bOIW73W4MBsOv/FJFRUXlr8+aojX8d/l/Gz8PTRvKjH4z5IOiwK6nZDmiM5y0AQyRwR93vwHcFtqdpmI+Vat+v/Bb3eGF3wrMBXTLaBI8FggaAug4A1y1Ry785qiQ/0OSwRgjyxXLYMvdwW3Sz4Ded5Fbk0tpfSkAIzJGMCpjFCsOrGDZgWXcMOyGIzuun0JzIdO/nA5AtCmaOTPmoNe2S7OpotIyDYVQsRQsu8DnFEGGiC6QMBoiOh7r0qn8VXBWw+7noHSeiHkEMMZC/HAY/n6TjTXBxYqlzevpjKkQ048l+UsA6JPYh/FZ44k2RWN2mllbvJZxWeMaN1cUhdnbZgMQZYrC4rTw9a6vuXzQ5YcU8cFfHuSb3d8A0CuhFzuu34FGozlkOxUVFZW/EtnZIt4FMHEiaLWtb7t6NZxzTlCsIitLAlttNgmm37xZFX476tiKpO0D6DKzuegbQGgqpJ8W/Fy7GQq/gopfwO6/cSHJENMfut0AMf3afOi9e+HOO2H+fLDbm3+n0YiAwmWXHekJqai0Qn0erJsJig9iB8Hw9+R51WhE4PDA52CIYv16uPhiMWEkJMDLL8OZZ0rQbFUVfPddc7E3m+3XD71nD7z2GixbJgKXgToyNRXGjIFPPz18Xami8rdBUYLLTcc9TdcfBZqKvp16Kjz8MPTuLQHwa9fCggUi7KYg5Xjj9DfoFtcNgPy6fGZ+PxOAGnsNHTsmo9XKe+z1ijDOCy8Ej/X00yJo2t7Cb00F29xuOO88EeQpKIBrrpF1P/wQ3Gbq1KDom8pfm82bg6JvPXrAmjXNRWAeekgECI+Uz3Z8BoiNY0flDj7b8dnfVvhta/lWhv1vWOPnHdfvoHdib/ngtkofAMT+M+Cx4A9Dk6HLlX9gSVWOCTEDg88AQMmPh2wSFyfi1BX+aZrbboOxY6FvX1i6FG6+WdqWNhPRObi880m/7bEveJt3LH9V+K2hnOjoPo2fi4qOoAytUFcHo0fDzp3yedQoadPi40U0Zu5caXtUVFSODk1tI6Ghx64cKioqbUNRFLJLsgEYnDqYSFMk3eK6kVOTw7ridcdM+A1gwAARfgMZ9x4r4TefT5IgGAzNzQAqKioqKirtQVkZrFol9jOLBUJCJIHG8OEweLDa9qioqKioqKioqKioqKioqKioqKioqKioqKioqKj81TgiBZv8/HyWLFnCmDFj6N69e7Pv5syZw8yZM6mqqgIgNjaWV199lenTp7dfaVVUVFT+QHyKj2FvDSO3RrxD/3fm/zin9zmHbPfmxjcB6BLbhX21+3hzw5tB4TfLLjBvl+WOlzQXfQtgiPpN5Xt/8/t8sfMLAE7vfjrXDr02+GVkE4fa/Pegy1UtevYEhN2MOiP9k/s3ri80F1LeUB4UfjP/ivBbXQF0PhHCOoDtgAi0Kcrv8ybS+CPAvY7gOleNCNkFiJZgtWUFywAJ2osJiWFUpgg3LN2/FEVRfpOg0CvrXmFN0ZrGz9/u/rbF+6+i8rtx1ogYQ9G38jksA0IzwFMP1r0i5HjKlqN2eI9HBEiKiyVoOjJSHOHT01WHwL8cjgpYMAwaCsAQA73uhOi+Up9adkPpj6C4QWsEnwscTQIpDdFgSgRnZbNdLt6/GIBxWePQaXWM7jCaH3N+ZHH+4mbCb+uK17Gvdh8xITHcM+Ye7lh0B7O3zz5E+K3EWsL3e75Hr9UTFxrHrqpdrDiwgrFZY4/aZVFRUVH5I7Bag8vx8a1vZ7fDtGkiVBESAh9/DFOmBNtch0OC0lSOMrWbwC90Q/IJwfW5b0obCdJ+drsedj4RFJ+O7gtpp0k7ay+G8sUQ2RNi+uHxwBdfiKBbdjYUFooITkwMdOsmAjVjxsCwYWA2Q3g4/Pe/IsaTkCCBGkuWSF9MRaXNuC1QvQ5q1osAsEYLpgSxCSSNl2da8Suujf4MIrsFfxuaCj1uBuCpp4IaVK++CueeG9wsIQFmzhSxKKNRnuucHKnPWgvK//prOP98GV/ExMAtt4jglEYDu3fD99+3/6VQUVEJsmtXUPStVy955wKCaKGhIjB70kmwqzI4/pvcZTIdYzoC0N0SnPuptFWSHJHMwIGwcaOse/FFyMyEs86C2bPhwQflr70ZN07qjUD9lJcHAwcGv4+ICAoSAXTt2v5lUDk2/O9/weWbb24u+hYgNfXI9ml32/l+jzRAs06dxaQPJ7GxdCO5Nbl0jfM/PG0xhLXV5n2UxR1/jVezXwUg3BBOg7uBV7Nf5ZVTX5EvK1cGxbYypwZ/VLMJFK8sazQQN+QPLLHKH0rc4F/dRKOBE06ATz6RzzabCKJ17gxbt/6GRzxhdHDZa4NfTpKxWMmcZpuV14u98vmTnueqwVc1rs96IYtqezXl9eXN2oLs7LYd/oU1L7CqUOaWrhh0BSd3Pbnxu5deCoq+/etf8NxzzV/zRx45VLRbRUWl/YhqMk1eUfH7p5dVVP7ytPUFOEb9zdyaXOocdQB0ieuCxWmhb1JfcmpyyC7J5uIBFwc3dpmhei3UbBA/D41W5iKjeordqiXfmd9B//7BsfC774ptqim7d4tNNjOzXQ+L0wnvvy924XXrgsK0oaFiF77xRrjyGGorKwrs2webNolPgMMhcxOZmSK43rv3sSubioqKyj8CRYGGfDDvBE8D6EJkfiaqNxgi2rybigq47jqZfwGIjZV2RqORer6qSsauISFH6TxUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVI4KRyT89tZbb/Hkk0+Sl5fXbH1ubi7Tp0/H4XCQlZVFWFgYu3fv5sILL6Rbt24MGjSoXQutoqKi8kfw5c4v2VC6gWhTNGanmYeWPsTUXlPRBgTJgDpHHZ9t/wyAj6d+zIT3J7C0YCl7qvZINmN7aXCHkU0EM+f0EGGeAFMrj8ix1eq0ctvC26iyVaHVaFl+YDnT+0wnLjTOf6xu4ijkdUDVath8Bwx8SgJqPLbG/QSE3fok9iH7qmCEzOPLH+eexfc0fr+/bj8AUaYoOsd2btxuX80+rC5rUBgupr8Iv1l2Qek8SDu1zed0CCEp8r+7DtxWuT5RvaDfI7DvDbAVNW66tGApAOlR6SwrWIbH5wGgvKGcnJocusd3P3jvh6XB1dAo6HfDcTcwK3sWz695XhV+Uzk6bLhJRN90YTD2G0iZFHTq9zr8wiR+7OVQ8gOYd4lAl9cO+kgIz4SUkyBxVJsPu3y5BK0tXy4O3h06iKiD1Qr5+XDFFfDGG+17qipHmV1PSdui0cOJyyCmX/Pv+z8sTqUxA6AmG+q2BqOohr4Mfe6Bb9MaN1cUhcX5Ivw2tsPYxv8Dwm8PTniwcdvZ22YDcFaPszi/7/ncsegOFucvptRaSmpkMBr7nU3v4FW8nNn9THol9OLJlU/yxoY3VOE3FRWVY0M7CjbExgaXS0pa3+6jj0T0DeDyy2Hq1Obfh4TA+PFtOqTK7yEg7gag0QWXN98uQlog7WnyCbD1Xvnc9RoY+mpQoBrk+fDacDhEFGGVX6P64ovhgQcgKQksFtiyRYTdHnxQRN8AZs2CSy8N7iozE447rt3P9G9HURGsXw81NVBbC3q9XOdevZqLAf0j2P0cbLtfAoWieouAhz5cBH/3vAj9H5XgWoDQ9KDoW9Va2P9hcD/JJ7BkyRRAqsWzzmr5cCYTjB4tAoVuN6xZA8cff+h2VqsEH7ndEB0NGzaIQEhTnnjid577nxmvA7xOuRfaIzK9q6i0GwsXBpenTQuKvh1Mla2qcTkhLKFxOT4s/pBtzjgjKPwGcNtt8nc0iY+Xun3Tpta3CQ8PLgfaWJW/Pvv3B5fba3rxx5wfaXA3kBWdxbiscUzsNJH5++bz+Y7PuWfsPbJR075/07HCMRZxO1LMDjMfbf0IgLfPfJvzvzqfD7Z8wOMnPE6kKRI8TVSrjU1UqxdPCPaFtQY4r0mfWeXvReJY0JrA5zzsZieeGBR+A+nnbfmt+Umi+4qAtrtOPttLmvdJ/ZQ3iPBbRlQG4cZgJZ8YnijCbw3lXBjMRcHixSJKFxbWfD8+H2j9Q7cD5gPcuehOPD4PPsXHtoptTOo8CZ1WGsh33gn+7q67DjUVaDSH7r898fkkgL+2VsaPJhOkpEBycvOy1NhrqGwQ0dbkiGRiQmKOXqFUVICGBpkrqqmR9z80VIRXu3QRUfD2IiJCBCtycuRdyM2Vz62Rlwc//CA2mKoqKZ9OJ+9M797w+ONiK1BRUTk6rCte17jc7eVurX7Hzidg+yPinxLdF2IHgS5U/Ej2PAeDnoes89q1bE3HDgsWiLjrTTfJ5927JQHHjz+26yGx2STZx6ZN0ve45ho4/fSgXXjzZtnmWLFiBVx/PWzbJnXlmDHiE+D1ikh8eXnz8ZeKioqKSjvic8OORyHnVfHvCkmB8CxAgfp8cFXDuX4huF9BUWDGDPj5Z/n87LPwf/8X7Jcrisydqf1gFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVlb8eRzTVu2LFCgYMGEBWVlaz9S+++CIOh4MbbriBl19+GYCvv/6ac845h1deeYW33377iApVX1/Pfffdx+eff05NTQ09e/bkrrvu4vyD03G2QEVFBXfccQdz5szBZrMxYMAA/vvf/3LCCSccURlUVFT+2fgUHw8vfRiAWafO4pFlj7C9Yjvf7v6Wqb2C6gwfb/0Yu8fOsPRhDM8Yztk9z+bT7Z/y1sa3eGbyM2BsogBhLw4uxw2R4Cnzjt9UvpfXvUyVrYozup9BpCmS2dtm88yqZ3jshMdkA50J0k6DQn9K493PQMHHEhAeCN4iKPyWEpHSbP+Bz4HvA8Ju5/Y+l/+d+b/G7S78+kJmb5vdKAxH0ngomSPLK86BwS+KE2/F0iM/yZQTYZ+Ir1H4FXS+DKJ6QN/7oGRuM+G3ZQXLAFiwbwEL9i1otpul+5cGhd8UBRr2SxZNdx146iXAyRQPEV0huhcA7295nzpHHcPTh/PkiU/y0daPWFW4inXF6xiWPuzIz0VFpTWcVfJuAnSZCamTZblypXwXwG2BPS/A9ocALXS+XIRIjNHgrgfrHqhe02bht7VrRaTB6xUn+E8+gR49gt/b7VBY2C5nqNKOKIqInRQVSbCA3S7BVklJEmwVVTJPNozpFxR9K50PB74I7iRzmjw7NdlQvw8qfoHkFhQ7gLzaPA6YDwBw0TcXccm3l+BTfACsKVpDg6uBcGM4Hp+Hz3aICOo5vc8hMzqTERkjWFO0hs92fMa/RvwLAK/Py1sb3wLgsgGX0TOhJ0+ufJIvd37Jiye/2Exc4E+LoxIOfA7li8FWKO+mVg9oISwdut8ooqdepwivVq0ERzm46uT3hmgIy4SOMyAs41ieiYqKCrSrsMOoURKc7XSK073TKZ8PpmkQ1YABR3wYlfYirIldy7o3uDzwKanjD3wunw98Af62jx7/EtE3Vx3sfSn4m5BUnv7kqkbRt/vuE3Hdppx5pvzfpUtwXWviWiot89NPcMcdEqSYkgKnnQbp6fLqbt8OTz/dXJDob0/Zz7DpVlke8CT0uv3QeszrCIppKN7gd5bdkDMr+FkXgkYzJfizJpsezKRJIvwG8OijIlSpbaKFuGOHCL1VVMjnE044VPQN2qa7+XuYs3cORRaxGUzqPIkucV1+5Re/A2sO5Lwm/W5bIYQkgz5C7A0+J/T4N/T819E7vopKC7TWxTmYSpuIxxh1RsINQXGdEH0I4YZwGtwNjQIz06bBQw8dleIelosvPrzw24gRweUFC+CWW45+mVSOPjExweXi4lY3OyI+3yn9uyk9p6DRaDi759mHCr+1lT+5QNyHWz+kwd3AiIwRnNf3PJ5d/SzZJdl8vO1jrh16bTDhCkBDfnC5y1VQs/632fJVfhebyzZzysen4PV50Wq0/HjhjwxOHXzIdutL1vP4iscBiDZF89ppr2HStzDw/DX0YZA0Acrmt/y9IQKAKVMkkNxuP/JDHIJWB+lntCj2FqDe1YDNLcooSeFJzb5LCk9id9VuyuvLSUwUcaedO0Xw6fbbRdglIHSalwevvALPPSefH1n6CC6vi5uG3cTKwpVsKN3Ax9s+5pIBlwBB4VCdDhIT2+Fc28jKlfDiiyJeZ7XC0KFyfLdbbPPR0ZK0BcDldTHx/YlsKRflvREZI1hx+YpG8ToVlfbk66/l2Vy9WkTZRo+WpEFOp9i1YmLaXzjp9NPh+edl+d134bHHmn/v9Upd9NxzIqqvKCLgdO21kJUl49KiIpn78vnat2wqKn84B/cpA/3N1tb/2r7aMfkJHCTudhCbyjbh8rowli2ELXfLysEvQPebDu03/4oA7W9h0iSIi5P+AcDNN8O334qdftEi8Hja/ZA8+WRwzPrQQ2IbbsrEie1/zLZSWCj1q9ksSUd++eVQO119/TEp2t8TxSf2QE+D+IIZouV/5JFfuVL6fRs3iuCv2SztV1wcdOok7WBExDE+h7877VwfBig0F/JjjnSOksKTmNJrSovbHTAfYGflTgCyorPoldjriI+l8hdj+yOw4xHQGmHM15BxdvN2vT4XNIbGzaurRWy9pkb8gRRFxoWZmdKGBUTfxo6Ff/+7+aE0mkOTS9Xaa9lRKX6pCWEJ9EzoeZROVEVFRUVFRUVFRUVFReVYYLcHE0u53ZI4MSXl6Ca0UlFRUVFRUVFRUVFRUVFROTockfBbfn4+EyZMOGT9Tz/9hNFo5LEmHphTp05l7NixLA94JB8BU6dOJTs7myeeeILu3bsze/ZsLrjgAnw+HzNmzGj1d06nkxNOOIG6ujpefPFFkpKSmDVrFieffDKLFi1i/PjxR1wWFRWVfybf7PqGHZU7yIrO4ry+52Fz27h6ztU8vPRhzu55NlqNFkVReGPDGwB0jevKVzu/IjUiFYD3Nr/HoxMfxRQzQARebIVQMBt63CIBLqNmi4jAyulHXLY6Rx1Pr3oagHvG3kOEMYLZ22bz0tqXuGXELSSG+yNTOl0eFH4DsJcesq+S+sMLv5U3lOPxeSioE+G3zKjMZtsFPgeE4eh0CWy9R7JWeu2QffURn1+wEJNAowfFA9sfhPjhjcJsTSmoKwgevwWWHVjGVUOugqJvYeMtIvzWYTokjgFjnJS1brsIPAx+Hp/i48W1LwJw+cDL0Wq0nN/3fN7Y8AYvrn2Rj6d+/NvPSUXlYLxNnNp1TWZZdj8nglwuv2f6yNmw7QFZHvQ09PR78ZX/ArpwERfws2ePOLFv2gQlJRIsZjSKo5/HI47DBw4EBR0eeKC56BuImFj37u15oiq/h4YGCWD85htx9pw6Ffr3h6gocDgkoCktDe4YFC0/cNUFgzk8NnBWQOlPUt9FdoO0k2HXE7LtmsvguNchZXIzQU2AxfmLG5d9iq9R9A3A7XOzsnAlk7tMZkn+EsobygF4bvVzzMqe1SgcOnvb7Ebht59yf+KA+QAGrQGtRsv+uv1kRmVSaCnk/S3v8++R8lwHHN+3bBGn97i4YGZil0uCTg8zJDh61OfDguGSjTljKox4DyJ7SLvudUFDHqAVMZUlk+R6pp8hgdNhWaAzgrNGBIY8DW0+bCA789q1EtBqsUgggF4v30VFwQ03qO+sisqxJipKhKi+/lre09tuk0CdQP3l9cJHH0GvJt3ZVavgmmsOs1O3VYQXzDukbvfUAxoJwjclQsYUCPkDo9L/TsQNgfCOMjbIeRW6XQ+6EOjqvyEB4TddExEFr8v/vx1K5kF9nrSxcUPYvPmqxs1Gj279sGlpIkIAsHcvDFM1pdvE7t1w9tkSZN6njwSfR0Ye61IdY4q/Cy53vVr6fdYcWHtlcH3cUBH0KP8ZHGVQswniBkGni6HjhTCvn/RbgJNPhg/9GhxffilCSy0xbRr85z9Sp/38M4wbB3fdJeOHBQvg5ZfhtdeC2wcCbVukrepvisKWLbBwIWzeDJWVIjRg8MdDeTwiMHeV/zX8fs/3nPXpWXSK6cT+uv30SOjB2ivXEmWKatvxjoRA/9BVC1kzYNJKMMYEv/e6gmM6lb8W9fuhbCHUbZb7q9H5bVQ+0IdC5yshfmjz37QWjH8MOPHE4PLXX8u4X9eCLkyVTQTnE8IS0Bz0TsaHxdNgbmgUh+vXT4LoFy48asVukYsvhrvvljagJU44AZKTobwc5s+Xv5NOCn7v88GKFVJfqfyxKIrcN50uWGe3lenT4WO/Cfadd8QOcnCz0VYNC4AGVwNz9kqyko+2fcT3e7/H4XEAsKV8C3uq9tAjocfhdvGXQVEUXs1+FYDRmaPZULKBMR3GkF2SzavZr3LNkGvQJIwUW6KjHHLfhC5Xi21j0DOQ87oq/PYHY3PbmPHVDMrqy/j3iH/z3JrnmPHVDDZes5EwQ9BeXOeoY/oX09lft59JXSbx9a6vCTeE8/KpL/+2A3e8sGXhN41WEhsAsbFw/vkiwtQudLqsdeE3rYlyRzBpUWJY87Fu4HPABjlzJtzq10F+9VVYs0b6tPv3iw11zBj5Lrcml3c3v4tBa+D20bczoXgCUz+fyoO/PMgFfS/AoDMwfLi0H16vtHNN25Hfw7ub3uXBpQ8CEG4I57vzv6NbfDdAyjtxotg6R46EOXPEBtqUpm3ff5f9ly3lWzi397nYPXbm7J3DM6ue4c4xd7ZPYVVU/Pzwg4z7AM44Az7/HEJCmm9zNITVpkwJCr89+aQEJ918s4w1V62Ce++FK6+Ufi2I+O+cOc37AkOHiu1A5c+Hy+tic9lmAEw6EwNSDs2GUVIiwv5FRSJEZbeLXTU6WoSqjqV41p+WtooRt7No8boSEX5LCEsg2hTduH5f7T5cXhdby7cytPj74A+6XCXHNe+A7OuD6xNGwcDHf1MZWiMkROxDTz4ZXBdIYHC02LYtuHyw4M6xZt68oMDtOee0nJxBFRr7nVhzYNdTULFcxAzjhkpyUJ8HXFWg0eMe8TXTp4v/hsEgyTSmTZOkJnq9JNDYvr1lu41KO3MURNztbjtnfXoWm8o20Tm2M3m1ecyeOpsL+l3QbLsqWxUT3ptAoaWQCGMEiqKw9sq1fxtbhEor5PkT6yaOhUy/IGDBZ1D8Q3CbLjOZt/F47rhD6oL+/aWOyMwUP6/SUli6tHnyi9DQXz+00+Pk9E9OZ1XhKmJDYrF77Cy7bBnHpf/JGqvfidcLu3ZJe1xaKv1Ih0Pq29hY6Nu3ua1cRUVFRUVFRUVFRUXlr05lpSQlXrxY5kUnTJBkxKGhMiY6cAAuvVQSFS9ZAuvWybjJ4RD7qV4v8zxGoySx6NTpWJ+RioqKioqKioqKioqKiooKHKHwW1VVFZmZzUV/6urq2LdvH2PHjiXyoKjLgQMHsn79+iMq0I8//sjChQsbxd4Ajj/+eAoKCrj99ts577zz0LXi7fL222+zfft2Vq1axciRIxt/O2DAAO644w7Wrl17RGVRUVH5Z+JTfDy87GEAPD4Pp358Kk6/ONOW8i38sOcHzup5FuuK17GtQjw5Z2+bzextsxv3UW2v5pvd33B+3/Oh63Uihla7CVZMlYzG4R3Asqtxe0WBH+dKlt3cXEhKEicevV78zXw+ybxx883w/OrnqXPUEaIP4ZV1rwAQaYzE6rLy5MoneWbyM7LTtFPFYbZqVcsnGtWDEqtEawYE6wIEhN98io+KhopGYbUO0R2abdco/OYXhiMkCXreBjtbcdLVmlpe3xLGGAkw2vM8NBTAvL4QPxIUL9QEM0kvK1gGiHPxp9M+bVy/KG8RT6x8gqX7l6K4G9CsOFdE5DpdBiP8kUr73oG6rcFjWnOZV7qHvdV7Abh27rVcO/faxq8/3/E5T534FOlR6W0/D5V/Lp4GKF0g77qrVt4PrRHQSLC44pb3JfkEEWPY/wF0uw7Cs2DsV1CdDQv8aiCKN7jfpu/Rgc+lbqleA2iYG+VjyhTJ2nPmmfD99yKK0BS7HV56CT71vy6rVsFZZx3F66Dyu7ntNnj9dVl+91247LJWNsy/DqpWQ0M+7Hoaet4qDqSZU+DrRHBKUD+J40TorWwB2A7A0lNb3N3i/SL8NqHjBGb0DSqtzcqexZbyLSzOX8zkLpOZvT3Y/i3Z3zyCIrskm5zqHLrFd2sUS3X73Jz92dnNtntzCRS+1wABAABJREFUw5vcMuIWHnxQw8PSBPPAAyIk0jSwTFHAZmv9Wh1Vir4V0TeAPvdCdG8RYlp6uogA+ZwQ3glMCSL6ptHC6M9FSKh2C2y6PbgvRzn0/vXATEWRYLXvvxext/fek/c1Kir4fWWlTMC2GZ9bRF4aCsBtBq8Eu6PRgT4covu2KLTaGl4vFBdLYJbVKpPDHo8400ZEyIRyZkI5FH4J5m1S/4VnSfZqjVbqN5/bfz00ULsRrLlyrTV60OplveKFkJSgU7SKyp+Q++6ToFOXC155BebOhVNOkXpryRIRJLFY4KGHpM//8ccwZAhce23wPS4theXLYfrwT2HtFfKODnoGMqeCIUbE39wWEZb2WAFV+O03odFAt/+DzbdB/T5YMELE30LTmgtddLwItt0v92HbfSLGG5oKk1dLoGKuKFxNmybCOgD/+58I4xxsuvJ4RLjmtNPk8403yjPQtWtwm6IiCcbr06eN51H8g7RP9fnSLpkS/fUmElwW3hE6X3qkV+dPR2VlUPQgLe3wAYnV1ZCdDQUFIjoWHi7jaq1W2qykJDj33D+m3EeV+BGAX+SjfLHUEaYkaU93PgGVy2XsMfID2PmoPMMrz4UhL4udQKNpJkJ9++3wySfynP7f/4kj2NlnQ0KCXMtvv5UAmZNPlm2f8GsIr1wpYgBN6d9fhDZWrBAbx+uvw9VXyz0A6b9s2QIDfEpzwZ5WRLNefVVEbkH+f/XVYF8osLnVKst7qvZw8TcXE24IZ96F85i9bTYPL3uYS7+9lK+mf4VWoxXh9/0fg2WnjNHCMv39En9/Q6NvUz8NEHuLq1aWO14cFH2bP1T6ia4aEZw/IzdYWE+9iDP7nIAi90kfDvrItisYqRxdir6HFdPEhjTkJbEjaQ2NQolyz4+C2kU70qePvMPffgs7doho1sMPiwCt2y1iMwsXQuSpMr6JD40/ZB/xofEcMB9oFIcDePxx6ac4HIces0uXo3MuCQly3H//+9DvzjlH6vj77pN2VVGk73X66SKuWl0NP/4o+1i58uiUT0XweKQPNGeOiNz27St9nECb7XCIffu//23b/k47TZ7jHTvkHp57Llx/vTgdl5XBTz9Jn/vxNupEzM2Zi81tQ6vR4vQ4qfTIs6/X6vH4PHy+43P+M/4/v+HMj4A/SBzyl/2/sKtK5h2eXf0sz65+tvG7bRXbWHFgBWOzxsqcxfYHReByySTofoP0hWs3HNXy/dNYXbiam366CaPOSJ2jjvP7nM+94+6VPomfOxbewa6qXVwy4BKePelZah21vLv5XW6dfyuvnS7jDUVRmPn9TPLr8rlz9J3cP/5+hrw5hFeyX2F8x/Gc0/ucIy9c1gwRqTBvb76+2w0Q1bPx48MPixBUVVXzzXQ6GDv2CI+ZPCFoCz+YAU9Q7goa/ZLCk5p9HfgcEH67/nr44APpVwJs3Ch/B/PQ0ofwKl7iw+K5d/G9+BQfGjTk1+Xz7uZ3uXrI1dx7rwi/gYjFvP46TJ4sbUx9vdQ5qanQsaMIqOzZA3V10KGDBFFotfJqu91it01Jge92f8eVP1xJz4SePD3paaZ8NoXJH01m5RUrSYtMY+1aqccAxo8/VPQNwOSfBlhfsp7Hlj9GmCGMB8Y/gNvnZuG+hdz/y/2c1v00+ib1bdv1V1FpA03fo9GjDxV9g+DYrj0ZO1aEJj/9VPoM990nouOBsTzIe6/Vyvd2e9AGfTCKIklUliyRfklIiIjr6HTB/UVGwnXXt12MXOW3Y3FamPrZVJbsX8IJnU5gYd5Cbht5G09OehKtRsu+fXLv16+X/uMDD0igWnS03OuaGrELqfw5cHvdbCrdBMC7Z73L6d1Pb/yuy0tdyKvNI7s4m6Hxw2Hfm/JF+RJIP036mr3vhO2PyLy24SgI9CNCkR99JPNWfwTTp4voLMAbb4g4eSAZTAC3+8jFsNuD4cOlLB6P2OhsNvE5Umk7e6r2cMOPN+BVvFidViZ3mczDxz+MXqsX+/vCMZIcJvUUGPe92ObLfpY5Bz/bs8v59ltJ4jd0qNhWm5KaKn8qf1IOIxCnKApXz7maTWWbuHn4zdwy4hYGvjGQmd/PpFdiLwamDASk7jz3i3PJr8vnxZNfpFtcN06dfSpnfnoma2auITY09g88ob8hzhqoWCJCjB6b2OO1Opr5F2Sd17ZdOeH998WOWFAAPXvK+xnw3fR6ZY5q5syDftiazSe6nyTpte4BlxmM0RDZVRLhrr0MAHPYJM48U+rqxETYsOHQdgTk+6efljHw4sUyBx2YbwxQVSVjS41Gns1Vhav41/B/cX7f8xn77ljO+vQssq/Kbubz6FN8fLDlA/JqJWtVp5hOXDrw0mZ2C7wumZd2lILHDj6XnLM2RNrzmP6SBLGd8fg83L/kfr7a9RVxoXE4PU5eO+01hmcMB0S8YPp0uVfDhkk/sk8f6et7PNKHtFh+5SAqKiot43ND8RyoXAb2MojoDIZI8StTFKkHUk6EBL8qpbveX0cE5j81Mv9piITQjCOqI2w2KCwUvxm7XepmRRE7WVQUDByoihf/kVTbqhuT6CSEJWDSB/2WFQVycsT3qaQkKLwZaBYNBjj1VBHi3LBBbDRlZdLOBZJYK4rYai69tGUbVGv4fNLumc1iY3W7Zb9hYRAfLzaFANsrtlNtqwagc2xnMqMzW9lr6yiKJHbMy5Nn0+mUcut0UpbwcJmbbHpclSYoivhNtOQjYYj1993azrKCZVz9w9WEG8OpaKjg3N7n8uSJT2LQycB71Srxxdq9W56JPn3kf50umLTq2mvFXqiioqLyZyUwD+Jyyfgm0M6ZTNLmrPOH0m3aJP2jg3G7Zf5x9Wr5zTffiCh2Uxul1Sp1o8UiPn55eeLfHBMjbXXT+c/rrw/OW6qoqKj8lfF4ZOzickkdZzRKf/63zH9X26rZXSX+pGGGMAamDDwk8a6KioqKioqKiorKkXBEwm96vZ66urpm6zZtEqeuoUOHHrJ9xG+YXfnmm2+IiIjg3IOiMC+//HJmzJjB2rVrGTVqVKu/7dGjR6PoW6DMF110Effccw/FxcWkq1ZaFRWVX+G73d+xtXwrcaFxXDHoisb18aHxfLP7Gx5a+hBn9jiTNzeIs+opXU/hgfEPNG739qa3eWvjW7y54U0Rfut1B9TnQt47UPy9/DVFF8oPcw2cNVU+nnOOBDK3pHFZbavm+TWS8vzCfhc2ZlG+qP9FvLb+NWZlz+LfI/9NWmSazIyO+x6WnQVVTaIbNXoY+BR0vJAS6z1AUOgtQGpk0LMwrzaPioYKgEMmPQOfiyxFeHwecXDs+4AEOPtFEBoJTYcxXxx6UodjwBPgKIOCT0Qopul5aA0QO4Rlu0T4bXTmaE7ofEKzc3hi5RMUWgopqK+gY6dL5B6U/gQHvoDEMeKAEJIIy870n9AUXlj7AgDn9j6Xs3oE1bBeWPsC60vWMyt7Fo+d8NiRnYfK3w5FUVhbvJaPt35MckQyNfYaIowRXDHoCjrGdJSNfj4earLFyW3SGtCHQuUqET6q3Szb1GTDca/DsjMkiHxOdwl+C00TUaYAsQNEJG73MyJQ0rAfEkZC5jR516vXAOK4EBEBtbXixJaXBwMGBOsTm00c3W+9VTKefvwxPPWUBPNMmiTB0A0NsHOn7Ou//wWX18Un2z7h3c3vMjpzNLuqdhFpiuTWkbfSP7n/H3XJfxeKIufV0CATUB5P0HHEYBCni/DwY13K1jn/fBHiMJslkDorS+5rVJQYnouK5NyGDJohz0LOq7DlTsh5RQI1Fa84TwTQaGDUbFg+RURBDiaqN0pkDxbni/Dbxf0vbtYellhLGoXf7G47X+38CoCvpn/FGd2Dyh+j3xlNdkk2n2z/hMsHXs7cnLkAfDLtk0bhUJfXxamzT2VP9R6WFiwlOXlCo2NPWZlMInboEHQKMpsl4PKY3K/Ol0Heu/IOr78Oet0l13fUx7DtQch/T651vwdFhMddJ6JAXa+GsAwYOgtWXSACIfowFi+WYNHCQrmfPXrIxGxg4sDrFfEEjydYhIBwTVO02ia/8XlZnL+Y7JJsUiJSKK8vZ2zWWEZnjpaJhNqtsHiCiFX0uVdEj0yJcOAzKa9ljwii9n+kTZfkxRfFgdZshjvugEsuEUEdo1HKbTbLBDQrz4HKFRDVC07eBDqTiBTWbAwKLJX9DBtugPo8SDlJrqspXtY35IuYnnUvxB8n11NF5U/IoEEidnHJJVKH5edLvz5ATIy0O3PmiCP61q0i7HzHHVLXBdrpYcNg+jt5IiqpNUDsIIjsIcFCRd9K/W4rhC5XwrC3jtXp/vXpeQs05Em7WbcFsq9p/n1Ikoi8DXsHsq8SkbXvO0LcEAlkaDI2ueACuZ/PPANffSWBqiefLHWixSKBGN26iYDAs89KAPO6dRI00r27BHOUlYmz6PPPt1H4zZoLK84Rx+qet8kYT6OBvPdEeLg6G1gKGWdLMMkfzEsvSeDJgQMwY4Zck5CQYJC2zyeBbllZv76vsWMl4PvRR0WoaMoUeYcy/M1BcbEECJ9wgoiQ+Xzy/dtvH+r4HRCQ+8uTdQGULYL8d2HV+ZB5DsQMAF0oOKuD24WmwpivpQ9Sv69lwV+tkX79xMnr8svFSfr66+WvKe+/L/8/+qj0qV9+OShWESAhQcYRH30kfdg1a+C66+Q3vXrJI7p7tzwXXm/bdM5iYoJBqjU1Ur7IJhpp9fUivIHJwtmfnY3FaSElIoWZ38/Eq3jRaXR8u/tbHl32KP8Zdy/8cjLYi2XcNfQ1CcgsnS9jtMoVstPkidLn+DUyz5F3rnyR9GMc98n4b+THkDML9r4MaOVebb0PzDugxy0ylkMDVStEgM9thsSx0OniXz+myrHBa4eaDZD3tvRjE8fCicuOdakOy3vvSZ/k+++Df03p1g1OneAXfgs7VPgtISwBgMqGoMrCkCHw4YeHCmjeeKPU9UeLf/0Lfv5Z2pUAQ4fKeAREFLKhAR58UMbIP/wgfwH+cgHUhwkq/qNxueCtt8RuZLWK7SglpblDsMcjwkc33yzbjxsH77xzaBt8JKei04nQ0nnnSYDGV1/JX1Ouuqrt+/tsx2cAXD7wcv535v8a1z+z6hluX3g7n+347OgLv7UDLq+Lr3Z+xVe7vmJY+jC2lG+he1x3rhl6TaN9/9X1MgA5u+fZXDf0usbfvpr9Kt/t+Y5X178qwm997hX7Yv57EiBd0VzIH8ORBZ4rijifNzTIc+D1Bm1ver203f+kgDxFUXhl3Sv8e8G/SY1I5Y3T3+C9Le9x/y/3s7poNR9N/Yi40Djm7J3DrOxZhOhDWFawjC4vdcGn+AjVh/L6htc5pdspnNnjTGZlz+LrXV8Tog/hh70/MC93Hg6PA61Gy8zvZzIoZRBd4o5QgVOrg4FPwtImkeIJo2Dg0802y8gQu+Tkyc3f41dekbHrEaHRwoj3YF7/oHguSLKkHjdTvvtbAHQa3SHiB4lhInpeXi/CbyEhUtdfdVVQtK0pI0bAzsqdfLz1Y7QaLef1OQ+dRozk0/tM57Mdn/HIske4ZMAljB0bwnvvSXtWWCjB83q9BCVWVcl5/+9/koyhulrW790rfd+WWFawjPO+PA+f4iMzKpNvd39Lp5hO7Knew0kfncSyy5Zx7bWxLFwobduzz0pdOmmSjA09Hukvl5TAVdc5uPTbS/EqXtIi05j+5XQA0qPSyavN49JvL2XNzDVs2WTgl19kbNSpE3TuHBSlA3knO3eWP5W/Ob+zH3HbbSL0+/PPYvetqYGJE2Wc53SKqILZLOO89ubdd6WP8fHHMq5XlKDoW2ioBC+9+qr0DbdsgVGj4KKLxK6g0cjzv2aNzLMHkh2de64IMbXorH/dQdfnMCKtiqKQXZLNZ9s/IyUihUpbJfGh8Vw68NJD5thBBF4UZD8GreEf6+RfYi3h1I9PZUv5Fqb0nMLUXlMpsZbwzOpnKLIW8d5Z71FYaGLnTtm+UycRfctoYv7v2FGeuQB2t52f83/G4rSgQUO4MZwTOp1AuPFPPMn3N2JbxbbGhImDUwc3+25w6mDyavNYV7KO64a+LUKvBbNFWD3zHL8ojKl5H+AoEBkpY4jzzpM6oSnXXitj4fbkvPPELvz002Jb69w5aBe2WmHzZpn/e/PN9j1uWxgwQOzRN90kQaC9e0sdmZkp9eu+fbBrlwgI/dXZvRtmzRIfh+Rk6bvGxkr9HxBriogQ+3EAn+JD8df5Go2mucgR8Nn2z7jyhysx6oy8dcZbLMpbxOMrHmdl4Uo+nfYpqREpkDQWCr8Se3zFL2LzC02TZGyrzgdgwLhO3HDDJGbNkmfy5pvlPqSnS5+zogK2b5d1/6QxU3uSlyfzLWVl4j+RmRmci1AU6Vd07CjzcO3JS2tf4qOtH6HVaFlZuJL1JesJN4RT56hjymdTWH/VeuLD4rn5p5v5Zf8v6DQ6vtn9DRo0RBoj2Vu9lwu+uoA5M+Y0CtN/tv0zZmXPYmjaUMrqy6h31XP7qNuZ0HFCY3/C4/Pwza5v+Hzn5wxJHcKOyh1kRWdx3dDrjk4SU7cFyhZC/X6ZawrLkvpc47/AileSEEV0bP9j/xquOvguQ2y3na+A496UsW7Rt1LehnyZF0kcDVVrxHdTHw4RXUEf5k/YqQA+CE3lfx/14f/+T3Z9883w3HO/U/R46CyZj6jfBz8Ngo4XSiIaX3BiJSrCzVVXwWuviY/XI49IHzYzU3wuamtl/Nmnj4gkB9qd008XW22vXlLGnBxJimS1wovrn+KDLR8AsLFsI9sqthFliqK0vpSzPj2LZZcvI8wQRkFdAVd8fwVL9y/loQkPodVoueqHq/hw64e8c9Y74vu25V7Y8xzowmTeI6qHiNnVbpJkh84qSaKVKP78ZfVlrCpchVajxe110zOhJ32T+h7SHy40F7KtYhtajRZFURiUOqhZv7qyoZLzvzqfxfmLubj/xUzvM51r5lzD2HfH8tIpL3HNkGsoLtZQWirbd+gg8/RN7cCJiTKe+fFHGWvk5ooo6qhRwTmmQDLmrCwY3Lxr889A8ckcleJFkt1oRNhLawwmGmtHbDbxAauvl/FlQEwCgsJJgQQziqJQaCnE5pYkATEhMS2OvVR+O1W2KgrNhQDotDp6JfRqFE2i4FNYc4ksH78IUk6Q9iD/A/ErsxfLZ/NO2P6A1AvD3hLBS49NfBfdVnBVQ9oZIgT9K/h8Ms8/f77MD3z+uSQbi4mRzw6H2OUCdgKQMeeeqj2A9OcGpgwkJiSmHa/SMcbnlUQt9XkixheaLv7HBOwXXvH5i+re7ocutZbywC8PMHvbbG4efjMrC1eSV5vHYyc8xox+M0DRMmKEtD0GAyxdKu1S08S1DQ0ynk9Nlfq4Y0cRpG7qBwpSH7RVKPunnyTZ4vbtYsO95hqZszKZ5NkoK5P2dPhweT5uW3Ab3+7+lv+M+w+5NbnM3j6bO0ffyZ2j7yTUECrCsTUbxa82LAOMsUCTxl/x4Iway4CBGvbsER/jxYsl+VHgXBVFzjM0VD7n1ebx3OrnyK3JZVTmKBbmLeTc3ucyc9DMv4btQlHEd8FtkeSCihdQEEFHg/hKeWySfLBuG8QdJyKQ+nCoWe/vH/rkuQxNhy13i49En3uDPhIVS2Xf7rqWfSRasdEpisLL617m1gW3khSexFOTnuLLnV/y/Jrn2Vi6kc/O+YwwJZkzzwza8XfvlvH5wTQ0iD/Rjh0ypzVihNg/A4kjAnbJyZOPThIMFRWVfxiWvTInb82RejOym/S77SWAf1wdO4ivlo3mpZdkDHjCCdLWJSRIO+nxSD86LU1sSNnZUle99Zb493XpIu2h3S4+yyZTsG3y+YJ98ECbqyiyzmaDfv3kd927i101/iD3IZ9P+mILFsi+HQ6xgUZFBetNn0/sXCNG/JEXVkVFRUXwKT7yavNwecXmlhSe1Oj3qChw551Sh5WWis2vZ0/p22u1UjdarZIQLS0NdlXu4uFlD7OpdBNTek7h0x2fckrXU7hn7D1kRMkEptfn5Y0Nb3Df4vsYmTmSk7uczP2/3M/IjJGS+CO+nSeijgZtmbtWlDZtp/iUxrg/i0Xamqb2eUWRsX1KisxLVVVJuxMdLe1V4BA+n9yDtLQ2nkNDodhd3WZJ2K0LC9qsUWSMEt27jTtTUWk7Do+DnOqcRn+QzrGdiTCqE3wqKipBAvPTAVt2YNz0V3Id83plHNrUD9xgkHP5K53HXxGNorTd43PIkCHU19ezZ8+exnV33303Tz31FJ9//jnTpk1rtv3ll1/O8uXLyc3NbXOBRo4cidfrZV1Agt7Pjh076Nu3L2+88QZXX311i79NTU1l7NixfP75583Wz507l9NPP5358+czefLkFn/rdDpxNon+tFgsZGZmYl52E1ExMRJorY+UCWu3Wf7XR0K36/0TKYKiKC06blY2VLKxdCNGnZGxWWNFHMnPqsJVWJ1Wusd3p1NsJ8kKaSuSY3gDWdK0oDVJBqSwTBFB8Ln92dQq/Nu5xQCkCwVjNEpYFr8UZePyuhiQMqDZxGeNvYbs4mx0Wp04hyh6iopkcsVqDWaiCZyKVgtd+tawviT4m6bnsKVsC2X1ZaRHpRNmCCOnOocoUxQjM4MifCDZ7S1OS/Bc24KrVq6Hpx70EXJ+gax8tiLJBhXVR66TtwHQgiFCxK18LrmePpdcm7B0yiu0lJeL0T4kpLnARuBt6N5dKtbSUnGyqq8PBqvodPK7pCRwx+yk0FxIYnjiIY6NywuWY3Pb6J3YOyiW5WkA6z7wWCQDXmASJCRFgnEDF9xWIpOjnga5r43bJeM0xLH0wHIURWFk5kiiTMFMuPvr9rOnag8RxghGp/SW7Ln2Ytl/WIZcE1eNPMMemzicxfSH2o0SGBzewR/Qo4DHKg4yigciulLm6EtBgRjqEhPFoNc061IgwCvgiKYoYtgLPFOB7NmpqZCc6mbpgSUoisLwjOHNJlurbFVsKNmATqtjYqeJQec6l1lEkNy1ck8D2cDCDhrR+bxg3i6OJVo9mJIkW6L2oJlBRZFJJ2elDOYiu8l7Bdy58E42l29mSs8pXDv02safmB1mLvjqAryKl6dOfIqHlj5Eg7uBu8fczYSOExq32121m5t/uhkNGmZPm01caJx8YdkD+z8WwRjFK9c/fgRknAXGWLZulYnNffskiDotLZg10ueTZzXtxC/436b/kRmVyVtnvNWsvrnxxxvZW7OXi/pdxMUDmkyEeeyw8zG5LuGdocvMxsHrGZ+cgcvrOuQcvD4vp86WgPCbht3ES+teAuDN098kKyYYmb+3ei83zrsRgI+nftxoHAHEwfGAX+gtcSx0ukTu28EcxpG+kdotkPuG1HmGKIgbCh2mQ1g61825jry6PC7pfwkX9r+w8Sc+xcfZn56N0+vknjH3ML7jeJmkLV8sjpeuOvDaQBciE+DhnahMOYOL5t0KwKxTZ9E1rmvj/ublzOOFtS8QHxrPR2e/j9ZbL1kttXqpnzVaeV8Vr/xpjWCMxmyWAB2zWe5rwIAROOXoaHEwVhSpb0pLg8Z1r1c6RBERMvFtt8vEtN0u71LT+ivwLkZFKew1b6Wsvoy0yLTg84fU/SXWElIjU+mf3B+vz4vH58Gn+ADQarR4FS9ajRadRodeq0fjaRDnN7cZDNFgiPF7x9r9GbhckjG1rQ4EbqvcR7dF6nN9uFw7gIYDcj0jukJo25x1Aoagw3UYG7/z2MSxz1Un5VcUcUj0168VPh2bSjcd0lYrisLKwpU0uBrondgbt8/NmxveJLcmlxEZIxicOhi72052STbrS9ZzUpeTuGTAJUTjFKFH8y7EUTDDXxcpIvxkjIOu10DsQHl2yhZJvW3dC4pbrnVkNxEpTJog16Y+Dwq/kYywjgr/dtEQ1kH2k3U+ZrME5WzaJIFqNltQGMpoFCeLG+W1Zc8ecbzYtEmeU5dL6urOncWZJrLrVl5c8yIOr4NxHcbRMaYjTq+TLWVbWFW0ismdJzNz0JU4rZGNGfSiouQ5Pzi+KDJSocS2n321+4g2RRMfFo9Ba8DpdVLZUIndY6dHfA/SQ6OgcqVMaBljpf3SGqWd8tqkP2CMh9RJ/mfKAvX50m55JcMguhC5LqFprN4Yz1dfiWNH//4SkBgVJfWr1yvvWkKCiJEcEfZyeZY99XL/dEa5Z6GpIhSjKNJPcVYEt0Ejf7oQqQ9j+gX356yR7V3V/vQhMdLnC5GgRotF2oi1ayWAyWKRuiDQJzn5ZBFBAeSZK50nzqueennPwjuJ80TqZPkcuDGlP0nb5DZLPyD1ZEg9ldKGCi777jIAXj/t9Wb9tnXF6/jPkv+g0+i4f/z9PPDLA+g0Or4+TwJQA3y45UM+2vYR3eK6MbHTRN7Y8AZpkWm8e9a7zS7l/UvuZ23xWk7teio3j7iZggJ5LjdvlnoxkJURxNFvyhQ45RT/7XeLM3ddnfTtvF7pjyQkQMeOCmvLluHwOOib1LeZo3Ogb27QGRifNR6d4gVbgdwHn1OeOY1W+hz4xBAcO0j6RRXLJWDFVuQX1FOkHgnNgIThIsjoMosDdOUK6Wu4amV/hhi5zsknsrFkIosWSSBnZqa0BYGATI1G+lbdusmzuXatOKzv3BnMsqXXS/8gIgKuv8FLqekXPt72MSadicGpg+mT1IdNpZvYVLYJg9bAxQMuZmT6cDQVS+Qdc5RLH0nvz8pav0+CvsMysPd4krIyuaY6XVCsqmlTrdfL53nzpFx1dVLewEQIyP3o0QNGH2f214fbpR0IC9SHWhHANMZB58vlOpb8KO2OKQFCkqVs7vrgdr1ulzrcWS0O2aZEaYe9/qyQHpv0eWP6HZk1QfGJiJKrRt6bwJgiJNlffzdX5N23T+pYr1eetx49Ds0+6vPJtan0a2WkpMg1cit2lhX4hWs7jG5m6K1z1LG2aC0ajYaJnSYGx1yeBmknnZXyXBqjITxLrpMfp1Oep+rqYDYivV7em7Q0qDNuo8RaQkpECgNSBjQra2Cc1i2+GxUNFZgdZrrGdW0WOO5TfPyc9zM+xceQtCHN+32/htchz5ezxt8Ge6UN1kdInR6edWT3y2WWNt3tr/s1Gv84OEb62MYjEykA2h4Y24bt3G4J3v7uO7n/0dHiWHj++UGHMq9X3utFiyRY1WaT7Xr3Fmf9QYPwiyMuk3fH5/YHUuilzTPGSZ2ddkrjcauqpC9ZWxtskzMz5dkLZAD0+aQ/EBhnND0FjUay9xUUyLY9eki/oKnApM8HyZ3L2V61Gb1W30x4GSCnOoe82jxiQ2MZlh5UAaiuFqFSq1XKYjIF6mrQGh0UW4opqy/DqDOSEpGC3WOnxl6DVqMlPTKdlIgUdFodDof0WSor5Tl3u+UcDAZ51rt3V6jXlLCneg+l1lK8ipcO0R04YD6ATqMjNTKVHvE9SItMC46lrLmQ/76MD1EkQCVpHKSdJm02gKNS2syKX0SYWqOXNj9mgNyHCGkni4rE0TM7W+oIlyvY3z/rLOmHBe7V4sXS3hUVyfOQnCxBBdOmQUrYbqnnNHp5P3Qh8u54HdL3AanDHeVQMk/GNxqt1AkavbQ7jjKpw/o9LL8LOGBrTfIsQdDmYIgSoWFFkd/ZS+Q7r1MeDK3/fQ1Ng9Bk/zWp8PeFAttp/e9hLIRlsnFbBD//LNchOVn6lyZTMIuu1+sXfstw+sf6df7nPDTYBnsb5HNMf9CFUFYmE/Dr14utobZW9peUJMEt//oXrFwpTkgFBWK3SE4OGsu9XmnTLgwOG9uO1wV1m+Ua6iP9NoS4FjcNtBFarbTjLU1E+3zikFxVJdelRw95J8rqy9hStqXF9yu/Np+91XvF5tNhtKys3SJj3Jr1ct8DdpCoXiJ0Huuv711mES8smy9tnS5cAnSST5Dn3T8ms9thyRIJhDlwQO5VZqaI+JxxRnPx3cJCEfzYs0fawNGj4eKL5RqD/HbdOli2TLJ4WyyyXadOMGYMnH32QVX/YWwDxcXSF968Wfr1LlfQGS0kBE46CSqyZvH93u8ZmjqUR094tPG3pdZSrvzhSnyKj1dOeYUu4bFQ/J04GAdsYxqd9PPMOyEkEaXb/9EQkkadow6b29YYTF7vqm9cjgmJIVQfigYFqteJeFzDfn9/3gv6KOnPxw6UurroWzmmLgQiugX7m1WrpX2PHwY9bsZslrq8ri7odNfUhpCRIffkiGkokPIFbGphHdo87m4RW5H0HzW6ZmP4beWt9zea2o/rXfWYHWa6xHVpZnsBEUuxu+3Nbaq/gsUSHCcpivSRm7Z1Ph907aqgaF04vU48Pk+j7cPtc6NBg1FnxKQ3Sf+rfr8I+tVu8gela+We+ZxSzyWMgo4HKZ21xb71K/2IwP2vrZX773bL+kA717dv0DmzLftTFHlH586V99FqlXapb18480z4yfI0i/IXMTpzNPePv7/Zbx9d9ijLDixjYseJ3DnmzmbfrVghDqROpwhtTpnSQleuHftWIO3+G29IHTVkCNxyy6EB0XV1Egy0ZIk8C4mJIh46fbr0aZpSUyMB7k6n2Nh69GjZcX//fmlTfD4Jyu7WreVua1WVBA+YTCJK0lqQSl6e1K/R0eJAGxjr/pZr8msoihyrslJsjW530/FycPxSVSX9kYA90ueT84iOFgfhhQtF+K26Ws4tIPwWeL+8XhHoqK6Wvu3evTKWT00N1mFer+z3zjvlOlVXy3epqXKspvWc0RgU+1AUqfu/+UaCLxwOadtHjpQ+U1zTpriV6+b1eZn2+TTsHnvQRuwnvzafa+eK/f+Dsz8gOSL5yO/DkW7XyjYWi9wvi0XO0+ORaxEVJfcr176O19ZLopUR6SPoGteVWkct60vWs6NyB9N7T+f07qdz0TcX4fF5eHTiowxNG9q4/4Atx6gz8sW5XwTtN5bdErBn3iGfw7PEFpl2Gh7CsVik3dVo5JkJJJdoOne4ezd89pnUwz16yP0JBOQpijxX0dHSXztibCVQnyP9RH2k2FRCW1Bz9DSIkL3PI/3klrZpuj+0ENEZwsRWtKtyFwfMB1qc69tesZ1iSzHJEcm4vW5q7DV0jOlIj4QezbZrOq5eXrCc2dtn0y+pH6d2CwrvFpoLmb19Np1iOvHYxMe4ef7NVDRU8K/h/+KUbsGx3YJ9C3h29bMkhiXy1KSnuHbOtTi9Tp6b/Bx9koIq0a9lv8a3e75lSOqQQ5PVtKVdAhlP7PufzLn0/HdwrHAQ2dnS9/N44Mor4fjjW9iore+DZQ/sekrGEVnny9hLo2mcg4k2RfP5uc3n+r/d/S2vrX+N5PBkPpjyQbPvFi4UoaiaGhl3XHghHHccvLjmRX7M/ZFhacN4ZGIwyYHH52HGVzMwO83cMeqOxn632SzjtIULpV4M9L1GjpS+q90udrA9e6QeCwhKBGxkLhdMvcDMfeuuwuw0c+/Ye+mXFLT/vrPpHRbkLWBM5hjuG3cfoGH3bjnerl3S/pvNss+UFAmOiBz2NW9seIOMyAzeOvOtxjlTr8/L5d9dTnlDOTcPv5noilNZskTew169pP4O2OgDYiedO0OxTuaueyX2okN0UPnC6rSyqnAVGo2G8VnjMen9z4HPLfaogM+CIUrqiZCDouV8XhmXOirkgMZYiOhyyJxg0zbHbpd6Li5OguzzbJspry8nPSqdvkl9m/2uqS+FT/GRW5NLbGhss3OwuW3k1uQSZghjePrwxmDl8nK5Lg0NQSHwkBAJ/OvevUmb7bGLfdhRKX0+Q7T050NTKLGWsK18G0adkeM7NX/4A/VHQlgCQ9KGyNjRXiT7Cfh5oJH5A1241DuhqY1zgiUlwbJ5vXJNIiLkfsXGSt+wqkraB40m2AaDtK0Bx/RG2vAe1tZKmxO4DzqdtDdpadI2K4qMVxculHY9MNcfGirfT5hwqBBwe/SFA+zbJ0JFOTlyvscdJ2PNgIiD2SxlW7VKrk11tbyHSUkiiPF//yf9hl9+kb4XyLkFfF8CNvVDxOtaOYfcmlze2vAW+XX5DEsfxpDUIVhdVtYVr2Nr+VZO73465/c5n1pHLasKV7G9Yjsur4uBKQPJrcnF5rbRMaYjozJH0TepL7qAnflgfxCdSd6d0FQqPD42lW5Cq9EyqcukZuUpNBeys3InoYZQxmWNA6T+KSgI2oUDcyoREXLdMjLkOSsulvvv8JtTmzoWZmb+BkEcW5EE+DfzaYkEUyI2Qyz/mn8rBeYCLul/SbP268ecH1lasJSJHSdyx+g7qKjQsGiR3LfCQnlHAyIQHo+U7dpbavhu93fM3zefTjGdGNNhDDqtjuUFy9lXu48TOp3AlF5TgjZrn0fGrK4amV/Q6mV+Jiyjcd4NkHe2fp+M+zwNfr+BeLEP6sOC2/k8YPPXh54GqQ/DsoJ2sgBui9SbruomPi3pjX0OuWFmGZ8H5jUVxT9vGBWcY2xKO75fbd7OVSv9Q59H6sKIzqDRNPZRIo2RfDn9y2Y/CcwJdo3tyqzTZsnKmk1it6rdIPPzWr3YK6N6QcpkiGle37fnubrdkmBj7Vqp42bMEJHV34LZLO+Y1Sp2fKNR7I4dOwbHpUVFMhZdt+7wduEjOYf22q62VmyqmzZJvW63S52ekSHiN+dPqw/WR4bo4LPvdUqbqHhkPiI0FYulud3iYMfejh1l/B2YCwi0MU1tNIoidXazcfrvPNfaWpmP2bVL7n3//s2F3wJiMseNsbC2aC3ZJdlU2aroFtcNr+IlvzafpPAkhqUP47j041iSv4RXsl+hU0wnzu0dbPSq7dW8u/ldksKTeHbysySExottr3KZ9HHdZrleGr3fTt5B/LPCMsjLk2dk40axX9TVSdni4qTdv/lWB5urVuP2uemX1I8wQ7AO2lu9lxp7DZ1jO6PT6lr1ydxcJv2pjKgM7B471bZqsmKy6JnQs9l2gbHLwfOAf0Zqa+WZM5ulr3SwDSEuTnwTly4Vu/GQIXI9m/aFPR6xSTdr537nM1dsKebqOVfj9Xl59bRX6RzbufG7x5Y/xtKCpZzQ6QTGZ43n/l/uJ9IYybtnvUukSR58r8/LdXOvo8BcwDVDrqFfUj+eW/0clbZKJnaaSMeYjnh9XnZV7WJpwVKGpg7lpuE3UWAu4NXsV3F5XYzMGEn3+O6YnWY2lGxgS/kWpvWaxgV9zyOkeo34HWk0klhKHy5tlKfe709pwpt2Onn1lWyr2EaptRS9Vk96VHpjn7pTTCf6JfcjGQeaA59J2xXTT2zbGq3YTevzxLYd0ZWCjteyu2o34cZwxnQY0+wytuhDeyQc7n6Zd8q4NuBfYIyXPomrRsYopgTofrPMj9TniN9kTF+x9dZuknkuW6HMqxz3KtnZ0s/MzQ3O3QXqMK9X+pUzZ7ZSvpaeJa9L5her10h5vA7xPQlLl7mvtDMgNJm9e2UuZfPm4NhQfAClL/Tvf8s40eeTebCVK6Vet1rlvejQQcaQQyblcvP8G9FqtLx1xluSOBjxe7tr0V1sLt/MtF7TmNBxAvcuvhevz8v5fc/H4Per9fg8fLrjUzRo+O/E/9IzLFL8PKx7g3YZjUGegdL5oDWgdDifnfoMvt71NTk1OfRM6Mn4rPFsq9jG1vKtaNAwtddUxnQYw6ayTXy3+zsqbZX0TuzN8PThrDiwgj3Ve8iMyuSsnmfROaYzty28jUJLIZf0v6TxHAB+2PsDOyp3cOmAS5nRb0bjvOz27VJXmEzBZIoej9gyTz9d7OO5udKG9+4t7XfTue+sLGk73G75HJhXbBqgCqDVKti99VTbq7E4LXh9XmJCYrA4Ze42whhBQlgCUaYomYe2l/vnXK0yNlR80kboQ8EQhcPYm7x8TaO/fmJi0B870H7pdJCQ6MXqsmJxWnB73Y12PYfHgVFnJMIYQaQpEr3XJvPLgblfrUGO6XNLmw7yjlQshvJfZF3y8fL8u83SX6vPBcWHr/PVbMnNoqRExg8dOgT9BprOu3Tu3FzoqbX3NTdXBPhKS+U9Ovlkeb4D5xqwCydkVrNk/xKWFSxDr9UzPH04do9d/Lu0Bo7vdDzjs8YT6bNJ39znkv691uS/xh7p/2s0KGEdKHZY2VK2hfy6fJweJ93iu5Ffmw9IwusByQPoFN0BraNE6kmNXvpDWoO/r+6WPpHWgCs0g41lm7E4LWRFZ2HUBU+8xFqCzW2jX3I/EsISKK8vp7yhHLfXTWxoLFqNlmpbNXqtnqTwJFIiUjB46yVI2dsgfS1dmMwv+lzy3Gg04usX3gGPR65debn0R12u4DWLiBD7RmQkft/YAqkDA4JNWoPs2xiLOzSTNSXr+Sn3J2rsNfRM6EnPhJ4sP7Cc8vpyBqUO4qQuJ9EltrMkwatYJn45ISl+H1+/76rXAXGDoMN5UPSd2Jj1YTJu0BoBrTxnXqf4UmSc7ffp8srYR6uXZ1Px+uNeNKCPZHeOiUWLpG3XaoP2rcC76HbD5JO8FLGWOXvnUGWroldCL4akDWkcG3aP787p3U+nT1wXNIExoSFa2gOtQdpCr0P+9GHYQjuwtXwrm8s2U2WrIi0yDYPWwP66/cSFxtE/uT8DUwYSboiUxKcHPeoHzxe1SSDK54Wir8WerdGLP6IhUtpot0XG2fowyJgKBz6XZIYR3SBusDzr5u0yHrcVig/HwCebxNiEyzqNVs7R5/SPTaOkDm9KK+3XmqI1PL3qaSKMEUzsOJEQfQgKCiXWEhbsW8Dg1MHcOfpOzBXRzJ8v9puAAExgDsHnk3r4jDPE/hS4ryB1bqBP5/PJ83zVVeIL/2t1icUi9tlt26St7NEj2O8H2V9iIiT138x/l/0Xg87AKV1PQeMXy7N77Hy35zs6RHXgwQkPklyzXNpoxSeJ4QzR8v45yqWfrw+Drtewt3oYCxeKncnnk75lwPclcK5nTnWyoPRjvtz5JYNSBjEodRCRxkiKrcWsKlyFzW3j+uOuZ3TqYDT2A+LvZogUn4KAP77X4a/Do7GbktlXu4+82jysTitJ4UkoKFQ2VBJliqJLXBc6x3amwRxCRYXUDZGR8td0HidgBwuPaGFy82A8Dtj7kvgeh6VByiSpn2xF8nw27JdntstM6d/UbZV3Oqq3+PW4LdJnqM8VW0jf+4M+Elqj+NhoTeKDWblK9hk/DHrc1KZn86OtH/Hh1g/pm9iXM3uc2bi+xFrCe1veIyMyg+dOeg6vLZp582TuqrhY+nNN7fgOB1x2mfSnAsJvxx3XXPgtEJzbVuG36mqZU7bZ5JlMTAzOATdt5w6er26NnByxyTqdMs4+ONYt0E9s1ga3gttNox8wiK0i0L8NoNHIdsuWyXg+LEzsGeHhwecp8Cy1KZHpEVBTE5zHjoxsLgwbeATCwn3sqNraOH8Qbgg6LlXaKqlz1NE9vrsIF7cFr1P6PT6XvOdaI6AEYw5RQB+BWxtCjb0Gs9OMy+si0hiJ0+vE7XUTagglNiSWmJAYNIrHbw+s8c9nhiGxAoocRxcCUb2obYimpETOV6cL9kkD98LrhaxOHrZUrsfitNAxpiOhTeJUS6wlmJ1mesT3aBbLdVicVf7+hk3ac12o9G8CY0NFEdtfWLr/HGr97XI44C+cvdT/DnfHriRSVERjvEjALydwv3w+6NDRzfrKZXh8Ho5LP65ZHNO+mn3k1uQSHRLNiIz2VQjzeuWdr6mR5z00NNi3DpQvMVHqhF9FUUSkLRCPGJIM2hDwOeT58dSDRosvqjc1TgsVDRU0uBrQa/VEGCOosddg0BmIDYklKTyJcK9FYurqc8VWFNlVrq+jNBjPGDOA0rh7mDtX7Hc+n8z3BfrgEBy7DB8uczxLl4o/XnW1tJGB+ImUFKnnBg2SJATZ2VLf1dfLfgwG2VdsrCQDstmkrc7L8z+HWUE/D59P3s8pU+Dbb2WbyEiZOw3ECgTqOb0ehg7zUNlQSaWtEofHQZQpCq1GS52jDpPORGJ4IolhidjcNnZU7sDldZESkUKEMQJFUah11FJeX05yRHJzYeJfu1+WnX6/yRCZA9CF+H1aHf54ACCqF1aPkzpHHXaPHa1GS4g+pNm9iwmJwaTR+N9np9/P1u9XEYhNRpF3qRW/0YM5cED68k6njIWa9l0ChIYeGn/Q6rnKQisbHFS5/wo+xYfT48ThceBVvI22AbfP3Xh9TDoTHrcOmy0YT9303Wp6/9vSLgES9+WslvMI9NO9DhnPBN672MEylvbY5Ht9mPRDvE6px3we0BqwG+LILsnG6XHSNa5rszj3/XX7cXgcDEgZQJJOI3M8Xru8h7pQ//jRInU1CoQkU2LpRFmZ2NATEprXc4FbEBGhYAx1Y3PbcHgcKIpCiD6kMWmOUWckzBCGSWtA46r2x7Vo/eegE1sRvmCcuyFW+lCuGunLmxLkGrit/rlmp/QZwztI3eS2yDaBeXiPzT/ecvtj09PkuVc8fl9svZxfIM4VQB/OgfoKdlftJsoU1UxvwO62U2gpJDYklkGpg5pd01bxusTu5rb440Li/H7s1fIuuq2gNeCMkwSX2cXZlNWXkRCWQExIDHur9xIbGku/pH4MTRuKYosnN1ds6GFhMp8QEAhr7B+EgSe0mEV5i1hTtIZIUySjM0dTbC1mR8UOokxRnNj5REZ3GM2OLSEsWSLvY1KS9K+Mxua+7CNHe1hS9TGf7viUAckDGJA8gDBDGBanheySbPbX7eeqwVcxPms8j614jE1lmzil6ynEhcahQYOCwvKC5ZQ3lPPvkf9mWNIESkvFdmcwNI/FCrw/BgPEmkrk/nusEq9kiJR757GLT72iSD/asksElD31ED9c5jLdFv+8ZL5c706XyLg8wB/k95adLclcKyrE7jZ6dHP/1oDw265dMn9fWQnjx4stw2QK7rpF4bfWyuZ1wN5X/G1rpvi56cIkHsRRLut1YdD7HvCYpW7xeSTOSGsANPLueyygC6Mh5LjGeUCDQeYdmmomgHyu0+ayr2YfMSExDM8Y3lgcn+Jj6f6ljT4CzfwPD8Pu3WIL9njkuQwPP7R+jYxsxb/0YHweed8UtzwPWqOcp+Lxv/8+0Brw6sKwe+xS9/u8jfYtl9eFTqsjRB9CqD4Ur+KlylZFrb0Wl9dFdEg0Do8Dl9dFmCGM+NB4YkNjsdu02O3yHgXGXQc3QSYTYlO1VVPvqsen+Ig0RWJxWhrb4PjQeMJ1BrGBBOLNDTF++4bf78Zvyymy9OS778SvJDxc+jxRUc3HEZGRLSQz/R3z0IqisLNyJwv2LWBX1S7SI9MZkTGCjaUb2V+3n44xHZncZTKDUgehDYztNZqgLT1gB8MHaGlwRZCbG9Q3CfjjNj0HrRZ0YWbWl6xHo9HQLa5bo8+YgkJOdU5jXF+bEiEoCtRtkTrH5xafLn24XxvAIT5OWj0kjPUnznEjfvN6/7PkQ9oTMZD5tGE02LS4/afadCzX9DKGGJx+m7VT+lW6ENmf1z8HHehbuWol1t5RCdG9xI6tuOV5cFTKtnFDpR6sXCHr4wbLdp4G+Ww7IG1rxhRpN31+B3yNXu4D/gG14gWNBpfHxPwFGvbtE1tB377SVwvMfwfaiOHDQavz4fV58Sk+NBoNGjT4FB9ajVZiEbQ6fIoPs8OMxWnB6XVi0pnQarTYPXaMOiNRpiiiTdFBn6Ffo6FQYtIDyR+0Jv/74AB7mdyb6L6NmiiHJaBZ5LEGdYo0+uD75fdZsiqdG/0JwsLEn6CpL3zAzygqqm2nUF4ufeGAvaSp3QoC9g0FjA1U26qxuqx4fV6iQ6KxOq0oKI11RKQxCo9H0yimdnDdGHju2ixM5rZIrEggNlMfAShBzQzFK747bbSpzp8vsRWlpVIvZWVJe6jTyXPkdkvMQHo6v47iC9oJNVr/M6wJ1ucogBavNqLRphJ4D5s+v4H5F63BRXl9ORUNFY3jNAUFq9NKmCGMpPAkksKTWLPKwMKF4u/St6+MSQO2oYAGQ5cuwQQ+za5HC9ekxet28HaK4m+rAp2kwCCzSZ2j0YrfZVvwegCff39agmMkxf+nkfVui/RR8fnt6Xr/OMPrn0/TyHvnrvPPHWmkT641BOeivE6pc8Iy+LVkShaLhejoaMxmM1G/8gIdkfDbY489xn333cdVV13FDTfcQG5uLldccQWKolBSUkJ40+g/oHv37nTu3JmffvqprYdo9TelpaWkpaXx2GOPcffdd7f4W6PRyBVXXMHrr7/ebP3q1asZNWoUs2fP5oILLmjxtw8++CAPPfTQIetPPvlkDG1NJfMrVEVWsSd1D7URtaTVpGHymChIKCDMFUa30m6k1aYxtec+Lui3Fw0Kj684jv11kYQbPHSJq2N4ejkRRjeri1LoFGNhYqciqmwhvLxuAOX1YaRG2siIsjK5ywEAPtnWgx/NBtZ3Xo+iUUgyJxHhiMBmslERXYFX42Vw/mDiqjuxY8eVWK0d0GrdZGX9RGhoBRqNgkaj+I1wRuLjt1EaV8L2jO34tD4yqjMId4aTn5SPzWSjU0UnepT0QKNo2J65nQOJB4i0RZJWKz3uktgSrGFWsiqz6FPYB53SvIH6/ocfADjzjDOare+TWEVyhB2PT8MBcxROj45Ik4sQvQedRrRxd1bG4fL+ei/W7Q6nvHwILlcMOp2DmJhcdDonwZdWcDrj2LDhNpzOeBISNtOz58dERBSi1zvw+bS4XFF4POEYY3NZ13UddWF1JFmSiLCLV19tRC21EbWk1qYyKH8Qw1OruKj/bjKi6lmSn8He6lga3Hr0WoVbRmxEp4VX1vUjLdLGiZ0PYHfr+XZ3F4qt4cSGOOkQbWVa730A3L5gDMvdbjZnbcan9ZFSl0KULYrymHJqImqItkUzaP8gwp3hLVyB34dMFujx+bSAVHrBQacPrdaN1ZrF7t0XUVPTG4OhnpSUtYSGVqLVuvF4wrDZksnM/Jnq3j+wO303kbZIou3RjceoC6ujPrSefgX96FjVkePSyjindy7d4+soMEeSXxuFw6Ona1wdPRLqqLaFcPl3k0gOt3HpwJ0MTq0kzODBp4DXp8Wg8+Hyavk5L5PX1vdHr/Uxvc9eTuhUSGK4o9n55dVGMXtbD9YV/47AVxWVJtTVdaWg4GQcjjgiIopITl6HXu8gWN9o0OnslJcPJzd3Gm53JN27f0Jq6kqMRitarQefT4fHE45O50Svt+NyReH1GtDpXI31l0bj73QAen0DWp0Lc5iZiqgKHAYHsQ2x1IbXEuIOIcmSRLQtunEy+4+mS2wdGVH1aDUK+XVSp4caPEQYPWg1PrQa2FsdQ70r2BkLtA9waBvRFjKjrPxrxCa6xZv5KbcDywvSsTiNjOlQQr/kKnon1lJtM3H5d5OpjqgmJyWHqqgqUmtT0Xv1FMYXEtsQS9eyriRb2maAUWkdj9aDNcSKS+8ixB2C3Wgn1BVKpCMSrdIW7xdhYEolVw/ZRkZUAx9t7cG2cgnmGJJWzsiMMjKj69lclsD9S0b+yp4OpfVnTmF6nxxO6VqAVqMwN6cjheYI9FqFzGgr5/fNAeDen0dw+aBddI0zs7owha93daW8IZSucWbSIuvpmVCLT9HwzKrBjM8q5sweeXSONbO/LopCSyROj44+SdVkRDWwoyKOu38efcTn8HenrGw4e/dOx2LpSHz8dlJS1hISUo1W68brNeF0xhEbuwdd8ia2dNyCOcxMXH0cabVplEeXUxVZRbgznIH7B5LmCeOKQTvIiKpnf10UqwpTcXj0ZMVYiDa5SAy3Ue8y8uGWnijHqO5UaRmNvw3UELQB+BTwKRo46F61NtaIC3Vw3dCt9E+uosAcxZqiFGrtJnyKhmm9c+kYY2XlgVSeXDkUmy2RvXsvoKJiCE5nbPOyaNz06/cmWVnzqavryt6951Fd3Q+PJ6zZdjqdneOGPcTOsa9hCbPQs7gnnco7NX6/N20v+1L2EWeNY/Te0XSNq+O8PnsZlFqJy6tjf10kNreBzCgrqZE2ii3hTP/g/9i+/Soslk4kJGyhc+cfCA2tRKdzoSha3O4wFEWHLn0tK3quQKNo6FrWtbEv4NF6yE3JxeQxMW7nOCxhFtZ1XYfRYyStJjh7YjfaKYstI8GSwPCc4WibZDltrd6MMjm5a8x6eiXUsK44hbk5nai2mRiWXk73+DqOSy8H4KKvT8Lh0f/q/oamlTNz0A7Soxr4YEtPdlTEodUoDEipYlxWCWmRDawpSuax5c0t9a3d/78DHo+RnJzzKS0dQUNDGtHReURGHkCnc+DxhFFfn05W1k9kZS1st2N6NV5W9VhFXXgd6TXphLqCM3QH4g/g1rsZnjOcuLp0du++iNLSkTidcaSkrCYqaj96vQ2fT4/TGYde30D37l80/t6tc+NDJgR0ig69L/hcbN58E0VFE1AULf37zyI5ORu93oZW68PnM+B2h6HTOTAaG9rtXI8leq0Pg9aHVhPwIA7Waz5Fg93Tlpk8qecmdykgLtRBbk0MebXReHwa0iMbCDO4CTd6qLaF4FU0XDt0GzEhLl5aO6Dx/eqXXM2glEqSI2zsrIyj0BzJeX33EqL38PbGPuTXRRMT4qR3Yg0ndSkg0uTmq51deH9L718tm1ajMK1XLhlRVuocJtYUpeD06kkOtxFhdJEQ5sDl1fJjTqc2n+9v4XB1REKYjUsH7Oa49HLCDJ5m3+XVRvH2xj5sq0jA59ORl3cWhYUTqa9vbuCPjNzP0KFPEhFRjMMRw969F1BWNuKgtsRHTEwOQ8bcydKBc/HoPQzOG0xsQ3CbjZ02UhtRS/eS7vQobS40ovL3oKxsGPv3n4rDEUd8/PZGG4KM+UFRNBiNViIiiht/c7jxslHnYUa/vRzfsYjYUCcWp4E6h4lwg5v4MCfVNhP3Lh5FiTWiTfsD6JlQw/l99zIwpRJtk+5Wfm0U3+7uzGvOBnLScohpiGHs7rHNfrus5zLM4Wa6l3THq/WyL2Uf8dZ4Ru0d1biNzWjj574/gwYm7JhApCPo/dxa2Xw+HSUlY7Hb4wEtCQlb0ettgK+J84WW8PAStFpvyxf/GKMoGjZsuIPS0hFotR769XudhITtGI1mNBoPXm8odns8YWEVGAy2Y13cvzRlZceRn38G1dV9UZRg22I0munV6z06dPgZj8dEbu45lJSMoaGh+Syr0VjHoEEvkJS0EaBx2337zsbnE28kg8FKt25f0Lnzt43jlNrabuzZM4PKyiHNjtmlyzd06fJ12yaaD6K19stqTWfnziuoqemN0WghLW0F4eFl6HROvF4TDkccUVH7qarqS1HR8bjd4fTu/R6xsXswGKxotV68XiMuVyQREaWEhNQceeFU2sz+/aeQmzsVuz2ZTp2+JyVlLSZTHVqtG59Pj9sdgcFQT2Rk0bEuartyuPZGq/Exrdc+JncpIDnCjtOjxew0Ear3EGlyU20z8dDS4eyvi0an8XFGj3ym9colOsTVuI+91TF8tr0b2SUy19MtrpYL+u1lUEoFuibmx0JzBHP2duJlq4ddGbuIsEdw/M7jm5VndbfVVEVV0am8ExpFQ15K3iHtl0fjYf7A+fi0PobnDCfJcpBgi4rKnwRzqJn1Xdbj0rtItCQSbYvGbrRTHl2OW+cWW2ldGjEhDmb028PozFLCDG5K68OxOo3EhTpIjrBTbTNx07zxhBm8XDZwJ4NTKzDpvdQ5TNjceuJCHYToveypiuXWnyaxc+ellJcPw+0OJz19md82YMfn0+F0xqDVeoge9CZruq/B4DHQ90DfRruVS+9ie+Z29D49E3ZMINQdijXESllMGXVhdcTXx2MNsYIGkuuSSbQkovEa2Lr1BsrKRuLz6ejV6wOiovIwGusBxW8/jiY2di/dk0q4oO8eBqdW4PZpyauNxubWkxbZQIfoeuocRi7+biIruq+hLryu0ccjQGFcIT6tj1F7RnFWYgM3DtuCQefjlXUDyC5ORqOBzrF19E2qISncxu6qWJ6bczd5eWfidkfSs+cHJCevx2CwoNV6G+cE9Xo7JSVjqK7ug9sdQUbGYiIji9BoPH7/DXF2Cg8vwWi0/uq993qN7N59ISUlY3C7I8nM/Jno6H0YDPUoiga3OxKnM4bu3T//1X2p/Ha0GoUZ/XYzqXMhHp+GebkdKbaEY9ApdI41M7WX+INcMmccs7usxKvzMmLvCBKtQaGydV3WUR5TTseKjqRvOYcdO66krq4r8fE76NRpDqGhFf75Yy1ud7j/mYrw9zcSiI/fTlraSn+/z4eiaPD59BiN9URF7W88TmtttVajcOXg7UzoWITFaeKrnV0osUaQHGGjY4yFs3uK2t4dC0ezu6ptgU/tSVK4jasGb6d/chUl1nDWlyRjdhrRABf020OE0cNHW3uwujCVywbupF9yNWX1YWwrT8DqMhCq9zClVx4+Bf67bBh7qmI5v+9exmUVEx3iorw+FLPTRLTJSXKEnRq7iVvnjyUrxsq5vXPomVBLkSWC/Loo7G49XeLMdI+vo9pm4tnVg7n+uK1kRDXwybbubCxNwuPTMCy9nKFp5WTFWNlbHcM9x3BOMDm8gYsH7GZERhlGXVDVoMoWwuL8DGZv64HvCOZy/wq09qwrioacnOkUFY2noSGVpKSNxMTkYjA0oChaHI5YQEOfPu8cg1IfG4qLx5CffwYORzyJiRtJSVmHXt/Q6Kvi8+kwmerweEKx2VLweEKIitqPwdCARhNwQAbQYDKZ0evtx/Bs/pw4dU5K4koojitG59MRaY+kIrqCBGsCGdUZxDXE4dQ7Wd5zOXajnayqLPR+X0lFo7A/cT86n44xu8dQHFfM3rS9h9joPFoP8wfI2OXgNqatfjlHa7uDt6mu7kVh4SQcjliio/NJStrQxMcTQINe30BERGmr+1b541BQKEgoYHf6bjSKho6VHQHIT8pHo2joWdKTDlUdDvFV+zvP4ar8c4k0unhq0grSoxpYXZjCB1t6UdEQSo+EWjKixGfMqPPyzMrjsDak4HaH+oW+xVdUkPZVo/FhMpmP5emoNEFBwRxmpjqyGp1XR4g7BHOYmShbFPH18Ri9zYOPfPjw+ef6tWib+UXGh9pJCrdh1PmosoXi9OrQa32YdMF5rIqGMFZl30pJyRh8PgODBr1ATMweDAYbGo3X7yMRTkRoDU+evICeCbVsKk3kk+09qLGH0DOhhs6xFoallwHwyNLhlDc092H6JxDwLdP65wwV/1rxLVNRUVH5/UgweCherxGfT4dW6/GPg4P1jFbrafM4WFG0eDyh+Hx6FEXbpH8Q2KfG7y/35/R9OFpYQ6xUR1Tj0/qIcERgDjMT5gwj3hpPiKctiklHh8ldCugaV4fLq2N1YQp2j4GYEAeRRjeJ4XLP5+d0ZE/BOJzOOBRFS1zcLnQ6u/85ERRFS3h4GWjd1IbXUhlVKYkpHeHURdQRaYsk0ZJImPvQtry1cVWI3kNcqAOTzovdo8fl1TXGV2s00kaanUb6J1fTOdaMBoUt5YnY3XoiTS4ijG4ijG40KKwvSWJ77sk0NKTh9ZpITt6AwWBBo/E182kKCyvDFlHFzoydVEdWN/rt5yXlYTPZ6FDVge4l3TF5Tc3sBq3R1rFiVVUfampkPiUmJoeIiOLG+ZRA2UwmCyZTXZv2F0Tx+0YpATk/1H5E21D8/wA0/n8Hf28z2qgPqcfkMeHReUCBSEdks3m4tqLX+tBrfWg1zSM9FMDj0+LytlFg4yjg9Rrw+Qz4fLrG2FsICjLodE50Os9h9/H3QSE9soEokxOfoqXOYcLt02DS+RrjQbyKhvL6sDbH7Hg1XqojqqmKqsLkMWF0GzGHmYltiCXBmoDJY0Kr8RFhdGPUeQENLq9fOEcJvtk2twGnOxynMxqv14hW60avdzazbSuKBr3ejl7vbP9Lcwxw6B1URVVhDbES0xCDLcSGgkKCNeEIY04V4kKdhOrdgPi2e33B32o04PZqaXC3jz6DikpbCTO46ZtUTZTJRZUtlMqGEDw+LYnhdrQa8U+rdxnZXZGM3Z6IxxOGRuPBaKxvwUbnxmAyk5+UT05qDlpFS6eKTjj1TgoTCjF4DPQu6k1aXfNM8YebJ5FxhBFFMeDzaf39FqWZ4JzB0LzPqPL3weMJxeMJ8Y8hvWg08swF/YgVjMZ63Do3lZGVVEVVEe4IR4MGa4iVBGsCiZbEQ+yRKn8f4kIdRJuc6LQKFqcRj0+L1l9PBOI3KhpCOTh29vfi82nx+Ux+m4QGjaa57UGj8WEwtM2+4XRG4XTG4vWa0Ott6PX2xrouIF4m6x2/sicVlb82brebn376qf2F3+x2OyNGjGDbtm2SkQpRK3366ae59dZbm227fv16hg0b1uJ3h6N79+506dKFefPmNVsfEH57/PHHueuuu1r8rdFoZObMmbz22mvN1geE3z755BPOP//8Fn/rdDpxOoMDL4vFQmZmZpsu4pGy4sCKxqxRCWEJnNz15MbridcpyqTWXFGKNCWJAqBGByii0Jh6snxX+hNY9/kz/6Y1UU/1Z0HqfBlotBRZipjy2RR2Ve7i3rH38vSqp0mNTOXb876lW3y3Iy6/2WHmP0v+w5byLSSFJ9HgauDRiY8yKHVQs+0+2voR1865liFpQ1AUhU1lm3jj9DeY0W9Gyztua/b5PwifT7JsV1ZKdgOXSxSUdTpR0k1OlmwmDa4Gzv3iXH7K/YkXTn6BPVV7eHX9q/zfcf/Hi6e8KEq6P/YH8zbJzDR5ndyr0vmS3TZA2umw+XaoXguJY2HISxDVUzLnOMpFGdJZCR0vAWM01bZqrplzDXP2zuH4TsezKG8R/xn3H+4de2/bVV+PAvHxkilDr5f/D5ed5tb5t/LcmueY1msa7539HtM+n8aCfQt45PhHJNt9zSZYMEzUL/s9DH3/Iz/c/bwolRd/J8rCZ5fC3J6SaSmmPwx9VbIAaQ2w+lLY/wEkjIRJq2DpGVAyx1/Y4ZA4Tu5H7huikN/1Gjju9dYLraJyFKithZ9/hj17JAtOx47N1ca9XlG+b5YJWqXtOKtg+8OShTAkGZLG+7Ola0WB11Mv9XPKiY0/2VW5iyKLBFQmhicyMGXgsSm7SutY9sLOx6B6nSiUxw8ThW3wq2vXS58pdkD7HdNlhjndpD3uMB1GfiRtTdF3ogwP0o/pOEMyqXj9qveeer+as1cUoHUh8n3NevjlZECB496ArldLdo79H0p2p/JFEN0HTt3efufwN2HUKFi9WpbXrZOse62hKAqzsmfxyrpX6JvUl63lW7li0BXcNuq2tmWhUfl70NpYY/3/Qc4sQAPTaiSTizUX9rwgmR98bogfRnHETfTvL/3biAj4z3/glFMkC1xVlWT+jo+XDE+TJoliflYWPPKIPK/R0ZJR7pdfJNvZ/vDPOe/L81ot7oKLFjAptRf82E/GAVkzYPg7oDNB7RYomA27ngJ9OMWj6nnxRXknfD44/ngZqxiNwQyUCQlw/vnwWvZrXP/j9USbonn5lJexuqzcNO8mFBTmXzSfEztLW/jKule4cd6NdI3rypfnfslPuT9x18930SO+B2uuXHNoVpDW1Pd9HskGWrZI6sDEsTJ+1fjHK4pXMiCkn9G2/dVsgu0PQU22ZFtNGC33zOcKZvtKPx1iB7Z6bf9unHsufPmlLH/xBZxzzh9z3GJLMUPeHEJ5QznPTHqGYenDuOTbS9hft59nJj3DraNu5fbb4ZlnZPtZs+D663//cfftkwwSlZU0ZkRtml102DBITf39x/lH4rGJncm8XWxTEZ0ko0ujPcojWbHsxbDnRcnKmzQeono1yR7XIO9jp0v8/e2/CK21EY5K+Gmg2BoMUdDt/8Tm4HND9lXS1xv4DK4ut3LaaZL9EsRmNHGiZLrZtUuyZi5YINlNxoyRTC4gY7wT/UOQzZsly0tJCbyx+2Ee+OWBFosaHxpP3s15RJna11ap8hfmcJlyVl4ABz6VjFZjvoTkCbK+dos82wAnrYe4JsaGw+2vYhksmeTPcoxkwDREg3WPrIvqyZxuT3PGJ2cQog/Bere1sb/t9rqJeDwCl9fFjzN+pHt8d7q9LHbpIWnB49fYa8irzWNc1jiWXra07ef6N8FmkwxXNTVii3a7g+1dWJhkrm9TlleVFnn6abjjDlnWaKSf3rmz1MsrV8Kll8Jzz8HYsZIZGSTz1llnScbPwkKYOxeuvRauu05seCNGSPbFlli1Svr+X34J550nfZWWsFpljPGrtFEd7oSJCosXNy9DS3z/PcyeLeXv10/+wsPFrh/IMHbqqTIHonL0yM6GN9+EbdvkORs+XDKdBjLLejwweLBkRP1bcbg6feOtsOc5sZ8NfxcyzwWtTjI//+DPTjtxMSQfD6sugoKPWz/O1GrJVLn4eOm7gWSsNMWDeafY7ELT+Ln/B5z44YnoNDqsd1sJNQTFrROeSqDaXs2HUz6kS2wXRr0zCr1Wz3OTn2vMpJlbk8sLa18gJiSGitsq2pZ9XEXlGFHnqOOiry9i/r753DbyNt7e9DZxoXF8c9439ErsJWO/hSOgZoPYpsfNgYiO8g6VzoflZ8uOTsuBX06EhgKZbx35MUT6UzrufAq23AnGeO7fUsUjj8jqZ56Bw7mNXPrtpXyw5QMSwhI4q8dZ+BQf7295H5/i45VTXuGGYTe0+TyffVYyS+flwZQp0qbHxEg7Z7OJPe+CqVUkb+gr8/DpZ8HoT6XuqdkAxd/LvBLAeS7KbNUMe2sYhZZC3jz9TYakDeH02adTVl/GZ+d8xrl9zpVtXXX+TPWVwQyQGp0/g7IR4odSVhPLvHmwd69kje3WTfoCgTlBj0fKO6AdpzYWLoSTTpIq98wz4ZtvgsdT+QOxl8LcXuA2Q5crYejr0sYVfAaOsuB2nS/n1sUP8dya51oMhtJpdOTcmIOvphOPPSZ9WaNR7ISdOknWWK9X+qthYXDhhYcWJZCduNVst63ae92wagYUfQ3R/aD/IxDZXd4jV428A6466HqV+HH80fx8PFT8IuPVM/MlU2vZz5D3rmSw9jmh+42w6xmZ10uaABN/lu32vQNl8+GAXwBx9BeQ84r4pYR3gvFzINqf6KBiOfw8TpbH/QArpsm4uM99ck0Acl4Tf6DCLyVL9em5sPdF8QcKSZUM1Ppwfx2hSPbYxLHHzrbdcADmHydZowHCMiE8S+ZjA+um1YExutVd/J144QW45RZZvuceePTRY1qcPzXBZKEqfxSbyzYz+p3RuLwuPp76MbEhsUz7fBoN7gbmzpjLyV1PJqc6h+6vdAfg0gGXovPPy5XWlzIvdx7pkekcuOVA45gG+P0ZuX/vdn9Te98/jRp7DY8vf5xKWyUAyeHJ3DXmLmJD/Ulu2lJhqM+Cyt8Bnxfqc6Wf7/aLdWu0/oZTKz4S0X2ObRlV/hKUlYmfUV6e2BCysmTM19R+PGYMdIxYI+MPewlEdJa5wUA7r/jErybjrGN5KioqKioqKir/MObnzuen3J8w6U14fV5mDp5Jz4Sex7pYKioqKioqKiq/iypbFc+tfo56Vz1Oj5OucV25cfiNhOhVx14VFRUVFRWVQ7FYLERHR7e/8BtAfX09zz//PGvWrCEuLo5zzz2XM88885Dt3nzzTebNm8dTTz1FtyOIDBk5ciRer5d169Y1W79jxw769u3LG2+8wdVXX93ib1NTUxk7diyff948E/HcuXM5/fTTmT9/PpMnT25TOY7kIv4VcHgcfLPrGzw+DxqNhrN6nEWk6TCKXO1EkaWIYksxABlRGaRHpQe//Bs5cnh8Hv6z+D/sq5UszGM6jOGm4TcFN7CXwt6XxYnTYxNBN63R78TpEWf5Yf8DnVGCp+u2g60IvA0ihoAW9BESeJ05tdmxXV4XiqKg1Wj/FMEkr70mAXT19TBjhvx16CBBiRYL5OfDwIHQtasIsVzx/RW8t/k9+ib1ZXvFdv41/F88f/LzsrOKpfDzBFk+7nURZQMo/MZ/XRDRtvp82PRv+XzSRogbBPZyCSqoWgXWHBF+G/Bk0AG3+80w5IVgwecfJwI8qvCbisrfH8UnwmCBQBvdkWeFUfkT4vPIfUURkZKjdV8dFRKkUbtZglhCUkX8DY0EZZgSoO/9bdtX7huQfa0sn7gCEkeL8Fv+e8FtTPEiMqfSDIdDgtM2bBDRzNhYEdYyGCSY3uWSYKa/XWC0ym+ntaABlxm23AVlCwENpJ3if6+NEoBnK4Ru1zHzjmG884785L33RBSiJQYPhk2bZHnrVhFPaAmf4qPPq33YXbWbf4/4N+f0Pod3N7/LWxvfYnj6cNZcuUYCzFb6xeHGz4W0U2V5+ZSg4IouVIRcWjqGr+UAzulfTOeLnV/wn3H/Iacmh0+3f8p9Y+/jkYmPNNvuhrk38Or6Vzm/7/nMy5mHTqtj7ZVr6RrX9dCdtrcQS1v253WKyFSg7teFijCT9tiPif5IRo8WQQ+AjRslMPiPYuWBlRz//vGkRqZyZvczeSX7FS7qfxEfTvkQgJwcEaLbulXGf7ffLkHLUVEiJFJaKv+ffvofV2aVo4DP6w9mRwLkNX/ByPHW2ohtD0igv0YnQvLxw4LffRkrwpwDn+F/K2/lqqtk9ejR8N13IgYaYMMG6ac8+CB87NcleeghuP+gLmNODmRkgEdrpfNLnamyVTF3xlzGZ43nxA9PZE3RGp468SluH317e569yl+d1tpMRyV84xdg7HkrDPIrca48H8oWgKtWPh+J8Nu8gRIor4+A0Z9Lvwlg0+2w+xmI6kn5+F9IeTYFgP8e/18SwxMBKK8v5/5f5KGvvL2ShLAEJn04iUV5i0iJSKF/cn8URWFh3kIAPp768aHJQ/4Bwm8qR4/iYkm04PHI+HHRIum7B6itFeGtrVvhxhtl3aWXwjvvHNqntlikP3PFFfDuu60fc+VKEd7o0UPE3UBs5KedJn2gX36RfbVZ+K2NlJZKG7NsmZzXaaeJwF1YGNjtIjI6fryI0bWEGrSv8ofQWp3udcIXETJv1ulyGOEfiG+6XRL6WPxKixMXy1hw6WnyWRcKXa+DmH5QOi8o2DK1CpadAVWr/ePnryHtZPlu+yOw7X4ITaP2pO3EPSUJJd464y26xIp4VZ2jjqmfy5zczut30jOhJxnPZ1BiLWnxtJqOh1RU/swE+l1OjxONRsP4rPFBv4HazfCT37gw6Hno+S9Z/vl4EQoP0Pch2OAXYpswH1L9PhjfZUpQu9sMxnjqT6ri9ttFcNRshgsuENtAZKS0hxUVIlh1220iEtFrVi8qGypZPXM1G0o3cMOPNzAqcxQrLl8RTKR3hDgcIvZm9yccDQ2VMZqucpEIGwOM+AA6XSzL664J9pcBRn0CWh1by7cy5p0xhBpCGZo2lB9zfuTRiY9yz9h7flO5/miWL5ekAVu3it2wWze59lptUABs1qxjXcp/ALYiKPxK3jVPPYSmBpNk+DwiANHrdootxXR+qTMur4snT3ySbnHdeGHtCywrWMYFfS9g9rTZzXarKNDQIM+5yyUihxERIuz7m/i18Ze7XkTAbcXSJvuckvjIEClJK5uOM/9Iir6DNZfIte15G6SdBiEpcj7OGhHfSDsV1lwKxT9AeEcRbovpK348ARuXo0L8UX70i3H0/y/0uVeWF42D6jXBYw57F9Zc5F9+G7pcIcv7P5F5Q5Br07GVBJl/FtZcHpyfHP4OdLpU7HyFX8EKf7aRf5Dw2/79cMYZsH27jCUfekiSjsTEyLiyvFxERE866RgXVOUfyxc7vmD6l9MZnDqYtMg05uydw9OTnua2Ubc1bjPifyNYW7y2xd/fNvI2np78dPOVqvCbioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKikq7cFSF3442V199NZ988gm1tbXo9frG9Z9++ikXXHABK1euZNSoUS3+dvLkyRQWFrJr165m65944gnuvvtuiouLSUtLa1M5/m7CbyoqfyQOhwhebNkCNTUSvOb1inNxWpoE9qdIDChen5dFeYvwKT70Wj0ndj6xueP+3pdhx6PgrIb0M/2ZjyPBY4X6PIjsIY67O/xCFWfkS+Z5ZzXsfi64n/AsydC+701xUJ1WJ47H5l0SBLTvTcl2pgq/qaioqKj8Ufi8EoBS8IkIxnW5CqJ7i5CCq06CZuKGHiL6qqKicpRw10tQp8cKKPIumpJAH9pM0C0nR0SsWsJgkKCf0FAJKD0cH2z5gEu/vZR+Sf3YeM1Gur3cjf11+/n+/O85o8cZ4LZIoG19HiSMlmCrqO7BHTgqpM8b3euITtPitDD4jcHk1eahoDAuaxyLL1mMTqtrtp3H5+GOhXdQ0VABwNVDrmZc1rjgBkdTyFsVdmkzRUUwcyb8/LMEcp53HvTuLWMvi0XEMU86CaYepabk7Y1v8/K6lwERe/9y+peHZCzKyxPhq6IiGRva7WAyiTDW0KEwcuTRKZuKSptpLbBs3gCo2wrR/eDUrbIu5zXY+QTYi0RIeuAzDL34VjZskK9bE2CsrobUVBE2SEoSAaImZs9DeHbVs9y28DZO7Hwi/xn3H8a/N57UiFT23bSPUEPo7z9nlb8/XoeIbjirJNB9/BxZ76yW7wKEJDUXTW2tDbbshrn+PkefeyXoPUAT4TdO20WH5ztQaClssVgdYzqSf3M+AF/t/IpzvjiHDtEd2H/zfpbsX8IJH5xAQlgCRbcUYdIfJOat9g9UfgcPPSQCnCD/P/BAy9sNHCg2bZB+VPfuLW+Xny9iKV5/bpIxY+DZZ0UQbs4cePhh+OknWLgweNyePWVdVpZ8NpvhpptEYKU9hd+aYreL+Ft9vQiAhIZCQoKI3aioHFNaq9N9Xvg6XgSj0s+Ccd/KestuETUNENMf1l8nNjUIJlQAEXxZfrYsn7QR5vtVHnveBoOaCBs0EX7j7GK6vNSFvNq8FosbYYzAfJcZrUbL//34f8zKnkXXuK5cPvByfIqPB395EK/i5ZvzvuHsnmf/1quiovLnwG2Vfp+9GFImSTKCg0X2FR9ULg8m7xr6GnTzJzix5ga30+gkqZmfigoZC9XXSxtlNEJcnAjqBNwxPt3+KRd8dQEDkgdwwHwAm9vGpms20SvxyOxfbcLrgkVjoCYbonrBsDchfiRodXKODfulP91EBHzhvoV8sfMLQPq2fxXRN5W/JjO/m8k7m9/hhuNu4NGJj5LxfAb1rno2X7OZASkDju7B/8rjL49N3uvazWLvd1vFP8QQDWHpkmxJY4CC2ZIQpm6LJDPQmqTe8rnAlAijP4M53cSHJGUSjP9RkhK2xI7HYedj8tusGU18WurFvh+eBT1u/kMvwxHhdcI3yf4+2Bkw7vvgd/9Q4TeQR3/rVli3ToTgLBaZ9zEaxbY9ePDRs7urqLSFp1Y+xdycuQAMTR3Ksyc92+z7V9a9wo3zbqR3Ym+WXLqEOkcdvWf1xqt4W25LVOE3FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFZV24S8t/DZv3jxOPfVUPv30U84777zG9aeccgpbt27lwIED6HS6Fn/72muvcf3117NmzRqGDx8OgMfjYeDAgURERLBmzZoWf9cSqvCbisqfCEWRYOv6PHDVSICqPkICcmIHgrsOfuwrjrSdLhXhNl0TsQGvU5xU11wKpT9J5uyzS+S7A1/CynOD26rCbyoqKioqfzSOCihbBA0F0s753BI4EZYJySeKoKmKisox5Zpr4M03Zfmtt+DKK1vebvx4WLZMlpcuhXHjWt4ORFitxys9yKvNY+agmby96W0Gpgxk0zWbghvZy0QIuehbsO6VPrAxWkTh0ECvO6D3nUd8PrX2Wqrt1QCkRKQQYTxKShNHwtEUkvsHYLHA6tVQVibiHi6XBE1nZoqwWlzcsS6hisqfmNYCy+b2EpGRuOPgpHWyrnSB1Ml+PKnnYOwwEUWBxEQRMmiJ7GwY5tcKOPVUmDv38EVyeBx0fakrxdZiusV1I6cmh1mnzuL6464/8vNT+edS9C2sukDsaCknQYdzISQFfA6w7AVbIRz3avPftBaQmfMarPc/fycuh8QxEkC/aDw4ysBZ2Sj8ds7n5/DVrq9aLNL0PtP57JzPAOkLdXi+A6X1pSy6eBHvb3mfD7d+yG0jb+PpyU8f+uO/svCAyjHnzDPhhx9keeVKaCW3EBkZIkgD4HRKQH9LvP46XHedLA8YIPW8oYkmzvbtIvA5cyasWiXrFi+G44///eeiovK34HB1eu6bkH2NLHf7P5nzCUuX+R/LHhFn6XkbfJMCzgppk05cHvx9U+G3oa8G268JP0HqSSL0NKeLjKvdlkbht+lfTG8UczqYMR3GsPz/2bvvMD3Ken/Any3pyaaShBBIBQIESKiClADSBKQoUgSp6s+DIBZQOigIeEQFFI8KRzgiIFWU3pt06SWBkEooIb233ff3x5DdLCkkIcluwn1f13tl3meemfnOZnefnXdmPnNMsY2Hhz+cXf9v17Rt1jbjTh2X5997PttdtV1aNWmVj075SEgva4bxzxU/hxNfLM6pdt61eHBJ9fTi78gmrYtAuGeOT4ZdVZyTXf/EpPNOSdN2xd+JE19OWnRN+izmQ7QlOPK2I/P0u8V1Hd/a4ls59YunruAdXMC86cmw/y3+dp78RlF7RfOkVJ0075L0Pi7Z5LSVt31YgsHjBmeTKzZJi8oW+dF2P8rPHvtZ9uq7V+7+xt0rf+OOvwofPZE8dWQRBNlm/WTtvYsA9XkzkqlvJzWzk51uL/pWz0nGPZlMe2eBa1raJC27JR22adzn+sY/n9y3dTE98DdJv5OL6Xu3KT4bmze1eP85C36D1d24GeOy9iVrZ17NvAw9cWgeH/V4jrn9mGzaedO88t1XFl5A8BsAAAAAAAAAwAqxLJlli3kcacPZe++9s/vuu+e73/1upkyZkr59++b666/PPffck2uvvbY29O24447LNddck3feeSc9evRIkhx77LH5/e9/n4MPPjgXXXRROnfunCuuuCJDhgzJAw880JC7BXwWZWVJ+82L16I0XyvZ7q/J8yckw69JxtyRtB+YNKlKZr1fPM154K+Sph+nHcweV4TqlDdJuu2d7PdO3bqaCHoEYBVr3jnpeXhDVwEswXnnJbffnnz4YXLSScm77xbBPZ07Jx99VIQ5dOmSXHppEf42ZUpywAHJD39YhEq0bVsESDz8cNG+885JZXllfvLFn+Q7d3wnV714VZLk9B1Or7/hFl2TzS8oXkkyZ1Jxw1iTNkllq+Xen/Yt2qd9i/bLvfxK4YaOz6SqKtlzz4auAlYTiwua/GT7s98pbm6d/GoyfVTSar1k7T2K18dKc+t+fS3mORVJktYL5GuOG/fpJTavbJ4zdzoz373zu3l7wtvp1a5XvrXFtz59QVhQ9wOSfd9ORt2UTHguGfrH4qb0ytZFyHTnQUu/rrmT66ZbdCv+rZlX/Hx8wtbdts4tb96StVqulWMGHJMkuerFqzJ+5vhs3W3r2n6V5ZU5duCxueDxC3L5s5fn/mH3pyxl+faW316OnYWlt6Q/OzfaqC747d//XnxQ2xNP1E3/+Mf1Q9+SpH//ZPLk5NmPc0Pbti2OAYCl0PfbSeu+yTt/Tt67I3n7d3XzmndNuuxaBK3M/jhxt8uX6ua/clYy/pm693OnLbBsl48nSsmMdxfa7BZrb5Gb3rgpTSuaZoOOGyRJhk8cnulzp2fLtbes7bdTj53SqWWnjJsxLo+PfDwPDn8wSbL3+nsLfWPN0XHrZK8XipC3Cf8pQn7nTU0qexehRx22Kvpte2Wy3iHJe3cm4/6dvHtLEZjWpF3Suk/SYdlD35Lkrwf+dcXty6epbJVscGLxmm/+OWRoYP069cv+G+6f2wbflp8/9vMkyU+/+NMGrupzZq0dkv2GFYFu458tHuQ0873iuLrzjknH7er6VjRNugwqXqubeQv+zdS5brpmdpKaunMRS/PwFqDR6NSyU/bss2fufPvO3Pj6jXl8VBFmfcRmR6y8jS7tZ+9L08d5QwAAAAAAAADgc6DRBb8lya233pozzjgjZ599diZMmJB+/frl+uuvz6GHHlrbp7q6OtXV1SktcJFHs2bN8uCDD+bUU0/NiSeemBkzZmTAgAG5++67s7O7amDNtt7Xk3W+UlxwO+6pZNaHScqKmxM2+mlxgW2LbsnI64oL9t/5c7L+fxUXqbbuXbeemrkNtQcAADRSXbsmL76YnH9+ctddRRDceefVzW/ZMvnd75IBA5JXXkl+9avkwQeTs8+uf1/CBhskhy+Q83j0gKMzavKoVNdUp3ll83x1468uuZCm7VbkbgGwJBv+IBl2dRG4+cheyWbnFyHzSTLp1WT0LWmyxa+zySYd8/rryQcfJG++WYQGfVK/fsVr8ODkuecW329B39nyOzlq86OSFAFZTSoED7AcWnZP+v3gs6+nSbu66ZnvF5+lNeuYHPBeXfvH4Rhbr1OEu82YOyMXfunClEqlXP7s5UmSbdbZpt5qv7XFt3LhExfm9iG3J0l27bVr1u+4/mevFz5hm22Sf/2rmL733uSLX1x0vx/+MJn/DKEf/Si56aakT5+6+SNHFiHPCwa/7bDDotf11lvJvHnF9FZbJeXln20fYLW3NAEA8w+gu+5avJKkenbx91hly7ogpo+erFumxdp106NuSqYOqXvfrEPd9PSRSfsBSUWz5NCahbY/P9ytaUXTvPL/XklZWVnWv3z9DJ0wtF7wW0V5RfbfcP9c9eJV+ddb/6oNfvvqRp9yPA+ro6oNiteSrL178VqTCH2jETl9x9Pz/rT3kyS92/fOzj1X4nVPyzJWf56UlSVrfbF4ralqA3KTTFvgoYl7v7zqawFWqCM2OyJ3vn1nrn756gyfODzlZeU5fNOV+EC6z+M4AQAAAAAAAADwGZSVSq64WJQpU6akbdu2mTx5cqqqqhq6HGBFqJmX3DMgmfx6UlaR9D4u6bJLUtEymfxaMurGZKvfr9kX7QIA8Jm9917y7rtFkEOnTkUYREXFwv0mT07GjSvuDevSJWnVatXXCsBn8OEjyXPfTqa+vfC8sorkwA9y+Z865aSTiqYvfzm55ZakefO6biNHFuPAgw8mxx5btPXokfz858nuuxf3wr38cvK//5v8/vfJWmut9L2CxVvcDf1ThyZ3fBzIttGpyYCLF7uKKbOnpN1F7VJKKW+e8Gaqa6rT/w/9U15Wnsk/nZzWTVvX63/ErUfk8VGPJ0ku3evSHNDvgGWrDZbCBx8k662XzJ2btG2b3H13st12dfPHjSsCnHfdNTnllCLIOUmaNk023bQIgh49Onn11eTSS1P7e799+2TChEVv88EHky99qZg+5JDkhhtW3v7B585HTyYPfHwe5wvXJL2+WUw/9pVk2rC6fjvdmdy5QVIzJ+lxeLL93xa7ygkzJ6TjLzsmSYaeODRdWndJ1YVVKaWU1//r9Wy81sa1fe96+67sc90+6dyqc8ZOH5tmFc3y0SkfpU2zNit8VwEAVol/rZ9MG5q07Z/s9VJS/okTHqXS4sMBgUZr5tyZ6XpJ10yZPSVJskvPXfLQUQ8tuvPSfvbmMzoAAAAAAAAAgCValsyyylVUE0DDK69Mdrk/efZbyft3J+/8qXjVzm9ShMABAMASdOtWvD5N27bFC4DVVJdByb5vJZNeS8Y+msyZmFS2TFr3KULjm3XKsccm11yT/Oc/yV13Jd27J/vtl7RunbzxRvLoo0XA0DHHJB9+mJx9dhEG981vLry5yy9f5XsIS6dN36TD1smE55K3LituBO9xWPFZ27wZyeibk5QnvY5IVbOqbNhpwwweNzgvvv9iqkvVSZKNOm20UOhbklx70LWreGf4POraNfnv/05OPrkIZ95++2SrrZJevZL330+efbYI59x116LfV7+a3Hhjcu+9yZAhxe/z7t2L391bbVW33s6dF7/Npk3rpufOXWm7Bp9PTdvXTU8fUTe90z8X7ttt3+TdW5OR1yUt1002ODFpsXYREDfqxqSsMtn41HRo0SE92/XMiEkj8tIHL2XtNmunlFJaNmmZfp361Vvll3p/KW2btc3Y6WOTJLv32V3oGwCweut9TPLKGcUDEx8/INnk9KTNBsmMMcl7dyTT3km2vaqhqwSWUYsmLXLsgGNz+5DbkyTHb3H88q1occGPQuAAAAAAAAAAAD4TwW/A50uLtZOd70hmfliEv836IClvmrTum6y1Q9KsQ0NXCAAAADQm7foXr0Vo1Sp55JHkrLOS665Lxo5Nrr66bn7XrsUrSX760+S445J//Su5//5k3LikefNkww2TffZZcoAQrDRLe+PmVr9PHtolmTc9efqbyX9OKoJ3Zr6b1MxNNju/tvvW3bbO4HGD88L7L9QGv22zzjYrcy/gU33/+8lGGxUhm/ffnzz/fPFKkrXXLsLg5vvCF4rXoowbVze9uB+fJFlrrbrpIUOWv25gEao2TJp2SOZMSMY+vuS+W16eTHwxmT48efPi4rWgjU6t67r2lhkxaURe/vDl2lC3AV0HpLysvN4iTSua5msbfy03v3FzkuTrG3/9s+8TAEBD2uiU5KMnimto3rujeC2o274NUxfwmf1mr9/kN3v9ZtEzBboBAAAAAAAAADQowW/A51OLLknvoxu6CgAAAGA117p18pvfJJdckjz9dDJ6dFJenvTtm2y+eTE931prJcceW7xgtdJx6+RLTyZvXJi8e1syd1LxSpL2A5O1dqztus062+Svr/w1L3zwQqpriuC3rbttvezbdPMpK9geexSvKVOSt99OZs0qQt969VpyiNuCWreum544cfH9Ntww6dIl+fDD5I03kvHjk44dP1v9wMfKypMuuyWjb0rGPpSMf64Yp+YrlZKxjyRddkladkv2fD5550/JsKuTqR8nMTbrXMxf79DaxbZYe4vc8uYt9YLftlx7y0WWcOVXrsyVX7lyJe0gAMAqVt4k2elfyZjbk2F/ScY/k1TPKh6s2Gn7pO93GrpCAAAAAAAAAACANY7gNwAAAACAz6i8PNl++4auApbRsgSntd8s+eL1yZxJybRhSUpJq15Jsw71us0PeXvx/RdTU6pJUoTBQWNRVZVsuegsp0/VvHkR4vnRR0Wo29ixSefOC/crK0u+9KXkb38rfsx+85vk/PPr9xk8OOndO2nadPlqgc+1HocVwW+lmuSh3ZINT046bFWMT8P/krToVgS7JcU4tfFPi1fN3GKZimYLrXJ+yNvLH7ycsW2WHPwGALDGKa9I1j2oeAEsyIMXAAAAAAAAAABWCsFvAAAAAADA0mnaLumwxWJnD+g6IE3Km2TirIlJkmYVzbJZl82WfTtuKqWR2n775Pbbi+lnn0323XfR/Q46qAh+S5ILL0ymTk1OOCGZO7dY/qKLkvfeE/wGy2XdA5PuByTv/iOZNzV5/ef157fotujlypssdpVbditC3kZOHpkPp39Yrw0AAGCN47M3AAAAAAAAAIAGVd7QBQAAAAAAAGuGZpX1g94277p5mlQsPmgHVjc77FA3/fvfLzx//Pjk3XeL4LfddivaamqSyy5LNtww6d8/OeOMIggO+Ay2vz7pf3bSpF399hbdkh7fWObVdWrZKeu1XS9JMmverLRs0jIbddpoBRQKAAAAAAAAAAAAAAD1CX4DAAAAAABWmK27bV07vU23bRqwEljx5oe5Jck99yQnnJDMmFG8f+ihZPvtk1Gjivc335zsvvui19OpU9JEJiIsv4rmyabnJV8Zkex8d/LFm5I9nku+MirpdcRyrXLLtbesnd68y+apKK9YQcUCAAAAAAAAAAAAAECdyoYuAAAAAAAAWHMcufmRadu8bZLkgH4HNGwxsIINHJh86UvJAw8U76+4IrnqqqSyMpk+vX7fdu2S++5Lnngi+f3vk5Ejk7Ztk113TY4/PmnWbJWXD2uepm2TbnutkFVtsfYWuW3wbbXTAAAAAAAAAAAAAACwMpSVSqVSQxfRGE2ZMiVt27bN5MmTU1VV1dDlAAAAAAAA0AgMG5ZstVUyceKi5//738n226/amoDP7t0p7+a5Mc8lSTbtsmn6dujbwBUBAAAAAAAAAAAAALC6WJbMsspVVBMAAAAAAACs9nr3Tp56KvnBD5K7765rLytLDjss2WyzhqsNWH7dq7qne1X3hi4DAAAAAAAAAAAAAIA1nOA3AAAAAAAAWAYbbpjcdVfy6KPJyy8nTZsmu+xStAMAAAAAAAAAAAAAAMDiCH4DAAAAAACA5bDzzsULAAAAAAAAAAAAAAAAlkZ5QxcAAAAAAAAAAAAAAAAAAAAAAAAAsKYT/AYAAAAAAAAAAAAAAAAAAAAAAACwklU2dAGNValUSpJMmTKlgSsBAAAAAAAAAAAAAAAAAAAAAAAAGqP5WWXzs8uWRPDbYkydOjVJsu666zZwJQAAAAAAAAAAAAAAAAAAAAAAAEBjNnXq1LRt23aJfcpKSxMP9zlUU1OT9957L23atElZWVmmTJmSddddN6NHj05VVVVDlwcAfIKxGgAaN2M1ADRuxmoAaNyM1QDQuBmrAaBxM1YDQONmrAaAxs1YDQCNm7EaABqPUqmUqVOnplu3bikvL19i38pVVNNqp7y8PN27d1+ovaqqyh87ANCIGasBoHEzVgNA42asBoDGzVgNAI2bsRoAGjdjNQA0bsZqAGjcjNUA0LgZqwGgcWjbtu1S9VtyLBwAAAAAAAAAAAAAAAAAAAAAAAAAn5ngNwAAAAAAAAAAAAAAAAAAAAAAAICVTPDbUmrWrFnOOeecNGvWrKFLAQAWwVgNAI2bsRoAGjdjNQA0bsZqAGjcjNUA0LgZqwGgcTNWA0DjZqwGgMbNWA0Aq6eyUqlUaugiAAAAAAAAAAAAAAAAAAAAAAAAANZk5Q1dAAAAAAAAAAAAAAAAAAAAAAAAAMCaTvAbAAAAAAAAAAAAAAAAAAAAAAAAwEom+A0AAAAAAAAAAAAAAAAAAAAAAABgJRP8BgAAAAAAAAAAAAAAAAAAAAAAALCSCX77FNOmTcvJJ5+cbt26pXnz5hkwYEBuuOGGhi4LAD53HnnkkZSVlS3y9fTTT9fr+8ILL+RLX/pSWrdunXbt2uWggw7KsGHDGqhyAFjzTJ06Naeeemr22GOPrLXWWikrK8u55567yL7LMi5ffvnl6devX5o1a5ZevXrlvPPOy9y5c1fingDAmmlpx+qjjz56kcfZ/fr1W+R6jdUAsGI89NBDOfbYY9OvX7+0atUq66yzTvbff//85z//Waiv42oAWPWWdqx2XA0ADeOll17KPvvsk/XWWy8tWrRIhw4dst122+Xaa69dqK/jagBY9ZZ2rHZcDQCNw5VXXpmysrK0bt16oXmOqwGg4S1urHZcDQCrv8qGLqCxO+igg/Lcc8/loosuygYbbJDrrrsuhx12WGpqanL44Yc3dHkA8Lnzi1/8Irvssku9tv79+9dODx48OIMGDcqAAQNy4403ZtasWTn77LOz44475qWXXspaa621qksGgDXO+PHj86c//Smbb755DjjggFx55ZWL7Lcs4/IFF1yQs846Kz/96U+zxx575LnnnsuZZ56ZMWPG5E9/+tOq2jUAWCMs7VidJC1atMhDDz20UNsnGasBYMX5wx/+kPHjx+f73/9+Nt5443z00Ue55JJL8oUvfCH33ntvdt111ySOqwGgoSztWJ04rgaAhjBp0qSsu+66Oeyww7LOOutk+vTp+dvf/pYjjzwyI0aMyJlnnpnEcTUANJSlHasTx9UA0NDGjBmTH//4x+nWrVsmT55cb57jagBoeEsaqxPH1QCwuisrlUqlhi6isbrrrruyzz771Ia9zbfHHnvk9ddfz6hRo1JRUdGAFQLA58cjjzySXXbZJTfddFO+9rWvLbbf17/+9Tz88MN55513UlVVlSQZOXJk1l9//fzgBz/IxRdfvKpKBoA11vyPEsrKyjJu3ListdZaOeecc3LuuefW67e04/L48ePTvXv3fPOb38wf//jH2uV/8Ytf5Mwzz8xrr72WjTfeeNXsHACsAZZ2rD766KNz8803Z9q0aUtcn7EaAFassWPHpnPnzvXapk2blr59+6Z///554IEHkjiuBoCGsrRjteNqAGhcvvCFL+S9997LqFGjkjiuBoDG5pNjteNqAGh4++23X8rKytKhQ4eFxmXH1QDQ8JY0VjuuBoDVX3lDF9CY3XbbbWndunUOPvjgeu3HHHNM3nvvvTzzzDMNVBkAsCjz5s3LHXfcka9+9au1JxWSpEePHtlll11y2223NWB1ALDmKCsrS1lZ2RL7LMu4fM8992TWrFk55phj6q3jmGOOSalUyj/+8Y8VWj8ArOmWZqxeFsZqAFixPhkkkyStW7fOxhtvnNGjRydxXA0ADWlpxuplYawGgFWjU6dOqaysTOK4GgAaowXH6mVhrAaAlePaa6/No48+miuuuGKheY6rAaDhLWmsXhbGagBovAS/LcFrr72WjTbaaKETC5tttlntfABg1TrhhBNSWVmZqqqq7LnnnnniiSdq573zzjuZOXNm7Vi9oM022yxDhw7NrFmzVmW5APC5tSzj8vzj60033bRev7XXXjudOnVy/A0AK9HMmTPTtWvXVFRUpHv37vne976XCRMm1OtjrAaAlW/y5Ml54YUXsskmmyRxXA0Ajc0nx+r5HFcDQMOpqanJvHnz8tFHH+WKK67Ivffem5/85CdJHFcDQGOwpLF6PsfVANAwxo4dm5NPPjkXXXRRunfvvtB8x9UA0LA+bayez3E1AKzelv1RKZ8j48ePT+/evRdq79ChQ+18AGDVaNu2bb7//e9n0KBB6dixY4YOHZr//u//zqBBg3LnnXdmzz33rB2b54/VC+rQoUNKpVImTpyYtddee1WXDwCfO8syLo8fPz7NmjVLq1atFtnX8TcArBybb755Nt988/Tv3z9J8uijj+Y3v/lNHnzwwTz33HNp3bp1khirAWAVOOGEEzJ9+vScccYZSRxXA0Bj88mxOnFcDQAN7b/+67/yxz/+MUnStGnTXHbZZfnOd76TxHE1ADQGSxqrE8fVANCQ/uu//isbbrhhvvvd7y5yvuNqAGhYnzZWJ46rAWBNIPjtU5SVlS3XPABgxRo4cGAGDhxY+37HHXfMgQcemE033TSnnnpq9txzz9p5xm8AaDyWdlw2fgPAqveDH/yg3vvdd989AwcOzNe+9rX8+c9/rjffWA0AK89ZZ52Vv/3tb7n88suz5ZZb1pvnuBoAGt7ixmrH1QDQsE4//fQcf/zxGTt2bP71r3/le9/7XqZPn54f//jHtX0cVwNAw/m0sdpxNQA0jFtuuSX/+te/8uKLL37qOOq4GgBWvaUdqx1XA8Dqr7yhC2jMOnbsuMiE2gkTJiRZdFo9ALDqtGvXLvvuu29eeeWVzJw5Mx07dkySxY7fZWVladeu3SquEgA+n5ZlXO7YsWNmzZqVGTNmLLKv428AWHUOPPDAtGrVKk8//XRtm7EaAFae8847L+eff34uuOCCfO9736ttd1wNAI3D4sbqxXFcDQCrznrrrZetttoqX/7yl/OHP/wh3/72t3Paaaflo48+clwNAI3AksbqxXFcDQAr17Rp03LCCSfkxBNPTLdu3TJp0qRMmjQpc+bMSZJMmjQp06dPd1wNAA1kacfqxXFcDQCrF8FvS7DpppvmzTffzLx58+q1v/rqq0mS/v37N0RZAMACSqVSkiJVvk+fPmnRokXtWL2gV199NX379k3z5s1XdYkA8Lm0LOPypptuWtu+oA8++CDjxo1z/A0Aq1ipVEp5ed3pA2M1AKwc5513Xs4999yce+65Of300+vNc1wNAA1vSWP1kjiuBoCGsc0222TevHkZNmyY42oAaIQWHKuXxHE1AKw848aNy4cffphLLrkk7du3r31df/31mT59etq3b59vfOMbjqsBoIEs7Vi9JI6rAWD1IfhtCQ488MBMmzYtt9xyS732a665Jt26dcu2227bQJUBAEkyceLE3HHHHRkwYECaN2+eysrK7Lfffrn11lszderU2n6jRo3Kww8/nIMOOqgBqwWAz5dlGZf32muvNG/ePFdffXW9dVx99dUpKyvLAQccsIqqBgBuvvnmzJgxI1/4whdq24zVALDi/fznP8+5556bM888M+ecc85C8x1XA0DD+rSxenEcVwNAw3n44YdTXl6e3r17O64GgEZowbF6cRxXA8DK1bVr1zz88MMLvfbcc880b948Dz/8cM4//3zH1QDQQJZ2rF4cx9UAsHqpbOgCGrO99947u+++e7773e9mypQp6du3b66//vrcc889ufbaa1NRUdHQJQLA58bhhx+e9dZbL1tttVU6deqUt99+O5dcckk+/PDDeh84nHfeedl6662z77775qc//WlmzZqVs88+O506dcqPfvSjhtsBAFjD3H333Zk+fXrtyfw33ngjN998c5Lky1/+clq2bLnU43KHDh1y5pln5qyzzkqHDh2yxx575Lnnnsu5556b448/PhtvvHGD7CMArM4+baz+6KOPcvjhh+fQQw9N3759U1ZWlkcffTS//e1vs8kmm+T444+vXZexGgBWrEsuuSRnn3129tprr+yzzz55+umn682ff+Gd42oAaBhLM1aPHDnScTUANJBvf/vbqaqqyjbbbJMuXbpk3Lhxuemmm/L3v/89p5xyStZaa60kjqsBoKEszVjtuBoAGkbz5s0zaNCghdqvvvrqVFRU1JvnuBoAVr2lHasdVwPAmqGsVCqVGrqIxmzatGk544wzcuONN2bChAnp169fTjvttBx66KENXRoAfK5cdNFF+fvf/57hw4dn2rRp6dChQ3bYYYecdtpp2Xrrrev1/c9//pOf/OQneeqpp1JZWZldd901v/rVr9KnT58Gqh4A1jw9e/bMyJEjFzlv+PDh6dmzZ5JlG5cvu+yy/P73v8+IESPStWvXHHPMMTnjjDPSpEmTlbkrALBG+rSxum3btjnuuOPy4osv5sMPP0x1dXV69OiRAw88MKeffnratm270HLGagBYMQYNGpRHH310sfMXPIXvuBoAVr2lGasnTpzouBoAGshf/vKX/OUvf8mbb76ZSZMmpXXr1tl8881z/PHH54gjjqjX13E1AKx6SzNWO64GgMbl6KOPzs0335xp06bVa3dcDQCNwyfHasfVALBmEPwGAAAAAAAAAAAAAAAAAAAAAAAAsJKVN3QBAAAAAAAAAAAAAAAAAAAAAAAAAGs6wW8AAAAAAAAAAAAAAAAAAAAAAAAAK5ngNwAAAAAAAAAAAAAAAAAAAAAAAICVTPAbAAAAAAAAAAAAAAAAAAAAAAAAwEom+A0AAAAAAAAAAAAAAAAAAAAAAABgJRP8BgAAAAAAAAAAAAAAAAAAAAAAALCSCX4DAAAAAAAAAAAAAAAAAAAAAAAAWMkEvwEAAAAAAAAAAMBijBgxImVlZTn66KOXabmysrIMGjRopdQEAAAAAAAAAADA6knwGwAAAAAAAAAAAI3W/OC1BV9NmzbNuuuum8MPPzyvvPJKg9Q1aNCglJWVNci2AQAAAAAAAAAAWD1VNnQBAAAAAAAAAAAA8Gn69OmTI444Ikkybdq0PP3007n++utz66235qGHHsr222+/Ura7zjrr5M0330zbtm2Xabk333wzLVu2XCk1AQAAAAAAAAAAsHoS/AYAAAAAAAAAAECj17dv35x77rn12s4888xccMEFOeOMM/Lwww+vlO02adIk/fr1W+bllmcZAAAAAAAAAAAA1mzlDV0AAAAAAAAAAAAALI8TTzwxSfLcc88lSebNm5ff/OY32XzzzdOiRYu0bds2u+yyS+68886Flq2pqcmVV16ZbbbZJh06dEjLli3Ts2fPHHDAAXnsscdq+40YMSJlZWU5+uija9vKysry6KOP1k7Pf32yz6BBgxba7vjx4/ODH/wgvXr1SrNmzdK5c+cccsgheeONNxbqe/TRR6esrCwjRozIFVdckY022ijNmzdPjx49ct5556WmpmZ5vmwAAAAAAAAAAAA0kMqGLgAAAAAAAAAAAACWR1lZWe10qVTKIYcckltvvTUbbLBBTjjhhEyfPj033nhj9t1331x66aU56aSTavufdtpp+eUvf5k+ffrk8MMPT5s2bTJmzJg8/vjjeeihh7LTTjstdrvnnHNOrr766owcOTLnnHNObfuAAQOWWO/48ePzhS98IUOHDs2gQYNy6KGHZsSIEbn55ptz55135v77789222230HKnnHJKHnnkkey7777ZY4898o9//CPnnntu5syZkwsuuGAZvmIAAAAAAAAAAAA0JMFvAAAAAAAAAAAArJYuu+yyJMnWW2+da6+9Nrfeemt23nnn3HfffWnatGmS5IwzzsiWW26ZH//4x9lvv/3Sq1evJMmVV16ZddZZJ6+88kpatmxZu85SqZSJEycucbvnnntuHnnkkYwcOTLnnnvuUtd76qmnZujQoTnttNPyi1/8orb96KOPzl577ZWjjjoqgwcPTnl5eb3l/vOf/+SVV17J2muvnSQ566yzsv766+fyyy/POeecU7uvAAAAAAAAAAAANG7ln94FAAAAAAAAAAAAGtbQoUNz7rnn5txzz82Pf/zj7LDDDrngggvSvHnz/OIXv8jVV1+dJPnlL39ZLwite/fu+cEPfpC5c+fmb3/7W711Nm3aNJWV9Z+fWlZWlg4dOqzw+ufMmZPrr78+HTt2zJlnnllv3p577pk999wzb7/9dp588smFlj3rrLNqQ9+SpFOnTtl///0zderUDBkyZIXXCgAAAAAAAAAAwMoh+A0AAAAAAAAAAIBG75133sl5552X8847L5dddllGjhyZww8/PM8++2y22267vPjii2nRokW22WabhZYdNGhQkuSll16qbfv617+e4cOHp3///jnrrLPywAMPZPr06Sut/sGDB2fmzJnZZptt0rJly6Wqcb4ttthiobbu3bsnSSZNmrQiywQAAAAAAAAAAGAlEvwGAAAAAAAAAABAo7fnnnumVCqlVCplzpw5GT16dP72t79l0003TZJMmTIlXbp0WeSyXbt2TZJMnjy5tu2yyy7LL3/5yzRp0iTnn39+dt9993Tq1ClHHXVUxo0bt8LrnzJlSpIsU43ztW3bdqG2ysrKJEl1dfWKKhEAAAAAAAAAAICVTPAbAAAAAAAAAAAAq72qqqp8+OGHi5w3v72qqqq2rUmTJjnllFPy+uuvZ8yYMbnuuuuy44475v/+7//yjW98Y6XUt2AtS1MjAAAAAAAAAAAAaxbBbwAAAAAAAAAAAKz2Bg4cmJkzZ+bZZ59daN6jjz6aJBkwYMAil+3WrVsOO+yw3HPPPVl//fXzwAMPZObMmUvcXkVFRZKkurp6qerr169fmjdvnueeey4zZsxY5hoBAAAAAAAAAABY/Ql+AwAAAAAAAAAAYLV31FFHJUlOO+20zJ07t7Z9zJgx+fWvf53Kysp84xvfSJLMnj07Dz30UEqlUr11TJ8+PVOnTk2TJk1qg90Wp0OHDkmSd999d6nqa9q0aQ477LCMGzcuF154Yb15DzzwQO6+++707ds3X/ziF5dqfQAAAAAAAAAAAKx+Khu6AAAAAAAAAAAAAPisjjzyyNx66625/fbbs9lmm2XffffN9OnTc+ONN2b8+PG55JJL0rt37yTJzJkzs9tuu6V3797Zdttts95662XatGm544478sEHH+QnP/lJmjZtusTt7brrrrn55ptz8MEH58tf/nKaN2+eTTfdNPvss89il7n44ovz6KOP5vzzz8+TTz6ZbbfdNiNGjMjNN9+cli1b5i9/+UvKyz3PFQAAAAAAAAAAYE0l+A0AAAAAAAAAAIDVXllZWW6++eZceumlueaaa3L55ZenadOm2WKLLfLDH/4wX/nKV2r7tmrVKhdffHEefPDBPP744xk7dmzat2+ffv365eKLL84hhxzyqdv71re+lREjRuSGG27IBRdckHnz5uWoo45aYvDbWmutlWeeeSY///nPc/vtt+fxxx9P27Zts//+++ecc85J//79V8jXAgAAAAAAAAAAgMaprFQqlRq6CAAAAAAAAAAAAAAAAAAAAAAAAIA1WXlDFwAAAAAAAAAAAAAAAAAAAAAAAACwphP8BgAAAAAAAAAAAAAAAAAAAAAAALCSCX4DAAAAAAAAAAAAAAAAAAAAAAAAWMkEvwEAAAAAAAAAAAAAAAAAAAAAAACsZILfAAAAAAAAAAAAAAAAAAAAAAAAAFYywW8AAAAAAAAAAAAAAAAAAAAAAAAAK5ngNwAAAAAAAAAAAAAAAAAAAAAAAICVTPAbAAAAAAAAAAAAAAAAAAAAAAAAwEom+A0AAAAAAAAAAAAAAAAAAAAAAABgJRP8BgAAAAAAAAAAAAAAAAAAAAAAALCSCX4DAAAAAAAAAAAAAAAAAAAAAAAAWMkEvwEAAAAAAAAAAAAAAAAAAAAAAACsZILfAAAAAAAAAAAAAAAAAAAAAAAAAFYywW8AAAAAAAAAAAAAAAAAAAAAAAAAK5ngNwAAAAAAAAAAAAAAAAAAAAAAAICVTPAbAAAAAAAAAAAAAAAAAAAAAAAAwEpW2dAFNFY1NTV577330qZNm5SVlTV0OQAAAAAAAAAAAAAAAAAAAAAAAEAjUyqVMnXq1HTr1i3l5eVL7Cv4bTHee++9rLvuug1dBgAAAAAAAAAAAAAAAAAAAAAAANDIjR49Ot27d19iH8Fvi9GmTZskxRexqqqqgasBAAAAAAAAAAAAAAAAAAAAAAAAGpspU6Zk3XXXrc0uWxLBb4tRVlaWJKmqqhL8BgAAAAAAAAAAAAAAAAAAAAAAACzW/OyyJSlfBXUAAAAAAAAAAAAAAAAAAAAAAAAAfK4JfgMAAAAAAAAAAAAAAAAAAAAAAABYyQS/AQAAAAAAAAAAAAAAAAAAAAAAAKxkgt8AAAAAAAAAAAAAAAAAAAAAAAAAVrJGGfw2bdq0nHzyyenWrVuaN2+eAQMG5IYbbljm9Zx55pkpKytL//79V0KVAAAAAAAAAAAAAAAAAAAAAAAAAEunsqELWJSDDjoozz33XC666KJssMEGue6663LYYYelpqYmhx9++FKt46WXXsqvfvWrdOnSZSVXCwAAAAAAAAAAAAAAAAAAAAAAALBkZaVSqdTQRSzorrvuyj777FMb9jbfHnvskddffz2jRo1KRUXFEtcxb968bL311tlpp53y8ssvZ9y4cXnttdeWqY4pU6akbdu2mTx5cqqqqpZrXwAAAAAAAAAAAAAAAAAAAAAAAIA117JklpWvopqW2m233ZbWrVvn4IMPrtd+zDHH5L333sszzzzzqeu46KKLMmHChFxwwQUrq0wAAAAAAAAAAAAAAAAAAAAAAACApdbogt9ee+21bLTRRqmsrKzXvtlmm9XOX5I33ngj559/fv7whz+kdevWS73d2bNnZ8qUKfVeAAAAAAAAAAAAAAAAAAAAAAAAACtCowt+Gz9+fDp06LBQ+/y28ePHL3bZmpqaHHvssTnooIPy5S9/eZm2e+GFF6Zt27a1r3XXXXfZCgcAAAAAAAAAAAAAAAAAAAAAAABYjEYX/JYkZWVlyzXv17/+dd5+++389re/XeZtnnbaaZk8eXLta/To0cu8DgAAAAAAAAAAAAAAAAAAAAAAAIBFqWzoAj6pY8eOGT9+/ELtEyZMSJJ06NBhkcuNGjUqZ599di666KI0bdo0kyZNSpLMmzcvNTU1mTRpUpo1a5YWLVoscvlmzZqlWbNmK2YnAAAAAAAAAAAAAAAAAAAAAAAAABZQ3tAFfNKmm26aN998M/PmzavX/uqrryZJ+vfvv8jlhg0blpkzZ+b73/9+2rdvX/v697//nTfffDPt27fPaaedttLrBwAAAAAAAAAAAAAAAAAAAAAAAPikyoYu4JMOPPDA/PnPf84tt9ySQw45pLb9mmuuSbdu3bLtttsucrkBAwbk4YcfXqj95JNPzuTJk/OXv/wl3bt3X2l1AwAAAAAAAAAAAAAAAAAAAAAAACxOeUMX8El77713dt9993z3u9/Nn//85zz88MP59re/nXvuuSe//OUvU1FRkSQ57rjjUllZmZEjRyZJ2rVrl0GDBi30ateuXVq1apVBgwalb9++DblrjU7Pnj1TVlaWq6+++lP7Xn311SkrK1vi65577llouXPPPfdTlysrK8ugQYOSJEcfffRS9f/ka8SIESv2iwMAAAAAAAAAAAAAAAAAAAAAAAArUGVDF7Aot956a84444ycffbZmTBhQvr165frr78+hx56aG2f6urqVFdXp1QqNWClnz+dO3fO+uuvv8h57du3X+xyVVVV2XTTTRc7f/68DTbYIF/84hcXmv/8889n9uzZWX/99dO5c+eF5jdv3vzTSgcAAAAAAAAAAAAAAAAAAAAAAIAG0yiD31q3bp1LL700l1566WL7XH311bn66qs/dV2PPPLIiiuM7L333kv1df+kgQMHLtX/xemnn57TTz99ofaePXtm5MiROf3003P00Ucv8/YBAAAAAAAAAAAAAAAAAAAAAACgIZU3dAEAAAAAAAAAAAAAAAAAAAAAAAAAazrBbwAAAAAAAAAAAAAAAAAAAAAAAAArWWVDF8Dq5eWXX87hhx+eDz74IFVVVRk4cGCOOOKI9OnTp6FLAwAAAAAAAAAAAAAAAAAAAAAAgEZL8BvL5KWXXspLL71U+/7222/Pz3/+85x33nk544wzGq4wAAAAAAAAAAAAAAAAAAAAAAAAaMTKG7oAVg/t2rXLiSeemH//+9/58MMPM2vWrLz44os58sgjU11dnTPPPDO/+93vFrv8o48+mrKyssW+fvvb3666nQEAAAAAAAAAAAAAAAAAAAAAAIBVrLKhC2D1cMABB+SAAw6o1zZgwID83//9Xzp27Jjf/va3OfPMM3PUUUelTZs2Cy1fVVWVTTfddLHrX2eddVZ0yQAAAAAAAAAAAAAAAAAAAAAAANBoCH7jMzvvvPPyhz/8IZMnT85DDz2U/ffff6E+AwcOzCOPPLLqiwMAAAAAAAAAAAAAAAAAAAAAAIBGoHxlrHT27NmZN2/eylg1jVBVVVU22WSTJMnQoUMbuBoAAAAAAAAAAAAAAAAAAAAAAABofJY7+O2JJ57Iz372s0yaNKm2bfz48dl7773TunXrVFVV5YwzzlgRNbIaaNKkSZII/AMAAAAAAAAAAAAAAAAAAAAAAIBFWO7gt0suuSTXXHNN2rVrV9v2ox/9KPfee2969+6ddu3a5aKLLsrNN9+8IuqkEauurs6QIUOSJN27d2/gagAAAAAAAAAAAAAAAAAAAAAAAKDxWe7gt5deeik77rhj7fsZM2bkxhtvzB577JEhQ4ZkyJAhWW+99XLFFVeskEJpvK666qpMmjQpFRUVGTRoUEOXAwAAAAAAAAAAAAAAAAAAAAAAAI3Ocge/jR07Nuuss07t+6eeeiqzZs3KMccckyRp06ZN9t133wwePPizV0mDmjJlSg477LA8++yz9dqrq6vz5z//Od///veTJMcdd1y97wkAAAAAAAAAAAAAAAAAAAAAAACgULm8CzZv3jxTp06tff/oo4+mrKwsO++8c21b69atM3HixM9WISvdiSeemB//+MeLnf+Pf/wjN9xwQ2644Ya0a9cuvXr1SmVlZd5+++1MmjQpSbL33nvn0ksvXew6Xnzxxeywww6Lnd+mTZvcfffdy70PAAAAAAAAAAAAAAAAAAAAAAAA0Jgtd/Bb3759c88992T27NkpLy/P3//+92y88cbp2rVrbZ9Ro0alc+fOK6RQVp5p06Zl2rRpi53frFmz/PKXv8yTTz6Z1157Le+8805mzpyZjh07Zp999sk3v/nNHHzwwSkrK1vsOqZMmZJ///vfi53ftm3bz7QPAAAAAAAAAAAAAAAAAAAAAAAA0JiVlUql0vIseOWVV+bb3/52unfvnqZNm2b48OH55S9/mR/96Ee1ffr27Zv1118/d9999woreFWZMmVK2rZtm8mTJ6eqqqqhywEAAAAAAAAAAAAAAAAAAAAAAAAamWXJLCtf3o0cd9xxOeWUUzJjxoxMmjQp3/nOd3LyySfXzn/44YczbNiw7Lbbbsu7CQAAAAAAAAAAAAAAAAAAAAAAAIA1QlmpVCqtjBXPmTMnM2fOTKtWrVJZWbkyNrFSLUt6HgAAAAAAAAAAAAAAAAAAAAAAAPD5syyZZSstka1p06Zp2rTpylo9AAAAAAAAAAAAAAAAAAAAAAAAwGqj/LOu4LbbbsvXv/71bLbZZunbt29t++DBg/PLX/4yY8aM+aybAAAAAAAAAAAAAAAAAAAAAAAAAFitVS7vgjU1NTnssMNy8803J0latGiRmTNn1s5v3759zjjjjFRXV+e000777JUCAAAAAAAAAAAAAAAAAAAAAAAArKbKl3fB3/zmN7npppvyne98JxMnTsyPf/zjevO7dOmSHXfcMXfeeednLhIAAAAAAAAAAAAAAAAAAAAAAABgdbbcwW9XX311ttpqq1xxxRWpqqpKWVnZQn369u2b4cOHf6YCAQAAAAAAAAAAAAAAAAAAAAAAAFZ3yx38NnTo0Oy0005L7NOxY8eMHz9+eTcBAAAAAAAAAAAAAAAAAAAAAAAAsEZY7uC3Fi1aZMqUKUvsM3LkyLRr1255NwEAAAAAAAAAAAAAAAAAAAAAAACwRlju4LeBAwfm3nvvzezZsxc5f8KECbnnnnvyhS98YbmLAwAAAAAAAAAAAAAAAAAAAAAAAFgTLHfw20knnZTRo0fna1/7WsaMGVNv3jvvvJMDDzwwkydPzkknnbTM6542bVpOPvnkdOvWLc2bN8+AAQNyww03fOpyt956aw477LD07ds3LVq0SM+ePfONb3wjb7/99jLXAAAAAAAAAAAAAAAAAAAAAAAAALCiVC7vgvvvv39++tOf5qKLLsp6662XVq1aJUk6d+6c8ePHp1Qq5ayzzsquu+66zOs+6KCD8txzz+Wiiy7KBhtskOuuuy6HHXZYampqcvjhhy92uYsvvjhdu3bNGWeckd69e2f06NH5xS9+kS222CJPP/10Ntlkk+XdXQAAAAAAAAAAAAAAAAAAAAAAAIDlVlYqlUqfZQX3339/fve73+WZZ57JhAkTUlVVlW233TYnnXRS9txzz2Ve31133ZV99tmnNuxtvj322COvv/56Ro0alYqKikUuO3bs2HTu3Lle23vvvZeePXvmm9/8Zq688sqlrmPKlClp27ZtJk+enKqqqmXeDwAAAAAAAAAAAAAAAAAAAAAAAGDNtiyZZZXLu5FRo0aladOm2X333bP77rsv72oWctttt6V169Y5+OCD67Ufc8wxOfzww/PMM89k++23X+Synwx9S5Ju3bqle/fuGT169AqrEQAAAAAAAAAAAAAAAAAAAAAAAGBZlC/vgr169coZZ5yxImtJkrz22mvZaKONUllZP5Nus802q52/LIYNG5aRI0dmk002WWK/2bNnZ8qUKfVeAAAAAAAAAAAAAAAAAAAAAAAAACvCcge/dejQIR06dFiRtSRJxo8fv8j1zm8bP378Uq9r3rx5Oe6449K6dev84Ac/WGLfCy+8MG3btq19rbvuustWOAAAAAAAAAAAAAAAAAAAAAAAAMBiLHfw24477pinn356RdZSq6ysbLnmLahUKuW4447L448/nv/7v//71CC30047LZMnT659jR49eplqBgAAAAAAAAAAAAAAAAAAAAAAAFic5Q5+u/DCC/Paa6/lvPPOy7x581ZYQR07dsz48eMXap8wYUKSpEOHDp+6jlKplOOPPz7XXnttrr766uy///6fukyzZs1SVVVV7wUAAAAAAAAAAAAAAAAAAAAAAACwIlQu74IXX3xx+vfvn5/97Gf505/+lM033zxdunRJWVlZvX5lZWW56qqrlnq9m266aa6//vrMmzcvlZV15b366qtJkv79+y9x+fmhb3/5y19y1VVX5YgjjliGvQIAAAAAAAAAAAAAAAAAAAAAAABY8cpKpVJpeRYsLy9fug2UlaW6unqp13v33Xfny1/+cm644YYccsghte177713XnnllYwaNSoVFRWLXLZUKuVb3/pW/vd//zd//OMf861vfWupt/tJU6ZMSdu2bTN58uRUVVUt93oAAAAAAAAAAAAAAAAAAAAAAACANdOyZJZVLu9Ghg8fvryLLtHee++d3XffPd/97nczZcqU9O3bN9dff33uueeeXHvttbWhb8cdd1yuueaavPPOO+nRo0eS5KSTTspVV12VY489Nptuummefvrp2vU2a9YsAwcOXCk1AwAAAAAsjXnzkltvTR54IOnRI/n2t5O11mroqgAAAAAAAAAAAAAAAACAVaGsVCqVGrqIT5o2bVrOOOOM3HjjjZkwYUL69euX0047LYceemhtn6OPPjrXXHNNhg8fnp49eyZJevbsmZEjRy5ynT169MiIESOWuoZlSc8DAAAAAPg0NTXJN76R3HBDXVuXLsm99yabb95wdQEAAAAAAAAAAAAAAAAAy29ZMssaZfBbYyD4DQAAAABYFqVSMnhw0qZN0r37wvPPOis5//yF29ddt1iuZcuVXyMAAAAAAAAAAAAAAAAAsGItS2ZZ+Wfd2HXXXZc99tgjnTt3TrNmzbLWWmtljz32yHXXXfdZVw0AAAAAsFp47rlkww2TjTcugtz22iv54IO6+SNHJhdeuOhlR49Opk5dNXUCAAAAAAAAAAAAAAAAAA1nuYPfampqcvDBB+fII4/MAw88kOnTp6dbt26ZMWNGHnjggRx55JH56le/mpqamhVZLwAAAADAqjVtRPLuP5OJLyel0kKzX3utCHp7++26tnvvTQYNSiZOLN5femlSXb1KqgUAAAAAAAAAAAAAAAAAGqnlDn67/PLLc8stt2SnnXbKU089lenTp2f48OGZPn16nn766ey88875xz/+kcsvv3xF1gsAAAAAsOqM/Hty5wbJ4/sn9wxIHhyUTB9dO7umJjn88GTChIUXHTIkef75IivupptWWcUAAAAAAAAAAAAAAAAAQCNVViqVSsuz4MCBAzNr1qy8+uqrqaysXGj+vHnzstlmm6Vp06Z56aWXPmudq9yUKVPStm3bTJ48OVVVVQ1dDgAAAACwqg37S/LMcUk+8RFq697J3q8mlS1z663JV7+6+FXcd1/SqVOyxRZ1bV27JjfemFRXJ6eemjz3XPLBB0mXLitlLwAAAAAAAAAAAAAAAACAlWhZMsvKl3cjQ4YMyX777bfI0LckqayszL777pu33npreTcBAAAAANAwZk9I/nNSFgp9S5Jpw5K5U5Mkf/nLp6/q6afrpisqkjvuSHbcMRk0KHnggWTjjVdIxQAAAAAAAAAAAAAAAABAI7fcwW9NmzbN9OnTl9hn+vTpadq06fJuAgAAAACgYbzzp2TetCV2mTo1ue++uvetWiW33568+GJy5JELrOqduul990223LLufVVV8uc/J2VlK6huAAAAAAAAAAAAAAAAAKDRqlzeBQcOHJgbb7wxZ5xxRrp167bQ/Pfffz833nhjtthii89UIAAAAACfbvTo5LHHkjlzkp13Tnr3buiKYDU3+pb677vumcydlIx/prbpxReLn7n5br452WuvYvqaa5ImTYrpBYPfvvKVhTe1/fZJqbRiygYAAAAAAAAAAAAAAAAAGq/y5V3wRz/6UcaPH5+tttoql1xySZ5//vmMHj06zz//fH71q19lyy23zIQJE/LDH/5wRdYLAAAAwAJKpSJgapNNkiOOSI49NunbNznxxGTu3IX7z5qVvPlmEUQlaAoWY/a4ZMLzde+3/F2yyz3JHk8nX7wxKS8S3d56a4EuW9aFviVJWVly6aXJuuvWD37bbrtFb7KsrG568LjB2ewPm2WzP2yWH97r81UAAAAAAAAAAAAAAAAAWFNULu+C++67b37zm9/klFNOyamnnlpvXqlUSmVlZX71q19l3333/cxFAgAAALBop56a/OpX9dtKpeR3v0v690++85269ptvTv7rv5KPPireb7hh8tvf1g+rApJMWSDRrevuyQYn1L1f7+Bk7pQk9YPf9t9/4dW0bl38nA0bVtfWo8enb/71sa/n1bGvJkkqyiuWpXIAAAAAAAAAAAAAAAAAoBFb7uC3JPn+97+fr3zlK7n22mvz0ksvZcqUKamqqsrAgQNz+OGHp3fv3iuqTgAAAAA+4emnk0suWfz8uXOLf0ulIgDuz3+uP3/IkOTLX05eeCEZMGCllQmNR1nZ0vV75+q66R7fWHh+72OTlOoFv2255aJX9eGHyfTpxXSnTknLlp+++bfGv1VvulQqpWxpawcAAAAAAAAAAAAAAAAAGq3PFPyWJL169cpZZ521ImoBAAAAYBn8938XoW7z9e2bbLBB8uSTyaRJde033LBw6Nt8pVIyZcpKLRNWP9OG1k2vtf3C88vKkpTVC37r2XPRq5o4sW563XWXbvNvTahb8Yy5M/Le1PeyTtU6S7cwAAAAAAAAAAAAAAAAANBofebgNwAAAABWvSlTkttvr3t/yCHJX/6StGhRzDvqqKK9piY577z6y261VdKhQ/LYY8msWauuZlhtTH3744mypOV6i+02YkTddI8ei+4ze3bddMeOS7f5t8a/Ve/9kPFDBL8BAAAAAACsod58M3njjaRZs+QLX0g6dVp0v3ffTUaOTNq3T/r1S8rLV22dAAAAAAAAAKwYy32699e//nU6deqU9957b5Hz33vvvay11lq57LLLlrs4AAAAABbtpZeS6upieq21kquuKkLfkqSqKvn734ubAp5+OhkypG65X/4yefbZ5N57k2HDki9+ceXWOXVqETy36aZJ9+7JTjsl//M/ydy5K3e78JlMH1H826JbUtFskV1KpWTmzGK6XbukVatFr2rBcMVmi17VQoaMK35o2zRtk2ThIDho7P7+2t8z6OpBGXT1oNz8xs0NXQ4AAAAAADRKw4Ylhx6abLxx8rWvJfvtl3Trlpx4YjJjRv1+hx2WrLtussMOySabJL17J3/9a3HOCgAAAAAAAIDVy3IHv910003ZbLPN0q1bt0XO79atWwYMGJAbbrhhuYsDAAAAWBNNmJCceWay/vpJhw7J5psn55yTTJy49Ot48cW66UMPXTh0qmnTZKutipC3+XbfPTnllKSsrHi/9trJXXclPXsu964s0QMPFDccnHtu8tpryZgxyeOPJ9/9bnL88Stnm7BEpVL91+La5318J03Lder61FQn1XNqX3NmVdfOatly8ZucN69uuqLi00scP2N8xs8cnyTZrfduSQS/sfq555178ujIR/PoyEdz79B7G7ocAAAAAABodAYPTrbYonig14Lmzk1+97vi/GqSPPVUEQz3yUvyR45MvvnNZPbsVVMvAAAAAAAAACvOcge/vfXWW+nfv/8S+2yyySZ5++23l3cTAAAAAGucu+5KevVKLrggGTq0CHt75ZXkZz9LDjxw6dezYPDbVlstvt9zz9VNH3PMwvOrqpL11lv67S6tkSOTgw5Kxo1b9Pzx41f8NmGFqZlV/FuxQKLb4P9ObmxW+5r92hW1s5o0WfyqmjWrm54799M3/faE4vPU1k1bZ7vu2yUR/EYjMuGF5LEDktu6Jrd2SR7aLXnnqqSm/jf3i+/XDVIvfvBiAAAAAADgc6dUSia/kXzwUDLxpXqfpZdKydFHJ5Mn13Xv0mXhB3bNnJkcckj9cLdWreqffwIAAAAAAABg9VO5vAvOmDEjrVq1WmKf5s2bZ9q0acu7CQAAAFgtTZ+e3Hhj8uabSVlZsummyX77JW3bNnRlNLRhw5Kvfa24QH9RFtk+bVgybXhS0SJpu0nStPhGmv+E9yTZaKPFb/P55+umt9xy2WteXueck0ydWkw3b56ccUay++7J8OHJpZeuujpgudTMKf4tW/zHp02bVNdOz5u3+FUteOPN4n72FzQ/5K1vh77p26FvvTZoUK+ek7z2s/ptHz5UvGaPSzb+SZJk9rzZef2j1+sWG/tq5lbPTZOKJSQkAgAAAADAmuSDB5JXz07GPVXX1rR90uc7yeYX5JFHyvPMM3WzLrkk+f73k4qK4jqDb3+7aL/mmmT06GK6WbPkt78t5lVXJ//4R7EMAAAAAAAAAKuf5Q5+69GjR5588skl9nnqqafSvXv35d0EAAAANBo1Ncl99yV//GPy4ovFE7X79k2+8pXkO99JqqqKPuefn/zmN8mkSfWXb9MmeeCBZJttGqR8GolzzqkLfurePfn975N99kk++CC56qrie6TWuKeTV89NPri3rq2sIllnv2SrP2TKlK61zb16LXp7NTXJ228X082aJX36rNDdWaz5NxrMd8styZe/XExvu23y9a8nd9yxamphNVIzL6mekVS2TsrKG7aW8qbFv6XFJ7o1a1oX/LakQLfmzeum33//0zc9P+StT/s+6dO++KEdNnFY5lTPSdOKpp++AlgZ3r+3fuhbs05J8y7J1LeLoMQFflZeG/ta5tXMS5umbVJTqsn0udPzxkdvZPOumy/bNsvKPr1PqbRs6wQAAAAAgJVt9C3JEwcn+cRn2HMmJm9elGx6Th58sO4E0re+lfzwh3XdNtoouf/+ZMaM5OKL69rPOy/5f/+vmC4vTw4+uLj+oHK57wYAAAAAAAAAoKEs9x2U++67b5544on87//+7yLnX3nllXniiSey3377LXdxAAAA0BhMmJDsuGOy995FmNXIkUVQ1xNPJKeeWjxVO0l+8pMi2Gt+6FtFRdKyZTE9dWry3nsNUDyNRnV1cuedde//8Y8iOLCiIllnneTss5O//vXjmWMfSx4cVD/0LUlK1cm7/0imDsmMGXXNrVotepszZ9Zl4nTtWmxrVXjppWTy5GJ6iy3qQt/mKy8v9h1SKhXf0w99Kfl70+TmtslNbZKHdk/evb3h6ir/+GabedMX26WsrC7UbcKExYe/rb123fTo0Z+eUzU/+K1vh77p06EIfqsuVWf4xOFLVTqsFG9cWDe96c+T/d9NvvxacuDYpP+5SVmT2tkvvP9C0a3LpunfuX+9NgAAAAAAWKPNmZw8+53Uhr513SPZ5qpki98mXXat7fboo3WLHHPMwqtp3jxp165+v29/e+F+PXrUD3679c1bU3ZeWcrOK8sBNxzwGXYEAAAAAAAAgJVpuZ/x9ZOf/CQ33HBDvvWtb+Xaa6/N7rvvnnXWWSdjxozJfffdl8ceeyzdunXLaaedtiLrBQAAgFXuqKOSJ58spps3T444IunVK3nrreSWW4r2119PfvWrYrqsLPn5z5Pvfz9p3ToZPDi56KKF1/vyBy+nulSdphVNa4NRWHO98EIycWIxve22yZZbLtynR48kpZrkmeOSmtlFY6+jkj7fSsqbJB89kQy5NEnxfTbf4oKkFgyiatbss+/DgoZOGJrfPv3bJMmArgNy/BbH18575JG6fjvttGK3yxqkVEqePyEZ+of67dUzkg8fSGZ/lHTfv2Fqq/w4TXHmmLq29lsk65+QvPPnpGZOkmTddZO33y5mjxqVbLjhwqtq0ybp3DkZOzaZMaMIievYcfGbnh/81qd9n7Ru2jpdWnXJh9M/zFvj38qGnRaxAfgsFhxMFmfutGTcx38Irb130v/MunlN2yabnpNUz6ltevGDF5Mkm3XeLNWl6jwz5pm88P4LOWbgIu5cW5IFB7elGfQAAAAAAKChfXBfMmd8Mb3hD5Itfl03b8PvJ2PuzLx55XnmmaKpsjIZOHDRqxoyJBn/8ar69Uvat//0zd//zv210w+PeDjzaualsny5bxcAAAAAAAAAYCVZ7jO5a621Vh5++OEcccQReeSRR/LII4+krKwspY9vutpmm21y7bXXZq211lphxQIAAMAKN296MuZfybv/SGaMTsoqk9a9ky67JOt+NW+81Sp33FF07dAheeaZpG/fusV/9avkzTeTm2+uazv55OSMM+re9+uXXH11MqcuEyUjJo3IgD8OSJJUlFXkwx9/mI4tF5EENPPD5N3bkilvJDXzkhZrJx23STrvklQ0XUFfBFaFf/+7bvqLX1xCx4kvJtOGFtN9v5tsfUXdvI7bJH2/k1TPTKtWdc1TpyYtWy68qubN66YX/P5bEf7+2t/z++d+nyTp0qpLjh14bMrLypMUAVjzLe5GBciYf9WFvrXqlWxyZtJx62TWh8m7tycTnm+42lr3SsY/ncx8vwi0qmiarL1H8Rrxt9rgtw03rAt+GzFi0cFvSdKnTxH8lhQ36Wy//aL71ZRqaoPf+nboW/vv/OA3aBAf/TupmVtMLy6McYG/SV54/4UkyeZdN091TXWSujC4lWnq1OTee5P77y9+3po1K34m9967CFxdmoy7NdGoUcmzzxZfn6qqZLPNir9lP69fDwAAAACAleqD+z6eKCvOfX3SOvtkyoRk7scfu/fqVf+c7oLmn1tKko03XrrNPzD8gdrpKbOn5Nkxz2b7dRc+MXX323fn1jdvTZIcuNGB+fL6X166DQAAAAAAAACwQnymR3itv/76eeaZZ/L888/n2WefzaRJk9KuXbtss8022WqrrVZUjQAAALByTHgheWy/ZOZ79ds/eiwZfnXSpCo33XRAbfNJJ9UPfUuSTp2SHXcs5s135JGL3lzTBXLabh98e+10dak6d759Z765+TfrOtTMTZ7/XjLsyqRUs/DK1v+vZKvfL3n/aFQmTKib7tNnCR3fu6tuuu93Fp5f2SqpbFXvie5DhyZduizcdcEwuA8/TGpqkvLyT6+1VEpGjkwmTiyCc3r2XDhY7p9v/bNu3dM/zHNjnsu23bdNUoTLzNe27advj8+pEX8t/q1okez2SNJqvY9nbJp0/VIyZ2IDFZak9fxf9qVkxsikzfqL7LbBBnXTL76Y7LnnolfXp0/y1FPF9COPLBz8NnduUl2dfDR7TGbOm1ks06FP7b//Hv1vwW8sn1IpmfhSMvE/SfXMpEnbpGqjpP3ApLyymD/fgklgC7YPuaxuusPWxb818+pCSpOkvGnSunfm1czLKx++kiTZrMtmtcFvL33wUqprqlNRXrGCd7DwP/+T/OhHyYwZC8/72c+KMW299Raetya78cbkF79IXn554Xm77ZY88MDC7QAAAAAAfEYfffw0sLb9k2YdFtll5sy66cWFviX1P/Ne1EPAPmnEpBEZOmFoKsoqskefPXL30LvzwLAHFhn8dslTl+TB4Q8mSd6Z+I7gN1hT1MxNqmcnlS2TsqW4OAQAAAAAAIAG85mC3+bbaqutstVWW2XevHl59dVXkyRz585NkyZNVsTqAQAAYMWrmZs8vn8R+takbTLg4mSdA5KK5smUN5JRNyYVLfPww3WLLC7QJ0mGDCn+bd482XzzT9/8bYNvS5L069Qvg8cNzm2Db6sf/Pby6ck7fyqm19k/6XN80qJbMuPd5P17iqAkVivzn9qeJJVL+kRm0qsfd2qdtNu0mJ49PpnyZl2f5l2y2Wbr5+mni7dvvpl88YsLr6q8POndOxk2rLiBYPjwJYfOvf56cvHFRRjM++/XX8/WWycPPVTcVPD+1Pfz7JhnU5ay7NV3r9w99O78c8g/a4PfFrxBYfbsJewrn1/Vs+tCDrvuvkDo2wKatl+4bVVps0DK50dPLlXw2x13JD/9af35s2Yl775b/+fu+uuT006rn7H1u98lhx+evDW9Ltxtt//bLeVl5Rk7fWySZMj4Icu9O3xODbs6eeXMZOaYhed12DrZ89mlW8+8aXXT838u50xM7tyorr2qX7LPmxkybkhteGH/zv1T83F47fS50zN0wtBs2GnD5diRJbvppuS73y2mO3dOzj472WOPYux65ZXk6qtX+CYbvd/9LjnxxGK6Vavk+OOT/v2LMfmpp5LXXmvY+gAAAAAAVjsLnthZkls6F/+27l3X9vYVyfBrat+27HZOkiJobVEPNKntt0DY25L6zXf/O/cnSbbqtlX222C/3D307tw/7P6cvfPZ9fqNnT42D494OGUpS1lZWR4d+Wg+nPZhurRexJPGgAY1eHBy773J448nH3xQtK29dnH9xlFHffyAwGkjkrcuK64lmn9dSXmTpM2GSY/Dk01Oa6jyAQAAAAAAWIJlCn4bPnx4Hn744eywww7ZYMG7GpPccccdOe644zJu3LgkSfv27XPFFVfk61//+oqrFgAAAFaUMXcUIWpJsuVlSa8FQtc6bVe8kkyYUNfcvfuiV1Uq1T2Vu2XLImhkST6a/lEeH/V4kuQ3e/4me/9t79w79N7MmDsjLZu0TOZOS4b+sejcdfdkx9vqLiTvsEXS/SvJx0EqND6lUjJpUjJ9etKsWdKxY/E9UVVV12fs2CWsYH7ATpOquicwj30seeKguj59js8WW/y59u2TTxahLouy9dZF8FuSvPDC4oPf7rsv+cpXilCYFi2S730vGTgwadIkeeON5NZbkzlziu/xO9++s1j3OlvniM2OKILf3vpnLtjtgiRJhwUeXv/220vYVz6/Zn2QVH98h0qHreva3/pdMnVo3fuNf5K0WHvV1pYkrRcIfht5XdL7qEV2W/Aj0n//O3niiWSHHerafvrTZJ996vd77bXkv/87OfXU4v2TTxZBcIcfnrw1vi74beiEBb4OqT8PPtXIG5JnjimmO++c9PtxcZPZvOnJ+GeL19KqWCDNc86kJXZ98YMXkyS92vVKVbNi4Fuv7XoZNXlUXnj/hRUe/FYqJRdeWPf+jjuKcW++Pn2SAw8s+jV2s2Ylt9ySPPZY8p//FH+DVlQUN+9ssUVy+ulFsN2nmTatCL9LkjZtirG/7wK/0k44IZkyZeXsAwAAAADA6m7+ud7Zs5PWrYvXMq6h+KdmgadjTR9d73P5qp7vp3nz4nPhESOK88qtWi28prXWqpt+882F53/SA8MfSJIM6jkog3oOSpI8/e7TmTp7ato0a1Pb77Y3b0tNqSY7rLdDKsoq8ujIR3Prm7fmu1t/d2l3EljJ5s5Nvv/95A9/KN63aVNcv9G+fXH9x623Jj17Jl/f7dnkod2K60yatEv6/r+kVY9k7tTi986Yfwp+AwAAAAAAaKSWKfjtz3/+cy6++OIMm3+38MeGDh2ar3/965k1a1Z69OiRli1bZvDgwfnGN76R9ddfPwMHDlyhRQMAAMASLc3Ttp/9zvzOSfePA7Vmj0/GPVXXp3nXtGy5Ve3badMWv7m2bZPJk4vXjBn1n779SXe8dUdqSjXZrMtm2bPPnrWBKPe9c18O6HdAMvaRZN7UonOvY+r2Z8ILqb1QPOVJB8fbjUVNTXLttckNNxRhLQsGuzVvnmyzTXLKKXVtTz+9hJVVfnxV/+yPioC/skUnCS74cctNNyUXX1z/4v9Jk5Lnnku22ir5+9+Ltr/+NTn44PrrmTkz+eij5KSTihsYysqSp55KNt+8fr8LLqib/ueQfyZJ9uqzV/bos0fKUpbXxr6W4ROHp1f7Xtluu6XcV9ZokycnDz6YvPtuMm5ccXF6hw5FCNouW1enLgtxgSDL0bcUvwPn63N8wwS/VS0QTvXBfUUg3QbfS6rnJKV5tbMGDkwqK5N5Hzd95SvJP/+Z9OiR/OpXyWWXFcFvu+5af/U/+UnyzjvF745rrim+NsmSw93en/b+QjfmwCKVSslrPy+mqzZOBt2bVDSrm99x6yQnLP36mi/wMzhzTJKBSZM2ybb/m4z8e/LBvbWzX3j/hSTJ8EnDU/mz4vRDdak6SREKd9imhy3PHi3W8OHJi0XWXPr3rx/6tqCl+dOwIQ0Zkuy9d7E/FRXJQQclX/ta8ffkqFHJQw8lhx22dMFvt92WTJxYTB98cP3Qt/kWDKMFAFghqmcnNXOKzzQW8zlGo1c9J6meWexD+TJdSgMAAKzmZsxI/ud/kjvvLB6mMWlS3byOHZMjj0x+88knjMz/4PmT7XduVJznnfl+XVv7AUmPbyQj/5YkqagoZbvtkocfTqqri/PLO+20cF39+hXn1iZMSAYPLupq127R+1BTqsmDwx5MUgS/9evUL51bdc7Y6WPzyIhHst+G+9X2vemNm5Ik+2+4f23w201v3CT4rQHMmlU8SG3cuOL/t1mzZJ11kg03LK4z4PPrf/6nLvTtq19N/vznIvRtvo8+Kr5/8uKPi9C3Fmsne76QtOhaf0Vzp66ymgEAAAAAAFg2y3S16hNPPJHNN988PXr0qNd+6aWXZtasWTnhhBNy+eWXJ0luvfXWfO1rX8vvfve7XHXVVctU1LRp03LmmWfmxhtvzIQJE9KvX7/89Kc/zaGHHvqpy44dOzannnpq7rjjjsyYMSObb755zj///Oy2227LVAMAAABruHkzin/LKpKKFsX05NeSx+oueE73g9K//y155pni7RNPFBdXL8oXvpDce29xYfYTTyR77LH4Td82+LYkyb7r75uysrLss/4++cPzf8htg28rgt/mTq7r3HyBJK/7t697Mnhlq+TgxSTRfR6USsXFq0mD31RcKhUX+193XfH++OOT//f/kl69innDhhXfEzvvXBcQ9eijxQX6HTrUX1d1dVLRbrNk9M1JzdxkyuCk7cZJ9/2Tr89OHtyx9mnwm26atGhRBLdNm5YceGByyy1Jly7JW28VATHHHFM/BOdf/0quuio57rji/aRJyaGHFssOGVK07bLLwqFvSVL+8Zd4xtwZuX/Y/UmSvdffO51adsrW62ydZ8c8m3+99a+ctO1J2XHHIrimujq5//5kzJjiAvUFjR27dAE2i/p6T5tW1F5dXTzZukOHxh/qs0zGPZ2MvjWZ8Gwye1wyd0pS0Txp3jXpuE0y8FcNXeESTZhQ/Az84x9FoNmOOyYDBiStWxc3Ltx0UzLnB51zcFlFUqpOpo2oW7jX0Umbvsk7VzZM8fM161h8rT/+ect/TkxG/T2ZMabud0+Km2t23TW5777i/cSJxf5+UteuRQDks8/Wtf3pTwv3e2vC4oPfkuTtCW9ni7W3WMadYY2yNL/sZnyQTHmjmO62d13o29A/JVOG1PXb8OSk1bqfvr7OC9xtNuafyTr7Fr+Teh+TTH6jXvDbix+8WDs9P/BtvvmhcAt6ZMQjGT15dJLiRrR12y5FPQuYMqVuukuXpVvmlQ9fyRXPXZEk6dq6a87Z+ZyUraxBZCnWW6op5fjji9C3JLn77mT33RfuV1OzcNuifPBB3fSiQt+WV01N8vrrxZg+aVIRFtumTdK9e7LxxsXveADgc2TW2GTo/xR/H055qwh9a1KVzJueNOuUbHRqskH9sOGamuLvtxkzipvX27Wr+6xhZRgzJnnmmbqb50ul4gbpXr2SHXZIWlRMSob+MXn3H8Xfz9WzkyZtk+rpSWWbpO93kk3PXbaN1lQXny/O+iCZM7HYaNN2Sav1kjYbJOVNVvh+AgAAn83Mmcn22ycvv1yc3zzrrCJkae21i1ClwYOTkSOXYYWdvlic4538ejLzgyKEqcchxWvkdZn/oLdBg4rgt6QIePpk8NuUKUVtO+1UnHMrlZIrr0x+/OP6/UaPLmp9eeyLGT9zfJIiBO6JUU9k/Q7rZ+z0sXlg2AO1wW9jp4/NwyOKDe+/4f6pKK/ID+/7YR4d+Wg+nPZhurReyg/bWbya6mTiC8U5mbkTi2tTKlsVwVztByate+eFF5Lzzy/OMc6YUZyf79atuJZg+PDieHnw4IbeERrSrz6+JKCsLLn88vqhb8nHDwWc8W7y0eNFQ48j6kLfPniwuM5gvm57F5/bAAAAAAAA0KgsU/Db8OHDM2jQoIXa77nnnjRt2jS/+MUvatsOOuig7Ljjjnn88ceXuaiDDjoozz33XC666KJssMEGue6663LYYYelpqYmhx9++GKXmz17dnbbbbdMmjQpl156aTp37pzf//732WuvvfLAAw9k5513XuZaAAAAWA0t+FTtxT1p+7Wffdw+L5n2dlLVL2mzYbLt/yaDf13cpJnka18rgrKS4kLqo48uwrsWNGFCEZx178e5J//938luuxUXhs83bdrHQV9dp+W+d4qEoJc+fCkn3nVi3hpfBP38a8i/Mq9mXipb9axbcMqQpOuXiunNL0rGPpKMuX3ZvyaN2dKErZRKRRDWyBuScf9OypslLddNypsWQXnVM5ItLku67rry6/2Exx+vC3370peKMKcFd6ljx7rwte23Tx57rPh+OPbY5JprkrZti3mvvJJcemly1X9/OXn17KLxrcuSrf+nCLaraJqk7o7oFi2Sww+v+/7897+TPn2K4Jvhw4sv2THHFDcz9+pVFyhz/PHJDTcUdd17b3Hz8wEH1NX7ye/vT3pw2IOZNW9WkuTsh89ORXlFxkwZkyT555B/5qRtT0pVVRGG+O9/F8EwX/1q8te/JuuvX9wgceWVySOPJDffvHRf42nTkssuK+p99tmkR48izKZFi6L+994rfu6+/OWlW1+j9trPklfPKb7HN7sgWWe/pHnnIghw+sjiRpGVYc7E5IMHkvHPFDfwz52clGqSJm2SFt2S3sclbTdKpg5NPrgvmfCfZPb4IgStrCKpbJ207J5sckaOO65z/vGPYrV//3vy9a8vvLlSqXXy0E7J2IeTd29L5l5abKv3UcV2Gjr4LUnW/Vpd8FuSfPTEIrt985t1wW9Lctxx9YPfFmX+eHDytifnKxt+pbb9oBsPyqRZk/LW+LcEv33eLepvnE+2zx5fN10zt276w4eTD+5P5nw8v+fhSxf81nKdIqRi6lvFTWn9flj83bRQaaW8+P6Li1hB4cUPXkypVKoNWXvh/Reyx1/3SNOKppk+d3q2XWfbPH7M42lSsfRhGD16JE2bJnPmJC+8UIw5zZotvv+c6jk58rYj88qHr6RH2x4ZOXlkerTtkWMGHrPU21wmS/H/NX5cERCbFPuzqNC3ZOlDUXr2rJt+9dWlW2ZJJk9OfvCD4sbCqVOTvfZKNtusCHqbOrX4m2LXXYvAT1itLe0xyWqgVCrljY/eSE2pJuVl5dl4rY1XXsAlsOaZ+WEy7H+LY7Vpw5Km7T8OKysrHkbQeVCyyZnJfdsm00cknbZPvvRE0m7T4ndpqaY4dv04MPuBB5L/+7/i751x44q/I9q3L/5+++ij4sb2v/xlxe7CY48lJ5yQvPZast56xTFpr15JkyZFDY89lqy3zqxsOHJQMunlpG3/ZJf7kw5bf7wPpWTme8msD5d+o9Vzkhd/kIy8vgg477Zv0rp38bnV7HHFsfxGP0m67prx44vPkp5/vgjFnzq1+Hq0alV8pnPwwUVwOAAAsGr8/vdF6FuS/OQnyTnn1J//yYdbfaquuyfDriquQxj862TgLxfZbffd67Z1/fXF8cs55xRB2Y89lnzve8V54N13T+15t7POKo6pjj22CNf+17+KfkOHJg8Me6B23ftct0+9bc1/qFeS3Pbmbakp1aR98/Z5ZkzxBLyOLTpm/MzxufXNW/Pdrb+7jDtMPe9cmbx8WnGupvuBScdti2PredOTsY8mk17JOy3Pyy67FOF+ffoU58D79Km/mokTG6Z8VpHqWcmE55OJLxbn6edOLa4JaVKVtFgnWfdrGTeueOJOs2ZLePhR9ey66cqWddOvnlNcVzPfPm82TPBbqVScm3z/3iIMsXpG8VlJWUXxGVLzLsm2f0marOSnC1XPKX4nlzdLyis+vT+fH3OnFefA5075+NqXyuIhDi26FdekObcCAADQuJRKyaRXimv6p73z8X1EM5Py5sVDCjttm6z71aLv3GnJxP8kM95L5k0tHmhY0bLo135A8QA/YLlNnJi8805xr9f06cX9k23bJuuuWzxUHIClt0zBb+PGjcu669a/EWzSpEl55513suOOO6ZNmzb15g0YMCDPP//8MhV011135f77768Ne0uSXXbZJSNHjswpp5ySQw45JBUViz7hctVVV+W1117Lk08+me2226522c033zynnnpqnnnmmWWqBRpcTXVxMFFeWZxIcvIIAIBGZsKEZNiw4gO7mTOTuXOLiw6rqopQpm7dGrrCJeh5RHGxY5K89NNkh5uLp9/2PiYZdVNt8NtuuxUfOr77bvLMM8meeyZnnFHcMPr228kf/1jcpPr//l9xIfjkycVNrTvvnJx8chGu9Z//FE/gvfTSpHqDezP744sv73r7rnolTZw1MY+NfCy79hyUtO5TnIwY/KsimKVp+6TfycXFngsEv73zTvEk8MGDixtm27cvbmQtKyueBt27d3Gx93xvfvRm3p/2fpKkT/s+6dGux0JfmtGTR+eofxyVSbMmpZRSvrnZN/OD7X6wwr70C1maEJt3rkqePb6Y3uHWpPsBxQ3HM9+f3zkpW/qgmBVp2rS66bZtl3zodsopxYX6SXL77UUQ2g47JO+/X3x/bb11Pn7Kd99k2tBk6B+Lr0PvY4sLUT9x0/GppybXXlsE3STFB+bDhtXfZkVFcvrpybe+Vdf2wAP1+6y/fhEUM2JE8tBDxff2+usvXH+pVIS7zbfgTQJJ8ujIRzN51uS0bd42Z5xRF8T2zDPJJpsUgTbvv1/UuU/9+w3y3tT3MnnW5CTJOlXrpKpZ3YXH++9f1JUk99xT/Bx+Uk3Nwm2rnepZyavnFtM9v5Fs9KNi+p0rkwkv1PXruHVSteGK2+64p5KH9yxOaq7/vWSjU5NWPZOKZsmcScXN/pUtP/45/FbxTb7FpcWJ0eZdkpQlcyclU99OypvlkUeK1ZaVJfvtt+hNlpUlWe/gIkxg7qTkyUOTgb8u9mvulBWyWzU1xc3zlZWfHmi4SH2OT177efF1WZTy4nfOIYck551X/NwsyTe/Wdyw88EHi54/p3pOhk8sEhr37Ltndum1S+28DTpukGfHPJsh44Ys826wgJkfJiOuLU7kz5mYtFzv45sLyovfsWWVyZaX1nb/2yt/y08e+EmaVDRJqVTKVV+5Krv13q0Bd2ApNeuYrLVDcWHDu7cmm/4sado2+eL1ycSXk3sGLPs6ex2dvHJ6cWPSPQOLcalZp2RM3ZgwfNLwTJ5d/B6/+xt3Z502xd1wo6eMzj7X7ZMJMydk1ORR6dGuR2bMnZHDbzk8c2vm5uav35xrXr4mt755a85/7Pyct8t5S11W+/ZFCOrVVxd/j15wQfHzuOBYPGxYstZaSZs2yc8e/Vle+fCVHLTRQTl/l/Mz4I8D8v17vp/deu+W9do2zEUcVVVJhw7F39UffFDsR/v2y7++r3wlWXvtYry99dbk6aeLMNYFjRxZjMlL49hji/UkyT//ufjf67DKLUdQ26jJozKvZl6SpGe7nikvK19038Udkyzndle1Mx46Ixc+cWHWrVo3o6eMzlk7nZWf7fKzug4z3y9utpv0WjJ3YlLZphgDk6Q0N1lrx2TdgxqmeGC5lUrFZ1JTpxaf0VVXF5/RtW1b/G2xVCGycyYm93+hCHTrunuyx9PF33xzJhZhZqVSMmdCMvofRZ8k6X9u0n6zYvrxBX53VLbJzWOuycEHF28PPrgIgGvevP4m582rm55bPTfnPHJORk4emSTZcb0d8/+2WrZ02SlTkn33Lb4OnToV4W+fuIyl8P7jdckOG52SdPw4ae3pY4vfjfN98abiXP2nee3c5O0rkpQl+76VtOlbBL6N+/gala57JE3b5a9/LT6fmR+S/4MfJBtumLRsWXxWMnJkMT1uXPH1euGFIsi/V6/i78aKiuK/YfbsItxuwIBl+vLAZ1eqKS6kn/RaMmN0Uj29+KYsKy8ukm/dO+lxyPKvvlT8/qqocHkMfFb/+U9xDuK114oxpmfPIjy/vLwYf1u0SH71qxSf/X7072TqkOIGmPKmxdhXqi4+/+zxjeJBHQCrq5p5xXn/yW8WD0WZN6Mu/Kdp26TD1pk6dfPa7u3arYBtrr1n0rRDcfw0+L+TqYOT7gcVD15K3edGX/hCcS3Cgw8W7y++OPntb4tzWtOn163u6KOTCy8srleYNat4yNePflRcmzFjRl2/T563XdCb497Mu1PeTfeq7rnxjRuTFNcmHHnbkfX63fjGjUXwW6mUjH+6CKaaOrSYWd7s4/MpNcUYsdEpRTgOdSa9mjz77SSlZLPzk03OKNrfvb04v9K8SO+665/VmTKluBfiq19dOPQt+WznCVaEmTOLa1FGjSq+H2fOLNpbtiyOt7fbbskP4mEJxtyRPHVEcWPyhj9Muu1TXKtUVp7MnlBcJ1IzO7vv3jq331783P/zn/Uf5lerVc+kzfrFefox/yy+58qbJLvcl4x7Mnl4MU8bWlVeOiUZfEkROrf935OuuyUpL/7WTE0ybfjSfe6yLEqlZPg1yehbiiD+thsXIV4VzYsxoHpWsvZeSc/DVux2Wb188EDy0k+Kzzi6H1CcF2naIUlNMuWN4nq9LX+XUil5/fXkjTeKz+imTy+OpyoqimOrjh2TI44ozvUCwGfx2mvJU08lQ4YUD0KuqiqODcvKimO/nXcurqEFoPErlYrP8YYOLc77z5hRdy37/HusNt88xWcAk17+OLxsahFelrLiev2mHYoHx/vsrb7q2ckTX0veuyNps2Gy+YVJhy2Kzx2qZxUP+JszuTj+f+bYZPRNSev1k/W/W3x+UtGy+Ixu5pjiay/4DZZZdXXyi18k//u/xWfHX/tasv32xWcjpVLy5pvJjTcmv/l1TTL8r8kH9yZThhTXUTVp+/F1qjXFz/P/Z+++w+Qqy/+Pv6e37SVt0xupJCEQeocgiEgTAUFBFAsoCkgXAZEvRVRQAdGfoqKAVKXX0FuAUEJCIL1v79PnnN8f92xLYwNJNsDndV177ezM2Zlzzpzz9Od+hp0IA/u4/VJEZDuxWT0lfr+fpqamHs/NmTMHgJ133nm97QsKNn/1nfvvv5+CggK+1jECOO/UU0/lxBNP5LXXXmOPPfbY6P/usMMOnUHfOvb5pJNO4qKLLmLVqlVUbfbSayJbSDZuk2nSDRbMzclYJ603CP4YFE2ARX+C5fdYZ+6AgyFaBb6IDT7JJW27Ud/RCNfecHJY4AeNCBYRkS4dE0YcxwZfbCSe8LaRboal/4T62TaAqXiy5fUeH+BaWaF8hjVC9kbbYlhxv61AGO5nKw56g4AHcKw8MfxE+4zPgUzGAlzV19sAt0zGvl+/3wYZDhtmjeKy9dxxB1xwgTXUff3rFsxm2DCbvJnJ2HezZk0+8NvHlYWLJ9rf21rBSBjzQ5uUueq/8NBoG1CJ1wYw5wUCdrxf+pIN4Hrmma4AVB2mTIF+/eDvf7eGy2wWXnrJftZ1/wf3A7D/8P351pRvdT5/y5u38OrKV7l//v0cMOIA64h46TibSPvgaJt4H6qE6qc7/+df/7Jz7zjwrW/ZauTrVsWTSfvtui6/eeU3nP/U+Rw+9nDWtq3l/dr3+esRf+VrE7vq4B/Wf8jB/zyYxkQjD5/4MH+Y/QfOfuJsGhINXLH/FXj6qnwdX971uHiilfPjKy0w3upH7fWqr8I+D2zzXTvkEAve9uKLcP/98JvfwOmnd30XLS322mGH2eTjH/3IAgGCpWX337/OG3q8sOtfYNZMu2cW3Wo/GzB2LPz2txbcb0OBzzoGhJ92GjzxBNx994aPobgYrr/eJmJns7DrrvDjH8O0aZa2zp8P99wDjzzq8OCHDwJw/p7ns+eQPTvf49T/nkp9op7HFj7G1yd9nUMPtfe48UZ7PZOxTsx1ua7Lja/dyM+e/BkHjzqYBXULSOVS3HHMHew1dK/O8wT2tW9s9ZeOSeyO63Db27fx1zl/ZVjJMJY1LeO0aadxytRT+u767S1vyIK61b9uA7GTtRCuhLKdLbDha6fYdkOO3bKB31b+ryu42fjzIDYEWhfZavRN70KqBvofaG0TuBCsgFHftcBwa5+GhTdDzfPWGTrup/z4x1dyxRWWN59/Plx5Zc98ubHROrH7j/oOLP2XrTa++hH78YXzn7N51qyxe++ll+xaO/BAy4MiESv/pdN2P5x88se/V6dgKex8E7z2LZvE0l35btZGg90jt99un9k9ECTYikVT8vOFwmG46y44+GDbn+6OPhraAovJuTkARpeN7vH6qNJRvL7qdT5s+HAzDkB6cB14fJqVSfofBPs+DL6gTa5ofr9ru7bFUDCSv7z1F05/8HR2H7I7/zjyHxz278P48r+/zH1fv4/Dxhy2xXfvvffgz3+Gd9+1wBS77WYTzLzermCukybBfvv18g0nXQ7PzrS88vHpVuaJjYDm9z7ZDu7wEwsi1/CG3aMf3bTOBl7eWmMBKmOBGDNHzewMqDShcgIRf4RENsFba95iWMkwznn8HBbUL2Bo8VCWNi1lXPk4AK584UpmjprJnkP3pLd+8QvL41avhl/+0vK6mTPtvL37Ljz3nA3E/6BlNle/eDUAxaFi/vXevxhVOor5dfM57X+n8cRJT/RJPhEM2kTrb3/bAnjMnGkB7HbaCWIxK28/84w932Py10YCU4VCNjnw+OPt/fbcE446CiZMsL9feQWqq22waG90T7/r6z/VoX4uOY7lO9msfQ2BgH2nHo8FnHn3Xbs2m5qsvNUxMBfsf4466hMGJ92EZNLyxdpam4yXTtt++v2WL44cCQMGbNnP7BO9DdQGtKfb+dGjP+K2t2/jpB1P4u55d7PPsH34x5H/oH9B/y3/ub1NS7ZCgLirXriK/3vx/zh09KHce9y9HHXXUfzy+V8SC8Q4f6/zLZjw0/tYuW3CRTD9D1amW3qHBX1zXUjV0dgI//wnvP66XcvTp1udt+N6dRzLp447zgYrfvSRpS2ZjNWDOsvmDgwdav/fa+kmSK61307a2rQ8XtvPYCkUjev9e2VabGJ3cq0FDveG7ftxXcCBovGbXa6eVzuPS565BJ/XR3OymbHlY/nl/r+kNNLHs3Flq1q6FF54wfJlx7F6aShk17rr2rX/5S/bRL9t7d57rd79zjuw//5w6KGWzgeDlvfX1Vkg9o5AsK7rsqRpCTnH6h7DSoYR9AXtxXSTDXAFKJlqQd/AJujWvdrVJnXQy9aml22H5XdCv32tbD3hAljyD/jojxAsZ82azt3sPGfr6khXWlOtHHv3sTyx6Alu+NINvFv9Lj94+Ad8WP8hv575657BOjchGLSgv62tNoB69WoLrLYut3QannB/C7C/4h6rZ/ujsMOPbUL+3Ms6tgSsreHeefcyt2YuPq+PWCDGaTudRkm4xDbzRbu2z+YrhplWaHobFv/NBmsP/Tp/+cudncH7zzsPZszo2qdo1Pbdda0uuWqVnZ/Fi+3vTyuTseuhpcUeZzJ2DQeDVgfp3t6SSFg7aCZjdWqv176/ggJN7P9CyyXhqb2tXlixp7WZFI2zemay2q75VI0Fiwx+fL5YX2/tmi++aPfr/vtbW04wnyRls3ZfnHZa1/+0pdtoTVkbVkGwgMJQt8iO9bNh8f+zvL90mrX/ewNdwUmcDIw4uVf7JvJZ9/DDFrjdda3e+dBDVl9dz8I/w+zvAa4tuDPoMMvfq/Mrx2TbrY+qeDxNTRagtKbG8gmPp6vc7/XCuHEWqFS2H4lMgtvfvb1zkacxZWP46rivdpWrPgOBzT8Psk6WO+feyeLGxXg9Xsoj5Zwy9RQigch62y6oW9C5sEZVYRVVRRrr/Kk1vgvPHWb1nNE/gLFnQnSwBWjOJSxYc9M7nHnmFG65xdK4q66yyZdf+UpXfaWmxgK+9Lp9PlhiZaWXj7e/Vz1oP+vweOBvf7N6QceiQalU14JfHaJRG69w4IFd/UvNzT23SWQSvLj8RQD+e/x/OWjkQYDVAUf/fjRr29by1OKnOGzMYTy79FkAztn9HMoiFqmmKdnEdS9fx/PLnqe6rZr+cy+AJbdBqB8c8BQUT7LxSA1v2gdmWy1gU9k02+9siheWv9C56MK0AdM2v92tD61ebflcba2d445gqWBJ4bRpG++j7sFfaHXLbLv1z7iufdGpeqh5Dpb+A4AjDvsql10eo6HB+g5POgkmT15/n3q90GI2YYH6WhdanTTcL7+AlZfOMWNVh9sk2I/R0mJjTx580OqK111nbXtlZXZO2tqs/bljUcjecBy7xmtq7P872tR9PnuPfv02vCjdxo+33Sbypuo3MgZpMnj7clDgx1jwW5snEKmCqdfavq59Bpb8zfrmcylINXD11T9h1iz7Tk46Cc46y+pNpaXWJvvEE3D44T4OnfxLS28a58DT+8Po71t/f8f92pdqX7DfkSoL+uYN2DyJ5XfByvstANxOvyMx9CzmzIEVK2yhpOLinvdhNmvBTvr3JllZfhe8dqo93ud/NlHeycLb59n96YtYQM7NkMtZHbaurmtR1FzO8olwGKqqLCCifIa8+k0bN9Bvf9grP5Bq+d0WEC7fPtq66HkOOGFf3njD+kPuvNMmMncsMpHNWnrYfaGLRCbB0qalAPi9fkaXjV6//9nNtx/mkpaGgY0Z9oUtH9mM9Mt1LV3tPoa2Y2x0NGrp6yeY0icimyObyLeNNvXs1/QGIVBoAUa+gHJOjpr2GgB8Xh/9Yv22+memUuunhx1jJMrKLF3c5pI1sPBWa1MPlkDJjl1zRVzHgpJX7MllN0zh8vwamVdcYWOfIt2aDVy3Z9Bv17V+sFRq/WMtKOjj+THbWn58A8m1Njag8z7M563hyj67D9essTL7Rx/ZdTl6tI0D61jkKZuFnXe2flyRLwrXdXnow4eYXzcfDx6KQkWctONJxIKfjzluAE8+aX2bK1bYeM9zz7V2lWjU6pENDfm5PfOugXcvtjLDbv+AgYdZGta6wPpck2t6tL19lr36qi3sPHeu1et33tnGpHbU+XM5ax+dsWsv+ixaPoLVD9vjYV+HIUfZ47cvsHaRjvHRE39h7QMAU6+Bwfnoqa+dZvlGqhb8hdSFvsI//wmzZ1teu/POVr/vWKTMcWwMx1FHbbHTIRviOlA9y+bPpOttrHugMD+/FsvbC8fgVuzB4sV2LXW0p5eWdpV9XNfq7wcd1EfHsPw/1gacaYXSKRAo6ToGN2vzfAcd2gc7txlySZtTEV9lfQC+aH6up8fa8ULlPPr6Plx6qW1+zDHWvr1BH9wAc862xzNfsznSqXr44Ddd27QtArZw4DcnZwtrxFdZPc3j6/Y95Gy8SL99tuxnbu+yCVsgI7nW2tY7xtHgsWu3cBQUTySTsbGRNTVW38hkurqTAwFLw3fcsU+PRGTL6Bgjm26EXNrGzpMfo+4v6H08hy1ss6aTjB07lqc7lhbLe+IJmwy1oWBsq1evZuDAgZu1Q3PnzmX8+PH415npsmM+JZg7d+5GA7/NnTuXvffee73nO/73/fff32jgt1QqRapbb3lLS8tm7bfIJr11Dnz4OxsEscstXQWU9iXWSZRpslW7ap63id0lk6Bid1uJq/ZFa+Rbcpu9V8lkqNit745lW0rW2sSAxCpr4Czf1SqzLQus0JhutMAXxRNgzjk2MXfYiTDgIIv62/SeDTZJrrGVmMad3ddHtFFr11qwh7VrrbKx557W6NoxubcjkM3YsX29pyKfUa7T1Unu5gBPz0Gsvog17Mvnzn/+YxPoV660RtOjj7bJd36/NQ4mkza4YdKkPti55vdgwe+skWLSpdBvb7sWVz1oDVbN79oKFAfO6t37LfoLLLjBOgR3/RsUjYX2FfmJZbeBkw/UMvr0rXdM28iFF9pkoFTKOjePPNICIIRC1ti6Zo0NelPgt3XEV8KbP7KyVOVetqJ0oMAauOOrLWhWdCjxsf/HypXWSOPzWdkkEOiZbAYC1vlQWJiPvRW37dvarCMylbK//X7grbPhwxts5eKdb7GARj3Kws0WZKiy98E9tqjpv4eC0Ra0qPWjnkFMiifBUAuIttde1ulw7bWWtnQfbD11alfj8Fe/ahPVrr0WHnigKxCXx2NBvyZPzXDKnQ8BcPr00zl+0vGd75PMJnl15as8sOABbjz0RjxDvwb+h2He/1m9YNFfuj401A+Gn8SeZXDEEfDUUzBrlk30HTfOOu+zWRvI4Lrw1eOa+fb/vs198+9jl0G7sMugXUjn0jSnmjnunuM4a8VZXHvwtcyvnc/M22cSz8Q5bMxh/Of9/1AWLmPagGlc+cKVNCWbuOHQG/D2ZpBZpt1W00lWQ3igTab3Bq0B1UlZvuyLQv8DejdobeIllp8vuwMe39kavaPDbEWjjkkqvvUnSXRevJuanPIxgSI+bjufDx55xFZav+MOW2H93HO7JuvW1tqk644Jz7/7nV1Tl19ukwQ6TJhgwWsAmzR9wCx479Iewf7whmDocTDhws6nfvADa0A9+WQLbAM2EPZXv4ITT+za9Y6AU+ecY/cowMCBlqbuvLP9PP+8TWh49lk6B5N0GDMG3qt/g+r2agB+uttPewzYnzlqJnfMvYP/ffg/vj7p653Hus8+cPHFPQPM7LGHvX9DooFT/3sqDy54kF2qdmG/YfsxbcA0/vXev9jvtv24fL/LuWCvC3j8cR8XXwyPP24doAccYAMholGb2PDhh/DTn8LIXefx/Ye+z+urXmevoXtxwPAD+Pfcf/ODh3/Abe/cxi1fvoXxleM3/h1vRcuXW5mkvd3KH0VFPSfbuS4UF3so2vu/8O4lNtD5v0OsLhzuZ2kn2H3j38IjkSZdaunxyvvgiV1sRePoUEuzm+da/dtJwYy/wFtnwZrH4JGJFiwzPABKp0P1M5CzEUaXXmqTH/7+d/jDH+DWWy3ITGGhDYZetszS0qOPDsB+j8LcKyyNyzR1BX2LDLLgcgUbWOJ+A5Yvt+BOb7xh99duu8Hw4V2d5a2tXSvRb5YRJ1kAg5e/YZ1uHh+M+BZMv7HH9zBjhq20fsIJFvQEYJddbPBvv25j1/bZx4KofO97FgQILIDnLbfAk8stqJvP42NY8bAeu9ERCO7D+i9e4LdMxsrt2azlq93bSlzXyoCx3oz78Hhh4qUw/1qof83us9Ip1obkDcGcn9p2JTty4/sPcdZjZzGmbAxjy8dy/SvXs2vVrsQzcY6880juOOYOjplwTO8PwnW7Jp7gdOUhHg/WSRDmtdf8/O9/dn9873uWTvbvb8eXydj1slmDsgccAAc8De/9wsoRc87pdi781mkZ3ozIT/4I7P8EvH8VfPh7SxPA7onBR8GUq5jz+m0ATO4/uUdgDp/Xx6R+k5i9ejZz1s7B5/Vxy5u30D/Wn5/u9lNc16VfrB9n73Y2v3n1N5x0/0m88/13KAr1rkA/fDi89ZblK/ffDx98YD8dpk8HXzjBt+7+Fjk3x49m/Igd+1ufwdm7n82vX/41Ty1+ilveuIUf7PKD3p+T7npT3tiEU0+17/vaa63MecghPV8vLIQNdH1s1HHH2YSwa6+1cuK999oPWLnlhBPscU17DQ9/+DCPL3qciZUT8Xg8zK2Zy8xRM/nymC/Tv6A/N99sE1buv9/28/e/twlohYWWti5caANbzjln4/uzuerr4aabLN8sKLDybsdgn854TXQF1tyWHMcmVz36qN2X555rAXM76kaZjA3QGjPG6qrz5lmglttvt3J6x2DiZNICoW7pWIO/+x1cdJHleWedBd/5jt0j4bB95tq1XYGhvyjeXvs2x99zPCtbVnLEDkcwpf8UPB4PD334EFNumcI/jvoHM0fN3LIfum5a8CnTCIDmZDOzV89mUcMiJvabyNKmpQS8AXYdvCvDiofh8Xj43au/4+JnLmZcxThKI6V898HvUh4tZ4fyHbjg6QuIBWOcOfUkS7dXPgBrHrUyV2yYTXZe+4QNevMGeG/g6fz5zzZQ6uCDYffd7VqOROw+aG21a+mvf7Vrra3NBi5ecIHVgwIBK4O1t9vvXl3sTg5ePMb2rXgi7HQjlO4I7cts0uqqB20y1OTLLWBw+1Lb9/4HWNtu22Ir06bq8p3vM+C5Q22w3g4/sX64YEm+3e09G6TkL4AZt/JB3Qf8bc7fuP2925nSfwrRQJQXl7/IcROP49vTvs3UAVOJZ+Jc+fyV/PrlX1NVVMWPZvyINa1r+H9z/h//ef8//OaQ3/CNyd/onMSVyCRY27YWj8eD4zoUhYooj5RvdpDRpmQT9867l9vfux3HdZgxaAaPLHyEGVUzOGnySew3fD982/NE1s+BdNqu7+ee65psP35818SJZNLS/t5Odl661PKFNWss/z/oIHvf7vlcMGj5Rm+sWWODhpubLc8eMsTeNxi0fY9ELJ+KZ+L8691/cePrN7K2bS0nTT6JxxY9RlOyiR/s/AO+N/179C8YAXv/1+poC35jk8bLdraJ4UELBoDHDwUjYL/H4f0rbXGTlQ9YH3agCJrm2naRAZx5pj3829/ghhvg6actPSkpsX1budL27Vc3rOWwfx3GO9XvcOjoQ1nRvILiUDEzqmbw21d/y6rWVfzjyH8Q8n/8SQ6HLWju5ZfDY49Z2/+ee1ogmmDQ6qRz58Kdd1Ywbf8nrby85jG4v78FigqWWBshWHsmHp5e/DTnP3U+c2vm8rWJX2Ni5USufflarnrxKi7a6yLOmHEG4QkX2iCgpbfDE7tCv/3sPHn8NmgOIFDIXXdZwLcnn7Tv/qtftf7faNTSzGXLbBL3dddZWe6996x+0BHQLxSyNHjlSltcoMdkkI20Wy1bZoMt33zTPuvqq60dqX9/26y52YLLrVgBZ5xhZemdd7ZyzqhRdt4cxwLRpVJW595SHMfq0kuX2r20775W7usYSN2xzfDhXXX7jtXQO9qsu2ezFRW2fSJhdchcruvUdGzn86nv4BPzBm1hgLYlEF9mbUGJ1RbsrXkezL/GtiudjluxO/Nq5/HcsudIZBJMqJzAm2veZETJCPYdvi+DiwazapXdr6++am0ou+5q7UfRqH2PbW1dbZhvrH6DP87+I/95/z8cPPJgAr4AD3/4MMdMOIYzdjmDXat2xVM9y/oc3Jz1hRVPtP2re9UW1ci22TiTiRf33TkU2Ub22ssWp3ngAct/L7jA6tAlJXZ/NTTYz7mnzbAxaPWv22SEbLvl56kG6zdrehcGHsoNdx/KBRdYWv3jH9viNoMGWVqczdp7daS5HRxn/cVqvN6uiTxbkuta/tARgKN71cvrtf3smCybzqVZ1bKKnJvDdV2CviBVRVX4vZsxjNZ1Yd5VUPeKBWYY8U2bJBBfYfWR1g+tzWzcuRDZ9pHXM7kMf53zV654/grimThn7XoWy5qX8fNZP2dSv0lcdcBVzBw1E89mBFTfbFv6/TbihResjNPYaHnJ0KFdAfldt2tSVmXllv1c13VZ2rSU11e9jsfjYVDhID6o+4BxFePYaeBORANRXNflvwv+y0VPX8SSpiWcMuUUKqIVXPj0hfzqhV9x2X6XccrUU/B6vDz84cNc/8r1vLziZb415VusbV/LYwsf49gJx3LO7uew86D1F+X+wsulrOzRutACuQ06zPqJ2xZbn1ZyrfWnDT4KSqda20DrhxYQP1kNLfOsHWT1IxAoofLYb/L663DZZRY88+ijrczZr5+VLRsbrY2y14HfwCYeBoptAmfjW13PhwdYALrhJwFWh3v3XVtE6aabLF0FK7P+7GcWcAwsbX/vPWv762jrBasH/vKXMLv6RVK5FH6vnwNGHEA00NWHtd/w/bhz7p08tfgpUtkUjutQVVjFdQdf19lO4boud71/F8ubl3Pf/Pv4weCvWp2wbZEFs67YHfBYX97bF1i5avIVtBWM4dY3b+U3r/yGjJPh9J1O5+GPHuaDug84deqp/GzPnzG8ZDhgAbVXNK+gpr2GwlAhralWBhYOZFDhoF4H+94azj7b2r2zWauHHX+8BYYIBCxvaWzcSADVDSkYDvs+AnMvt6DE1U9D2S6Wv7bnO/L9BQwbbmnY1VfbOIMdd7T616BBth9Ll9o+zJ0LixoW8e/3/s298+9l6oCp+L1+Xl/1OkeNO4pv7PgNxpaPhXm/gvnXWRvZXvfZYgepGsvLV9xrizXm0jZppeldm9g18EvWNtYRvDlVB7gEKo9j4MAKSkrs+u8IQJdMWr7a3m5tER3X6sd56SVbTHLVKruHfvlLO97CQsu36+rsHPfanPNgwfW2UNmMP9liXZkmu/+X/MOOZYefQP/9NuNNu/kkC3xsrhn/D976sdWpOsa+hPpZn/uqh+x4Mk2Mm2z53GWX2TiJq66ynw7FxbYwJcO+bt/9vP+zOQh13Vao9PhtjFhHu87HaZ4PC/9k4+4HHGxB9MDaSlJ11v5aPNHKOCvut8m4Q461tC2XsPH+yRp73G9f2OMum+C59kl4ZBIMmGljH4onWHsS4BDk2GOtHcfns/71GTPsGvH5rC2iqWkzgrUMOhxGnmZjH+b8zK756DCo2AOW/dvGYUSqYPLluK5LTXsN82rnEfQF8Xl9tKfbGVcxjkGFg/B4PNxyiy1219IC3/8+fPe7dr9Go3ZfVFfbNazAb1vXq69ae9+SJdYedtJJds472lRzOWsX3GWXXr7h7v+Gd86HuhfhhaOgYi8r05dO7VyYMzLoBA45xPrW1qyxa7SlxdJnv9/aLVavtjJCY3YVf5z9R25981aqiqo4cMSB3Pb2bQwpHsJPdv0JJ0w+gXDLPHjt29Ay3xYZHHYC+Iug8U1rV2n5wObLTPlVrw7h+uttXFhjo42XOv54G6cTCFj9qLraysOjR3/8e+E61heTbrRxFcFSW5yyc2yDa+1C4f5bL20UXNfGnS5davntTjt1LSzWwXFsrJ8C+m0HXNcCjS75hy1AMf33UDLF8sL2JZbPZVphylXWf7K9WvIPK5O4js3FC5Vb/SlVZ+UrN4cz7BReeHsUq1ZZ+XDatK58Grrq34MHQ5tTy1/e+gu3vHkLEX+Eg0cezB1z72BU2SjO2OUMjpt4HGF/L+fs9DK9ufkmlyuusPT6e9+zPGLIkK7y/Nq1lmb3qt/NdayemW6wtp1QhZWdnXS39DBgQTt6U4dpeteC+7Ythh2vtHmN3oCV+dY8ZnXTsp059NAneOYZW5Ttv/+1e3/4cGvPSqdt/HG/fvD++1Z3Wb3a+uiPOML6enw+K59/9JGlEb1K+z8PckmYdbCNi6vYE6ZdZ319LR/YXIm1T9g2O/+xT9rofvc7uPlm6+f4zW+sv7KjrplOWxm3pKSXb5ZptQU8Gt+B4vE2fjVYavNmE2usvB4shp1+t0XnxX30kY37bmnp6oPuvuCljXnum8XReq1+tt1vqfr8eOdKuy4Sq/OLESahfFc+rJvO0qWWXgwZ0lXm6z5OtbTUjvdj5ZLWX5VYDZGBVsbzhW1uVy5u9SVfxNqzvL1tcNg6sk4WN18P9nv9m79obqYVVv3P2tuiQ7vmirQvt7Qzl7A2kYEzeWbJM1z09EW8teYtjpt4HDuU78A1L13DL579BZfscwmnTz+d52cFue466wufMcMWsy8u7urrdRzLg7Z00Jl0Ls0zS57hvvn3UZ+oZ/fBu/Ps0mcZUzaGo8cfzR5D9uj1uJyyMhg2zPKfjvHyPp+Ncc5mu7WBTB1n4+PbFlngdm8QcCzPmHeNtdfs8BNLvxJr7XyGK207183PjQVw7dz3wbihV16xgG5r19p40kMOsbyrexpRUmJtYA8+aPnX+edbelhZ2TWmpaEhnx72ts9ijzusj+b9qywdLJ1qdZXoYEv78Vhby8SfW0yG174Na0+wOWPlu1rguLpXIFjOnDm2YPf8+bYQyG67WRoQDls9s6Wlq//LcR2WNS1jft18yiJlJLNJMrkMk/tPpn+sf6/vH8eBP/3JxmXE49YW3T197ehfGzu2l2PjPw9aFlg+17YIxv7YxrcHy2H1g9amX/86+GM86b7ISSdZ2ejww62dbMCAru+rvX39RVWALTZ28801b7KqZRVjy8eyqHERZZEydh60MxXRCmsP++B6iwUy9OtWNokMsDyo/g2ofhKAZZM+5LrfRli+3Mp3X/+6pXPdy9Z+v81R3OayCXhyNyvD9j/Q6jjRKkujWhZAzbPgZDhs/7Fcc80A/vpX64s+8kib81CWb36sr7fxR3+47gSofd7aBd/6ibUhRgbZ3I0P/2ivle8GY76/5Y7BycGzM62OUzoNZvwZCsdaW0zrR/Z9ZOOWZmzmYsEfpzXVyvPLnue5Zc8xsnQkAW+A+XXz2Xvo3uw3fD+Kw70pRHS82UdWxnMdO2e+cH4OZgbIF0yKduhdOaJ9GTy5p9VVR3zL5o2F+1s8m5b5do/h8DL/5phjLE3fd1/ru5g4sWu8cFOT5WuyPsex9DyV6lrwZt35DrFYL8eWpputTye51toaisbny1ZL7RrIxiFQjDPwy7S2di3qGgz2LKdD15zw7VZirbXXJ9Zaebl4ol3TrR9ZmTnbbmXpqq/07v2W3QWL/mztm2POsADgmSa7B1rm2/sN/6aNkV90q9Xrd7kVyne2smzbEhv3mWmC8edbX0vLBxbHqOrL4IvZ3Pt0o92fvpDNdwwUftye9ZrHdXufU1111VVccsklfPe73+WMM85g4cKFfPvb38Z1XVavXk1snVLE2LFjGTlyJI899livd2hj/7NmzRoGDRrEVVddxYUXXrjB/w0Gg3z729/mlltu6fH8K6+8wh577MG///1vTuiY0bSOyy67jMvXndEMnH3yLgQCAZqSITI5L2F/joDPIeTLknW8fNRUSG2skerialyPS1GiiFgyRn1hPYlgguJ4Mf2b+xNOh4mH4sRDcTK+DIFcAK/rJeVP4c/5iaajRFNRCnwOM6qqGV7SQsDnUN0WJeN4cV0PO1Q04rrw+qoBvFtdwYyqtQwvaSEayFIXD5NzvbgujCprpjUV5MnFQ3gj7bCyfCUuLsXxYooSRbSF22iONpPz5hjcMJjy1nKcXJC6uh1pbh5JPD6QXC6I15vF43FwXQ+hUDMjJv+JeUPnkvVlGV4znECuK0NYWb6SeDDOiJoRFCeKWdxvMW3hNipaK4gl7bpoD7dTV1hHQbKAkdUjCWd7NiT878EHATjiK+vfgIXBNLtUVTOmrInicIqwP0c656UxEWZlSwEvLh9ESTjFTgNrGFAQpyERpiUVxHGhKJRhaHErrekAf509gw+XHkQ83h+vN0NZ2TwCgTjg4PG4uK4HjwdKSj6krm5HmprGkEyWEw43EAw24/Hk8gmtl2CwmYqqF2iONtMaaSXtTxNNRXG8Dil/imA22HnOfa6PaCBDeSRJQTCN3+vi89q5zTheklkf1W0x2jMBvB6HymiCknCaoC+Hz+uQy2/Tmg5S2x4h4c2SCqTIeq3nPJALkPan8bpeArkAoUwIv+OnqrCNqQNqGVrcitfjEs/4ybleCoO2OtCy5kJmLRnMboPXMrS4lYzjZW1bjEzOi+N6mFDZQDSQYW5NBY8vHI7r+nFdLx6Pg8fTMTrPBTyAi8fj0No6lLq6KcTj/QgE2olGq/H5ukrLruujtOx9WvvPY2X5SkLZECXtJYQzYRLBBI3RRrL+LEPqhlDZWkkskKY8miQWyJJ1PGQdLy4egr4cAa9DMutjUWMJIV+W8miSolAan8cBPDiuB6/HIet4aUmFqIuHiQSy+L0uqayPrOPB6wGvx8HndfEAiayPVk/OvtdwK1lfloJkAclAkpw3RzgTpiReQkGigKZYEyvKVwBQHC+mMFlIPBinOdZM2pdmcMNg+rVUUBFNEg1kyTke4pkAOddD0Ofg99pPzvGyujVKOl1MKlVKNhvG6811O292jj0eh0DJYpZWLqU52kxZWxlFiSJwoTXaSn1BPUWJIobXDqfICbDzoGpGlTZTEMxQFw+TcXw4LowqbSaV8/HS8kHc5aunKdpE/+b+jKgd0fk9tURamFc1D5/jY8dlO7Jg0ALioThD6odQ0drVO11TVMOqslUUJAuYuHIiJaE0Ow2sYWRpM8XhdP48ewn5c+QcDzXtUe6e13O1jE3d+5P71bFDRSODCttJZPykcnYMFdEkiYyft9ZUcl8yw6qyVRQmCxlSN6Tzf1OBFIv6LyKQCzBpxSQOH7qWseVNJLM+3lzTn+ZkkMJQmqJQmqpCm3Dx2KLBvBerY03pGoriRRQnivE6XrK+LI2xRpKBJMPqhtGvpZLxFY1M6ldPRTRBfSJMMusn53joXxCnKJRmdWuMv7xyEKtW7UcqVUI0upbKynfw+fKBlwDw4POliMXWkk4XUFc3mebmMSSTZWQyURwngN+fJBRqYtCgFykvf5+mptE0Nu5Aa+tQstlIj/vR50sxbPjDrB37DA2xBipaKyiOd1UImqPN1BXWUdZWxoiaEbw/5H2SgSRD64YSTXWNilhbupamaBMDmgYwsXkQewxZw5DiNtrTAVa1xsg6XiL+LCNKWyiLJFnWVNTr7zUWyDCjai3DSloJeB3q4uH8fQ07lDcRz/h5dulg5teVrfdeG3q/lpbh1NXtSDzeD683SyRSk8+/LE13XR+jhj/G8NJGwv4cLakgTckgjushFswS8Fq+nnW8vO2kWDhgIYFcgGlLp+F1rTPGxeXdoe+SCCYYWjeUnDfXed1PWtkVLSzjyzBn+Bwcj8OElRMoShYR9OWYPrCaif0aKAmniAaypHNeGhJhljcX8urKgTQlu0rsOw2sYb/hKwn7s6xsKeT5ZVUsbeo5+6RfLM6BI1YwvKQFr8elpj3KezXlvLG6H1mnq6EuHq9k7drdaWwcSzYbIRBop7h4EQMHvkQ02lXLcl0vK1fuS23tTmSzYaLRtVRVvUhp6QLeH/w+reFWBjUOYmj90K7/weWNkW+Q8+YYs3YM7tL9aWgYTzJZSmHhCsLhOrzeTLfKiZfikgVkilfTGGukPdSOBw8FyQJaIi14HS8FyQLK2suodAPsM2wVVUVtNCVDrGguJJ3zMqAgTv+COP1icerjYf729gSCPgevxyXreHBdq5V4PC6+fAUl63jIOD6y2QjJZCmZTCG5nD9fgXE7jyYarSESqe/VNQfQPxZn50HVDCtpoSiUJuhzSGV9NCZDrGop4Jklg0lkA4wsbWb6wBoGFrZ35v+JjJ/6RJgVzQU8uXhY/r5I0y+WIOzPEvLb/ZzJeUlk/TQlQzQkwjiOl8bG8dTXTyQe708mEyOXC+HzpQiHG+jX7036938Tr8ehLJKkLJLqvL4d10Mm5yOe8VPTHiHjeAl47XM6yo8eD3hw8Xosz0lkvbSG2mkqaKI9ZGlkQbKA1kgrXsdLLBmjrL2MSDpCxpch7U+T8+bwuB58ro+ML4PXsXJJMBukPdTOvMGWr4xfNR5ft2t1waAFJANJRtaMpKJpELW1U2huHkUiUUko1Egg0IbH4+avVx9FRUuorHyHbDZMKlVKOl1ELufHdQO4Lni9Dj5fimhsJWsHzmNN6ZrOMlmH9lA7DQUN9Gvpx4iaEYwsaWHqgFoGFMRpSoZozwTIOR5Kwin6F8RpTgb529sTcfLXWUEwzVfGLmF4SQs518PSpiJeWFbFmrau+lDEn2XnQdVMG1hLcSjVWc6aX1vGm2sqyTo+crkA9fUTaWiYSDJZTiYTy6f9CcLhOqqqXqCkZCEAjuOntnZHamp2IZGoyF+71VRWvkNp/9eZM2o2rsdl/KrxFCe60v66gjoWDliI3/EzffF0gl6HimiColAGv9fBccFxPfi8lm7GM34W1fcnkaggm43i8WQIBlvxeruP2PTg8WQJhSxYdi7nJx7vTzZbQC4XxHF8eL1ZAoE4kUgNwWBbr8rCsWCGXQZVU1XURjJ//eccDyF/jhElLbSlA9w3fyTjKxsZWdqC43pY0lhEIuunKJSmMppgWEkL8UyAm2dPJudu7sBglyFFbZRGUqRzXta0xmhObbhVJZ0uoK1tMI4TIBpd0yNd7S6ZLKW9fSDgUli4kmCwlaw3S0NBAwBlbWX4na6RORlfhsaY9eaUt5bjc7vulbJIgkGF7bgu1CciVLdFsRJsfu9dSCbLSaVKyOVC+TpdDr+/nUiknnTRShKhBMFskJJ4SbejdqkvqMfxOhQmCkkGkmT8GaufprpGCDk41BXWgQdK2ksI5oK9Oqel4RQl4RQhf472tJWFXRdC/hwFwQxZx8uH9aWd91fvuFTk60zRQAbw0Jb2UxeP0JIKApvzXltHxzWSy4XxejNEInVEIjWd6VkH1/XS0jKUTKaQcLiOWGzNBserDCxooyKaJJ7xs7y5kIyz4c65XC5Ia+tgHCdIcfFifL70RvYvRlvbELzeDEVFS/B6nfW2cRw/LS3DyGRieL0ZYrFqwuEGEoFEZ35Q0dZz5Gp7sJ32cDu+nI/y9vJ13s9La+swMpkCotG1RKO1ALSEW0gGk4QyoR7pl4tLXWGdtbXEizrbEDqu9XS6iEwmhuv68PvjRCJ1BEMNNBTa9dz9fwCSgWRnuaO8rRxP/joZWNDGASNWMqzE0rTa9ijv15Yxe1X/zvNcGEwzfVANk/rVUxpO4rgeGhJhFjcW8eaaftTFoyQS5dTVTaa1dTjJZCmu68u3Ibh4vRn69XuDsrJ5pFJl5HJhfL4Ufn8cj6f7bDgPfn87gYBFJ/N6HPrHEhSF0kQCWZJZH42JMLXxCI7rwe/NMXVAHeMqGqiMJgj5c2QdLx7I5/tRnl82kANGrKIimuDD+hKWNhWRdbwMKW6lLJKiOJSiKRni/g86Rvu49Mt/Zsf9Fc/4aUhYmaTj/vJ6XPrH2ikMZTrru23pAHXxMK3pnmlnJhMjmSwlnS7GcXyWL0TXdB5nh5Avy/CSVoK+HHXxMGvbYp3pXHv7AGprp9LePpBcLkw43JAvbzq4rhfH8TN27H8Ay5eSyUrS6UJyuQCOE8iXD6xuFY3WrHe990ZJOMnAgnbWtBX0KMOvy3H8NDaOIRBIUFi4dKNj0LLZME1No4hG64hGLVLcpu6veCBOW6QNr+OlX3sZQZ+Dz+OScz3kHE+38hyAS871ks758Hsdduxfy5T+dZRGUsQCGXKuh+ZkiDVtMWav6s+KFmtsjscrqKubQmPjOFIpa+UPhZooKlrMoEEvdub9AMlkCUuWHEFbWxVeb4by8vcZPHgWfn8y/16V1NVNpbl5JJlMAZlMFI/HIRhsoaBgFaNH39fj+DZWh0ylConHB+A4QQKBdkKhhnXapKz811K8ioUDFhLMBqlo6Tp3WV+W6pJqYskYO6zZobM9syCYpl8sTsSfI+CzeyeeCdCQCFGf8lNfaHl1aXtpjzbQpD9JS7QFj+uhf1sZ/WNJIvl6Xjzjx3G9hHw5/F4Hn9fqCW3pIIMK2wj6cjQlw7SlA7hAyJfrbGtuT/upbreyZCYTJZGoJJuN4DiBfNkqh9+fIBKp6fE99FZBMM2QolYCPoeWVJDVrTHSuc1aE6aHolCKIUVtZB0vy5sLSWTtvVoiLSQD66fpAM2RZlKBFOF0mJw3t8HyhotLfWE9jsfKJZHMBgK6fgzX9dDaOoxUqgifL0MstppQqJmUP0VztBlcqGyt7MwHAOLBOG3hNq6ggnAAAFt4SURBVHw5H8MyhewxZA2Di9qIZ/ysbo2Rc7z4vQ5jypsoDqVZ1FjMAx/0LijlJ2F58FAymQI8HpdwuIFodM0G8+veyGaDtLYO72wbKChYhd+fIO1L0xxt7qyfd2uuoi3c1tmn0L3cl0oVkkqV5esuQXy+BJFIPeFwXY/07uPq1b3ZLpuNkEiUkc1GcV1/Z5ta9zEYRUXLyOWC+XzXxePJ0uNA8ts3No6hpmYXUqkSiosXUVKyEK833wGOC3gJBFqIROpobBxHU9NY2tqqyOWC+P3JfH7twXW9DB78DCUlH5FOF5NOF5FOF+C6vvxnWZ3a681SWLgUvz9FJhMhlSojnS7EcXw4TgCPB7zeDH5/gqKiJT3KiJt77ja0TS7nJ5UqI5UqxnGCOE5Hu761OUej1WQyhdTWTiMe74ffnyAWW4PXm+7cF8fxUVY2j2i0jni8gvr6HWlqGp1P0y29CgZbiURqGDXqAQKBOK7roaFhAvX1E2hpGZEvC6eJRqspK5vPwIGvAtDaWkVt7TTa2oaQyRSQzUbwejOEww2Ulb1PNFpNTc10kslyCguXU1i4LF+udfNtTdZnFYut2ej56bBufad7upL2pWmKNYELFW0VnW2B21IiUU5Nzc75eiMUFKzC50t0awfxUlCwkmDFPEunHB+hbKjzMs/6rK8olAkRS8RoKGzYYJ0t5UvRHLM0sKK1Ai9ePPlyX2EoTTSQxetxSWW9tGcC1MfDtGfs/7PZIMlkJZlMQb5s5cfjcfJtUo1EozW4rpdUqoRUqoRsNoTrBnAcb+d2Vh+qp7cKgynKIiliwQx+r4s331eZznlJZv2sao3h80BFNEEsmOl8zcWD3+sQ8lkf4qLGYlzXQ2m+rSzks3wXXHKOl1TOR2sqyLJEgKZYE17XS3G8GE++furi0hxttvpFooiML0MiuH692sGhvrAe12Ppptf1Eg929QeHM+HO9jMXl2g6SigTIufNkQ6kyXgz4LG+vowvAy4EnADBTBCv66Ux1ojjdShIFvQol8SDcVKBFJF0hMJkz8EDm0ojPLiMr2xg+sAayqNJCoNpHNdDcyrE6tYYb62pZGlTMS0tQ2loGN9Zj7O+CEsPvd4MgwfPoqzsg/U+c2OfO7CgnV2q1jKkqI2iUJqAz+nRVnp/dRFzBy7A43qYvng6frerrLKsfJn12ySKGL9yIg0NE2hs3IF4vD+BQHtnHy7YfROJ1NO/6nmSwWRn/14wGyTnyZHz5fDn/ETSEUKZEE0N46mvn0wiUUEstoZotLpbemhpf1HREiKR+m7pa0m+nGbfR0eaHitYTntBPQ0FDcSDcQK5ALFUzPJb10NRoojStlIi6SiZTAGpVCmZjPXN+Hypbve+neNw8VLqCutoKGzAxaWkvQTX43a+X3lbORWtFZ1tS9lshHi8H9lsGMcJ4ThevN4MgUCCSHQN8eI1pP1pIulIZ/89QNqfpiVq9eWytjK8WHoY8WfoF0tQEMwQ8FmfbHMyRG08QtbpSjMj/my+vTGFz+vSng5Q0x5Zr25oeXtFvm3b2kuCwSai0WraYw0bbRvono6HsiGy3iw5bw7X4+JzfDgeB9fj4nW8+B0/PsfXWdazNoSKfBtCAa4LgUAb0Wg1wWB75+cEfVkqowmKw2n8Xod4JkBdPEJTMkjal6Ep1oTH9VDWVtajva4p2tR5Trvfh+WRBMXhFAX5NKotf0460taufSsjnS7pLPt31Futryvfhp/zE48PJJuNkMuFcV3rWwwGm4lGa9dpt9041yXfnl5MJhPJ9/v7ACdf34hTXLwEx/Hl210K859n5ZyOsk4o1ERBwaoe772pNGfdbTa0XSYTIZksJ5uNYG0jCTrGb9h96CEUqieZtOvbysh13Y69oyzlxetN0t5elW97SXf2V3WUDTt0//43JePN0BpppT3UTtaXJZqKkvFnyHqzBLNBCpOFxJIxPHg6r0UXFw8e3PznefDgdbx4sXrFlP61jKtopF8sTtDnkHG8eD3Wf1QXj3D3wsG8XjWPrDfL2DVjiaW67tdllctoiFnfxsiakfnAfaOor59MW1tVj/srFGqivPx9qqqep6VlGA0NE2hrG0wmE8PvT3RLN31UVLzTWVbrHWv3LY8mCfmynX2t8Yy16zcmQzSFWzvrgN3bwFP+FBl/hlgyRjQdtXPn+EkkKvL9PYF8mdnB708RDDbhL15Oc7QZr+OlpL2kR32uI5/sagvsvm9W53ddD6mcj/Z825X1k9n3k3U8nd+Yx9PRrgJZx8sug6xPO+d4WdJURCLjozicJuLPUhJOkcz6mbWkiopYklggQzpnbQBZx0PYb+cl4HVI53wsay7sfG87712Pu9dxurf5w6e/v3q3nWtjk/L3XEcbfsf58ODiuB7qAnHeHzwPj+thpyU7EXC6yiWL+i+itrCW8rZyJteNYEbVWkaUtODzuqxu7RqDNLa8iUggy7zaMp5YNGyLHmsqVURNzU60tQ0mnS4hFGrskac7jp/hwx/udbtKj5j9GxGPV1JdvQvt7QPx+VIUFi7P31+Wbrqul3C4npKSxb06ht4e6+Zul0oVkkxWks2GcJwQHo+l++FwA+Gw9Un5vTkGFsSJBjKE/ZY+dIxTq4+HSeX8OI6fZLKEdLok3x/o72wH76hruq6PVKqUXC5EMNiSPx/Zzrqc63oIBNrx+zc062LTNnas2WyYtrZB3dL+BrzennVI8OALNREPWRnan/MTylhZpWP8XTgTJpKOEA/FWdJvCVlvlrL2MmLJGDmvjSNrijXRv6k/gxsGE3S9VEaTFIbSnXWQjvQk6MuRzvlY0VxEQ+tAMhlr27A+1/zCEJ08BENNON4MjtfB8Th48OBxPZ2PvY7Xyj1e66urK7R+yeJ4MT7H15kWlrda+TDtTxMPxQlkA5TEu9LNdesuoWwvIxf3gWw2lL+Wgvh8mc68q2Nsg+uCz5fF48l062cP5bfLdHsnL8FgE6FQ6xbbNweH1kg+n8uE8eV8nWWBVCDV2bYJWDnb9VLW2lXOdnFpjDWS9WU7yxFt4Tb8OT+l7V2j7x2PQ0NBA67H6gI+x0fWlyXrzeJ6XPyOn5ynq1zsz/nxO352GVTDDuWNhPw5ljQW0Z4JEA1kKQqlGF/RSCLr5/b3xrLQk6S2qJZUIEUsGaMoUURDQQPJQJKiRBH9WvoxCD+7DV7DgII4Ne1R1rRFcVwvJeEUBUHLE9e0xXisroAPBn2A1/EyvG54V73a47K0cimOx2H8qvHr1V0/raAvR2XU6iwej0s6Z2V1r8cl5MuSzvlY0lRM1vHm+9ziFIUyhPxZvB5I57y0p61foHv9paMv0vomAvh8CaLRGkKhxk8Y58RleEkrRaE0DQkbV7Runt8hlSqhrW0QXm+WoqLF+HwbLu/H4/3y43PbKCpajsfjdLVzOz7K23r203b04fpzfvw5P8lgkmAmSEmipMd23dvxi5I2xibizzKgoL1zTJPjekhkfDYeNxGiPty6wXpRR3tUR10q7U/THmrH63oJZoM25tmXJu1PgwdiyRiBrLXR1BXVkfaniaVixJIxGgoayPgzlLSXUNFSgadlCGvX7kZ7+wD8/iRFRYsJBOLd6tXg9yeIRmtpba0ikynM532N69Wh/P4EoVATuVwgX+cv6tam6ukcxxuNrcIbtjpgxrdOWw5Y3pIN4c/5O9PdsN/qmkUhq2sms37qEyHq45F1xnp4SSSsb7Ojb976BWpI+xM0x5rxul6K4kVd9V1cWiItOF6nM033ex3KI0lKwikC+b6qjnE58Yyf2vYIGcdHZTRBNJDB67H8vmMEeFEoTcbxsqK5gPZMENeFTKaQRKKycwwKgM+XJhhs2ax+C9f1dvYXZ7NhXNefbz90O+svgZIlrC1eS31hPZF0hPK28s60MBlI0q+5H/2b+xNwAkQDGcoi1q7VfQxS1vGSyI9BWuuzdK413Eo4E6a0rZSWaAvxUJxIOkJlSyWliUIGFSTyY1c8tObL86H8+O5gvg9xWXMBmXzfluNx8LpePK6HrDeL17X2CH/Oj8f1kPanO8fRdbRRZL1ZfK6PYDZobX75PMHrcRhYEKcgmCGS73Nvz1i9Zd2xL67roa2tKt+Ha/XkgoI13fpNTXEoRVVRG36vQ2sqyKp8n2Dal+adYe+Q8+bWS5OXVC6htsjK82PWjqEwmOrsV8463nwdwZMvJ7q0poOsaimgLJKkOJwm5Mvmx3ZbuSsasPaQ+kSYmvboBo81k/PQlg5SG48Qz1jdIpcLdhtXYHVDGwuYxe9PUlCwAjfURsqfIptPH/05PxlfBg8eAtmA3QudddDuYx+yeHA724Rr4xESDrSGW8n4M4SyIQJZ24+ML9NZZixMFlqem08jrL0khOP4OudT+HzWD9JRtv6Yu4HCYJqwP4cLpLJ+cq4HX34eg89jrQrxjI9J/RroF4vTng5Q3R4lnfNSHEoT9meJBrLEMwHeWlPJwMJ2YoEM7ZkA7fl+6LA/l59n4dKaDrC6tWeEqI3Vv5qiTSzqvwiv67V2x5wfF5dEKEFtYS1l7WWMrB6JkyyhpmY6ra1DSKeLiUTq8u2bTue47f79X6WmZhficQuyMmDAawQCbVibT9e44qKixb1OS6y/ojzfXxHMt1nbeQUPwWALsYKVOB4Hx+vg4uJ1vbi4uB4Xj+vB63rtHs7fX0FfNl8XyubH3FhbXn08TGu66z7MZKLE4/3I5cLkciFs/H+SYLCFcGw1TUV1OB5LkzuuJbA+1452z6JEEUGvQ3k0SXEoTcCXw+sBx7VPSee81pffFutxDB7XAx46H3c/Bis3l3WOj3FdPx11Ia/X5ieEQs0fe269HpcBBe2d6WFLysZt2nnJUhDMkHO8VLdH2G/4KvrF4ixrKmJZcyGZnI+Rpc2URxOURfJjkOaPZEx5M8WhFPWJCM3JIB6PtTnHgll8HofaeJTFjT3HFGzq2lxauRQXl7L2MqKpKFlfluZIM82xZgY2DqSqoYraNbvR1DSGdLqI4uLFhMMNnWO3LGCLl+LihVRX705LyzAcx095+VxCoaZ8GcHFdf3kckH69XuzV2U/a9usIJcL5dOrtm7XdEffcZpgsK1Xx2pjrMo654hYHcfB6pGWf4RCDT3q1RurL2cyEVav3ov29ipc10NJyUf58dhOZ33Z43GJxVatU7Zakh/T1tWX7vfHKS3d/IUqN7Zvrgs1NTvT3DyCTKaQ4uJFhEJN+e/LydflfRQVf0i8eC31BfUkQglC6RAFSZvHlfPmKEoUUd5aTiwd2+Dnrnt+qwrb2G3wGvrFEixqLKYuHsbnsfxiVFkzQV+OuTXl3L+sP9XF1TQUNBBNRaloqyAZSNIUtc/t39yfypZKfK6PwmCa0kiSgo30a65ujdESLyeXs7kAVm7NrhN7woMv2Ep9US1rStbgc30UxbvmpraF2yhKFDGwaWCP9uJNHWthME1lLE7Il6M5FSKV9eH1uAR8DmF/Dq/H7RxvWxFNUBhME/Jbe4aT36doIEMm52V1a4z6tgqSSRv36PFk8uMoXOzatDJAMFJLc9Hazj6dYLarTyQeinf2sxbHi3u08W4J2Wwwnx4W5dNDqx9aepgmGl1LONy03nlb99x5cOlfEKcwmMbFQ0uqo703R8iXozCUJud4+aihhFRu0+MLuh/jxuaKxDN+a09PdoyN9RKPV5LJFObb8gL5/rR2IpFaAoH2/BiUrnkxYH09YOWmWGw1Pl+m8zz4fOl8f4DbY+/AYc2avWhtHUouF6Kk5ENCoeZ825X1Hbiul7Kyd3GcSL5f1O32ft25+PzJzj48x+vgzfclOl4rP/tyPvyOlS2yvvx2Hqezrw8PVrbO9ezr29T31fHZJeE0peFkfr5o15jKTM5HIutnRUuMhCfX2Q7owWPlSH8Gj+MhmLNyetjjJRqw+RWZnLezP7SjnObx2PfWnul9oC4bS1FMMlmaL0cGcF1v51jAaHQNjz1+58e+zxFf+Qo+j80BKQxlCPmyOG73/g2r3y1tKu4xHn+j6TCulTfyfVseK2x0PvY6Vt7IZSMkEuXkcjbWpmPMc/c0LBCIEwy2fuxngktltzEerekAjusl4M3h81qbas6xsdm7VNUwoKCd9nSAlS0FpHM+SsI2NzcWzNCWDvLUkirioTjtoXYy/kzntZMMJDvn6sdSMYKuj/KIjY0J5vu8nXwdpzCUxnWhIRFhZVNlZx5seXp8nXvHSyDQRnvRalaVryLjy1j/f3spreHWzrn6VQ1VVLRWUBRMUx5NEfbb2O9Mzgv5+dCxoKWvy5oKqYjZcaWyPtozARzX0zn+1O91SOV8rG6N4fW4nb2dXXPn7LzmR8jhuHY9rKt7mcZxIevNdfbXubgEs0GyvmznPRnKhghmg71Mq3vOFYln/OQcL44LkUCuMy95r6ng4/vcUxEKU4Xd5v8V5PsMuwU4w0so1ICveBn1hfU0xhrxutZ/mAwkiYfjBDNBytvKKWkrJZ3ol2/rCREItOTLUE6Pc+IPtNBaWEvGnyGSivQcbxVIdY6H7ZhnEw/Fyfi75sslA0l8jo9wJkwsFeuskzqOtff0TNNznXPFOvKl9dverK7YkgpQn4hQGExTEraxGM3JIBnH1zmvviySJOd6WNlSuMlx7VtTOl1IKlWS7wfx4vN1jMkE8BAItBGLrQWsrBuPV+bLRcH8mJZsPj1c2+s+/A6xQIbKWIJYwMa0pLI+WvJ1/o62YoCySJLScJJYsKttYN2xL9lsKD+Hruf4OL8/RShUT6BgDa2RVhyvY7Eb8uOvM74MyUCyc+xA92t7U/mXzXXoGD8Tytepcz3GKsViq3pV7rc53s0Uh9K0pAK0pEI4rodIIEvYnyXoc2hOBlnYWEzGl+m8372uF9yuvNqf8xPIBTr7OtL+NI7H6Xwu5811toEGs0GymYLOsSdWNsysM1/X6s3ZQIJEMEHGl8H1WJqT9qfxuB6C2SDhTLjzvosF0lTGEkTy++3xWH9+MuunNRWguj2GLQbVEYchguP4cRxfvo0mQyjU2HnNbQkuLolggrZQm43nywbxuDYeJOPPdMYViaWsvyfky9IvZvld0JfLz3v2djuGKNlsOP/9R/PjsFM9zpvHkyVcvoCV5SupL6inpL2ks/+oKdZEY6yRsrYyhtQPWa+vb2P1g5GlTQwuasfvdVjTGiOR9eXbjxyKQykc18M71RW0pYMUBtOUR+17CHSbr5LOz01e1VLQOV8zmw3n55OGyeU66rFtRCL1ne0R3ecdRfzZfJuYrzPmR8hvfT1hf47mVJBU1saDB302DtTjcWlIhIln/J11mVQ+P/fmxzT48vXweCZA1vF2i0uSIeCzeprTrXy4srmI1dVTSST64zh+CgpWEgi0s267VWHJQlpijTR0G9cWzoRpjjbjy/koThTbWDvHS3OsGRfX6mzdhrHHQ/ENjsfflNJwktJIEr/XpTUV6Bzj4utI+x0vy5sL1hubt6kruTScojSSzM+d6RpDm86Xb1e2FNrYmlQpqVT3dnxft3b85l6PGWtuHk5T0xhSqZL8XMTaHnEfwEskUkOybAkry1eS9WYpjhdTHC+mPdzeWf+uaqiivKUfiXg/stlYPr5PR597R7uF1UmtH+/jx+N7PS4Br11LOdfTWX62eDNdY4my68zb3NixtrcPIJ0uJpfzE43W4fPFu5U1bP98vsRG+/zW/a5KwilK87GU4hk/WceOL+zP5uct+Xh/7SDi8f7kchF8vlT+2LN0jY/z4PHk8IabaY420xJp6ezLcz1uZ95VHC+mKF5E3ZrdaWiYSCpVTEXFO8Ria/Pz9dzO+6F7+WVT53ddm6oflITTlITtukxmfd36IiwfSGT967UfbkpxqKtvo2POvIuHgDdH1vFR0x6hMRkmlu9jKgimO9OIrnnufta0Rsm53s76izffD+26do2E/Vkyjo+lTUU9yhwbOtZMJsNjjz1Gc3MzRR+zUu1mBX5LJBLstttuvPfee3Rf5eu6667jnHPO6bHtG2+8wYwZMzb42qaMHTuWUaNG8eijj/Z4viPw2//93/9xwQUXbPB/g8Egp512GjfffHOP5zsCv91xxx0cf/zxG/zfVCpFqlso15aWFoYMGdKrk9hhYcNCljUtw+PxEPAG2HnQzkQCmzk5bc558MF1ttrcIW9YFPa2xRY5M77ComBX7gnzr7VIgcWTbTtfEGpfthVf1j5t7zX2RzDgQFzX5YXlL/D8sucZVDiIVS2r2G3wbhw48kC8Hi8rV1r0zcWLbaXr22+3iNgdK4O4rkVXHTIEFjZ8xBF3HsEHdR9w7u7nMm3gNM585EzimTh/OvxPfGvqtzoP5dGPHuV3r/2OoUUWKGZFywrO2vUsDh1z6IaPfWNRc1fcC6+cbBG+R34bqr5q0USTa+GFI22bPe6EN35oqyoM/ybscjP4o7YKQnwFxFdCLkFmh0t58fUSFi2y6JkjRlg06I7ImY5jv2tq4MQTbSWmk0+2VdwGdAvun812rdiz3Vr1kJ0fNwe7/hVGnGKRveddbddOwxsWFXz8z+Dt8y3a5843Qdl02672Jci22Cqu/Q+Aocf26mMvuMBW5V6xAn7+c4vWXVRk11PHqls77WSrebSn2/nnu//kxeUvsvOgnXlj9RscOOJAW9Wot6t49DHHdXhq8VM8vfhpRpWNYmHDQnat2pUjdjiCgG/rRd1/fdXr3PzGzRQECgj6gtTEa/j+9O+z59A9bYOXv2GRTkMV8JVFFh2/+X2oec4iXOeSMOQYVpXswfRbp1PdXs3wkuEMKRpCe6adt9e+jeM63HnMnXx90tdZ0riEvf62F6tbV7P30L2ZPnA6r616jVdWvsKw4mG8+O0XGew0wlN724pu486FyZeBPwYf/NY+d9V/LbLwcT0n92/03p9zrkW59obgsPcsumrLh7bK8KoHLIrrsBNxp17DTx//KTe8dgODCgfxi31/wZw1c7jlzVsYUDCAx77xGFMGTLH3zCYg02LpiZuzH4/XVmPxRSHSH4B5tfO44rkreL/2fQ4fczj/mfcfvrrDVzl/z/PpX9Af1j4Dsw6099z1Nhj5LYsGvfivttJdYrWtkDflKtrbLYp4a2tX5NwONkEV3noLvvENWwHny1+2+2jCBIviG4/byk1+v63s+Z//2Cn7619ttb7uKzY1Nlp6Fi3IcN6T5/G7137HjKoZXH3g1Zz/1PnMXj2bs3c7m2sOvga/18+ypmUc9u/DmFc7j5N3PJlDRh3Cpc9eyuLGxZy5y5nccOgNeJves9UgW+bDwEMsci5Y5G4AJ2srQA89pncX77OH2WqpseFw6LsWzbZhDjTMhsY59p0M/ToMOHD9a2Sd66ShwVZpWLXK0vMHH4QdduiZf9XXW1rdm1WjXdflkNsP4cnFTzKgYABFIcv/45k4K1tWMnXAVF77zmu4rsvef9ub2atnUxmttFUzgdmrZ5POpfnJrj/ht1/6LdS9Bs8fbiseVe4Dw0+0CNuZNnjlRPvQ3W+H4d+wSMuvngIr7l5nrzyW9+38B7t/5vwMFvwG3A0MdIgMgiNXkUrZyoK33bbh45w6FebMyX8dz8J3vgOLFq2/3RVXgLP35Vz23GXsMmgXXv/u652vzV41mxl/mYHX42XtOWt58K5KXnrJ8s+ZM63MEAxaVGjXtXxz1117rqLsuA6u6+LxeHqu2pqstdWjWj+w66R4kq1mksw3urg5iI345Kty9samVoZ4/1fw7s/t+5hwkeWRwVK7fl/5hm1zyJu2guaKezpXh6R0J0uLl/0b3rvUtjs+16vVnpYuhYMPhoUL7dxefLGV1TpWVl2yxMowm6gfbRduffNWvv/Q9/F4PJyxyxlEA1H+OPuPtKXbOHu3s7n+kOv5yU/ghhts+7/8BU477dN/7sMfPswZj5xB2B/m0n0v5bqXr6O6rZrffel3HDfxOIvG/dBou68mXmwragEsvQMSK62MBLDTjbYKypJ/wptnWn7SgwfGnWOrRa19Cl463lY1BbuGvUHLIwGGncjswL84/HC7byZMgHPP7VrRtqXFVkgaNMjK6U89ZSuQVVdv+BgffBDuypzM7e/ezv7D9+crY7suhjvm3sHs1bM5d/dzuW7mdZ/+hG4tThb+O8Tu9aqv2ArEXj+secIitbfkJxKPPh2W3QGNb1sa0W8fW4G4ZQG4Wfsew/0s7dTqkiKyKa4Ds3/QuVLveiID4cjV1ibx2rct3Q8U28ovgSKof81WdSibzt/XvsF3vmNlnm99y1YZHtZt3mJrKzQ3Wz14i0k1wFN7WTl9wEyYfqOt2lI9y/Khefmlvo+utbJmfCVk22zfvcGuMoib61rlajv19tu2KnM2aytpPf+8rXoovdC2GJ7e31YWKd/N8tHYcHvt1W/adTHuHHI7/ppzz7UVQXM5Wzlq+nRb4WX1aquz3norfPOb9q9XXmmr+LSv08c+aJCtPHrttfZermv1jaOPhqoq22bNGnu/Cy5YJ6veAqtpfVj/IT98+IfMXj2b/zvw/3hh+Qs88MEDXLTXRZy/1/kEfb3rLJMvuLpXrf20ZR4M+ZqtHgRW53Mylm723x+GHN23+7m921S9+pNs9yk5jrVX19RYfatj5azuSU95OZxzDtxzjz13112WfnVfQT2XszbuaHT9z9hiNvfcfcLzdt55ttreihXwy1/ClCld7fjptLUzTp4MN91k6brjWHvTCSd0rY5dWwtz51p75urVtvrgvHn2/tOm2aqTrmurUy5caO957LFWh/X74Ywz4KCDrL0onbb2j/p6y2/eeMPa/ACGDl1/NdB+/T4fq1T/5S9wyy3WBnDSSdauVl5u7WqZjF2vVVVbfqVa+QLYWBqRbrLyYdPb1kc4+vvW9+Lxw9vnWvvL8G9y9t1/57e/tX+59lr47nd7rjbe1mb3bY9+0k2lXx393/4CmHCh9XUHSmxFz7d/BkDuiFWM+vMeLGtexrm7n8suVbt0/vu5T5zLipYV3PbV20jP/hann27P/+QndO7nJ3XvvfDMM5bm7Luv9TV0b9vO5SyN3Nz6nOu6tGeswOzz+DZ/zMA6VreupjVlA+aLw8UMKNj2q9KLyKeUabW2nKZ3od9+sMst1paz9mmofQHmXm7bfWUxs2qXcti/DyOZTXLshGMZUjSE/y74L4sbF7PvsH159BuPkmqPcOih8OqrVo+/8EJLx8rLLY1evtz6UhcuhMsus7e+4gr42c9sxevu2tu/QKuFf9b0pty/DetfX7r9Szy+6HGm9J/CwMKBnc8/s+QZHNfhne+/w4T2Odbumm2FPe6Ayr2tPl3zrK10nlxr/aYjTtrw/n2CY2hogFGjbDzSgAEwf37PssvW8vzzNsZu0SKYNMnaLgsLex7KoEE2RurjjmE921m9us/0pq9vKxy34zr8b8H/+Oe7/2RK/yksbFhIRbSCM2ecycjSkVv88z6JFc0raExacJGCYMF2s1/Sx5ycjSuufwX8hTbOK1BifQTZNmvb9EWtLui3Okp9vJ6lTUsB8Hl9TKic8Ina0l9Y9gJfu/trNCQa+PXMX+O6Luc+eS6V0UruOe4e9hiyxxY8UPkiaEw0srp1NQABX4DRZaN7ji+Tz61kNslzS58jnonjuA7l0XL2GroXfu8nW9AolU2xoH4BjmsBVUeWjqQwtGUDUX5WPPDBAxzzn2NwXId9hu1DabiUd6rfYWnTUsaWj+WV016hLLI9T4yQbaEx0ci1L13LLW/ewomTTuT11a+TzqX51QG/4vCxh+O6MGaM1YNCIevfGDJkw+9VV2djW5uarGhfXGxjub1eK8Y7jo1n9n+y21v6gpO18f5tSwHHxhp5LRBefgMID4CCEb17v96O73Rd0rk0d869kzvm3sGeQ/bk7bVvM7R4KD/e9ccMLxmO48A//2l9jI2N1k42cKD1aXZcc7kc7Lmn9Yl2yGbt+VzOdsfns//5Ig09XbYM7rvP2hE7xgsVFXXNsesYRzRjRt/uZzqXpqbdFvv0eXw92qaA3n1pzQtg5QMQXwYlU7vGy2XbsIhHDpTtAoW2EGAik+DlFS+TzqXJuTmqCquYNnDaFjumjXlrzVssaljUWTfba+helEfLP+a/RLaMjvSwN/Ovtqo+aheUT+gL+H29W/0uzy59lpJwCQ2JBqYOmMo+w/ZR20UfqG6rJp1LA1AWKSMWVKeniHx+LG5czD/f+SdgfTiZXIaTp5zM6LKNDJ7dAvMxZMMc1yGRsdgYfq+fkH/7XWDrs+i1la8xa+ks+sX6sbZtLdMHTuegkQfh8/o+/p+7+wKWS7eERMLahWprLbZSaamNofV4utqGBg/uGWvpcz9WZQtpaWmhuLh4ywd+A2hra+O3v/0tr776KmVlZXzta1/jiCOOWG+7W2+9lUcffZRrr72WMWPG9Pr9d999d3K5HK+//nqP599//30mTZrEn/70J07vGM29joEDB7L33nvzn//8p8fzDz/8MIcffjiPP/44M2fO7NV+bM5J3OJaF0LTexawDDc/IddnjYgej004y8Vh2Z22nTdgjeMev03cdXMWuGvCxRac4mOsWAH77GOTakaOhH//2ybUdm+kWbXKBqN5PNCcbOYb932DZ5c+y4CCAaRyKe7+2t3sNni3T3fcGypQuC7cW2pBMqq+Cvs8YM/P/zWsfsiCSQHs8z+b6Fz/mp2/dIMFfvPkj9/JQmwYVB3e691JJGzS0vLl1vify3U1Xnu9Nmhw330/3SFvVYlqePNHsPYJm6A47HgLCuQNW9CrZDUUT7CJimABsZJrINsOuXwQRG8QAgUQGWzBBTdTW5udx3TaOueCQQtSpUHD20CmxTolGt+2AbWx4dax5vFaWuKkbRBXqIyXlr/E/n/fn4poBW9//23Oeuws7px7J+ftcR7XHHxN51vOr53PPrftQ87JcfOXb+b0h04nFojxwqkvMKpsFMRXwXOH2WD1qq/AuJ9BwUi73nLJfNAmLww4oOe+bqwy0fSeBSWsf80GA/fbD0LlltZlWyGxxgJmFVol5VfP/4pLZl3CoaMP5eUVL1MRreCJk5/YeoMbm+dD7fM2kd5fYAPmvPmZQE4GynexYDS9cMgh8MQT9vjFF61TcUOOP94mnXo88P/+n02ULOw2BqWhwdKnjkHMd79/N1e9eBWFwUJa061csvclHDOhZ4C2pmQTR955JC+veJndBu/Gi8tf5NqDr+XcPc7dzBPSS7mkBfFpngupeogMAE/Azp2TAzcDY87sHGAIbLIA6LqwYIHlYdXVlt50/IvHYx2PRx7Z+8AQa9vWsuPNO9KQaOCV016hPFrOjjfviIvLm6e/ybiKcQCsbFnJ9Fun05Rs4uVvv8xLK17irMfOYv/h+/PEyU/YQKNHJlnAxdKd4JDZdv+tfMCCcXx4o31gR+C317+38aAjYEHyal+CN35gfxeOsXs4OgSW350PGOeBExxOPx3+/GfbbKedbALH9Ok2eOL55+0au/9+m3S7yy6WVm/IySfD2de+zbQ/TcODp8dEu9r2WpY0LWGvoXvxwqkv9O7kbu96U6lLVMP9AwA3H+Dr1/b87B9YmaR9if097QZ443v2eLd/wIiT7fGsL1n5riMY2JFrevW5p5wCf/+7Pb77brv3P6v+8Pof+NGjP2LmqJmMLBnJLW/ewpm7nMnvD/s9YOWtF16wYCBLl1p6VlraVQbLZm2i5YEHbvJj1hPPxHn0o0fJuTk8eJg5aibF4W7RvuOroPoZaFtofwfLepYjC0dZ3lb/Ojy5h5W3wfIkXzjf6Q8UjYODX4H/DrW8qmg87HabDQTweOCZg6D6aRh6HLuefRcdVZ65c2HixA3v+/z5di8nkzZY6txzuwJ/fvgh3HGHBSweMn1uZ3o1qHAQEX+EtnQb1e3VhHwhlpy1ZP2BDtubTKudn5YP7fyFKvKBiTxWfvHHYNQWiAYoIgIw7xp4J7+wQPluMOYMqzMv/Scsuc3S+CNXw4MjrJ484BDY8y4I5vOP2T+EhTdD2XR+N/8NfvpTe/rss20S7br13tbWnmX3T619OTw6BTJNMPp7MP2PVqaunmXpKQAODDzsE9XntzcvvwyPPWaNyZFIVzAGr9fKD+m0BZ+XdbxwNKy8H4Lldj37glD9LHx4g00sz7bCuHP448u/5swz7V+OOQb+9ree12trq/0MGgS/+Y0FRtqYW2+lMxDH4YdbcJ8N2owBvJvrmSXP0Jy0gLtTBkzRpEf59Jz86p2fcFLRF9JndIL6LbdYsPWGBjj1VPja1yzoVjhs7dyrV8Pw4TB+/Bb+4D7saHZdazPaUDt+R/AEsCAG77234ffIZCww2QcfWL31gQfgS1/quc2KFdau+TOL78QvftEVgERMPG5BV9Jpa/8IBKxMWVT0xZpcIlvZm2dZ27THB19dZYvhNL8PH91kbdeJ1TD8m1zw379zTb576MorLfBbv35db9PQYNdp9+c2mqY3zYVHJ9vjqdfaglRgiyY0vmUB/wGOXMt1b/2D8546b4O73i/Wj+U/WU7IH+Ltt+GVV6z90Ou1AJI+X9cgk6oqOO64T3GeRES2hlSdteUkVsOQY63vwB+D+tldi8bkkjDgIPCFeeSjRzjyziMZUz6Gs3Y9i+8/9H12qdqFp05+isJQIZddZosPgAXp7Chnreupp+AHP7A2lQMOgO99z9pVolErd1RXWxvAxvqnRbr7sP5DJt88mXQuzW8P+S3DS4Zz8TMXM692XuciT4CNl2hbYv2i2XZw8quUe0M2rqJ0KoTWCSjxKYPcvf66LaK3YIHVS8aPt7qcz2f1nHQazjwTKio+9WnYfJ+kzvcZrVeLyBfbypaVnHDvCZ3BuoYUDeGOY+7Y/scpiIh8gfzmld9wzhPncPDIg/n1zF+z51/3JOwP8+ppr9o4cJE813Vx8gtUrzvBsr4eHnnExjXW1nYt4OP3W/0rk7HFgoYP74MdFxERERERERERERHZDmzVwG9b2+mnn84dd9xBY2Mj/m7Lt9x5552ccMIJvPTSS+yxx4ZXf5s5cyYrVqxg/vz5PZ6/+uqrufDCC1m1ahWDBg3q1X70aeC3PpBI2IDPOXNswGcm07WaeS5nK7Zff/0Wjtjf24Ftj+wIze/ZihoHv2QB3VJ13SYyYyvDdA8SJD3FV9k5y7bnV26MQLDUVijxKaqswJ/e+BPff/j7DC8ZztKmpXxp9Jd4+MSH11tpYM6aOfzk8Z/guA5+r58/HPoHJvbrFqnGdaFlvgWcS661QDhO2gIOhsosoELZTj0/vDcDeFN1Fswu2w54bBB8qBwCPdPnl1e8TEOiAYBdq3alMlb5Cc/ItrVqlQ2yf+opG1j/jW/YQOTCQpvst2yZTa48/nh480147TV4/31obrZ0ORCw0xeL2cD9CRM27/PTuTQL6hYAEA1Ev/ADOB768CG+csdXmFA5gcpoJc8te44/Hf4nTp/eM/Ds88ue58B/HMigwkFUt1XTv6A/b3z3ja7r7r9DbTB75T5wUD5Qaf3r0Dyv60367WPp8sPjLKgRQL/9YcCBUPcKrH7Ynjv0XXjp63Z/Rargy/MhkI/EsOgv8Pp3AQ9r9nMYNszy8aoqm3BbUNDz+FzXbrvDDoNHH7XnBgyAX/4Sdt3VVuK78UaLwPyPf8Dw3w1nWfOyDZ6r6w6+busFCdweOVl4cjdoeBNKpsC+D0O0quc2qXxQt8d3hvalMOBg2PWvXauCQT4YZrUFpe2FWbPs+0omLVjv739vE6o7NDXZxJwddvhUR7fN3PLGLTyz5BkAxleM57L9LsPzWZnB/OyhsOYxezzuHJj0C7sXZ38fFv7JAr+NOh3mnG3bHPwqVOxqeVjTXJjzU0sHhh7HdS/fxXn5eaxnngm/+lXPlQTTaUvnL764K5jjTTdZOr8xX7njKzz04UNcvPfFXHnAlXz3f9/lL3P+wnemfYc/H/HnLX8+REQ+q1wX/jfMympFE+DQd7qC+Sz8k6XrHr8FJehI0w95C8qmQbIGXvkmtMyz/y+bDoe8wZw5Vp5/+20b5FpS0hV8OJu14Cff+tYWPo62xbDk71D3qk0QjgyyxQHw2GTKkikw+bIt/KHymfLaabD4r+CLwhFLINwPUg1WTu0Q7s+IiVUszT+1di3077/ht1uzxlbvbm+3vwcPtiBw4bDVLf73P3j6abvWV660QHGPPQaTJ/d8ny0eCFFEtj+f4QnqjgNLllibSlOTpXmZjE1YqaiwtpONpZOfN45jafrtt1tf0WWXwQknwJAhVs6pq7NA5nV1XQGWjj3WgtZvyP/+B1/9qj0+6ijbzreZi7GJyKfU0YblDcBRNRAsgcRaW+SmQ2w4lM/gww8tAPPcuVbH6QhICFaWO/FESxM7bSxNTzfCwxOsz6jqCNjzbgtInEt2tYm7WQgU0ZhoZPBvBxPPxHnipCfYaeBOfO3urzFr6Sx+vs/PuWL/K7bSiRER2UaSNbbAY/1rkFgFocp8Ww7WB1U8HiZf3rn5PfPu4Q+v/wGA0kgpfz3ir5RGSgFbQGfffW2Bp512sgWEJk3q+qhs1oLvjhhhf1dXw7x5lqZ3BJsNhWzxncmTNRlbeu/Cpy7k6peu5vhJx/OjGT9iz7/uycCCgSw4cwGFoc1o8PkkiwJsh3XILaq34+i0SrWIiIiIfApnPHwGN71xExF/BMd1ePqbT7PnUEUDFxERERERERERERER2VI+04HfHn30UQ477DDuvPNOvv71r3c+f+ihh/Luu++yfPlyfBuZCXLzzTfzwx/+kFdffZVd8yPNs9ksU6dOpaCggFdffbXX+/FFC/y2XWtdaBMRap61AG8DD7HfTsYmWbd+CF96s6/3UuQz74EPHqAl1QLAETscQUm4ZOt80CcZwPsFkU7DO+/YRPuWFgvyFItZUK7Jk6G8vK/38Ivj/CfP59759wKw19C9uO3I2za43ROLnmBhw0IA9hu+HxMqu0XdW/UgvHisBT8cfrL9RKtsMlt8uU3qmHw5vP9/8O5F9j/jzoFpv7bH9bPhiRn2eK/74cWj7PGOv4KJ+e1X/hfWPGqT9fDwxwaHM8+0l849F667bsPH19xs11MuZ4Fe33kHxo3ruc3rr8OMGfDjR3/M71//PfsP35/rZ15PTXsNX/rXlwD46EcfMbpsdG9O6edHqh4W/BZWPQTN70PhGAtEmUtBYjWU5gPCJaph0a2w5nFoW2gr2PsiNokRD4w8BSZe3OuPXbLEVql/7jlYuhRSKZto6fFANArf/CacddbWOmgBbDLqvaX2u3JvOKjbhNg5P4MPfm2B38p2hqW3gzcIxyXA44W1z8CsA7u2H3oc7HkXjzwC994Lzz9vq19WVnYF/Uyn4fLL4cc/tns2GLQJWesGc+zu5RUvs+df96QiWsGc781hzO/HkM6l+eCMDxhTPmbrnRsRkc+autcsmCvA9Bth7I/s8bxroO4lK8d5/DDpUnjvUnvt8IVQOMqCFrx7add7xYbC+J9t2/0X6a10kwWQXvskhPtbGSQ2Arw+SKyBpndg6q/pP3Y8NTVWtmxq6hmMtrs//pHO+sb48RaUvHsAt/vvt0Dk0SjccAM8+SS89x6MHm1B4DweCx7X3g7Ll/e+eUBEPiM0Qf1z67XXLMDtm29CQ4PVUcGChIwYAQcdZAGgYNOB38AWGfj1ry1/GDoU9t/f6sLptLV3uK4FiBORrSRZA0/uAW2LoHgy7PBjKBwLvrCVDxvfhiFHQ8nkj32r9WwqEEvTXJh7Gax5wgIclc+wBaqycWhfYsHm9vkvAD946Afc8uYtnL7T6Vy090WMvHEkPo+PZT9ZxsDCgZ/0yEVEPpeWLIF//tMWEPrwQwuqGw5bkpzLwaGH2mJCIltSe7qdcX8cx8qWlYwuG83ChoX886h/ctKOJ/X1romIiIiISC/knByrW1cDEPaHPzMLbIuIiIiIiIiIiIiIiHxWfKYDvwHMnDmTN954g2uuuYbRo0dzxx138Oc//5nbb7+db3zjGwCcdtpp/P3vf2fRokUMGzYMgFQqxfTp02lpaeHqq6+mX79+3HTTTTz44IM89dRT7Lvvvr3eBwV+2w6l6qHhDUjVQabZAqiE+0PReJt8LSIisr1pXwbL77bgpckaCxTiDUJkABRPtEAjzx9hwUW8QTiqGoIl9r/dA7/tdAO8lY/qtde9NvkO4N5ySDfkP8zDFR85/OIX9teNN8KPfrTh3brvPjjmGHv8ta9ZQLGNeWbJMxz4jwMpDZdS+7Na/vXev/jWA99iQuUE3v/h+5/wxHxOuC5kmiDTZpMjg2UWRGNjnNymX5ft29qnYNbB9njXv1nwPrAJqu9eDAt+Z4Hf+u2bD8YIHNsCgUJINUDD7K73Cg+E0h3X+4hUyoJ+FhTYBC3Hsd8A/fpBdfXH7+bef9ubF5e/yJT+U3in+h2OnXAsd39tE7PuRUS+iFbcawF6AfZ9BAYdao/vKYaMBcPG44eZr8Pj0wEXJl4CO/5y/ffqbQAbkb4UXw3Vz0ByjZVLPF4IVVgQ4wEHcd6F4c6g0ZdeasFn15VOwwknWF0C4K674LjjPv6js1kLJtfUZOWaioqeweJEROSzL5OxRSsWLIBQyAK3zZzZc5tVq6Cqquvv1avhgw8skFxrqwUoGTgQJk60QHAishXlUrD2CVj9CMRXQrre6jWhCigcDTucDbEhm/++mwr81sHJQPtya9POtoM/au1k0cGd/z+/dj4Tb5pILBjjtGmnccNrN/CNyd/g9qNv/wQHKyLyxeM44PX29V7I59398+/niuevAGBs+VjuOvauPt4jERERERERERERERERERERERGR7cPmxCzzb6N92iz33XcfF198MZdeeikNDQ2MGzeOO+64g+OPP75zm1wuRy6Xo3vculAoxNNPP815553Hj370I+LxOFOnTuXRRx/drKBvsp0KlcPAQ/p6L0RERHovNgzGn2s/G1P3qv3ut39X0Ld1eboFC/N0K76N+aFNkAPweBmc6Hpp3ryNf+Rzz3U93mefjW8HsM+wfSgNl9KYbOSVla/wyEePAPDVHb666X/8IvB4IFhqP72hoG+fbS3zux4XjbPfqTq4b50Z6UOO7Qr89tHNMOE8CJX1LMc6mQ1+RChkPx28Xhg8GFauhLo6mxg/aNCmd/OCPS/g8OWH8071O51/i4jIOnyRrse5eNfj3W/vSqM9XiibZuWtj/4I718JjW9BvwMs70+sgprnYfBXYeyZ23b/RTZXdBCMOGmjL//85/DKK/Dii3DFFfD447DvvlBWBmvWwKxZcPbZPesRBx7Yu4/2+y3YW0XFpzwGERHZbgUCcPfdFhD0gw/gkENg+nQYO9ZiPy1YYD/t7V3/M2jQx9dvRWQr8YWg6iv282ltLAj2xoLAeQP5xbw2vqDX+MrxHDzqYJ5Y9AQ3vnYjAGftetan31cRkS8IBX2TbeGo8Udx1Pij+no3REREREREREREREREREREREREPtO2y8BvBQUF3HDDDdxwww0b3ea2227jtttuW+/5/v378/e//30r7p2IiIjIFpKqg1StPS4c0/X8S8dDzbNdfxeM7Hpc9xIMPsIe7/jLHm937Cg46yxoa4O77oKLL7agUd21tUFNTdff48dvehf9Xj+HjTmMf733Lx5c8CBPLHoCgCPHHfnxxyfyeZJp63oc7rfx7QYcBP0PgOpn4J0LoHEO9N8P/EXQ+iGs+h9MvqzXk2u//W0LwOI4cM01sG4VKZez+7q42P7+8tgv89AJD+G4DpFAhOmDpm/WYYqIfCGU72oBB5wMrH4Ehhxjz28obd75D5a2L7sLambZ9gChCiiZAqVTt9lui2wthYXw/PPwv//BE0/ASy/BP/5hMTr694dp0yx4T329bT9iBJSX9+0+i4jI9mXyZJg71/KTl16Cd96BxkYIhy2Y6CWX9PUeishW0T2o2xZ09m5n80HdBwBM7jeZXap22SqfIyIiIiIiIiIiIiIiIiIiIiIiIiIiItJXPK67lUZkf8a1tLRQXFxMc3MzRUVFfb07IiIi8nnUthQeHGGPJ18Oky61x0/v3zPw26HvwuvfgfrXIdQPvvQmRLtFdHMdaJoLpTty+eVw2WX29IABcPrpsNNO0Nxsk2/nz7fn77vPtnn+edh7703v5t3v381x9xxHYbCQ1nQrAwsGsursVXg8ni1wEkQ+Iz74Lcw52x4f9j4UT4BcEhbf1rVNsBSGfR2ycXjvMlh2OyTW9HyfUD/Y90Eon9Grj62thenTYcUK+3uffeDYYy1Ay4cfwn/+A7/9LXyld3HkRESkw/NftWCcHj/s+jcYdgJ4ffZa3SvQsgBGnrL+/zk5+92xrcgXxLJlMHy4Pd55Z5g9u093R0REREREREREREREREREREREREREREREREREZLuyOTHL/Nton0RERERkPU7XQ29405uOPw9ePBZSNfDIZBh+IsRGQHy5BS2p3Ad2/we/+AVEIvB//wdr18IVV/R8m913h+7lw9raj9/LL43+EkFfkNZ0KwBH7HCEgr7JF09seNfjxjkW+M0XhjHfX39bfxSmXQtTr4Gmdyz4mzcAsWFQMBo24/6prIQXX4Qzz4RHH7Vgjc8/3+2j/FBc/MkPS0TkC2var6H2JUjXw6snw9vnWmDd9hVW3hpxyoYDvyngm3xB+bu1ImezfbcfIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIin3UK/CYiIiLSV3yxrsfpxq7H+z4ETrdoCoFCKJkMO98E71wAmSb46Kae7zWosPPheefBT38Ks2bBK69AayuUlcG0aXDAAXDjjV3/9uqrcPTRm97NwlAhR+xwBLOWzALg6PEf8w8in0f99wOPF1wH1jwGw7/x8f/j8UDpVPv5FIYOhf/9Dxob4fHHYcUKe+sRI2DffaGi4lO9vYjIF1PhGDjkDZh/DSy/C5LV9gNQPAkGHda3+yeynSkp6Xq8dCm47mbFshUREREREREREREREREREREREREREREREREREZE8j+u6bl/vxPaopaWF4uJimpubKSoq6uvdERERkc8jJwf3lkC2DQYeCvs98vH/k43Divug8U1w0hCpgsq9oXKvXkdeeOcdmDrVHo8bB++/D15vz20UyEFkA57YDepfA48Pdr0NRpxkz7sOLL0dsu0w5gd9uosiIvIJ5NIQXw5OBiKDIFjc13sksl2aOBHmzbPHH3wAO+zQt/sjIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyvdicmGXeTb4qIiIiIluP1wflM+xx/esWbOTj+KMWbGqn38LOf4SJF0G/vTcrStuOO8KAAfb4gw/gnHMgne56/bnn4OKLN+M4RL4oxp1rv90cvHoyPDIJZs2EBwbBq9+CdEPf7p+IiHwyviAUjobi8Qr6JrIJ++/f9fiOO9Z/3XUhkdh2+yMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvJZpMBvIiIiIn2pYnf7na6HhX/q+ZqThY9u2eIf6fHAeed1/f2738EOO8DRR8OUKbDffrBy5Rb/WJHPvqHHwg4/7fq7+X1Y+yQkq+1vj69v9ktERERkGzjooK7H11wD993X9Xd1NRxzDCxYsO33S0RERERERERERERERERERERERERERERERERE5LPE47qu29c7sT1qaWmhuLiY5uZmioqK+np3RERE5POq7hV4cg977PHC6B9C1eHQtgQ++qM9d+g7W/xjczn42tfg/vs3/PrJJ8M//rHFP1bk86HuNZh3FdS/DrhQNAGGHgcjvw2+YF/vnYiIiMhWkcvBjjvCvHldz+24I0Qi8NZbkMnAnDkwdWqf7aKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEif2JyYZQr8thEK/CYiIiLbzLOHwprHNvxayY5bJfAbWOCGf/0LrrwSPvrInvN6YeZMuO46mDRpq3ysiIiIiIh8Rs2ZA3vvDe3tG39dgd9EREREREREREREREREREREREREREREREREROSLZnNilnm30T6JiIiIyMbsehsUT9zwa6F+W+1jfT745jdh/nwL/PbWW1BfD48+qqBvIiIiIiKyvmnT4M034Zhjej4fCsFZZ8G4cX2zXyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIp8VHtd13b7eie3R5kTPExEREfnUnCx8+HtY9BdIN0DBSBjyNRjzffCF+3rvREREREREeliwAD74AMJh2HVXKCnp6z0SERERERERERERERERERERERERERERERERERHpG5sTs0yB3zZCgd9EREREREREREREREREREREREREREREREREREREREREREREREREZFM2J2aZdxvtk4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjIF5YCv4mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIbGUK/CYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIispUp8JuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyFbm7+sd2F65rgtAS0tLH++JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGyPOmKVdcQu2xQFftuI1tZWAIYMGdLHeyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi27PW1laKi4s3uY3H7U14uC8gx3FYvXo1hYWFeDweWlpaGDJkCCtWrKCoqKivd09ERETWobxaRERk+6a8WkREZPumvFpERGT7prxaRERk+6a8WkREZPumvFpERGT7prxaRERk+6a8WkREZPumvFpERGT74boura2tDBo0CK/Xu8lt/dtonz5zvF4vgwcPXu/5oqIiFXZERES2Y8qrRUREtm/Kq0VERLZvyqtFRES2b8qrRUREtm/Kq0VERLZvyqtFRES2b8qrRUREtm/Kq0VERLZvyqtFRES2D8XFxb3abtNh4URERERERERERERERERERERERERERERERERERERERERERERERERE5FNT4DcRERERERERERERERERERERERERERERERERERERERERERERERERka1Mgd96KRQK8Ytf/IJQKNTXuyIiIiIboLxaRERk+6a8WkREZPumvFpERGT7prxaRERk+6a8WkREZPumvFpERGT7prxaRERk+6a8WkREZPumvFpEROSzyeO6rtvXOyEiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8nnm7esdEBERERERERERERERERERERERERERERERERERERERERERERERERH5vFPgNxERERERERERERERERERERERERERERERERERERERERERERERERGRrUyB30REREREREREREREREREREREREREREREREREREREREREREREREREtjIFfvsYbW1t/OQnP2HQoEGEw2GmTp3KnXfe2de7JSIi8oXz7LPP4vF4Nvjz6quv9tj2rbfe4qCDDqKgoICSkhKOPvpoFi9e3Ed7LiIi8vnT2trKeeedx8yZM6msrMTj8XDZZZdtcNvNyZd///vfM27cOEKhECNGjODyyy8nk8lsxSMRERH5fOptXn3KKadssJ49bty4Db6v8moREZEt45lnnuHb3/4248aNIxaLUVVVxVe/+lXefPPN9bZVvVpERGTb621erXq1iIhI33j77bf58pe/zNChQ4lEIpSVlbH77rtz++23r7et6tUiIiLbXm/zatWrRUREtg9/+ctf8Hg8FBQUrPea6tUiIiJ9b2N5terVIiIin33+vt6B7d3RRx/N7Nmzufrqqxk7diz//ve/OeGEE3AchxNPPLGvd09EROQL56qrrmL//ffv8dykSZM6H3/wwQfst99+TJ06lf/85z8kk0kuvfRS9t57b95++20qKyu39S6LiIh87tTX13PrrbcyZcoUjjzySP7yl79scLvNyZd/9atf8fOf/5wLLriAmTNnMnv2bC655BJWrVrFrbfeuq0OTURE5HOht3k1QCQS4ZlnnlnvuXUprxYREdlybr75Zurr6znrrLOYMGECtbW1XH/99ey22248/vjjHHDAAYDq1SIiIn2lt3k1qF4tIiLSF5qamhgyZAgnnHACVVVVtLe3869//YuTTz6ZpUuXcskllwCqV4uIiPSV3ubVoHq1iIhIX1u1ahXnnnsugwYNorm5ucdrqleLiIj0vU3l1aB6tYiIyGedx3Vdt693Ynv1yCOP8OUvf7kz2FuHmTNn8v7777N8+XJ8Pl8f7qGIiMgXx7PPPsv+++/P3XffzbHHHrvR7Y477jhmzZrFokWLKCoqAmDZsmWMGTOGn/70p1xzzTXbapdFREQ+tzqaEjweD3V1dVRWVvKLX/yCyy67rMd2vc2X6+vrGTx4MN/85jf505/+1Pn/V111FZdccglz585lwoQJ2+bgREREPgd6m1efcsop3HPPPbS1tW3y/ZRXi4iIbFk1NTX069evx3NtbW2MHj2aSZMm8dRTTwGqV4uIiPSV3ubVqleLiIhsX3bbbTdWr17N8uXLAdWrRUREtjfr5tWqV4uIiPS9r3zlK3g8HsrKytbLl1WvFhER6XubyqtVrxYREfns8/b1DmzP7r//fgoKCvja177W4/lTTz2V1atX89prr/XRnomIiMiGZLNZHnroIY455pjOTgWAYcOGsf/++3P//ff34d6JiIh8fng8Hjwezya32Zx8+bHHHiOZTHLqqaf2eI9TTz0V13V54IEHtuj+i4iIfN71Jq/eHMqrRUREtqx1A8kAFBQUMGHCBFasWAGoXi0iItKXepNXbw7l1SIiIttGRUUFfr8fUL1aRERke9Q9r94cyqtFRES2jttvv53nnnuOm266ab3XVK8WERHpe5vKqzeH8moREZHtlwK/bcLcuXMZP378eh0LO+64Y+frIiIism2dccYZ+P1+ioqKOOSQQ3jxxRc7X1u0aBGJRKIzr+5uxx13ZOHChSSTyW25uyIiIl9Ym5Mvd9SvJ0+e3GO7gQMHUlFRofq3iIjIVpRIJBgwYAA+n4/Bgwdz5pln0tDQ0GMb5dUiIiJbX3NzM2+99RYTJ04EVK8WERHZ3qybV3dQvVpERKTvOI5DNpultraWm266iccff5zzzz8fUL1aRERke7CpvLqD6tUiIiJ9o6amhp/85CdcffXVDB48eL3XVa8WERHpWx+XV3dQvVpEROSzbfOXSvkCqa+vZ+TIkes9X1ZW1vm6iIiIbBvFxcWcddZZ7LfffpSXl7Nw4UKuu+469ttvPx5++GEOOeSQzry5I6/urqysDNd1aWxsZODAgdt690VERL5wNidfrq+vJxQKEYvFNrit6t8iIiJbx5QpU5gyZQqTJk0C4LnnnuO3v/0tTz/9NLNnz6agoABAebWIiMg2cMYZZ9De3s7FF18MqF4tIiKyvVk3rwbVq0VERPraD3/4Q/70pz8BEAwGufHGG/ne974HqF4tIiKyPdhUXg2qV4uIiPSlH/7wh+ywww784Ac/2ODrqleLiIj0rY/Lq0H1ahERkc8DBX77GB6P5xO9JiIiIlvWtGnTmDZtWuffe++9N0cddRSTJ0/mvPPO45BDDul8Tfm3iIjI9qO3+bLybxERkW3vpz/9aY+/Dz74YKZNm8axxx7Ln//85x6vK68WERHZen7+85/zr3/9i9///vdMnz69x2uqV4uIiPS9jeXVqleLiIj0rYsuuojvfOc71NTU8OCDD3LmmWfS3t7Oueee27mN6tUiIiJ95+PyatWrRURE+sa9997Lgw8+yJw5cz42H1W9WkREZNvrbV6terWIiMhnn7evd2B7Vl5evsEItQ0NDcCGo9WLiIjItlNSUsLhhx/Ou+++SyKRoLy8HGCj+bfH46GkpGQb76WIiMgX0+bky+Xl5SSTSeLx+Aa3Vf1bRERk2znqqKOIxWK8+uqrnc8prxYREdl6Lr/8cq688kp+9atfceaZZ3Y+r3q1iIjI9mFjefXGqF4tIiKy7QwdOpSdd96Zww47jJtvvpnTTz+dCy+8kNraWtWrRUREtgObyqs3RvVqERGRrautrY0zzjiDH/3oRwwaNIimpiaamppIp9MANDU10d7ernq1iIhIH+ltXr0xqleLiIh8tijw2yZMnjyZ+fPnk81mezz/3nvvATBp0qS+2C0RERHpxnVdwKLKjxo1ikgk0plXd/fee+8xevRowuHwtt5FERGRL6TNyZcnT57c+Xx3a9eupa6uTvVvERGRbcx1Xbzeru4D5dUiIiJbx+WXX85ll13GZZddxkUXXdTjNdWrRURE+t6m8upNUb1aRESkb8yYMYNsNsvixYtVrxYREdkOdc+rN0X1ahERka2nrq6O6upqrr/+ekpLSzt/7rjjDtrb2yktLeUb3/iG6tUiIiJ9pLd59aaoXi0iIvLZocBvm3DUUUfR1tbGvffe2+P5v//97wwaNIhdd921j/ZMREREABobG3nooYeYOnUq4XAYv9/PV77yFe677z5aW1s7t1u+fDmzZs3i6KOP7sO9FRER+WLZnHz5S1/6EuFwmNtuu63He9x22214PB6OPPLIbbTXIiIics899xCPx9ltt906n1NeLSIisuX98pe/5LLLLuOSSy7hF7/4xXqvq14tIiLStz4ur94Y1atFRET6zqxZs/B6vYwcOVL1ahERke1Q97x6Y1SvFhER2boGDBjArFmz1vs55JBDCIfDzJo1iyuvvFL1ahERkT7S27x6Y1SvFhER+Wzx9/UObM8OPfRQDj74YH7wgx/Q0tLC6NGjueOOO3jssce4/fbb8fl8fb2LIiIiXxgnnngiQ4cOZeedd6aiooKPPvqI66+/nurq6h4NDpdffjm77LILhx9+OBdccAHJZJJLL72UiooKzjnnnL47ABERkc+ZRx99lPb29s7O/Hnz5nHPPfcAcNhhhxGNRnudL5eVlXHJJZfw85//nLKyMmbOnMns2bO57LLL+M53vsOECRP65BhFREQ+yz4ur66treXEE0/k+OOPZ/To0Xg8Hp577jl+97vfMXHiRL7zne90vpfyahERkS3r+uuv59JLL+VLX/oSX/7yl3n11Vd7vN4x8E71ahERkb7Rm7x62bJlqleLiIj0kdNPP52ioiJmzJhB//79qaur4+677+auu+7iZz/7GZWVlYDq1SIiIn2lN3m16tUiIiJ9IxwOs99++633/G233YbP5+vxmurVIiIi215v82rVq0VERD4fPK7run29E9uztrY2Lr74Yv7zn//Q0NDAuHHjuPDCCzn++OP7etdERES+UK6++mruuusulixZQltbG2VlZey1115ceOGF7LLLLj22ffPNNzn//PN55ZVX8Pv9HHDAAfz6179m1KhRfbT3IiIinz/Dhw9n2bJlG3xtyZIlDB8+HNi8fPnGG2/kj3/8I0uXLmXAgAGceuqpXHzxxQQCga15KCIiIp9LH5dXFxcXc9pppzFnzhyqq6vJ5XIMGzaMo446iosuuoji4uL1/k95tYiIyJax33778dxzz2309e5d+KpXi4iIbHu9yasbGxtVrxYREekjf/vb3/jb3/7G/PnzaWpqoqCggClTpvCd73yHk046qce2qleLiIhse73Jq1WvFhER2b6ccsop3HPPPbS1tfV4XvVqERGR7cO6ebXq1SIiIp8PCvwmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrKVeft6B0REREREREREREREREREREREREREREREREREREREREREREREREREPu8U+E1EREREREREREREREREREREREREREREREREREREREREREREREREZCtT4DcRERERERERERERERERERERERERERERERERERERERERERERERERka1Mgd9ERERERERERERERERERERERERERERERERERERERERERERERERERLYyBX4TEREREREREREREREREREREREREREREREREREREREREREREREREdnKFPhNRERERETk/7d3t69V130cwN/HtjUXOVp2q914FwZaZqTZ7SpqUSt7Uksttic9igJDC1HZRs5QqFChR0IWmSFjJCRFmWmClBKFUBoZbdSgQqnUNfLuXI8cl5dp2uVhTl4vOHD4/H6f3/d9fn/A+wAAAAAAAAAAAAAAAAAAAACUmOI3AAAAAAAAAAAAAAAAAAAAAAAAgBJT/AYAAAAAAAAAAAAAAAAAAAAAAABQYorfAAAAAAAAAAAA4Dg6OztTKBTS1NR0SnuFQiG1tbUlyQQAAAAAAAAAAMDApPgNAAAAAAAAAACAM9aR4rX//lRUVOSKK67I9OnTs23btn7JVVtbm0Kh0C9nAwAAAAAAAAAAMDCV9XcAAAAAAAAAAAAA+CejRo3KE088kSTZt29fPvvss6xatSodHR1Zv359brnllpKcO2zYsGzfvj3V1dWntLd9+/ZUVVWVJBMAAAAAAAAAAAADk+I3AAAAAAAAAAAAznijR49OS0vLUbN58+alra0tc+fOzSeffFKSc8vLyzN27NhT3vs3OwAAAAAAAAAAAJzdBvV3AAAAAAAAAAAAAPg3nnnmmSTJ1q1bkyQHDx7Mq6++muuvvz6DBw9OdXV17rrrrqxdu/aY3cOHD2f58uWZNGlSampqUlVVlauvvjqPPPJIPv300777Ojs7UygU0tTU1DcrFArZuHFj3/cjn/+9p7a29phzd+/enZkzZ2bEiBE599xzc/HFF6ehoSHffPPNMfc2NTWlUCiks7Mzr732Wq699tpUVlbmqquuSmtraw4fPvxvXhsAAAAAAAAAAAD9pKy/AwAAAAAAAAAAAMC/USgU+r4Xi8U0NDSko6Mj11xzTZ5++un09PRk9erVqa+vz5IlS/Lss8/23T9nzpwsXrw4o0aNyvTp03P++eenu7s7mzZtyvr163PHHXcc99zm5uasWLEiXV1daW5u7ptPmDDhhHl3796dm2++OTt37kxtbW0ef/zxdHZ2pr29PWvXrs1HH32UKVOmHLM3e/bsbNiwIfX19bnvvvvy7rvvpqWlJfv3709bW9spvDEAAAAAAAAAAAD6k+I3AAAAAAAAAAAABqSlS5cmSW666aa89dZb6ejoyJ133pkPP/wwFRUVSZK5c+fmxhtvzKxZs/LQQw9lxIgRSZLly5dn2LBh2bZtW6qqqvqeWSwW89tvv53w3JaWlmzYsCFdXV1paWk56bzPP/98du7cmTlz5mThwoV986amptx///1pbGzMjh07MmjQoKP2vvjii2zbti2XXXZZkmT+/PkZM2ZMli1blubm5r7fCgAAAAAAAAAAwJlt0D/fAgAAAAAAAAAAAP1r586daWlpSUtLS2bNmpXbbrstbW1tqayszMKFC7NixYokyeLFi48qQhs+fHhmzpyZAwcOZOXKlUc9s6KiImVlR/9/aqFQSE1NzWnPv3///qxatSoXXnhh5s2bd9S1urq61NXV5bvvvsvmzZuP2Z0/f35f6VuSDB06NFOnTs3evXvz7bffnvasAAAAAAAAAAAAlIbiNwAAAAAAAAAAAM5433//fVpbW9Pa2pqlS5emq6sr06dPz5YtWzJlypR8+eWXGTx4cCZNmnTMbm1tbZLkq6++6ps99thj+eGHHzJu3LjMnz8/69atS09PT8ny79ixI729vZk0aVKqqqpOKuMREydOPGY2fPjwJMnvv/9+OmMCAAAAAAAAAABQQorfAAAAAAAAAAAAOOPV1dWlWCymWCxm//79+fHHH7Ny5cqMHz8+SbJnz55ccsklf7t76aWXJkn++OOPvtnSpUuzePHilJeXZ8GCBbn33nszdOjQNDY2ZteuXac9/549e5LklDIeUV1dfcysrKwsSXLo0KHTFREAAAAAAAAAAIASU/wGAAAAAAAAAADAgDdkyJD88ssvf3vtyHzIkCF9s/Ly8syePTtff/11uru78/bbb+f222/Pm2++mRkzZpQk339nOZmMAAAAAAAAAAAAnF0UvwEAAAAAAAAAADDg3XDDDent7c2WLVuOubZx48YkyYQJE/529/LLL8+0adPywQcfZMyYMVm3bl16e3tPeN4555yTJDl06NBJ5Rs7dmwqKyuzdevW/Pnnn6ecEQAAAAAAAAAAgIFP8RsAAAAAAAAAAAADXmNjY5Jkzpw5OXDgQN+8u7s7r7zySsrKyjJjxowkyV9//ZX169enWCwe9Yyenp7s3bs35eXlfcVux1NTU5Mk+emnn04qX0VFRaZNm5Zdu3blpZdeOuraunXr8v7772f06NG59dZbT+p5AAAAAAAAAAAADDxl/R0AAAAAAAAAAAAA/l9PPvlkOjo6smbNmlx33XWpr69PT09PVq9end27d+fll1/OyJEjkyS9vb255557MnLkyEyePDlXXnll9u3bl/feey8///xzXnjhhVRUVJzwvLvvvjvt7e159NFH88ADD6SysjLjx4/Pgw8+eNydRYsWZePGjVmwYEE2b96cyZMnp7OzM+3t7amqqsrrr7+eQYP8nysAAAAAAAAAAMDZSvEbAAAAAAAAAAAAA16hUEh7e3uWLFmSN954I8uWLUtFRUUmTpyY5557Lg8//HDfveedd14WLVqUjz/+OJs2bcqvv/6aCy64IGPHjs2iRYvS0NDwj+c99dRT6ezszDvvvJO2trYcPHgwjY2NJyx+u+iii/L555/nxRdfzJo1a7Jp06ZUV1dn6tSpaW5uzrhx407LuwAAAAAAAAAAAODMVCgWi8X+DgEAAAAAAAAAAAAAAAAAAAAAAABwNhvU3wEAAAAAAAAAAAAAAAAAAAAAAAAAznaK3wAAAAAAAAAAAAAAAAAAAAAAAABKTPEbAAAAAAAAAAAAAAAAAAAAAAAAQIkpfgMAAAAAAAAAAAAAAAAAAAAAAAAoMcVvAAAAAAAAAAAAAAAAAAAAAAAAACWm+A0AAAAAAAAAAAAAAAAAAAAAAACgxBS/AQAAAAAAAAAAAAAAAAAAAAAAAJSY4jcAAAAAAAAAAAAAAAAAAAAAAACAElP8BgAAAAAAAAAAAAAAAAAAAAAAAFBiit8AAAAAAAAAAAAAAAAAAAAAAAAASkzxGwAAAAAAAAAAAAAAAAAAAAAAAECJKX4DAAAAAAAAAAAAAAAAAAAAAAAAKLH/AI0vC5zQ3hClAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1751,7 +1762,7 @@
" class_labels=classes_of_interest,\n",
" zoom_n_bases=500,\n",
" title=\"FIRE Enhancer Region\",\n",
- ") # zoom in on the center 500bp\n"
+ ") # zoom in on the center 500bp"
]
},
{
@@ -1763,21 +1774,21 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-09-30T13:05:49.889925+0200 INFO Calculating contribution scores for 2 class(es) and 1 region(s).\n"
+ "2024-10-09T14:39:33.513404+0200 INFO Calculating contribution scores for 2 class(es) and 1 region(s).\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Region: 100%|██████████| 1/1 [00:02<00:00, 2.51s/it]\n"
+ "Region: 100%|██████████| 1/1 [00:02<00:00, 2.81s/it]\n"
]
}
],
@@ -1793,7 +1804,7 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 41,
"metadata": {},
"outputs": [
{
@@ -1806,7 +1817,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAE3AAAAGMCAYAAAA104RXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf7H8dcmIY3Qe490EBBsoICABbCCvZ0KAnbRn2I7G5y9nd55Kp6iYBcbZwMBlaY0URDpvfcEElrq/v4YSYgJEDAQ0dfz8cgjs9/vd2Y+M9nszu7OvDcUDofDSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL2KaK4C5AkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkw4UBbpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJUSAa4SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIhGeAmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSYVkgJskSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkFZIBbpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJUSAa4SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIhGeAmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSYVkgJskSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkFZIBbpIkSZIkSZIkSZIkSZIk/Q5Lly4lFAqRmJhY3KVIkiRJkiRJkiRJkiRJkg4BA9wkSZIkSZIkSZIkSZIk6QCFQqH9/unYseNBrWnYsGH079+f6dOnH9T1/B5jxoyhf//+jBkzprhLkSRJkiRJkiRJkiRJkiRpv0UVdwGSJEmSJEmSJEmSJEmSdLhq27ZtvrYtW7bwyy+/7LG/efPmB7WmYcOGMWTIEBITE2nZsuVBXdeBGjNmDAMGDAA46IF2h0KJEiVo1KgRNWrUKO5SJEmSJEmSJEmSJEmSJEmHgAFukiRJkiRJkiRJkiRJknSAJkyYkK9tzJgxdOrUaY/9+vOpUaMGc+fOLe4yJEmSJEmSJEmSJEmSJEmHSERxFyBJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJhwsD3CRJkiRJkiRJkiRJkiTpEMrMzGTgwIG0a9eOsmXLEhsbS+PGjbnvvvtISUkpcJ7PPvuMLl26ULFiRUqUKEGlSpVo0aIFN998M3PmzAFg6dKlhEIhhgwZAkDPnj0JhUI5P/379y9UfZs2baJfv340btyY2NhYSpYsSWJiIl27duXFF18scJ6kpCTuvfdemjVrRsmSJSlVqhRt2rThlVdeITs7O8/YUCjEgAEDABgwYECeGnv06FGoGjt27EgoFGLMmDFMnz6dCy64gCpVqhAREcHgwYNzxh3IvgYYOnQobdq0oWTJklSsWJFzzjmHn376iTFjxhAKhejYsWOe8bv2fWJiYoHL27RpE3feeSeNGjUiLi6OcuXK0bFjR95++23C4XC+8YMHD87ZH2lpafTv35/69esTGxtLrVq1uO2229i2bVuh9pUkSZIkSZIkSZIkSZIkqehFFXcBkiRJkiRJkiRJkiRJkvRXkZKSwtlnn824ceOIiIigVq1alCpVivnz5/PII4/w8ccfM2bMGCpXrpwzz3/+8x9uvvlmAKpWrUrLli3ZsmULCxYsYObMmdSrV48mTZoQGxtL27ZtWbBgAevXr6dBgwZ5llO7du191rdlyxZat27NokWLiI6OzgkNW7lyJSNHjmTSpEnccMMNeeaZNWsWXbp0YdWqVTnzpKWlMWXKFCZPnszIkSMZOnQooVAIgLZt27J8+XJWrFhBrVq18tTVsGHD/dqf48aN49FHH6VEiRI0atSIhISE37WvAR566CEeeOABAKpXr0716tUZM2YMJ554Ivfff/9+1QewcOFCTj75ZFasWEF0dDTNmjVj8+bNjB07lrFjxzJy5MicwLbfysjIoHPnzowfP56mTZuSmJjIggULePbZZ/nll18YOXLkftcjSZIkSZIkSZIkSZIkSfr9Ioq7AEmSJEmSJEmSJEmSJEn6q7j22msZN24cp5xyCgsWLGDp0qXMnDmTtWvXct555zFnzhxuvPHGnPGZmZk88MADREVF8cknn7BmzRqmTp3K/PnzSU1N5bPPPuPoo48GgnC3CRMmcPrppwPw97//nQkTJuT8XH311fus79VXX2XRokV07tyZNWvWMGvWLKZNm8a6detYunQp/fv3zzN+27ZtdOvWjVWrVtG3b182bNjArFmzWLhwIb/88gtHHnkkH374IS+++GLOPLvXcvXVV+ep8e9///t+7c9//OMfXHXVVaxbt44ffviBRYsWcfHFFx/QvgaYMmUK/fv3JxQK8dJLL7Fy5UqmTp3K2rVrufDCC/Nt/76Ew2EuvfRSVqxYQYcOHVi+fDnTpk1j0aJFDB8+nJIlS/LGG28wcODAAuf/4IMP2LhxI3PnzuWXX35h7ty5fPfdd5QuXZpRo0YxYsSI/apHkiRJkiRJkiRJkiRJklQ0DHCTJEmSJEmSJEmSJEmSpEPg559/5r333qNOnTp88skn1K1bN6evXLlyvPnmm9SqVYuPPvqIZcuWAbBx40aSk5Np3rw53bt3z7O8qKgozjrrLE466aQiq3HBggUA3HjjjZQvXz5PX+3atbn11lvztL322mssWrSIc889l3/961+ULl06p69p06a88847hEIh/vnPfxZZjbtr1qwZL730EvHx8TltcXFxB7SvAZ599lmys7Pp1asX1113HaFQCID4+HgGDRpEnTp19qu+r7/+mh9++IGYmBjee+89qlSpktPXtWtXHnzwQQCeeOIJwuFwvvkzMzMZMmQIDRs2zGlr06YNvXv3BmD48OH7VY8kSZIkSZIkSZIkSZIkqWgY4CZJkiRJkiRJkiRJkiRJh8Ann3wCwEUXXUSpUqXy9cfHx3PqqacSDocZP348AJUqVSImJob58+czY8aMg15jrVq1cmrNzMzc5/iPP/4YICdQ7LdatGhBYmIiixcvZuXKlUVX6K/+9re/ERGR/zS4A9nXAKNHjwagZ8+e+eYpUaIEf/vb3/arvpEjRwJw4YUXUrVq1Xz91113HTExMSxbtox58+bl62/ZsiXHHntsvvbjjjsOgMWLF+9XPZIkSZIkSZIkSZIkSZKkohFV3AVIkiRJkiRJkiRJkiRJ0l/BzJkzgSBc7Pvvvy9wzLJlywBYtWoVAJGRkfTt25ennnqKo48+mrZt29KpUyfat29Pu3btiI2NLdIae/bsyVNPPcXgwYMZPnw4Xbt2pX379nTq1Im6devucZseeOABHn300QKXuXHjxpxtqlmzZpHW26RJkwLbD2RfJycn59TaokWLAufZU/uezJ8/H4CmTZsW2F+qVClq1arFwoULmT9/Po0bN87TX69evQLnq1y5MgBbt27dr3okSZIkSZIkSZIkSZIkSUXDADdJkiRJkiRJkiRJkiRJOgS2bNkCwMKFC1m4cOFex+7YsSNn+vHHH6dGjRq88MILjB8/nvHjxwNQunRpbrjhBvr3709MTEyR1Fi9enUmTpzI/fffzxdffMGQIUMYMmQIAG3atOGf//wnJ5xwQr5tmjZt2j6Xvfs2FZWSJUsW2H4g+3rbtm0AhEIhEhISChxbqlSp/apvV8DarsC1glSpUoWFCxeSmpqar29P2xcREQFAOBzer3okSZIkSZIkSZIkSZIkSUUjorgLkCRJkiRJkiRJkiRJkqS/gl2hYK+88grhcHivP/3798+ZLyIigltuuYX58+ezZMkShgwZwiWXXMLOnTt5/PHHuf3224u0ziZNmvDhhx+yefNmvv32W/r370/jxo2ZNGkSnTt3ZunSpfm2acGCBfvcpo4dOxZpnXtzIPt6V1haOBzOCXP7rYJC1gpTx/r16/c4Zt26dcD+h8NJkiRJkiRJkiRJkiRJkoqPAW6SJEmSJEmSJEmSJEmSdAg0bdoUgF9++eWAl5GYmMiVV17Ju+++y6effgrAa6+9RnZ2ds6YUCj0+wr9VUxMDB07duTBBx/kl19+oW3btmzdupV33303Z8yBblNR1bgnB1JXuXLlqFixIgA///xzgWNmzpy5X3U0bNgQgNmzZxfYn5qayooVK/KMlSRJkiRJkiRJkiRJkiT98RngJkmSJEmSJEmSJEmSJEmHwLnnngvAW2+9xaZNm3738tq0aQPAjh07SE5OzmmPi4vLaS8qkZGRHHfccQCsXr06p/28884D4N///jfhcLjQyzsYNe7uQPf1aaedBsDgwYPz9WVmZvL222/vVx1dunQB4IMPPmDt2rX5+l9++WXS0tKoU6cOjRo12q9lS5IkSZIkSZIkSZIkSZKKjwFukiRJkiRJkiRJkiRJknQIHHvssVx00UVs2rSJ0047jZ9++ilPf1ZWFmPGjOHyyy8nLS0NgNmzZ3PttdcyderUPAFpaWlpPPLIIwDUqVOHChUq5PTVrVsXgHHjxu1XqBrAvffey6BBg9i8eXOe9l9++YWhQ4cCcPTRR+e0X3vttdStW5dvv/2Wyy+/nDVr1uSZb+vWrQwdOpTbbrstT/uuGr///nsyMzP3q8bCOJB9DXDrrbcSCoV49dVXeeWVV3Lad+zYQZ8+fViyZMl+1XHyySdz3HHHkZaWxqWXXsr69etz+kaOHMmAAQMAuPvuuwmFQgeyqZIkSZIkSZIkSZIkSZKkYhAK7+8ZepIkSZIkSZIkSZIkSZKkPRozZgydOnUCyBegtnXrVs477zxGjRoFQO3atalWrRrbt29n4cKF7NixAwgCw2JjY5k+fTqtWrUCoGzZstStW5dwOMzixYvZsmUL0dHRDBs2jNNPPz1nHYsWLaJp06akp6dTp04dateuTUREBD169KBHjx57rb179+7873//IyIigrp161K+fHmSkpJYuHAhAJ06dWLkyJFERUXlzDN37lzOOOMMlixZQkREBI0aNaJ06dIkJyezaNEisrKyaN26NZMmTcqZJyUlhcTERJKTk6lWrRp169YlKiqKrl27cvfdd+9zH3fs2JGxY8fy7bff0rFjxwLH7O++3uUf//gHDz74IAA1atSgevXqzJs3j7S0NB544AHuvfdeTj75ZL7++uuceZYuXcoRRxxBnTp1WLp0aZ46Fi5cSKdOnVi5ciUxMTEceeSRpKSk5OzTK664giFDhuQJcBs8eDA9e/bkqquuYvDgwfm2bdd9rEOHDowZM2af+0uSJEmSJEmSJEmSJEmSVLQiirsASZIkSZIkSZIkSZIkSfqrSEhIYMSIEbz99tt06dKF7du38+OPP7Jx40ZatGjBXXfdxZQpU3ICxRo0aMArr7zChRdeSKVKlZg/fz4LFiygRo0aXHfddcyePTtPeBtAvXr1+Oyzz+jQoQPJyclMmDCBsWPH5gsWK8h9993H3XffzXHHHcfWrVuZPn06O3bsoEOHDrzxxhv5wtsAGjduzIwZM3j88cc57rjjWLVqFdOnTyc9PZ0OHTrw9NNP89577+WZp3Tp0owcOZLTTz+dtLQ0Jk6cyNixY5k7d+7v28G72d99vcsDDzzA+++/z/HHH58TXteuXTsmTJjAUUcdBUCpUqUKXUf9+vX56aef6NevH7Vr12bWrFmsX7+ek046iTfffDNfeJskSZIkSZIkSZIkSZIk6Y8vFP7tV7xKkiRJkiRJkiRJkiRJkqR8nnnmGfr168ctt9zCc889V9zlSJIkSZIkSZIkSZIkSZKKSURxFyBJkiRJkiRJkiRJkiRJ0h9dVlYWb7zxBgBt27Yt5mokSZIkSZIkSZIkSZIkScXJADdJkiRJkiRJkiRJkiRJkn41aNAgxo8fn6ctKSmJHj168PPPP1O9enXOPvvsYqpOkiRJkiRJkiRJkiRJkvRHEFXcBUiSJEmSJEmSJEmSJEmS9Ecxfvx4evfuTUJCAvXq1SMcDjNnzhwyMjKIj4/nzTffJDY2trjLlCRJkiRJkiRJkiRJkiQVIwPcJEmSJEmSJEmSJEmSJEn61VVXXUVGRgaTJk1i0aJFpKenU716dU455RTuvPNOGjVqVNwlSpIkSZIkSZIkSZIkSZKKWSgcDoeLuwhJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJOhxEFHcBkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJknS4MMBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkgrJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiQD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpkAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRCMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkgrJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiQD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpkAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRCMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkgrJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiQD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpkAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRCMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkgrJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiQD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpkAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRCMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkgrJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiQD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpkAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRCMsBNkiRJkiRJkiRJkiRJkg6S/v37EwqFGDNmTHGXIkmSJEmSJEmSJEmSJEmSiogBbpIkSZIkSZIkSZIkSZJ0GPnss8+4+eabadu2LSVLliQUCtG/f/+9zrN69WpuueUWmjZtSsmSJalSpQrt2rXjzTffJCsrq9DrfuWVVzj77LM54ogjKFmyJGXKlOGoo47igQceICkpqcB5kpOT6devH/Xr1ycmJoZKlSpxwQUXMGvWrL2ua8yYMXTr1o3KlSsTExNDrVq1OPfcc5kxY8bv2r5doXp7++nVq1eeecaNG0e/fv3o1KkTZcqUIRQK0aNHjz3WPmHCBG6//XaOOeYYKlSoQGxsLI0bN+auu+5i8+bNe93u3wqHw9xxxx107NiR6tWrExsbS5UqVTjxxBMZNGgQGRkZBc43d+5cLr/8cqpWrUpMTAx16tThlltuKfDvdCD7BGDt2rX07t2batWqERsbS8OGDfnHP/5Benp6gTVt3ryZBx54gBYtWlCqVCkqVqzIcccdx3/+8x927tyZZ+yqVat47rnn6Ny5M7Vr1yY6OpqqVaty/vnnM3ny5L3usyVLltCnTx/q1KlDTEwMVapUoVOnTnzwwQd7nU+SJEmSJEmSJEmSJEmSCiuquAuQJEmSJEmSJEmSJEmSJBXeM888w9ixYyldujTVq1dn4cKFex2/ePFiWrduzaZNm+jSpQtnn302KSkpDBs2jCuvvJJvvvmG119/vVDrfvPNN0lOTqZ9+/ZUq1aNtLQ0Jk2axEMPPcSQIUOYPHkyVatWzRm/adMmTjjhBBYsWMAJJ5xAt27dWLNmDR999BHDhw/nm2++oXXr1vnW88gjj3DfffdRvXp1unfvTsWKFVm3bh3fffcdM2fO5Kijjjrg7evYseMet+/VV19l1apVdOnSJU/7a6+9xpAhQ4iPj6d27dqkpKTsdT9dcMEFbNy4kXbt2nHllVcSCoUYM2YMTz75JB999BHff/89lStX3tfuBiArK4vnn3+eY489ljPPPJNKlSqRnJzMiBEj6N27Nx988AFffvklERG53+c6adIkTj31VHbs2EG3bt2oV68e06dP59///jcjRozg+++/p0KFCr9rn6xdu5bWrVuzYsUKunfvTsOGDZkwYQIPPvggEydO5IsvvshT0+bNmznmmGNYvHgx7dq149prryUtLY3hw4dz880388knnzBq1KiceZ5//nmeeOIJ6tWrx2mnnUblypVZsGABw4YNY9iwYbz77rtcdNFF+eodNWoU3bt3B+Dss8+mbt26JCcn8/PPPzN69GguvPDCQu13SZIkSZIkSZIkSZIkSdqbUDgcDhd3EZIkSZIkSZIkSZIkSZL0Z9S/f38GDBjAt99+u9eQrP0xfvx4qlatSv369Xn//fe59NJLefDBB+nfv3+B42+44QZeeukl/vWvf9G3b9+c9s2bN9OyZUuWLVvG0qVLqVOnzj7XvXPnTmJjY/O133///Tz88MP069ePp556Kqf9pptu4oUXXuC2227jmWeeyWmfOHEi7du3p1GjRsycOTNP0Nenn35Kt27d6N69O++88w5xcXF51pWZmUlUVO53lxbV9q1bt46aNWtSpkwZVq9eTXR0dE7fDz/8QFxcHI0bN2bq1KmccMIJXHXVVQwePLjAZT3xxBNceeWVVKtWLactHA5z44038tJLL3HDDTfwwgsv7LWe3RW03zMzM+ncuTPffvstn3/+OWeeeWZOX7NmzZg1axb/+9//OOecc3Lan3rqKe68806uvfZaBg4cuM/17m2fXHXVVbzxxhu8+OKLXH/99Tnb2LNnT4YMGcJrr71Gz549c8Y/+eST3HXXXfzf//0f//znP3Pa09PTadeuHVOnTmXs2LGcdNJJAHz88cdUqlSJ9u3b56lp/PjxnHLKKZQqVYrVq1cTExOT07dixQqaNWtGlSpVGD16NLVr1863z3a/70iSJEmSJEmSJEmSJEnSgYrY9xBJkiRJkiRJkiRJkiRJUkHGjx/PueeeS5UqVYiJiaFWrVqcd955TJgwId/YoUOHcvTRRxMXF0e1atXo27cvO3bsyDNmzJgxhEIh+vfvz8SJE+nSpQtly5YlFArljGnfvj0NGjTI07Y3ixcvBuCMM87I0162bFnatm0LwIYNGwq1rILC2wAuvPBCABYuXJinfdiwYURERDBgwIA87SeccAJnn302s2fPZuzYsXn67r77bkqVKsXgwYPzhbcB+QK4imr7Bg8eTGZmJldccUWeoDKAY489liOPPJLIyMh9LgfgrrvuyhPeBhAKhbj//vsB8m3zvhS036OioujevTuQd78vXLiQWbNmcdxxx+UJbwO4/fbbqVChAm+++Sbbtm3b53r3tE9SU1N5//33qVu3Ltddd12ebXzssceIiIjglVdeybOsPf2doqOjOe200wBYv359Tvt5552XL7wNgvt/p06dSEpKYubMmXn6Hn30UVJSUhg4cGC+8DbIf9+RJEmSJEmSJEmSJEmSpANlgJskSZIkSZIkSZIkSZIkHYAXXniBDh06MHLkSE477TRuv/12Tj75ZGbMmMGHH36Yb+zVV19NkyZNuP766ylXrhzPP/88vXv3LnDZ33//PR06dADgmmuu4eKLLz7gOo888kgARowYkac9JSWF7777jipVqtC0adM8fYmJiYRCIZYuXVqodXzxxRcANGvWLE/7unXrqFixIgkJCfnmOeKIIwD45ptvctp+/vln5syZw2mnnUZCQgLDhw/niSee4Pnnn2fGjBlFtn0Fee211wD2+DcpCiVKlACKJkgsOzs7Z5t33+/r1q0Dcvfv7iIiIqhduzbbt29n0qRJ+1zHnvbJxIkTSUtL47TTTssXJFitWjWaN2/O5MmT2blzZ077nv5OGRkZjB49mri4OE444YR91gQF78dwOMzQoUOpUKECJ598MtOmTeOf//wnTz/9NKNHjyY7O7tQy5YkSZIkSZIkSZIkSZKkwvDrJCVJkiRJkiRJkiRJkiRpP82cOZNbbrmFatWq8d1335GYmJjTFw6HWbNmTZ7xo0aNYtq0aTRq1AiARx55hJYtW/Luu+/y1FNPUb169XzjBw0axNVXX/27a73jjjv49NNPueWWWxg+fDjNmzcnJSWF//3vf5QoUYKPPvqI+Pj4/Vrm4MGDWbp0Kampqfz444+MGTOGVq1acdttt+UZV6lSJdatW8fWrVvzhbgtWbIEgPnz5+e0/fDDDwBUqFCBdu3a5QsZu/zyy3nttdeIjo4u0u0bP3488+fPp02bNjlBYwfDrkC0zp07H9D8/fv3B2Djxo18/fXXzJ07lx49enDKKafkjKlUqRKQu393l52dzfLly4Fgv+8+32/tbZ8sWLAAgAYNGhQ4b4MGDZgxYwaLFy/OCc/r3bs3b775Js888ww//PADxx13HGlpaYwYMYLk5GTeeecdatSosc99sHz5ckaPHk3VqlVp3rx5TvuSJUtISkriuOOO4/rrr2fgwIF55mvVqhWffvopNWvW3Oc6JEmSJEmSJEmSJEmSJGlfDHCTJEmSJEmSJEmSJEmSpP00cOBAsrKyePjhh/OEtwGEQqF8gWy33HJLTngbQFxcHJdeeikDBgxg2rRp+ca3atWqSMLbAKpWrcrEiRO5/PLL+fLLL/nyyy8BiI2N5c4776RVq1b55vn666/JyMjYY6DW4MGDGTt2bM7tzp078+abb1KuXLk8404//XRee+01BgwYwFNPPZXTPmXKFD7//HMANm/enNO+fv16IAg6O+KII/jmm2847rjjWLBgATfeeCNvv/02NWrU4Iknnvhd2/dbgwYNAoKQsYNl+vTpDBgwgMqVK3PnnXce0DIGDBiQMx0KhejXrx+PPfZYnjENGzakXr16TJ06lS+++IIzzzwzp+/ZZ59l06ZNQN79XpC97ZMtW7YAUKZMmQLnLV26dJ5xENznx4wZw7XXXstbb72Vc/+JiIjgpptuol27dnutByAjI4MrrriCtLQ0nnzySSIjI3P6dt13fvzxR+bMmcPrr79Ot27d2LJlC48++iivvPIKF1xwQb5QQEmSJEmSJEmSJEmSJEk6EBHFXYAkSZIkSZIkSZIkSZIkHW6mTJkCBMFlhXH00Ufna6tZsyZQcJDW8ccff+DF/caiRYto3749SUlJjBs3jtTUVFasWMGAAQN49NFH6dSpExkZGXnmqVevHo0bN6ZEiRIFLnPMmDGEw2E2bNjA559/zsqVKzn66KP5+eef84wbMGAA1apV4+mnn6Zdu3b069ePyy+/nPbt29O0aVOAPCFc2dnZOb+HDh1Kp06dSEhIoFWrVgwbNoxSpUrxn//8h7S0tN+1fbtLSUnhgw8+ICEhgYsvvnj/dm4hLVmyhLPOOousrCzee+89KlasmKe/f//++X4Kul+Ew2GysrJYsWIFL774Iq+++iodO3YkJSUlz7gXXniBEiVKcM4553D++edz55130qVLF/r160fz5s2BvPv9tw7GPtm4cSOnnXYakyZN4osvvmDz5s2sXbuWgQMH8vrrr9O6dWuSk5P3OH92djZXX30148aNo0+fPlxxxRX5+gGysrJ46KGH6NGjB+XKlSMxMZH//ve/tG7dmsmTJzNhwoQi2R5JkiRJkiRJkiRJkiRJf21RxV2AJEmSJEmSJEmSJEmSJB1uNm/eTCgUolq1aoUaX6ZMmXxtUVHB6VtZWVn5+qpUqfL7CtxNz549WbZsGYsXL6Zq1aoAJCQkcOedd5KUlMQTTzzBW2+9Rc+ePfd72RUrVuTMM8+kRYsWNGjQgD59+jB58uSc/po1azJ16lQefPBBhg8fzpQpU6hVqxb/+Mc/SExM5JJLLqFSpUo543ftp5o1a9KqVas866pcuTKtW7dm9OjRzJkzh5YtWxbJ9r377rts376dXr16kZCQsN/7YF+WLVtGp06d2LBhAx999BGdOnXKN2bAgAH52nr06EHZsmXztUdERFCzZk2uu+46KlSowEUXXcQjjzzCE088kTOmS5cujB8/noceeohvvvmGL774gmbNmvHJJ5/w9ddfM3PmzDz7/bf2tU92/Z22bNlS4Py7AuV2v9/fdtttfP/998yYMYMWLVrk9Pfp04esrCyuv/56nnvuuQL3RTgcpk+fPrz11lv87W9/Y+DAgXusCeCcc87J13/22WczefJkfvjhB9q1a7fHbZckSZIkSZIkSZIkSZKkwogo7gIkSZIkSZIkSZIkSZIk6XBTtmxZwuEwa9asOSjLD4VCRbKc1NRUxo8fT5MmTXLCzXZ38sknAzBt2rTftZ5atWrRpEkTpk6dyvbt2/P01ahRg1dffZVVq1aRnp7OokWLuOuuu5gzZw4Axx57bM7YRo0aARQYXLZ7+44dO4ps+wYNGgRA7969C7Gl+2fp0qV07NiR1atXM3ToUM4666wCx4XD4Xw/iYmJ+1x+586dARgzZky+vtatW/P555+TnJzMzp07+eGHH+jevTszZ84E8u7339rXPmnQoAEACxYsKLB/wYIFREREULdu3Zy2L774gvLly+eEt+1ub3+n7OxsevXqxWuvvcall17K4MGDiYjIf+pj/fr1iYyMBAq+//z2viNJkiRJkiRJkiRJkiRJv4cBbpIkSZIkSZIkSZIkSZK0n44//ngARo4cWcyV7F16ejoAGzduLLB/w4YNAMTExPzuda1Zs4ZQKJQTorU3WVlZvPfee0RFRXH++efntLdp04a4uDgWL17Mzp078823K/RtV7jZ792+mTNnMnXqVI488kjatGmzz7r3x67wtlWrVvH+++/TrVu3Il0+wOrVqwGIiooq1Phly5YxYcIEmjZtSvPmzQscU5h90qZNG2JiYhg1ahThcDhP35o1a5g5cyatW7cmNjY2pz09PZ2UlJScv9nu9vR3ys7Opnfv3rz++utcfPHFvPnmm3u8f8XExHDiiScCMHv27Hz9u9oKE4wnSZIkSZIkSZIkSZIkSftigJskSZIkSZIkSZIkSZIk7afrrruOyMhI7rvvPpYtW5anLxwOs2bNmmKqLK8KFSrQqFEjli9fzquvvpqnLyUlhSeffBKATp065elbtGgRc+fOJSMjI6dt06ZNzJo1K986wuEw/fv3Z926dXTq1ClPCFdGRgY7duzIMz47O5t+/foxb948br75ZqpXr57Tl5CQwBVXXMG2bdt4+OGH88z35ptvMmvWLNq1a0e1atV+1/btMmjQIAB69epVYP+B2j287b333uPcc8894GXNnTuX9evX52vfvn07t912GwCnn356nr6tW7fmC1bbsmULV1xxBVlZWTz22GN7XF9h9knp0qW5+OKLWbx4MQMHDsxpD4fD3HPPPWRnZ9OnT58887Rt25bMzEweeuihPO1paWk5bbv/nbKzs+nVqxevv/46F154IW+99dY+wwGvv/56APr3709aWlpO+9y5cxk8eDClSpWia9eue12GJEmSJEmSJEmSJEmSJBVGKPzbs7QkSZIkSZIkSZIkSZIkSfv0n//8h759+xIfH0/37t2pU6cOa9euZdy4cZx55pk899xz9O/fnwEDBvDtt9/SsWPHPPMPHjyYnj178vrrr9OjRw8AxowZQ6dOnXjwwQfp379/gesdNmwYw4YNA2DJkiWMGzeOo446ipYtWwLQrl07evfunTN+xIgRnH322WRmZnLyySdz9NFHs3nzZj777DPWrVvHWWedxaeffkooFMqZJzExkWXLlrFkyRISExMBmD59Oq1ateL444+nadOmVK1alY0bNzJ+/HjmzZtH1apVGTNmDI0aNcpZzsqVKznyyCPp3LkzRxxxBOnp6Xz11VfMnTuXM888k48++ihP4BsEQXEnnngi8+fPp0OHDhx77LEsWLCAzz77jLJlyzJhwgSaNm36u7YPID09nerVq5OamsqqVauoWLHiHv/WEyZMyAmI27BhA19++SX16tWjXbt2ADRu3Ji777473/5r06YNXbp0KXCZe/r7/tZzzz3HXXfdRceOHalbty5lypRh1apVDB8+nE2bNtG2bVtGjhxJfHx8zjxvvfUWf//73zn55JOpXr0669ev59NPP2XDhg089NBD3HfffQWua3/2yZo1a2jdujUrV67k3HPPpWHDhowfP57vvvuOLl268OWXXxIRkfsds9OnT+ekk04iNTWV448/nrZt27Jz506++uorFi9ezDHHHMOECROIjY3N2T8DBgwgISGBW265haioqHw1dO/ePed+D0GA3EUXXcSHH35Io0aN6NKlC1u2bOGjjz5i+/btvPHGG1x++eWF2u+SJEmSJEmSJEmSJEmStDf5z2iSJEmSJEmSJEmSJEmSJO3TTTfdRLNmzXjmmWcYPnw4W7dupXLlyrRu3ZqLLrrooK13+vTpDBkyJE/bjBkzmDFjRs7t3QPcunbtyqRJk3jyyScZP34848aNIyYmhqZNm3LPPfdw44035gs3K0idOnW45557GDNmDF9++SVJSUnExsbSoEED7rvvPm699VYqVKiQZ54yZcrQrVs3vvvuOz7//HNKlChBs2bNeOWVV7j66qvzBHztUqFCBSZOnMiAAQP45JNP+P777ylfvjx/+9vf6N+/P3Xr1s0z/kC3b9iwYWzatImLLrpor0FlAAsXLsy3zxctWsSiRYsA6NChQ54At2XLlgEwadIkJk2aVOAyCxvgduqpp9KrVy8mTJjA1KlTSU1NpUyZMjRr1oxLLrmE3r175ws3a968OUcddRQjR45k48aNlClThjZt2nDbbbfRqVOnPa5rf/ZJtWrVmDx5Mvfddx9ffPEFn3/+ObVr12bAgAHcdddd+f62LVu2ZNq0aTz22GN8/fXX/Oc//yEqKor69eszYMAA+vXrlxPeBrB06VIAtm7dyiOPPFJgDYmJiXkC3EKhEO+++y4nnngigwYN4uWXXyYmJoYTTzyRv//973To0GGv2yRJkiRJkiRJkiRJkiRJhRUKh8Ph4i5CkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkg4H+b++VJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJUoD9kgNvWrVu59dZbqV69OrGxsbRs2ZL33ntvn/N9/PHHXHrppdSvX5+4uDgSExO5/PLLWbBgwSGoWpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdKfXSgcDoeLu4jf6ty5M1OnTuXxxx+nYcOGvPPOO7z66qu8/fbbXHbZZXucr3Xr1lStWpXu3btTt25dVqxYwaOPPsqKFSuYNGkSRx555CHcCkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEl/Nn+4ALcvv/ySM888k3feeYdLL700p71z587MmjWL5cuXExkZWeC869evp3LlynnaVq9eTWJiIldeeSWvvvrqQa1dkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0p9bRHEX8FuffPIJCQkJXHjhhXnae/bsyerVq5k8efIe5/1teBtA9erVqVmzJitWrCjyWiVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9tUQVdwG/9csvv9CkSROiovKW1qJFi5z+E088sdDLW7x4McuWLaN79+57HZeWlkZaWlrO7ezsbJKSkqhQoQKhUKjwGyBJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpsBIOh0lNTaV69epERETsdewfLsBt06ZN1K1bN197+fLlc/oLKzMzk169epGQkMD//d//7XXsY489xoABA/avWEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEl/GitWrKBmzZp7HfOHC3ADCIVCB9S3u3A4TK9evRg/fjwfffQRtWrV2uv4e+65h9tuuy3n9pYtW6hduzYrVqygdOnShStckiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0mEnJSWFWrVqUapUqX2O/cMFuFWoUIFNmzbla09KSgKgfPny+1xGOBymd+/evPXWWwwZMoRu3brtc56YmBhiYmLytZcuXdoAN0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJOkvIBQK7XNMxCGoY780b96cOXPmkJmZmad95syZADRr1myv8+8Kb3v99dd59dVX+dvf/nbQapUkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL01/KHC3A799xz2bp1Kx999FGe9iFDhlC9enVat269x3nD4TB9+vTh9ddf5+WXX6Znz54Hu1xJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJfyFRxV3Ab51++umcdtppXH/99aSkpFC/fn3effddRowYwVtvvUVkZCQAvXr1YsiQISxatIg6deoA0LdvXwYNGsTVV19N8+bNmTRpUs5yY2JiaNWqVbFskyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqQ/hz9cgBvAxx9/zL333ssDDzxAUlISjRs35t133+WSSy7JGZOVlUVWVhbhcDin7bPPPgPgtdde47XXXsuzzDp16rB06dJDUr8kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkP6dQePcENOVISUmhTJkybNmyhdKlSxd3OZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIOkv3JHos4RDVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0mHPALe/sMTEREKhEIMHDy7uUg6ZUCi0159LLrmkuEuUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSH1hUcRcgFYe2bdsW2N64ceNDXIkkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIOJwa46S9pwoQJxV2CJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSDkMRxV2AJEmSJEmSJEmSJOkwkbUTfroTRrWDuc9COLu4K5IkSZIkSZIkSZIkSZIkSZIk6ZAzwE2FsnbtWp5//nm6dOlCYmIisbGxlCtXjg4dOvDmm28WOM/SpUsJhUIkJiYC8Oqrr9KqVSvi4+OpUaMGffv2JTU1FYCsrCyeeeYZjjzySOLi4qhZsyZ333036enp+Zbbv39/QqEQ/fv3Z+3atfTq1Yvq1asTGxtLkyZNePrpp8nMzDxo+0KSJEmSJEmSJEn6y5p6Pcx9CjZ+Bz/dBtP6FndFkiRJkiRJkiRJkiRJkiRJkiQdcga4qVBeffVV+vbty/jx44mKiqJ58+aULl2acePGceWVV3L99dfvdf7bb7+dPn36kJqaSr169Vi/fj3PP/883bt3Jzs7mwsuuIB+/foRDoepU6cOq1ev5oknnqBPnz57XOamTZs4/vjjGTJkCFWqVKFOnTrMnTuXO+64gwsvvJDs7Ow9ztu3b186d+5M165dueGGG/jyyy8Jh8MHvH8kSZIkSZIkSZKkP73NM2HJkLxtC16A1V8WTz2SJEmSJEmSJEmSJEmSJEmSJBUTA9xUKB07duSbb74hNTWVhQsXMnXqVJYtW8aMGTNo0qQJAwcOZOzYsQXOu2rVKgYNGsTo0aNZuHAhM2fO5KeffqJChQp88803nH/++fzwww/89NNPzJ49m7lz5/LNN98QHR3NG2+8wezZswtc7sCBAylbtiwLFy7kp59+Yt68eYwdO5YyZcowbNgwXnrppT1uz/PPP8+oUaP46quveOmllzjzzDPp2LEjGzZsKJL9JUmSJEmSJEmSJP3p/Hw/UMCXIs188JCXIkmSJEmSJEmSJEmSJEmSJElScTLATYXSrl07OnXqRGRkZJ72Fi1a8PzzzwPw9ttvFzhvZmYm/fv355RTTslpa9asGddccw0Aw4YN4/nnn6dly5Y5/R07duS8884D4KuvvtrjcgcPHkxiYmJO20knncRDDz0EwNNPP004nPcCkq5duzJ06FAWLVrEzp07WblyJc8//zylS5dm3LhxnH322WRmZhZij0iSJEmSJEmSJEl/IembYfXnBfftXFdwezgbsv3sTZIkSZIkSZIkSZIkSZIkSZL05xNV3AXo8JGamsp7773HhAkTWLNmDTt27CAcDpOWlgbAjBkz9jjv1Vdfna9tV2Bb+fLl6d69e77+Vq1a8d5777F48eICl3nCCSdw9NFHF7iuO++8k6VLlzJv3jwaN26c0zd8+PA8Y2vUqMFNN91E69atadu2LZMnT+bdd9/liiuu2OO2SJIkSZIkSZIkSX85a0dBOKvw41cPhyl9IH0THHEVtHoWouIOXn2SJEmSJEmSJEmSJEmSJEmSJB1CBripUH766SfOOussVq9evccxSUlJBbZXqlSJ0qVLF9gOUK9evT3OB7B169YC+5s0aVJge8mSJalVqxYLFixg/vz5eQLc9uS4447jggsu4N133+Xjjz82wE2SJEmSJEmSJEna3dqRhR+7fRV8dxFk/vo538KXYec6aPcxhEIHpz5JkiRJkiRJkiRJkiRJkiRJkg6hiIOx0LS0NDIzMw/GolUMsrKyuOiii1i9ejVnnHEGY8eOZePGjWRmZhIOh1mwYAEAGRkZBc4fHx9fYHvo14sz9tUfDocL7K9cufIea65SpQoAqampexzzWyeccAIACxcuLPQ8kiRJkiRJkiRJ0l9C0o+FH/tTv9zwtl1WDoOlbxZpSZIkSZIkSZIkSZIkSZIkSZIkFZcDDnCbMGEC//jHP9i8eXNO26ZNmzj99NNJSEigdOnS3HvvvUVRo4rZlClTWLhwIXXq1OHjjz/mpJNOokKFCkRGRgKwYsWKYqlrw4YNe+xbv349AKVKlSr08kqUKAFg+KAkSZIkSZIkSZK0u+xM2DIrb1vZlhBZwBc1pcyH5e8VvJyV/yvy0iRJkiRJkiRJkiRJkiRJkiRJKg4HHOD2zDPPMGTIEMqWLZvTdvvtt/PVV19Rt25dypYty+OPP86HH35YFHWqGC1duhSAY445hpiYmHz9M2bMOMQVBebMmVNg+/bt21m+fDkADRs2LPTyZs0KLjqpWbPm7y9OkiRJkiRJkiRJ+rNInQ/Zabm3E6+E03+C02dAXLW8Y1d+cmhrkyRJkiRJkiRJkiRJkiRJkiSpGBxwgNv06dNp3759zu3t27czdOhQOnfuzLx585g3bx61a9fmxRdfLJJCVXzi4uIAWLduXb6+jIwMnnvuuUNcUeD7779n+vTp+dpfe+01du7cSZ06dWjUqFGhlrVu3TrefvttAE499dSiLFOSJEmSJEmSJEk6vG1dkjsdlQAtHw+mS9WHY3/zefCq/x26uiRJkiRJkiRJkiRJkiRJkiRJKiYHHOC2fv16atSokXN74sSJ7Ny5k549ewJQqlQpzjrrLObOnfv7q1SxatOmDVFRUXz33Xe88cYbOe1btmzh8ssvLzDY7VCIioqiR48eLFu2LKdtwoQJPPDAAwD069ePUCiU03fPPffw9ttvs3379jzLmTFjBqeddhrJyclUrlyZa6+99tBsgCRJkiRJkiRJknQ4SNuQO13jHIirttvtblDxhGA6Kw2Sfji0tUmSJEmSJEmSJEmSJEmSJEmSVAwOOMAtNjaW1NTUnNtjx44lFArRoUOHnLaEhASSk5N/X4U66G6++WYqVqy4x5+NGzdy6623AnDVVVdRp04djj32WKpVq8awYcN49tlni6Xua6+9lqSkJOrXr0+rVq1o3Lgx7du3Jzk5mbPPPpsbbrghz/g5c+bwt7/9jTJlytCkSRPatGlDvXr1aNmyJTNnzqRKlSp89tlnlC1btli2R5IkSZIkSZIkSfpD2rk+d7pKp7x9oRA0vCWY3jwTsjNy+0qUhupnQlTCwa9RkiRJkiRJkiRJkiRJkiRJkqRDKOpAZ6xfvz4jRowgLS2NiIgI3n//fZo2bUrVqlVzxixfvpzKlSsXSaE6eLZu3crWrVv32J+ZmcmTTz5JzZo1GThwIIsXL2b79u2ceuqp3HvvvVSpUuUQVpurYsWKTJkyhXvvvZfhw4ezadMmGjVqxNVXX81tt91GRETefMLrr7+eKlWqMGXKFFavXs3ChQuJj4/nuOOO48wzz+TGG2+kYsWKxbItkiRJkiRJkiRJ0h9W2obc6bIt8/dXPCH4nfRD3vY2b0DNbrBlNow+6aCVJ0mSJEmSJEmSJEmSJEmSJEnSoXbAAW59+vThmmuuoUGDBkRHR7NkyRKefPLJPGMmT55M06ZNf3eROjiWLl26X+NvueUWbrnllgL7wuFwvrbExMQC23fp2LHjXvt79OhBjx499lpT1apVGTRo0F7H7NKlSxe6dOlSqLGSJEmSJEmSJEmSfrV7gFvpxvn7Q6Hg97ZluW01uwfhbQBlmsKx/4HlHxy0EiVJkiRJkiRJkiRJkiRJkiRJOpQiDnTGXr16cccdd7B9+3Y2b97Mtddey6233prT/+2337J48WJOOeWUoqhTkiRJkiRJkiRJklQcdgW4lSgDJRL2PG7n2tzpOpfn7at9MZQ/puhrkyRJkiRJkiRJkiRJkiRJkiSpGEQd6IyhUIgnnniCJ554osD+tm3bkpycTMmSJQ+4OEmSJEmSJEmSJElSMdu5PvgdXX4f43YLcKvSMW9fKAQNbijSsiRJkiRJkiRJkiRJkiRJkiRJKi4HHOC2L9HR0URHRx+sxUuSJEmSJEmSJEmSDoW0DcHvmAp7H7dzXfA7rjrEVMzfH122SMuSJEmSJEmSJEmSJEmSJEmSJKm4RPzeBXzyySdcdNFFtGjRgvr16+e0z507lyeffJJVq1b93lVIkiRJkiRJkiRJkopL2sbgd3T5vY/buTb4XarBwa1HkiRJkiRJkiRJkiRJkiRJkqRiFnWgM2ZnZ3PppZfy4YcfAhAXF8eOHTty+suVK8e9995LVlYW99xzz++vVPpV//796d+/f3GXIUmSJEmSJEmSJB3eQqF9jwmHIWtnMB1TYS/jsmHn+l/HVfr9tUmSJEmSJEmSJEmSJEmSJEmS9AcWcaAzPvvss3zwwQdce+21JCcn069fvzz9VapUoX379nzxxRe/u0hJkiRJkiRJkiRJUjEIhyGcFUyXKLvncWmbcsfFVDzoZUmSJEmSJEmSJEmSJEmSJEmSVJyiDnTGwYMHc+yxx/Liiy8CECrg29nr169vgJskSZIkSZIkSZIkHa7CmbnTESVyp+c8BRu/z719RI/c6ZhKB70sSZIkSZIkSZIkSZIkSZIkSZKK0wEHuC1cuJAbb7xxr2MqVKjApk2bDnQVkiRJkiRJkiRJkqTilJ2ROx3a7ePlTVNg5bDc29XOyJ2OqXjQy5IkSZIkSZIkSZIkSZIkSZIkqTgdcIBbXFwcKSkpex2zbNkyypYte6CrkCRJkiRJkiRJkiQVp3Bm7nQosnDjSpTJnc7cDoRzb0fGQyhUZOVJkiRJkiRJkiRJkiRJkiRJklQcDjjArVWrVnz11VekpaURExOTrz8pKYkRI0Zw0kkn/a4CJUmSJEmSJEmSJEnFpZBha9m7BbhFlMid/rIpbFuWe/uiHRAZWzSlSZIkSZIkSZIkSZIkSZIkSZJUTCIOdMa+ffuyYsUKLrjgAlatWpWnb9GiRZx77rls2bKFvn37/u4iJUmSJEmSJEmSJElFLBzO+1NQe2i37wQLZ+ZfRk5fVu50xAF/j5gkSZIkSZIkSZIkSZIkSZIkSYeFAz5zvlu3btx99908/vjj1K5dm5IlSwJQuXJlNm3aRDgc5v777+fkk08usmIlSZIkSZIkSZIkSYdQRCED3MjebTp0sKqRJEmSJEmSJEmSJEmSJEmSJOkPIeL3zPzoo4/y1VdfcdZZZxEfH09kZCTZ2dl07dqV4cOHM2DAgKKqU5IkSZIkSZIkSZJ0qIV2C3DLStvLuMjc6XDWfq1i7VqYPh02bdq/0iRJkiRJkiRJkiRJkiRJkiRJKi5R+x5SsOXLlxMdHc1pp53GaaedVpQ1SZIkSZIkSZIkSZL+CEKhIJwtnAXpyXsZt9tHz9mZhVr0mjVw223w3nu5qzrrLPj3vyEx8cBLliRJkiRJkiRJkiRJkiRJkiTpYIs40BmPOOII7r333qKsRZIkSZIkSZIkSZL0RxNVMvidnpTbdtSj0O7D3Nt5Atx27nORP/wAjRvnhrcBhMPw2Wdw/vm/s15JkiRJkiRJkiRJkiRJkiRJkg6yqH0PKVj58uUpX758UdYiSZIkSZIkSZIkSfq9QqHCjQuHCzcuphJkpOQNcCvVgDzfFxYRmTudtmmvi0tPh0sugZSUPfdLkiRJkiRJkiRJkiRJkiRJkvRHFrHvIQVr3749kyZNKspaJEmSJEmSJEmSJBWjORvm8PO6n5m9YXZxl6I/kphKwe/05D2PiSqVO717gNvpP8Pxr+YZ+uabsGhR7u0TT4RXXoH+/aFGjd9friRJkiRJkiRJkiRJkiRJkiRJB9sBB7g99thj/PLLLwwYMIDMzMyirEmSJEmSJEmSJEnSIZaWmcZRA4/iqIFH0eKlFuzI2JF3QCi07x/9OcX+GuC2ezDbb0WXy51O25g7XaI0RJXMM/TDD3OnL7wQxo6F3r3hwQdh5kxo374IapYkSZIkSZIkSZIkSZIkSZIk6SCKOtAZn3jiCZo1a8Y//vEP/vvf/3LUUUdRpUoVQr+5MCMUCjFo0KDfXagkSZIkSZIkSZKkg+fndT+TkZ0BQFY4i+lrp3NCrROKuSodkHA47+1dn+H+tr2wYn4NcMtMhfTkvGFtu0TGQlQCZG6F9I35+3+VnQ2TJuWW9dRTELXbp9blysHzzx9YmZL+ALavhK2Lg8eE0k2hREJxVyRJkiRJkiRJkiRJkiRJkiQdFAcc4DZ48OCc6TVr1rBmzZoCxxngJkmSJEmSJEmFEA5DdgZERhd3JZKkv6gpq6bku22Am4DcADeAlLlQcQ/3i9iqsHUh7Cj4s2OA+fNDbN4cTDdrBnXq5B8TGXngpUo6SLYuhs0zg+lSDaB0k9xwSIDkn+GXAbDyE+DXsMiIElDzXDjmeYitfMhLliRJkiRJkiRJkiRJkiRJkg6mAw5wW7JkSVHWIUmSJEmSJEl/PeEwrPkKFjwPa0cFAW7R5aFyB2h4M1TpVNwVSpL+QqaungpAfIl4tmdsz7mdIxzOnd49tGdP7Xuz+zz649s9wC3px70EuFUJAtxS5kA4G0IR+YZM+zH3PnLUUUVdqKQilzwDfr4XVn9JTjAbQEI9aD0oeO2S9BN8fRJkbs07b3YGLB8K9a83wE2SJEmSJEmSJEmSJEmSJEl/Ogcc4FanoK9ClyRJkiRJkiQV3k/9YN4/87alJ8HKT2DnWjjt++KpS5L0lzRl1RQALj7yYl6f/nrObSlP8NL6b6HhjQWPi6sa/M7cBqnzoXTjfEOSknID3Bo2LMoiJRW5lLlBMFtGSv6+rYtg4+QgwG3qNbnhbdVOhwbXQ0Q0bBgPCwbmm3XxYnj/fViwALKy4IgjoEsXaNOm8DmgklQsstJg+/IgoDKuBkSXKWDMTlgzArYuhlBkEHhZqX3BYyVJkiRJkiRJkiRJkiRJh7UDDnCTJEmSJEmSJP0Oq0fkhrfFVoXG/aD80bBjDaz8GHasLd76JEl/KalpqczdOBeAXq168fr011mQtIDNOzdTNrZs8Ran4rd7gNvK/0HKPCjdqIBxVXKn14wsMMBt27bc6fj4IqxRUtH76fbc8LaGfaHJncH/+ZZfYOF/g2Ci1IWQ9EMwptaF0Pb93BS2al2g0f8FgUfAunXQoweMGJF/VQMGwGuvQc+eB3+zJGm/pS6A2U/Aig/yhlqWaQ4tHoKa3SCcDbMegXnPQnpy3vkjYqD9MKje9ZCWLUmSJEmSJEmSJEmSJEk6uH53gNs777zD4MGDmT59Olu2bKF06dK0atWKHj16cNlllxVFjZIkSZIkSZL057NkSPA7IgZOGQulG+b2JV4G25bn3t65AZYMhpWfQMpcCGcFoW8VjocGN0HF1oe0dEnSn8+0NdMIE6ZcbDlOrHUilUtWZv229fyw+gdOrXtq4RcUDue9vSvE57ftOryU2i2sLZwJP/4ftPsAlr+fd1xstdzpef+Eer0gqmSeITExudMZGQehVklFI30LrB0VTNc8F475V25fuZZw3IuQnQELB+a2N7w593F/l5gKweLSoWtXmD49aG7QAK66CipXhoUL4f33gzGS9Iez+RcY3Q4ytgS342tDfA3Ytgy2zAweK2t2g5kPwqyHgzExFaHmeRCVAFtmwfpvIG19nsWGwzB/PixaFBwTVakCLVoYcCtJkiRJkiRJkiRJkiRJh5MDDnDLzs7m4osv5uOPPyYcDhMXF0f16tVZv349o0eP5uuvv+ajjz7igw8+ICIioihrliRJkiRJkqTDW1Y6rP4imK56at7wtl1K1g5+b54J35yae6FvfG2Iqw47VsLStyC6ggFukqR9GjJ9CEs3LwXg2mOvpWpC1Tz9U1ZNAaBVtVaEQiFaVW3FV4u+YsqqKfsX4KY/p5J1IKoUZKYGt9cMhw8S8o8r2yx3etsy+PFWaHgLLH49pzlht9lWrz445UoqAmtHBQFtALUvLnhMRAlImpY7XeH4YDprJ6Qn546LjOOzz8rmhLeddBKMHJk30PGhh2B93mwjSfpj+Om2ILwtIgbavg81zgnCKsNhSPoBti2BjFSY+0wwvkJr6DQaSux20LNjTU4A3LZt8Mgj8PbbsHx53lWVKAH//jdcd90h2jZJkiRJkiRJkiRJkiRJ0u9ywAFuzz//PB999BEdOnTg8ccfp3Xr3AsEp0yZwt13382wYcN4/vnnueWWW4qkWEmSJEmSJEn6U9ixOjcApeKJue3LP4Sd63JvH3EFTL02CG+LKgXtP4Gqp+T2b5kN21ccmpolFdrKlTB7dnBhflwc1KkDDRtCZGT+sZmZkJ4OsbHg9+Fof2VmwsyZMGkSLFsGGRlQrhw0agSdOkHFisG4Dds2cM3n15CelQ5ARCiC+zvcn2dZU1dPBeDoqkcHv6sdzVeLvspp119cKARlW8DG7/Y+rtzReW8vejX42U3jRtk50zNmFFWBkvZLKLTvMbOfzp0u1yr4nZEC0+/ObY+rHrQBRJWGyF8T2daOhnFn546r24vBg3MfC+66K294G0B0NNSsuR/bIEm/V2EeC7etDB7TAOr1gZrd8s5f4bjgZ8mbkLUjaD/y3rzhbQBx1SCuGpmZcMopMHly0Ny+PVx+OVSvDuvWwddfB78lSZIkSZIkSZIkSZIkSYeHAw5wGzx4MI0aNWLUqFFEReVdzPHHH8/IkSNp0aIFr7/+ugFukiRJkiRJ+suavWE257x7DgClYkoxoecESkaXzB1QmItFCyscLrpl6eDK3pk7HVEid3ruM7BpUu7thLqwcWIw3fSuvOFtAGWaBj8Ef/5Jk+CLL2DaNFiyJAiFSkiAunXh/PPhiisO0vZIYts2ePhheOMNWL06aCtZErKzYccOqFcPFi4MArbeegs++wymTg3C3iAIdzviCLj6arjnnuLbDh0+Pv4Ybr0VVqwIDieaNoXKlWHLFpg1C3r3hv/8Jxj7+vTXSc9Kp265uixOXsx/f/wv97S/h6iI3M/4pqyaAkBsVCwTV0wk5tcQnl3tEhWO33eAW3wtiKkEaRv2OOTYY8NERQUBhD/+GDxGxsUVca2S9m731467vybdvX32k7vN8GvwYuYOWPhSbnOZ5lC2eTCdsRnC2RAqOJF21qzc6XbtDqhqSTog4XDwei0jA0qX3i1YuzCPhSs+AX69Xa1rbvvi14PHPICIaNjyS25fpfbB7+2rYd4/c9tLNeSd76/JCW+75BJ45528q+7dG7KyDmQrJUmSJEmSJEmSJEmSJEnF4YAD3ObNm8dNN92UL7wtZ8FRUZx11ln8Z9eVIZIkSZIkSdJfUP8x/VmUvIhS0aVYlLyIF6a+wJ1t78wdUNDFovsKYivsOBWtwobtFebvElMxd3r7qtzpyidBRBRsmBDcTpmX21f++NzpsWflXihcojThE9+jR48gOAqgc2f4v/+DatVg+3aYPRtmzixc+dKfRnYmbJ4JO9dBenLwPxxdIQhGTDhij+EiByIchu7dYfTo4PZ998HNNwdhWuEwrFoF48cHYUWnngrjxgXjrrsOLrgg93/1l18gOfnXhabMh6VvwpqvYOcaSEsKao6tDKUaQZvBwbT+vLLSIW0jpCdBOBNKlIa4GhAZw48/woUXBgGBTZrA//4HDRrkzrp9exDsBpAdzublaS8D8GyXZ7ntq9tYlLyI4QuGc3ajswFYv209y7csB+Dh8Q/z8PiHc5a1OnU1q1NXU71U9aLdvqJ8XtWhUbUzzHt272NCIah6Gix7Z49D4uKgZUv44QfYuhVeeQX69s075n//g27dfn/Jkn6H2Cq509tWQOnGEBUHDfvC+rGweUbQl1Av+B3Ogm3LguOsSm2h82SY0gc2/wxAxG6HXtnZh2gbdFgKh8OcP/R8Zq4PXsTe1fYueh/d++CuNHM7rPsWti0Ojr+yM4Jjr/jawev0+JoHd/0qchMnBsHZX30VhGanp0N8POzcGQRn//e/0KlTIRaUnZY7vXsA/9TrIDs9mC5RFurtdh8NZwa/0zYEQf27VD2Nd965JufmzTcXfEicEzAnFZWsdNgwDpKmBY9xmakQGQex1aD8sVD15OKuUJIkSZIkSZIkSZIkSTpsHfDVSdHR0Wzbtm2vY7Zt20Z0dPR+L3vr1q3ceuutVK9endjYWFq2bMl7771XqHnXr19Pjx49qFixIvHx8Zxwwgl8/fXX+12DJEmSJEk6cMk7krnso8s4f+j5nD/0fBYlLSpw3JrUNTw87mEeHvcwz058lqzsrLwDQqF9/0h/YDPWzuCD2R9QJqYM/7vkfwA8+d2TpKalFnNlOiDhcN6fPbUX5rErpiKUaR7Mv2Y47Hr8a/kEtMgNzSEyJnc6c7f7zZZZsPH7YN61o3n77dzwtiuvhBEj4Npr4Zxz4JJL4B//gCefPDi7RfrDydwBU2+ATyrD6Haw6GVImgJJP8DSN2DC+cH/UGGPMwoxbvTo3PC2c86Bhx4Kwtt2zV6zJlx6Kbz8cm542623wksvwSmnQNOmcOyx0KNHEL7I+nEwvBnMehjKNIX2/4Puq4Kfkz6HOpdByKv6/7RW/g++7QwflobRbWH6ncF9YXJv+KIRLBrE00/nht889lje8DYIwikaNQqmRy0axeLkxVQpWYUzGpxBj5Y9AHjph5dyxk9dNXWvJe2r/4AU9nlVfxyVT4KImIL7QhEQXyuYrnHOnpcRigAiOOWU3KY774R//zsIHly4EPr0CYIwJRWzqrv9o678OPhdojQc8y+oslvqUbUuudOLXw9+R5eDCsdDVKmcrqOOyh02ZkwR1ZidCUk/wopPYPFgWPgyLHkrCMDdPShbh5W3Z77NJ3M/IToymqWbl3LHqDtYv239wVlZOAw/3w8fV4AJ58GmKVCiDJRMBCJg7WhYM+LgrFsHzRtvwIknwosvBsfEkyZBRkYQHJuaGgS71apVyIWVPCJ3OnW3kP1jnoda5+feLtUwd3rzL8HvhCOC12+VTsrpStstDy4hYd+rD4fDDJ01lEE/DmLQj4PYtH1TIQuXfrXqMxhWFb49DdaPCY7ZK50EZVtA1jZY+UlxVyhJkiRJkiRJkiRJkiQd1qIOdMZWrVoxdOhQ7r33XqpXr56vf82aNQwdOpSjjz56v5d93nnnMXXqVB5//HEaNmzIO++8w6WXXkp2djaXXXbZHudLS0vjlFNOYfPmzfzrX/+icuXKvPDCC3Tt2pXRo0fToUOH/a5FkiRJkiRRuKC0X8MVssPZXDnsSj6f/znnNzmfj+Z8xKKkRUzsNZG4EnE5w9My0zhv6HlMWjmJ42scz5RVU9iwfQOPnvJovmXmqeG3IQ6FDXEz/EHFoP/Y/gDcdPxNdDqiE13qdeGrRV/x78n/5t6T7j1o6928czNX/+9qNmzfAMBVR11F76N7H7T16TcKeuz6bTtAzW6wZSakzofZj0DTv0PEb96yrdAGImMhaycsHwq1zgvaz1kCc56G6XcA8OOPubO0bbvvh8aN2zfS9a2uLN+ynOxwNuc1OY+BZw0kInTA3/kh/XHMuAcWvgQR0XDmHEioC+mbYcfq3DHRFQr/v1qIcZs/yG0uV27PpS3aLdO2adO9bMPMByE7I7iwuvXrwXo3TYXVX+SO2TwTqnTcy0L0R/XIuEe479v7KBFRgujIaL6+8mta12wddK4dDePPBcJw9HPQsC+EsyFjy25LCO/xblmQgdMGAlC3XF1e++k10rPSARixcARLkpdwRLkjmLJqCgCVS1bm+BrH58z7w+ofWLt1LVNWTaFb426/c8sPUCFfi2RnB8+H06cHIWBbtwYhdxEREBkZhCr27QulSu1zadqTqHg44kpY9Er+vsQrg5ASgOpnBI+z6QUEjNS7FiKjuekmePZZSE8PgkxuuSX42aVZs4OzCTqEwtmQnR4EjkaUKO5qCiU1Fd5+Owj6mTMHKlWCMmUgKip42k9Lg7vvhlatirvSQyS+JpQ7GpJ/DILZqnUNAhpDobzHRxVa5/7Pz30qeCxIvCLoy9qRM+zqq+HjX3PgHn44CLHd/TE5NRXWroUGDQvxuJ+dDT/fB/P/DaEoqNcHyhwZBGVn7ghC3bavgnpXF8GOUFFJz0rn/KHnM27ZOCJCEbSo0oIvL/uSktElc8Zs3rmZfiP7AfDK2a8wdNZQ/jX5X9w1+i5e7/ZrQGBh36cszLiVnwZBuQAnvAOJlwbBgOt/TV0ufyxExe15fv0h3XNP7vQ77wSP5bvExUHr1vuxsArHByFu25bAvH9B3ashqiTUvwYyt8GKj4Jxtc6DH26AcGZwn6rULgi9rHEmLHs7Z3Enn5wbYvnRR9Cixd5X/+ykZ7l95O00qdiEORvn8PbMt/nqb19RIvLweG5VMcvYCt9fBplboc6lcOI7QfvGyZC2EWJ+TZ7PSAnur5IOnnA4eN7I3BYcI4cig+eT6LK/Bp1LkiRJkiRJkiRJkqTD1QEHuN1+++2cc845HHvssdx+++106NCBKlWqsG7dOsaMGcM///lPkpKSuO222/ZruV9++SWjRo3KCW0D6NSpE8uWLeOOO+7g4osvJjIyssB5Bw0axC+//ML333/PCSeckDPvUUcdxZ133snkyZMPdHMlSZIkHW6y0oMLErLTIJwVXMgXGQdRCRBR8GsK6bAVDgNhIFT4MLPfzL5pE6xeHYQcpKVBZmZwgXJ8PNSsCTUKG3ACPD7hcT6f/zld6nVh6IVD6Tu8Ly9MfYEbvryB1855jVAoRDgc5vovrmfSyklcf+z1PN35aVq/2prHJjzGUVWO4uJmF+/n9u9mT0FvB0F2OJtnvn+Gj+d+TLnYcuzM3MljpzyWG8Chv7Rpq6cxbO4wAD6c/SEjFo5g3bZ1ADw98WluPP5GysaWLfL1btm5hS5vdWHqqqm81u01Xp/+On0+6wOQG+KWthHWjIKtC4PnydjKwQVDhILbkfFQ96oir02/0fBmWPgypG0IwpoWvQqlmwSBbrtEl4W6vWDBC7D8/SDMLfEKiKsKqQtyhl12Gfz735CVBf/9L1xwAZQvn3d1qalBQMKu+8iPa37k/QveZ8TCEbzy4yuULFGSf3b5J6EDeC7Rn0haUhAWmPxTcOF5Qv3gfheKDIJYwhnBRb/xNYu70j3buTb4HRkHsVWD6c0zYMGLsHo4ZKZC437Q6qkiW+VZZ0G9ekFA2wcfwBVXBKEku1uyBHr0gOefD461nn8+mK9atbzjNm2CCqXqw/oxkJ4EO9ZAfPXg7xBTEX6+HzI2QzOKL8AtOzMIxNuxGjK3B6+7ACJioEQClG580C7+Ts9KZ1FSkIQXFRFF/fL1D6vHrZd/eJn7vr2Pk+qcxL+7/puOQzpyxjtnML7neJpWagpbZhMc2xOEPoRCsHMjTLoSUmbD9pVQ/jj69ZvC0KFBfs3f/w5HHhncB3fZsQNWrID4qiv5dN6nAExcOZGJKyfmjAkT5r/T/stjpz7G1NVTAbjkyEv41+n/yhlzx8g7eHri0zn9xaIQr0VSUuDUU2Hq1OD574034KSTcoOBMjJg+XKIjj5ENR8CO3YEQUfJyUEIWnp6EFQXFxfsg8TEg7TiI++HJUOCYK5dostDi4dyb5coFdz+4Ya888ZVg+YDgOB15uOPw35+lKw/sjVfBce2qQuh/DFBiFdUQnD8kLUTCEOz+4u7yj0Kh6FNG5g9G0qUCAIhCwoS/Mtlw7d4GMaeETzXj+8eHBtGl4PNP+eOiYiClk/AlN7B33ry1TD1+qBv1zEC0KULtG8P48fDtGlQvz5ccglUqRIEbw4bBo89Bg0K8x7U2m9g9q9fAND6dajbI5ieekPwnjBA6jyocwksexc2fBe0lzkyuF+GIoHs4JimyslQ4dj92i3hcJjZG2azM3MnAA0rNKRUTKndBwTHcNuXB8dzWTuDY+td71HHVYdyR+3XOg93WdlZXP7x5Xw+/3Me7PAgFeMrcvPwmzn3/XP57NLPiImKAeCBbx9g3bZ11ClTh2mrp1EuNkhHHjx9ML1b9aZt7bZFGsTMio9zpyODGsjOgBVDg4CjzdOD+/3ZC1i1CmbMgJUrYft2SEgInntDoeC1eL160LHjge+jw872VcFj/9aFwX37t+8tlShNOPEKJk6E0aNh8eLg2KxOneBxNiIiOJbNyir644GWLYP3ugG++w7OOON3LCwUgib94IcbYesiGH5UEOIWWwXWjMgdF1MB6vWGhQNh3dcwoiXUviS4X23KPZa++ebgteCGDfDoo8E+uPxyqF4d1q0L9lVsLPTsCV8u+JI7Rt1BvXL1+L7X99w56k5e+fEV+g7vy4tnvnhYvQ5SMQmFcoOhwtm54ZbJ02D9eFj+XtDXdQaU20eaoKR81qyBX36BVatg27bg9fiuU5uzsoLXE8fX+Azm/jM4Nq12OpRrCVGlgXAQnpi2Hpr1z//FLpIkSZIkSZIkSZIk6bBxwJ/6n3XWWTz77LPccccd3HnnnXn6wuEwUVFRPP3005x11ln7tdxPPvmEhIQELrzwwjztPXv25LLLLmPy5MmceOKJe5y3UaNGOeFtAFFRUfztb3/j73//O6tWraJGjRr7Vc/JJwcnDfbpE5w4HBWV9yTCzp0hJma/FnlYy8wMLubfvj2YzsrK7YuKgtKl835zrSRJkn5jx1pYMji4yKNU418vGIuDlPlAODh5vmQi09Z05c03gwtaGjaEdu2CC1t2XYuRnQ0VKkCrVsHtcDjM2q1rycjOAKBMTBnKxO52YJadFQS1ZKYGF81FRAO7LuwIQyiS9Oi6DB8OCxYE4U0tW0LZssFJxhERwTn9WVlw/PHBhc8bNwbHhRkZwQXQERFBfdnZwcU3RXmhcHY2PPhgcKHNxo1w3XVQo0buesPh4Pi07bEbKTfnckiaBpU7BBfRxFSEjd9B2qbgorkSCXD0c4f9N1knJcGECcEJ4VFRwQWPCQnB/oBgn8XHBxfxJ+9I5oWpL/Dfaf+lW6NurN++nulrp3P7Cbdz5VFXEhsVW7wb8xcUDuf+hEK5P7ss27yMn9b+RGxULNsztlO/fH2aV24eXJCVvgWm3RyEqpRpBjXOCcIxNk2GjC3Bt7bHVITmAwiHSrBtW/C/mp4e3C+ys4N1RUUFF4KNGAH/93/BBWNXXw233gp16wavdTMzg7Cf9PQ9bko+oxeP5v5v76d0TGk27dhEm1fbECZMpfhKDJ4+mBNrnkifY/rwnyn/4fXpr1MhrgIz1s3g9LdPJzYqltioWHr+ryeNKjaiZdWWRb3r999eLgJdlbKKq4ZdxddLvubshmdzSbNLuHPUnbR9rS0DOg7g7nZ3E2lg5F/aA2MeAKB74+6cXv/0nPaXp73Mj2t+5NmJzzKg04AiXWdKWgpd3+7KlFVTqFuuLuOWjaNifEWiIqK45rNriAxF0vOoK+GrY2HbMqhyCnT4IriYdN23kDInuHgPoFJbKFU/d+F7+n8o5MWiK1eEmTIlCBopVSo4VoiLy3t8U7EiHHHE79sHh5XYytBpFEz8G2z5BbavCH52qdQ+CEdo9Uzw+L5kcBCYsmRI3uXE1+DYY+Htt4PH9GnTglCUTp2gatUg4GX27OBi4A//t52z3z2bH9f8SGLZRIbNHUZGdgYlS5TkucnPUTa2LA92fPCQ7oaDaU3qGl758RXGLhvL2Q3P5uslX1OnTB1uOO6GIChpP2RmZ/LxnI95ZuIzVE2oypGVjuSD2R9wWbPLuOn4m6hUslLO2LTMNKatmcaOjB2ECVMquhStqrUiOvIwSA6a9yzMehgiSsDpM6FUQ9i2FNaODi5OT0+CUAk2VLiVBQuC49Lo6OD1SXR03v/pmjXzBwkWqT2Fth79bBAikDQNvjoOjrgC4mtDje6wfmzwuqiIxcXBZ59Br14wcWIQJNW4cXBclZUF8+cH762vXw9Dh0LfvjBzZhBe0K5dEOK2bVvwv9qgAXzxyZPB4/TaUcGF/7UugJKJv25v1t5KOfiWvBWEMmWmwgnvBM8X2emw8fvgte6O1cHj1xFXFnqR67au47WfXmPssrGc0eAMvl36LXXL1uXaY6+lYYWGQBD68c7Md3hwzIOUiS3Dpc0u5blJz1G3XF0ePeVRTqpz0sHa4iLzwawPuP6L64mNiiUmMoZHxj9CYtlEfl73M53f7Mx3V39HnfrXwYZxsOIjGHcO1L82CMRrcCPM/1cQ4AYccwy8/35w/D5rVnC/OfLI4LOszZuDtl69oOIFr5Idzub4GsfzycWf5NTy5YIv6fNZHwb9NIj+HfszZdUUAI6udnSemnfdnrp6KuFw+A8bEhERkfv5VGYmbNkS7IeoqOB9jZSU4Hb16gdh5dkZQShQ5g4gO3hvB4IAk4gSEF2hSIPkZ86ECy+EefOCsKmnnw62Ky4ueDjcti3Y/oOmZK0gBHNXcFJkPJz4Tv5gz3p9YPFrkPRDcDu6ArQfBrG5z5e33hr83e64I3g+2SU+Hm655SBug/ZbOBxmxroZfLngSyrFV2JL2hZiImM4t8m51Cz9699+1iOwYTyUbQnN+wfPveu+De4Di18NxpQ/jvSKXVm3LrivpqUF703sel8xHA6OIerWDd5f3G97ODYYMwZGjQrCfFq1gkaNgv+ZXbNkZQXPyWedFfxvZWTAe+/BuefmvgeZkhIEQTZokD989U+t+unQejBMvyMInt66MLcvogTU7BZM1+sF6ZvhlwG570HvElcNanYjKgo+/xxuuinYv+vXByHUuyv0uQaVTgzeE1v1Kcx5Inivt8yRwfPmsvdgzuPB43CNs2FKHyAM7T6EmucGj9nL3oUN38PWBcE2VTiWcDjMT2t/4tN5n1IpvhLbMrYRDoc5v+n51C+f+9p4yqop3DX6Ln5e9zN3nHgHwxcOZ/aG2dx/0v1ce8y1xIQIXnNv+QWqdoZjXwj2wcbJwXH15nGQtR2OeiwIfPoLCIfDXPPZNXw4+0PKxZZj7sa5hEIhqpSswqjFo7js48t4/4L3mbluJi9MfYGYyBjOaHAGczfOBeDshmfz2fzPuOHLG5h2zTSiijLgpOa50Oj/YP6/YeIVweuess2hYlvYuiRn2MCBcP2vuYR9+wbPv799nMrIKLqyDobMzOBxcNOm4H2C+PjgPeBd701nZwf/g4U6XsrOgJHHBZ+5VD8D2n0CkdHBlwWkzAmeD4Cl2zpyyim12LkTjj4aRo4MXjvubn/eey6swYODALThw6FbN+jaNfjMKyEh2P7p04PPmc47r5ALrH89pCfDrEeD1zw/35u3v+yvwVdHPxe8Xlv8GmyZBTN3Dy4NQblWlC0L48YFx+rffw8PPxz87O7ee2H2htlc8uElREVEUS6uHBcMvYCM7AzKx5Vn4LSBNKvcjBuPv7Fw9WfugE2TgtcSkXEQX+vXzwl//WKYcDh4j6pk7ULukD+wwr5e+SMksh6KL6KJKgknvgeTegRfDJGeFDw3xVTIfY+hOK0dHXy2lZ0O5Y+H6DKQkRo8T4azgtdWNc6BqPjirlR/IpnZmUxeOZlFyYsoF1uOLWlbOL7G8TQo32C/3vN4+ungtSzAPfcE5zLsfh5xOBy83mHKoOBLGhLqQ+Pbgi9w2fAdbJqS+7q6dBPWxV3OsmXB6/mYmOA5OerXQ55dr1kaNAheP+1TdhbsWBmcH5KVFoSsR+x24BLODr70IuZgvnGrYpGdCevHwbYlQcBuwhHBc384M/cL4UqUhtJHQkYS7NwAmduCLw6JKEGec4hiKgTnHEiFlJWdRdavn11EhiI9T0KS9Osb/hnkfnb2a8h4RInD/tzdP4Ls7Nwv6c3+NbM9IiL4XDQ2Njdc+q8gMzM4r3zbNti5M/fLIyD3HN0GDQ7oe5ElSdLhLJyd+1kDYYLj0chff/58Bwb7uj5p/xaU9es5qrv2W0TwfuOfcL/pr2XlyuC8sKSk4FqWihXzfvlcOAy1axf9ee8pKcF5Ctu2BevYdZ4GBLfj44Pz7fUnlJ4cXEueuTX4gvTIXddzh4BsiCoF8UH2UVZWcC5PRkbeaz8jI4P7TPzh9JF5OLzbedQROXf4FSvghx+CcwbLlIFatYJt2/UaPisrOAe+9p/g1BX9dYXC4d93FtCSJUt46623mD59OikpKZQuXZpWrVpx2WWXUbdu3f1e3gknnEBWVhZTpkzJ0z5r1iyaNWvGyy+/zDXXXFPgvNWqVaN9+/YMHTo0T/sXX3zBWWedxVdffUXnzp0LnDctLY20tNyTiFNSUqhVqxYvv7yFlJTSlC2bG+C268TFAgPc9nQha1oSpM4PvjUvtkpwUkQ4HHz4nbk1OJiNrxl8YL4P4XBwkcm2bcGD8G9PqoSgvoQECEVkkZGdQVZ2FmHCREVEkZmdSYgQURFRlIgsQUQh3/yeNy84mTIpKXjga9Uqb4hIejqULBm8+blgQXAySZUqwcmXu05c3XUySZUqUC57anCiAEBCgyBII2MrZG0LTh4JRUGVTsHJZPuSkQpbZgdPZDHlIbp88IC+a3nZ6RBTGco0ge2rgxNGd6zJ/ZbrUCRk7wzWVaZ5MP+WX4I6ostBiTK5HxIk/xSc1FD5JGYvq8OaNcETYs2awfZHROR9s7dWrUJeYJCVHpwol53+65Pwbt/uvOsEiqi4YNy2xcG2xVcPLowJZwbf2p2RCmRDQr1gm9KTgie4EmWCky+zM4L7Wtb2YHviarJmx2YWJC1g3dZ1xJWIo0apGqxIWUFaZhrVSlWjYYWGVC5ZuVD3kS1bgm+cXrcu2OYaNfJeiB0OB/fLMmWCb59cvz7oq1o17wFnVlZwUvDmErMYu2wsFeIqkFg2kciISMLhMBu2b2BR0iKaVW5G+9rtWbplKdNWTyMrnEXN0jWpVboWi5IXsTp1NWViynBM9WOoWbJiEIyTsTk4oIkuF+yjzK3BvstOC/ZTmSaF2tbk5KD+HTuCbdr17dq77NrWwh4QpWWmsT1je07oTnRkNDszdxIZiiQmKoa4qDiiIkrkvAiAvC+kd3+4CZPF9oztbM/YTlY4i+jIaMLhMOlZ6ZSILEF8iXjiouLyniCxt28m310RjNs9+HFPbwQsWxZcbL5xY/Bip3bt3MfaXY/BFSoU/iBsV7hQdnawnF1/q11vSITDweP7ypXBhbThMJQrF1yQs2uduzYjrkwqIxaOYP229RxZ+UhKx5QGYEfGDmZvmE1MVAxd63ct9P9NUdoVXrRrH++64Om3+ziqkNc07LrQb1cw064P83bfbzExwcWgCxYE+7lpU6hcOe8L1/R0qFwlm582TWDG2hkcUe4IqpSsQigUIjuczfIty1m3dR1ta7ctdEjLlp1bGLloJBu3b6RxxcaUjwteFSfvTGbOhjlUjK9I53qd84ZX7cX6beuZs2EOq1NXUyqmFHXL1WVlyko2bd9EhfgKNKnYhJoJVQit+wZ2rgtOUivdCCJLBo+1manBcxARUK1Lod6Q2rh9I1/M/4K0rDSaVW5GiV9PlkzLSmPmupmUiS3DmQ3OLPQ2TFs9jYkrJ1ItoRq1y9QmIhRBdjibNVvXsGzzMo6pfgwnVD+WUOp8SN8EEbHBxZI5j4XpQSBEZBzpZY5k5rqZ/LzuZ8rEluGIskcQXyKe+Zvms37beuqXr0+raq3IyMpg5KKRpKan0qhCI8rFlcvZn/M2zqNWmVqccsQplIyKhs0/B0EUGVuDE69DUUA4eD6OSoBK7XJebO5VVlrwnJ+2MXjejq0ULCtzW1B/1k6ISiCzdCtSUoL7X0REcP/ddd/f9f8cEQHhqO0sTl7Mss3L2JG5g+qlqrMjYwfJO5MpE1OGuuXqUqdsnUJfDLQ1fStJO5LYlr6NMGESohNITUslMiKShOgEyseVJz4UgnXfBBeFRcQEx38RMcHfYduy4EL3uKqkVL2ZCRNgyZLgQ/a6dXPDuXY9FpYvD7UbbWLq6qnMXDeTmKgYmlduTvLOZBYlLaJkdEmOq34cLSo3J2bdCEiZG6yrcsfg2CttYxAEtX05RJQgs1JXvplYjYULg//pxo2Dx8PfBrgdcUQQTLBhQ/C83q5dcBy0+3N+VBRUq7WThUkLWZi0kPSsdGqVrkWYMCtTVhIdGU2D8g2oX74+21Ji2LAheF4tVSpYVkHPq2vWwJQpwe+4uOBYY9fjza7HwBNPCFM+4mdI/hF2roe4GsF9JSIquL1taXBCaqPbCnXxdGZ2Jpu2byJpRxI7M3eSEJ1AdjibHZk7iIuKo3xcecrHlSdy+zJIXRQcU8bXCo7RstODY4y0pODYq1xLNqZWYPbs4Dhi1/PZ7tuQlQXHHBMmMnYH29K3kZ6VTigUIiYyhh2ZO4gIRRAXFUfJ6JIkb4xmzJggwC0+Pvh77f53gGA/xVVfzKAfBxEmTNtabXOO/9Oy0hi3bByV4itxzTHXUCG+AlnZWWSHswkTznkcCREiFAoRGYokFAqxJnUN8zbNY+3WtSREJ1C7TG2Wb1nO1vStVEuoRqOKjaiaUDU49tw8M9jn6ZshnJH7vx9ZEuKqBsf7hbB8eRBkkZQUPM9UrRrst98GGq5dG/zPpKYG/zNly+a+htv1YUSVKrlv9mRnBxeNxccH97ndLxSuWjU4mWPXRXfR0bn3y933cWxs8KASZs/HRiFCzJ4dYvLkYL01agQXBcfH564zIwNq1gyzI34BoxaNYuP2jdQvX5+jqh7FoqRFzNs0j8zsTE6teyrHVD2ayC0/B69N0pOCC6KjEoL7WdoGSJkHJcqwqeKtDPssmlWrgrDtNm2Cx41d+yQ9PVh3vXrw448wZ07w/1W+fPC/vXsYYM2awf967kYVfLyXHc7mkXGPsGH7Bs5vcj4dEjvk9M3eMJuBPwwkJjKGfif244nvniAzO5Nb29xK3XK57x98ueBLRiwcQWLZRP6vzf/lvViisBc0FeWFT3vY1m3p23j6+6fZtGMT5zU5L/eCdeDrxV8za8MsOtTpwPlNzz+w2vY0LiM1eN4LZwevEUNRuR8wZqcDoeD1TmEDgtKTg+fpHWt+XWY8EPHrOjKDE/Ornx70b5kVvHkcCgXPJ6GIoJ6IEkHIV3S5YEzmdijTNLhfZm4Pjj22LWPXRYpExgSPDdmZwXshUfHBc3jWzqCeUFQwLnla8NgdXS5YfkR0cCyWviV4DouMZnulk/lo3uds3rmZE2qdQEJ0Qs6mTV87nQ3bNtAxsSNxJeL4csGXlCxRkiuPupISkcGx1/+zd99xVlT3/8ffc/v2vuwuZelNqiJFRbGAjcQSFVti16iJ0cRojA1ixJKvMVWjMVHzw4CKJbEbFVAUFAtSpMMusMD2vnvv3jK/P85WaXdhYRd5PR+Pfey9M2dmzpQ7Z86ZM58JR8KatWyWKgOVOqXvKS3BnAKl5uGZQHHLOnrTpLi+Zt2a6ux7UOGv0D3zTAC32469rc0xsmjLIs1eMVuJ3kTdd+J9HXqcz1kxR59s+UTDM4frmqOuaR5eWFOoBxY+IEn61XG/UpYvwTzEUbPebFNvqtn2kQaz3p5UKffiNgE22l0n/Faa9evNg6mFheZ83BQssnXdNi2tnQHcImFzDNesbwxi6TftNo0PIVZ6e+pfy/8tSfrhyB8q2ZfcPOmiLYu0ZNsS5STk6Lyh50ky5erq1aZMqasz12EulzkvDhxoguVEs667TLOndLZtHlgsXmCueeN6SZknSsnD2qarL5QKXpWq10uyzG8obZyUdnRz21VDg2mf+eKLlmvJhASzXSdOlFZF/qv3Nr6nfin9dNO4m5qPv+pAtWYsmKGGcIN+Nu5n6pfabw8b/ltqNplrTX9RywOWDo9pg/FlmsC6DpdZz/Klpm0rUGrSuZOkuFzzgLzb1LEVbjAPb9YXNJ4XHOaYjOtjtomz8Sm1YJVUstgsN1hplunLlBL6y44fpE8KPtXLq15WVnyWhmUOk8/lUzAS1KbyTVpZvFIn9j5R3xv0PTnk0urVpj2iuNhcV7a+hoiLk04+vVrPLvunNpZv1LG9jm1uDwhHwlqybYnqg/W6fNTlyk7I1of5H+qzgs+UHZ+t0dmjFY6E9XXh1yqsKdT4HuM1MXei3A63iuuKVVZfpoZwg5J9yaoP1isYCSrWHavMuEylxqRqzoo5Kqkr0cReEzU6e3TzJl9ftl5vrntTse5Y/XDED7Vo6yItL1yuvil9lRWfJYflUEO4QRvLN6oyUKlJvSdpcPpgs20rV5p90FBp6lGyzTZ1J0vxfaXUI02asi/N+drhMed9h9PsN1eclH6sPlx1jJYvN+1kRx1lftffvkbr0UPa5G9bX3U6nApHwtpatVUF1QUa232sju42QlbZZy11xNgeJk8N5Y1BkWrNsdJt0q5/X7v6bdm2VL1GKpwvBYoajyW3Kdvi+5qgYzHZO89rd/OLMp1tm0Dcn35q2kzq6kydtHdvcz02cqRJFwpJy5ZJS5aY9E2/1X79pOOPN+dISVJNnlT4nimDG0rNvvBlmoBe6cdInuTd57Wd67CjZodeWPmCnJZTV46+UjHumOZx7218T98Uf6MBqQN0er9TzG+vapXZrr4sUzZaTnN+skNS6hhT3y1fan6fCYPMbzwSMPvTXyxZluy0CfqkbGub32qsO1YN4QZtKN+gVcWrdFKfkzSl3xTNWjZLy4uWa1z3ccpJaIkqsaJohdaVrdPp/U/XpN6T9NHmj7S2dK36p/ZXTkKOHJZDFf4KrSlZI4/To8n9JitL9aYc9O8w29Kbbs5JDRXmOsMOSalHmT+ZoCPNm0x2cz2pWSRkpmnq6NWcOCLJPJBQHQxoxoe/UUO4QTeNu6lNIJhXVr2ieXnzNChtUEsQhroCUzbUF5jfnmT2d2wvk6/GMiIYNAG9Fi0ydaeGBlMXGjLEBPL8x5oHta16m6YOnKop/VrukflDft3+v9tly9YVo67Q00ufliT9fMLP1Tu5d3O6LZVb9LtPfidJuu/E+9q2Ve3ntcE+pdvLMtevN+Xg+vWmblhbayaJjzfnqcsvN+f1vQlFQqoKVKnSX6mGcIN8Lp8sy1J9sF5up7s5cL6rfKl5EDtcZwIX+rLM9VRDubkGtoNS2vi2ZXoU26221rSBFBWZurDDYfI/ZIi5JvnmGxN4ZPt2cz2VkdFSr21qBz/rrN1su47YD7ZtAkBUr5N6XWDaSnclVC+t+6skW+p9advzbislJdK//mXWp3dv6Qc/MPXypnNP/9T+OmPAGW2meXnVy9patVVHZh+p43od12bcpk3mJQDBoHTMMSZY16589ZX58/nM72W/gnKVfy2VLTFtQunHSPG9d0pSX29+qxs2mLylpUkjRpj9+q+v/6UKf4WOzz2+TTt5xI7osSWPKWJHdOaAM/XW+rcUsSM71UMLqgr00qqXZMnShcMu1PMrn5dt27pkxCXN7eeS9GH+h1q6Y6l6J/fW9wd93wyszTdtOIFSc19VMm03vgwpYZC2KUYvffOSCqoLNDxzuAamDVRDuEGrSlbpm+JvNLb7WJ054EwleOJNsLaK5aYt2LJM2Su78V5tukLdztILb/TUli2mHeykk1peIPHtAG6SKUu3bDGd2Gy7bbr0dOmMtofFbo/fzZvNtt+2zbTH9O5t9ntTXaQpgFufPmZZX3xhll1Zac4lkYg5d2RlST/4ga0670Yt3bFU/pBf3RO7KzcpV+vK1mlHzQ6lxaRpVNYodU9sbO+OhM12qcs35wY7YsrE2B4m4FjTA/GBUql0iamPhaolORrTdZeSjlBdOF0rV5p1qKsz69+0DpJZh759TbvOihXm91Rb23K/q3X749FHm+E7bbddbLtmoXpp8xypcpWpIycNlbJP2zkAWUO5lDfLHFfuRCn1aCnrlLYBI2TOba+8Yu4vNbU5T5liXlKxy326u7zVbJSKF5pjrqHClMeuONM3IKG/CSxVt9Vcu9SsN2W2M8bUT4JVJl+JQ7UjeaxeXPmitlRt0chuI9U/tb9CkZDWlK7R8sLlGp09WmcNOktfF36tud/MVc/EnhrbfWxzNkrrSzU/b776JPfRj8f8WDHBcvNSkdp8c53kTjHLDNU2tlEny9/9Kn28JFkFBeY6euhQ04bXdJyHQuZvwIBd75IDzo6Y+zE1G811aKRV+67DK3lT5U87Ti+vfV2ldaU6uvvRbdplVhStUHFtsU7sc6ICoYCe/fpZJXoTdc8J9zQHto7YEc38aKaKaot03tDztKl8k77Y/oXG5IzRj0a2BAMOhoP69fu/ViAc0DVHXqPh3Ya35LOj7nM3lEvb3zX7J1Bi1t+TbOqrKUfKThqmb74x1xlbtpj9lJLS9p5Nr14mkHO77SZvwaAJQLljh1nO8OFmmU39T8Jhc+0XbTvKihUmcFhZmTmuBg9uG4Tbtk37x7K6t7W2dK2GpA/R5H6Tm6ev8Fdo1rJZkqRLR1yqZJfbBMiuXmfaz5r6YEQazDHjSZV6/1A1wVR9/LGp9xQWmuuy1veSHQ7ppz+NclvVbjHtQMFKE3zKnWh+96E60xfEjpjzU7wpSIqLpffeM+09xcVmm6akmPWfPPlbweSiOZaCVSbQcuUqkz4uV8o43pzPW09fv0Pa/ELjOcBnAqNnTTZ9fFrJyzP9sDZuNPuyWzdpzBhTJ3zsiz9qQ/kGndL3lJYyW+blL48sekQuh0v3nnBvdPeSA2UmIHvdVnMPK76POf9VrTH18ECx5MvUluzz9erqV+Vz+fT9Qd9vbkON2BG9tuY11TTU6IwBZ5g2o5qNpg+Ov1BtHr4O1Zp6feoYU9+q22KuBxIHN9bzy8x2rNti2hu6nSTbm9F8b6opaHTTf0uWHJZj56BKHVkXiaKOsWmTOX6Dwbb39VwuU34lJbXty7Or2e/UhWB/72PUF5ptHAma6wmn13yOBM1+kMy+dieY8q94oamjN5Q07qc4KSbHHL9pE1Re5Wnuy1Vf33KPrem3Gom0vfbavNmcV0pLzUMHTfduR40yx3JUyr4y19ChGtNu4Elq6UtZ8qm5B9Jrmvld740dMeciO2jORQ6PJEdjn7vGeygOV0v7416sKVmjdze8qyRfUpv6hj/k1/y8+XI73Dr/iPOV7EmQKpeb33tDRct9aTtivrsTFU4/Vi9t+kg7anbo6JyjlZuc2zy/1SWrtaJohfqm9NXUgVOj3HAy61qx3NznD9U0ltOND565k0wdzRVv2viC1W2PhVBT30xLSjlSEV93ffONKd9KSswx3rqjfCgkHXtcWJ9VvKG8ijwNyxymjNiW+wYbyzcqvzJfR2UfpWN7HRv9OkSjodKc3yNB09bs9DTeDwubdk3LMtd94XqzHaTGe6ZOk84OmfZ2y6GQJ02fbvtC7254V4neRA3JGKKeiT21omiF1pSuUYovRacPOH3nQG67+a1GIqZtb8UK09/M6zW/m9YPGAwYIE08zpYqvjblV9O9Mctpzpl2WPKmK5J1hv7zft/m9vzjjmu5V9t0volEpL79wvqm/Et9vu1zZSdkKzcpV7HuWBXVFmlTxSY5LIdOyD1BPZ1haftbZj+nHm3qHnbYnHvrt5lyM763NiccqdfXvi6fy6ejc45uObwiQS3eulg+l0/nDjlXyXa9aYNvum/o8Db2hWhoPN9Y5tq7I4Mt1m839aiGCnM8e1LMOviLTNkT9rfcV6jfYdocPakmb3bYnAuazoUxOdG1odq2OZaa2viaApo1te81Bx1xmX7PwUrTBuBJbuy3VNPSR8SVICUO7LjtYdum/3ndVpOP2BxTrwnXm2M8WGXOPYlDzfVZzUZzvksaYvqH1eaZNvLafJPnPpc3HiPFJhBtQn+zbrWbG++NNvZzTxsrlSwywxIGmOD8dtise9M9nuThKvF21+fbPldBVYFyEnI0IG2AKvwVyqvIU1WgSkdmH6lhmcPkqtlg9m3TfnF6zfEY9pt6sMOtYPxoff6VTzt2mHK3d++2faWa+3P0KdPzK56XLVun9z9dse6W4+/9Te+rpK5EJ/Y+UV6XV++sf0cJ3gRNHThVVmOQuoZwg/675r8KRoI6d8i5qirI0fr1ph0gN7flurv1b7BbN3MPcds205dk0KCWfsOt0+XmtvQ77RA1eaYPVEOFKbc9KZIay71AiTnukoapwPZp4eaFqg/Vq3dyb3VP6K6qQJXyK/NVUleiMTljNLLbSG2r3qblRctVVl+mzLhM9U3pqw1lG1RcV6z02HQNzxyubrHdtXmzKeMl09bQuu4gmc8JKabP7IqiFSr3lysnIUcep0ebyjcp0ZuooRlDNbzb8DZ1xb2xbbu5/40lq81ny7JMGVD+lTkXONym3cThaXxeoN4cS06f/PHHamOeSxUVJq+ZmW37A0tm33V0kP6PPzblQn296Y+UlLTzMZKZKdVGyrS9ersqA5WyZCnZl6ySuhJ5nB6lxqQqOyFbse5YldaVqrC2UDUNNfI6vfK5fKrwV8jr8io9Nl3d4rrJ6/I2B9CL2BE5LEfzdnRYjuaAeuGIeaYkFAnJts0zJa37iLkdbrkcLllNQZ5bb6yWHdTyY/RvN+c+y23KX4fT3Ie0G69JHW4FPbmqqDC/Gcsy14ytA5Q27Yf6enPdXVFh7pVlZLT9Hdl2y0O1HSUcNr/nmsZLiOTkts+7NG0CT0KV/rP6P6puqNborNHN9SRJ+nrH1wrbYU0dOFU5LoepH4dqWvor2iFzXAYrG1dioCS78To+ZO73OTyN5UewpU0wcWB0z8/YtjmH2uFWbbGSKbds899yKmL5FAiY86rD0fZ+btP6NrVt+P3m+s/tbvv8S+v9VRYo0vLC5SqoLlB6bLoGpA7Q1qqt2l6zXXHuOA3vNlx9kvvsXI/bjbpgXXM/SafDKbfDbZ6hcDgV44pRvCc+6qCQBQWm/lZVZc5dTeevps3V1Oe2Tdvo7kRCjeebHeYao6nsClaZ8jdUbcrjjOPUJhjZftb18vLMPYSqKnO+aN0W1LSfMjPNMbvXVYiYduKampbA/d9uC5JMebZjh2lPdjpNG2XrZUpmuCeuVqtKVmlNyRrFuGPUL6WfAuGA8ivyFbEjGpoxVIPSB8lT/oXpcxWqM30PPGnmPlqoxlxvKCI75/uqDvdQIGB+j637eH+7/6uj1ebdX8FwUOX+clX6KxUIBxTviVcwHGy+F5gSk6JkX3LUz9hF7IiC4aDCdli2bTefb5v62zY9rxcIBRQIB9o8y9cQbpDDcsjj9Mjn8skZCZjjLVzfWP/xNR64jdfeikjuZC1fl6GFC80+69/f3Dds3Q+1ocGcRy3LtGXU15vvTX2LW+//tLSWl93seUWDjfeQ/I19gWIkOUy+mupeDq/Jc91Ws7/dyS11hHCgsW9KRPKkSzFRNBzYtnmmr3azJLuxX7bPHFcRv6kvOtzyx43T8y/Ha9s2c5xOmtRSN2vaJuGw1K9/RLXBalUGzL1fj9Mjl8Ol2oZauRwuJXgTlORNUnGhW0uXmvpxYqLp87Krl2BkZNersLZQpXWlCoQDSo1JVW1DrYKRoBI8CeoW302pvjQVFVmqqDDn4KSklvp26/2QnCwF7BpV+ivb9BOvaaiRy+FSnCdOyb5kNYQb9Hpje/yIbiPavEByRdEKReyIzhhwhuI8cfpkyyfaUrlFvZN7q3dyb4UiIW2q2KQtlVs0JGOIxnUfp4qSmOZ7Tikppqxt3VdKMsOjeSYuEDB15MLClrbypt9v6/lFfb8j3Fi3siMt7Y5NZZsdlqmzeaWKpaa+YznNtbLDa8rd5vZHt5QxUXmBgJbuWKqahhrlJOSoT3IfrS9brx01O5QSk6JRWaOU7umhzz8362Db5rq+6RnRpnWwLKlv/6C2Vm3V5srNqm6oVpI3SU6HU2X1ZYr3xDc/0+h17b1/adRs21z/hmrMtnAlmDpgOGB+f5EGcx0Q22MXjZA7q6w05U1NjTn/pqaa875tt5xzm+5Btn5uMi7OHCNN20Iyx8eyZaauVFFh6klpaS3tik2/wSFDzDG2N+GwmssGqeWYbNL0W4y2zlUfrNeOmh0qrS9VINT4Ww3WKhQJKd4Tr25x3ZQemx71dUs06upMH8SqKpP/pheiNrFts70zo3zksLy+XGtL1yq/Ml9uh1t9UvqouNb0OUz2JWtQ+iD1SuwpR6im5QVbTp9M22hYLb8bhyLuRG2u2qp1petUVl+mlJgUpcWkKb8yX7Ztq2dSTw1MG6hkp8vc2w7WmPYFV3zjTXV/Y9tJWPKkKejpqUDA/O6dzpZ7nK05nVJtqFJ5FXnaUbND/pBf2QnZKq0rVcSOKDUmVb2TeysrPkvFdcXaVL5JxXXFsm1b3eK7aXv1drmdbmXGZapPch+lxXbsy7ECoYAKawtVUlcif8ivFF+K/CF/83ND3eK7KS0mXWWlDlVWmnI2MXHX5/OEhCiPzWCNaS8MFJs6vrfxub5gtemvEaqXvOmqSRiszwo+09rSteqZ2FN9U/rKlq2N5Ru1tWqrBqUN0tjuY+VyuFRSV6Jyf7kCoYDphxqqVzAcVJwnTumx6UrxJpu6XhPLkloH8m9aiVYBVvYkHG6JbWBZ5phu/fxX0yyius6QOS+Vl7fESmj9/GpT1mJjJac7KH/Ir4ZwgyJ2RF6XV4FQQJZlyeP0KMYVI7cdlLa93tg+lmzKB1ds47NzFeYepitRyr3QXLNEQuac2tS3RXbj9Y1tnrFzeFThr2juPxbniVMoElIgFJDP5VOyL1lJvqTorh9t27RvNp3P3QmN91aDJh+RgPke012BSKj5WfOmOntTPcnr9CrWHaviIqfmzzdt+3FxbduqmvZTQoI0eEhEDeEGNYTNW7VcDpds21bYDjdfj7odblnFH5k6UNhvnuPwpDTes6lufOGsJfU8t/m+ntTSj7J1f0pLlqyw3/Qpbygz5xBvWksbathvrufcSQonDlVpfcvzejGuGDksh2oaauRz+ZQak6q02DS5ml6uaodNPcxyNu6rSOO1ssz5KornOyIRc56uqDD139Z9b5rKfPPcma3KQIVK60tVH6yXy+GSz+VTVaBKXpdXyb5kpcakRv1S702bzEugKypMO2N6ekv9rHWbUTis5udhW9fhWvfLTkyK6JvSZfqs4DOlxaQpNzlXid5EFdYUalPFJjktp47rdVyb+1F71FBu7sOHakxfMWdM47YNmOtvO2LqxPVbTbt9qFZKGmbuR4XrzPf6bZLlkJ11mpas7KFNm8x5oum5vm+3jw0Y8K1zRLT3fvfTggWmP1h5uWm7y8xsyZvUeC3bM6JU31ZzzrAcjfcA3GZ7RILm+LVc5rkiR6uT1W7WYVO+U2+/be6p5uSYPlvffn7G5zPD8vJMP7WEhJZrtNZlTVMZ5Pe3jZXw7UW73aZtoaTEnFu7dWu5Pm8drK5nz44N/r12remLWVpq2l1zcnaOHZKdbdaj6Rpid+vg8djaWpOvFUUrVBWoUmZcpnom9tT6svUq95crOz5bwzKHKdXbrfklhg5HyzVr0y5pusZNjO4WsTZvbtkPTW1IrduVw2Hz+42mXUahWin/edOOGpsrpYw0derazaY8ChRLDq+KEq7Rm29Zys838z3qqJZ79U3Pmzqdpo9PU5yMpgDuretbUsvwvWmKOVIfqlcgZK4hfS6fAmHz2e0wsUjcDrfK/GXaUbNDVYEqOS2nEr2JKqkrkdflVVpMmrLisxQXrm7s777V9OWJ7SHJYcqBQIm5hkwcrNXlJ2rRopZna/v02bnOnZkppWbVqKCqQMV1xfKH/MqMy1SFv0LhSFjJvmR1T+yuNF+G1qyxVFhojqfs7JZn0lufM3v2lMKWv7nObslcN9SHWs7tse5YuSIBU96FahvLlMbKcKTB/O7tiCkbd9MH+lsb2JwvK78x0ycOMu29TTEQ/IWS5ZadNUUV9Wmqrzd5jY3duQ4ktdRNmx2kc6aZd9M5zrGLcZItq7ns3FX2Wg9rM3w3bailpaY/aUWFWe/MzJb4Mq3bMjMytHdN91f9hY1lWbZpNwjXN97nrjbn8+SRjW1du1iBxoVWVVUpKSlJlZWVStzLCWW/A7h1tIEDB6pv3756++232wzfvn27cnJyNHPmTN1xxx27nNbj8ejKK6/U3/72tzbDFy1apGOOOUb//ve/ddFFF+1y2unTp2vGjBk7DT/ttNPk3qfXe6M9HJYtS3bLCdG2FLHNl/++9tpep//+974X1XLOH7pOPxy5WsGwQ3e8f4zWliYrNcavwenlGtmtRPGeoL7cnqG6oEtDMsolSV9tz1Bd0K1kn19Jvga5HBE5LFsL8nqouqEj77J3Llu2wo6WyFquSJQRnlrx+1NVXj5IgUCS3O4axcXtkMPRIMtqPAnbllyugPz+VJWWHqFAIElJSRsa04VkHmSTJIe83jLFxJQp4Apoe/J2VcZWKr06XRVxFXKH3Mouz1ZCoG3rXb27Xn6PX5ZtKn2xgVh5wx3Y6Ak0smWrPK5cO5J3yBv0yhV2qTq2WhmVGcqozpDD7sA7hYcIU3l2KRJxy7YdkhxqariyrIhcLr8sy1aNt0bbUrYp4A4opSZFpQmlSqhPUE5FjnzBnV8T27oM+Pa53patythKFSUWNU/rd/uVWZWppLqk5g5X7VoP2Qq4WgK6esKenfanxxmW2xGR0xGRw1LjeloKRyw1hB0KhNueP5vWYVdlVdgKqyixSIXJhUqsS1TEEVGtt1bZFdlKr0qXQ+07lurd9dqevF01MTVKq05TWXyZYhpilFOeo9iG9neUtGX2WcgZkmWbRrR4f7yctrNNmoq4CpUklCgmEKOQM6SwI6zMqkwl+M15+uojV+ikPltVH3Tqr0tGqLAmVhlx9eoWV69B6eWKcwf1/5YN1mPPzd9rnqIt8/eFrbYdwPblGMLuhayQIg5T1jsjzjbH0eHCti2tXXuhKiv7KRTyKTf3XXm9FbKsxptjsmTbDiUnr5fL5e/s7O6VLVtBZ7D5uzvsbv7d9Eys1kOTP1a8J6jnVwzQf9b0VU2DR8fnblW/lEoNzShTXdCle+dPaDPP3Z0z/f5k1dT0UDAYL7e7Th5PReP1Y2NebEseT7XCYa/q6jIVCsXK46mS210ry4rIsuzG+rIln69MlhVSMJigcNgr27bkcAQb6yIt160xMWWyrIiA77Ks+Fo9cPLHSosN6I21vfXSqn6qafBoZLcSdYuvU+/kKtUHXVpWmKbbjv1SbmdEf/p0pD7M7y6nFdERmWXKTapSTkKt8isT9N7GXsqKr1OMK6i6oFv+kEuR1o3BllRUG6NwlNfL8Z4GJXkb5HGG5Q85FYq0TGdZUkPYoQq/TyFHSPnp+dqUuUkxDTFKqkvS1rStyqjKUL/CfkquS5Yk5afna0XPFbJlq29RX1m2pY3dNkqShhQMUd+ivkqPrdfN47/SERml2lqVoMVbs1RW75Nl2frRyFWKdYf17NLBemlVS2+iPV2zYv/taftOHbhRFw9fI4dl6811fbSuNEn1IZd6JVXr6iO/kST95M0T9L6vUKt7rFZMIEbJdcmybEtBZ1Bl8WVy2A4du+ZYhbYfqa++ukW1tT2UkrJKAwa8qLi4bXK5/LJthxoaEhQOe5Sauuagrn9Xsbv9EOsOaubJn6hvSpUWb+2mfy8frKLaGI3vsUPDMkt1Qu5WSdIV/5msCT2268Jh65Ts82vpjgxtqkhSIOTUkdlFGpJRrsKaGF372sm66siVOqXvFlmytWRbN22rjlM44tDJfbcoK75OH2/O1mNLRugnY7/WmJxCVTd49FlBN5XWxchh2Tp3yHp5XRE9/dUQvbL629EfdtbQEKf58x9TIJCi2NgdGjduhuLitjW3Z0lSMBgnl6s2mr4pHa7WU6vP+n+mWl+tUmtSlVqTqqqYKhUnFssT8ujoDUc3n+dqPbXakbxDQVdQiXWJKosvU3JtsrpVdpM74taIbsW67dgvlOgN6h9fDtXCzTlqCDs1MbdAY7sXqn9qhTaWJ+meeRP2nKl94Hf7tT15u2q9tUqtTVVZXJniAnHKqshSTHBPPXVMnRvR6YgyaVXOKq3PXq+YQIxSa1Nl2ZbqPfXNbQzHrDlmL/usa6jz1KkosUi2Zcsb9KrWV6u06jSl1KZQ30eXVlubrZUrr1Rx8WjZtlOpqd8oNrZQlhWW35+miooBOvHEG+TxVHd2Vg+K/PR8LctdJl+DT5OXtwSQiSiid0a+o5ArpDEbxii7wnSKiERcWrfuPK1ff54ikZZ7eDk5H2nEiMfkdpuHtwOBBH3zzVXauvWk5jSWFVS/fv/RoEGz5HC0tAfs7dwa6w7qspGrdGr//Mb2YmPRliw98cVwldX7VFeXrpUrr1ZR0dGKRHa+79yv30sKnfYL5Wfkq1tFN43d0BIUqiShRIsGLpIz7NSUZVP0Ve+vtCNlh3LKcpRb3NLRbnP6ZhWkFSirPEtHbzxaW9K26Ovcr+UKu5RZmSl32K2qmCqVx5UrLhCn8evGa3BsULcf97l6JNbq/Y09tCC/u2oaPMqKr9X3Bm7SkIxyfb0jXXcfgGuDvamu7qmPPvqdwuFYpaSs0lFHPayYmNLm8bYthUJxzfu0swRcAfnd5t6kLCkmECN3q3087Yi1OmvwRrkdYS3cnKPNlQkKhJ06pud2jehWqu3VsfrVe8fql8d+oaEZZVpbmqIFed1VUudTxLZ06Yg16pNSpQ/zc3TLi7dox46xCgRS1K3bp0pMzG9s02pq93IoNrZQGzd+XyUlwxUMJqhfv5cVG1sop7NBlhWRbTsViTiUnLxOHk/nbju0aLrHZtsu2balpntspl0zLGerNlhpz/ed2ptud+c4nyukv54xTxlxfn2Yn6OnvhymCr9XR2YXqXdylcbkFEqSHvhojCqCLm1N3apN3TbJFXYpqS5J21K2KasiS32K+ijRH2UvSOxWOOxSJOJRJOKSuY9gChzLsmVZYXk8NR3ar6bB2aAl/ZaoLL5MifWJyqzMVMAd0LaUbbItW6PyRql7eRQvZdoP0R7naKsj6oSl8aVa3mu5qn3V6lPUR86IUxu6bVBsQ6yGbRmmzKpMXX3kCn1/0CZVB9y684NjlFeRqG5xteqdXKVRWSXyusL6ZEu2VhWnKDUmIK/LtO8Gw87mx4MsSRFbKq7rwGA/Hcy2pYUL/08VFQPlcAQ0YcI9SklZ0+beUTjslmVF5GjV3+pQFAgk6Ysvfqmqqt7yeGo0ZMgziokpkdNp+k6Ewx6FQrFKT1+ubduO1bp1F6iqqo/c7iqlpy+T11upSMSlurosWVZY48dPbzP/jvxNH8z2+IrYCq3NXqvixGL1Lu6tWm+tihOLlVucq/47+ssX8umO45ZoQs8d2lIZr//75Ehtq45TTkKtsuJrNTKrRLHukF5YOUB5NTFa3229NnbbqNiGWOUW52pjt40KOoMasH2A+hT32alvyu7W9aQ+W3TD0cvkcUZ034KjtaIoXR5nWEflFGlc9x3qFl+nZYXp+udXR+xirXZua1uy5A7t2DFWlmXryCMfUVrassY+PmFFIm6FQnFyuerkdNVrR/IObcrYpAZXg7pVdVNBSoFSalPUp6iPUmtTd7E8HAghR0hl8aZfpS/oU72nXkl1SUqsT2x3u1e9u155GXkqSC1QRlWGGlwNqo6pVu/i3upZ0rNN/aY9ov2t7i6dyxFRZlyd4txBhW1L9UG3IrYaHwOUJFuVAa/8ofb3ce2s+3q7Oxd25HVcZws6g6r2VcuyLYUdYXlCHiX4E9p1XEYiTlVU9FcgkCrbdigmpqjxnNT4UGhjv4+EhK2q9lXrmx7fqCipSDllOUqoT9D6rPXyBX0aunWosiqzJEmFiYVa0XOF/B6/+u3op6ArqLyMPCXVJWn4luFKqU1RfX26amuzGtsaquXxVDcus3Wf5nIFg7EKBNIUCnnldtc094ls6fNjKTa2uE1/lt0dc9Hs+7bT2HI7TP8XR9PDpDJ97VvfR6/x1qgqpkqekEcNrgZ5g14l1yXv1E8r5Agp4G7pJ+lr8B2Wfbk6mm07FAzGKRz2KhJxybJCjcdI05WwQx5PhZzO0J5mgy4mbIW1I3mHtqZtVZw/Tp6QR6UJpcquyFZOWY484e/O8yTtEbbC8nv8zX1uvUHvPl874NDjd/lb+gOHnTyzAxwkEUVUnFisbanbFNMQI2/Qq9L4UnWr6qas8qw252G/y6+KuAo5bIciVkSWbSm1NlXucPvO1V25zhLjCiklxi+fK6SGsFMNYedO8TOKalvaHxucDfJ7/M3NI63v64VCHlVWDlAgkCxJjffXAmoO5iNLlmUrPr7gYK0esJOgIyi7sU+jK+xq9/NmrdmyFWqsu1qy9uk5YhwcQWdQFbEVklqCZSXXJnPtDUBhK6yKuAr53X55g1753X4l1ie2u00W6OpCjpAaXA3N330Nvv26DgKA9goGg3r77bcP3QBu/fr101tvvdVmeFMAtwceeEC/+tWvdjmtx+PRVVddpccff7zN8KYAbrNnz9aFF164y2kDgYACgZYbkVVVVerZs2dUGxGHENs2byKrXGXeKOdONtFKLYeJnGiHpJwzTZRgAADQsUK15g3vTRHnLYeJWOyON2/pBfDdYdvSjnel4o9MlPL4ASb6vNXY2dMOSUlDpcwT2k63n2+gBLCP6neYt52Hqs1b+RQxbxFwxZq3X8Rkm3K8ekPjW5TrTJqmoL3OWPPGVF+Ur4Q7QMKRsCoDlZIkj9Ozyzd5ryhaoWlzp6nSXymP0yOnw6k5P5ijo3KOMgnmTZF2/E+Ky5XOXCs5PdK2N6VNz0pb/2OuY0Y+IA3dddsUDoDdvR0kUCa93Pg2vUE3S0c+aj6vfMC8nS7UGNRkzGNSXK5u/9/teviTh3Xx8Is186SZGv+P8appqNH7P3pfY7uP1cKF0sUXmzeRnXiidPfd5m1kcXHmDVtlZeatk6NHH5S17np2tx/siLRyprT1FfP76HG2OW84Y8w1f0O5eUNgXC/p/UmSbGnMX6UBN0iRsLT6d9KO96XC96TYXtLAm6Slt5p5n/qFObfUbjG/wbz/Z96A0vMHkhzSlhfNvKeuMW+zKVlsrj9WPWzOWSMfkobeFtXqbdsmffyxeWtSfb2UlWXePtX0tq9gULrsspY3Mh1sFf4KXfDiBZqXN08/G/cz/e3zv2lQ+iD998L/qntiOx6aD5RIqx4x12ieZCltbOMbMl3mzXSRoNTtRCnt6AO2Ljg03Pz2zfrjp3/UlaOu1LVHXauT/nWS0mPT9eHlH0b/Vj4A7VZbK40aJa1fb9749/HH0rBhbdNEIrt4E9l3WFFtkbIfyVbEjui6o65rvsYvqSvRs18/qxhXjEpuK1GsO1a2LZ12mvTuu7ue19/+Jl13nbmuO/JI8zbVXfn8c/MWw2Z7eludHZHmTZYKP9j1zDKOV/W4BRoyRCooMNcXd98tXXSReeNfWZm0cKG51hh40mJN+McEuRwuDUob1DyLkroSFdYW6pLhl2jWubO0omiFRjw+QrZs+Vw+OS2nwnZY/pBfliwt/fFSjeg2QpL0yqpXdOFLF+qIjCN08/ibdfV/r9bwbsP1zqXvKD02Xdr4rPTp5WZBx/9X6v49qaHSvI24iSdNyjlt1+t3gOXlSZ9+Km3daq7JW7/1NBIx12YXX9wpWYvOllekheeazxNfMdfK4YC05MfmfnXFMim+r5Q1RVr/N9Nefl6Vedti5Upp+YyWN1BmT5GG7/wyumiFG18Q3VnXs+hg0bahRpNuT+e4iuWmjaQ2T/JlN74V2ynJMu27vkxzXOM7qSHcoKv+e5VmLZuln4//uV5d86qqAlX6z4X/0TE9j+ns7KG1aC4M23nPJRQJ6ckvntTG8o1yWA7lJOTo+jHXy+tq9TB21Wqper25B+TwSg5Xq75XEanHOW3fUHuIqq831yN5eVJxsXnLttfbts3ojDPMdcp3RSgkVVWZdQsGzSHm9Zq3GC9eLJ18srkWO/lk6fXXzRvhW7PtXRyWh/j9vw1lG5rvPfRM7KmMuG/1K2woN22YDaXmes8OSnJITp/kTpLSxjQn3Va9Te+sf0e2bDktp74/6PtKiUlpmVc0v+lAhbR5jlT2pfmeONgsy3K29H/MPk1K2PvLLZrU1Jg6S3Gx5PdLDQ1Nb7c3+374cPMf6BAHoOzqksvEQfPexve0vHC5LMtSii9FFw+/WG5n24eYA6GAnvjiCRXWFMqWrQGpA3TZqMvksHjICwAAAAAAAAAAAMCuVVVVKSkp6cAGcPv973+vmTNnatmyZcrJydlp/LZt2zRy5Ejdfffduummm6Ke74QJExQOh/XZZ5+1Gb5y5UoNGzZMTzzxhK699tpdTpudna2JEyfqhRdeaDP8jTfe0NSpU/XOO+9oypQpUeWjPRsRAAAAAAAA3wGf/1Ra9xcTdHLyJ1LSESYQVLDKjLfDZpybtqKDZk8Pk6/9i7T8HvNQXP8fm2BU7iTzgFz9DrPvBt/cnPy6167Tk18+qSRvkvwhv9685E2d1OekNrNft05avVoqLJTq6szDam63CaIyZIh07LEHeH0PdaFaE+QxEpQcbsmdYB4e3PKytPAHJs3EV6UeZ5kAbnn/r2VaV7xU/pX0zUxJlvT9PBP4zV9sggY0ieslrbjPBGuL7SlNXW+CLVatNdM3SRlpHl78jghFQnpz3ZsKhoOyLEun9T9Nse7YvU8I7KMb3rhB//zqn/K6vEr2Jev9H72v/qnRP/gLoP2+/toEcJOk446TPvqoU7PTZRz/9PH6aPOuN8bZg8/WK9NekSQ98YT04x/vfj6PP27GX3GF9Mwzu0/XrgBuebOlRa0iiMXkmLpC1WrzPW2c7vt0se65x3ydMUPNn3dlyF+HaHXJanWL66buid0VDAe1vGi5JOl/P/yfTul7iiRp2txpemHlC7p1wq363ZTfNQcrPm/oeXrx/BfbzPO9je/pn1/9U5KU6E3Uw5MfVqK3VX2m9HNzrVWxzARdcSe2BHe1g1Lfq6T08bvPNHaveKH0/gkmiMbo30uDbzHHUNPxIZkXjdkhacGZUs0GE+ym9w/Nda7Ta4KB1GyQMo6TEgZ03rrg0HSIB8tB1/DCyhdU4a+QJJ3S9xT1TenbuRkC0Knuu6/levbhh6Vf/nI3CaONOE0ZBQAAAAAAAAAAAAAAgC7qoARwmzBhgmJiYvTBB7t5o7ikyZMnq7a2Vp988knU87322ms1e/ZslZeXy9XqFdBz5szRRRddpI8//ljHHLPrt7lOmTJFW7Zs0apVq9oMf/DBB3XHHXeooKBgl8HmdoUAbgAAAAAAAIeZSFBa+2dp66tS6WdS4iAThEGW5C+UghXS5EWSL7OTM/odF80Dfk1NmnZEqlwpVa+TgpVSuN4EQfCkmQAHycOaJ4nYERXXFktSc0AiHESfXSdt+LsJCtL/x1LKaBPgraFSql4jJQwygd0+OqcxOFsPqe+VUvwAyRUj+YvMvs69WIrJlj462wQaSR4h9brQBHaTpPrtUvlS6ag/SN70TlxhAADaJxKRTj1Veu89E0D2scekH/1I8nha0qxeLfXrZ8YfLv6w+A+65Z1blB2frQdOfkCS9NO3fqrqhmr96+x/6Ycjfyjblvr2lfLyzDRpadKjj0qDBknz50v33y899JB05pkmXShk0g0fbtLFx0tz50p/+IO0eHE7Ari9d7xU3BhcbuivpeEzJIdL+vQqaeM/pbRx+t6fF+v1102ShQv3HBD4wYUP6o7379BJfU7S+z96X6+uflXnPH+Oeib2VN7NeXJYDknSquJVGvb4MMW6Y7Xsx8s08m8jVRus1bIfL9MRmUfsy2bGgbL1VWnNH6SST6SEgVLSMBO4OFgl1aw317FDbzP1mooVUtlnJoBxsNJM704wddKcqZIvozPXBAAAQIWF0pgx0tatUlaWCZJ8+umS12vGb98ubdhgAlIDAAAAAAAAAAAAAAAAh7KDEsAtLS1Nl1xyif70pz/tNs3NN9+s5557TsXFxVHP96233tIZZ5yhOXPmaNq0ac3DTz/9dC1btkybN2+W0+nc5bSPP/64brjhBi1evFjjxo2TJIVCIY0aNUrx8fFavHhx1PkggBsAAAAAAMBhzLbNQ/PBSslySZ5UE0QKwL6r2yZtf0uq2SgFSqRIgwnoFttLyjldShpq0tXmSzv+J9UVSA1lkmzJkyLF9W4bvKJylVS0QAoUSw3lkuWUvBlSQn+p+/ckx2EU3QYA8J1QVyf95S/SSy9JS5ZIsbFS9+6SyyUVFJj/GzZISUmdndODJ78iX73/2FuWLO24dYfK68s1+K+D5Xa4VXhroVJiUrRypTSsMW6v1yt9/bUJ3tZk9WrzV1YmXXWVGdavn7RsmdnGTd55R+rRQzqidQy03QVwiwSluYlS2C+ljpFOXdIybsmPpfVPSGnj9NPXFusvfzGDn3qqZfm7UlBVoF5/MEFpt96yVTe/c7NeWPmCfn3cr3X/yfe3SXvxSxdr9orZ6pvSVxvLN2raEdM057w5e9ma6DShOhNouKHMHDvuBCmmu+RN7eycAQAAtEtpqfSPf0hvvCGtWCFVVpqAyA0NUlycdMEF0l//2tm5BAAAAAAAAAAAAAAAAPZPe2KPufZ1IXV1dYqLi9tjGp/Pp5qamnbN9/TTT9fkyZN1/fXXq6qqSv3799fs2bP19ttva9asWc3B26666io9++yz2rBhg3JzcyVJV155pf7617/q/PPP14MPPqjMzEw99thjWrNmjd577719W1EAAAAAAAAcfixL8iSbPwAdIzZH6reHqCVN4nKlflfvPV3SEPMHAMB3RGysdNtt5s/vl0pKTNAxh0PKzDR/h5vc5FwdmX2kvtz+pd5Y+4bK6sskSZN6T1JKTIokqfU7vC64oG3wNkkaPNj8XXtty7Cf/7xt8DZJOvXUdmSsYpkJ3iZJvS7YbbJf/lL6+9+lQEC65x6pTx/ppJNaxufnS1u2SMcdJ3VP7K5T+p6idze8q39+9U+9tuY1SdLloy7fab73nnCvXlj5gjaWb5TDcmj6pOntyDwOOleslNBPUr/OzgkAAMB+SUtrqbNIUjgs1dRIMTGSx9O5eQMAAAAAAAAAAAAAAAA6wz4HcMvNzdUnn3yyxzSLFi1Sjx492j3vl19+WXfeeafuuecelZWVafDgwZo9e7YuvPDC5jThcFjhcFh2qzede71evf/++7rtttv005/+VHV1dRo1apTeeustnXDCCe3OBwAAAAAAAAAAAAAcbD6f1KOH+TvcnTP4HH25/Uu9vu51ldeXNw9r0jqAW+vgaN/WOt2JJ+5npsq+aPmcPsH8b6iQ1vyxzbhevaTXXpOuusoEajv5ZCkjQ8rONsH5tm6VfvITE8BNki4febne3fCu7vvwPgXCAR3T8xgNSBuw0+IHpQ9S5a8qFbEjclgOxXn2/OI1AAAA4EBwOqWkpM7OBQAAAAAAAAAAAAAAANB5LLt1BLR2uPXWW/Xoo4/q73//u6688sqdxj/11FO67rrr9LOf/Uy///3v9zujB1tVVZWSkpJUWVmpxMTEzs4OAAAAAAAAAAAAABx2vin+Rkc8doTiPfEKhAIKRUIq+HmBshOyJUnjxkmffWbSfvmlNHr0zvMIhyWPR4pEpJgYqbraBJvYK8tq+dz6tvrKB6Rlvzafz1wtJQ6SajZJr/VtSZM2TppiosYFgyaA3IIF0oYNUkODlJ4ujRghnXmmlJVlJqkP1iv7kWxVBiolSU9MfULXHnVtNJsJAAAAAAAAAAAAAAAAAAAAANAB2hN7zLWvC7n99ts1Z84cXXPNNZo1a5YmT56s7t27q6CgQO+++64+/PBD5eTk6I477tjXRQAAAAAAAAAAAAAADmNDM4ZqYNpArS1dK0ma0GNCc/A2SaqoaEnbt692qabGBG+TpB49ogzetifh+pbPnpS9Jne7pYkTzd+exLhj9PK0l7Wtepsk6axBZ+1PLgEAAAAAAAAAAAAAAAAAAAAAB9A+B3DLyMjQvHnzdOmll2r+/PmaP3++LMuS3fjm8bFjx2rWrFnKyMjosMwCAAAAAAAAAAAAAA4vlwy/RH9d8ldJ0oXDLmwzrr5VLDWfb9fT+/17T9MuzlYzCQfMf0+KNPw3LcNje+zTrE/qc9J+ZAwAAAAAAAAAAAAAAAAAAAAAcLDscwA3SRowYIA+/fRTff755/rss89UUVGh5ORkjR07VmPGjOmoPAIAAAAAAAAAAAAADlP3nHCP7jnhnl2Oax2QLRCQvN69p9lvntSWzzUbpLiekidZGnZ3B8wcAAAAAAAAAAAAAAAAAAAAAHAo2K8Abk3GjBmjMWPGKBQKafny5ZKkYDAot9vdEbMHAAAAAAAAAAAAAGAniYktn7dskY44Yuc08fGSwyFFItLWrea/w7EfC009quVz+VdSt0n7MTMAAAAAAAAAAAAAAAAAAAAAwKGoXd3SN23apH/+859au3btTuNef/11de/evTmYW3Z2tl544YUOyygAAAAAAAAAAAAAAK0NHdry+euvd53G6ZSGDDGf6+qkXdzubp+UUZLTZz5veXHXaQIl+7kQAAAAAAAAAAAAAAAAAAAAAEBX1q4Abn//+991zTXXyOv1thm+fv16XXDBBSouLlavXr00ePBglZeX65JLLtFXX33VoRkGAAAAAAAAAAAAAECSxo9v+bxwYXTpFizYz4U63FLq0eZzySLp6zulSMh8D5RKn14t5c/Zz4UAAAAAAAAAAAAAAAAAAAAAALqydgVwW7hwoUaOHKnc3Nw2w//4xz/K7/frxhtv1KZNm7Ry5Uq9+OKLCofD+stf/tKhGQYAAAAAAAAAAAAAQGobmG3WLGn79rbji4qkDz5om+73v5f8/rbp5s+XvvmmHQvuf13L529mSq/1ld45Wnq1u7TxH+2YEQAAAAAAAAAAAAAAAAAAAADgUNSuAG6bNm3SEUccsdPwt99+Wx6PRzNnzmwedu6552rixIn66KOP9j+XAAAAAAAAAAAAAAB8y4gRUkaG+VxdLU2aJC1cKJWUSHPnSkcfLa1dK02eLDmdJt3atdKxx5p0X38t3XOPdOqpUn19Oxace5GUOanle90WqexzKRLooDUDAAAAAAAAAAAAAAAAAAAAAHRl7QrgVlJSop49e7YZVlFRoQ0bNmjcuHFKSEhoM27UqFEqKCjY/1wCAAAAAAAAAAAAAPAtLpd0yy0t39eulSZONEHdzj9f2rzZDM/NlS66qCXdl1+adKNGSffdJzU0tHPBlkOa+LLU7xpJVttxaeOk7NP2YW0AAAAAAAAAAAAAAAAAAAAAAIcKV7sSu1yqqKhoM+yrr76SJI0ZM2an9PHx8fueMwAAAAAAAAAAAAAA9uLnP5defFFqvHW9W48+Ks2bJ3XYO8g8KdLYJ6X+10slH0uypLSxUtrRHbQAAAAAAAAAAAAAAAAAAAAAAEBX5WhP4oEDB+r9999vM+zdd9+VZVk65phjdkq/bds2ZWdn718OAQAAAAAAAAAAAADYDa9X+t//pMsu23nc2LHSmWeaz+np0pIl0rRpbdM4ndLNN0sjRuxjBlJHSwN/Ig28keBtAAAAAAAAAAAAAAAAAAAAAHCYsGzbtqNNPHPmTN1111265pprdOONN2r9+vW68sorZdu2tm3bpri4uDbpBw4cqL59++rtt9/u8IwfaFVVVUpKSlJlZaUSExM7OzsAAAAAAAAAAAAAgL1YuFCaN09qaJCOPVY69VTJsnZOt3ix9OWXks8nnXKK1KvXLmbWesLob6sDAAAAAAAAAAAAAAAAAAAAAA5R7Yk91q4AbvX19Ro/fryWL18uq7Gzum3b+t3vfqdf/OIXbdJ+/vnnGjt27C7HHQoI4AYAAAAAAAAAAAAAhzECuAEAAAAAAAAAAAAAAAAAAADAYaU9scdc7ZlxTEyMPv74Yz366KNavHixUlNTdf755+v73//+Tmm//PJLnXXWWbscBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHIsu2eVX4rrQnCh4AAAAAAAAAAAAA4DvAsvaehlvsAAAAAAAAAAAAAAAAAAAAAPCd1J7YY46DlCcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOOQRwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAokQANwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIEgHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBKBHADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCi5OjsDAAAAAAAAAAAAAAB0Cbbd2TkAAAAAAAAAAAAAAAAAAAAAABwCHJ2dAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4VBDADQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiRAA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIgSAdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEoEcAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKLk6OwNdlW3bkqSqqqpOzgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAA6kp5lhTDLI9IYDbblRXV0uSevbs2ck5AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAwVFdXKykpaY9pLDuaMG+HoUgkom3btikhIUGWZamqqko9e/bUli1blJiY2NnZAwAArVBOAwDQdVFOAwDQNVFGAwDQdVFOAwDQNVFGAwDQdVFOAwDQNVFGAwDQdVFOAwDQdVFOAwDQ+WzbVnV1tXJycuRwOPaY1nWQ8nTIcTgc6tGjx07DExMTucgBAKCLopwGAKDropwGAKBroowGAKDropwGAKBroowGAKDropwGAKBroowGAKDropwGAKDropwGAKBzJSUlRZVuz+HdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFEigFuUvF6v7r33Xnm93s7OCgAA+BbKaQAAui7KaQAAuibKaAAAui7KaQAAuibKaAAAui7KaQAAuibKaAAAui7KaQAAui7KaQAADi2Wbdt2Z2cCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Fjs7OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcKgjgBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABRIoAbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAESJAG4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECUCuO1FTU2Nbr75ZuXk5Mjn82nUqFGaM2dOZ2cLAIDDyvz582VZ1i7/Fi9e3Cbtl19+qVNOOUXx8fFKTk7Wueeeq40bN3ZSzgEA+G6prq7WbbfdpilTpigjI0OWZWn69Om7TNueMvnPf/6zBg8eLK/Xqz59+mjGjBkKBoMHcE0AAPhuibaMvvzyy3dZtx48ePAu50sZDQDA/vnggw905ZVXavDgwYqLi1P37t111lln6YsvvtgpLfVoAAAOrmjLaerSAAAcXEuXLtWZZ56pXr16KSYmRqmpqZowYYJmzZq1U1rq0gAAHFzRltPUpQEA6HxPPfWULMtSfHz8TuOoTwMA0Ll2V05TnwYA4NDl6uwMdHXnnnuulixZogcffFADBw7Uv//9b1100UWKRCK6+OKLOzt7AAAcVmbOnKkTTzyxzbBhw4Y1f169erUmTZqkUaNG6YUXXpDf79c999yjiRMnaunSpcrIyDjYWQYA4DultLRUTz75pEaOHKmzzz5bTz311C7TtadMvv/++3X33XfrV7/6laZMmaIlS5borrvuUkFBgZ588smDtWoAABzSoi2jJSkmJkYffPDBTsO+jTIaAID99/jjj6u0tFQ/+9nPNHToUBUXF+uRRx7R+PHj9c477+ikk06SRD0aAIDOEG05LVGXBgDgYKqoqFDPnj110UUXqXv37qqtrdVzzz2nH/7wh8rLy9Ndd90libo0AACdIdpyWqIuDQBAZyooKNCtt96qnJwcVVZWthlHfRoAgM61p3Jaoj4NAMChyrJt2+7sTHRVb775ps4888zmoG1NpkyZopUrV2rz5s1yOp2dmEMAAA4P8+fP14knnqgXX3xR55133m7TXXDBBZo3b542bNigxMRESVJ+fr4GDBigW265RQ899NDByjIAAN9JTU0IlmWppKREGRkZuvfeezV9+vQ26aItk0tLS9WjRw/96Ec/0hNPPNE8/cyZM3XXXXdpxYoVGjp06MFZOQAADmHRltGXX3655s6dq5qamj3OjzIaAICOUVRUpMzMzDbDampq1L9/fw0bNkzvvfeeJOrRAAB0hmjLaerSAAB0DePHj9e2bdu0efNmSdSlAQDoSr5dTlOXBgCgc33ve9+TZVlKTU3dqUymPg0AQOfaUzlNfRoAgEOXo7Mz0JW98sorio+P1/nnn99m+BVXXKFt27bp008/7aScAQCAbwuFQnr99df1gx/8oPkmgiTl5ubqxBNP1CuvvNKJuQMA4LvBsixZlrXHNO0pk99++235/X5dccUVbeZxxRVXyLZtvfrqqx2afwAAvquiKaPbgzIaAICO8e2gMJIUHx+voUOHasuWLZKoRwMA0FmiKafbg3IaAIADKz09XS6XSxJ1aQAAuprW5XR7UE4DANDxZs2apQULFuixxx7baRz1aQAAOteeyun2oJwGAKDrIYDbHqxYsUJDhgzZ6UbCiBEjmscDAICD58Ybb5TL5VJiYqJOPfVULVy4sHnchg0bVF9f31xOtzZixAitX79efr//YGYXAIDDUnvK5KZ69fDhw9uky87OVnp6OvVuAAAOgPr6emVlZcnpdKpHjx76yU9+orKysjZpKKMBADhwKisr9eWXX+qII46QRD0aAICu5NvldBPq0gAAHHyRSEShUEjFxcV67LHH9M477+j222+XRF0aAIDOtqdyugl1aQAADr6ioiLdfPPNevDBB9WjR4+dxlOfBgCg8+ytnG5CfRoAgENT+19xchgpLS1V3759dxqempraPB4AABx4SUlJ+tnPfqZJkyYpLS1N69ev1+9+9ztNmjRJb7zxhk499dTmcrmpnG4tNTVVtm2rvLxc2dnZBzv7AAAcVtpTJpeWlsrr9SouLm6Xaal3AwDQsUaOHKmRI0dq2LBhkqQFCxbo0Ucf1fvvv68lS5YoPj5ekiijAQA4gG688UbV1tbqzjvvlEQ9GgCAruTb5bREXRoAgM5yww036IknnpAkeTwe/elPf9J1110nibo0AACdbU/ltERdGgCAznLDDTdo0KBBuv7663c5nvo0AACdZ2/ltER9GgCAQxkB3PbCsqx9GgcAADrO6NGjNXr06ObvEydO1DnnnKPhw4frtttu06mnnto8jrIbAICuIdoymbIbAICD55ZbbmnzffLkyRo9erTOO+88/f3vf28znjIaAICOd/fdd+u5557Tn//8Zx111FFtxlGPBgCgc+2unKYuDQBA5/j1r3+tq6++WkVFRXrttdf0k5/8RLW1tbr11lub01CXBgCgc+ytnKYuDQDAwffSSy/ptdde01dffbXXMpT6NAAAB1e05TT1aQAADl2Ozs5AV5aWlrbLCLNlZWWSdh1pHgAAHBzJycmaOnWqli1bpvr6eqWlpUnSbstuy7KUnJx8kHMJAMDhpz1lclpamvx+v+rq6naZlno3AAAH3jnnnKO4uDgtXry4eRhlNAAAHW/GjBn67W9/q/vvv18/+clPmodTjwYAoPPtrpzeHerSAAAceL169dKYMWN0xhln6PHHH9e1116rO+64Q8XFxdSlAQDoZHsqp3eHujQAAAdOTU2NbrzxRv30pz9VTk6OKioqVFFRoYaGBklSRUWFamtrqU8DANAJoi2nd4f6NAAAhwYCuO3B8OHDtWrVKoVCoTbDly9fLkkaNmxYZ2QLAAA0sm1bkokI369fP8XExDSX060tX75c/fv3l8/nO9hZBADgsNOeMnn48OHNw1vbsWOHSkpKqHcDAHCQ2LYth6PldgFlNAAAHWvGjBmaPn26pk+frl//+tdtxlGPBgCgc+2pnN4T6tIAABxcY8eOVSgU0saNG6lLAwDQxbQup/eEujQAAAdGSUmJCgsL9cgjjyglJaX5b/bs2aqtrVVKSoouueQS6tMAAHSCaMvpPaE+DQBA10cAtz0455xzVFNTo5deeqnN8GeffVY5OTkaN25cJ+UMAACUl5fr9ddf16hRo+Tz+eRyufS9731PL7/8sqqrq5vTbd68WfPmzdO5557bibkFAODw0Z4y+bTTTpPP59MzzzzTZh7PPPOMLMvS2WeffZByDQDA4Wvu3Lmqq6vT+PHjm4dRRgMA0HHuu+8+TZ8+XXfddZfuvffencZTjwYAoPPsrZzeHerSAAAcfPPmzZPD4VDfvn2pSwMA0MW0Lqd3h7o0AAAHTlZWlubNm7fT36mnniqfz6d58+bpt7/9LfVpAAA6QbTl9O5QnwYA4NDg6uwMdGWnn366Jk+erOuvv15VVVXq37+/Zs+erbfffluzZs2S0+ns7CwCAHBYuPjii9WrVy+NGTNG6enpWrdunR555BEVFha2aWSYMWOGjj76aE2dOlW/+tWv5Pf7dc899yg9PV2/+MUvOm8FAAD4DnnrrbdUW1vbfOP+m2++0dy5cyVJZ5xxhmJjY6Muk1NTU3XXXXfp7rvvVmpqqqZMmaIlS5Zo+vTpuvrqqzV06NBOWUcAAA5Feyuji4uLdfHFF+vCCy9U//79ZVmWFixYoD/84Q864ogjdPXVVzfPizIaAICO8cgjj+iee+7RaaedpjPPPFOLFy9uM76pYx31aAAADr5oyun8/Hzq0gAAHGTXXnutEhMTNXbsWHXr1k0lJSV68cUX9fzzz+uXv/ylMjIyJFGXBgCgM0RTTlOXBgDg4PP5fJo0adJOw5955hk5nc4246hPAwBwcEVbTlOfBgDg0GbZtm13dia6spqaGt1555164YUXVFZWpsGDB+uOO+7QhRde2NlZAwDgsPHggw/q+eef16ZNm1RTU6PU1FQdd9xxuuOOO3T00Ue3SfvFF1/o9ttv16JFi+RyuXTSSSfp//7v/9SvX79Oyj0AAN8tvXv3Vn5+/i7Hbdq0Sb1795bUvjL5T3/6k/76178qLy9PWVlZuuKKK3TnnXfK7XYfyFUBAOA7ZW9ldFJSkq666ip99dVXKiwsVDgcVm5urs455xz9+te/VlJS0k7TUUYDALB/Jk2apAULFux2fOtb9dSjAQA4uKIpp8vLy6lLAwBwkD399NN6+umntWrVKlVUVCg+Pl4jR47U1VdfrUsvvbRNWurSAAAcXNGU09SlAQDoOi6//HLNnTtXNTU1bYZTnwYAoPN9u5ymPg0AwKGNAG4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECVHZ2cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4VBHADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCgRwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAokQANwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIEgHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBKBHADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCgRwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAokQANwAAAAAAAAAAAAAAAADAYS0vL0+WZenyyy9v13SWZWnSpEkHJE8AAAAAAAAAAAAAAAAAgK6LAG4AAAAAAAAAAAAAAAAAgE7VFECt9Z/H41HPnj118cUXa9myZZ2Sr0mTJsmyrE5ZNgAAAAAAAAAAAAAAAACg63J1dgYAAAAAAAAAAAAAAAAAAJCkfv366dJLL5Uk1dTUaPHixZo9e7ZefvllffDBBzrmmGMOyHK7d++uVatWKSkpqV3TrVq1SrGxsQckTwAAAAAAAAAAAAAAAACArosAbgAAAAAAAAAAAAAAAACALqF///6aPn16m2F33XWX7r//ft15552aN2/eAVmu2+3W4MGD2z3dvkwDAAAAAAAAAAAAAAAAADj0OTo7AwAAAAAAAAAAAAAAAAAA7M5Pf/pTSdKSJUskSaFQSI8++qhGjhypmJgYJSUl6cQTT9Qbb7yx07SRSERPPfWUxo4dq9TUVMXGxqp37946++yz9eGHHzany8vLk2VZuvzyy5uHWZalBQsWNH9u+vt2mkmTJu203NLSUt1yyy3q06ePvF6vMjMzNW3aNH3zzTc7pb388stlWZby8vL02GOPaciQIfL5fMrNzdWMGTMUiUT2ZbMBAAAAAAAAAAAAAAAAAA4gV2dnAAAAAAAAAAAAAAAAAACA3bEsq/mzbduaNm2aXn75ZQ0cOFA33nijamtr9cILL2jq1Kn64x//qJtuuqk5/R133KGHH35Y/fr108UXX6yEhAQVFBToo48+0gcffKDjjz9+t8u999579cwzzyg/P1/33ntv8/BRo0btMb+lpaUaP3681q9fr0mTJunCCy9UXl6e5s6dqzfeeEP/+9//NGHChJ2m++Uvf6n58+dr6tSpmjJlil599VVNnz5dDQ0Nuv/++9uxxQAAAAAAAAAAAAAAAAAABxoB3AAAAAAAAAAAAAAAAAAAXdaf/vQnSdLRRx+tWbNm6eWXX9YJJ5ygd999Vx6PR5J055136qijjtKtt96q733ve+rTp48k6amnnlL37t21bNkyxcbGNs/Ttm2Vl5fvcbnTp0/X/PnzlZ+fr+nTp0ed39tuu03r16/XHXfcoZkzZzYPv/zyy3Xaaafpsssu0+rVq+VwONpM98UXX2jZsmXKzs6WJN19990aMGCA/vznP+vee+9tXlcAAAAAAAAAAAAAAAAAQOdz7D0JAAAAAAAAAAAAAAAAAAAH3vr16zV9+nRNnz5dt956q4477jjdf//98vl8mjlzpp555hlJ0sMPP9wmoFmPHj10yy23KBgM6rnnnmszT4/HI5er7btOLctSampqh+e/oaFBs2fPVlpamu66664240499VSdeuqpWrdunT755JOdpr377rubg7dJUnp6us466yxVV1drzZo1HZ5XAAAAAAAAAAAAAAAAAMC+I4AbAAAAAAAAAAAAAAAAAKBL2LBhg2bMmKEZM2boT3/6k/Lz83XxxRfrs88+04QJE/TVV18pJiZGY8eO3WnaSZMmSZKWLl3aPOyCCy7Qpk2bNGzYMN1999167733VFtbe8Dyv3r1atXX12vs2LGKjY2NKo9NjjzyyJ2G9ejRQ5JUUVHRkdkEAAAAAAAAAAAAAAAAAOwnArgBAAAAAAAAAAAAAAAAALqEU089VbZty7ZtNTQ0aMuWLXruuec0fPhwSVJVVZW6deu2y2mzsrIkSZWVlc3D/vSnP+nhhx+W2+3Wb3/7W02ePFnp6em67LLLVFJS0uH5r6qqkqR25bFJUlLSTsNcLpckKRwOd1QWAQAAAAAAAAAAAAAAAAAdgABuAAAAAAAAAAAAAAAAAIBDQmJiogoLC3c5rml4YmJi8zC3261f/vKXWrlypQoKCvTvf/9bEydO1L/+9S9dcsklByR/rfMSTR4BAAAAAAAAAAAAAAAAAIceArgBAAAAAAAAAAAAAAAAAA4Jo0ePVn19vT777LOdxi1YsECSNGrUqF1Om5OTo4suukhvv/22BgwYoPfee0/19fV7XJ7T6ZQkhcPhqPI3ePBg+Xw+LVmyRHV1de3OIwAAAAAAAAAAAAAAAADg0EAANwAAAAAAAAAAAAAAAADAIeGyyy6TJN1xxx0KBoPNwwsKCvT73/9eLpdLl1xyiSQpEAjogw8+kG3bbeZRW1ur6upqud3u5gBtu5OamipJ2rp1a1T583g8uuiii1RSUqIHHnigzbj33ntPb731lvr3769jjz02qvkBAAAAAAAAAAAAAAAAALomV2dnAAAAAAAAAAAAAAAAAACAaPzwhz/Uyy+/rP/85z8aMWKEpk6dqtraWr3wwgsqLS3VI488or59+0qS6uvrdfLJJ6tv374aN26cevXqpZqaGr3++uvasWOHbr/9dnk8nj0u76STTtLcuXN1/vnn64wzzpDP59Pw4cN15pln7naahx56SAsWLNBvf/tbffLJJxo3bpzy8vI0d+5cxcbG6umnn5bDwbtXAQAAAAAAAAAAAAAAAOBQRgA3AAAAAAAAAAAAAAAAAMAhwbIszZ07V3/84x/17LPP6s9//rM8Ho+OPPJI/fznP9f3v//95rRxcXF66KGH9P777+ujjz5SUVGRUlJSNHjwYD300EOaNm3aXpd3zTXXKC8vT3PmzNH999+vUCikyy67bI8B3DIyMvTpp5/qvvvu03/+8x999NFHSkpK0llnnaV7771Xw4YN65BtAQAAAAAAAAAAAAAAAADoPJZt23ZnZwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgWOzs4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwqCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFEigBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARIkAbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJQK4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECUCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFEigBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARIkAbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJQK4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECUCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFEigBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARIkAbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJQK4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECUCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFEigBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARIkAbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJQK4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECUCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFHqkgHcampqdPPNNysnJ0c+n0+jRo3SnDlz9jrdyy+/rIsuukj9+/dXTEyMevfurUsuuUTr1q07CLkGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8F1n2bZtd3Ymvm3KlClasmSJHnzwQQ0cOFD//ve/9dRTT+m5557TxRdfvNvpxo0bp6ysLJ199tnq27evtmzZopkzZ2rLli1avHixjjjiiIO4FgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+a7pcALc333xTZ555pv7973/roosuah4+ZcoUrVy5Ups3b5bT6dzltEVFRcrMzGwzbNu2berdu7d+9KMf6amnnjqgeQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw3ebo7Ax82yuvvKL4+Hidf/75bYZfccUV2rZtmz799NPdTvvt4G2SlJOTox49emjLli0dnlcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhxdXZ2fg21asWKEhQ4bI5WqbtREjRjSPP+aYY6Ke38aNG5Wfn6+zzz57j+kCgYACgUDz90gkorKyMqWlpcmyrOhXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAhxbZtVVdXKycnRw6HY49pu1wAt9LSUvXt23en4ampqc3joxUKhXTVVVcpPj5et9xyyx7TPvDAA5oxY0b7MgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgO2PLli3q0aPHHtN0uQBukmRZ1j6Na822bV111VX66KOP9NJLL6lnz557TH/HHXfo5z//efP3yspK9erVS1u2bFFiYmJ0GQcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwyKmqqlLPnj2VkJCw17RdLoBbWlqaSktLdxpeVlYmSUpNTd3rPGzb1tVXX61Zs2bp2Wef1VlnnbXXabxer7xe707DExMTCeAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAYsy9prGsdByEe7DB8+XKtWrVIoFGozfPny5ZKkYcOG7XH6puBtTz/9tJ566ildeumlByyvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4vXS6A2znnnKOamhq99NJLbYY/++yzysnJ0bhx43Y7rW3buuaaa/T000/riSee0BVXXHGgswsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgMOLq7Ax82+mnn67Jkyfr+uuvV1VVlfr376/Zs2fr7bff1qxZs+R0OiVJV111lZ599llt2LBBubm5kqSbbrpJ//jHP3TllVdq+PDhWrx4cfN8vV6vRo8e3SnrBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOC7ocsFcJOkl19+WXfeeafuuecelZWVafDgwZo9e7YuvPDC5jThcFjhcFi2bTcPe+211yRJ//znP/XPf/6zzTxzc3OVl5d3UPIPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LvJsltHQEOzqqoqJSUlqbKyUomJiZ2dHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSHtijzkOUp7Qxb322muaNm2aevXqJZ/Pp9TUVB111FG6++67VVhYuMtpnnnmGVmW1ebP4XAoNTVVEydO1GOPPaZQKLTbZUYiEc2ZM0fnn3++cnNzFRsbq7i4OA0YMECXXnqpXn/9dRFfEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF2JZRMha5faEwXvUFZZWalp06bpnXfekSRlZGQoNzdXVVVVWrdunWzbVkJCgp566ildcMEFbaZ95plndMUVV8jr9WrMmDGSpHA4rI0bN6qoqEiSdOKJJ+qtt96S1+ttM+2GDRt07rnnatmyZZKklJQU5ebmyrZt5efnq6KiQpJ01FFHaeHChfL5fAdyMwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAw1p7YY46DlCd0QQ0NDZo8ebLeeecd9e7dW2+++aYKCwu1ZMkSrVmzRvn5+brwwgtVXV2tiy66SC+99NIu55OVlaWFCxdq4cKFWrRokQoLCzVnzhy53W7NmzdPjz76aJv0+fn5mjBhgpYtW6YxY8Zo3rx5Kikp0VdffaWlS5eqpKRE8+bN0+TJk/XFF1/I7/cfjM0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7BUB3A5j9957r5YsWaLs7Gx99NFHOv3002VZVvP4nj17avbs2briiisUiUR09dVXq7CwMKp5T5s2Tddff70kafbs2W3GXXLJJSouLtYJJ5ygDz/8UJMmTZLD0XIoOp1OTZo0Se+++67++te/yul0dsDaAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPuPAG6HqYqKCv3lL3+RJP3f//2fevTosdu0f/zjH5Went5mmmgcf/zxkqR169Y1D/vggw/08ccfy+1261//+pdiYmL2OI8bbrhBCQkJUS8TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOJAI4HaYevPNN1VTU6P09HSdf/75e0ybkJCgSy65RJL0wgsvRL0M27Z3GjZnzhxJ0tSpU9WrV6925BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADofARwO0x98sknkqRjjjlGbrd7r+mPP/54SdLatWtVWloa1TI++ugjSVL//v13Wu4JJ5zQrvwCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXQEB3A5TBQUFkqR+/fpFlb51uqZp9+T555/X448/Lkm64IILdpq2T58+UecVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CpcnZ0BdI7q6mpJUlxcXFTpW6drmrbJjh07dNxxx0mSwuGwNm3apMLCQknSMccco1/84hf7vFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgKyGA22EqISFBklRbWxtV+tbpmqZtEggE9PHHH0uSLMtSQkKCxo8fr2nTpumGG26Qx+NpM21FRUXUywUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6EgK4Haa6d+8uSdqwYUNU6Vuna5q2SW5urvLy8qJebkVFhTZt2hRdRgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAuxHEgZhoIBBQKhQ7ErNFBjjnmGEnSJ598EtW++vDDDyVJAwYMUFpa2n4vd8GCBfs8DwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCz7HMAt4ULF+o3v/mNKioqmoeVlpbq9NNPV3x8vBITE3XnnXd2RB5xAJxxxhmKi4tTSUmJXnzxxT2mra6u1nPPPSdJmjZt2n4tt2n6119/XZs3b96veQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH2z4HcHvkkUf07LPPKjk5uXnYL37xC73zzjvq27evkpOT9eCDD2ru3LkdkU90sOTkZN14442SzH7bunXrbtP+7Gc/U0lJiZKSkpqn2Vcnn3yyJkyYoGAwqMsuu0x+v3+P6f/2t7+purp6v5YJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdJR9DuC2dOlSTZw4sfl7XV2dXnjhBU2ZMkVr1qzRmjVr1KtXLz322GMdklF0vN/85jc68sgjtX37dh1//PF6++23Zdt28/itW7fq4osv1tNPPy3LsvTkk08qKytrv5f73HPPKS0tTfPnz9fEiRM1f/58RSKR5vGRSEQLFy7Uaaedpuuvv17hcHi/lwkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0BNe+TlhUVKTu3bs3f1+0aJH8fr+uuOIKSVJCQoKmTp2ql156af9ziQPC6/Xq/fff1/nnn6/33ntPp59+ujIyMpSbm6vq6mqtXbtWtm0rPj5eTz75pC644IIOWW6fPn20aNEinXvuufr888914oknKjU1Vbm5ubJtW/n5+SovL5ckjRs3TjExMR2yXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGB/OfZ1Qp/Pp+rq6ubvCxYskGVZOuGEE5qHxcfHNwfiQteUnJys//3vf3r11Vd13nnnyev1atmyZdqxY4dGjhypX//611q3bp0uuuiiDl3ugAEDtHTpUj333HM699xzFRcXp1WrVmnNmjVKTU3VJZdcorfeekuLFi2S1+vt0GUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+8qybdvelwnHjRun8vJyLV++XA6HQ8OGDZPH49Hy5cub01xyySVauHCh8vPzOyzDB0tVVZWSkpJUWVmpxMTEzs4OAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAOkPbHHHPu6kGuuuUbr16/XgAEDNGTIEK1fv16XX355mzSffvqphg4duq+LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAuZZ8DuF111VX65S9/qbq6OlVUVOi6667TzTff3Dx+3rx52rhxo04++eSOyCcAAAAAAAAAAAAAoKuwI52dAwAAAAAAAAAAAAAAAAAAAAAAOo1l27Z9IGbc0NCg+vp6xcXFyeVyHYhFHFBVVVVKSkpSZWWlEhMTOzs7AAAAAAAAAAAAAND5tr0lfXmLVLNeSj1aGv07KeO4zs4VAAAAAAAAAAAAAAAAAAAAAAD7rT2xxxwHKhMej0dJSUmHZPA2AAAAAAAAAAAAAMC3lH0lLfyBVL1GssNS6WLp/ROlgjc6O2cAAAAAAAAAAAAAAAAAAAAAABxU+x3A7ZVXXtEFF1ygESNGqH///s3DV69erYcfflgFBQX7uwgAAAAAAAAAAAAAQGeKhKSPz5PC9W2H2yHpy5t2Tr/tbWneqdK746Wv75QaKg5KNgEAAAAAAAAAAAAAAAAAAAAAOBhc+zphJBLRRRddpLlz50qSYmJiVF/f0lk/JSVFd955p8LhsO644479zykAAAAAAAAAAAAAoHNsfVWq2bjrcZFg2+8Fr0sfnSXZEfO99FNp8/PSyfOl2B4HMJMAAAAAAAAAAAAAAAAAAAAAABwcjn2d8NFHH9WLL76o6667TuXl5br11lvbjO/WrZsmTpyoN954Y78zCQAAAAAAAAAAAADoRJueji5d7Wbp42ktwdua1GyQlt7e8fkCAAAAAAAAAAAAAAAAAAAAAKAT7HMAt2eeeUZjxozRY489psTERFmWtVOa/v37a9OmTfuVQQAAAAAAAAAAAABAJwoHpML5Ld8dHqn796T4vjunXf17KVy3m/n4D0j2AAAAAAAAAAAAAAAAAAAAAAA42PY5gNv69et1/PHH7zFNWlqaSktL93URAAAAAAAAAAAAAIDOVvpZq6BsljRhlnT8f6UzVkl9r2xJFwlKm57pjBwCAAAAAAAAAAAAAAAAAAAAAHBQ7XMAt5iYGFVVVe0xTX5+vpKTk/d1EQAAAAAAAAAAAACAzlazvuVz7sVSr/PNZ6dHOvoJKaPxxV/FH0vBypa0KaOl4b+R0o/d4+y3b5c+/VQqLu7gfAMAAAAAAAAAAAAAAAAAAAAAcIDscwC30aNH65133lEgENjl+LKyMr399tsaP378PmcOAAAAAAAAAAAAANDJavNaPve+pO04h0s68lHzuWhBy/DkEdJJH0jD7pZO+UgadMtOs/X7pZtuknJypPHjpaws6fLLpb28RwwAAAAAAAAAAAAAAAAAAAAAgE63zwHcbrrpJm3ZskXnnXeeCgoK2ozbsGGDzjnnHFVWVuqmm27a70wCAAAAAAAAAAAAADpJTV7jB0vKOG7n8b6MxnQbWoaNmCl5khsns6TR/ydlndI8urRUmjBB+vOfWyaJRKRnn5UuuKAjMw8AAAAAAAAAAAAAAAAAAAAAQMdz7euEZ511ln71q1/pwQcfVK9evRQXFydJyszMVGlpqWzb1t13362TTjqpwzILAAAAAAAAAAAAADjIavPM/5gsyZ2w+3RNAdxc8VL2lLbjLIfU/8fNX2+7TVq6dNez+db7wwAAAAAAAAAAAAAAAAAAAAAA6HIc+zPxzJkz9c4772jq1KmKjY2V0+lUJBLRaaedprfeekszZszoqHwCAAAAAAAAAAAAADpDcwC3HntOV7PR/E89SnK4dx5vWZKkvDzp6ac7LHcAAAAAAAAAAAAAAAAAAAAAABx0rn2dcPPmzfJ4PJo8ebImT57ckXkCAAAAAAAAAAAAABxojQHV9si2Jf928zl2DwHcQrWSf0djutw9zvKZZ8xsm9x+u/SrX5nAbrfdJm3fvvdsAQAAAAAAAAAAAAAAAAAAAADQmRz7OmGfPn105513dmReAAAAAAAAAAAAAABdiR2RIkHz2detZXgk3PavJq9lXFyvPc5y4cKWz9ddJz34oJScLI0aJb35pjR1akdlHgAAAAAAAAAAAAAAAAAAAACAA8O1rxOmpqYqNTW1I/MCAAAAAAAAAAAAAOhKIg0tn50xLZ8/uVDaMrfl+5i/tXyO7bHb2dm2tHRpy/dbb2073uWSfvvbfcsqAAAAAAAAAAAAAAAAAAAAAAAHyz4HcJs4caIWL17ckXkBAAAAAAAAAADYNcuKLp1tH9h8AMDhpnUAN2sPt5dbp3MltHz+8PtS/fbmr9uGLFRpqVeS1KeP1L//zrNyOvc1swAAAAAAAAAAAAAAAAAAAAAAHByOfZ3wgQce0IoVKzRjxgyFQqGOzBMAAAAAAAAAAAAA4ECz7bZ/uxputY6mFtnDvFrdM3a4Wz5XLJPKPm/++/rrloCcgwfv/yoAAAAAAAAAAAAAAAAAAAAAANAZ9vCK9D176KGHNGzYMP3mN7/Rk08+qZEjR6pbt26yLKtNOsuy9I9//GO/MwoAAAAAAAAAAAAAOMgc3pbP4cAeEra6T2zvPtDblq0t6QYN2o98AQAAAAAAAAAAAAAAAAAAAADQifY5gNszzzzT/Hn79u3avn37LtMRwA0AAAAAAAAAcChYu1Z6/nlp+3YpPl46+mjpzDOl2NjOzhkkSbbd9nvTC2W+Pfzb05R/JdVtkZyxUvIIKabbgcsjAHwXWU6Z4Gy2FKzYfTqHp+VzZPeB3urrWz5nZu5v5gAAAAAAAAAAAAAAAAAAAAAA6Bz7HMBt06ZNHZkPAAAAAAAAAAA6xdat0hVXSO+9t/O4zEwpP1/y+Q5+vrCfNs+VVv5Wqvi67fDME6Vj50g+ogYB+A5rCnK5N3sKgtl6Xp5kqaFcqitoGT7iPqnX+dLH08z31gHcAqW7nZ3f3/LZ640umwAAAAAAAAAAAAAAAAAAAAAAdDX7HMAtNze3I/MBAAAAAAAAAMBBV1kpTZokbdhgvjsc0pgxUigkLVsmFRX9f/buO8yOqv7j+Htub9tbekISQkJogVAFAkiT3quoCGIBRVSQXhQpP0GliRQBBQHpEpDeTIBAAoT0kN52k+179/Yy8/vj3N3NprGBJBvg83qeffbeO3NnzsydmVPmnO9APt81fyafoT5eD0DEF6E0ULrF0yw9sOAB+PCc1T6wgEKQovq3IFkHwZrPX05PAhuJiHwThIeYAG7J1QK4FY8Ey9v13lfa9TqxrOv1YR/Dsqdg8o/NbKvFectmN0tqRUREREREREREREREREREREREREREREQ2uy8cwE1ERERERERERERE5Kvg+v9dT2OiEYAbvn0DIW+oc9pf/tIVvG3MGHjiCRg+3LxvaoLrrwfL6lrWY9Mf4wf/+QEAB21zEG98740tsAWyUbIx+PgX5rW3GHa9DQafDljQ+C7MuaVXkydboVwSMk3g8oG/EixXb6dI5MtbMwBlR2b2RQNThodAyyeQWA6Ove7zxF9hziM70z2Am7/cXI8LQl3ZMM3NXyw5IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiK97UsHcHv00Ud56KGHmDp1Km1tbRQXFzNmzBh+8IMfcMYZZ2yKNIqIiIiIiIiIiIiIfCFLWpdw1VtXdb4fN3gcx486vvP9E090zfvww13B2wAqKuDPf+6+vOfmPtf5+p3F79CcbKY8WL6pk/2VsXgxPPccvPIKLF1q4gL17w/77gs/+hH069cLiVr5KuTi5vWuf4GhP+iaVnMgVB9ggg+tHsRo9Sh9XzS4kXy1OA4sexIWPACr3gAnZz73hKFqfxh7F0S22bhlts2E5c9B0weQS4CvDEpGQ7+joGLsJt+E1eVysGoVZDJQWQlFRZt1dfJNFB5s/ucTEJ1tju01WW4T6K39M2ift95F1dR0XWc/+2wTp1NEREREREREREREREREREREREREREREZAtZx6PRe8a2bU4++WTOOussXn/9deLxOP369SORSPD6669z1llnceKJJ2Lb9qZMr4iIiIiIiIiIiIhIjz09+2kAXJZpDn9y1pOd0xYuhFmzzOsRI2D0OmLRrC6RTfDK/FcAGFg8kLyT58XPXtz0if6KuP12s98uughefhkaGkwctA8+gGuvhVdf7aWE1RZ+E8sFA45fe7plgcu9ZdMkW9wTM5+g+o/VVP+xmlOePGXtGaZeDO+eCitfgUA1DDwJtvk+FG8PdS9DbGHPV2bn4MMfwX93gGlXworx0PwRrHgeZlwH75+56TZsNY4Djz8OxxwD5eUwYAAMHQrFxSYY5cMPb5bVyjdVeEjX6xUbyPsiQ83/1mmQblrnLDvv1BXAbc6cTZA2EREREREREREREREREREREREREREREZFe8IUDuN1xxx08/fTT7L///rz//vvE43EWLVpEPB5n0qRJjBs3jueee4477rhjU6ZXRERERERERERERKTHnpr1FAAX7nkhAOM/G08qlwKgrq5rvu23//xlvbbgNZK5JMPLh3PebucB8Nzc5zZper8qJk6ECy+EbNYEjJo4EerrYeZMaG2FN9/svk9tx+b/3v0/rv/f9dw44UZydm7zJS6+1PwPDwFfqXld/z949/Suv8X/2nzrl63C3VPupiHRQEOigadnP82ytmVdE6OfwZxbzev+x8JR82DfJ2Gvh+CwD+HohVA8stvyLn71Yo589EiOfPRIptRO6b6yz+6EBfeb18N/DMfXw0ktcHICDp0MQ3+4ybfPceD734fTT4fx46GiAi69FO64wwRQHDwYJk/e5KuVb7LVA7jNuxNSDeueryOAGw4s+sc6ZxkyxKGoyLyeO7d7ftzBcdb+TERERERERERERERERERERERERERERERka+L5ol986KGH2G677XjttdfweLovZo899uDVV19lp5124sEHH+TCCy/80gkVEREREREREREREdkYy9qW8f7y97GwuHTfS3luznMsal3EK/Nf4diRx+J2d82b60E8sY5gbUdueyRHbnskV711FS/Pf5lkNknQG+w27x0f3MH4z8YDcMroUzh313M31WZtFf7v/7pe33EHfOtbXe9dLjjwwO7zPzfnOX77+m873w8uHcwZO56xmVJXiPpjZ7s+ii+GpY93vQ8NgCFnbqb1S2/7rOkz3l78NkFPkG8P/TYvfPYCD3zyANcccI2ZYeGDXTPvdht4Qt0XEBnS7e2M+hnc8v4tne99bh/PnvqseeM4MK/wMKPysTD2r2AVnp/kckPFWPP3RbQvgNgCSNWDkwVfOUSGQfFIXn/Dw8MPm9kOOABefhn8/u5fTya/2GpF1qlij67XiWUw4VgY9VtYMb77fCU7dL3+9HJzXlTvD/ElnR+7XLDTTvDuu+YU+tvf4Lrrur7mOHD33fCzn22mbRH5mmtshEcfhQ8+gE8/hZYWcLuhuhpGj4brr4eBA3svfY4Ds2fDkiUmrek0lJXB8OEmfZ4v3ItFRGQzy0ZNGT1dD/kUeEsgPNgEurWs3k6diIiIiIiIiIiIiIiIiIiIiIiI9IIv3PV17ty5XHDBBWsFb+tcsMfDUUcdxZ133rnRy47FYlx55ZU88cQTNDc3M3LkSC699FJOO+20z/1ufX09l1xyCS+88AKJRIKdd96Z66+/nm9/+9sbnQ4RERERERERERER+ep6ZvYzAOwzcB+qw9Ucs90x3PbBbTw1+ymOHXksQ4Z0zTtligkmsb4x1zk7x/i5JkjNEdsewS59dqFvpC91sTpeX/g6R293dOe8K2MrufSNS8nms+SdPJNrJ3PiqBMpC5Ztrk3d4qZM6Xp9yCEbntdxHG6YcAMAJ29/Mk/OepIbJ97IaTuchqsj0NWmFOxn/idrIZ8Btw/KxsDON8KcP0G6YeOW15OB+I6z8emUzeb+j+8H4PhRx3PWTmfxwmcv8PdP/s6V+1+J2+WG+EIzozsEoUHm9aq34IOzuxYy8CQYY4K23fKe+f+T3X7Cw9Me5j9z/sOcxjmMrBwJmRaIFZZXtV9X8LZZN0Hzx13L2/lGKBrWsw1Y9izMuBZap0GgD5TtAp4IpBuhdTrscDUPPPCLztl//eu1g7cBBINrfyZfD7YNb70FL70En3wCzc3Q2mqOg759Yd994fe/38QrDfY1wdnaZpj3je/DhOPWnq/vYaslNA1vHACBakit6jbbnnuaAG4AN94IQ4bA2WdDWxtcdhlMmKAAbvI1kk+ZcyDdDHYGvEUQ7A++kk2+qokT4aijzLnUvz+cfz7svDOEQlBbC++/bwK69TiAm2ND04dQ+1+IL4J0kwmS6ysxeeiQ70L5rpCohSWPQd3LpgyWaTLf91WY/G/MreSC23LDDfDAAyZ4W58+MGYMFBWZ69i0afC738GPf7zJd4uIbE7ZKLTNgkwz5GLgCkCgBopHgO9rUgdumQrTroKVr4DlhtKdTPC2bBu0zYahP4Td/mLmdRxonwfJFWafOHYh0NsgiAwHl6JUymZgZ03dNBsFl9fkv95Ib6dKREREREREREREREREREREROQb4Qv3CvP5fMTj8Q3OE4/H8fl8G73sE044gcmTJ3PTTTcxYsQIHn30UU4//XRs2+aMM85Y7/fS6TTf/va3aW1t5bbbbqO6upq77rqLww8/nNdff51x48ZtdFpERERERETkC3IciC2AxHIzaMTOgCcE/ioo2hZ8pb2dQhHZHBzHBBfJtkK23QQx8RSZgA+eUG+nTkS+YZ6a/RQAQ8uG8sbCN6gKVQHw/NznSefS9OnjZ999TaCLlSvhzTdhzWeB2Lb5/+7Sd2lKmkAUk5ZP4pO6TygPllMXq+O5Oc91C+D2u3d+RyKb4Kdjf0osE+PhaQ9z08SbuPmQmzf/Rm8hRUVQV2deNzRAv37rn/e1ha/xUd1H9C/qzz+P/ydTaqcwo34GL3z2Asdsd8ymT1zf78Dih8HJw9J/wzZnQemO5m/RPzc+gNvqwdlWD+amoG2bVCKb4Lq3ryOVSwHwm31+w8CSnkaX6ZLJZ3ho6kMAfH/n73PQNgdRE65hWXQZryx4hSO2PaIrkEQ+YYJMeItMgLTi7aFpkhn4njbn+7K2Zfxr+r9wWS4u2+8y3C43d02+i1veu4X7j7kf3IGulediXa9jC6DpfVMfAhh1Sc82oPljePdkc/yO/A3sfBO43F3THRtycVKpro9KNn38H9mKZTImONNrr4HHA5dfDsceawK35fOwdCnMnbuZVj7whK4AbusTGWqCmrROK3zgrBW8DeAHP4A//cm8zmbhhz+ESy81gaWyWdhhh02acpHesfx5mPsXaHzXnBslO4InbAL+xBaY4GejLt7oxeZyEItBe7s5X0IhqKgw14SzzjLB21wuEyRx8ODu391Ad4u15dPw9neg/i0TrG3Uxeb89oRNXhmdber/bbPg1b0g1w4Djoed7oeiEeDyQWoltHwKLh9XX20CNgJccQVce61JcwfHgc/pgiKbgoITSw+1JFsY99A4VsVNPn71/ldz/h7nd83Q/Al88mtomACRbaD6ABM0yk5DYqkJXjnuhU2fsOQqWPkaNH9YaIOMApYJkhYaANtdBMGaTbe+VAO8daipR/Y7EvZ5FLzFXdPtvAla6Tgw83pYcC+k6qHPwVC0nakvZJohOge2PR8Gnbzp0ibfbLk4zL4FVjwPbdOhdBcI9jHHYqrO1GmPnAPudUT77gHHMeUMl6t7fg2mTjJ9uql7RKOQSJhg0hUVMHIkbLfdl988EREREREREREREREREREREZGvii8cwG3MmDE88cQTXHHFFfRbx8isuro6nnjiCXbdddeNWu5///tfXnvttc6gbQAHHnggS5Ys4eKLL+bUU0/F7Xav87t///vfmTFjBu+99x57771353d33nlnLrnkEj744ION3EoR2Viffgqvvw4zZphBNjU14PWaabmcGXBz/vkwYYJ5wvusWZBOQ1kZuN2mv3gmA8cdB9/5Tq9uioiIiEivW9a2jP/O+y8AIW+IM3Y8A7ere30omYQFC6C+3rxOp81AiqIiM0Bz6NCueWfWz6S2vRaAERUjGFy6xgjOTcXOw7TLYcHfTeCmbb4PxduBOwTJVmj6ECLDTCCNjZBMwsKF0NpqBoNks2ZASGmp2c6yQgyG9nZYvNgMZE0kTNCVUMhMHzoUAoENrERE1i+XgPb5ZqB5PmFGcHmC4C2FouFm8PbUS2DVW+Arh76HQqAGcJlBivFFMOZWCPSB+neg5WMzYB0LXH5zvXBy4K+GHa4EO2euF63TIFlr1oll/rwRKBsD/Y/eYJJFNkY2a9oz5syBVatM4ICOfLWkBEaPhoMP7u1UfgMklkPje9A22wSCBLA8gGMGYw850wS/6IHa9lreXfouAA9Pe5iHpz3cOS2ajvLawtc4asRRnHGGCeAGcOaZcMcdcMIJpgwxYYIJLPHSS/DcnOc6v3/N29d0W9fznz1P3s7jdrmZ3zyf+z6+D6/Ly2X7XkYyl+Rf0//F7R/ezs/3/DkDigd8wZ2zdTnzTLimsBtuvx1uumnteXI5cw7dMOEGAE7a/iRq22s5ZfQp3Pzuzfxhwh84esTRWD0JIrEx+n3H5C122uRNgWroc6gJfGVnN+261iOX6yqfu1wQicAXeN7NN4bjOJzz/Dk8PuNxjh5xNOM/G8+EpROYcPYEwr5wt3nv/PBOLnvjMnxuHxYWz5z6DPsP3r9z+vNzn6chYYL03ffxfTzwyQN43d7O90dsewQMPAXm32O+MO+vsP1voWJ3OOC/8Po4aPhf5/L+Mukv5Owcew3Yi5WxlezRfw/umnwXD097mN8d+Dv6FfWDPoeYIBIrnofMzSZA3B73QesMeGnHjdsZtf81wdsAhp9ngrclauGdI7vmKRnNYYc9wnPPmbePPgr77bdxq/nCFPSl1z32mAneBnDeeXDddd2nDxgA++yzmVY+7DyY+YeuY3RNHcERR/wCPjx33fNYbsBixx3hyCPhxRe7JtXXb9LUivSu+gkw8XhT/tjlFhj1a/M6ulqERZd33d/tKK9Yns7rbn09/OEP8L//mWApBxxg2rmCQVN3qauD4483bWJg2ssGDfqS27DwARO8DeBbj0Pl3iZYzLy/dc2TrDMBcnPtpvy1z+Pg9pmgbgv+vvpG8e9/d7VF/uIXaweDsSxTZuqxbMzk2a3TTKBIx+7ap5bHBJPqd/jGbHGvyOVgyRKorTVtmamUuW8eiZh77aNGbeIVKjjxN5bjmHz3rbdM+4fbbQJxd/TTyGZh773h3HPBdmy+/9z3mV4/nUv2uYSHpz3MRa9cxO79d2eP/ntALgnvfMece/2OhP3+Y8qtbbMg09q10lwcxx3ms89g9mxYtswc58mkWWdRkQlCe/oZPawTLh8PE08ydb3RV8Hwn0CwvylfZJqhfR643Ng2fPghfPyxCWybSJjrpcdj6vqWBeec08OAsfVvdQUBH/7TruBtbxzQdb32FMHA42H61eb9gW9An4PMNbNlateyfKVks/DII6a9YcYMqKoyfx39arJZ01fm1FN7tkvka6inbSQTToZlT5oHpxw1D8KDzfmXjZrpTs48WMntN2370TmQXGGOSztj8kpvEYQGQ9lOTJgA//gHfPKJ6be1/fZQXDjcMxlzbP7tb/CTn8Azz5g2jh/9CMaONcdwNmsejrB8uQK4iYiIiIiIiIiIiIiIiIiIiMg3yxcO4PbrX/+aY445hrFjx/LrX/+acePGUVNTw6pVq3j77bf505/+RHNzM7/61a82arnPPvsskUiEk0/u/sTRs88+mzPOOIMPPviAfdYz6uDZZ59lu+226wzeBuDxePjud7/L5ZdfzooVK+jfv//Gb6x8veQz5kmjqQbIJ02nNDAd1txhKB5pBqBnWiGxzDyR1E4X5nOZ+TxFULFHzzvNfUPcey/8+Mfm9QUXmI57/jUe5JrNwk9/CvcUxsbdc4/pGLt6XEbHMZ3/OrSn23l+7vPk7BwA+w/en23Ktllr/W8vfpsnZz6J1+3FdmzO2+08dqjuSY9bERERka3PlNopHP3Y0bgsF2fvcjY3TLiBf8/8N4+d+BhF/iKmTjXlqg8+gF12gYsugm23hXAY8nloboZ588xATsdxuPPDO7nolYs4dNihLI8uZ2nbUh478TG+s+1miJpb+wLM/j/zet+nYOCJ5vUH50A+ZcrW8cU9DuD2zDNw5ZVmgNdxx8Fpp0H//iYgWzptBoPk8/DOO3DnnWYQ6wUXwIEHdg18SiRMsOFAoHtQOxHpgaYP4cMfQ+tUE7Ch35EmMEM2agZptk435/aMa6HuZRO07TvTzKDN+gmw+BGzHG8pNH8Ec26BholQurO5RkSGQeunEF8KOJBuhNaZ8O5JZlBZv6NgzB8hsq0J+paLmWBx6UZTx3crGs5XUSbTFYwznzcDaAMBE3DT5drIheUzJliAnTGB/ywXuAPgiZh2nB54802TvzQ0wCGHmEAo221nBszn89DUBG1tG5GmjQ1uY+fMsW1nTUCUjm1wh8259E2x8CH48BwTeGHvR6H/UWawadMUwDbteYkVXQHcHKerfc/OYAJC+sATBpeHZ2Y/g4ND30hfjht5XOdq3lv2Hp+u+pSnZj3FUSOO4kc/gqefhjfeMMH7Tjmla1C3bXesyuG5uc8BcOroUxldNdp8jsP1/7uexkQj7y17j/0G78eVb15Jzs7hc/v49j+/DYDLcpHKpbju7eu475j7tsju3NwuuAAeeMAEm7j5ZhP88LjjTPlr6VIYP94MOB9+4Lu8s+QdAG774DZu++C2zmV8uOJD3lr8Fgdtc9CmTZyvFHb6A0z9DaRWwtuHm7zLzpiByptBLGaC2L32mrlmHH5413XEcUyQYceBX/5yIxaaXGmCnaZWmXMBVyHgqQ3uINQcCJ7QZtmeLe2GCTfw+IzH2X/w/vzjuH9w1VtXcdfku/jBf37Av0/6Ny7LZA5/m/I3fv7Szxk3eBz3Hn0vB/3jII741xG8etar7DPQ3Du672NzjpUFypi0fBJgzmGA8XPHU9deR9+aA6FyHxMw8tNLoW2m2Z8uHySWdqarJdnCvR/fC8Ck5ZPY8/49O6dl8hlu/+B2bjr4Jtj+clj1hvmtXt0TtruoUMaZvvE7o993TLnKycPCB2Gn6yFQBd96DKZfC0v/DS4vP/yhqf/MnGna4uNx+N73TF2pqckE+PF64eKLNz4JG6SgL71uxx3Nb5vNwuTJ5vpSVNR9HsfZTLewQv1hh6th+jVrTxt9BZQWAhYO+S4suA+a1vFwrV1v6yyj3XknfPSRCfSwpnB47c+2KnbebF/LJ+bcD9SYMojlMj+Ak4eKPZjfuAP33mu20+WCvfaC8vKu+2K5nPlNDzmkdzenN6TT5mFQ6bQ5nsHcVwyHTZCdhx6Ct982x8euu5rghF6v2Y/5vHn9s5/15hZ8jnSjybMBIoX7mnYG5twKzVNMPTgyFA54GWbfAs2TTd5RurMJDmS5TP3ATsPAEznxxG07gw5PmQK77bbu1Z5/Ptx1l2kbvOYauPzy7g8zqK83+67jQQgbFBnW9bp1hgnghmXKH0ufNEGNSnaEoT+AJf8yaW2eDFXfMm0AlXvCtKug/TPInsOpp57CjTeaxd1+uwmUvHoQN9s29cQeBXGLfgav7wfpetNWseN1EOwDK98EJ2sC1aTrC+fq+13narCfechE57mag8q9oGR0D1a6adXWmvbdl1+G6mq47DITOLy62iQtGoXp0zcigFtPL/wbm2c7ttmfTrZQ53YX6qtB9ZfYghzHBPfrCKJkWSZ4UijUva/Fhlx2mam7AdxyC/zqV2v/hB2Hxy3v3cL4z8YzomIEp+5wKlXhKi5+7WJOefIUPv7xx5R7/av1tQmYcwrMQxsaJsCSxwBYMnoGR393NNOnw/Dh5twfM8YEmQTT1rJsGWsflx0JW/PzjuBt3mJTJnF5oP5/MOdPEJ1t2iiH/pATrrqG//zHfOWpp+Coo7r3XUmnTR68znWuud7Kb5n1ZaNmu/oeZta76+2w+J/muu4thX5HdH3HUyjIZFrN9bLuJXMt7HMI5zz4Kg8X4ss//rgCtck69PR8eGWs+e+rNIEMAVa+CsufN/kywNi7TbDTpU9A8Shz3hRvbx7Sko2advbEe0yaNZJx43w4jrm39uqrawdaBbjxRhNQGsx9uyuv3DSbLPJVlc2aMl3HA2Eyma4HWoRC5mFrXzqossjmZOch02TK+3YGcEyAT3cQ/OWmnCciIiIiIiIiIiIiIiIiIp/rCwdwO+qoo/jzn//MxRdfzCWXXNJtmuM4eDwebrnlFo466qiNWu6MGTMYNWoUnjV6Ae20006d09cXwG3GjBnst99+a33e8d2ZM2euN4BbOp0mnU53vo9GzdMoFy0yHSrcbtNRfPUBpLZtOor3tDOkbAXm/RU++bXpWLzPY1C1rxkc2zoN6t6HxHIYcJzp0LbwAQgNgH3+DeW7mUFbsYWw7CnItJAfcQmPvrwb8+aZpwMffLDp6O52m+PEcczggR12MMdOr3GcwuAAu6szn+UyHasLnfwcx6EuVsfy6HK8Li9ZO8vgksHURGrWvcz1dFzde2/zZNUpU8yAiocfhpEjzcChTAYaG818RxwBL71kBnI+95zpnDt4sNlPqZR5Qny/frDzrhnu/ehefvfO73C73Pxm79/w+MzHOe+F8/jZ2J9xxf5XUBmqpK69jt+89hsenf4ou/XdjfN2O4+bJt7EXyf/lQv3vJBrD7iWIv8ao5dERES+iRzHdLp0coXyQUc+7gKXt8cBTmTze27Oc5zx9Bl4XB6OHXksjuOwz8B9eHn+y+z34H68cMYLJBIDaGoyP2skAhUV5q8jgJvLZTqKp3Npfvbiz3hg6gMMLB7Ibn13Y2TlSB6a+hBHPnokNx18ExfvczGWZfHpyk+596N7eWvxW5ww6gQmLZ+Eg8N5u57HcSOPw+8xx0g2n2XaqmksbFlI36K+1LXXMax8GDvV7ITH5YG+h8PQc2Dxw/DJb6B9ARRtCwNPNsEGljxqBjT1UH29KSMC9Olj6mH9+5vBp5mM+R+JwOLFZlCvZcE225i/qiozkC0eNx3lAwGYNcssL5k05c5w2OyvjmKubZv1TJtmOtxbFgwZYr5vWV3zuVxm0FnHPpnXPI9kNollWfjcPkZUjMBXCCwVi5kO/NGo+V5xsRksC11F6tLS1QaupdpY3LoYl+Ui7+TpE+lDTbgGy7JMB+oF95n6SWigCS7tDkL7vK4gNt5iGHTaNyvoj2w8x4FsqxmklU+bTvguL2B1DTL3Rsz05ArzPjTQ/FluE6xg0T+gbQb0OcwM/ootNIMRPzjbXAv8VTDwBHj/e2bgdKAaqg80g9WTtbDyNShrhEwzxBfBx7806/lWYUBZdK6Zr22mCdLVPh8a34V5d5n5+n7HDNCWjeM45veLLzZtBJHh5vfPxU2AAGwzQKN8t8IxsWk88QRcf725Xh99NPzwh+a65/WavCseN+936EksdjsH755iBulGhsJOvzdBM9pmmYD8rdNM0Iyxd5LxFPOfOf/h3o/v7cxTn5n9DOMGj+O83c5j5z47U1pqrv0NDSaIxPLlJn8Ih82Aq+Zm02Yxuqdj+nsS3CafNtvQ+D4UbwfbXwH+SnNOJZab/5YbdrvDnCPpJrMsb6n5XToCDuCAt8h8d2uVqDUDRxPLoXQn8wAFl89so5M3f6FB5rcM9je/YctHEOxryqiJJTDnzxCdZQLDNk+GeXebwH0732zKGelGE+iqZSpkW2DUpTw560kAvrfz90yApYKnZj3FyU+ezH/m/odMPoPP4+OFF0zgvvvvN21Yqw/kPvBAmNMyjcWtiwG49dBb6V/c1c48YekEXl/4Os/NeY6QN8S/Z/4bn9vHoyc8SshrgmtF01HOfOZMHpj6AL/a+1eMquppFIatV3k5vP++CQ713HPwn//QOUAeTLv6T34CN040UTrOGXMOl3yr617C7R/czl2T7+KGCTds+gBuACN/Za5ts24weUmmpWta5d4w8KRNurraWnj2WVPW3HVXOP74rgBuYMqBDQ2wYEFXsMC+fWH77bvfe3Ac0546LH4lzPyDCUY57gWo3NecG20zYNVbkG4wdbsBx27S7QBoTDQycelE4pk4VeEqVkRXsFu/3diheofOQGqb0rOzn+XKt66kT6QPFcEKznn+HABGVY7iqVlP8ft3fs81B1zD/R/fz09f/Cl9I32pDldz48Qb2aXPLvxvyf84/JHDee2s16gOV/PqglcBmHD2BEZXd124d71nVz5Z+QkPTn2Qy/e7HMa9aMoeS/9t6i6LH+5KlLcEKvbg7il3E8vEGNNnDONPH985+d1l73LqU6dy95S7uWzfyyipOQD2H2/qP9HZMGWNiELFI3t+nS7fDfZ53ATImnUjLP6XuXZ6QibgHIDbj89nglhfeqnJYx9+mM5AEB00mP7raddd4fnnTWCmyZPN/ZVvf9uUZfJ5E1izoQE+/HAzJWD0lSYQ0vLnzHvLAztcBaOv6prH7Yf9noPX9jHlfDCBTMb8GYb/qHO2IUNg6lT4/vfhlVe6vr733l2BIbZaK1+FCcebIDK73wuDTwMsqH3RnKvRudA6jVc/+Av33GPygYsugtNPN9f/QMAM9m9p+dw1fXXYeVPHzCdNeb2jfml11TFTrv6cdBK8+675+K67uvJCyzL7adkyE2Tn//7P1B323LMQFHZ4V2C/aNQEq+ypjz4y50tTk7l3OWhQ90A+jgM1NeY82mQGHGcCys79M7x3hqkbF29vAoW1z+uar3GSCQiUa4ftfgXV+5m2n9oXYdE/Tb0t+hnXX/8AP/uZKWtccAGcdZZp+wqFTNCzZcvMvrz1VlNO++tf4fe/h9tu63roQ20tzJ8PEyfCt761WlrXV2fpeyiM/SvMugkm/9gEaC/d0QRASzcUvuuCEReaYMsL7oM3xkH1ASb4m8tj6jIAlpvf/c781g88AH/4A/z97+bBFMXFps716acmzR0PDNtg2vzlJn9c9Tq0z4WmSRAeYtov6l4x9Q/LDb4KmHiiOVf3uB8GFSIl1b5o2heic03A1d3+Qjaf5b1l7/HmojcZUTGCWCZGc7KZw4Yfxi59dul5OchxzO+WWmnOBX9l97Z3xwGXj3R6IPX1pn0zFDKB22pqzP5wHHOd2KhYaz0N+NMTuSS8dyo0TTbtM6N+Y7aj5VOzj9tmmW0aezc5d4DXaHRcFgAAYFtJREFUF77Oo9MfJewNM7p6NC/Pf5lxg8dx+o6nM6B4AACxTIxnZj/DEzOfYMfqHQl4AkxaMYkTRp7AyaNPpjRQuvHp/JprbYUzzzTnhs9nzo8hQ8yxYVkmCFk0aoKA9iQY/oknmn4a06aZfLa0tOvamsmYtvXiYvBt+z8uf+NySgOlfGvgt7jzwzsBOHDIgby1+C2+9+z3eP7053HtPx6mXADLnjZBjGsOBF+5eSBiQcDv0L8/zJhh2n2WLzfHeizWtY0rVph+Jj0y5s+m/l//P3htL1OvC/YzbQWfXtpZ9/v2t821rqnJBEkMBMy9AL/fpKO21lwzt922B+sM9Yf9n4epl5hry6rXoXx3U2do+cTM4/bDtudDfAks/Du8dbDJByLDTXuV1dVOf845Jk+aM8cEtIvHYdiwrv4ytbUmrfvv38N9Il9dX+Y6Dabf2wfnmqCJL48xD0IJ1EDZLl0B3HBMG6RjdwXkcQdMG1vjJPjMBNnfedy3OO+8HfnnP82Do6680pTJy8vNUpqbTbnsggtMWeSpp0xAyMZGE1S2tNS0pa1cacq4v/jFl9gvImtynMLDd7Pd+zh09H90h3olqOyDD5pzIpGAH/3IBEqtqTH3O3I5k9dlMsBnd0Hdf019afh5Jq9M1kKyzpSrnFzhQQBrP8xWZJ021B84F4OpF5sHZBVvD/2PNm2KLZ+a+nq6yRyD/Y6ESWeZe7ojLoQhZ5pzqfE9047TPh+KRsCA400g2lQ99DnY1AnyKVPfcWxzb6dyr66A/p+bdtukseOhf7i654cur3mQhYh0ytt53lv2Hs/OeZbyYDkDiwcycelEDhhyAEeNOIqSQEnnfFNqp/DGojcYWDyQnJ1jVXwVhww9hDF9x3Rr02hKNDGncQ5et5d0Lk1ZsIyRlSNNfy/HhulXm/YAfyUMPt30P2qfZ+piqVXg8sOIC8zD95K1pu0lso35PFWPuT7lwVuCXb5X54PSUilTN/P5umfdXq9pk0ulTP0olTL9tjrGY4B5H4mYOquIiIh8AzgO5BOFYNNpzP1Gl/nf0S7grzL3oWSjJZPmvmJbmylnlZV19WfvKKeFQmbawoXmPkRRkRmj4PUWbv06ZnplZQ8fGiWylattr+XTlZ8S9oWJZ+JEfBF27bsrYd/W/uRB+crr6AMOdPavKcjms8xsmEljopGIL0Iim2BU5Sj6FvUFzMPg/vlPc03fdlsYN65rXBSY63RxcVe/95ZkCzMbZuK23GTyGSK+CDtU79A5Rmyd6erW/riR7fB2tqst0MkX7pdaXcv1Fpm/nmifb/oo5OKmn7m3qOuBiB1pLdnBjHsR2YB43IxPjMfNoRMOm77uHeUbxzHlm3DIWa0tu/BUUsui8xh2B8xDxXsomy2M7yw8aM61RtN4MGj6TsyaZfoSVleb9rKOtHWkr7zcTMvnzT2oTKb7w+otyyw7Eln3w7pEvkrimThvL36bKbVTGNN3DJ81fUaxv5jDhx/OoJJBZLPm4edz55pz69hjzTnScd6AOVd22QX8fodZDbMY/9l48naeERUjmLR8EnsN2IvDhh9GsV8Nz185PSmX2HlY9aYZ5+rymn677mDXGNqOcZNV+0Fh/PcmSZrjfNFeQMaiRYt45JFHmDp1KtFolOLiYsaMGcMZZ5zB0KFDN3p5I0aMYOjQobz88svdPq+rq6Nfv37ccMMNXHbZZev8rs/n44c//CF/+9vfun3+/vvvs88++/Doo49y+umnr/O71157Ldddd91an++yy9W43QGKipbidmewrI4CsYXjWASDTViW3Tn/8+O7BvAcc/TRna9rwgnG9K2nIphiSVsRTYkgDhDxZSkLpPB78ixsKWFWQ8Xn7CFj5crdiUaHks/7KS+fQTDY2Jk+23Zh216CoVWkIo20hltJeVP4sj7C6TDtwXZy7hzhVJiyeBnBbPfoYh3bsHr6ATKZIuLxfmSzYdzuFH5/Gy5XdrU5LNzuFADpdBm5nB+vN47HkyzsI7PfwMLjiXHg0EUMKI6RzHmYUV9BPOOl2J8m7MtSFUrhAO8t60ss03XAr2//elw2EV8Gr8sma7vI5k3nR5dl43Y5uCyHTN5NLOOlKpSkTyRBaSBN3rHI2y7yjkXImyWbd7O0LUJte4R+RTGqwkmK/RmyeRe2Y+FgEfLmSGY9fNZUSm3LAOLxvmSzEdzuFF5vDMuysSynUDdxdR47n8dlOfjcedyWTa6QJguwLAe3BeCQs114XDbF/iwel00i6yFnu3BZDm6Xg9eVByCa9lEZStG3KI7HZbMyFiaZdeNz23jdNsV+E6xwTmMpjVaetlAbjuXgz/gJZoMkfAnS3jRu201xophgNohJTc9ks2Ha2wd2Hge27cPlyuH1xolElhOJrMBxzHHS3j6QbLaIfN6PbXtxudL4fO0UlywkVvUZcX+ccDpMcaIr80t70zRHmvHmvdS01rCqdBVZd5byWDmhdKhzvmgoSjQYJZgNMiBWQb9IgrAvSyrnoT3txcHC787hddt4C/tzRXv3St/6z4cw6XQp+bwfjyeJx5Na7VrgAC7c7gQeT2atZa25PBubZZXLaA21UhYvw5/tqvTGgjHi/jh9WvpQ3jKIhoadSST64DguIpEVeDzx1a5LLtzuNJHyObSGWmkLt+HgUJQqwsYmFojhdtyUxEsoSZTgcTyfm7Y1fdn58nkfiUQNuVwIy8rj87Wvdh0x1wjLyuFy5UilKsjn/bjd6cJ1xIyc7qhsuN1pvN7k567TcSzq68cQjw8glwtQUrIQr7cdV+F8MfO4KCpaTGvrtsRig8hmIwSDDfh80c7rl+OYc6Co//ss6LMAgAFNA3DZXR0bVpSvIOvJMrhhMCXJknXukzX3W2UoQXkwjdtyaE35yNpuPC4bt2UT8uZwsFjWFiGd//zfy7ZdpFKV5HLm6Zdeb6ywnas15ODg90d7lLa2tiE0Nu5EOl1GUdEyIpEVuN3mWHccC9v24ve34nLlaG7enkSiCtv2EQg04nZn6cov3ZRVTmXpNh+S9qQZ0Dyg2zndUNxAQ3EDRakihtZ3Lzusb1sbihqoLaslkA2wXd123b4zt+9cUt4U/Vv6U9le+bnLAlhWvozmSDMliRJKE6Wdnyf8CRqKGoikImxTvw0DihKMrGyhKpSkPeMlkfViOxZFvgwVoRSxjJdnZw/DWe2aub7921jUyIqyFQSyAUbUjei8ztrYzOk/h6w7y+DGwd3Ss97jHIclVUtoC7ZREaugNN71nWgwSkNxA5F0hKGrtmGHqhaGlEYJeHKsjIVJ593YjkVVKEnfojjxjJfHZw+lqaiJpkgTvpyP4mQxHttDa6iVpC9JSaKEymglvryPvCtP3srjWA4ux5wPjuVgORYu24XbcdMvkqAmEsfrsmlMBEnn3XhdJk+K+LLYDixoLiGe/fw838Ih7MviddnkHYts3oWDhduycVngdjnkbYvG9kqam0eRTpfhdmcIhepwu9OFa6ZZktudJFc9m6WVS/HlfPRt6du5nrwrz4ryFbgcF8NXDsef67o2b+h3WFG+gqZIEyWJEoKZrjJWPBAnFohR3VbNoFgVQ8vaKPFnSGQ9tKb85GyLsC+H353H78nTnvYyt7GKbDZCPu/FsvKF9HeVOwEsK4/lTZL2psl4MuStfOfvYls2HtuDP+vHl/MyrCxK30gC24Ha9gjJnKdzfcV+k1/Nbiinub0PuVwQ23bj88VwuXKdW9jFobZ2X9LpMrzeOBUVM1bLk8z+BchXzGVx9WI8eQ9DGoZ0HiO2ZbO4ajE5d44h9UMoThWTThfT2jqis2yQywVwHBdudwafL0qfPh8QiSyntXU47e2DSCarC2WHLJaVx+QhNgMHvspuAxcypDSK35NnVSxEMmeO88pQypQ/sx6emLltj87VpDfJ0sqlnWUNb97cocx4MjRHmglkAwxqGIQ/v2YlbfWyU9e+M/vWi+O4cLky5je0uo/NcLxJaiuW4+DQt7Vvt+OvOdxMNBglkA3Qp61PZ5kqFutHJlNSKFP5sKwcHk+ScHglTt+PaQ214s/56dPap9v1ZkXFCvJWnupoNVl3lpZwC/6cn0iqq+E6587RFmzDn/NT1VZFypeiNdyKy3YRyoTw5rxkPBmSviS2y6Y0Xko4HcbCwuvKM7SsjfJgmpA3i8tySOc9tKZ8rIqFWRXvKrt9Htt2kUzWFMrfIfJ5P47jweXK4vXGKS5eSCjUQD7vIx7vQyJRQz4fLMxn4XZn8HpjlJbOJZmsIZ0uNfWm4Co8nnS3OovjWPj9zcRig0inTaNqINBQOA+hq9xi448soz3YTiwQw5f3dZZHE74EGU/GlGWTxaSig4jH+5LLBQmFGvD52grHbtcx4/HGsIPNRENRMu4MgVyAUDpEypsi5U1hYVGcLCaUDhaurQmCnnxnGcJxIOzLURFMks67+WB5H2KJSlpaRhX2h79b+cZcC9NUVEyjuXkHUqlyvN444XAtbncacAp1Gxdeb4xIpLZHv1VDUQN1pXWEMiGKUkWdp0DSnyQajFLZXklNiynHNxY3UpQsIpwO47Jd5Nw5osEoGU+G/s39KUt0b9Re37m6pp7M92XLtmlPmrn95gKwXe123c7VVSWrWFmyklA6xLaruo8C3FTbMKQ0yg7VjZQFTD06nXPTnAywpK2IWQ3lZHpQfgx6cmxX2ULEl6E5GaAxEcR2LEoDaYKeHEFvjnTOzaerqnBZDjXhOP2L44S8Wfxuc/ymC3XtuvYwdTFz7SgPJhlSGiXiyxHw5MjbFomsl+ZkgGXRCImsF48rz8DiGDWRBAFPDp/b1IU78sZFLcWk8x5C3iyDS9opC6YIePJ4XTaZvIt4YXnzWsPUR5ppKG4wx1yyCG/eS3ugnfZgO/6sn76tfXEsh4XVC3E5LgY2DcQqlO8dHJZXLCfnzrFN/TZs57UYUhol5M1R1x4mkfXgcdn43HlKAya/nNtUSmOi6/q13vqPlWduv7md5bqSRFcdYWXpSuqL64mkIgyrH7ZJj5H2QDvLKpZhORal8VI8tjkWkr4kreFWSuIlDGjuz5CiJNXhBG6XQ2MiQCbvJuDJE/TkqA4nyNouPqmrpr0H7TI9TZvjQDJZTSJRTSZTDDh4PClWr7MEAk0UFy/d4LZ38LlzDCltpyyQxuOySebc5prvcgh7Tf3/k/pyloSbSHvSFCeLO/NygJg/Rtqbpixe1lmHS6eLiMUGkk6XkM8HCm0a2UK+Wkdx8eIepa2nAp4cg0vaKQ2kcLscUjkPtgOewjYkcx7mNJYxqKSdYn+GtpSf5qQf27GoCKUIe7OEvDlSOQ/vLhlEOl1OPh/AsvJ4vfFCXbqj85qpc7dULWRlyUrC6TDDVw3vTEvGnWFuv7k4lsPwlcMJZT7/OHdZDrv2radvJE7WdrEiGiGVc1PkzxD05CnyZ0zalvahf3GCimASj8uhLe0jZ5v2trJAiiJ/hmjax8d1NYBDdTjJwOJ2woXriONYpHJuomkfK9rDNCeDDCxupyKU7Gyryzum3bHEnyaTd7GgpYTJwUYcHKqj1d22J+fKsbx8OQB9W/riz3ddw/N5D01NO5FKleHxpCgtnU8otIr2QDtNkSbctpuBzQO7/Y4toRbaQm34s378Ob9pj8oEqYl2fzhCXUkdaW+akkQJ7cF2WsItlMXLGNQ0qNvvMKffHLBgeN1wllcuJ+lN0q+lH1XtXQOX2oJtLK5ajDfvZfjK4czrO4+cK8fQ+qEm/y1YUbaCxqJGipPFbNs0mIgvi9eVJ2u7yeZdhd+xow0VMnkXXpfNTjWNVIWTNCcDtCT9OIDXZTOiohW3y2FGfXnh9+raby0t25NMVna2m5eWzsPtbWdppTmna9pqurVFpz1p6kpNlN5hrf0YU91CdThBIutlZSxEJu+ixJ8h4MkR8uaIZXx8sGLjo6p4XDY71TRQHkwTz3iZ31xCQ6Ln5dCNlUqVE4/XFM5HX6F8bhfa1JspLZ1XuM6UYdtu/P7WQvtx17XQ40kRDtdRFUrQt8i0ZTsO5B1TVvW586Rybha3FrMq3tVRrKfX6fWxLZvWUCvtwXYCmQDBTBCX4yLtSZPwJ3Dbbspj5QQKbU99IzF26dNIeTBVqN9bxDJeVsVDzG4ooy4WweOy2a6ime0qWynyZQh6c+RsF+1pH6viQT5dVcH0YDM5V46KWEW347fjGLGw6NPch5XlK9dZT4oGozSHTXtxUbKI5kjzus/VcAttwbbO+lSHgCfHjtWNlAYypPNu6tpDLGwpIe+4qC2tJePJUJoo7dZG4+CwtGIpjrX2NWZAcTvDy9vwumyiaV/hdwp17uOOdhQAy7GwXbZpR3FcuG33am3xDv2LYvSJJCgplEPa017qYmFq2yPYTle907ZdtLVtSyzWt9BmF+2sI3W0e5UmShnQNKDzO0lfkoU1C3HZLrat25b5feeTc+XWao/quN64bTfbL98eFxsfxG9LlOMdx6KtbRjJZBX5vI9QaBUeT2KNthSLcLi2W9vw+paX8CZYWLMQgH4t/bravXCoK6sj78ozpGEIu4ZyjKpqIeDJMbuhnHjWQ9iboyyYYlBJO45j8cnKqm73/9a/DRTKHx7AKrR5rH7fwfzmpj3BfJpOF9Hevg2ZTIRsNozLlSMQaKGoaCmBQPN69+OX57BjdRNlwTSzGsq6lY9X53Hl2b1fPeAwo76yW9my29Ici6am0SSTVYTDtZSVzcWyTNtF2psm7U2Td+Xx5r04OORcOdy2G3/Ojz/r73ZcZjJh6ur2pb19AGARCq2kpuYjwuG6bvO0tIyipWUE2WwRlpUnEGimtHQ+5eUzcLk+/94vgN+dY2BJjMpQkoAnj8tysAuX83TOQ308yIKWUmzbU2irqCaXC5PP+3AcT6H9JkFx8RISfaeysszUIytiXcdL2pOmvqSeQCbAkFVD+Kz/Z+RdebZp2IbiZFc7ezQQZVH1ItyOm6F1Q5nfbz4AI1eMxLdau1VdaV1nXWRU02B2qmmiX1EMC6iPBzvbFwaXthPxZVncWsSzTUGWly837WCNXeWWnCvH4urFAAxfOZwdi9JUhRI4WCxuLSaTdxH05PB78pQH0+Rsi0UtJTQnIoX7iKXkcpHCfYfcam1kLiorp+FyZUgmq0gkutpxuuerrVRWTu/2m2zoPnd7+4DO39vc5+5q93QcF35/C15vgnzeC7hWOwe732OxXFkaSlZRX1JPKG3aPtZs0+jX0o/yeHnhWw7blEWpDCUp8mVwWRDPemhKBFgWLSKR9eJ15elfHKcmHCfozeNz53EcOu9v17ZHqIuFO7clGh1MJlNEPm/aGjvu3RcXL+y8B+Q4FolEH6LRIWSzEcDG72+jqGgpwWD9RvatdRhc0k5VOEmJ37SPxTJe6uNBlrUVkbW77s0PL2+jLJCi2J8l71hE0z5q28PUtYc722MdB2KxgSSTVWQyxeTz3kLbUx2RyNJu5+DnifgyDC6JUhow5QwLh6xt9ltTIsCi1pK1zlW3ZRfqD5AqnKuz24M0FjViu2zCqTAe22OuN+4csUAMf9ZPZXslGU+G+uJ6kv4koVSI0kQpSV+SWCBGzp2jKlpFRbyU7cqjlAZSZG0X9fEQ2byL0kCGkDdLWeF8mLyiD8mcp7MfRjJZjm37yed9po+AO4nf30Jl5cyN+bE2maAny+DSdkoDaSxMfdUptPmGvDmSOQ9TVpazItJE2mvq3G67K0hVPBAn685S0V6BL+ejvqQe27IpThZ3tsuAuaePA9XRatx5N0l/kqQ3Sd6dx5/1m/tQhTwgmAkSzHTvu/Bl2/hKAyn27L+K8kJfnpWxELbjom8kRnkwTcSXpTnp5z8zdqehYWeSySp8vijFxUsK97DN/Qnb9uDxxCkqWrHRaduQbDZILDaATKaEXC5YKN903VdwHBfV1Z+sdn/m88tUmUyE9vZBhWV2tX34fFGKipYS7TuNlDdFSbKEsnhX+2zeyrO8cO+iT2ufznpBRTDJ4NJ2inwZ/B5TV2lNBVgeDdOcDAAWuVyQWKw/yWQl+byffN6PZdl4PEl8vtaNPs7D3izDylsp8mUJebvqIo2JIMuj5t6641gkk1XEYgMK9xQ67jul8fmilJbOx+dr36j1VocT9C+KURpI43E5nfWfpW1F5OyuOnbHtbDInzXXvIyXhkSQ5dEiMoX+TKYc1/16bvrLRCkpWUy6bBEryld09tvx5XzYLtPvIxaIURWtorqtuls5aEPHXLE/zajKZgaWxAh5c2TyLvK21dkuuyoe5MXachbWLMRyLAY1DcKyC+eaBcsqlnW2oe4czLNTTRMRX4Y5jeW0pvx4XTYhb5bqcBK3y2bqyipK/GmGlkXxuGyWtBWTyHqI+LIU+TIMK28jnXPzyoJBfOZkqS+uByCSjhBJRWgLtRH3x/FlfVRHq4mkuw+4+LLtlD2VywUKZQN353297vdMWa1vxIZtrvhSHfsz4ssQ8ubI5l1E0z5WxkLUxUzdMezNMqiknfKg6aPY0b8uWWiPn99cQtZ2Y9su4vH+xON9yOeD5HKBwrkaJxhsoqzsM8DUQc392ipyOXPPzuXK4fNFiURWdCt7b8hufVcxpDSKg8X0VRWkch6K/RmK/BkGFMfI5l18uKKm897DhgQ9OXbvv5KacJKWlJ/a9jDZvIt+RXHKgynKgmna016enDWi2/fWd4xEg1GWVC7Bk/dQFe1qk8u78tSX1OPJexi2ahgllsVONU30LYrjdeVpTfnJOy7clk3/YtP/4u0lfZlYvIKUN0W/ln7d6tyNRY2fe69gzfRZOIyoaGFoWZSSQJq2lJ+sbc7pPpEEAPOaS2lN+dmuooWQN8u85lLiGS9hX5byYJohpVFsx+LDFTW8PfNgYrGBZLMhSkvnFfpydT3dwnEsQuHlNFQvpKmoieJkMcG0yY8dy6E90E7Sl6RvS18qY5v2ISP9i9oZVNKOx+UUys6eQl+TPKWBNC7LYVFLMRFfjsqQ6UPWlAyQzbvxufN43TZhb5acbTGvuZSkbZF3dbXLuGwXdqHs6bJNu8ya7R4buo6k06XE430K7XzmOt414MYiHF5JVdn8bmWqeKGfkeNAn0iCTN7NnMYyVrT0I5sN4TimTLH2tcXC440SC7fSEmkh484QyoQIpUO0hdrIerJEkhHK4mWEsgFcltNVXlhtgHtXqxPEPWmWVS4j685SFi/DV+iz03E/KZKKMKBpADX+XOE+TEffNhdel4PbZfq22Q6siPasb9ua1jdfVSjB3gNXUhpIM7+5hJWxMLYDJf4MZcEUQU+euliYWQ3lBDw53JZDJu/CdlyA09mfFiCZ9XTWWTa0TpflsF1FM1XhJLlCOT6dcxP2ZQl48oS8WTJ5N5+urKDYn8XnzpO1XWTy5t6U123aBdyWqZOYctDa2/rF2scchpRGqQkncFmwMhYilXPj99h4XeZeDFjMLuyPAcUxiv0ZkjkP6Zwb24GgN0+Rz7R/friihmJ/trNcs3r/q6Anh2U5tCT9zG8uZXDhPlzWtmhP+7AdC9ux6Ffom7yiPcKM9gANxQ20B9oJpU09Ke1Jd/ZVr4xWUh4vY3RFK+XBNFnbxZJWUy4Kec3+LfJncByLz5pKaU+FcZxCPdOVB+y145560rSF2mgJt2C7bCKpCN6cl7ZQG3lXnpKEKcvm3DkWVy3GsRwqo13XKMdyaChuwJv3sk39NkTr9qCtbRjZbIjy8lkEg42d6+7o9+7ztdLQMIZEogbb9lFZORWvN7la+cAqnPu1uN1d19EvW24pDybNPZtQisZEgNaUaRv3uGy2q2zBZcHUlZW82xagtqwWx3JMv+9MkJw7R3uwnYQ/QVVbFZXRSmLBGPUl9TiWQzgVpihZRDQYJR6I47bdVLdVU5Qsobl5ZKHeUEww2ITX275aXcTCshzK+nxAfUk9LZEWIqkIxQlT34uGorQH2ilOFlPTWtPtPtyGtjXtSdMeMOnNu/KE0iHS3rTp3571U5QsIpINsk1p1By7tovmZICs7SLgyeF32wQLZd1Z9RWk0qXYtg+wO/sFOc7q5TIHrzfRo7T19PdqbR1WGGsRIhyuK/ThLQRdxMJxXITCteQDbSR9SbKeLDjgy/lIe9O4HBe+nM/cn7FdNBY3kvamiSQjXXVuC2KBWOdx7bbdNBY1do4N6bgfnvVkifvjePNeKqOV2JZNW6iNtDdNIGv6I+XcOZMOd5biZDFFySKKfTkGFrdTGsgUyoym353X7VAeTJLOuZm+qpKaSIKKUArbsWhO+snZLvzuPEX+LKUBc7/2jXkjaWsbRi4XxuNJEA6vxLKy3WM3unLYtpdodBvy+QB+fzOh0Mq1+j67XBl8vvgGf5eNkc0Gqav7FqlUOW53hvLy2bjdyW5jhQD8pQtYVL2IjCdDZXtl570CgKZIEw4OQxqGMMxHoc08xYpohLa0D4/LIeTNMry8DYBPV1bSnAwwqqqZEn+GuliIWMaHyzJjQHaobiKV8/D24v7dxjNsKO+K+DL43DZ52yJdyJM8LrszL8zmLaJpP47TEfQGTH8wWLseY47RjvNkzb6qHd9NBGLUF9eT8qYIp8OUJkqJ++Odx2VVWxWlidIetd/Y2LSGW2mONHdelwLZgDlWC308KmIV3e4Lrr68dbUDd4zvcLuTq41j6hp/YMZ9pD83bVah30LImyVnu4hnPdiOq3O8T0d9ekV7eLV9++WvI4lEJYlEH3K5EH5/W+f1t4uFzxftdv3a0LiCeLwfmUwRjuMiEGgt1G1XHxMHgUBrZzttR7tkVxttoRxp2eCNEQ/ESfgT5Nw5/Fk/tmWTdWfx5r2E02Hz584T9OZwWZDKucnbFi7L9Efwus21uD3jJZPzY3e0p7jWrm+bcz/f7ZMvm6/mrBwJf8JsgytHIBsg78qTc+fw5r2E0qaM3dP2lpwrR8aTIefKgQWevIecO4flWLjzbnx5X+f121lt+yyszvcd54rHMv3jPS6bbN5NzjZlEHM+mz7y6ZybRNbcR+yy7jaJTKaETCaC43jxeGKFOobdrc7i9Sa61f/Wt61+d45h5abfezzrpaXQbyniM+VinztPNO1jWbSIimASvydPPOMlnXeb371Qj3NZDtG0v7M883n7typk7pNbmO+Zukgej8sm4MmTdyyWtxWRzESwbfNQIXOMr3lvBzPW0XKw17i2OThYWFiOhYVFPhcgkykqtJnmC3lDR5mwUJd05XB5zHmQd+VxcHA77s5ld9z3d+XdZDMl5HIhbNtdKDtm17gGW3g8cXDnyFt5U0d1zDLW7Efg4JDwJ4gFYmQ9WTx5D+68m5QvhSfv6TwHXbaLjCdDxpPBdtl48h4cyyHvyuO23fhyPnw5H9lMhGw2UmjbThfqtE7nnjHj05I9KtvatqvQh93Ug0w79mpPzizoaV7eNxJjcGk7XpfN4tZi4llvZ/tjR9+JlbEQbsumTySBx+XQkAiSzrkLx6QZY5p3LOY1lRHLerAtG8dyzG/umDaNjt/e5biw895COc7kwWaclKmbd4wRtSzwB+tJ+VIkfUlyLnPtsLDIuDO4bbe5j5ENdiszrL7vvkg7pcty6FcUo8iXIe+Ytr+OspfXbeMv1E8XtxZ360eyPqlUOe3tg8hmQ/h87QQCTd2uBR3jg3O5IPG4yZMCgRa83uga12ULjydKNlvSOf4vEGjG40lirjer5zUtPRpba9seUqly8nk/prweX+tYsiy7x8dSzpXrHCObd5n7Tll3Fsfl4M2Z+06BbIDx41/43GWt+dutf9ykt7A/TB9Ojye+2n7r6MOZx+eLrXN5a64nb+VJe9Mm3ZaDJ+/pbN/y5D34cj68eS+lhT52YJHMuckXxiC7XQ4el43tWDQl/aTcWVLeVGd+5cl7yHgynXWRQDaAz3HjceVxWw55x1qtvYXO/znbIpPz4jjuzjpiV5mle7nTdmVJe9LkPDlsy8ab95Jz5XBwzHinnB9PoV3JwenegLXa6448c2PGOH+ejDtDS7iFjCdDMGvuQ+atPEmfGaNVlCyiKFFMKjaAVMrc4/L7mwvjWe1ufRz8/qZu44jXx23Zq42Jc5HJuwr9nu3OMlM2bxHLmv2Ud5uxYS7bBZbpe+ZyXLjzbjy2ub6lPWmynmzn/l19PJkv68OX91FeGG8AEM94ydmmnmfKtnlsx6IhEeq83wUb7qNlxkS5Mb9zbh33QJz1luXWKlPl/IX+Um7c7mzn9Xd1LleWnNdcf9OeQltBzk/ak8bCMnXpdBB/3oe3sC8dKFwXTT7usiiUwqxCWcbUpzJ5d6FtzLS3eFwOFg7pvJtoxmPOQU+WvJVfK1/15/z4cr4eHZcWDkPL2qgMJck7rm599/3uPGFflkzexYyGUlr9SdqCbZ33yD15D0lfkqQviS/nozRRijcTLPQzqCSXC+P1xgr9b8C0Q7jweBL4SxfQFmoj5UsRyAQIZULYlk3Cb8Y7FSWLKEoWMaQoQZ9IHI/LYVU8SCrnwec2x0exP4PtWMxpLKUtb5HxFsrAmDJw1p3FwlxT/Dk/EZfD9lXNRHw5GhMB6uMhbMei2J/u7EeUzrmZ3VhROFrWXabt2K+VoQQDimMEPTkaE0GShbT53Xn6FsWxHYv5zSUsj35+QDjH6RrXZ/oGrV5+7IqB4XInsd35znGzFqbMkHflzfXTNmWxnt5TiMX60dIyklSqAp8vSjBYv1r9zNz3D4dX0tKyLYlEX3K5AFVVnxZiVnTPfwOhOprKl9NQ3EA4HTbtRo6bjDtDNBQl78rTr7kfpcnSHqXN47Lxu3OFdgQ3+cLP4bLMNcsq1EVcltNZ10vn3OSdjrqeyWvA3LPP5j2ddT3LsrtdH9bX5rCp7/1uaLx8MllNPu8nElm22vW8IyaIRcDfxk59aykNpEnlPCxri5DJu4n4svg9eSI+0wdgXnMpFcFU51iuWMbc/+m4F+t126RybhY0DKC1dVtyuWDnuDyXqyO/6CobOI6HWKw/2WzEnLv+1rViKvh8MVKpMuLxvti2j0hkBT5fe6GeYWIgOI4Hr7e90CfL9FsMBJoL14euc8309a/vcT/Jnuzfjjyxo2ywrvrq6vt6tW+uORcONmlfiljAjPdxcDrjn7htN4FswNwXyIRJp4sLfVCcQqyPfLflWpYpV/ZkG2zbg217CttgrxEfp6NOaNOT2EIWpm3Q63bI25Czzf2ajvPG5FXmvHHWqD+s/lt17FvH8RTGDbuwLBuXK7fGb2rS9sKLz66139d0zNFHY2Nju7rqSS7HhW3ZXfUk24ULV+d8q0+zLVNftRwLt+Mm5MnTJxIn5M0Rz3pJZj2FsSdm7LrbcoimfSxt7kMyaWKMeDyJwjWue13E40mQjdTTXNRsxi6nQ6ZObDmkvWkSvgRFqSLKYmWkk5WdcX5crnyhHc3uPB/ARaRkPq0lKzvj1fhy5n6oYznE/XHyrjwV7RVEMqHO9peOe7kdv4WrI4i1Y5F3etKH3qEmnKQsmMJlObSm/GTzLrxuG7fldPZzWtpWRCrn7Yxfsubvvr7jYUtdM7eraKF/cQy35bA8GiaV8xDy5grxCMw9mim1NbTEqgrjt03Zo3v9xzC/9QaTYb7RrZxpryNGCoXPe9a/tH9RrDO2RXMy0BnbIuDJURMx94Q/rqvqFs9qXbLZLC+//DJtbW0Uf86TZr50ALdNbcSIEQwbNoyXXnqp2+cdAdxuvPFGLr300nV+1+fzcc4553D33Xd3+7wjgNtjjz3Gaaedts7vptNp0umuhvhoNMrAgQN7tBM3mp0HJ0fHk8ZN9GEPuNwb/t4a0mnzpL5k0kSA7IiQ6nKZiPZVVV0R8LP5LA2JBhzHwWW56BPpg9ULTx5cS6bNRKHtjHRM151RdxCCfdf/XZGvmWdmP8PVb12Nz+3j1NGnctsHt7FLn124/qDr2bXvrtTWmqfYLlhgop/vsYf57y5cOmzbRFreffeuZTYnm0lkzQ26iC/yjX1y+bvvmii60aiJKF9RYfbb6k/+6NsXbrsNZs40EaaPPdZEy159PoBDD4VPV37KGc+cweyG2fz2W7+lb1Fffvv6bykNlPLgsQ9y+PDD107El316ci/K57vymny+oyBvIhEHg+Yp4c88Y+b5xz9MROKiIjM9nTbRv4cMgQb7Mw59+FCWtC3hkKGHsM/AfXhuznN8uupT9hqwFy+c/gIVoTUCma5ZQy9IZpPsft/uzGyYydh+Ywl4zM2edC7N5NrJjK4azZTzpnR+vqFlAdiOzZ0f3snlb1xO36K+3PTtm7j1/Vv5cMWH/GrvX/G7A39HIBc1T65O1sLQH8IO10KgGla9AYllEJ1rng662+0mb19zvWusM2fnOOJfR/DawtcYWDyQHWt2BOCj2o9YFV/FaTucxqMnPNo9v97ANqRyKX758i+556N72KlmJ64ddy23vH8L7y17j9N2OI17j7qXIidpng7fOg3Kx0KfQ8AThvoJJu1OFoIDYPtLzG9v5/mo7iMaE414XB68Li979N/ja/cUkVfmv8I5z59DS6qFWw65hTmNc7j9w9vZZ+A+/OO4fzC8fHj3L2zgd+hY3pVvXUk8E+f7O3+fu6fczZDSIfzhoD/wrUHf2sxbs+Xk8yaqfzxuIvZ37JaO/34/DBgA//z0n5w3/jxsx+bK/a/EcRz+MOEPuF1u/n7M3zljxzO48Ua46iqzzN/+Fn74Qxg0yDx1M5GA2lpzTTnuOPj0U/NUpzfeMHmee7UidCIBHrsF35wrzXFeMhpqDgZPBJre73rCfKAGRv6q+2+5get0OpfmsRmPcc9H97BX/72IZWJ81vwZF+x+ASeMOgH3RpbjRbaUiRNhv/3M66OOMvm117vh72wqcxrn8H/v/h8Tlk7grJ3O4unZT7NN6TZctu9l7Dlgz875Pmv6jLsn383S6FL2G7QfL89/mcOGHcYPdvkBZcGyDaxhC9rAdf/kJ0/mqVlPsfeAvRlVOarz8xfmvUB9vJ7xp4/nqBFHrXt5n1cuXN988SUw8SRongLB/ubJ56EBpm4983ozzz6PweDT1l5WT9b7FRXLxPjvvP9S115HZaiSxkQjBw89mNHVozvnmbBkAmc+cya17bVcM+4a/B4/V755JRWhCh4+/mEOHnrwF1v5BvbvR7UfccjDh9CSauHAIQcysnIkE5ZOYEb9DLav2p43vvcGfSJ91r28L/FbxTIxHv70YZ6Y9QSHDD2EGfUzcFkuLtjjAvYasNcXXq58PWTzWU57+jSemf0MZYEyThx1IrFsjMdnPI6FxV+P/Cs/GfuT7l/6BlxHtrTa9lrG3juWVfFV7Fi9I8X+Yhwc5jXNY1V8FZfscwk3H3IzH9V+xP4P7U/ezrNTzU6UB8uJZWJMXTmVVC7F86c/zxHbHsEbC9/g6MeOJpVLcdA2BzGgeAAfrPiAOY1zGFU5ird/8DbV4eqeJa7+HVj6BCTroP+xEOxj8pn4ksIdwBz0OwJKd9y8O0m2Xtl2+N8xUP82RIbBsHMhMtw8nWj61aY+NvBk2O6XMOF4SNfD4NPNZ8E+pl72zhGQjcIu/wejLu7tLfpai2fiHPv4sbyx6A0GlwzmxFEnsrhtMc/MfoaIL8J/TvsPB21zEDdPvJlL37iU4eXD+dbArvaLScsnMbdpLtcfeD1X7H9Fz1ba0/tPa+YpW6oNtWd3gZnTOIcf/ueHfLDiAy7e52LKg+Vc9dZVjKgYwYPHPsjYfmMhVQ+tMyDTCL5K8JXS9cRQ2xzvJaPBvdrgIuWrm0UqBb/8JTz0kGmXXp1lweOPm7al3/4W7rrLPNkyFILhw83TNBcvhro6mDIFdtttjS932My/13/m/IcLXrqAdC7NHw/5I0/OepKX5r/Ez8b+jBu+fQNF/iJ+9cqv+POkP7N7v905ekRXh4kX573IBys+4MI9L+Qvh/+F0546jX/P/De79d2NYeVdgSBeXfAqbak23vr+W4wLe009sv0zGHKWydudPDR9aJ5qb2eh5tsw+FRum3Qbv3ntNwQ8AX53wO9Y0b6CW9+/lcpQJU+c9AQHbnPgZt03W6Pl0eX8/eO/M7txNvsN2o83F7/JuMHjOGuns7aeNg3ZbOra65i0fBJ+j594Js7g0sGM7TcWl9WTTlqySW3oOt2TPD+fM9fBZJ25BvorTLm247d0bPBXQ3D1ANbmqci23dXB2OPZcm2v69TD8o18tSSzSZ6Z/QyvLHiFvQfszScrP2FI6RC+v/P36V/cf+0vrO98aJgIbx0K+aSpg434Obj8MOdP0PQBNL5r+mcdNoUJSyZwxjNnUNdex9XjribkDXHFm1dQGijln8f9k8OGH9Z9HXbGnDuOCWaI5TLnkMsLK1+HlqnmPCrdCbxFkIub7+CYcnOfQ8y8wOyG2cxtmkvAEyCdS7Nr310ZWNI9MLd8zeTiEF8MmVbTd9JbxOqdbgFTn+rRspKm70Z8MXiKIDIU3AFz3IM5RgM1ULJ9j5M3s34mF758Ie8te48r97+S2Y2zeXzG4/x07E+57oDrTJnvtW9B43tQugsc9LrJR5omQ3QOtHxs7k+POJ9FdojDHjmMec3zOGibgzhwyIH8Z+5/mFI7hT3678GLZ7xIZWiN4GfrO6fn3weTfww4cODrUHMQZJqg7jWIzYN0E5TsYM6vlo8g3Qzhwaa+uvqIRycPZbsyd76fOXOguRlqakxfKY/H9Avq6FO17bamj9qU2in88b0/srRtKUdtexSPzXiMg7Y5iF/t/SuGlA7p8b6VLy+ajlLXboIlelwehpQO+UL9FnJ2jvFzx/PI9EfYuWZnGhONRNNRzt31XPYdtO+mTvbaPq/OnU9BLtG9vzWWyTu8xeDyrP2dL7vOzeXL3iP+CmhNtfLB8g+wLItMPkO/on6M6TNms/dVb4g30Jw0DzIIeAIMLh3cbXpjopGbJ97MfR/fx/d2/h7NyWZemv8Sv97711y454WEfWFsG1atMv0cEwnT58nr7f5z9Olj/i9davqhWpa5Nrpca18z/avHGfqyx9zK12HZ06YdcsBxpr9iNmr6KzqF6/mAY6F4O/J2njcXvclrC19j+6rtmdc0j8Glgzlp+5MoD5Z3W+zM+plMr59OxBchlomxS59dGFk5EoDly+GKK2DGDCgvhzPOWLsvrcsFhx/e9Ru8OO9F0rk0PrePrJ3liG2PYEDxgLX3wYZ8BY97+WqrrTV/sZjpCx0Om2O7K2g6jB5t6mb3fHQPN797M/sN2o9+Rf14eNrD/GjXH/GbfX5jynFNU2Dlq5BugMpvQaDKlFEzLZiylw01B0Ldy+b+GkC/I8FXAcnlkGrA3FNwYNufgL98Aykv6OVzZkV0BVNqp+D3+ElkEwwvH85ONTt9qeWtiq/CwsLr9jKyciSeL5LXi4iIiIiIiGxl3ngD3n7btEPsvjsMHWraEE0wM9MHYdgwKCmBZcugrc20NZaUmDa51dsfhw417Rgroit4cOqDLGxZyNh+Y5m4dCKHDjuUk7c/+Ws39ldERKQ3RaNRSkpKvpoB3Pbee2/y+Twffvhht89nzpzJDjvswD333MN55523zu/27duX/fbbjyeeeKLb5y+++CJHHXUUr7zyCoceemiP0rExO1FEZFOxHZu69jocHLwuLzWRms//kvSKZDbJVW9dxfT66fjdfsqD5fzxkD9SFa76/C9/DTmO6cy5apUZKJcuxOX0+01AvCFDzOva9loOf+Rw5jfP50e7/og7PryD72z7HZ48+UlC3tDaC95AB6bpq6azx/17ADDx7IkA7Pug6Tz44bkfdgZE68myOixsWcjdk+8m7+RxHIfTdzydPfrv0X2m2GJILDWdiO002DnTIdAdMp2AS0Z1n38DHeui6SjfeuBbzKyfybOnPktjopFzx5tOkK+f9Tp+j3/dy9rANjwx8wl+987vqApXsSq2iov2uogf7fajdc4rXVqSLfzund/RnGomZ+fYre9u/HKvX3YNtvoCA19q22txHAe3y712YJZvmPeXvc9x/z6OIl+ReQJYNsFzpz7XGcTpV7+CP//ZzHvLLSaAW9lqYxzb282g2tdegwcegFmzTLDIvffu6kAej0NDgwkqOXjw2mlYJw1okm+AWbNMILfFi837vn27Bl3k86bz4fe/36tJ3PptIP9dEV3ByLtGEsvE+OWev2R09Wj+/snfmbR8Esdsdwz/Oe0/61/eF+2c/9ZhptNneDAc/in4SqD5Y2ibAZMKP+Y3MIBbTzUnm/n5Sz9nUcsiPC4PfSJ9uPOIO3se1GhdPmf/Tl05lYP/eTBet5drx13LL17+BdtVbMfr33v9y61X5EvI2TlOfepUnpn9DNcdcB3/W/I/3lz0JncfeTc/Hvvjtb+g68hm8f6y9zngHwdQHixn6o+n8s9P/8klr1/CYcMO479n/rezPvLs7Gc58YkTGV09molnT+SEJ07gzUVvctvht/GLPX/RubxXF7zKMY8dw5DSIVx/0PV895nvMqR0CG//4O1vfJ1ENrGpv4XZ/wdYcFytCcrWNgumXWkGLadWmWBt8cXQPBmKt4cjZ5rvLn0C5t1t2lacPGx/OQxf9z0f2XTSuTQnP3ky4z8bz1X7X8XD0x6mNdXKf8/4L3sP3BswAT7H3DOGmQ0zOWn7kzh6xNG8NP8lHp/xOCMrR/LpTz7F597wE6a+tK1wgKrt2Nz70b3MbZyLZVkMKB7ABXtcsPn3hWy0E080gcsBfD44+mgTfOCzz0wHuDvuMANsb7zRzHP22aY9qqSkaxkzZ3YFLOi0hctB7el2/v7J3zsfzvPtbb7dLRB6U6KJYbcPoy3dxt4D9mZo2VAWtS7ivWXvUewvZsEvFlAZqqQ+Xs+ou0bRnGzmmnHXMLbfWH7/v9/z4YoPOXfMudx3zH3rToBTGCS4joH/byx8g1OeOoXqcDUrYysZXDKY5057ToEaREREthbrK7dkYzDjd7DyNZPH9znMBGxz+c397nQTVOwJ/UwEjuZkM+f/93wWtizE4/JQHa7m7iPvVtuCfGP9b8n/aEo0ATCqalRncBvAlJ9bPoH2+SaAvTvYFdTbsU0w7yFnAia4zVGPHcXUlVM5d8y5/O2jv3H48MN54qQn1j2QZkN1kcQKaJ1eCN6TB5evsN5CcJC+h5qH/4hs7bZUnVt9QwTT5hLLxAAoDZQS9AZ7OUUi8lWTzWeJZ+OACRjZ7QHTIiIiIiIiIiIiIiLytbNFArj96U9/4oYbbmDatGn069dvrem1tbXsvPPOXHXVVfziF79YxxLW7bzzzuOxxx6jpaUFj6friSmPP/44p59+Ou+++y777LPPOr976KGHsmzZMmbPnt3t85tuuonLLruMFStWrDOt66IAbiIiIptHa6qVZ2c/i4ODz+3jtB1OW/9T0j6no97tH9zOhS9fyCFDD8GyLF5d8Cq3H347P9/z52t/f316uQPesrZl7Hn/nsQyMTL5DINLB/PeD9+jIlRhZvgKbINIT7Sl2mhMNAJQGaqkJFDSbfrs2fD++2agbGurOfS9XjPN54Mzz4Q9VounmM2aoG3JpDkFQiEz4HYzP7hXRGQtt753K7957TccPPRg7j/6fkbeNRKX5WLWz2at9XRv4MsHcHum2jyxt98RMO5F89nix0xQtw7b/hQqVrtoKvDSpreRZbTpq6bzp0l/wnEc/G4/f/j2H8xTmEV6Uc7OcfGrF7OkbQkAR484mrPHnN01g+oiW8R9H93HeS+cx5g+Y5heP53BJYOZ/KPJlAXLus1388SbufSNS+lf1J8V7Sv42difcdeRd621vP/O+y83v3szAGFvmPuPuZ9+RT1rExfpsbm3w8cXmtcHT4Sqb0EuaQYNd/AWwbJn4KMLwOWF3e6EQaeAr9RMz7aboG9lO4NbA1y2hJyd49b3bqU11QrAqTucyi59duk2z4QlExj30Dj6FvVl6o+nstu9u7Esuow3v/cmB25z4OZP5FYYwE2+GiZNMoH+AQYOhP/9zzxUpMOiRbBiBRx8sHn4SHGxeSCJe+0YZWvbCutTN064kcvfvJzDhh3Gy999mSP+dQQvzX+J6w+8niv2v6Jzvgc/eZAfPv9D9ui/B7cffjt7/31vaiI1zD5/NqWB0i+07mQ2STKXBKDIV4TX7d0UmyQiIiJf1Bdpv8klIZ8wDypz+8FbDB0PtRKRzSqeifP83Oc7H+x5/Kjju/eXUZusiIiIiIiIiIiIiIiIiIiIyFZhiwRw23vvvQkGg7z55pvrneeQQw4hHo/z3nvv9Xi5L730EkcccQSPP/44p556aufn3/nOd5g2bRpLly7FvZ7e9HfffTc/+9nPmDRpEnvuaZ5Ensvl2GWXXYhEIkyaNKnH6VAANxERkV6ykR1Sj37saF6a9xIA39n2O4w/ffzmStlmU9dex4r2FQAMLhlMVbiql1MkIiIiPZWzc4y5Zwwz6mewfdX2zGqYxR8O+gOX73f5ur/wZQO4zfgdTL8GXH7Y8+8w6FToGNxjZ6H5I6jcS4N8RES+Qu776D5q22sBOGX0KYyqGrXO+d5c9CaZfAYLi4OHHozb1ZOoMyKbgePAjOtgwf2QrofqA6FoOLiDkKqH6CzY8Xcm4Gzzx7DieWj6ANJNYKfB8ph5w0Ng97tNsDfZapz9n7N5aOpDDC0bysKWhXx3p+/y8PEPb5mVK4CbfEHnnw9//at5fe+98KMfrT1PNGqC/wP07w/Ll/dw4VthALdkNsnwO4ZT217Lnw/7Mxe9chF9I32Z/4v5hLyhbvN++5/f5s1Fb1IeLKc52cwTJz3ByaNP7qWUi4iIiIiIiIiIiIiIiIiIiIiIiIiIiGz9tkgAt4qKCs4880xuv/329c7zy1/+kn/96180NDRs1LIPPfRQpkyZws0338zw4cN57LHHuO+++3jkkUc488wzATjnnHP4xz/+wYIFCxg8eDAA6XSa3XbbjWg0yk033UR1dTV//etfGT9+PK+//jrjxo3rcRoUwE1EREREREREemLi0on8/KWfA1Adrmb86ePxuX1mYk8CqW0MO2+CpSx8EJomgScMgRpwbEjWQqAajl22adcpIiIisj7ROZBYAZlmwAFvKUS2gcgwsFy9nTr5AhoTjZz5zJlk81k8Lg+PnPAI1eHqLbNyBXCTL2jHHWHGDPN62TIYMGDd8x1zDIwvPP/j3/+GU07pPt1xIJ8Hj2e1D7fCAG4A9398Pz8a3xWp7p6j7uG83c5ba74FzQu488M7AegT6cNv9/3tFkujiIiIiIiIiIiIiIiIiIiIiIiIiIiIyFfRxsQe82xw6gYkEgnC4fAG5wkEAsRisY1e9jPPPMMVV1zB1VdfTXNzMyNHjuSxxx7jtNNO65wnn8+Tz+dZPf6c3+/njTfe4JJLLuHnP/85iUSCXXbZhZdeemmjgreJiIiIiIiIiPTUvoP25ZMff7LuiZtjgP/w88xfLgGpVZBpAZcPgv3AX77p1yciIiKyPsUjzZ98bVSGKnnlu6/0djJENsrqt6MrKtY/3513wvz5MHs2nHoq/P3vMHYsRCKweDG8/jo88QTstttmT/KXdvYuZ9OUaCJrm2CL54w5Z53zDSsfxp8P//MWTp2IiIiIiIiIiIiIiIiIiIiIiIiIiIjIN4PlOF9sJPHIkSOpqanhnXfeWe8848aNo7a2lnnz5n3hBPaWjYmCJyIiIiIiIiIiIiIiIiIbwbJ6Nt/mCIosXyu77w5TppjXs2bBqFHrnzebhaefhrffhg8/hKYmcLuhf3+znCuugIrKHhybOi5FREREREREREREREREREREREREREREvpY2JvaY64uu5KijjmLixIk88MAD65x+//33M3HiRI4++ugvugoREREREREREREREREREZH1OvLIrtdPP73heb1eOO00+Nvf4OOPYckSWLgQJkyAP/0JKio2b1pFRERERERERERERERERERERERERERE5OvDcpwv9njwhoYGxowZQ11dHePGjeOQQw6hf//+rFixgldffZX//e9/9OvXj48//piqqqpNne7NbmOi4ImIiIiIiIiIiIiIiIiIyJa3YAFsuy04DoTD8M9/wvHHg2VBPg/PPAPBIBx1VG+nVERERERERERERERERERERERERERERES2dhsTe+wLB3ADmDdvHt/97neZPHmyWZhl0bG4PfbYg0ceeYThw4d/0cX3KgVwExERERERERERERERERHZ+l13HVx7bdf7/v2hpsYEd2trg7vvhp/8pNeSJyIiIiIiIiIiIiIiIiIiIiIiIiIiIiJfERsTe8zzZVa07bbb8sEHHzBlyhQ+/PBDWltbKS0tZY899mDs2LFfZtEiIiIiIiIiIiIiIiIiIiKf65prYMgQ+NOfYNo0WLHC/IEJ5DZqVK8mT0RERERERERERERERERERERERERERES+hizHcZxNtbBcLsf06dMB2GGHHfB6vZtq0VvcxkTBExERERERERERERERERGR3jd9OsyeDfk8DBsGu+0Gbndvp0pEREREREREREREREREREREREREREREvgo2JvaYZ2MWvGjRIt566y323XdfRowY0W3aCy+8wDnnnENjYyMAZWVl/PWvf+WUU07ZyOSLiIiIiIiIiIiIiIiIiIhsvB13NH8iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpuTa2Nmvu+++/jRj36E3+/v9vn8+fM55ZRTaGhoYNCgQYwcOZKWlhbOPPNMPvnkk02aYBERERERERERERERERERERERERERERERERERERERERERERERERGR3rJRAdwmTpzIzjvvzODBg7t9ftttt5FKpTj//PNZtGgRM2fO5MknnySfz3PnnXdu0gSLiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiPSWjQrgtmjRIkaPHr3W5y+//DI+n48bbrih87MTTjiB/fbbjwkTJnz5VIqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIbAU2KoBbY2MjAwcO7PZZa2srCxYsYM8996SoqKjbtF122YUVK1Z8+VSKiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGwFNiqAm8fjobW1tdtnn3zyCQBjx45da/5IJPLFUyYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIispXZqABuI0aM4I033uj22auvvoplWeyzzz5rzV9bW0vfvn2/XApFRERERERERERERERERERERERERERERERERERERERERERERERERLYSGxXA7cQTT2TevHn8+Mc/Ztq0aTzzzDPcfffdRCIRDj/88LXmf/fddxk+fPgmS6yIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISG/aqABuF110ETvuuCP33XcfY8aM4eSTTyYajXL11VcTDoe7zTtlyhTmz5/PIYccskkTLCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLSWzwbM3MwGOTdd9/lz3/+M5MmTaK8vJyTTz6ZY445Zq15P/74Y4499th1ThMRERERERERERERERERERERERERERERERERERERERERERERERER+SqyHMdxejsRW6NoNEpJSQltbW0UFxf3dnJEREREREREREREREREREREREREREREREREREREREREREREREREZDPZmNhjri2UJhERERERERERERERERERERERERERERERERERERERERERERERERGRrzwFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SFPbydga+U4DgDRaLSXUyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIim1NHzLGOGGQbogBu69He3g7AwIEDezklIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrIltLe3U1JSssF5LKcnYd6+gWzbpra2lqKiIizLIhqNMnDgQJYtW0ZxcXFvJ09ERERWo3xaRERk66V8WkREZOukPFpERGTrpXxaRERk66Q8WkREZOulfFpERGTrpDxaRERk66V8WkREZOulfFpERKT3OY5De3s7/fr1w+VybXBezxZK01eOy+ViwIABa31eXFysQo6IiMhWSvm0iIjI1kv5tIiIyNZJebSIiMjWS/m0iIjI1kl5tIiIyNZL+bSIiMjWSXm0iIjI1kv5tIiIyNZL+bSIiEjvKikp6dF8Gw7vJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIinRTATURERERERERERERERERERERERERERERERERERERERERERERERESkhxTArYf8fj/XXHMNfr+/t5MiIiIia1A+LSIisvVSPi0iIrJ1Uh4tIiKy9VI+LSIisnVSHi0iIrL1Uj4tIiKydVIeLSIisvVSPi0iIrL1Uj4tIiLy1WI5juP0diJERERERERERERERERERERERERERERERERERERERERERERERERERL4KXL2dABERERERERERERERERERERERERERERERERERERERERERERERERGRrwoFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcBMRERERERERERERERERERERERERERERERERERERERERERERERER6SEFcPscsViMX/7yl/Tr149AIMAuu+zC448/3tvJEhER+UZ5++23sSxrnX+TJk3qNu/HH3/MwQcfTCQSobS0lBNOOIGFCxf2UspFRES+Xtrb27nkkks49NBDqaqqwrIsrr322nXOuzF58h133MHIkSPx+/1ss802XHfddWSz2c24JSIiIl8vPc2jf/CDH6yzbj1y5Mh1Lld5tIiIyJfz5ptv8sMf/pCRI0cSDofp378/xx57LB999NFa86oeLSIismX1NJ9WXVpERGTLmjp1KkceeSSDBg0iGAxSXl7O3nvvzSOPPLLWvKpLi4iIbFk9zadVlxYREel9999/P5ZlEYlE1pqm+rSIiEjvWl8+rfq0iIjIV5entxOwtTvhhBOYPHkyN910EyNGjODRRx/l9NNPx7ZtzjjjjN5OnoiIyDfKDTfcwIEHHtjtsx122KHz9Zw5czjggAPYZZddeOKJJ0ilUlx99dXst99+TJ06laqqqi2dZBERka+VpqYm7r33XnbeeWeOO+447r///nXOtzF58h/+8AeuuuoqLr30Ug499FAmT57MlVdeyYoVK7j33nu31KaJiIh8pfU0jwYIBoO8+eaba322JuXRIiIiX97dd99NU1MTF154Idtvvz0NDQ3ceuut7LXXXrzyyiscdNBBgOrRIiIivaGn+TSoLi0iIrIltba2MnDgQE4//XT69+9PPB7nX//6F2eddRaLFy/myiuvBFSXFhER6Q09zadBdWkREZHetGLFCn7zm9/Qr18/2trauk1TfVpERKR3bSifBtWnRUREvqosx3Gc3k7E1uq///0vRx55ZGfQtg6HHnooM2fOZOnSpbjd7l5MoYiIyDfD22+/zYEHHsiTTz7JSSedtN75TjnlFN566y0WLFhAcXExAEuWLGHbbbfloosu4uabb95SSRYREfla6mhCsCyLxsZGqqqquOaaa7j22mu7zdfTPLmpqYkBAwbwve99j3vuuafz+zfccANXXnklM2bMYPvtt98yGyciIvIV1tM8+gc/+AFPPfUUsVhsg8tTHi0iIrJp1NfXU11d3e2zWCzG8OHD2WGHHXj99dcB1aNFRER6Q0/zadWlRUREtg577bUXtbW1LF26FFBdWkREZGuyZj6turSIiEjvOvroo7Esi/Ly8rXyZNWnRUREeteG8mnVp0VERL66XL2dgK3Zs88+SyQS4eSTT+72+dlnn01tbS0ffPBBL6VMRERE1pTL5XjhhRc48cQTO28iAAwePJgDDzyQZ599thdTJyIi8vVgWRaWZW1wno3Jk19++WVSqRRnn312t2WcffbZOI7Dc889t0nTLyIi8nXVkzx6YyiPFhER2TTWDAoDEIlE2H777Vm2bBmgerSIiEhv6Uk+vTGUT4uIiGxelZWVeDweQHVpERGRrc3q+fTGUD4tIiKy6T3yyCO88847/PWvf11rmurTIiIivWtD+fTGUD4tIiKy9VEAtw2YMWMGo0aNWutGwk477dQ5XURERLac888/H4/HQ3FxMYcddhgTJ07snLZgwQKSyWRnPr26nXbaifnz55NKpbZkckVERL6RNiZP7qhX77jjjt3m69u3L5WVlap3i4iIbAbJZJI+ffrgdrsZMGAAF1xwAc3Nzd3mUR4tIiKy+bS1tfHxxx8zevRoQPVoERGRrcma+XQH1aVFRES2PNu2yeVyNDQ08Ne//pVXXnmF3/72t4Dq0iIiIr1tQ/l0B9WlRUREtrz6+np++ctfctNNNzFgwIC1pqs+LSIi0ns+L5/uoPq0iIjIV9PGP+LkG6SpqYmhQ4eu9Xl5eXnndBEREdn8SkpKuPDCCznggAOoqKhg/vz5/PGPf+SAAw7gxRdf5LDDDuvMlzvy6dWVl5fjOA4tLS307dt3SydfRETkG2Vj8uSmpib8fj/hcHid86reLSIismntvPPO7Lzzzuywww4AvPPOO/z5z3/mjTfeYPLkyUQiEQDl0SIiIpvR+eefTzwe54orrgBUjxYREdmarJlPg+rSIiIiveVnP/sZ99xzDwA+n4/bb7+dH//4x4Dq0iIiIr1tQ/k0qC4tIiLSW372s5+x3Xbb8dOf/nSd01WfFhER6T2fl0+D6tMiIiJfZQrg9jksy/pC00RERGTTGTNmDGPGjOl8v99++3H88cez4447cskll3DYYYd1TlPeLSIisnXoaZ6svFtERGTLueiii7q9P+SQQxgzZgwnnXQS9913X7fpyqNFREQ2vauuuop//etf3HHHHey2227dpqkeLSIi0rvWl0+rLi0iItI7Lr/8cs4991zq6+sZP348F1xwAfF4nN/85jed86guLSIi0js+L59WXVpERGTLe/rppxk/fjyffPLJ5+ahqk+LiIhsWT3Np1WfFhER+epy9XYCtmYVFRXrjDDb3NwMrDvSvIiIiGwZpaWlHHXUUUybNo1kMklFRQXAevNuy7IoLS3dwqkUERH55tmYPLmiooJUKkUikVjnvKp3i4iIbH7HH3884XCYSZMmdX6mPFpERGTTu+6667j++uv5wx/+wAUXXND5uerRIiIivW99+fT6qC4tIiKy+Q0aNIixY8dyxBFHcPfdd3Peeedx2WWX0dDQoLq0iIhIL9tQPr0+qkuLiIhsPrFYjPPPP5+f//zn9OvXj9bWVlpbW8lkMgC0trYSj8dVnxYREekFPc2n10f1aRERka8GBXDbgB133JHZs2eTy+W6fT59+nQAdthhh95IloiIiBQ4jgOYiPDDhg0jGAx25tOrmz59OsOHDycQCGzpJIqIiHzjbEyevOOOO3Z+vrqVK1fS2NioereIiMgW4jgOLlfX7QLl0SIiIpvWddddx7XXXsu1117L5Zdf3m2a6tEiIiK9a0P59IaoLi0iIrJl7bHHHuRyORYuXKi6tIiIyFZm9Xx6Q1SXFhER2TwaGxtZtWoVt956K2VlZZ1/jz32GPF4nLKyMs4880zVp0VERHpBT/PpDVF9WkREZOunAG4bcPzxxxOLxXj66ae7ff6Pf/yDfv36seeee/ZSykRERKSlpYUXXniBXXbZhUAggMfj4eijj+aZZ56hvb29c76lS5fy1ltvccIJJ/RiakVERL45NiZPPvzwwwkEAjz00EPdlvHQQw9hWRbHHXfcFkq1iIjIN9dTTz1FIpFgr7326vxMebSIiMim8/vf/55rr72WK6+8kmuuuWat6apHi4iI9J7Py6fXR3VpERGRLe+tt97C5XIxdOhQ1aVFRES2Mqvn0+ujurSIiMjm06dPH9566621/g477DACgQBvvfUW119/verTIiIivaCn+fT6qD4tIiLy1eDp7QRszb7zne9wyCGH8NOf/pRoNMrw4cN57LHHePnll3nkkUdwu929nUQREZFvhDPOOINBgwYxduxYKisrmTdvHrfeeiurVq3q1shw3XXXsfvuu3PUUUdx6aWXkkqluPrqq6msrOTXv/51722AiIjI18hLL71EPB7vvHE/a9YsnnrqKQCOOOIIQqFQj/Pk8vJyrrzySq666irKy8s59NBDmTx5Mtdeey3nnnsu22+/fa9so4iIyFfR5+XRDQ0NnHHGGZx22mkMHz4cy7J45513+Mtf/sLo0aM599xzO5elPFpERGTTuPXWW7n66qs5/PDDOfLII5k0aVK36R0d61SPFhER2fJ6kk8vWbJEdWkREZEt7LzzzqO4uJg99tiDmpoaGhsbefLJJ/n3v//NxRdfTFVVFaC6tIiISG/oST6turSIiMiWFwgEOOCAA9b6/KGHHsLtdnebpvq0iIjIltXTfFr1aRERka82y3Ecp7cTsTWLxWJcccUVPPHEEzQ3NzNy5Eguu+wyTjvttN5OmoiIyDfGTTfdxL///W8WLVpELBajvLycfffdl8suu4zdd9+927wfffQRv/3tb3n//ffxeDwcdNBB3HLLLQwbNqyXUi8iIvL1MmTIEJYsWbLOaYsWLWLIkCHAxuXJt99+O3fddReLFy+mT58+nH322VxxxRV4vd7NuSkiIiJfK5+XR5eUlHDOOefwySefsGrVKvL5PIMHD+b444/n8ssvp6SkZK3vKY8WERH5cg444ADeeeed9U5f/Va96tEiIiJbVk/y6ZaWFtWlRUREtrAHH3yQBx98kNmzZ9Pa2kokEmHnnXfm3HPP5bvf/W63eVWXFhER2bJ6kk+rLi0iIrL1+MEPfsBTTz1FLBbr9rnq0yIiIr1vzXxa9WkREZGvNgVwExERERERERERERERERERERERERERERERERERERERERERERERERHpIVdvJ0BERERERERERERERERERERERERERERERERERERERERERERERERE5KtCAdxERERERERERERERERERERERERERERERERERERERERERERERERERHpIAdxERERERERERERERERERERERERERERERERE/r+9u32tuu7jAP4+tq25yJHZrXbjXRhomdHMbldRRq3sSZlabE96FAWGFqKySc5QqFChR0IWmSFjJCRFreUSpJQohNLIaKMGFY5KXSPvzvXIcXmZXscuZY7r9YIDh8/v9/l93+f3B7wPAAAAAAAAlEiBGwAAAAAAAAAAAAAAAAAAAAAAAECJFLgBAAAAAAAAAAAAAAAAAAAAAAAAlEiBGwAAAAAAAAAAAAAAAAAAAAAAAECJFLgBAAAAAAAAAAAAAAAAAAAAAAAAlEiBGwAAAAAAAAAAAAAAAAAAAAAAAECJFLgBAAAAAAAAAADwf62zszOFQiENDQ2ntFcoFFJbW3tGMgEAAAAAAAAAAHD2UuAGAAAAAAAAAADAgDpaoPbvn4qKilxxxRWZPXt2duzYMSC5amtrUygUBuRsAAAAAAAAAAAAzl5lAx0AAAAAAAAAAAAAkmTs2LF54oknkiT79+/PZ599lvXr16e1tTXt7e255ZZbzsi5I0eOzM6dO1NdXX1Kezt37kxVVdUZyQQAAAAAAAAAAMDZS4EbAAAAAAAAAAAAZ4Vx48alqanpmNmiRYvS3NychQsX5pNPPjkj55aXl2fChAmnvPdPdgAAAAAAAAAAABj8hgx0AAAAAAAAAAAAADiRZ555Jkmyffv2JMmhQ4fy6quv5vrrr8/QoUNTXV2du+66K5s2bTpu98iRI1mzZk1qamoyfPjwVFVV5eqrr84jjzySTz/9tP++zs7OFAqFNDQ09M8KhUI6Ojr6vx/9/Oc9tbW1x53b09OTuXPnZvTo0Tn33HNz8cUXZ+bMmfnmm2+Ou7ehoSGFQiGdnZ157bXXcu2116aysjJXXXVVlixZkiNHjvyT1wYAAAAAAAAAAMAZVDbQAQAAAAAAAAAAAOBECoVC//disZiZM2emtbU111xzTZ5++un09vZmw4YNqaury8qVK/Pss8/2379gwYKsWLEiY8eOzezZs3P++eenu7s7W7ZsSXt7e+64444TntvY2Ji1a9emq6srjY2N/fPJkyefNG9PT09uvvnm7N69O7W1tXn88cfT2dmZlpaWbNq0KR999FGmTZt23N78+fOzefPm1NXV5b777su7776bpqamHDhwIM3NzafwxgAAAAAAAAAAADjTFLgBAAAAAAAAAABw1lq1alWS5Kabbspbb72V1tbW3Hnnnfnwww9TUVGRJFm4cGFuvPHGzJs3Lw899FBGjx6dJFmzZk1GjhyZHTt2pKqqqv+ZxWIxv/3220nPbWpqyubNm9PV1ZWmpqaS8z7//PPZvXt3FixYkGXLlvXPGxoacv/996e+vj67du3KkCFDjtn74osvsmPHjlx22WVJksWLF2f8+PFZvXp1Ghsb+38rAAAAAAAAAAAAA2/If78FAAAAAAAAAAAAzrzdu3enqakpTU1NmTdvXm677bY0NzensrIyy5Yty9q1a5MkK1asOKbQbNSoUZk7d24OHjyYdevWHfPMioqKlJUd+1+nhUIhw4cPP+35Dxw4kPXr1+fCCy/MokWLjrk2ffr0TJ8+Pd999122bt163O7ixYv7y9uSZMSIEZkxY0b27duXb7/99rRnBQAAAAAAAAAA4J9T4AYAAAAAAAAAAMBZ4fvvv8+SJUuyZMmSrFq1Kl1dXZk9e3a2bduWadOm5csvv8zQoUNTU1Nz3G5tbW2S5KuvvuqfPfbYY/nhhx8yceLELF68OG1tbent7T1j+Xft2pW+vr7U1NSkqqqqpIxHTZky5bjZqFGjkiS///776YwJAAAAAAAAAADA/0iBGwAAAAAAAAAAAGeF6dOnp1gsplgs5sCBA/nxxx+zbt26TJo0KUmyd+/eXHLJJX+7e+mllyZJ/vjjj/7ZqlWrsmLFipSXl2fp0qW59957M2LEiNTX12fPnj2nPf/evXuT5JQyHlVdXX3crKysLEly+PDh0xURAAAAAAAAAACA00CBGwAAAAAAAAAAAIPCsGHD8ssvv/zttaPzYcOG9c/Ky8szf/78fP311+nu7s7bb7+d22+/PW+++WbmzJlzRvL9e5ZSMgIAAAAAAAAAADD4KHADAAAAAAAAAABgULjhhhvS19eXbdu2HXeto6MjSTJ58uS/3b388ssza9asfPDBBxk/fnza2trS19d30vPOOeecJMnhw4dLyjdhwoRUVlZm+/bt+fPPP085IwAAAAAAAAAAAIODAjcAAAAAAAAAAAAGhfr6+iTJggULcvDgwf55d3d3XnnllZSVlWXOnDlJkr/++ivt7e0pFovHPKO3tzf79u1LeXl5f0HbiQwfPjxJ8tNPP5WUr6KiIrNmzcqePXvy0ksvHXOtra0t77//fsaNG5dbb721pOcBAAAAAAAAAABwdiob6AAAAAAAAAAAAABQiieffDKtra3ZuHFjrrvuutTV1aW3tzcbNmxIT09PXn755YwZMyZJ0tfXl3vuuSdjxozJ1KlTc+WVV2b//v1577338vPPP+eFF15IRUXFSc+7++6709LSkkcffTQPPPBAKisrM2nSpDz44IMn3Fm+fHk6OjqydOnSbN26NVOnTk1nZ2daWlpSVVWV119/PUOG+O9VAAAAAAAAAACAwUyBGwAAAAAAAAAAAINCoVBIS0tLVq5cmTfeeCOrV69ORUVFpkyZkueeey4PP/xw/73nnXdeli9fno8//jhbtmzJr7/+mgsuuCATJkzI8uXLM3PmzP963lNPPZXOzs688847aW5uzqFDh1JfX3/SAreLLroon3/+eV588cVs3LgxW7ZsSXV1dWbMmJHGxsZMnDjxtLwLAAAAAAAAAAAABk6hWCwWBzoEAAAAAAAAAAAAAAAAAAAAAAAAwGAwZKADAAAAAAAAAAAAAAAAAAAAAAAAAAwWCtwAAAAAAAAAAAAAAAAAAAAAAAAASqTADQAAAAAAAAAAAAAAAAAAAAAAAKBECtwAAAAAAAAAAAAAAAAAAAAAAAAASqTADQAAAAAAAAAAAAAAAAAAAAAAAKBECtwAAAAAAAAAAAAAAAAAAAAAAAAASqTADQAAAAAAAAAAAAAAAAAAAAAAAKBECtwAAAAAAAAAAAAAAAAAAAAAAAAASqTADQAAAAAAAAAAAAAAAAAAAAAAAKBECtwAAAAAAAAAAAAAAAAAAAAAAAAASqTADQAAAAAAAAAAAAAAAAAAAAAAAKBECtwAAAAAAAAAAAAAAAAAAAAAAAAASvQvlj9XQvrdsM8AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAE3AAAAGMCAYAAAA104RXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdf7H8demkFBCh9BBihQBwQYICKgUz4ae5TwbCJy9nGI59RT07PVOT72fomDvYgNFlKo0URCQ3nsJgQRC6u7vjyEJIQECArG8no/HPjL7ne/MfGZ2djKz2XknFIlEIkiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9imqpAuQJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpN8KA9wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkqZgMcJMkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkYjLATZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKKyQA3SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSSomA9wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkqZgMcJMkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkYjLATZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKKyQA3SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSSomA9wkSZIkSZIkSZIkSZIkSfoFli1bRigUokGDBiVdiiRJkiRJkiRJkiRJkiTpMDDATZIkSZIkSZIkSZIkSZIOUCgU2u9H165dD2lNw4cPZ9CgQcyYMeOQLueXGDt2LIMGDWLs2LElXYokSZIkSZIkSZIkSZIkSfstpqQLkCRJkiRJkiRJkiRJkqTfqo4dOxZq27p1K7Nnz97j+FatWh3SmoYPH86wYcNo0KABbdq0OaTLOlBjx45l8ODBAIc80O5wiI2NpWnTptSuXbukS5EkSZIkSZIkSZIkSZIkHQYGuEmSJEmSJEmSJEmSJEnSAZo4cWKhtrFjx9KtW7c9jtfvT+3atZk3b15JlyFJkiRJkiRJkiRJkiRJOkyiSroASZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfqtMMBNkiRJkiRJkiRJkiRJkg6j7OxsXnjhBTp16kTFihWJj4+nWbNm3H333aSkpBQ5zaeffkrPnj2pWrUqsbGxVKtWjdatW3P99dczd+5cAJYtW0YoFGLYsGEA9O3bl1AolPcYNGhQsepLSkpi4MCBNGvWjPj4eMqWLUuDBg3o1asXzz33XJHTbN68mbvuuouWLVtStmxZEhISaN++PS+++CLhcLhA31AoxODBgwEYPHhwgRr79OlTrBq7du1KKBRi7NixzJgxg/POO4/ExESioqIYOnRoXr8D2dYA7777Lu3bt6ds2bJUrVqVs846ix9//JGxY8cSCoXo2rVrgf65275BgwZFzi8pKYnbbruNpk2bUrp0aSpVqkTXrl154403iEQihfoPHTo0b3tkZGQwaNAgGjduTHx8PHXr1uXmm29m+/btxdpWkiRJkiRJkiRJkiRJkqSDL6akC5AkSZIkSZIkSZIkSZKkP4qUlBTOPPNMxo8fT1RUFHXr1iUhIYEFCxbwwAMP8OGHHzJ27FiqV6+eN82zzz7L9ddfD0CNGjVo06YNW7duZeHChcyaNYtGjRrRvHlz4uPj6dixIwsXLmTDhg00adKkwHzq1au3z/q2bt1Ku3btWLx4MaVKlcoLDVu1ahWjRo1i8uTJXHPNNQWmmTNnDj179mT16tV502RkZDB16lSmTJnCqFGjePfddwmFQgB07NiRFStWsHLlSurWrVugriOPPHK/tuf48eN58MEHiY2NpWnTppQrV+4XbWuA+++/n3vuuQeAWrVqUatWLcaOHcuJJ57IP//5z/2qD2DRokWcfPLJrFy5klKlStGyZUu2bNnCuHHjGDduHKNGjcoLbNtdVlYWPXr0YMKECbRo0YIGDRqwcOFCnnrqKWbPns2oUaP2ux5JkiRJkiRJkiRJkiRJ0i8XVdIFSJIkSZIkSZIkSZIkSdIfxZVXXsn48eM55ZRTWLhwIcuWLWPWrFmsW7eOc889l7lz53Lttdfm9c/Ozuaee+4hJiaGjz76iLVr1zJt2jQWLFhAamoqn376KccccwwQhLtNnDiR0047DYA777yTiRMn5j2uuOKKfdb30ksvsXjxYnr06MHatWuZM2cO06dPZ/369SxbtoxBgwYV6L99+3bOPvtsVq9ezQ033MDGjRuZM2cOixYtYvbs2Rx11FG8//77PPfcc3nT7FrLFVdcUaDGO++8c7+253333cfll1/O+vXr+f7771m8eDEXXnjhAW1rgKlTpzJo0CBCoRDPP/88q1atYtq0aaxbt47zzz+/0PrvSyQS4aKLLmLlypV06dKFFStWMH36dBYvXszIkSMpW7Ysr776Ki+88EKR07/33nts2rSJefPmMXv2bObNm8e3335L+fLl+eqrr/jiiy/2qx5JkiRJkiRJkiRJkiRJ0sFhgJskSZIkSZIkSZIkSZIkHQY//fQTb7/9NvXr1+ejjz6iYcOGeeMqVarEa6+9Rt26dfnggw9Yvnw5AJs2bSI5OZlWrVrRu3fvAvOLiYnhjDPO4KSTTjpoNS5cuBCAa6+9lsqVKxcYV69ePW666aYCbS+//DKLFy/mnHPO4d///jfly5fPG9eiRQvefPNNQqEQTz755EGrcVctW7bk+eefp0yZMnltpUuXPqBtDfDUU08RDofp168fV111FaFQCIAyZcowZMgQ6tevv1/1ff3113z//ffExcXx9ttvk5iYmDeuV69e3HvvvQA88sgjRCKRQtNnZ2czbNgwjjzyyLy29u3b079/fwBGjhy5X/VIkiRJkiRJkiRJkiRJkg4OA9wkSZIkSZIkSZIkSZIk6TD46KOPALjgggtISEgoNL5MmTKceuqpRCIRJkyYAEC1atWIi4tjwYIFzJw585DXWLdu3bxas7Oz99n/ww8/BMgLFNtd69atadCgAUuWLGHVqlUHr9CdLrnkEqKiCn8N7kC2NcDo0aMB6Nu3b6FpYmNjueSSS/arvlGjRgFw/vnnU6NGjULjr7rqKuLi4li+fDnz588vNL5NmzYcd9xxhdqPP/54AJYsWbJf9UiSJEmSJEmSJEmSJEmSDo6Yki5AkiRJkiRJkiRJkiRJkv4IZs2aBQThYt99912RfZYvXw7A6tWrAYiOjuaGG27gscce45hjjqFjx45069aNzp0706lTJ+Lj4w9qjX379uWxxx5j6NChjBw5kl69etG5c2e6detGw4YN97hO99xzDw8++GCR89y0aVPeOtWpU+eg1tu8efMi2w9kWycnJ+fV2rp16yKn2VP7nixYsACAFi1aFDk+ISGBunXrsmjRIhYsWECzZs0KjG/UqFGR01WvXh2Abdu27Vc9kiRJkiRJkiRJkiRJkqSDwwA3SZIkSZIkSZIkSZIkSToMtm7dCsCiRYtYtGjRXvvu2LEjb/jhhx+mdu3a/Pe//2XChAlMmDABgPLly3PNNdcwaNAg4uLiDkqNtWrVYtKkSfzzn//k888/Z9iwYQwbNgyA9u3b8+STT9KhQ4dC6zR9+vR9znvXdTpYypYtW2T7gWzr7du3AxAKhShXrlyRfRMSEvarvtyAtdzAtaIkJiayaNEiUlNTC43b0/pFRUUBEIlE9qseSZIkSZIkSZIkSZIkSdLBEVXSBUiSJEmSJEmSJEmSJEnSH0FuKNiLL75IJBLZ62PQoEF500VFRXHjjTeyYMECli5dyrBhw/jLX/5Ceno6Dz/8MLfccstBrbN58+a8//77bNmyhTFjxjBo0CCaNWvG5MmT6dGjB8uWLSu0TgsXLtznOnXt2vWg1rk3B7Ktc8PSIpFIXpjb7ooKWStOHRs2bNhjn/Xr1wP7Hw4nSZIkSZIkSZIkSZIkSSo5BrhJkiRJkiRJkiRJkiRJ0mHQokULAGbPnn3A82jQoAGXXXYZb731Fp988gkAL7/8MuFwOK9PKBT6ZYXuFBcXR9euXbn33nuZPXs2HTt2ZNu2bbz11lt5fQ50nQ5WjXtyIHVVqlSJqlWrAvDTTz8V2WfWrFn7VceRRx4JwM8//1zk+NTUVFauXFmgryRJkiRJkiRJkiRJkiTp188AN0mSJEmSJEmSJEmSJEk6DM455xwAXn/9dZKSkn7x/Nq3bw/Ajh07SE5OzmsvXbp0XvvBEh0dzfHHHw/AmjVr8trPPfdcAP7zn/8QiUSKPb9DUeOuDnRbd+/eHYChQ4cWGpednc0bb7yxX3X07NkTgPfee49169YVGv+///2PjIwM6tevT9OmTfdr3pIkSZIkSZIkSZIkSZKkkmOAmyRJkiRJkiRJkiRJkiQdBscddxwXXHABSUlJdO/enR9//LHA+JycHMaOHcvFF19MRkYGAD///DNXXnkl06ZNKxCQlpGRwQMPPABA/fr1qVKlSt64hg0bAjB+/Pj9ClUDuOuuuxgyZAhbtmwp0D579mzeffddAI455pi89iuvvJKGDRsyZswYLr74YtauXVtgum3btvHuu+9y8803F2jPrfG7774jOzt7v2osjgPZ1gA33XQToVCIl156iRdffDGvfceOHQwYMIClS5fuVx0nn3wyxx9/PBkZGVx00UVs2LAhb9yoUaMYPHgwAHfccQehUOhAVlWSJEmSJEmSJEmSJEmSVAJCkf39hp4kSZIkSZIkSZIkSZIkaY/Gjh1Lt27dAAoFqG3bto1zzz2Xr776CoB69epRs2ZN0tLSWLRoETt27ACCwLD4+HhmzJhB27ZtAahYsSINGzYkEomwZMkStm7dSqlSpRg+fDinnXZa3jIWL15MixYtyMzMpH79+tSrV4+oqCj69OlDnz599lp77969+fjjj4mKiqJhw4ZUrlyZzZs3s2jRIgC6devGqFGjiImJyZtm3rx5/OlPf2Lp0qVERUXRtGlTypcvT3JyMosXLyYnJ4d27doxefLkvGlSUlJo0KABycnJ1KxZk4YNGxITE0OvXr2444479rmNu3btyrhx4xgzZgxdu3Ytss/+butc9913H/feey8AtWvXplatWsyfP5+MjAzuuece7rrrLk4++WS+/vrrvGmWLVvGEUccQf369Vm2bFmBOhYtWkS3bt1YtWoVcXFxHHXUUaSkpORt00svvZRhw4YVCHAbOnQoffv25fLLL2fo0KGF1i13H+vSpQtjx47d5/aSJEmSJEmSJEmSJEmSJB1cUSVdgCRJkiRJkiRJkiRJkiT9UZQrV44vvviCN954g549e5KWlsYPP/zApk2baN26NbfffjtTp07NCxRr0qQJL774Iueffz7VqlVjwYIFLFy4kNq1a3PVVVfx888/FwhvA2jUqBGffvopXbp0ITk5mYkTJzJu3LhCwWJFufvuu7njjjs4/vjj2bZtGzNmzGDHjh106dKFV199tVB4G0CzZs2YOXMmDz/8MMcffzyrV69mxowZZGZm0qVLFx5//HHefvvtAtOUL1+eUaNGcdppp5GRkcGkSZMYN24c8+bN+2UbeBf7u61z3XPPPbzzzjuccMIJeeF1nTp1YuLEiRx99NEAJCQkFLuOxo0b8+OPPzJw4EDq1avHnDlz2LBhAyeddBKvvfZaofA2SZIkSZIkSZIkSZIkSdKvXyiy+794lSRJkiRJkiRJkiRJkiRJhTzxxBMMHDiQG2+8kaeffrqky5EkSZIkSZIkSZIkSZIklZCoki5AkiRJkiRJkiRJkiRJkqRfu5ycHF599VUAOnbsWMLVSJIkSZIkSZIkSZIkSZJKkgFukiRJkiRJkiRJkiRJkiTtNGTIECZMmFCgbfPmzfTp04effvqJWrVqceaZZ5ZQdZIkSZIkSZIkSZIkSZKkX4OYki5AkiRJkiRJkiRJkiRJkqRfiwkTJtC/f3/KlStHo0aNiEQizJ07l6ysLMqUKcNrr71GfHx8SZcpSZIkSZIkSZIkSZIkSSpBBrhJkiRJkiRJkiRJkiRJkrTT5ZdfTlZWFpMnT2bx4sVkZmZSq1YtTjnlFG677TaaNm1a0iVKkiRJkiRJkiRJkiRJkkpYKBKJREq6CEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6LYgq6QIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6bfCADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiYD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpmAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRiMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkorJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiYD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpmAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRiMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkorJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiYD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpmAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRiMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkorJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiYD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpmAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRiMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkorJADdJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKiYD3CRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSpmAxwkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqRiMsBNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkorJADdJkiRJkiRJkiRJkiRJOkQGDRpEKBRi7NixJV2KJEmSJEmSJEmSJEmSJEk6SAxwkyRJkiRJkiRJkiRJkqTfkE8//ZTrr7+ejh07UrZsWUKhEIMGDdrrNGvWrOHGG2+kRYsWlC1blsTERDp16sRrr71GTk5OsZf94osvcuaZZ3LEEUdQtmxZKlSowNFHH80999zD5s2bi5wmOTmZgQMH0rhxY+Li4qhWrRrnnXcec+bM2euyxo4dy9lnn0316tWJi4ujbt26nHPOOcycOfMXrV9uqN7eHv369Sswzfjx4xk4cCDdunWjQoUKhEIh+vTps8faJ06cyC233MKxxx5LlSpViI+Pp1mzZtx+++1s2bJlr+u9u0gkwq233krXrl2pVasW8fHxJCYmcuKJJzJkyBCysrKKnG7evHlcfPHF1KhRg7i4OOrXr8+NN95Y5Ot0INsEYN26dfTv35+aNWsSHx/PkUceyX333UdmZmaRNW3ZsoV77rmH1q1bk5CQQNWqVTn++ON59tlnSU9PL9B39erVPP300/To0YN69epRqlQpatSowZ///GemTJmy1222dOlSBgwYQP369YmLiyMxMZFu3brx3nvv7XU6SZIkSZIkSZIkSZIkSSqumJIuQJIkSZIkSZIkSZIkSZJUfE888QTjxo2jfPny1KpVi0WLFu21/5IlS2jXrh1JSUn07NmTM888k5SUFIYPH85ll13GN998wyuvvFKsZb/22mskJyfTuXNnatasSUZGBpMnT+b+++9n2LBhTJkyhRo1auT1T0pKokOHDixcuJAOHTpw9tlns3btWj744ANGjhzJN998Q7t27Qot54EHHuDuu++mVq1a9O7dm6pVq7J+/Xq+/fZbZs2axdFHH33A69e1a9c9rt9LL73E6tWr6dmzZ4H2l19+mWHDhlGmTBnq1atHSkrKXrfTeeedx6ZNm+jUqROXXXYZoVCIsWPH8uijj/LBBx/w3XffUb169X1tbgBycnJ45plnOO644zj99NOpVq0aycnJfPHFF/Tv35/33nuPESNGEBWV//9cJ0+ezKmnnsqOHTs4++yzadSoETNmzOA///kPX3zxBd999x1VqlT5Rdtk3bp1tGvXjpUrV9K7d2+OPPJIJk6cyL333sukSZP4/PPPC9S0ZcsWjj32WJYsWUKnTp248sorycjIYOTIkVx//fV89NFHfPXVV3nTPPPMMzzyyCM0atSI7t27U716dRYuXMjw4cMZPnw4b731FhdccEGher/66it69+4NwJlnnknDhg1JTk7mp59+YvTo0Zx//vnF2u6SJEmSJEmSJEmSJEmStDehSCQSKekiJEmSJEmSJEmSJEmSJOn3aNCgQQwePJgxY8bsNSRrf0yYMIEaNWrQuHFj3nnnHS666CLuvfdeBg0aVGT/a665hueff55///vf3HDDDXntW7ZsoU2bNixfvpxly5ZRv379fS47PT2d+Pj4Qu3//Oc/+de//sXAgQN57LHH8tqvu+46/vvf/3LzzTfzxBNP5LVPmjSJzp0707RpU2bNmlUg6OuTTz7h7LPPpnfv3rz55puULl26wLKys7OJicn/36UHa/3Wr19PnTp1qFChAmvWrKFUqVJ5477//ntKly5Ns2bNmDZtGh06dODyyy9n6NChRc7rkUce4bLLLqNmzZp5bZFIhGuvvZbnn3+ea665hv/+9797rWdXRW337OxsevTowZgxY/jss884/fTT88a1bNmSOXPm8PHHH3PWWWfltT/22GPcdtttXHnllbzwwgv7XO7etsnll1/Oq6++ynPPPcfVV1+dt459+/Zl2LBhvPzyy/Tt2zev/6OPPsrtt9/O3//+d5588sm89szMTDp16sS0adMYN24cJ510EgAffvgh1apVo3PnzgVqmjBhAqeccgoJCQmsWbOGuLi4vHErV66kZcuWJCYmMnr0aOrVq1dom+2670iSJEmSJEmSJEmSJEnSgYradxdJkiRJkiRJkiRJkiRJUlEmTJjAOeecQ2JiInFxcdStW5dzzz2XiRMnFur77rvvcswxx1C6dGlq1qzJDTfcwI4dOwr0GTt2LKFQiEGDBjFp0iR69uxJxYoVCYVCeX06d+5MkyZNCrTtzZIlSwD405/+VKC9YsWKdOzYEYCNGzcWa15FhbcBnH/++QAsWrSoQPvw4cOJiopi8ODBBdo7dOjAmWeeyc8//8y4ceMKjLvjjjtISEhg6NChhcLbgEIBXAdr/YYOHUp2djaXXnppgaAygOOOO46jjjqK6Ojofc4H4Pbbby8Q3gYQCoX45z//CVBonfelqO0eExND7969gYLbfdGiRcyZM4fjjz++QHgbwC233EKVKlV47bXX2L59+z6Xu6dtkpqayjvvvEPDhg256qqrCqzjQw89RFRUFC+++GKBee3pdSpVqhTdu3cHYMOGDXnt5557bqHwNgj2/27durF582ZmzZpVYNyDDz5ISkoKL7zwQqHwNii870iSJEmSJEmSJEmSJEnSgTLATZIkSZIkSZIkSZIkSZIOwH//+1+6dOnCqFGj6N69O7fccgsnn3wyM2fO5P333y/U94orrqB58+ZcffXVVKpUiWeeeYb+/fsXOe/vvvuOLl26APC3v/2NCy+88IDrPOqoowD44osvCrSnpKTw7bffkpiYSIsWLQqMa9CgAaFQiGXLlhVrGZ9//jkALVu2LNC+fv16qlatSrly5QpNc8QRRwDwzTff5LX99NNPzJ07l+7du1OuXDlGjhzJI488wjPPPMPMmTMP2voV5eWXXwbY42tyMMTGxgIHJ0gsHA7nrfOu2339+vVA/vbdVVRUFPXq1SMtLY3Jkyfvcxl72iaTJk0iIyOD7t27FwoSrFmzJq1atWLKlCmkp6fnte/pdcrKymL06NGULl2aDh067LMmKHo7RiIR3n33XapUqcLJJ5/M9OnTefLJJ3n88ccZPXo04XC4WPOWJEmSJEmSJEmSJEmSpOLw30lKkiRJkiRJkiRJkiRJ0n6aNWsWN954IzVr1uTbb7+lQYMGeeMikQhr164t0P+rr75i+vTpNG3aFIAHHniANm3a8NZbb/HYY49Rq1atQv2HDBnCFVdc8YtrvfXWW/nkk0+48cYbGTlyJK1atSIlJYWPP/6Y2NhYPvjgA8qUKbNf8xw6dCjLli0jNTWVH374gbFjx9K2bVtuvvnmAv2qVavG+vXr2bZtW6EQt6VLlwKwYMGCvLbvv/8egCpVqtCpU6dCIWMXX3wxL7/8MqVKlTqo6zdhwgQWLFhA+/bt84LGDoXcQLQePXoc0PSDBg0CYNOmTXz99dfMmzePPn36cMopp+T1qVatGpC/fXcVDodZsWIFEGz3Xafb3d62ycKFCwFo0qRJkdM2adKEmTNnsmTJkrzwvP79+/Paa6/xxBNP8P3333P88ceTkZHBF198QXJyMm+++Sa1a9fe5zZYsWIFo0ePpkaNGrRq1SqvfenSpWzevJnjjz+eq6++mhdeeKHAdG3btuWTTz6hTp06+1yGJEmSJEmSJEmSJEmSJO2LAW6SJEmSJEmSJEmSJEmStJ9eeOEFcnJy+Ne//lUgvA0gFAoVCmS78cYb88LbAEqXLs1FF13E4MGDmT59eqH+bdu2PSjhbQA1atRg0qRJXHzxxYwYMYIRI0YAEB8fz2233Ubbtm0LTfP111+TlZW1x0CtoUOHMm7cuLznPXr04LXXXqNSpUoF+p122mm8/PLLDB48mMceeyyvferUqXz22WcAbNmyJa99w4YNQBB0dsQRR/DNN99w/PHHs3DhQq699lreeOMNateuzSOPPPKL1m93Q4YMAYKQsUNlxowZDB48mOrVq3Pbbbcd0DwGDx6cNxwKhRg4cCAPPfRQgT5HHnkkjRo1Ytq0aXz++eecfvrpeeOeeuopkpKSgILbvSh72yZbt24FoEKFCkVOW758+QL9INjnx44dy5VXXsnrr7+et/9ERUVx3XXX0alTp73WA5CVlcWll15KRkYGjz76KNHR0XnjcvedH374gblz5/LKK69w9tlns3XrVh588EFefPFFzjvvvEKhgJIkSZIkSZIkSZIkSZJ0IKJKugBJkiRJkiRJkiRJkiRJ+q2ZOnUqEASXFccxxxxTqK1OnTpA0UFaJ5xwwoEXt5vFixfTuXNnNm/ezPjx40lNTWXlypUMHjyYBx98kG7dupGVlVVgmkaNGtGsWTNiY2OLnOfYsWOJRCJs3LiRzz77jFWrVnHMMcfw008/Feg3ePBgatasyeOPP06nTp0YOHAgF198MZ07d6ZFixYABUK4wuFw3s93332Xbt26Ua5cOdq2bcvw4cNJSEjg2WefJSMj4xet365SUlJ47733KFeuHBdeeOH+bdxiWrp0KWeccQY5OTm8/fbbVK1atcD4QYMGFXoUtV9EIhFycnJYuXIlzz33HC+99BJdu3YlJSWlQL///ve/xMbGctZZZ/HnP/+Z2267jZ49ezJw4EBatWoFFNzuuzsU22TTpk10796dyZMn8/nnn7NlyxbWrVvHCy+8wCuvvEK7du1ITk7e4/ThcJgrrriC8ePHM2DAAC699NJC4wFycnK4//776dOnD5UqVaJBgwb83//9H+3atWPKlClMnDjxoKyPJEmSJEmSJEmSJEmSpD+2mJIuQJIkSZIkSZIkSZIkSZJ+a7Zs2UIoFKJmzZrF6l+hQoVCbTExwde3cnJyCo1LTEz8ZQXuom/fvixfvpwlS5ZQo0YNAMqVK8dtt93G5s2beeSRR3j99dfp27fvfs+7atWqnH766bRu3ZomTZowYMAApkyZkje+Tp06TJs2jXvvvZeRI0cydepU6taty3333UeDBg34y1/+QrVq1fL6526nOnXq0LZt2wLLql69Ou3atWP06NHMnTuXNm3aHJT1e+utt0hLS6Nfv36UK1duv7fBvixfvpxu3bqxceNGPvjgA7p161aoz+DBgwu19enTh4oVKxZqj4qKok6dOlx11VVUqVKFCy64gAceeIBHHnkkr0/Pnj2ZMGEC999/P9988w2ff/45LVu25KOPPuLrr79m1qxZBbb77va1TXJfp61btxY5fW6g3K77/c0338x3333HzJkzad26dd74AQMGkJOTw9VXX83TTz9d5LaIRCIMGDCA119/nUsuuYQXXnhhjzUBnHXWWYXGn3nmmUyZMoXvv/+eTp067XHdJUmSJEmSJEmSJEmSJKk4okq6AEmSJEmSJEmSJEmSJEn6ralYsSKRSIS1a9cekvmHQqGDMp/U1FQmTJhA8+bN88LNdnXyyScDMH369F+0nLp169K8eXOmTZtGWlpagXG1a9fmpZdeYvXq1WRmZrJ48WJuv/125s6dC8Bxxx2X17dp06YARQaX7dq+Y8eOg7Z+Q4YMAaB///7FWNP9s2zZMrp27cqaNWt49913OeOMM4rsF4lECj0aNGiwz/n36NEDgLFjxxYa165dOz777DOSk5NJT0/n+++/p3fv3syaNQsouN13t69t0qRJEwAWLlxY5PiFCxcSFRVFw4YN89o+//xzKleunBfetqu9vU7hcJh+/frx8ssvc9FFFzF06FCiogp/9bFx48ZER0cDRe8/u+87kiRJkiRJkiRJkiRJkvRLGOAmSZIkSZIkSZIkSZIkSfvphBNOAGDUqFElXMneZWZmArBp06Yix2/cuBGAuLi4X7ystWvXEgqF8kK09iYnJ4e3336bmJgY/vznP+e1t2/fntKlS7NkyRLS09MLTZcb+pYbbvZL12/WrFlMmzaNo446ivbt2++z7v2RG962evVq3nnnHc4+++yDOn+ANWvWABATE1Os/suXL2fixIm0aNGCVq1aFdmnONukffv2xMXF8dVXXxGJRAqMW7t2LbNmzaJdu3bEx8fntWdmZpKSkpL3mu1qT69TOBymf//+vPLKK1x44YW89tpre9y/4uLiOPHEEwH4+eefC43PbStOMJ4kSZIkSZIkSZIkSZIk7YsBbpIkSZIkSZIkSZIkSZK0n6666iqio6O5++67Wb58eYFxkUiEtWvXllBlBVWpUoWmTZuyYsUKXnrppQLjUlJSePTRRwHo1q1bgXGLFy9m3rx5ZGVl5bUlJSUxZ86cQsuIRCIMGjSI9evX061btwIhXFlZWezYsaNA/3A4zMCBA5k/fz7XX389tWrVyhtXrlw5Lr30UrZv386//vWvAtO99tprzJkzh06dOlGzZs1ftH65hgwZAkC/fv2KHH+gdg1ve/vttznnnHMOeF7z5s1jw4YNhdrT0tK4+eabATjttNMKjNu2bVuhYLWtW7dy6aWXkpOTw0MPPbTH5RVnm5QvX54LL7yQJUuW8MILL+S1RyIR/vGPfxAOhxkwYECBaTp27Eh2djb3339/gfaMjIy8tl1fp3A4TL9+/XjllVc4//zzef311/cZDnj11VcDMGjQIDIyMvLa582bx9ChQ0lISKBXr157nYckSZIkSZIkSZIkSZIkFUcosvu3tCRJkiRJkiRJkiRJkiRJ+/Tss89yww03UKZMGXr37k39+vVZt24d48eP5/TTT+fpp59m0KBBDB48mDFjxtC1a9cC0w8dOpS+ffvyyiuv0KdPHwDGjh1Lt27duPfeexk0aFCRyx0+fDjDhw8HYOnSpYwfP56jjz6aNm3aANCpUyf69++f1/+LL77gzDPPJDs7m5NPPpljjjmGLVu28Omnn7J+/XrOOOMMPvnkE0KhUN40DRo0YPny5SxdupQGDRoAMGPGDNq2bcsJJ5xAixYtqFGjBps2bWLChAnMnz+fGjVqMHbsWJo2bZo3n1WrVnHUUUfRo0cPjjjiCDIzM/nyyy+ZN28ep59+Oh988EGBwDcIguJOPPFEFixYQJcuXTjuuONYuHAhn376KRUrVmTixIm0aNHiF60fQGZmJrVq1SI1NZXVq1dTtWrVPb7WEydOzAuI27hxIyNGjKBRo0Z06tQJgGbNmnHHHXcU2n7t27enZ8+eRc5zT6/v7p5++mluv/12unbtSsOGDalQoQKrV69m5MiRJCUl0bFjR0aNGkWZMmXypnn99de58847Ofnkk6lVqxYbNmzgk08+YePGjdx///3cfffdRS5rf7bJ2rVradeuHatWreKcc87hyCOPZMKECXz77bf07NmTESNGEBWV/z9mZ8yYwUknnURqaionnHACHTt2JD09nS+//JIlS5Zw7LHHMnHiROLj4/O2z+DBgylXrhw33ngjMTExhWro3bt33n4PQYDcBRdcwPvvv0/Tpk3p2bMnW7du5YMPPiAtLY1XX32Viy++uFjbXZIkSZIkSZIkSZIkSZL2pvA3miRJkiRJkiRJkiRJkiRJ+3TdddfRsmVLnnjiCUaOHMm2bduoXr067dq144ILLjhky50xYwbDhg0r0DZz5kxmzpyZ93zXALdevXoxefJkHn30USZMmMD48eOJi4ujRYsW/OMf/+Daa68tFG5WlPr16/OPf/yDsWPHMmLECDZv3kx8fDxNmjTh7rvv5qabbqJKlSoFpqlQoQJnn3023377LZ999hmxsbG0bNmSF198kSuuuKJAwFeuKlWqMGnSJAYPHsxHH33Ed999R+XKlbnkkksYNGgQDRs2LND/QNdv+PDhJCUlccEFF+w1qAxg0aJFhbb54sWLWbx4MQBdunQpEOC2fPlyACZPnszkyZOLnGdxA9xOPfVU+vXrx8SJE5k2bRqpqalUqFCBli1b8pe//IX+/fsXCjdr1aoVRx99NKNGjWLTpk1UqFCB9u3bc/PNN9OtW7c9Lmt/tknNmjWZMmUKd999N59//jmfffYZ9erVY/Dgwdx+++2FXts2bdowffp0HnroIb7++mueffZZYmJiaNy4MYMHD2bgwIF54W0Ay5YtA2Dbtm088MADRdbQoEGDAgFuoVCIt956ixNPPJEhQ4bwv//9j7i4OE488UTuvPNOunTpstd1kiRJkiRJkiRJkiRJkqTiCkUikUhJFyFJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJvwWF/32pJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJKlIBrhJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUjEZ4CZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJxWSAmyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQV068ywG3btm3cdNNN1KpVi/j4eNq0acPbb7+9z+k+/PBDLrroIho3bkzp0qVp0KABF198MQsXLjwMVUuSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6vQtFIpFISRexux49ejBt2jQefvhhjjzySN58801eeukl3njjDf7617/ucbp27dpRo0YNevfuTcOGDVm5ciUPPvggK1euZPLkyRx11FHFriEcDrNmzRoSEhIIhUIHY7UkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/QpFIhFSU1OpVasWUVFRe+37qwtwGzFiBKeffjpvvvkmF110UV57jx49mDNnDitWrCA6OrrIaTds2ED16tULtK1Zs4YGDRpw2WWX8dJLLxW7jlWrVlG3bt0DWwlJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJvzkrV66kTp06e+0Tc5hqKbaPPvqIcuXKcf755xdo79u3L3/961+ZMmUKJ554YpHT7h7eBlCrVi3q1KnDypUr96uOhIQEINiI5cuX369pJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJP12pKSkULdu3bwMsr351QW4zZ49m+bNmxMTU7C01q1b543fU4BbUZYsWcLy5cvp3bv3XvtlZGSQkZGR9zw1NRWA8uXLG+AmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/QGEQqF99ok6DHXsl6SkJCpXrlyoPbctKSmp2PPKzs6mX79+lCtXjr///e977fvQQw9RoUKFvEfdunX3r3BJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJv3u/ugA32HvyXHFS6QAikQj9+vVjwoQJvPrqq/sMZPvHP/7B1q1b8x4rV67cr5olSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/f7FlHQBu6tSpQpJSUmF2jdv3gxA5cqV9zmPSCRC//79ef311xk2bBhnn332PqeJi4sjLi5u/wuWJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9IcRVdIF7K5Vq1bMnTuX7OzsAu2zZs0CoGXLlnudPje87ZVXXuGll17ikksuOWS1SpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfpj+dUFuJ1zzjls27aNDz74oED7sGHDqFWrFu3atdvjtJFIhAEDBvDKK6/wv//9j759+x7qciVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9gcSUdAG7O+200+jevTtXX301KSkpNG7cmLfeeosvvviC119/nejoaAD69evHsGHDWLx4MfXr1wfghhtuYMiQIVxxxRW0atWKyZMn5803Li6Otm3blsg6SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfp9iCrpAory4Ycfcumll3LPPffQq1cvpkyZwltvvcXFF1+c1ycnJ4ecnBwikUhe26effgrAyy+/TIcOHQo8zjnnnMO+Hr92DRo0IBQKMXTo0JIu5bAJhUJ7ffzlL38p6RIlSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL0KxZT0gUUpVy5cvz73//m3//+9x77DB06tFDw2LJlyw5tYfrd6NixY5HtzZo1O8yVSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6bfkVxngJh1qEydOLOkSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9BsUVdIFSJIkSZIkSZIkSZJ+Q9Z9A7P/BVtmlXQlkiRJkiRJkiRJkiRJkiRJkiSVCAPcVCzr1q3jmWeeoWfPnjRo0ID4+HgqVapEly5deO2114qcZtmyZYRCIRo0aADASy+9RNu2bSlTpgy1a9fmhhtuIDU1FYCcnByeeOIJjjrqKEqXLk2dOnW44447yMzMLDTfQYMGEQqFGDRoEOvWraNfv37UqlWL+Ph4mjdvzuOPP052dvYh2xaSJEmSJEmSJEnSH9bCF2DMKTDrn/DlsbDyg5KuSJIkSZIkSZIkSZIkSZIkSZKkw84ANxXLSy+9xA033MCECROIiYmhVatWlC9fnvHjx3PZZZdx9dVX73X6W265hQEDBpCamkqjRo3YsGEDzzzzDL179yYcDnPeeecxcOBAIpEI9evXZ82aNTzyyCMMGDBgj/NMSkrihBNOYNiwYSQmJlK/fn3mzZvHrbfeyvnnn084HN7jtDfccAM9evSgV69eXHPNNYwYMYJIJHLA20eSJEmSJEmSJEn63cvcCj/dmf88nAWTLoNtS0quJkmSJEmSJEmSJEmSJEmSJEmSSoABbiqWrl278s0335CamsqiRYuYNm0ay5cvZ+bMmTRv3pwXXniBcePGFTnt6tWrGTJkCKNHj2bRokXMmjWLH3/8kSpVqvDNN9/w5z//me+//54ff/yRn3/+mXnz5vHNN99QqlQpXn31VX7++eci5/vCCy9QsWJFFi1axI8//sj8+fMZN24cFSpUYPjw4Tz//PN7XJ9nnnmGr776ii+//JLnn3+e008/na5du7Jx48aDsr0kSZIkSZIkSZKk3515T0BmcsG2nDT46e6SqUeSJEmSJEmSJEmSJEmSJEmSpBJigJuKpVOnTnTr1o3o6OgC7a1bt+aZZ54B4I033ihy2uzsbAYNGsQpp5yS19ayZUv+9re/ATB8+HCeeeYZ2rRpkze+a9eunHvuuQB8+eWXe5zv0KFDadCgQV7bSSedxP333w/A448/TiQSKTBNr169ePfdd1m8eDHp6emsWrWKZ555hvLlyzN+/HjOPPNMsrOzi7FFJEmSJEmSJEmSpD+QcA4s/G/R4zZOPLy1SJIkSZIkSZIkSZIkSZIkSZJUwmJKugD9dqSmpvL2228zceJE1q5dy44dO4hEImRkZAAwc+bMPU57xRVXFGrLDWyrXLkyvXv3LjS+bdu2vP322yxZsqTIeXbo0IFjjjmmyGXddtttLFu2jPnz59OsWbO8cSNHjizQt3bt2lx33XW0a9eOjh07MmXKFN566y0uvfTSPa6LJEmSJEmSJEmS9IezeRpkbi5+/5QF8MNNkLERGg0IHqHQIStPkiRJkiRJkiRJkiRJkiRJkqTDyQA3FcuPP/7IGWecwZo1a/bYZ/Pmom/YqFatGuXLly+yHaBRo0Z7nA5g27ZtRY5v3rx5ke1ly5albt26LFy4kAULFhQIcNuT448/nvPOO4+33nqLDz/80AA3SZIkSZIkSZIkaVdrvyx+3+w0GHMqpK0Mnm/+HnashlaDD01tkiRJkiRJkiRJkiRJkiRJkiQdZlElXYB+/XJycrjgggtYs2YNf/rTnxg3bhybNm0iOzubSCTCwoULAcjKyipy+jJlyhTZHgqFijU+EokUOb569ep7rDkxMRGA1NTUPfbZXYcOHQBYtGhRsaeRJEmSJEmSJEmS/hA2TSp+37mP5Ie35Zp93/7NQ5IkSZIkSZIkSZIkSZIkSZKkX7GYQzHTjIwMoqOjiYk5JLPXYTZ16lQWLVpE/fr1+fDDD4mLiyswfuXKlXuY8tDauHHjHsdt2LABgISEhGLPLzY2FoDs7OxfVpgkSZIkSZIkSZL0e7P1p+L1y0iCuY8WPW7+v6Fqh4NXkyRJkiRJkiRJkiRJkiRJkiRJJSTqQCecOHEi9913H1u2bMlrS0pK4rTTTqNcuXKUL1+eu+6662DUqBK2bNkyAI499thC4W0AM2fOPMwVBebOnVtke1paGitWrADgyCOPLPb85syZA0CdOnV+eXGSJEmSJEmSJEnS70VGEuxYm/+8TF046TNofHXhvqs/g5z0oucTzjo09UmSJEmSJEmSJEmSJEmSJEmSdJgdcIDbE088wbBhw6hYsWJe2y233MKXX35Jw4YNqVixIg8//DDvv//+wahTJah06dIArF+/vtC4rKwsnn766cNcUeC7775jxowZhdpffvll0tPTqV+/Pk2bNi3WvNavX88bb7wBwKmnnnowy5QkSZIkSZIkSZJ+27b+XPB5m0eh9ulw3H+hwSUFx63++PDVJUmSJEmSJEmSJEmSJEmSJElSCTngALcZM2bQuXPnvOdpaWm8++679OjRg/nz5zN//nzq1avHc889d1AKVclp3749MTExfPvtt7z66qt57Vu3buXiiy8uMtjtcIiJiaFPnz4sX748r23ixIncc889AAwcOJBQKJQ37h//+AdvvPEGaWlpBeYzc+ZMunfvTnJyMtWrV+fKK688PCsgSZIkSZIkSZIk/Rakr8sfrng01LswGA6FoM3jEFMueB6JwIaxh708SZIkSZIkSZIkSZIkSZIkSZIOtwMOcNuwYQO1a9fOez5p0iTS09Pp27cvAAkJCZxxxhnMmzfvl1epQ+r666+natWqe3xs2rSJm266CYDLL7+c+vXrc9xxx1GzZk2GDx/OU089VSJ1X3nllWzevJnGjRvTtm1bmjVrRufOnUlOTubMM8/kmmuuKdB/7ty5XHLJJVSoUIHmzZvTvn17GjVqRJs2bZg1axaJiYl8+umnVKxYsUTWR5IkSZIkSZIkSfpVytiYP1zztCC4LVfpRDjismB4+3LITD68tUmSJEmSJEmSJEmSJEmSJEmSVAJiDnTC+Ph4UlNT856PGzeOUChEly5d8trKlStHcrJf0P+127ZtG9u2bdvj+OzsbB599FHq1KnDCy+8wJIlS0hLS+PUU0/lrrvuIjEx8TBWm69q1apMnTqVu+66i5EjR5KUlETTpk254ooruPnmm4mKKphPePXVV5OYmMjUqVNZs2YNixYtokyZMhx//PGcfvrpXHvttVStWrVE1kWSJEmSJEmSJEn61UrfJcCtaofC4xv1D34mTy/YfkRfaH0/LPwv/PzQoatPkiRJkiRJkiRJkiRJkiRJkqTD7IAD3Bo3bswXX3xBRkYGUVFRvPPOO7Ro0YIaNWrk9VmxYgXVq1c/KIXq4Fu2bNl+9b/xxhu58cYbixwXiUQKtTVo0KDI9lxdu3bd6/g+ffrQp0+fvdZUo0YNhgwZstc+uXr27EnPnj2L1VeSJEmSJEmSJEnSThmb8ocrtCg8Pm7nP0naOje/rXRtOPZpiC0PRz8Iaasge/shLVOSJEmSJEmSJEmSJEmSJEmSpMMl6kAnHDBgAIsWLaJJkyY0b96cRYsWFQrbmjJlCi1aFPEFfkmSJEmSJEmSJEnSb0PGxuBnKBrKHrHnfunr8oePvD4Ib8vV9gmIKXto6pMkSZIkSZIkSZIkSZIkSZIk6TA74AC3fv36ceutt5KWlsaWLVu48soruemmm/LGjxkzhiVLlnDKKaccjDolSZIkSZIkSZIkSSUhN8CtVGWIit5zv/T1+cM1exYcF18NGg04+LVJkiRJkiRJkiRJkiRJkiRJklQCYg50wlAoxCOPPMIjjzxS5PiOHTuSnJxM2bL+F3VJkiRJkiRJkiRJ+s1K3xngFldlH/12BrhFlYIKRxUeX63Twa1LkiRJkiRJkiRJkiRJkiRJkqQScsABbvtSqlQpSpUqdahmL0mSJEmSJEmSJEk6HDJ2BriVqrz3frkBbglNISq28PhQ6ODWJUmSJEmSJEmSJEmSJEmSJElSCYn6pTP46KOPuOCCC2jdujWNGzfOa583bx6PPvooq1ev/qWLkAoYNGgQkUiEQYMGlXQpkiRJkiRJkiRJ0m9XKLTvB0BmcvCzuAFuZWofupolSZIkSZIkSZIkSZIkSZIkSfoViDnQCcPhMBdddBHvv/8+AKVLl2bHjh154ytVqsRdd91FTk4O//jHP355pZIkSZIkSZIkSZKkwy+SFfzcW4BbTjpkbQ2G46oe+pokSZIkSZIkSZIkSZIkSZIkSSpBUQc64VNPPcV7773HlVdeSXJyMgMHDiwwPjExkc6dO/P555//4iIlSZIkSZIkSZIkSSUgEg4eALHl9twvfUP+sAFukiRJkiRJkiRJkiRJkiRJkqTfuZgDnXDo0KEcd9xxPPfccwCEQqFCfRo3bmyAmyRJkiRJkiRJkiT9VoWz84dDsfnDU/rD6k/zn7d9LH/YADdJkiRJkiRJkiRJkiRJkiRJ0u9c1IFOuGjRIk466aS99qlSpQpJSUkHughJkiRJkiRJkiRJUkmK7BLgFrXL/wfL2goZG/IfOTvyx5WqcvjqkyRJkiRJkiRJkiRJkiRJkiSpBMTsu0vRSpcuTUpKyl77LF++nIoVKx7oIiRJkiRJkiRJkiRJJWnXALdQ9J77hXPyh2PK5g+vGQk5afnPa/eGqL3MR5IkSZIkSZIkSZIkSZIkSZKk34ADDnBr27YtX375JRkZGcTFxRUav3nzZr744gtOOumkX1SgJEmSJEmSJEmSJOkQiEQKPg+FCrdnbdulf3gv89olwC20y5+hv78ati/Pf37BDsAAN0mSJEmSJEmSJEmSJEmSJEnSb1vUgU54ww03sHLlSs477zxWr15dYNzixYs555xz2Lp1KzfccMMvLlKSJEmSJEmSJEmSVAKidglj2zWkbXeR7KKnkSRJkiRJkiRJkiRJkiRJkiTpd+iAvzl/9tlnc8cdd/Dwww9Tr149ypYtC0D16tVJSkoiEonwz3/+k5NPPvmgFStJkiRJkiRJkiRJOoxCuwa4Ze+5H5FDXookSZIkSZIkSZIkSZIkSZIkSb8WUb9k4gcffJAvv/ySM844gzJlyhAdHU04HKZXr16MHDmSwYMHH6w6JUmSJEmSJEmSJEmHWyg6fzgnfS/9dg16yzl09UiSJEmSJEmSJEmSJEmSJEmS9CsQs+8uRVuxYgWlSpWie/fudO/e/WDWJEmSJEmSJEmSJEn6NQiFghC3SA5kJu+l3y5/eg5nFWvW4TAMHQpPPglr10L9+tCnD1x9NcTG/qKqJUmSJEmSJEmSJEmSJEmSJEk6pKIOdMIjjjiCu+6662DWIkmSJEmSJEmSJEn6tYkpF/zM3Jzf1vZx6PJ5/vOo6PzhnB37nOXGjdClC/TrB3PmwObN8OOPcOONcOGFB6luSZIkSZIkSZIkSZIkSZIkSZIOkZh9dyla5cqVqVy58sGsRZIkSZIkSZIkSZL0S4VCxesXiRSvX1w1yNoKmcn5bWXrQzh7l2Xu8qfnjKRd2qOBEJC/rEgE+vSBiROLXtzChcUrS5IkSZIkSZIkSZIkSZIkSZKkknLAAW6dO3dm8uTJB7MWSZIkSZIkSZIkSSVo2IxhpGWlER8TT9+2fQuOLE4oWHEDwfTbElcVti0qGOC2u5hy+cOZuwS4nbkYlr8N312U1zR2LIwYkd8lIQFOPRXWrIEpUw5e2ZIkSZIkSZIkSZIkSZIkSZIkHSpRBzrhQw89xOzZsxk8eDDZ2dn7nkCSJEmSJEmSJEnSr1ZqRip9P+7LNSOu4YpPrmBL+paSLkm/FvHVgp+Zm/fcp1Tl/OGMpD33A156KX+4eXOYORM+/BAmT4YxY6Bq1V9QqyRJkiRJkiRJkiRJkiRJkiRJh0HMgU74yCOP0LJlS+677z7+7//+j6OPPprExERCoVCBfqFQiCFDhvziQiVJkiRJkiRJkiQdOj+u+5EIkbznP6z9gZOPOLkEK9IBi0QKPs/9G+7u7cVVameiWlYKZG6FUhUK94mOg5gEyE6FjE17nd133+UPP/88HHFE/vOuXaFp0wMrU1IJikRg9acw7zFImQ/RpaHycdCoH9Q8Lf84JEmSJEmSJEmSJEmSJEmSJP1OHHCA29ChQ/OG165dy9q1a4vsZ4CbJEmSJEmSJO1FTiYsfwvWfAbZ26BMHUg8BeqcEwShSJJ0mExfM73QcwPcBEB8tfzh1PlQ5YQ99KsO21Ihff0eZ7VuHSxbFgzXqQMnnVS4T82aB16qpEMkKxVSFwXDCY0gtnz+uJxMmNAb1o4sOE3aClj1IZwyHqp3PmylSpIkSZIkSZIkSZIkSZIkSYfDAQe4LV269GDWIUmSJEmSJEl/PEnfw8RzIG1VwfbFL0GNntDti5KpS5L0h/T92u8BKB9XnpSMlLzneSKR/OFQaN/te7PrNPr1i6uaP5w8cy8BbomwbTGkzAte4yL2hylTo/KG27Yt/i4jqYSkrYG5D8OSlyF7e9AWioLq3aDt41CpDcy5v2B4W4VWEF0qOF5EsiGSUyKlS5IkSZIkSZIkSZIkSZIkSYfSAQe41a9f/2DWIUmSJEmSJEl/LBlJMO50yNgQPC9VCSq0DMLcti+F7JTC00QiQWhCJBtiK5h4Ikk6qKavmQ7AhUddyIs/vJj3XCKuWv7wxvHQeEDR/eITg5/ZqbBtCSQ0KtRlzZr885eWLQ9mkZIOuh3rYPSJsH15wfZIGNZ/DWtHQfkWMP+poD0mATp/CDVODZ5nbILZ9xW4bsnKgpEj4Y03YN48yMmBRo3gT3+CSy6BsmUP07pJ0oFIWwNbZ0E4G8rUgQpHQdRuX79LWwXL3oDUhRCKhoTGUPM0qOiJjyRJkiRJkiRJkiRJkiT93hxwgJskSZIkSZIk6RdY9L/88LZGA6DtkxBbLni+aQqseCe/b/pGWPgcLB0WhLtBEI5QvTO0+AdU63R4a5ck/e6kZKSwIGkBAJcffTkv/vAii5MXk7wjmUqlK5VwdSpxuwa4rfooCHUqXaNwv9wANwjCnYoIcNu2LX+4kruW9Os24/b88LbEU6D5bRBfA7b8BIteCNqTJgch0wBH3Z0f3gYQVxWO/U8Q+AYsWABnnhn83NWcOfDJJ8HwlVcewvWRpAO1eTr89E9Y92XeMQ2AUlXgmCfhiMsgJxOmXwdLhhTsAzDjNuj4HtQ77/DWLUmSJEmSJEmSJEmSJEk6pKJ+6QzefPNNevToQfXq1YmLi6NatWr06NGDN99882DUJ0mSJEmSJEm/T2tGBD9L14Jjn80PbwOo2i64ARggbRV8eRzMHhSEt4VioFQlyE4N5rHi/cNeuiTp9+fHtT8SIUKFuAqcWPdEqpapCsAPa3/YvxlFIgUf+2rXb8OuQWzZ22HWvcFw8vSC/XYNcFvwLISzD31tkg6NnAxY9WEwXKU9dP0CavaASq3hiEvg1AlBYNH6r/OnqX160fMKRZGeDn/6U35423HHwYsvBsFtjz8OrVod2tWRpAO2+QcY3RnWjgyC2RKaQOLJUK4hZCZB0tSg38zbYfGLQZ/StaHZrdDqPqh7PkSXhpy0kl0PSZIkSZIkSZIkSZIkSdJBF3OgE4bDYS688EI+/PBDIpEIpUuXplatWmzYsIHRo0fz9ddf88EHH/Dee+8RFfWLc+IkSZIkSZIk6fcjKxWSJgXDNbpDdKk99/3h75C2Ihg++iFofDWUqgCZW2DV8CDITZKkfZi/aT7J6ckAtK3RlriYuALjp68Ngrja1GhDKBSiTY02jF4ymulrp3NKw1MOe736lSnXGKLiIJwRPF/8f7BhLGxbXLBf+Wb5w1tnwdzHoPlAWDsqr7ls2fwuW7Ycsool/VIbxkP2tmC4YV+I2u3rJaEQlK4B25YEz6NLQ/nmwfCO9bD5+/y+ZeryyVetWbzzkHHKKfDFFxCzyyxvugk2bTokayJJRQuF9t0nEoGZd0DODogqBZ0+gFqn50+7+UfYtjD4nGfRC0Fb1Q7Q7WuIKZ0/n/SNkJlcYNYbNsCYMbB0KWRlQWIitG0Lxx4LftVOkiRJkiRJkiRJkiRJkn4bDjjA7ZlnnuGDDz6gS5cuPPzww7Rr1y5v3NSpU7njjjsYPnw4zzzzDDfeeONBKVaSJEmSJEmSfhfSN0AkHAxXOCq/ffb9BYNQWtwFqz8JhhtcAi3uyB9XqiI07FNo1uEwzJsHCxdCRgaULw9HHglHHFG8e5Ml/TLhMMydC7NmwfbtULp08P5r2xbi40u6Ov1erV8PK1YEwQ+VKkHDhhC3Sz5bZk4mnV/pzMa0jQAMPXsol7e5vMA8dg1wA2iTmB/gJhEVAxVaQPKP+W2pCwr3q9S24POf7oRZ90AkO6+pdu1I3vDs2Qe7UEnFUpwLg3lP5w9X7RD8zEkPQqRzxVaA7O3BcHQZCO1MHNo8Dcafmd+vYT9ee+2lvKd//3vB8DaA6OggvEiSflV2rIP1XwfDDa+A2mcUHF+5bfBY9kZwjARoflvB8DaA+GrBA5g/H66+OghvK8o998DgwQdxHSRJkiRJkiRJkiRJkiRJh8wBB7gNHTqUpk2b8tVXXxGz2zdrTzjhBEaNGkXr1q155ZVXDHCTJEmSJEnSH9amtE0MHDUQgPJx5Xm619NE5d7UXlzFTd2KRPbdRwfuYL4Ou4SY5AW5AawZAUmT859X7QjhzGC4Tu/89pR5u9QVDQlN2LAB7roL3n8ftmzJLzm3nAsugHfeKd4qSNp/aWnBjfZDhuS/B+Pjg0C3zEyoUwdWrszvn5wMP/wAy5YF48uVC0K32raFMmVKYg30W7N+PTz4IHz2GSxZUnBcbCzcdx/csTP386O5H7ExbSNx0XFk5GTwv+n/KxTg9v2a7wFoXLkxW9O30rhy4wLtEhXbFAxwK0pCE4gpB9nb8tt2Pe8B2p2Qf+7z44/BuYohs9Jhtus1y65vwF3bf344fzh658lJ5lb47qL89gqtoGLrYDgrGcI5EBVd5CLnzs0f7tTpAOuWpP2Ung4//wybNgXPq1QJQu4TEijesXDVx/mf29Tsld++5gtgZ79QDGyZlT+uWuedC98AS4bmt5drQFLZC+jYEZKSgsDlf/4TLrwQatSAjRuDULddg5glSZIkSZIkSZIkSZIkSb9uBxzgNn/+fK677rpC4W15M46J4YwzzuDZZ5894OIkSZIkSZKk37onvnuCYTOH5T3vUr8Lf27x5/wOplX8/hTnNU3flD+8Y03+cI1TIbo0bBgTPM9KzR8XVy1/eMRR+TcQl6pC+umb6NwZFiyA6Gh4+GG45BKoWTO4WXnmTFi8+MBXSfpN2rYM1n0ZvMcyNgVhh3FVIaEp1D4DYsoetEVFIkFI4uefB89vvBEGDoTatYPnS5cGN+IDfPst3HorTJoUPG/aNLhZPy0N5s2Dzp3z50N2Gmz6DnashczNO9ehGiQcGYSl7CEgRb9/W7bAccfBqlVBwMMDD8DZZ0NiYjBu2rSCuRP/m/4/AO7rdh//Gv8vJq2axKz1s2iV2AqAlIwUFiQtAOD6kddz/cjr86ZdkryE5B3JVCpd6eCuhAG1vz01ToGlr+y9TygqCKBd9+WeZ1MDGjQIAixXroQJE+Ckkwr2Wbcu6CepBMVWyB9OXwcJjYJzj3KNIWMjZG0NxpVrGPyMhCFtJZRrEIQX9fwBpvSFLTMByMnJn120pzDahzWpa0jekQxAg4oNKFvq4J276/cvEoH33oMnn4Tp0yE7G6pXh/Llg5C0lBT48EPo3bsYM8tOyx+OScgfnnB2fuB+bEVoeEX+uNDOg9yOtTDz9vz2Gt15cvQFJCUFTwcNyg9chiDU+4gjir+e0n7JyYRtCyF9I2SnBuGspWsGv9ejS5V0dZIkSZIkSZIkSZIkSdJvVtSBTliqVCm2b9++1z7bt2+nVKn9/4LPtm3buOmmm6hVqxbx8fG0adOGt99+u1jTbtiwgT59+lC1alXKlClDhw4d+Prrr/e7BkmSJEmSdOCS0pLo+XpPug7tStehXZm/aX6R/SKRCGlZaaRlpZGenV64Qyi074f0K7YpbRPPTH2GECEePPlBAAaPG0w4N3gLgrtKcx9FtRX12FM/HVrFfR329Jrs2h5XBcq3CNrXfZXft/X90Ore/GlKVcwfTluZP1y7N1Q4Ku/piy8G4W0Af/873H57EBwVFQVlykCHDkGg266ycrJIz04nPTu94D4p/dZlpcCYXvDpETDzriC8rVyj4Kbk7DRY/BJsX178+RXjfGTixPzQtVNPhaeegjp18rs0bAj9+sHChdC9exDe1rgxzJkThLaNHQtTp0JyMvznPwR1Tu4LH1aF8WfCyvdh21LYtgRWfQTfXgDblx6Kradfg+0rYPb98FUn+LgefFgNhtcJHl8eD2tG8NBDQXgbBKGdd94JRx0FVasG+9ZFF8Ff/xqMX5C0gDHLxhAbFUu/tv244KgLgPxQN4Af1v6w15Kmr51+8NfT85vfnsRT9z4+Nxiz9hn7nFWHDvnDV18dhLnlGj8+f/+VVIKqtMsf3vht8DOuKpy5EBr2zR+XeHL+8PK3gp+lKkDlthBTLm9U48b53aZOPQT16ncjeUcyx/7fsbR8viUtn2/JdSOvO/QL3bEOlr8NPz8CM+6AHwfCrEGw6EVIXXTol6+D6qWX4MILYcoUOP304Dxj/frgeiw5GebPhzZtijmz+MT84bRdriMbDYCqu5zQlKmTP7xtZ4J+fA1o/WAQvr3TxIn53c46q3glvDfnPYb8MIQhPwzJCzaUim37Cvju4uDzhS+Pg9n3wbLXYcF/4Nu/wOgTS7pCSZIkSZIkSZIkSZIk6Tct5kAnbNu2Le+++y533XUXtWrVKjR+7dq1vPvuuxxzzDH7Pe9zzz2XadOm8fDDD3PkkUfy5ptvctFFFxEOh/nrXr6tn5GRwSmnnMKWLVv497//TfXq1fnvf/9Lr169GD16NF26dNnvWiRJkiRJ0v6JRCJc9flVjFo8ilOOOIWvl37NJR9dwndXfEdsdGyBvk9OepKBXw0EID4mnvF9xnN87eN3nVn+cG5YmyEO+g154rsn2J61nfNanMdtHW9jyI9DmLVhFh/N/Yg/t/jzIV327A2z827qbJXYiorxFQ/p8nQAavaClJ8hZS4sew2OuKxwnyrtgjCU7O1BGEKDi4P2zh/A3Mdhxq0ALN0lx6lp030veuP2jRz/4vEs3xrcfPyXln/hzXPfJGQwpn4Pfrob1n0JUbHQ6wcoWw+ytkHm5vw+sQnFC4LdPUBq12l2aV/5Zn5zw4Z7nvULL8COHcHwwIHQokXB8dHR0KgRMP1OWDoUouOh10wofySEsyGcld856oD/xKMStnjzYl6Z8QoAZWPLcsuJt1Aqeuc/REpdHNxUn7UF6l0IHV6Fcg2DceGcIAwiKoZ58/Lnd/TRe1/ei9NfBKBn457ExcRxXovzGPLjEF776TUe7f4oZWLLMH1NfkBbzC77VnY4G4Dpa6ZzasN9hHcdKsV8r6amwrvvwnffBeGIcXFQtizExEBOTtBt2LAg5E4HqHQiVDsJNo4vPK5KO6i08+/Ctc+CH26EogJiq50EUXH07w9v7cx5+vnnYD/u0QNWrw5CLlu2PHSrIe1JRgZ88EEQIjhzZtBWoQLExkI4DNnZ8Mgj+xH681tXqS2UrgU71sDCZ6BRf4irXLhf1fYQXRpydsC8x4NAt6q54W/550t//SuMHh0MP/ccdOtW+BCfmgoJ5Yt5jgawYz0kTw9qzEqFcGZQS6nKQYDcLqHXecI5QBhCMf5jgBIwdtlYpq2eBkDL6i05rclphfrc9tVtrNu2jquPu5ovF3/J0BlDubjVxYfmXCScBZMugxVvB/t7k2uDUK7oMpCdEpybbf0ZEhrve1761Rg8OH/4lVegUqX856EQNGmyHzOr1gliKwbn50tegSP6BDM57lmY9xRsmhT0q3M2/HhzMLzo/+CE/wXnTkf9A7bOgi0/AVClSv6sV6wofE24u1d+fIUrPrmCxLKJrN++nk8WfMLwC4f7+Y2KJ5wdhMJv+QkqtoGTvy78uzyniH+sI0mSJEmSJEmSJEmSJKnYDvjunltuuYWzzjqL4447jltuuYUuXbqQmJjI+vXrGTt2LE8++SSbN2/m5ptv3q/5jhgxgq+++iovtA2gW7duLF++nFtvvZULL7yQ6OjoIqcdMmQIs2fP5rvvvqPDzn/b3q1bN44++mhuu+02pkyZcqCrK0mSJEnS715ODmzfHtywnJUV3KBcrhzEx+92P+segktyvf7T67z/8/scnXg0Iy8eyfnvnc/H8z/mX+P/xeBu+XfPjVw4kttG30aTyk14/vTn+dObf6L3O735fsD31EyoeeArcpiD3jbv2Mz3a74HghC6zvU6ewOdANiUtolnpz0LQJnYMjwx6QnqV6zP4uTF3Df+Ps5pfg5RoahDsuxXZ75K34/7cnTi0czZOIdmVZsx+tLRVCtbrWDHcE5wA2pOenDTcigaYspAbAWDgQ6HxgOCIIRwFky+PAhoq9QWkqbl94kpA3XPD4Kc1nwO02+CI6+H+ERIX5/X7cwz4amnguE334TLLw+O47uKRIJDZGZOJue9dx7Lty7n+dOfZ+Sikbw9+21aVW/FnZ3vPOSrrV+5cBaseB82T4Mdq6FMvSBELBQdBPGEM6HxVVCuQUlXumfbdiYaxpSHMnWC4Q1j4Kd7gsDEcAY0G1isYLbi6tYtOG/atg0+/xw2bIDq1Qv2iUSCcLdcuwZwFZL8Y/AzPjEIbwNY/jbMugfSVkAkB1reC60G7Xetv3WRSISMnAwAQoSIi4kr4Yr2z6qUVZzy6ils2L6Bi1pexMszXmbG+hm8ee6bREdFw4p3gt/NAK0GB+FtO9bChHPzZ1K+Ob16vcwnnwRP334bunYtOoMmIzuDoTOHAvDZgs9IeCghb1xKRgrvzH6Hvm37Mn1tEOB22dGXMaz3sLw+f/v0b7z4w4t540tEMd6rKSnQrl3wvqpcGUaMgBNOKNg9LQ1KlToM9f7etbwXxpxSuL31A/kbvGw9aNgfFv9fwT6hKGj7GIRCdOsGp50GI0cGo1JS4P33D23pOsQykmDFe0FASFZKsB9ExQJRwe8twtD6XyVd5R5FIsE+OWYMREXBp59Cr17BcK7s7ODxhxEKQaO/wexBkLYKPm8eXMOUqgzrvs7vFx0fXKPMfTQIzP2qPVQ5Idiom7/P63beefCPf8D69UFQ3llnwbXXQmIiLFgAL78M554LVxbnHC1zK0z6K6wZAZWPDc7tKrXdGX69A9LXQvoGKNcY5j8N60ZDxiaofExQf1RscF4bzoI650Bi10OzDcM5QQhY3jV3zM5r7vLBMfEP5stFX3LW22fRqFIjEuISuOPrO3jrz29xwVEX5PUZs3QML/34EollE3nolIc4rfFpnPX2Wfzt078x+5rZlIktU3CmezuPL87nc4tfDsLbADq8EewLOenw0z/z+6REgLP2a12V7+efg3OzefOCz57r1QvOyXJDdrOz4cEHD+4ya9UKQmEBVq4sGOC236JLBWH6C/8LGyfAlL7Q9CaIrxlcm+Uq1xCqdQ76LP6/4Nh4xOXBz7TVed2uvx4++igYHjwYjj++YKhbdjasWRNsp1nrZ3HNiGuoEFeBKf2n0P/T/nwy/xOenPQkt5x4yy9YKZWY4gbJHyxZW/LCA0k8OT+87btLgs9JMrcEz3tMhoqtDt5ypT+I9HSYPx+WLYMtW4J/2pCVFfyeS0iA1q2h5ZHJwWd6W2YG10ll6kFUqeBcMJIDORlw9IP+PUaSJEmSJEmSJEmSpN+wA/6r/xlnnMFTTz3Frbfeym233VZgXCQSISYmhscff5wzzjhjv+b70UcfUa5cOc4///wC7X379uWvf/0rU6ZM4cQTT9zjtE2bNs0LbwOIiYnhkksu4c4772T16tXUrl17v+qRJEmSDrpIGNI3Qlbyzhu3soFwEIgQFQela5CWU5XJk2HRIkhNhTp1oHz54IbBUAjCYahaFY47rqRX5vDKyQlu6N22Lfjyc3Z2cB9DTEwQMFW9+i5BJTnpwSOSHWzzUFTwZejo0jtvHv1ti0SCmx2XLoWkpOB5QkL+TaXhcBAgkbuPJKUl8casN8jIziAzJ5NaCbX4S8u/UDq2dMmthA5MJAyrPoKk74P9u2IriEkIjiFEgvHx1aBap2LNbswYePxxmDkTWraEc86BmjUhLi54j6WkBDfSnnxy8cpbvmU51428DoCtGVvpOqwryTuSAXhgwgOc1uQ02tdpz7xN8/jLB38hHAnTKrEV45aPo0W1FsxYN4Nz3jmHsX3GEh8TfwAb6CDbR5jLiIUj6P9Jf6qWqcqlrS9l0LhBnFT/JF468yVql/cziD+6Jyc9ybbMbdRKqMWS5CUsSV4CQPm48vy0/ieGzxvOuc3P3cdc9t+QH4Yw4NMB1ChXg0e7P8qYpWN4cOKDdB3Wla8v+5oaZarBjNtg9SfBjeONrwpuGtqxJrjZPntbcGN5y39CbLl9L3A/bipMTYW1ayE5OQiLjI4O3mahUDCbOnWCG1T/MMo3g+Oeh6n9g+drvwgeuaLjg/PDtk9A8g/BDZcL/h08dtOtG9x8Mzz5ZHBsb9MGLroIatcObpCeOTPY5sOGRbh+xPWMXz6eqmWqsiZ1DfUr1Afgrm/u4qhqR3F2s7MPw8ofPj+s/YGP5n5EQlwCW9K30LleZ3o17nXAYZvLtyxnZcpKAErHlKZtzbaHLIyxREy/Hhb9Lzh3PntVcF6RMh9WfQwZG4Ljw+ZpzFjUgK++guXLg3OFRo2gTJngfDQcDh5t28IRR5TAOrQaBOtHQ2YSfHcxNLsFqp4IJ38No06AbYsP+iJr1oTnn4crrgiCAlq1gssug8aNg20xdy5MnQoTJ8LHH8NXX8HTT8PWrcH5V2JicJPnzz8Hx8rbLrsXxvaE7cvh+2uhyTVQ9xyo0xs+bxocs0tK0vew4D+wdQ4knrIzYC4UhKIQCa5xa/0pCEjZn9mmJTFu+TjCkTAAx9Y8liMqFdyBFm1exHUjrmPammmc0+wcXv/pdfof059/nfwvKsZXPDjrdwht2L6BU189leVbl3NFmys4/cjTmbZmGu/OeZeEUgm8eOaLhOpfBPOeCH4nz7oHWj8I5Y6Abl/BDzfCkpchksPf/hYEX336Kfzf/wU3DJ91VrAvbdkC338f/F5tccGHbErbRLUy1fh7+7/n1TJtzTQ+mvcR/5v+P/q27ZsXSNy2RtsCNbep0QYgb/yvVU5O8B6C4DOCChUKZyPE/bay/vYoHA4CUObPh40bg3WtWDH/vCoSCT4b6dLlEBWQ2A2qd4EN4/Lbmv4dauwW6tbqPlj+ZnBumav1A0GoE0GtQ4cGYU3fflt4MY0aHfzS9cssTV7K/03/P6KjotmWuY065esw4JgBVIivEHT4qgOkLoSqHeDksUHgzdqvgvPY9HVBn+SfoFLrQ1fkHgLdt22DH38MQny2bQuOlWXK5HcPh4NzlvT0/NmULVv4OBIdfdiy4n89WtwBm76DdaOCc8E5DxQcn3vN2HIQJE3JPzYkTS3Yr2x9EhKC31tnnBGE3X72WfDY1bnFvUTetgjWfhkM1z0f6v8lGJ5xRxCOsWlS8FlZy3th5h3BuB5TocrxkJkM8/8DO9YF54trRuQFuG3L3MbwecPZlrmNnHAOtRJqccaRZxAbnf95cmZOJv+Z8h+emPQEPRr1YOKKibSs3pInejxB48qNgxCOH28O6itVGRpeEYQKp62ErK1BcEcoBo66M7jm+4MYu2wsvd/pTU44h+tPuJ7SsaW5+vOrufjDi4mPieespmexI2sHf/vsbwAkpyfT6D/5vwyWblnKvWPu5bEejxV/ocUJA0yZH4TYZ22FZa8Fn7XGVoR658PC54Mw9XKNSW94Oz/+CEuWBOdaNWsGn7/v+nl89erBtfgfQiScH44YCkFid4irGmzHcEYwPqYs07f054T2sYTD0LEjfPPN4QnU/d//gs+zt2wJwjkHDgz+VlKhQnD+NHUqdOoEnTsXc4ZHPxgc1zZPg6XDgkdR2r0C33QL3u8L/hM8CghCbG+7DR59FCZPDn7/nHoq1KgR1DZhAvTrB3fck8r5751PenY69SrU4+4xd+fN5Y6v7+DEuifSoW4H9BtT1HHpUJ5cxFWFxlfDoudhyZAg7LRWL+jwKmyaDKM7HvoaiiMSCT5vimTvDP4NBX/LjSpVvNA7aT9k5WTx9uy3+Xblt9RKqMWG7Rv4a6u/cmLdor+TvCfPPw+33hp89v73v8NVVwWfxcfHQ2Zm8DeQnBxgTHfYPB0qHAU9fwiukzaMD96DO1YFM9v8PVRtT1ZW8FlhamrB8Ojc70LUrBkMS4dE7u8Cj7uSJOmXCmdB6gLYsR5ytkNMuZ3fawyR97fkxG6ed0iSJEmSJEn6XQlFIr/sGzhLly7l9ddfZ8aMGaSkpFC+fHnatm3LX//6Vxo2bLjf8+vQoQM5OTlMnVrwC71z5syhZcuW/O9//+Nvf/tbkdPWrFmTzp078+677xZo//zzzznjjDP48ssv6dGjR5HTZmRkkJGRkfc8JSWFunXr0qvXVtLSytOjB9StG3wBIvcGtJwcOP/84MsR+5SVEnxBL3s7lKoE0WWASPDl3Zwd+TfYl665z1lFIsGXPDIzgzpiY/ODPHJvzACIiYkQJpvMnExyIjmECBETFUNWOAuA2KhYYqNjiQ5FF+tmxaVLYfz44D+9Vq4MTZpA6dL5yw2Hg/8KW7EirFsX3ChToULwpdVdvzgSDgfhI+Vy7//N/RIW4WA4FNoZXnKAoRrhrGB7Etk5v6idj5jCH/JHwsF/1ia05y997Vpf7hfEirghMysrWLfIzsVGRQXrHR1dzLqzd0D6+mB/iCkbBIuwc9nhzOALajEJwZd4dqwJ+sdVCb7UHc4O+uTsCKYpXSv4mbE5mC62QjBdeOcX3XJ23sVUpg47wsEOEx8TX2A/CEfCZGRnEAqFDjg0IScneITDwabN3VeL6pedHfSLickPXUnPTicSiRAXE1foJtgdWcE6lIouRWZOZvHXYff9DXa+7lE797vivmBBzTk5u8xiF6FQ8NoXtb5FyV3X3dchJ5xDZk4mUaEo4mLiiETyt2vu2yVXJBIsMzYWssPZ5IRzCIVCRIeiCUfCeTc+xkTFEL0f63kw/wPwunXw+efBF9vj44MbWcuXz7+xLBwOboipXRtmzw6+zFahQvBl5VKlCn4BvlKl4ItpxSkt96ZhyD9e7v6do9xjGRTcd3P75b6nI6FssnKy8l6TXWXlZJEdziY6KppS0cX85nk4J/gSKgTHqaDq4PgU2bmDRccVedzZXUZGEPS0efPO78knBttt13ULhYIbN4tj4cLghqZNm4LXoHbtgjc5hsPBa7Dr65D7ft79WBgVFSE9O7jz6WAcb/a2rTNzMskJ5xATFVPghpq9yX0PloouVeD9EYnsoe7c42ne75r9P47krkNRdeauQ2x0LDHF/C+7ezpmFliHqGhCKfOCG5Ki4oJzj1DMzoCOnb9HokuTU7FNgWNPUXXnbqc9beuM7AzCkXDR6xDOCrbfgfy+z0kPQivSNwY3hsVVD/4TcVbqzrCuNIgtn3cjaLANCv6ezj1Gx8bufX/JXYfd94u92dPrkHs8D4VCxGdsDG7e2jo7CFeqdWbw3863zApuzN++DErXYmLakzzzTPC+btMGevUqfDNQ1apwVJs0VqWsYt22daRnp1O1TFXSs9PZnrmdhLgE6pSvQ42yicSs+hA2jA3OP6t3Dm4cy0gKbqbZtgSi48g84u98+EVt5syBtLTgZpaqVfN/p+WeA7drBytWBDe+REVBtWrB8WHX89HoaKiWuH/v1Ugk/5wgssvbK/dY8uijMHx4EFZ2+eVB0FTuuWZmZvBF5i4nplJ1zT+DdS1TF+qcHdyckLo4OIfatii4+ardy8V6v+7+u3iPr3f29mA/JByc60fFBPt5JBxs81Ao2ObRBeex63EzNjbYbuFImK3pW0nakURaVhrRoWjKxJZha8ZWYqJiqBBXgSplqjB/dhkGDw7O05s0CcIhcgPccl+HsmWhauNl/GfKf/hg7gccU/MYzmt+HlsztvLJ/E9YkLSAAccM4MrjrqRUdCnWpq4laUcSGdkZVCtbjZSMFLLD2SSUSqBmQk2qlK5CKBQiHAmTeykZFYrKO88IhUJEhaIIESp4jZF3DhYJjjv7cy5ShNzzsHA42Ga512m7yt2fcs/XcvvtXtbu+1xUVNA3Ojo4duRfXxWuI3f/zMzJJBwJExWKynvvRyKRvOuwUtGlmDs3xNSpwQ1YtWoF4US515KhUFBn7doRwgkrmbxqMnM3zmV71nZaVW/Fws0LCUfCHFHxCNrXaU/zirWJmjUouFms7BFQs0dw7Nv4bXCjdPKPEFuB1A6TmPpDWdasCdanYcP8m5Nzt0NMTLDs//s/+Omn4NyrU6fgXCsqKnjk5ECDBrsFuO3hhsdwJMzpb57O2GVjuf6E67mx3Y154z6e/zG3jLqFJpWbMOrSUfR6vRfzk+Zzf7f7aV+nfV6/56Y9x0fzPuKy1pfxwhkvFNyXintD0576Hci57R7WNS0rjTtG38GLP7zIWU3Pol3tdsTHxLNx+0Y+nv8x67at49k/PXtIwrmAwucjsPfr3+LKyQzmuYdrX2Dnezq4Dttjv3DOzvp2nojv/ns/Es4PMC1001rUzvnmnnvtPHco0C8498ohlP87drdzyexw/rl7VChqj7+T9nZelrdNomKKdU6+q+QdyTR9timpmal88pdP6N6oe964R799lHvH3svRiUczqd+kg7qfv/LjK1w74lpaVGvBtcdfm9e+JnUND058kCaVm/DlxV+QuOEzWP1pcC6YeHJwXpW+DtJWBcFupSpBp/eCm4p2X+a+6ttDbV98AU88EQQbdegQ3JhfsWL+cSknJ3jesuXeV32PcvfNXT7j2dv1RoFztCKuRXI/g9vr5zvFeb2Ks922/gw/PxTc+JyTDmUbQM2eQWBT2Z2JdtnbYflbsOSVoH8oFPweqN4VGvWDCi0A+O47+OCD4OeCBcG1Yvny+ecLtB3CdSOvo1nVZvyn13/y9r+N2zfS9+O+lIouxfi+42lWtdme12lvwtnBdW5Uqb2/b8I7j2H7uuYJZxEcF/Zx/rDbezUSiTBu+Tge/+5xFicvpnO9zvRu1psJyycwZtkYciI53NLhFs5rcV6ha5bc1z7386xQCLZnbmf4vOG89tNrpGSk0KleJxpWasjH8z9mU9omzjzyTC5pfQmVS1dmzNIxjF02ljXb1tC8anNywjks3LyQOuXr0LVBV7o26ErpmNJsz9rOjqwdhCNh4mPiyQpn5V0Llo0tS+nY0mRkB59Z7+1ab9fPx3YP593Xfp5/3N/ls9H0jcGN+Ju/D7ZnhVY7P5uIgZUfBMfkRv0Z8u3f+eST4Nqgd2848sjg/Cb3vCwnJwhwq1l339erBere0zV3Ucfivb0Hty2Fpa8GoYjpa4Prn6jY4HhXvhk0vhJqnVZ4XnuaXzH7LV4Mr74avAd/+im4ibNMmfyb8h94INg2H38chG9Nnw7LlgXv1YSEoN/FF8N11wFb5wYhEutGB8fozM07r+erQ0JTOPI6qHHqnmvdz3XY2/VPgXEpP8OCZyBlDlTrAuWbBiENqQth/TfBdWbd86Hx34Jr3extUK4xxCbk/01kZ9hbpPLxTN68ihd/eJFpa6bRqnorzm1+Ll8v+Zqpa6bmhQOdfMTJPDPlGR7+9mHa1W7HqQ1PpVqZaixJXsJnCz8jKS2Jx7o/xjnNziErnLXXc4PoqGhKpcyDFW8H18NVOwTXj5FsSN8Q/C0nnAk1ehKu2SN4DxEq9JlR3vlDVAxkbQk+s4fg8/1QNER2/q0inAWhKFIjsfR883R+XPcjt514G60SW+XNb+iMoXy99Gv+3v7vPHjKg5C2On//TVsJ2anB3wxCUUHoas3T4Kh/EInAiBHBZ67ffRe8HzMzg/P55s3h2mvhhW2nMXbZWG444QYe6f5I3jJXbF1Bs2ebESHC2MvH0m1YNyJE+PKSLzmp/kl5/SatnMTJrwYXA2tuXkOl0pX2uS/tcZ870PP4ovoU0W/TpuD9N2kSzJkTfF5RpkxwLM/JCbbNm28G7fuSmZPJ2tS1rEldw/as7ZSPK090KJrk9GRKx5SmZkJNaiXUIn77kuCm68zk4HdxqUrB+yFrW/A3HyJQ/SRIaLLvhe5Bdnb+51kQHGfuvTcIcatVKzhm7BrgFg4HnwsXCnA7mK9D2mqY3AdS50OjAXDUXUX/3l8/BqZdDUSCMM1GAwpdq4TD8PLLQQjtmjXB9WefPnDNNUD0nj+7K87nwLv/HaUo4XDx/5azT7n/QGBf3XZ+HhG7S9l7+ox613GxUbF5f+fd/XP2XX+v5vY7kHNgds5/1+u3hUkLefTbRxmxaASd63Xm3ObnsnnHZj5d8Ckz183kymOv5NoTrqVy+oogBHbLrOC4Wq5h8Ps7nB0E3cRVI6fNfxj7c2cWLQo+f2zePH//jYrK/5vO0UcXDl0Mh4PPakKhvYT/7GH/ff314P2/alUQdnnCCfl/586dd8OGwXvqjTeC8JwZM4JjSIUKwfIikSDg7ZFHIrRofYB/79ivc+DQXvvlfu6V+3lWbGzR+/uu/WJi9hD4sK/jeTgn+GcC858OAlyjYoNjXp1zg2uRmLL5/Va8A3Mfg+1Lgs9hq7aHRldCjfwPlpKT4e23g9dl/vygxkaN4E9/guuvD0KwilXbpkmw7PXgvDWmPMQnBue1aSuDMIyyDeCkz2Dxi7D+66C9Qsvgc7So2GD6jI2QeAormtzGC9+/wLtz3qVFtRb8ufmf2Zqxlc8WfMbKlJX0a9uPK9pewYx1M/j7l38nIzuDs5qeRZsabdiUtonRS0Yzfvl4bmp/E7edOJAyy14Jfo+Hs4LA21KVg8+nty8NwvBiK5HTeSRbsuqRkRGsWpky+a/PrrtyQkLR+8BhV8S13t6OKbt+LjN7w2x6vdGLECEeOfURysSWASArnMWdX99JSkYKw/8ynHHLxvHwtw/ToU4HRlw8ghDBhli+dTknvHgC2eFsvr3iW46ucXT+gg7GeXzutcP/s3ffYVaU9///X3P62V5hWXoVKQKKNIOiCWCLLSoiiUpsX0ssiYkhioKxxcT4iUZNjLHkp0IUUWPDKAI2QCwEVETqAgts3z1n26nz+2O2sstyFrYhz8d17bVzZu6Zuc+cc+ae+5573nfee1LVHqvuY/daD5g6U6RuJ2pp8Z/06KNWe/y4cdL06db9iYb9ZQ46gFuM76Hh71lq+bffnC1bpOXLrfI2Pd1qJ6htL669B5SZKfXpv//7Y3Xllc0h+3d/qQ/g1uNUyZVuPZxbsU3a+67kTJE5+TW9tuwovfaa9XvPzraCXDud9W3T4bB0770xHquKHKv9O1AsJQ60+sJEw9ZnFSyx6pIpx0iJg1VQYAWLXbnSOqcXFlqbSE+Xhg6V7r5bOu64Bts+0OcQrrLOcVv/aZ0LJatdpvvJ0sArrHqmZOVj6zNW8L+K7VYdLuloKfsM65zpTpckrVkjLVokLV1qfa+CQes7dOyx0k03SU8XXaHn1z+v844+T3N+MKcuG6t3rdb1b1+v3km9tfqK1Y2vz/cn5JP2/Feq3CG5M63zo81lBeYM+a06mydLoR6nHVwbau35oYU+VfUBuiKqG3Cp5piHo2GFo+FG91gk6xxjyroGalUfl4baqu2uweLae0fN9YGKRhvfd6r9fdXed2p13lrMTNT6szZWf3OwUYeYmgzmvi7tfMn6/VQXWPfUHfFW/7LkEdLoByRvVpP3Wts+dqDAi8Fg685HdbY+bbV3Bkul3udZ9d1gidWfofgz632NurdxG/WBtFG/sJb6bLTYF6K2L6LhqLuW22+/E9VfP0pN2/VaJRKQZFj9A/fV7DGpPR7NX28Gg1bS2j5H+23HUwzXwIciWGa1uURD9ddwZqTm3F9d8wXNkMrW1w/YkDDQul8f9knhypr2NJeCmSfp+Q3/0QOfPKB0b7qmDpiqY3scqze+e0MrclaoX0o//W7y7zS5z+SY+tJu3y794x9W215tH4rU1Pq6eSQiDR8uTZ/4rbTpMalkrXUOThxcfz215UnJnaHIiPv1+3+eqjfftPo8zJ4tDRtm3euvvWft80lTppjyJlYf8NrLHa209hcotNoR3RmSjJpgwuVWm5W3p4JJR7e+z09t221t/beF71GbMU3VB3hU43uOgULrvlakyjq+dq+VNhq03qtk3WOpKX9jVtefr4U26ob3Qpucb2xte1xM0wqY7dto5StxiDVAU7jcukYJ5Fvfq24nWfXvotXWdWzmZKtNtnKn1T5eucv6Pgy+Vtr4kFUuJA+T0sZKNo/1O6rKtX43qcdZ6cq3WtcS3u6SPd56v5GqmuNrSt6eCnmymr1OME1TgUjNPQ6bS0ao2NqWZPWFtjnqrw8iAeuz9WY1apPYt99Hbb220Xd+n7bshu3A0v77trV0rt+3zt1cWXjIfcYPRsP7J5Iafi9jaVty2V2qCFWosLJQ/oBfkjXwWFmgTDbDpkRXojLiMpTgSmjcj3mfvuC1/W8C4YC2lW7TluIt8gV8SvOmyWFzKK8iT4muRPVP7a8BqQPq6oAHsr/2vkZljc1u3asq+9rqP58yyrquCRRa57nqAsmZpOqeV2jzNrdKS608d+vWtC+tzWb1iW0vDb9H+35H9tfHsNF9jJpy3TRNmTJlmmbd59KwX1Z1uFq7fLu0y7dLFcEKpXnTJFmB0eOd8eqd3Fu9knrJkNHs9X6T32pVrnVNJtNqz7A5rfNqNCRFq63rnLi+1jVlNCDJZn0Whq2mjKgpq212BZShggKrHdBms+5Z79s2Zbdb7W+19u2D3LCvZ3tp6To+5j7jNqfqfpv7qxPte43RsC+MYVjnwYPp79Pk3FDLqCmTnI2ePZCa1mUMo/6zaa4Pfe1vx+mUgtFW9rduQTga1m7/buWU5sgX8Mnj8CjRnai95Xvr7sX0Te6rRHdsDWRr1ljB43NzrfbGgQMbP+8UiVjtEv36xbCxaKgm6O5u6zse19u6Zx4ss8rCsN+67sz6Uav7E7Vk3TrrGrOgwMrnvn33IxGpb1+rX/+B1LZpNwwMXNu3tKFg0OqnXFJipenWzbrv37Da6nRK3bL2/3toVA59+6CU+6q14KibrPvzlbusY1n4kWSPU3TQL/TxdydoyxbrfvqQIY2vp2vPAcOGxfi8Xoxqn6mJRK2Li9pzcNSM1vV9jfX5OqnxdfO+bRq15wenzVl3Hq9lGEbd+d1QTZ/bYInk+8aqI3u6S66Umouh8vqBOON6K69qiHbssAarSUy0jlvDOnnt83r5+da9Y7/f+h4lJzc+vtGo9UxJfHwsBy5i1bFq++XYajqMNzz/2JzWNV7ts3wNfxd1771mfiy/GdOUilbVXANHrbqUI8H67UWqrPv6NpeC6afqg1XJ2r7duj476qj691orHJZGjY6oJFCkgooCVYWr5HF45LK7VFpdKrfdrTRvmjLjMxWu9qigwHoe0uWyjnHttmqPndstxSdEFYqEZMps9J2p/Y7ZDbscNmfdQOVS0+fLGva3b3hu3ffaoPa7ZDNsMZVJ+yvzpebrei313Y+1vSccVl2ZX3tfo+G6tdtMjaEps4lmr4GbyVhtPa6Z+mrt84etua9X2w647/OQzV2v1TqY55haLZb66gFUVVnPnFVXW++rtv1Bqv9eOp3WeSY31/pck5ObXsuZZv1zw7XXD7Xb2Pez37f/fksafh+bK7ca9p04kJba8Vp6ZvVQVFRY7UZlZdb7Tk+vf85Gqj++3bvHtr39fa8aXcfb3dZ3e982lH36lkcN+36/843blqqt+z3BUqtNpbZMilRafVjNiOTprt3+Qdq40XqvKSnWPaba30rt+SQ1VUpM3X99tfb36Xa4FYqE6j4vu1GfLmJG9vu7O1Qt/W7r+2m4lLvLrrw86/eQmVn/XFfD72dGRozXLeFKybfButflTLKeJTPs1rGNVFn1L2eKwklDD3i+cdqdddc2MX/P9/v8QeztfMGgdd+ttq7XMH5Aw/KtYV2vJZ99Zg2+lJ9vXa/XXgM3/N0MGCClZDT/XWp0Pjds1jOHgUKr/czTTXXPTUaqrePviJNSR1sDvtXeL7HXtF1Eg42e5Q+701u8BpbUpPzeL9O06tuRSkmGlQ/DXlPfDlvttrLJdHdToOZZ47rfd41GZX7UpcpK6/Oobb+qvd6r3Z3NJjlcYVWFqlQdrlbUjMrtcCtqRq3tGHZ5nV55HB7Zcv8j5S23vocZk6x2xGCJdR3o32K1Pw6+VtXuzGY/h0bnEYWl4i+svnPO5Po2v2Cp9RlEqyVXqkKpY1VYWaiCygJVh6uV6LLqfv6gXx6HRxlxGcqIy7B+A9EG57dG15q185wx3QMyTeu8FQhY5Y3X2/i41f73ek0Fo4G6z7i274JU//xYa577rbW/OndtO0RlpZW3SMT6HdSWoQ0/V5c7qrDZ/L2lA/YLa06gyLqvHS632tkd8dY1VaTaOjcpKnl7Wc/B7nnHum+TcYL1XHLIZ/35N0mGQ9H+V+jd1UP09dfWM6ejRjV+LrX2GBx7bIx1kTb29tvW/fldu6xnZvv3t45z7YCe4bB07BhTvbJD9d8tm0OSoSb92iNBac/b1rFzp1t9pG0u63sf9lvHxdNNe5wX6v33rfpZQoLVV67hoKOmaV1nZWZa/Qb8fut1Wlrjzz8atc6re/ZY8RnKyqy4N2lpTfvdZWdbsRwKC61zRO1Ap7XPCNam69Onbduza587ru2P2VyfzIbfg+auH2vZ7aYCkQP3z3MaHvn99X0K3e6mZbRhWL/1WBQXW3Wb6mrr84qLa3qMaucfUKTaei7Lv9kq85OGWm1M1QXW9yNYIrmS5c+4TBu+NVRUZH3mtQNGNay/u1zWd6S01DpHOBzWe9q3/HU6Y8ubaZqqDFWqLFCmimCFTJlKcCWoPGjdW4t3xivFkyKvw6tgNKjm4p80ahsNl1v39wOFkifLOj9I9eeIaFCK66NtZWO0Zo11jDMy6p+tbfh7yMiQumfv/xq4OmzdK3XZ3Nq1y1BpqfX5p6XVb6thG0lGhqmIsc91c3PvwQxZfcbCFdbnZa/50kSDVju4GbHuvXljbJTb+k9p12tWud/jNOuapLrA6gvh2yDZPIqMuEeffjNAO3da37kBA6zff8PfTyRinTc6fJAv07Q+z7DfKhOcSdY1VW19I1ItGXaZ7iz5Klyqrq4vVxueu2rLuobnvQPtdt8uNI26wDRzvmhxY/6N1jWfTCuOl81tXetEAla5Z3PW3Gdq+STh8/mUnJyssrIyJSUltZj2kAO4tbUhQ4ZowIABWrJkSaP5e/bsUXZ2tu69917NmTOn2XVdLpd+/vOf629/+1uj+StXrtSkSZP0wgsvaObMmc2uO2/ePM2fP7/J/FNPPVXO9rzjcwQb2a1QvZKsE/n20iRVhByKd4bldYaV6qlWxDS0elcPVYXrzyj/ef31uumzfvzjuul4Z0iD00uV7A6oqMqjkiqPIqahOGdICa6wXPaISqrcSo+r1hmDtykroVJLt/XW3vI4xTnDGphapnE98+SwRfXGd/1VWu3W9EE5ineG9M6WvtrlS1C8M6RUb0AjuhXJbph6+suj9dnW8aqq6q5w2K3ExF1yOv0yjEjNicBQNOpQfPxu2e3hjjuwrVTtqJYvzqdyd7lMw1RcIE4VngrZo3YlVCcoqTJJ7oj7wBuS5Pf3Uk7OqfL5+sntLlV6+nq53T4ZRkSSdTxcLr8iEZdycqbL7++j5OQtSk//Wi6XT4YRlmk6FA57lZy8VbasL5STmaP85HzFV8erZ0lPFSYWqiS+RAnVCepX0E+ZvkyVxZVpT+oeFccXy2balFaepoKkAtmjdqX705Vdkq3UkFc9EisU5wyrIuiUP+hSJGrI7QjLZY/KZY8oEHZoT3lsV/2RiEuRiEumaZPdHpTN1vAzNiUZMoyoDCO6v000EraFVeWsUsBpXQQ4I04FHUHZo3a5Q255Qh4ZEZdCoURFo3YZRkQOR1Xdsa1vjDZkt4ca5KTxKb5hRRGNRaMO+Xz9FAgk1VyQ58nhqJZhWMfQNA2Zpk3u+L0qSihSfnK+yj3ligvGyRFxqCyuTHGBOGX6MpXpy9Tbry05wB4tZ//4TNlq9yFJzXxGUbNrf27FxUfL5+unYDBJSUnb5XYXy2YLyzCiNedCpxISdqs8ZZdyU3NVnFAsd9itNH+a8pPzZRqmMn2Zyi7JVmJ145vs+zvvh21h7U3eqz2pe1TprlRaeU2nk/gSeYNe9SjpoayyLDmiBy5DJClkC8nv9avCXaGILaK4YJyqnFUyZCguEKfE6kR5I071S/Er2R1QddihoiqPQhGbvE6rnPE4IgpHbdpcnNLse9h3n2FbWEUJRSpMLFSlu1KJ1YmKGlFVuCuUUJ2gDH+G0srTZDftTbbV3PYqXZUqTCxUaXypwrawUipTVOYtk820KbkyWRn+DCUEEhQLU6Yq3BXyeX2qclXJFXbJEXWo0lUpV9ilpKokJVQnKGKLaHfqbu1O262wLaxuZd0UcoRUnFAsT9CjXsW91L20u2YN26qJvffINKU3N/VXcZVb3eKrlJVQqXE996o67NCza4/W//Lqn55t6b3GIhBIUWHhCFVXZ8jhqFJi4o6686Zp2mSadtlsQcUl5cjv9cvn9SngDCguEKewPayQPSRv0KukyiQlBBJiPn9GjIgCzoACjoBMw7TO5/ag7KZdrpBLnrBHNrPtbvB0dREjorK4MpXEl6jKVaW4oNUCUOmqlDfoVWpFqlIqUxSozFRlZZbCYa/c7hK5XGUNylZDpmmXw1Ehp7Oq3fK6v9+qJIWNsMIO63thj9rr3psz4pQz4mz0O22JaRr66qsrVVAwWuGwVwMG/EcpKZvlcFjvKxq1KxSKV1rat3I6K9vonXWOjLhKXT7mG/VL8embgjT9Ly9T5UGnjuleqD7JfvVKKldRpUdzlp7QaL39fQ4lJUdpz56JqqjIUkLCbiUnb5HDUdmgrHEpPn6PfL6+ys8fq8rK7srIWKeEhFzZ7YGa375dkYhLqakbFAikqaoqU9GoQwkJuXI4KmSzWR1H6q/j9zSp4De85mp4zWctMRXd59rPMA3ZdOT85tEx0r1VSvUGZMhUcZVHwYhNDpsphy2qOGdYhiHt8ccpEDnwdVBGXKUuG71BA1LLtLEwVevyMlQedOrYHgXql+JTr6Ry5Vd49dSXw3Xh8O/UM6lCS7f21vbSRBmGNCS9VEdnFCvRHdSXe7pp2fZeOq5HvlK91dpQkKaiKo8ctqiS3CF1j6+Qw2bq09zuyq/wKs4ZlilD5UGnwlGb7IYpmxGVx2G1wpdWu5SVUKUkd1DBiE0l1da1l9sRkdNmXXtFTUM5vnjtTSrQzvSdqvBUKKUiRYlVidqTukdRI6qs0iz1LuotSVrfZ70KkgqUVZqldL/1oEZJQol2p+5WWnmaRuWMUkLIo2kDd+j47DwNSC1TabVb5UGXDMNU32S/iqs8WvjVYK3clX3A44u20dLxTXYHdPrg7RqdVaDuCZUqrPSqKuRQvCukdG+19pbH6Z5Vo/SfPp/L7/VryO4hSqyqr3Ns77ZdRYlFGrxnsI7KPVo7dvxI+flj5ff3VlxcvrzefDkc1TJNm6JRp7zeAg0evKjD3ntXsr/PwWaY+snRm3Rcdr4kae3eTJVUuZXmDahfik/H9siXL+DSjUtOUrwzrFMHbdeYHgXKiKtSddihYMSmeGdYFSGHvs5P16NrRmlIeol+2H+nRmUVKsEVVFXIoXDUpnhXSCVVHr2/rZde2zhQx/bI05R+uRqWWaw4Z0jVYYcMSXZbVHv88Xrx68H6fM+BezqFwx59++0slZQMVTTqVHb2x/J6C2S3Wzf9olGXolG7evZcUXO90LG2dNuiDb02KKUiRRn+DBmmIdMwVRpXqoLkAg3cO1BDc4eqLK5Me1P2qjS+VIZpKLkyWUWJRXKFXcrwZyirNEu97DZdMGyTjs4sVkGFV98Wpqoq7FCat1rH9chX94RKrc/L0H0fHd+m76HKWaXihGL5vD5FbBElVSXJ5/XJbtqVWJmotPI0JUU86pfiU7I7oMqQQ8VVXgUjNsU5Q3I7rPN+MGJvUudGY4dcl7YHtPKolfJ7/BqUN0juYH27cE5mjso95RqzfYx6Fcc4OkAnMGX9PooSi+T3+OUOu+UOuVUWVyZPyKO08jSl+9PljLbuvk/UiCpqRK3fYE29wG7aaW9Fu8jLO1Z79pyg4uLhCgRSFA5b7SkuV5kSE3do3Ljfy+Go7uRcdoyNPTbqu+zvlFKeoskbJzda9v7w91XhqdDwHcM1oGBA3fyKiu766qurVFh4jEzTptTU7zRkyL+Vmbm20fqFhcP1zTeXy+frJ5strMzML3XUUS8oKSmnUbpYzq1D0kt05bFfaVBamcJRQxsK0/SfjQP02e76a5G9e8dpz55JKi4epsrKbpJsstsrlZSUo4EDX9W2Ex9UUVKRBuwdoOG59QEqKl2VWjpyqSTpxK9P1GeDPlOlu1Ijc0aqX2G/unQ5GTla13edvAGvTvzmRH06+FOVJJSof15/xQfq733tTN+psvgyjdgxQv0L+mvqgByN65mnPsl+7fbHqyzgViRq6OjMYrntEa3c1UNPfnGwEZYPXlVVhjZuvFhlZQNlt1cpO/sjeTwlstsDdW1BhhFVjx4rOzxvknV9UxZXpgqP1YEpLhCnck+5HFGHEqoSlFyZLHfErRRPtU4dlKPjs/OUlVAphy2qYMQuhy2qwkqv/peXoSe/GK6pA3ZoXM889UvxKb8iTr6AS1HT0FEZJYpEDS3d1lt/XXaRdu/+gcrLs5WSsrlR+5hkUyTiUlLSduXnH6e9e8ersrKbevRYqaSk7XVtX5GIS6FQvLKyVsvjKemUY4dD11JbdmvT7e8cZ8jUT4Zt1nE98mUzTH2xp5tKq11K8wbUJ9mvsdl58gVcuumdydrq8is3LVc+r0/xgXglVCcoPzlfjohD3cu6q0dJD3lDhxCQ5ggWjTqUn3+sKiqyZJoOJSVtlcvll81mtZ+Zpk2RiFOpqRsbdU6L9TuyP3uT9+rL/l/KFXYpuzi77r5WhbtCuem5yirJ0pjtYxrdh21rh/oejlSHWiesdlZrXZ91KkgqUI/SHkrz19yD36cN9exehTp76BZ5HWG9+u1AbS1JktcZUWZclUZ2L5TbHtGSzX3VI7FCk3rvkdMW1apdWSqs9CrRHVSaN6CBqWUKRmx64vORyquIq7vHYhpmXduHYRqymbZOq3eZprRp0wwVFIxWIJCqnj2XKy4ur+aec1TRqFPRqFPp6WtVXd1d1dVpMk1D8fF7GpTRpiS7olG7EhJ2d8r7iEUoFKfvvpuhkpKjFYk4lZX1aU37mNWHKRp1yjTt6tPnXQWDidq58xTl5x8nv7+PQqF42WwhmaZNTmeFevRYqREjnmy0/bb8Te/ve+6wRdU7ya8EV0gVIYdKq90KR22Kc4bltEXldkQUjNi0oyyp2e3tm7dyd7m+6fWNihKL1K2sm7qXdVfIHtLelL0qTihW//z+GrxnsKb33asp/XYp0RXUZ7u7q7DSoyR3SBlxVfrRgB2qCDn1x0+O1duhgDb03CBn2Knuvu5KqkxSSUKJ8pPyZZiGhu0apu6+7s3mbd/89U7y6yfDNmtQWqk2FaVoe2mSwlGbMuOrNLHXHiW6Q/ogJ1uvfjtQfZL98jjCyvUlqCLklL3mPkyyJyibYWprSZLWbjxTe/ZMUkVFD6Wnf1XTB7JcUrTms3eoW/dPVZm5UTszdqo0rlSJ1YnK8GdoT8oeVTur1c3XTb0LeyupuuXOyjh0AXtAlZ5Kq0+TacgVdqnaVS1HxKG4YJziAnEx918IOALakb5Du9J3yRlxqkdJDwUdQeUn58tm2tS3oK+yi7M1tnuJhmcWyWWP6NvCVJUF3IpzhhXnDKlHgtWvYem23iqsrL/mi7VM2l+6vsk+nXv0Fg1ILdPX+enaWpKsiGmoW3ylshMrlOAK6bPd3fTWpv4xH7sD7dOQqcHppUr3VisQsSmvPF6BiHUe8TgiineGFDFt+rYwRamegNyOiKpCDlWGnIqahpz2iJy2qJz2qIIRm4qrvM3uty2u47saU6bC9rCC9qAi9ogcEYciRkQyrH6wznDs/WrCYY82bbpQRUXDFYm4lZW1WnFxebLZrEFsTNOhSMSt7P5vaHOPzdrabavSytOUVZolZ8SpvOQ85SfnK92frmG7hslm2rSh5wblJecp05eprNIsRW1R7U3Zq8LEQvUp7KOjdh+lwp0na/fuH6iiIltpad8oOXlrgz4pNkUibqWkfKtQKFGVlVmKRDxKSNgpl6u2z7hZcz/Rrvj4PY368Lb297Bvmp6Jfg3vVqxkd1BbSpJUVu2W3WYqzhlSmjcgpy2iDYVp2lhpvf/CxEIFnAGll6fL7/ErYosouTJZWWVZSqlIienaKhSK144dU1VWZrW5ZWSsl9tdIsMI1zwsaJdkqHv3z2L6XGNlylTYFlbYHlbEFpEjWvNdkur6aHX1NvmSksEqL++lUCheiYk7avrQ1/altdd8R/Jkd1QqZA8pZA/JNEw5og6FbWHZTJucYaccUUe7vNfa4xu2heWIOBStuffpiDjkiDg6rY9TVVW6ysoGKRBIksvlU1xcXk1/L7Om77ZdDkel3n3v2QNuK9bzZyTiUGnpYAUCViSZ+PjdNX3GawPE2BWN2hSXmKvi+GIVJBWowlMhb9ArR8Qhn9cnb9CrDH+GMvwZMdeRB6WVql+KTw5bVDmlSSoPOmvuhYaV7rXa/b/cm6nnFv33gNs656wzlOwOym6LKhSxqypsl2kactmjshmm7DZTkaihsmqvIhGPTNMmw4jIbq8Z4EtSfR84U+FwnAKBVEUiLjmdFXI6K2qOh8U0DdlsIclVKb/HrwpPhcK2sOKCcap2WnmPC8YpoSpBnnAbB/ZFEw3Ll/1pj+uJkC2koCOosD0sR9ShqKKK2qJyRpx1fc2PJKZMRWwRhW1hRY2o7FG7IraIbKZNjqhD9mjXv5/cGd+lzvr+toeorPashg6mPcuUqZA9pHDNs4f2qF1hW1h2026V0zW/t9L4UhUmFarcXS5PyCNn2ClfnFUmpfvTlV6eLlvUpgpPhfwev4LOoDxBj6K2qIL2oDwhjxKrExUXiFNVZTdVVWUqEvHI7S6W01kum6322lYyTbucznI5HIG6fHZUP8k+yT6N7FakFE9Am4uTVVrtkc2IKt4VVmZclZz2qNblZahHQrnG9CiQ2x7RurwMlVR7FO8MKcEVUu9kv6Kmode+HaCdQVvj+3rBOFW4Gz83aVZ014YNl6q4eLhstqB6936/5tq+WpKhcNiraNSh7N7LVBJXouLEYlW6K+UNeGUzbXXPlqX505RakdqkDrS/6/1Yfg/nnHWmBqSWKdVTrUDEroIKr4IRu7zOsNz2iOKcYUVMQ98WpnXKs2fhsKeujlB7DWdpGLgyEuPD+lYffuu6xWxwbVa7ndr/sfXhixgRlXvKVeGuUMgRkjfgVcgRUsQWkTfoVUJ1Qpe/h2XKVNAeVNARVMRmPb8SsUVkGqZcYZdcYZfspk3d4yuV6A4pHLWptNqtUMQmlz0ipz0qtz2iqCntKY9Xec1zxJWuStlMmzwhjyrcFXJGnNbvoSqpzcvzkD2kMm+Z/F6/QvaQEqoTVOWqkmmYig/EK7kyWXHBuPpy1b5PuRptv3K19hm+CneFgo6gvEGvQnbrO+IJeZRQnWA909sJ5XlUUVW6K1XuKVe1s1rukFsyrDa92rzFB+IVNaIq95Sr3FOuoCOouGCc1UZT8z1PrEqUN+RVdkKlUjwBRU1DRVVuBSN2uexROW0ReZ3WID07yxL08mtvHTBvnVVO1z6vV+2sVtSIyhV2KegIymba6p6/jrUNqrX7DdlDitgjskftdeW/I+qQM+Jsl2cEo4oq5LDaDaSaawN7WPaovV3bDVqbN9MwZY/U5M208tYe7TdOW0Quu1U/DUbsipqGDMO06r41z3kFIna9+p83D7it1nx/a9s9Q7aQFXjZtClis74HjoijVd+3QCBZ1dVpikZdcjp9jercVnubTQ5HoKbOfuB8+bw+5SflqyyuTDbZlFiVqJL4ErnCLqWWp6qbr1uXL+Nw5AqHXTJNZ03Az2Cz13aGEVGVq1Kl8aUq99QEFQvEy+/1yxlxKrEqUckVyTHHP8HBixpWfTLk2KdMitjbrd2+to7c8Bo4XPOsuStiXQO3pvwNG2EFndY1tWEaskftCtlDckQdddfUXb39Bp0rFAppyZIlh28At4EDB+rtt99uNL82gNt9992n3/72t82u63K5dPnll+vxxx9vNL82gNuCBQt00UUXNbtuIBBQIFDfqOTz+dS7d++YDiIOI77vrJE7/Zuk5KOtEaBqR381o1bExx7TakYdlBUBN+yvH+GodrRYu8camQ5tpnaEhOZGnS0PlmvF9hUKR8MyDENjssaod3LvZrdTGaqUaZqyGbZDG5kUQLuJmlHtLd8r0zRlt9mVlRBDxOEWVIerVRmyOgTGOePafkRfxGS3f7d8AWuU1My4TKXHNRi9tnK3VPChNUqrM9mKxm80HCYtLPU6u5NyDnS8/HwrUnxZmXUNVDtaRjRqRfo/5pi2HTWwU0QjUt57Usn/rNFREgZZo3DUjnRiRqT4ftbINQ01DJkPoP1FgtLORdbo6jKk5OFNf6sJA6TEo6S8pdaIloZh/X7tHkk2WaPKR6TUY60R7DtRUWWRcsqsYAseh0fDMoc1SfPC+hd045IbNSxzmLwOr1bnrtafp/1Zs8fMthKsuUba/DfJlSpNXSUlDZFK1kmFH0trb7XaCEbdJw1rvm0K7aBhz52G5UMkIC0ZLfm+lbqdJJ34H2tUj91LpMJPpK9/b6U7bb22K0Hj/jFOBZUFuurYqzQ2e6we+fQRrc9frwuHX6iFP1mo//s/Q7/8pbXK7bdLv/99h73Dw8P+PodQubT6MmnPEiltrDTkF9bI077vrFHuQ2XWOaX3BdJ/x1sjxvSdKR33iDViu2+DtOkxadOjUlwfafxT0vLp1nnlmLulo26WZEiVOdKa/yflr5B6/0Tqfor02XXWKC7j/iH1vdhaJ+yX3hpujfYy6g/SsN8c8K2Fw9JTT0mffCIVFUmTJlkjF9WOBFs7ourFF3fCyDU13tn8ji56+SJlJWTp/zv3/9ONS27UF3u+0BNnPqGfjfpZ7BsqXCmtvtw67kf/Vup1ljVCcdEa65otUCQlHSX1ubD93gzaXqzDEcUovyJfJz97sr4p+EbzTpqnU/qfootevkh7y/fq6bOf1iWjLjmEzAI4kOuvlx591Jq+7jrp2mutUdXsdmt061WrpLPPjn1EwMPdNwXfaPhjw2XI0EsXvKQElzVARV5Fni599VLZDJt23bxLPRJ7SJKefto6blX7jAFgGNIrr1jHTrLSPPZY0/253dJXX1kj+jZauVZz59Nv/09a+yvrPuO+jrpJOvYhzZwpLVxozRo5Ujr/fKlHD2vExk8+kQYPlobNekqX/+dy9UzsqflT6gcd+3DHh3r2f89qTNYYfXH1F/rnF//UFa9foSR3kvok19fBdpbtVFmgTE+c+YSuPO5KlVWX6Yf/+qE+3/O5bp5ws84fdr4ue/UybSrepAenPahfTvyllfcvb7Y2MP1zKe1Yqy3367ukwtXWCKHdTpJOfLXpe2tnVVXSv/8tffGF5PNJY8ZYo4HWjs5Xe0/xvPM6PGuxCxRKb4+22sWzplnXwElDrO/KurnSN/dade7+s6X1c63r5tPWWXVz/ybpu0el3Felihypz0XSCQtanYVo1LqWDdeMlWG3Nx6pGoepWNtQY0m3v3NcuFJaPVva/ZaUOqamrtfH+m7W1vVkSEffYvWfkDUqaUm1FRjQZXcpxZPSuveFLmVDwQadvfBsFVUV6d/n/1tPffmUFn61UHeedKfuOOmORiPStgvuFRycA123xOhf//uXblpyk0ZnjVa8K14rtq/QA1Mf0NXHXV3/2Yf81ujhwVJrxGFFJRlWeWaPs8qz5kacj0asNIdJYfTGG9K771ojoo8eLfXrVz9qd22b0fTp1mjXhzOfT7rnHunjj60Ru884w2ofqx2dOxSyRnY+/XTp+OOtukl2tvS3v0nTplnHRLJGct+61Wpfa+Qw/k2/t/U9zV8xXz0Te2pP+R51j++u+390vwak1gSRXn+ntP05a3roLVLCQClYLAUKrN9JsFQacbvkTFJ1uFoPrXxIr3z7isZmj9Vnuz/T7NGzdeVxV8pR+3uJ5bex+x3rfkXZemn47VLGJKud1P+dNYJ3sFjqdrKU9cOY3uP8+dJLL0k5OdJNN1nX3qmp1rVjdbVUWCideKLUqyaevy/g0zcF39T1+RmTNabRyOc4/JimqY92fKSyQJkkqXdSb43KGtX6DR1MO2UblV2t0hn7RLvZXrpdt79/u3b7d6tHYg/t9u/W3BPn6pT+pzRKt3LnSs1dNldJ7iSVB8sV54zTfT+8T0dnHt1JOQcAAADQVQUCUkWFdX8tUhPL1OWy2sqOlPv0AAAAAADA4vP5lJyc3L4B3P785z/r3nvv1bp165Sdnd1k+e7duzVq1CjNnTtXN9xwQ8zbnThxoiKRiD799NNG87/++muNGDFCf//733XVVVc1u26PHj00efJkvfjii43mv/nmmzrzzDP1zjvvaNq0aTHlozUHEQAAAAAAAIeHimBF3QPFye5kJbobBGj/6EJp50uSJ0s6fb0V4L18m1T2TX2apKFS4sAOzvURbL+Bw/zSf/pZD6P1mSFNWmClLfjIeni0VtZUyZmkT3Z+olOePUXd4rvp1hNu1fVvX69xPcdp+aXL5XV6VVEh3XWX9NZb0q5dVnCP4cOlxESrM1ZBgdUJ69ZbO+ydH36q9lpBKiLV1oO7NqcVFNKTJeX+x3r4X5JOWSZ1n2INmLDqsvr13RnWvM2PSzKkC/zW+r5vpfXz6tOlT5BynpOKP5eSR1i/VUna8ZL03V/r0w2+Rurb/GAeh6Pvir7T3R/crXDUir5x04SbNK7nuIPbWLBUKt8qhXxSpMoKImJ3W0EQE4dIrpQ2yzcOT3nleZry7BRtL92uY7ofozW5a/TPs/5ZH/AUQLv49lvp6JpnRo8/XtrnVukRa+TjI/VV/lfNLjup70laftlySdLatdL48VJwPwORPv649P/+n/T3v1v/9+ezz6Tjjmswo6UHu0u/kpaMsQaoaE76eL1UtkoX1sRGPeccafHips+0R6NSecinrD9lqSpc1WQzkvTnaX/WzRNvVigS0pC/DtH20u2aMXyGTup7kj7Y8YEWfrVQfZL7aPMvNtcFTyiuKtYpz56ibwq+0aTek7QiZ4XuPeVezZk8x9po2TfSB2dJ5VusgLgDZktxvSSbx7pOqNwhJQ62Aryi9TY/Ia252pqeulLKmGAFxXprRH2a+L7SkBukjy+0vkfHPSL1+5l1HRwqk2RKFTuta+X45ge3AvZrf8FyWhtYoypPChZK4SrJDElGbV2vu+ROa7v8ossprS7VHcvukC/gkylT5w09T2cPZUCmI0VZdZkKKgskSWneNKV5+b0fiUIhK1hd7UCcd90l3XmnNf3AA9Kvfx3jhg7jAG4xiwSlQL7V1hYNWgPa2eOswWLaa5DYaEiqzJXC5dZ+JclW08YX17MuyGqsTNMa4KKy0npQ2TSt4HzJyVJKSttnHwAAAAAAAAAAAAAAoCvrkABuEydOlNfr1fvvv7/fNFOnTlVFRYU++eSTmLd71VVXacGCBSopKZHDUT8S58KFCzVz5kx9/PHHmtRkmEbLtGnTtHPnTm3YsKHR/Pvvv19z5sxRbm5us8HmmkMANwAAAAAAgCNMqFz6+m5p91tWsILME6zgUzKsh68qd0knvS15u3d2To8cLQXMKFkrrb9Tyl9hfU4Zk6zAU9GgVJUrGQ7pBy/VJX9h/Qu6c7n1hGGKJ0Wvz3xdWQlZTXYZCkmFhdZImlVV1giaKSlSZqb1wCIOQrhSWjpFKl4jpRwjjZxv/XckWsFB/JusBxk93aV3J0mBAqnXOdJRv5QSB0l2jxUcruwbKXm4lP+B9Onl1oOQxz4k9b/UejBRsoIKlP5PShklORj2FDhY+RX5WrVrlSQpMy5TE3tP7OQcAd9/BQXSoEGSzyf17Cl9/bX1oPyR7u4P7tbcZXOVGZepq46zBvn6y+q/qDxYrsdOf0zXHH+NJOmss6TXX69f7wc/kIYMkT74QNq82QrgdtllUr9+Ul5NvF+HQ7rkEikhwVp327ZWBnBbeYm0/f+zppNHSmP+KLnSpC9/JRV8KKWP13l/W6VXXrGSvPuu9KMf7f+9XrToIv3763/rRwN+pBvH36itJVt145IbZTfs2vXLXXXXrk98/oSufuNqjes5TquvWK2J/5yoVbtW6fEzHtf/G9s4Ol1hZaGWbl0qyboGnj5oeuOdmlHrGqvkC6m6QAr7rXmOeMnTzQqIHNdr/5nG/vk3S0uOtY7pgJ9bwdkccfXLoxEpVCq5063gunuWSEVrpGCR9RnYXNZ/T6Y09NdS0pBOeysAAACStGaNNHmyFdxrwgTrGjojo3GaigopPiGGYKHS9zugGwAAAAAAAAAAAAAAAA5rHRLALT09XbNmzdLDDz+83zQ33XSTnn/+eRUUFMS83bffflunn366Fi5cqBkzZtTNP+2007Ru3Trt2LFD9tphHffx+OOP69prr9WqVas0fvx4SVI4HNbo0aOVkJCgVatWxZwPArgBAAAAAAAcwSLVUrDECi5l2CVXqvVgPdqfEcMDfg2bNKMRqWq3FfwgXCnZ3ZI7Q/JmSwYR17qMaFja+6605x2pYpsUKJLMkORIkuJ6Sv0ukbJOkYKlUu7rUt5S63MNlliBK1wpUlxfadhvpKShVhC3nIVWAL9AQU2QC6dkc0gJA6XJr1rrAABwGHnrLenSS61gsv37S7NmSQMGWIHGcnOllSulZ5+1gsseKTYVbdKQvw6R3bAr75Y8lQXKNPDhgbIbdu351R5lxmeqsFDq1q3+EvGee6Tf/c6ajkal+fOl7GypRw/p7LOt+R6P9P770sSa+JTBoPSLX0hXXdWKAG6vZEnVeVYQ2jO/qw8ou+b/SZv/LqWP16xnV+mFF6zZr75av//mvPndmzpzwZnKTszWrpt36b6P7tNt79+mUwedqrdnvV2XLhgJavAjg7WjbIfumnKX7lh+h3ol9dKWG7bIZXe16viinRV/Lm34k7TnbckMS4lDaoIYl0rl26zAxkNv7uxcAgAAxOzDD6UHH5SWLrUCuR13nDXwRTBoBUTu3Vt6773OziUAAAAAAAAAAAAAAABwaFoTe8xxsDuprKxUfHx8i2k8Ho/Ky8tbtd3TTjtNU6dO1TXXXCOfz6dBgwZpwYIFWrJkiZ577rm64G2XX365nn32WW3ZskV9+/aVJP385z/Xo48+qgsuuED333+/unXrpscee0wbN27Ue/QMAgAAAAAAQKzsHsnbw/pDx2rteBM2uxTfW1LvdskO2ojNIWWfZv21xJUi9f+Z9deSbidafwAAfI+cfrq0e7e0YoX1l58vffutZLNJ3btLp50mHeD27PfO4PTBOrbHsfpizxd6/bvXVVxVLEk6pf8pyozPlCStWlV/CXnssfXB2yTr2M2fLxUVSX/6U/3866+vD94mSS6X9Le/SdXVMWasfJsVvE2S+lxYH7xtH7/4heoCuM2bJ02aZAW4qGWa0p49VoC56YOmq1t8N+3279ZHOz7Si1+/KEn62TGNr4tcdpduPeFWXffWdbpj+R2SpFtPuJXgbV1R2nHSCQusYMOBQusvGpScyZK3p8RnBgAADjOTJ1t/waC0Y4dUXCz5fFaA5OxsqV+/zs4hAAAAAAAAAAAAAAAA0LEOOoBb37599cknn7SYZuXKlerVq1ert7148WLddtttuuOOO1RcXKyhQ4dqwYIFuuiii+rSRCIRRSIRmQ0e6HS73Vq6dKl+85vf6Be/+IUqKys1evRovf322zrppJNanQ8AAAAAAAAAAAAA6ChOp/SjH1l/sMwYPkNf7PlCizcsVkl1Sd28WqtX16dtcDu5kfR0aeXK+tc/+UnTNIYheb0xZqqowU571ASojYYk/2YpWFq3aMIE6Y9/tILKrV0r9e8vnXyylJUllZRYwefOPVd65BHJYXNoxvAZeuTTR/T7D36v/+X9TwmuBJ0z9Jwmu798zOVal7dOwUhQTptTVx57ZYwZR6cwbJKnm/UHAADwPeBySYMGdXYuAAAAAAAAAAAAAAAAgM5nmA0joLXCLbfcooceekj/+Mc/9POf/7zJ8ieffFJXX321brzxRv35z38+5Ix2NJ/Pp+TkZJWVlSkpqfkR0wEAAAAAAAAAAAAA7Wd76Xb1/0t/ue1uhaIh2Q278m7JU6o3VZI0fbr03/9aad99t/ngd6YpJSRIlZWSzSb5/VJcXAw7N4zGG6n1zQPS/261pk/9n5R6jFS+TXp9QH2a9PHStFWSpJwc6fXXpQ8+kLZtk4JBKS1NGjlSuuQSaexYa5U1uWs07slxdZu4ZNQlevacZ2PIKAAAAAAAAAAAAAAAAAAAAACgLbQm9pjjYHdy6623auHChbryyiv13HPPaerUqerZs6dyc3P13//+Vx988IGys7M1Z86cg90FAAAAAAAAAAAAAOAI1i+ln8b3HK/VuaslSacOOrUueJsk5ebWpx0+vPltVFZaf5LUp0+MwdtaEqmon3ZnHDB5377S9ddbfy05vufxOir9KG0s2ihJ+tkxPzuUXAIAAAAAAAAAAAAAAAAAAAAA2tFBB3DLzMzUsmXL9NOf/lTLly/X8uXLZRiGzJqRx8eNG6fnnntOmZmZbZZZAAAAAAAAAAAAAMCR5bc/+K1e2/iaJGnWyFmNllU0iKWWktL8+g3TJCa2QYYMe4Npw/pvc0tpx9XPTzr6oDb91bVfKRKNSJLcDvfB5hAAAAAAAAAAAAAAAAAAAAAA0M4OOoCbJA0ePFirV6/WZ599pk8//VSlpaVKSUnRuHHjNHbs2LbKIwAAAAAAAAAAAADgCHXO0HN0ztBzDpiuZqyxJhwN7oqHQm2QIUdS/XTVHsnbQ4rLlqZ/duibtjnksB3SbXwAAAAAAAAAAAAAAAAAAAAAQAdok57fY8eO1dixYxUOh7V+/XpJUigUktPpbIvNAwAAAAAAAAAAAADQREJC/XRpqRQX13Ka/Pw22GnysPrpkrVS2rFtsFEAAAAAAAAAAAAAAAAAAAAAwOHE1prE27Zt01NPPaXvvvuuybI33nhDPXv2rAvm1qNHD7344ottllEAAAAAAAAAAAAAABrq2bN++quvmk/jckm9e1vTxcXSrl2HuNP08ZIMazrvvebTmOYh7gQAAAAAAAAAAAAAAAAAAAAA0JW1KoDbP/7xD1155ZVyu92N5m/evFkXXnihCgoK1KdPHw0dOlQlJSWaNWuWvvzyyzbNMAAAAAAAAAAAAAAAkjRuXP10S7emJ06sn169+hB36kqWkodZ0ztelPa+33h5zr+lbc8c4k4AAAAAAAAAAAAAAAAAAAAAAF1ZqwK4ffTRRxo1apT69u3baP5f/vIXVVdX67rrrtO2bdv09ddf66WXXlIkEtFf//rXNs0wAAAAAAAAAAAAAACSNGFC/fSCBZJpNk2Tn984gNsjjzRNs2OH9RezPhdZ/82ItHyqtPIS6X+/k96dJH1ykRSuaMXGAAAAAAAAAAAAAAAAAAAAAACHm1YFcNu2bZuGDx/eZP6SJUvkcrl077331s0777zzNHnyZH344YeHnksAAAAAAAAAAAAAAPYxYYJkGNb0//4n3XlnfRC3cFi69VZp8WJpypT6dVaskC6/XKqosNK+8YZ0wglSQUErdnzUDVJcH2vajErb/z/pm/ukwpVt8bYAAAAAAAAAAAAAAAAAAAAAAF1cqwK4FRYWqnfv3o3mlZaWasuWLRo/frwSExMbLRs9erRyc3MPPZcAAAAAAAAAAAAAAOwjLU06++z617//vTRunDRrljRwoPTAA9b80aOlU06pT/fUU1JqqhQXJ/34x9KuXa3csTNJOvE/UnLTAdDkSJRSRrb2rQAAAAAAAAAAAAAAAAAAAAAADiOOViV2OFRaWtpo3pdffilJGjt2bJP0CQkJB58zAAAAAAAAAAAAAAAO4Pe/l95+WwoErNeffWb97euvf5WOP16qqLBeh0LW30FLHSWdulba/LhU8JEkQ0ofJ/W/RHJnHMKGAQAAAAAAAAAAAAAAAAAAAABdna01iYcMGaKlS5c2mvff//5XhmFo0qRJTdLv3r1bPXr0OLQcAgAAAAAAAAAAAACwHyNGSE89JTU3vpjNJvXubU0ffbT03nvSMcc0TffDH0qDBh3Ezm0OacgvpBP+LZ2wUBr6S4K3AQAAAAAAAAAAAAAAAAAAAMARoFUB3H7yk59o06ZNuvrqq7Vu3TotXrxYjz/+uBISEnTqqac2Sf/xxx9r0EH1cgcAAAAAAAAAAAAAIDYXXyx98430k59IyclSXJw0bZq0bJl0xhn16SZMkD7/XPrHP6Rrr5V++UvpnXeswG7JyZ2XfwAAAAAAAAAAAAAAAAAAAADA4cUwTdOMNXFVVZUmTJig9evXyzAMSZJpmvrjH/+oX/3qV43SfvbZZxo3blyzyw4HPp9PycnJKisrU1JSUmdnBwAAAAAAAAAAAADQkWruiUuSYr+tDgAAAAAAAAAAAAAAAAAAAAA4TLUm9pijNRv2er36+OOP9dBDD2nVqlVKS0vTBRdcoLPOOqtJ2i+++EJnn312s8sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HBkmCZDhTenNVHwAAAAAAAAAAAAAADfM4ZRP81tdQAAAAAAAAAAAAAAAAAAAAD43mtN7DFHB+UJAAAAAAAAAAAAAICurWHQtv3NJ5gbAAAAAAAAAAAAAAAAAAAAABzxbJ2dAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4XBDADQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiRAA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIgRAdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEaOzs4AAAAAAAAAAAAAAABdgml2dg4AAAAAAAAAAAAAAAAAAAAAAIcBW2dnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOFwRwAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAYEcANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGJEADcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiBEB3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgRgRwAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAYOTo7A12VaZqSJJ/P18k5AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANCeamOO1cYgawkB3PbD7/dLknr37t3JOQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQEfx+v5KTk1tMY5ixhHk7AkWjUe3evVuJiYkyDEM+n0+9e/fWzp07lZSU1NnZAwAADVBOAwDQdVFOAwDQNVFGAwDQdVFOAwDQNVFGAwDQdVFOAwDQNVFGAwDQdVFOAwDQdVFOAwDQ+UzTlN/vV3Z2tmw2W4tpHR2Up8OOzWZTr169msxPSkriIgcAgC6KchoAgK6LchoAgK6JMhoAgK6LchoAgK6JMhoAgK6LchoAgK6JMhoAgK6LchoAgK6LchoAgM6VnJwcU7qWw7sBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOoQwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYkQAtxi53W7deeedcrvdnZ0VAACwD8ppAAC6LsppAAC6JspoAAC6LsppAAC6JspoAAC6LsppAAC6JspoAAC6LsppAAC6LsppAAAOL4ZpmmZnZwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADge2zs4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwuCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADEigBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxIgAbgdQXl6um266SdnZ2fJ4PBo9erQWLlzY2dkCAOCIsnz5chmG0ezfqlWrGqX94osv9KMf/UgJCQlKSUnReeedp61bt3ZSzgEA+H7x+/36zW9+o2nTpikzM1OGYWjevHnNpm1NmfzII49o6NChcrvd6t+/v+bPn69QKNSO7wQAgO+XWMvoyy67rNm69dChQ5vdLmU0AACH5v3339fPf/5zDR06VPHx8erZs6fOPvtsff75503SUo8GAKBjxVpOU5cGAKBjrV27VmeccYb69Okjr9ertLQ0TZw4Uc8991yTtNSlAQDoWLGW09SlAQDofE8++aQMw1BCQkKTZdSnAQDoXPsrp6lPAwBw+HJ0dga6uvPOO09r1qzR/fffryFDhuiFF17QzJkzFY1GdfHFF3d29gAAOKLce++9OvnkkxvNGzFiRN30t99+qylTpmj06NF68cUXVV1drTvuuEOTJ0/W2rVrlZmZ2dFZBgDge6WoqEhPPPGERo0apXPOOUdPPvlks+laUybfc889mjt3rn77299q2rRpWrNmjW6//Xbl5ubqiSee6Ki3BgDAYS3WMlqSvF6v3n///Sbz9kUZDQDAoXv88cdVVFSkG2+8UcOGDVNBQYEefPBBTZgwQe+8845OOeUUSdSjAQDoDLGW0xJ1aQAAOlJpaal69+6tmTNnqmfPnqqoqNDzzz+vn/3sZ9q+fbtuv/12SdSlAQDoDLGW0xJ1aQAAOlNubq5uueUWZWdnq6ysrNEy6tMAAHSulsppifo0AACHK8M0TbOzM9FVvfXWWzrjjDPqgrbVmjZtmr7++mvt2LFDdru9E3MIAMCRYfny5Tr55JP10ksv6fzzz99vugsvvFDLli3Tli1blJSUJEnKycnR4MGDdfPNN+sPf/hDR2UZAIDvpdomBMMwVFhYqMzMTN15552aN29eo3SxlslFRUXq1auXLrnkEv3973+vW//ee+/V7bffrq+++krDhg3rmDcHAMBhLNYy+rLLLtOiRYtUXl7e4vYoowEAaBv5+fnq1q1bo3nl5eUaNGiQRowYoffee08S9WgAADpDrOU0dWkAALqGCRMmaPfu3dqxY4ck6tIAAHQl+5bT1KUBAOhcP/7xj2UYhtLS0pqUydSnAQDoXC2V09SnAQA4fNk6OwNd2SuvvKKEhARdcMEFjebPnj1bu3fv1urVqzspZwAAYF/hcFhvvPGGfvKTn9TdRJCkvn376uSTT9Yrr7zSibkDAOD7wTAMGYbRYprWlMlLlixRdXW1Zs+e3Wgbs2fPlmmaevXVV9s0/wAAfF/FUka3BmU0AABtY9+gMJKUkJCgYcOGaefOnZKoRwMA0FliKadbg3IaAID2lZGRIYfDIYm6NAAAXU3Dcro1KKcBAGh7zz33nFasWKHHHnusyTLq0wAAdK6WyunWoJwGAKDrIYBbC7766isdffTRTW4kHHPMMXXLAQBAx7nuuuvkcDiUlJSk6dOn66OPPqpbtmXLFlVVVdWV0w0dc8wx2rx5s6qrqzsyuwAAHJFaUybX1qtHjhzZKF2PHj2UkZFBvRsAgHZQVVWlrKws2e129erVS9dff72Ki4sbpaGMBgCg/ZSVlemLL77Q8OHDJVGPBgCgK9m3nK5FXRoAgI4XjUYVDodVUFCgxx57TO+8845uvfVWSdSlAQDobC2V07WoSwMA0PHy8/N100036f7771evXr2aLKc+DQBA5zlQOV2L+jQAAIen1g9xcgQpKirSgAEDmsxPS0urWw4AANpfcnKybrzxRk2ZMkXp6enavHmz/vjHP2rKlCl68803NX369LpyubacbigtLU2maaqkpEQ9evTo6OwDAHBEaU2ZXFRUJLfbrfj4+GbTUu8GAKBtjRo1SqNGjdKIESMkSStWrNBDDz2kpUuXas2aNUpISJAkymgAANrRddddp4qKCt12222SqEcDANCV7FtOS9SlAQDoLNdee63+/ve/S5JcLpcefvhhXX311ZKoSwMA0NlaKqcl6tIAAHSWa6+9VkcddZSuueaaZpdTnwYAoPMcqJyWqE8DAHA4I4DbARiGcVDLAABA2xkzZozGjBlT93ry5Mk699xzNXLkSP3mN7/R9OnT65ZRdgMA0DXEWiZTdgMA0HFuvvnmRq+nTp2qMWPG6Pzzz9c//vGPRsspowEAaHtz587V888/r0ceeUTHHXdco2XUowEA6Fz7K6epSwMA0Dl+97vf6YorrlB+fr5ef/11XX/99aqoqNAtt9xSl4a6NAAAneNA5TR1aQAAOt7LL7+s119/XV9++eUBy1Dq0wAAdKxYy2nq0wAAHL5snZ2Briw9Pb3ZCLPFxcWSmo80DwAAOkZKSorOPPNMrVu3TlVVVUpPT5ek/ZbdhmEoJSWlg3MJAMCRpzVlcnp6uqqrq1VZWdlsWurdAAC0v3PPPVfx8fFatWpV3TzKaAAA2t78+fN1991365577tH1119fN596NAAAnW9/5fT+UJcGAKD99enTR2PHjtXpp5+uxx9/XFdddZXmzJmjgoIC6tIAAHSylsrp/aEuDQBA+ykvL9d1112nX/ziF8rOzlZpaalKS0sVDAYlSaWlpaqoqKA+DQBAJ4i1nN4f6tMAABweCODWgpEjR2rDhg0Kh8ON5q9fv16SNGLEiM7IFgAAqGGapiQrIvzAgQPl9XrryumG1q9fr0GDBsnj8XR0FgEAOOK0pkweOXJk3fyG9u7dq8LCQurdAAB0ENM0ZbPV3y6gjAYAoG3Nnz9f8+bN07x58/S73/2u0TLq0QAAdK6WyumWUJcGAKBjjRs3TuFwWFu3bqUuDQBAF9OwnG4JdWkAANpHYWGh8vLy9OCDDyo1NbXub8GCBaqoqFBqaqpmzZpFfRoAgE4QazndEurTAAB0fQRwa8G5556r8vJyvfzyy43mP/vss8rOztb48eM7KWcAAKCkpERvvPGGRo8eLY/HI4fDoR//+MdavHix/H5/XbodO3Zo2bJlOu+88zoxtwAAHDlaUyafeuqp8ng8euaZZxpt45lnnpFhGDrnnHM6KNcAABy5Fi1apMrKSk2YMKFuHmU0AABt5/e//73mzZun22+/XXfeeWeT5dSjAQDoPAcqp/eHujQAAB1v2bJlstlsGjBgAHVpAAC6mIbl9P5QlwYAoP1kZWVp2bJlTf6mT58uj8ejZcuW6e6776Y+DQBAJ4i1nN4f6tMAABweHJ2dga7stNNO09SpU3XNNdfI5/Np0KBBWrBggZYsWaLnnntOdru9s7MIAMAR4eKLL1afPn00duxYZWRkaNOmTXrwwQeVl5fXqJFh/vz5Ov7443XmmWfqt7/9raqrq3XHHXcoIyNDv/rVrzrvDQAA8D3y9ttvq6Kiou7G/TfffKNFixZJkk4//XTFxcXFXCanpaXp9ttv19y5c5WWlqZp06ZpzZo1mjdvnq644goNGzasU94jAACHowOV0QUFBbr44ot10UUXadCgQTIMQytWrND//d//afjw4briiivqtkUZDQBA23jwwQd1xx136NRTT9UZZ5yhVatWNVpe27GOejQAAB0vlnI6JyeHujQAAB3sqquuUlJSksaNG6fu3bursLBQL730kv7973/r17/+tTIzMyVRlwYAoDPEUk5TlwYAoON5PB5NmTKlyfxnnnlGdru90TLq0wAAdKxYy2nq0wAAHN4M0zTNzs5EV1ZeXq7bbrtNL774ooqLizV06FDNmTNHF110UWdnDQCAI8b999+vf//739q2bZvKy8uVlpamH/zgB5ozZ46OP/74Rmk///xz3XrrrVq5cqUcDodOOeUU/elPf9LAgQM7KfcAAHy/9OvXTzk5Oc0u27Ztm/r16yepdWXyww8/rEcffVTbt29XVlaWZs+erdtuu01Op7M93woAAN8rByqjk5OTdfnll+vLL79UXl6eIpGI+vbtq3PPPVe/+93vlJyc3GQ9ymgAAA7NlClTtGLFiv0ub3irnno0AAAdK5ZyuqSkhLo0AAAd7Omnn9bTTz+tDRs2qLS0VAkJCRo1apSuuOIK/fSnP22Ulro0AAAdK5Zymro0AABdx2WXXaZFixapvLy80Xzq0wAAdL59y2nq0wAAHN4I4AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMbJ1dgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4HBBADcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiBEB3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgRgRwAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAYEcANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGJEADcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiBEB3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgRgRwAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAYEcANAAAAAAAAAAAAAAAAAHBE2759uwzD0GWXXdaq9QzD0JQpU9olTwAAAAAAAAAAAAAAAACArosAbgAAAAAAAAAAAAAAAACATlUbQK3hn8vlUu/evXXxxRdr3bp1nZKvKVOmyDCMTtk3AAAAAAAAAAAAAAAAAKDrcnR2BgAAAAAAAAAAAAAAAAAAkKSBAwfqpz/9qSSpvLxcq1at0oIFC7R48WK9//77mjRpUrvst2fPntqwYYOSk5Nbtd6GDRsUFxfXLnkCAAAAAAAAAAAAAAAAAHRdBHADAAAAAAAAAAAAAAAAAHQJgwYN0rx58xrNu/3223XPPffotttu07Jly9plv06nU0OHDm31egezDgAAAAAAAAAAAAAAAADg8Gfr7AwAAAAAAAAAAAAAAAAAALA/v/jFLyRJa9askSSFw2E99NBDGjVqlLxer5KTk3XyySfrzTffbLJuNBrVk08+qXHjxiktLU1xcXHq16+fzjnnHH3wwQd16bZv3y7DMHTZZZfVzTMMQytWrKibrv3bN82UKVOa7LeoqEg333yz+vfvL7fbrW7dumnGjBn65ptvmqS97LLLZBiGtm/frscee0xHH320PB6P+vbtq/nz5ysajR7MYQMAAAAAAAAAAAAAAAAAtCNHZ2cAAAAAAAAAAAAAAAAAAID9MQyjbto0Tc2YMUOLFy/WkCFDdN1116miokIvvviizjzzTP3lL3/RDTfcUJd+zpw5euCBBzRw4EBdfPHFSkxMVG5urj788EO9//77OvHEE/e73zvvvFPPPPOMcnJydOedd9bNHz16dIv5LSoq0oQJE7R582ZNmTJFF110kbZv365FixbpzTff1LvvvquJEyc2We/Xv/61li9frjPPPFPTpk3Tq6++qnnz5ikYDOqee+5pxREDAAAAAAAAAAAAAAAAALQ3ArgBAAAAAAAAAAAAAAAAALqshx9+WJJ0/PHH67nnntPixYt10kkn6b///a9cLpck6bbbbtNxxx2nW265RT/+8Y/Vv39/SdKTTz6pnj17at26dYqLi6vbpmmaKikpaXG/8+bN0/Lly5WTk6N58+bFnN/f/OY32rx5s+bMmaN77723bv5ll12mU089VZdeeqm+/fZb2Wy2Rut9/vnnWrdunXr06CFJmjt3rgYPHqxHHnlEd955Z917BQAAAAAAAAAAAAAAAAB0PtuBkwAAAAAAAAAAAAAAAAAA0P42b96sefPmad68ebrlllv0gx/8QPfcc488Ho/uvfdePfPMM5KkBx54oFFAs169eunmm29WKBTS888/32ibLpdLDkfjsU4Nw1BaWlqb5z8YDGrBggVKT0/X7bff3mjZ9OnTNX36dG3atEmffPJJk3Xnzp1bF7xNkjIyMnT22WfL7/dr48aNbZ5XAAAAAAAAAAAAAAAAAMDBI4AbAAAAAAAAAAAAAAAAAKBL2LJli+bPn6/58+fr4YcfVk5Oji6++GJ9+umnmjhxor788kt5vV6NGzeuybpTpkyRJK1du7Zu3oUXXqht27ZpxIgRmjt3rt577z1VVFS0W/6//fZbVVVVady4cYqLi4spj7WOPfbYJvN69eolSSotLW3LbAIAAAAAAAAAAAAAAAAADhEB3AAAAAAAAAAAAAAAAAAAXcL06dNlmqZM01QwGNTOnTv1/PPPa+TIkZIkn8+n7t27N7tuVlaWJKmsrKxu3sMPP6wHHnhATqdTd999t6ZOnaqMjAxdeumlKiwsbPP8+3w+SWpVHmslJyc3medwOCRJkUikrbIIAAAAAAAAAAAAAAAAAGgDBHADAAAAAAAAAAAAAAAAABwWkpKSlJeX1+yy2vlJSUl185xOp37961/r66+/Vm5url544QVNnjxZ//rXvzRr1qx2yV/DvMSSRwAAAAAAAAAAAAAAAADA4YcAbgAAAAAAAAAAAAAAAACAw8KYMWNUVVWlTz/9tMmyFStWSJJGjx7d7LrZ2dmaOXOmlixZosGDB+u9995TVVVVi/uz2+2SpEgkElP+hg4dKo/HozVr1qiysrLVeQQAAAAAAAAAAAAAAAAAHB4I4AYAAAAAAAAAAAAAAAAAOCxceumlkqQ5c+YoFArVzc/NzdWf//xnORwOzZo1S5IUCAT0/vvvyzTNRtuoqKiQ3++X0+msC9C2P2lpaZKkXbt2xZQ/l8ulmTNnqrCwUPfdd1+jZe+9957efvttDRo0SCeccEJM2wMAAAAAAAAAAAAAAAAAdE2Ozs4AAAAAAAAAAAAAAAAAAACx+NnPfqbFixfrtdde0zHHHKMzzzxTFRUVevHFF1VUVKQHH3xQAwYMkCRVVVXphz/8oQYMGKDx48erT58+Ki8v1xtvvKG9e/fq1ltvlcvlanF/p5xyihYtWqQLLrhAp59+ujwej0aOHKkzzjhjv+v84Q9/0IoVK3T33Xfrk08+0fjx47V9+3YtWrRIcXFxevrpp2WzMfYqAAAAAAAAAAAAAAAAABzOCOAGAAAAAAAAAAAAAAAAADgsGIahRYsW6S9/+YueffZZPfLII3K5XDr22GP1y1/+UmeddVZd2vj4eP3hD3/Q0qVL9eGHHyo/P1+pqakaOnSo/vCHP2jGjBkH3N+VV16p7du3a+HChbrnnnsUDod16aWXthjALTMzU6tXr9bvf/97vfbaa/rwww+VnJyss88+W3feeadGjBjRJscCAAAAAAAAAAAAAAAAANB5DNM0zc7OBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcDmydnQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOFwQwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYkQANwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIEQHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBGBHADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBgRwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYkQANwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIEQHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBGBHADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBgRwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYkQANwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIEQHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBGBHADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBgRwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYkQANwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIEQHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBGBHADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBh1yQBu5eXluummm5SdnS2Px6PRo0dr4cKFB1xv8eLFmjlzpgYNGiSv16t+/fpp1qxZ2rRpUwfkGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD3nWGaptnZmdjXtGnTtGbNGt1///0aMmSIXnjhBT355JN6/vnndfHFF+93vfHjxysrK0vnnHOOBgwYoJ07d+ree+/Vzp07tWrVKg0fPjzmPESjUe3evVuJiYkyDKMt3hYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACALsg0Tfn9fmVnZ8tms7WYtssFcHvrrbd0xhln6IUXXtDMmTPr5k+bNk1ff/21duzYIbvd3uy6+fn56tatW6N5u3fvVr9+/XTJJZfoySefjDkfu3btUu/evQ/uTQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA47OzcuVO9evVqMY2jg/ISs1deeUUJCQm64IILGs2fPXu2Lr74Yq1evVqTJk1qdt19g7dJUnZ2tnr16qWdO3e2Kh+JiYmSrIOYlJTUqnUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHD58Pp969+5dF4OsJV0ugNtXX32lo48+Wg5H46wdc8wxdcv3F8CtOVu3blVOTo7OOeecFtMFAgEFAoG6136/X5KUlJREADcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgCGAYxgHT2DogH61SVFSktLS0JvNr5xUVFcW8rXA4rMsvv1wJCQm6+eabW0x73333KTk5ue6vd+/ercs4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgO+9LhfATWo58lwsUekkyTRNXX755frwww/1r3/964AB2ebMmaOysrK6v507d7YqzwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+/xydnYF9paenq6ioqMn84uJiSVJaWtoBt2Gapq644go999xzevbZZ3X22WcfcB232y232936DAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4Ytg6OwP7GjlypDZs2KBwONxo/vr16yVJI0aMaHH92uBtTz/9tJ588kn99Kc/bbe8AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADiydLkAbueee67Ky8v18ssvN5r/7LPPKjs7W+PHj9/vuqZp6sorr9TTTz+tv//975o9e3Z7ZxcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAEcTR2RnY12mnnaapU6fqmmuukc/n06BBg7RgwQItWbJEzz33nOx2uyTp8ssv17PPPqstW7aob9++kqQbbrhB//znP/Xzn/9cI0eO1KpVq+q263a7NWbMmE55TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC+H2ydnYHmLF68WD/72c90xx136NRTT9Xq1au1YMECzZo1qy5NJBJRJBKRaZp1815//XVJ0lNPPaWJEyc2+jv33HM7/H0cTl5//XXNmDFDffr0kcfjUVpamo477jjNnTtXeXl5za7zzDPPyDCMRn82m01paWmaPHmyHnvsMYXD4f3uMxqNauHChbrgggvUt29fxcXFKT4+XoMHD9ZPf/pTvfHGG40+XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCzGSYRsprl8/mUnJyssrIyJSUldXZ22k1ZWZlmzJihd955R5KUmZmpvn37yufzadOmTTJNU4mJiXryySd14YUXNlr3mWee0ezZs+V2uzV27FhJVmC9rVu3Kj8/X5J08skn6+2335bb7W607pYtW3Teeedp3bp1kqTU1FT17dtXpmkqJydHpaWlkqTjjjtOH330kTweT3seBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzBWhN7zNZBeUIXFAwGNXXqVL3zzjvq16+f3nrrLeXl5WnNmjXauHGjcnJydNFFF8nv92vmzJl6+eWXm91OVlaWPvroI3300UdauXKl8vLytHDhQjmdTi1btkwPPfRQo/Q5OTmaOHGi1q1bp7Fjx2rZsmUqLCzUl19+qbVr16qwsFDLli3T1KlT9fnnn6u6urojDgcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwQARwO4LdeeedWrNmjXr06KEPP/xQp512mgzDqFveu3dvLViwQLNnz1Y0GtUVV1yhvLy8mLY9Y8YMXXPNNZKkBQsWNFo2a9YsFRQU6KSTTtIHH3ygKVOmyGar/yra7XZNmTJF//3vf/Xoo4/Kbre3wbsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADh0B3I5QpaWl+utf/ypJ+tOf/qRevXrtN+1f/vIXZWRkNFonFieeeKIkadOmTXXz3n//fX388cdyOp3617/+Ja/X2+I2rr32WiUmJsa8TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA9EcDtCPXWW2+pvLxcGRkZuuCCC1pMm5iYqFmzZkmSXnzxxZj3YZpmk3kLFy6UJJ155pnq06dPK3IMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdD4CuB2hPvnkE0nSpEmT5HQ6D5j+xBNPlCR99913KioqimkfH374oSRp0KBBTfZ70kkntSq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFdAALcjVG5uriRp4MCBMaVvmK523Zb8+9//1uOPPy5JuvDCC5us279//5jzCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHQVjs7OADqH3++XJMXHx8eUvmG62nVr7d27Vz/4wQ8kSZFIRNu2bVNeXp4kadKkSfrVr3510PsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuhICuB2hEhMTJUkVFRUxpW+YrnbdWoFAQB9//LEkyTAMJSYmasKECZoxY4auvfZauVyuRuuWlpbGvF8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgKyGA2xGqZ8+ekqQtW7bElL5hutp1a/Xt21fbt2+Peb+lpaXatm1bbBkFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuhBbe2w0EAgoHA63x6bRRiZNmiRJ+uSTT2L6rD744ANJ0uDBg5Wenn7I+12xYsVBbwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoLAcdwO2jjz7SXXfdpdLS0rp5RUVFOu2005SQkKCkpCTddtttbZFHtIPTTz9d8fHxKiws1EsvvdRiWr/fr+eff16SNGPGjEPab+36b7zxhnbs2HFI2wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA62kEHcHvwwQf17LPPKiUlpW7er371K73zzjsaMGCAUlJSdP/992vRokVtkU+0sZSUFF133XWSrM9t165d+0174403qrCwUMnJyXXrHKwf/vCHmjhxokKhkC699FJVV1e3mP5vf/ub/H7/Ie0TAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCsHHcBt7dq1mjx5ct3ryspKvfjii5o2bZo2btyojRs3qk+fPnrsscfaJKNoe3fddZeOPfZY7dmzRyeeeKKWLFki0zTrlu/atUsXX3yxnn76aRmGoSeeeEJZWVmHvN/nn39e6enpWr58uSZPnqzly5crGo3WLY9Go/roo4906qmn6pprrlEkEjnkfQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtwXGwK+bn56tnz551r1euXKnq6mrNnj1bkpSYmKgzzzxTL7/88qHnEu3C7XZr6dKluuCCC/Tee+/ptNNOU2Zmpvr27Su/36/vvvtOpmkqISFBTzzxhC688MI22W///v21cuVKnXfeefrss8908sknKy0tTX379pVpmsrJyVFJSYkkafz48fJ6vW2yXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBQ2Q52RY/HI7/fX/d6xYoVMgxDJ510Ut28hISEukBc6JpSUlL07rvv6tVXX9X5558vt9utdevWae/evRo1apR+97vfadOmTZo5c2ab7nfw4MFau3atnn/+eZ133nmKj4/Xhg0btHHjRqWlpWnWrFl6++23tXLlSrnd7jbdNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCwDNM0zYNZcfz48SopKdH69etls9k0YsQIuVwurV+/vi7NrFmz9NFHHyknJ6fNMtxRfD6fkpOTVVZWpqSkpM7ODgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB20prYY7aD3cmVV16pzZs3a/DgwTr66KO1efNmXXbZZY3SrF69WsOGDTvYXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAl3LQAdwuv/xy/frXv1ZlZaVKS0t19dVX66abbqpbvmzZMm3dulU//OEP2yKfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDpDNM0zfbYcDAYVFVVleLj4+VwONpjF+3K5/MpOTlZZWVlSkpK6uzsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgnrYk91m6R1Vwul1wuV3ttHgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nO1QN/DKK6/owgsv1DHHHKNBgwbVzf/222/1wAMPKDc391B3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABdguNgV4xGo5o5c6YWLVokSfJ6vaqqqqpbnpqaqttuu02RSERz5sw59JwCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCezHeyKDz30kF566SVdffXVKikp0S233NJoeffu3TV58mS9+eabh5xJAAAAAAAAAAAAAEAXECyVvvyN9OFPpK/ukqoLOjtHAAAAAAAAAAAAAAAAAAAAAAB0OMfBrvjMM89o7NixeuyxxyRJhmE0STNo0CACuAEAAAAAAAAAAADA90F1vrRsulS61nq9a7H03aPSSW9I6cd3atYAAAAAAAAAAAAAAAAAAAAAAOhItoNdcfPmzTrxxBNbTJOenq6ioqKD3QUAAAAAAAAAAAAAoCuIhqSlJ9cHb6sVyJdW/rRp+h0vSW8dI73WW/p4plS2oUOyCQAAAAAAAAAAAAAAAAAAAABARzjoAG5er1c+n6/FNDk5OUpJSTnYXQAAAAAAAAAAAAAAuoLtz0u+b5pfFqmqnzZNacOD0scXSmXrpcpd0o6F0jvHSnve6Zi8AgAAAAAAAAAAAAAAAAAAAADQzg46gNuYMWP0zjvvKBAINLu8uLhYS5Ys0YQJEw46cwAAAAAAAAAAAACALmDLE7Gl27NEWntL0/mRamlzjNsAAAAAAAAAAAAAAAAAAAAAAKCLO+gAbjfccIN27typ888/X7m5uY2WbdmyReeee67Kysp0ww03HHImAQAAAAAAAAAAAACdpGqvVLiq/nXKaGniC9Lw2yR7XOO0X83ryJwBAAAAAAAAAAAAAAAAAAAAANApHAe74tlnn63f/va3uv/++9WnTx/Fx8dLkrp166aioiKZpqm5c+fqlFNOabPMAgAAAAAAAAAAAAA6WOFKSaY1nTBIOuU9yZ1uve55lrRqtjXt+04q+rR+PXuclHy0VPaNFKnq0CwDAAAAAAAAAAAAAAAAAAAAANCeDjqAmyTde++9Ovnkk/XXv/5Vq1evVnV1taLRqE499VTdcMMNmj59elvlEwAAAAAAAAAAAADQGco3108ffUt98DZJSh8nHf+YNZ37ev18T3fp5HellJFSVZ606pJmN11ZKS1eLO3eLfXvL51+ulQzdhgAAAAAAAAAAAAAAAAAAAAAAF3WQQdw27Fjh1wul6ZOnaqpU6e2ZZ4AAAAAAAAAAAAAAF2Fv0EAt55nNV3e7STrf9lX9fOOe8QK3iZJ3u7Sif+Rvnu40WrvvSddfbW0dWv9vO7dpaeesgK5AQAAAAAAAAAAAAAAAAAAAADQVdkOdsX+/fvrtttua8u8AAAAAAAAAAAAAAC6Gv8m67+7m+Tt0UK6jdZ/Z5LU65zGy+xuaeiv6l4uWiRNndo4eJsk5eVJt9566FkGAAAAAAAAAAAAAAAAAAAAAKA9HXQAt7S0NKWlpbVlXgAAAAAAAAAAAAAAXU35Zut/Qr+W0/lqAriljZNszqbLDev2tM8nXX1122UPAAAAAAAAAAAAAAAAAAAAAICOdtAB3CZPnqxVq1a1ZV4AAAAAAAAAAAAAAB3FMA78J0lVe6z/cX33v61AoRQstqYTB7a42yeflIqL619feKH0/vvSv/4lHXPMIbwfAAAAAAAAAAAAAAAAAAAAAAA6iONgV7zvvvs0YcIEzZ8/X7fddpscjoPeFAAAAAAAAAAAAACgK4qGJTNsTXu6188vXClV5ta/dqXVT8f3b3GTb71VP33lldLf/14fK+6CC6S77jrEPAMAAAAAAAAAAAAAAAAAAAAA0M4OOuraH/7wB40YMUJ33XWXnnjiCY0aNUrdu3eXUduzvoZhGPrnP/95yBkFAAAAAAAAAABHsH3uP+yXabZvPgDgSBMN1E/b3fXT3/5Z2rmo/vXYR+unPVn107mvS+HK+s31PF9r1tglSTabdOedjU/xHo90zz1tlXkAAAAAAAAAAAAAAAAAAAAAANrHQQdwe+aZZ+qm9+zZoz179jSbjgBuAAAAAAAAAAAAANAF7Rv0sjaSWsP5IX/DBPvfViRYP2331E9//gupIqfu5caR1fL5rABuI0ZIPXs23VSsMTsBAAAAAAAAAAAAAAAAAAAAAOgsBx3Abdu2bW2ZDwAAAAAAAAAAAABAV2Nz109HQ7Gt00IEti++rF82cuTBZgoAAAAAAAAAAAAAAAAAAAAAgM510AHc+vbt25b5AAAAAAAAAACg00Qi0tKl0muvSXl5Uny8NHq0dP75Uu/enZ07SJJMs/Hr2uBA+87fV9UeqWq3ZPdKCQMku6d98gcA31c2Z/10qKyFdK766Uhgv8mKi+sDuA0efCgZAwAAAAAAAAAAAAAAAAAAAACg8xx0ADcAAAAAAAAAAL4Pli+XfvYzadeuxvP/9S/p17+WfD4pLq5TsoZDsWOR9N1fpIKP6ufZXFKP6dK4JyVPt87LGwC0N8M4cBrpwEEwa7flTJFCpVLljvr5R98qZU2V1lxtvW4YwC1Q0HADjTZXWVk/nZAQWzYBAAAAAAAAAAAAAAAAAAAAAOhqDjmA2wsvvKBnnnlGa9euVVlZmZKSkjRmzBhddtlluvjii9sijwAAAAAAAAAAtIv//U86/XSpqsp6PWGCdNZZUiQirVwpvf1249g2e8v36p3N70iSBqUN0gl9TuiEXOOAvvmD9L/f1r+O728FICrfJuW+LlXtkbzdD7ydWAIbAcCRIHGQVPyZVNEggFv6WMmVWv/anV4/XbG9fvqsbVLOQumTmZIkR4M71OFw+2QXAAAAAAAAAAAAAAAAAAAAAID2dtAB3KLRqGbMmKHFixfLNE15vV5lZ2crPz9f7733npYuXaqXX35ZL730kmw2W1vmGQAAAAAAAACAmISjYQ3961AVVRVJkj6/6nMNSB1Qt/yPf6wP3jZ3rnTXXY3XX7dOcjrrX//j83/ojuV3SLICuH13/XcyDKNd30NXZ5rShg1Sbq413aOHNHRo4+PWoar2SOt+Z00nDZMmLZBSj7FeVxdIW56U7N5Oyhy6FNOUStdJe9+TqvMkm1OK7yNlTJKSR/z/7N13nBXV/f/x99y2vbAFlqX3DqIogg0LYMHeUaNGY76xRP1ZIlY0arCgsSfRRE1UDGKLDRVRRKWpIAqI9M72vndvm/n9cfZuYXdhF4Fd9PV8PHhwd+7cuWfmzpw253zGBP3bHZEq88+TYLYJtIYdA1BGz+fdDUyZWB3ArXKjFAlI7piG6/jSJE+SFC4zATObkJBQ+zo/f/eSAwAAAAAAAAAAAAAAAAAAAABAa9vtAG5PPPGEXn/9dR111FGaMmWKRo4cWfPewoULdcstt+itt97SE088oWuvvXaPJBYAAAAAAAAAgJb4aM1HWlO0pubvl5a+pDuPMgHYysqkN94wyxMTpVtvbfj5oUNrXzuOo2k/TJMkWbK0unC1vtn2jUZkj9hr6W/LtmyR7rpLeucdKTe3/nuJidL06dIJJ7RCwjZOlxzbvD7k77XB2yQpNlMaNMm8rhvEqG6grt0NboQ2paSqREtzlkqSshKz1Ce9T/0VCr+V5l0ola5ofANHfyJlHdP8LyxfL638q7T9Q6n0x+qFlpTYU+pylnTAlJbuQrMFAtLXX0sbNkihkJSWJg0YIPXqtfsx6IAGknqZ/+2glPdl49eHZUnJ/Uygt8KvTX7ayEnYvVttPvvDD3srwQAAAAAAAAAAAAAAAAAAAAAA7F27HcDthRdeUL9+/fTxxx/L46m/mUMOOUQfffSRhg4dqueff54AbgAAAAAAAACAVvGfpf+RJI3qPErzNs/Tf5b+R3cceYcsy9KPP0p+v1nvsMOk2Nidb2tpzlKtyF+hJF+STh9wuv793b817ftpv8oAbtu2SSNGSNu3Sx6P9H//Z4K1paWZwG4ffWQC5NVlR4OqSXJZrr2XuJzZ5n9fmpQx2rwOFEqVG2vXicmU4jvtvTSg1T345YO6/4v7JUk92/XUT1f/JLfLbd4MlUqfjpWChVJCN+nAv0qZR0qeeKlslbTlXcnXrt72Fm9brJyKHEkmP0mJTal9s3CxNHuM2W5MhtT/BimhhxSukIq+lXI+2Sv7+NNP0s03SzNnmiBukuT1miBuknTTTdKDD+6Vr8avUWLv2tdrnm06wGFSXxO8rWq7lDdXan9kg1UOPri2PFi8WLJtybUXiwUAAAAAAAAAAAAAAAAAAAAAAPaG3Q7gtnLlSl199dUNgrfVbNjj0YQJE/Tkk0/uduIAAAAAAAAAANhdJVUleuvHtyRJf5/wdx31wlFaXbha8zfP16guo2oCHklSXNyutzfth2mSpAl9J2ji4In693f/1n+X/VcPjXuoQUCy+Zvn6+utX0sywZ4Oyj5oj+xTW3HvvSZ4myQ9+qh09dX13z/33Pp//1TwkwY+NVARJyKX5dJ3//edBrcfvHcSFyo1//vaSdHfZeu70vyLa9fpf6M0/KG98/1odRXBCj3z9TOSpM7JnbW2aK3e+vEtnTnwTLPCmudM8DZJGj1NyhhV++HUIeZfHYX+Qo15cYxKA+bc+tNhf9KU46bUrvDdJHPexXaQjv9OiutQP0GR4J7cPUlSbq506KFSUZGUmCg9+aR0xhlSu3ZSZaW0cKFUXr7Hvxa/ZqnDal9vfFVqN0zqf5NUsqz+eskDal9/fbV07GwT2NAO1yxOT5d695ZWr5ZycqSPP5bGj6+/mfXrpe7d9/heAL8a69ZJn3xi6mv5+SZQYnq61K+fdNJJUlJS66avstJc/wUFUjAopaZK3bpJCQmtmy4AaBbHkZyIZLkly2rt1AAAAAAAAAAAAAAAAAAAWtFuB3Dz+XyqqKjY6ToVFRXy+Xwt3nZ5ebluv/12TZ8+XYWFherfv79uueUWnXfeebv8bG5urm6++Wa9++67qqys1LBhw3Tvvffq2GOPbXE6AAAAAAAAAAD7r9dXvK6qcJWGdRimIR2G6IwBZ+ifi/+p/yz9j0Z1GaWuXWvXXbrUzMFuau617dh69YdXJUlnDjhTR/c4WqmxqdpStkVzN8zVUd2Pqlm3LFCmM6efqa1lWyVJPdv11LIrlynWE7vX9nVfe+ed2teXXrrr9W+bfZsiTkSDMgdpWd4yTfpkkt45/51df3B3xKSb//1bJMc2Qdziu0idTpFyPpHCO7+3gf3f80ueV1FVkY7qdpQuHHqhfvfO7/TwvIdrA7gVLDL/u2Ol9JG1y76/q3YjWcdJ/f+fJOmhLx9SaaBU43uN1yfrPtHjCx7XdYdep6zELClUJm3/0Hym8xm1wds2vSlVrKvdXreJUlxW83bAnyNteFna9qFUsUEKFpnz2B0jxXeTBt2mvzw4TkVFZvUHHpAuv7z24wkJ0tFHt+CAYb9j29Jnn0mzZkk//GAC+ZWWSjExUvv2Jrjf7bfv4S9td4AU18nkrZIJXLj0DskJ118v+0Tp+zvM65LvpQ9HSGmHSDmz6q126KEmgJtkgoC+/77Up4/5+8MPTaDQuXP38D4ArcVxpIhfChZLTkjyJNYPNLsHrVolXXSRtGCBFB8vnX66NHCgFBtrgn8+95zUo4c0cmQLNlq+3tShKjeZAKh2WPImS/GdpY7HS0m9pUiVlPOZlDtHqtpeGyjV105K6C71/r0ivo569lnplVekr74y5dWAASaYXFGR9NNP0lNPmfQD2I84jhQsMHlcuMLUWWMyJF/6Lye4WVWeCQK99T2pbJVkV0nueMkOmXyu33VS36tq13ccky+Gik2b1Jts8v5fyvEAAAAAAAAAAAAAAAAAANTY7QBuw4cP1/Tp03XbbbcpOzu7wfvbtm3T9OnTdeCBB7Z422eccYYWLVqkKVOmqG/fvnrllVd0/vnny7ZtTZw4scnPBQIBHXvssSouLtZjjz2m9u3b66mnntLxxx+vWbNm6aijjmryswAAAACAPSwSlEqWSVXbpFCpmczkjjMBNZIHND94AYD9SyQgla+unbRpuSRPkhTbQUroulcmqANAU/793b8lSUM6DNGc9XPUI7WHJOnVH17Vo+MfVdeuMTr0UGn+fGntWmnOHGnMmPrbiETMHOt5m+dpQ8kGSdK64nX657f/VJfkLiquKtYr379SL4DbPXPu0dayrbp42MWqCFVoxvIZevDLB3XnUXfuk/3eF2LrxKIrKzMBOJqyYPMCzVg+Q+lx6Zp98WwN+9swvfvTu/p8w+c6stuRez5xHU+UNr1uJsxveUfqfKrU4Wjz772BUumKlm2vOZPsHWf30ooajuPoi41fKBgJSpIO73q4YjwxLd5OxI7o0fmPSpKuOvgqndT3JN340Y2av3m+vtr0lUZ3GS35UqpXrpLClZI3UZIjORGpYKEJtBBrArFtL9+uxxc+LkuWHj/hcU35YoqeX/K8/jL3L3rshMckNXF+bHpd2vZBbQCbzCOb1waq2GgCXgXypOwJ0mHTpZSBkstj6lalKyVPvNaurf3IwIEtPkzYj1VUSCecYIKbxcdLd99t/u7QwZRZmzfXBkbboyxL6nae9OPU2mU7Bm+TpHbDpaQ+JriJZIIQVmxosNpll0kvvWRer14tHXigdMwx0pYt0jffSIMH74V9APa1Le9Ka56V8r6QYrOk5P6SJ970k1Vtl7r/pn7An2by+6XiYpMfhEJSXJyUkWHqY6efLi1bJrlcJojbz7qWIgHpy3OkLf8zwXD7XC1ljZA8CabNX7aq9lr/ZIwJ8Jg1Vur9f1JCD8nllQL5UulyKVyhO++V7r/frH7rrdKdd5rAk1HhsNkn7GXUbdFMZYEyXfjmhcqryJMk/XHkH3Xe4DoP3ixZLv3wZxPg0R0nZYySfKnmvoB/q+SJk454c88nLFRu6uzFS0yg43C5JEvyJkmxHaVu55qgantKsFj6+FCpfK2Uebh07Kemfi6Za8W/VQqVmNfrX5I2vCLlzzP5YGJPE9AuWGzq94PukDqfsufShl83OyxteVva/olU/J1kuc21aLnN/ThPgnT4a6Y83sOqqkx9Y8sWqbzc1E28XiktzQRl7tdvj38lAAAAAAAAAAAAAAAA0GZZjrN7Iy/fffddnXLKKcrKytINN9ygo446Sh06dFBOTo4+++wzPfLII8rJydHbb7+tCRMmNHu777//vk466aSaoG1R48aN07Jly7Rx40a53e5GP/v000/rqquu0ldffaVRo0ZJksLhsIYNG6bExEQtWLCg2ekoLS1VSkqKSkpKlJyc3OzPAb92X3whff65eUK640gdO0oejxkHHg5LvXtLl1wizZxpJuCsWmUmE6SlSW63WS8Uko4+Who3rrX3BgAAoHVtLNmoj9d8LEmK9cTqnEHnyOuunWhh2ybQyNq1Ul6emTARDJp6VVKS1LOnNHJk7fY+XvOxtpRtkSQNaT9EB2UftHcSHq6QFv1B2vhfKbGX1OsKKam35I6XIpWSf5sU11Hq1Py24oYN0pIl0po1Ummp2UdPdUhyl8tM8j74YDNRfcUKaf16M2kkEDDrulxSaqqZ1N5IDHIAu+I4ZnJ5+VopVGauZTmSK9YEQEkZbN775o9S4UITOCfrWCkm0wRsCxaZoA19/2gmjm15VypearYZ28FMIrNcZtKZ5ZaG3mMmeW/72Ez0DhZKvjTJqr7wnbCZANnz0lY9LPhl2b7dBDhYvdqUq7GxZuKhZIKh9OsnnXtu66bxV6HwGyl/vgkE4fKYPMPymKBKdkjqcZEJfNEMG4o3qPtj3Zt8/41z3tDpA07Xiy+a/ipJSk+X/vxn6dRTTV/WV19JU6dKn30m/WnO1Xpq0VONbistLk3bbtgmn9un5XnLNexvw+R1ebXqmlXyh/0a+NRAuV1uLb9yuXq069GyY9JGPfSQdPPN5vWVV0pPPGHqXFGOY+pjiYmOjn7xaM3ZMEdXHHiFrhl5jZ795lk9vvBxHdr5UH31269kNSeIRGOin9vxNkewSHqrsymv4rKlEU9J2SeZc+j9wVLFOqn/jdLwhxpuq7HtNfadu1oPLeI4jm795FZN+XKKDs4+WIu2LtLJfU/WjHNmyOf21Vv3hSUv6OGvHq5Z/sxJz2hk59qGz+vLX9dZr50lSZo4ZKK8Lq9mr5utTaWbdHr/0/XGuW9IeV9Ksw43Hxg4SRp6X+1vO+soKe9zqccl0qHP69oPrtXjCx/XgR0P1F+O/Yt+KvhJ13xwjXxun1Zds0pdU7pKn50gbZtp6jUnLJVi25ttFf8gfTDEvB63SEofseuDsex+aelt5vVJP0rJ/SR/jrTgktp1kvrqqfmP6eqrzZ9/+IP09NPNPdo/E0FfWt0//yldfrl5fc010uOPN/ODTeWZLVmvcrP0Tk+Tnzb4nMuc/ymDpLXPSwt+2/j2XTHSWaVyXD6NHy99/HHjqw0eLH3//c6Tur/x+03Q06oqcy/M6zX9Nykp9ctQ1FdR0bDfKz7e3FtMSWnt1O3E9lnSp2PN64P/JvX+vWnz5s6pXccdJ2WOrv07XGH+RapU0+b2JkueOP30kwnYOH++aZ9MmCB162baLX6/tHWr6R874wzzfmqqlJ9vjtdu++kp6ZvqwmbcAin9EBM4aflfateJ7SAVLjJBi1w+6awyye2Tir+XVv+tdr2M0ep93AVas8b8uW2blPVzn+2QP1/a/KZ5gERMRnUfRPUO2yETULLHhT/zS/a+QEDauFHKyTHneSBg8oT4eCkzcy8HaqVu+6sSCkmvvCJ9+aUZz9Gpk7kOo/3soZA0YoQ0caIUtsM69dVT9f6q93XbEbfpP0v/o+3l2/XJbz7R4V0PN3nV/3pKgVyp06nS4TNMGz5/genTi8o8XI43RevWmb79rVtNnlVVZc7zhARznp9yajPbhJv/J3010QRtG3SH1OlkEyDTckuhIql8vZR+iKqUqZkzpe++M9+bkiIlJ5t9tW2zr+ecYwLI7tLGGdKXZ5vXR/7PfKckzT62tk7kSZS6nCktrK6kjZkpdRxv8szCRbXb8rVTZcwB+te/TB/U2rVmDE16ev3f4eijpVOI84aopurn8y+R1r1oyuKj3jflXrDIBBSUTNDApH6m/96OSP7NUlWOFPGbQIvRfrfYLCmhqz75RJo+3QRmi401faExMeZatW3TTzZpknTFFWbMV2amdPXV0tCh5voKh6XcXHMOX3TRPj1CAAAAAAAAAAAAAAAAwB7Xkthjnt39kgkTJujRRx/VTTfdpJujs7SqOY4jj8ejhx9+uEXB2yTpzTffVGJios4+++x6yy+99FJNnDhRCxYs0OjRo5v8bL9+/WqCt0mSx+PRhRdeqFtvvVVbtmxRp06dWpQe/MI4jpkwXrnRTP52xVQ/adQlyTETQdNHmmXF30mVWyQ7YJ7Oa7klWWY9Oyxln9i8iUq/IlOnSjfeaF5PmiTdd1/jh+j886VXXzWvX3tNOuushuvUHXe4NGeppn0/TXHeOJUFynRktyM1oe+EehM7Q5GQnv32Wb3z0zvql95PqwtX6+JhF+usgWft/gRQAACAVvT2j2/r0rcvVbfUbvrdgb/TH2f+UU9//bSmnTlNXVPMRIrf/MZMeDrpJOnOO03Atvh4M0mzuNgEzJCkylClrv3gWj23+DndctgtWlO0Rpf/73Lde8y9uvmwm+WyamcJO46jnwp+Uqh64lG3lG5KiklqWeLzvpTW/8e8HniL1OM35vW315sAT2U/mcmnzQzgdvPNJkCIJD38sHT99fUn6AYCZsLXySdL775r6qAzZkinn24mPkWDBOflmQlhAFpo60xp0e9NW3rYX6QOx0nuGKnwWymSJxV9KwWLzcTs/C+lmPbSYdPNhO38edLG18xExUhAiu8qrXzU5AMZo6WjPzKTxLZ+YNrhVliSI+XOlT4/RQoVSz0vM4F33DHS2hfNxDNJ8m83k0U9XNj7E8cxgTiLimoDV9i2CSoQEyNlZEjt2rVgg2G/FCwwE3ftsOnbsVwmcIA32QQMrWY7tsqDpnB0W24l+GrPnVdfNRMLw2Hz/1//agJC1E13tFxtluYGtwkWm8AGVTmSHJNmRctl2/ydMarpbfzSLH9Q+u5P5vW4BVLawZJ/i7ShuiNJjlSy3Ew+rVhv3gsWmT4+q/oJAo4jyZYyj9BLS1+SJPXP6K+rDr6q5mve/eldfbjmQ/176b91+oDT9ZvfSAsXmuBHBQUmGNmVV9ZPWtgO67Xlr0mS/nTYnzQ8a3h1ihxd8c4VKvQX6uM1H+vEPifq6vevVtgOK2JH1PfJvpKkkB1SyA7pug+v09vnvb23juA+ddVVpu71+efm2M2dK40fb+pfW7ZIH31k+ggzR7+vORvmyGW59PL3L+vl71+WJLksl+Zvnq83VryhMweeuWcT52snjfynNO9Cyb9Vmnu6avp295KiIumRR0xQlWBQGju2NhhCdLKzxyNd2JIYIpGAKfeCxZIdNAFMZZn+a3ecCWbq8u5qK22e4zi649M7NOXLKRqRPUL/POWfmvLlFL3y/Ss6d8a5mn7WdHndXjmOo3vm3KPJcybrjAFnaOq4qZrwygQd/eLRmnbmNJ3a/1RJ0tR5UyVJg9sPVm5FriSpb3pfbS7drLd+fEurC1erd8ZoqftFpt2y/C9SzmxTN3H5pNIfa9K2sWSj/vaNCT6ztWyrLn7rYklSki9JZcEy/XnOn/XsKc+aOlL+PJOfvz/YbDuhmwlG2VKdT5OW3WcCEP44VRo2RYpJN8F/vrtN2vCyFCjQ738vvfGGNHu29MwzJoj1aaeZ86642ORr7dubtuIeVbfznqAvrSKav2zfLr3zjgmyMnJk7c9h29K6dVKvXnvhy+M7S6Nekb46vzpPirKkEc+Y4G2SuQbyvpDW/qv+510+6bBXJbdPlqQXXzSB1r/7ruFXtflbuo4jla+RylabQDXeJMkdq3r3HJMH6IO53fXww9LSpdKhh5q+iqwsyeczdc+iIrOvRx7Z2ju074RCJmBNbq5UUmKOhadOVc62pa5dTT3i889Nvfy660y/V7RfZ+NG065o0wGW3bHm/rITMYHQHUdybFP/3/qelDPLlOWH/FNa9mepaIm5dtIPMe3fyi0mwEqgQOp8mi67bLS++MJs+uuvpYOaeC7D/fdLf/qTKQsuuki69VYTgMXrNefbN99IAwY08xrLGGXq2nbABDBKHWqu46zjpFVPSZtel1KGSINuNQHc7KApW3tcbPKLHhdLC39nArhHApo06YJ6ASjvv1/q08f8bdsmyJLbbX7rXSpYKH1c3VYa/ojU/3rzesXDpo2ggFS02KR17T9NGmI7SqmDzUMmLFf1bxIy7Y6UAc340j1r40bzG33xhfmNJk82/ycmmqSVlZl6dbMDuDX3nnhLymzHkcJlUriyOlCVLSna5k6kT2YfCIdNPS8vr/bBJtEH40mmrXH44c0LBHr99dJT1THJn3tOuuyynaw783q9v+p99WzXUwMyBujsgWdr6rypOu3V0zT/8vnqndLFBIUK5JprLuKXXEnm77yvpBVTJEmr+y7TieenaNUqadAg03YcONAEe5LMeb59uxqel00GrPqt6QPyJEr9rpNi0kx+sOY5adsHpu3U50od9fsHtHCh+UhTeWaDS6Gpum2Ho02fZuVGaeXjJi9M6GbqRGv+Ln1/l+RNlbpfUPuZcKX5P+I3+fv6/1TnSWN18dMfacYM8/Y775iAnMBuqdxk/vcmS4k9zDlcuEjK+VRa8YB5b8QzJnjslrfMQ1gG3iIl9JAC60wdNlgi2VWaV3STjjsuTpIJCPvxx40XK088YfqCJNO/ceute383gbYqGDRt2bVrpcJC0yeamGiuHcsy9+s7d5aGDZMpVyKVUqjU1KmcsEydymvaDb40xqFiz4tUmTqJEzZt0ei9M3e8uYdblWf6LgP55r0d+zQSe0lJe6NzCcB+ww6b8qvmHrwlWV7JE/+LuDcFAAAAAAAAAPhlcBxzfzZcPazZ6/2ZD74FdpPlOD9vRsW6dev00ksvacmSJSotLVVycrKGDx+uiRMnqmezRtbWN2rUKEUiES2MjqSrtmzZMg0ePFh///vfdcUVVzT62Y4dO+qII47Q9OnT6y1/7733NGHCBH344YcaN25co58NBAIKBAI1f5eWlqpLly56+ukS+XzJGjzYTB6NDh6PRMwgjL59a5+Civ3A+lek5VOkqm3mabzthpnJ3qU/mokk4UrzVNzKTdLG6ZIcs158ZzPRr2KDtPVdyRWjSP/b9eSMY/Tpp2aCwSmn1AbMcLnM5IOKCunEE80TzveYUKkZdOpEzOAdl8cMsLBDZlC8ZAbn+bdKlZvN3wndzQ1TO2gGZgQLzfLkgSqJRLQ8b7l+KvhJwUhQ3VK7aV3ROsV749Uvo58GZAxoGLCjiYGrxcUmoMbcuWaQ7ciRUo8e5piEw2aic69e5mnBDz0kffutCbYxerSUnW2e4FpVZY7bMcdI6YO/0Z8//7Pmb56v0V1G64IhF+jT9Z/qozUfKcGXoNuPuF2n9j9Vb6x4Q7fNvk1uy60T+5yoUZ1H6YPVH2jW2lnKSszSA8c9oKO7jpLK15kBsr7U2qB84QozEdIOmEmPCV334I8FAJBkyk//NvM6vrPJb+2wyXuDRZIcKbG3meyDvcNxpNIVUsVGM/AysYeZ3BKpMmVjsFCSJTt5mPJLEhWtFqek1NZ/o5uRpLg4xg/vTcFIUH/6+E/664K/6riex+nIrkcqzhunnPIcvfHjGyquKtYLp76gg1NO1iOPSHPmmDrU0UdL3bvXBnArL5cyM6WDT1ymc2ecqw0lG3ThkAvVO623HDlavH2xXv3hVR3X8zj95/T/yB/y69/f/Vuvr3hdMZ4YndH/DH297Wt9n/O9Du50sC4ZdomO7nG0cspz9OWmL/Xttm9VFa7SkPZDtDRnqeK8cTqo40E6rOthykrMMvXp9S+byZHJ/aX4Lub6L1xk6t8pg6Tj5jbrmCxbZoIFf/ed6UA57DCpY0dTfwwGzb6OHm1e//Of0ooVph560EEmEJDPJ1VWmn+nnmrqod9+aya8HXNMbV3Usky91e83k8n+8x/znS5X7QR5n6/6dwqaa2L88RGtKVqjpTlLtb54vbKTsuWyXNpculldkrtoaIeh6pPeRytXeLRwoWk79OpV23awLDNBNRg0v1d6+4A2lGzQuqJ1Kg2UqlNyJ+VW5MpludQ9tbt6tuupRLdHWvmYmZjmS5U6HCP50k0Qm6pcqXKDucaH3m8GXwNNCZVL2z82ZXVcRympr+SJM5PDg8WmnPalmmt42f1SwQIpuZ8JfO5JkKq2mwnclZtMW/rAR0ybO2+uaWu1G27OTUla/28zIWDQ7WbA/+qnpZIVpl2ePMCcs6FSafn9Umx76dCXpPLV0sb/mnpE5hFmYqQ7zkx23/CKFNtBOv4bKSajNY/i/slxpC3/kwq/MW3jjFGmnRwslkIlZkKq5TbBA2LSdrm55po5U7r7bmnlSpOXn3++CRoQG2v6UQoLTV5Y59kMTbPD0jfXSFvelmI6SH2vMcEPKjeaczp/niRH9sHPal7BBk1fNl1fbPpCHRI6aHjWcM1cM1Opsama0GeCzh50tuLDnfXQQ6ZPo6jITH7esVzNzlZNsIEWaWoCcCQgzbvIXFuJvaR+15oAPSXLTCCQggXmnD/wcWnb+1LJD+Y6SBsheZLMvlblmcnRsR1U2vFarVljyrv4eKlDB3Nso5O4bdu83qP9VM1VuUX64R5TdqUMktofZSZ6l/5k8hD/Fil5oJl8vezPZt+9qSZ4RUy6OR9X/8MERupxkTleq54xgQQGTzbBFgIFJlBszmzJicjpdYUGvH2LVhas1NRxU/X/Rv2/muR8vuFzHfXCUfK6vNp2wzalx5u8atYs6YUXpLfeMv1Tbrc0ZIh03nnS0NM/0onTxivGHaO8m/Lq9ZdNfH2ipv0wTRcMuUAT+k7Q+a+fr46JHfXt779VnMdMfi0LlmnY34ap0F+od89/Vyf1PWmfHf69KRyWXn5Z+t//pE8/NdePZNoSBx8s3feXiC5bdIB+yP1BD499WDeMvqHms08tfEpXf3C1+qb31Q9/+EFe925M9mhqUn9UwdfSqidNMNFIpTmXUgabAFm9/yDFdWi4rZ1tbyfrbd9ugm7Mn2/aUaefLnXrZq5HxzHXpiSNGSO9954JrpSRIR14oAle4PGY9UIh85khif825W+wQOp/k5R2kGnDVW6Qcj4z5XSfP0hdzmjBAds5x3GUX5mvVYWrtL54veI8cUqNTdXm0s3KiM9Q77Te6p7affd+q52469O7dM/n9+iIrkfolH6n1Cz/Zts3evWHV3XGgDP0n9P+o2s+uEb/WvIvTeg7QYMyB9Ws9/Haj7Vk+xI9fvzjGt5xuA7712HyurzaeP1G0zapdtIrJ+n9Ve/rqoOv0pMnPmkO+PqXpY2vSjmfmOMrmbZLxmipzx/0u/kv6bnFz+m0/qfpzXPfrNnWstxlGvzMYLktt1ZctUJ90vuY8mflYyZwRDQInCvG1J86HGPqQTHpzTsoJctNvrftA1MX8iaZMiGQb+pKnU6Vhj+kcFiaNk16+23pyy+rg1/ItFsGDDDBsCdO3L3fpVkI4LZHRSImeFFpqfk7O7v2npNUHUMnbO5X5uSYwCuzZkk//GDWSU8326isNHnwW2/t8AW7yjNbst7m/0kLLzfnZPrB0tD7TJCkuhxHWnq7tPKv5v5Uh6NNQMK0A+utFgqZNv9DD5n6YFaWCShz661m/9us/AXS4v9nJjv3vFTqcKwJKFu4yARq8W+W0kboS/+jeuIJE8Cta1fTf5OVZYIXh0KmnjlggCkf9nt5X5hA307Y1Fm9qab8DZebfklJgfSTdOmVHTRvntn/2283fTDRfploP8+gQSYw6uefm2UnnGD6ehISqp/XVV1X+93vmpe0Tz+V/vtfafVqU7875BBTX3G7TT3Z7zeBxIYM2cPHJPdzE8gw93PTLxvf1bS7S1aY/vHMI6X+/88EWSlaYsqLdgdIssy5tek1U8/tealyujylqVOlBQukzZtNHSI72/TV+v3mmJx5pjlWn31m9nfWLFM2lJebPjWPxwQIe+UVc97V2Fl+XvitCYy0/WNT/4jLMmVSxUZz/7nj8dLBz0jbPpTW/UfK/cyUqbHtTd2rcrPpc+hzpdT3an31lSm7Zs0ywckiERPoorLSXBt//at5WMUu0+bYJpD8pjfMd2SMqu5/jDXtwdxPpbjO0uhXpB/uNn2UHU+QMg41k41zZpnfpWK9lHWc/Ie9oS82fqFP13+qNUVrNKT9EFUEK7S+ZL0GZgzUcT2P08GdDpbH1YzBIXbEtLlLvpdcsSaf9CZLgUIpXGru41teVWReqClTEzV7tqlHjx1r+g0Tq2+VVFSY8/Paa3f9lY1qTn6+s/bqt9dKW96R4rKlXpeb87dinfntC7+RXF7Zo17W4oK1+mD1B/pm2zdKjU1Vj9Qemr95vrokd9ExPY7R2F5jleBN0NyNczVz9Uwtz1uuvul9FeOO0dLcpeqb1lfH9z5eY7qPUZw3bjd39peppES6N7RExQAAVVpJREFU+GLTl+31mrKxf3+TZ0pmrEVJiQmk3ZwAboWFprz96itp2zaTF3btasrbQMCccyNGSPm9Hte1M6/VAVkH6IZRtW24tUVrdddnd6lvel/Nu2ye0hQwAc1yZpnzIrGHyfuDBSbIaWJPBQ+erkef7amZM813Hn64GWcVDeBWXm7Kg0mTdkhsU+dv2G+CHOfMMtdvymApJlOSJW19x+RP/f6fvi6/rqb8jYkxY1fatzevo/cKzjnH5KUNvrOx7/Vvk1Y9LW151+xb9MEBwULTp5Z+qHTYNGnzW9KGaaZM9KaY68flq35whUfqeo62ZT2khx4yAZfz883v0Llz7f2OigpTXzjlFOGX7ufWz4Mlpq69/WOTPyf1M325TkTa9pEpF4dPNQ9T2fS66bPPPsH0LwbypdKVJkC4L13OsZ/r1ff767//NffYOneWBg+ufZhSeblpizz2mPTSS6at8d13pi+3Tx9zTUfHhXXvLt177x48Tvhlau5gg7J15vx2Iqb/351gAvBGAqa8cWwpsY8ULjHXhMsjxWaZvNcOmLZouEKSZcZP7sH7pq+/btos69aZetxpp5ng0x5Pbdu8Y0dpWNyT0k9Pmr7svn+UUgaa+2H+baY/KlwpZ9gDqog7VMGgqf/FxdUP2Brl9TavzP9ViQTNb+3Y5ne3ogHI6uSZLp/k2oMzNOywaec64eptV59X1Q/Ik2TaQp492KnhOOa+aVWO2Xa07ROpPs9DJWa9uE7Sd5Ok7R+adXpcbJaVrTb3lIq/M/drh9xt7rGVrZK6ni11PsMEEi9YZO5RVWyQkvtKPX9r2oNlP0lZ40w/p2ObNk3ZanMud5rQvD5qx5HyvzLf6fKZa8GTaK7RcIW51yWXaRczfgw7Y0dMcORAnhmzEN/VXA/hctMfESqRLI8iKQepwu9RJGLyTp+vNshmXTExrbMb/pBfm0o3aXPpZkXsiNLj05VTnqOkmCR1Se5SM/Zo3uZ5emflO/p2+7fqmNhRnZI6ad7meeqe2l3H9z5ex/c+XnGeOM3fPF+z183WmqI16pfeTxEnotWFq9U3va+O6XGMDul0iBzH0Yr8Ffoh9wflVeSpV1ov5VfmqzJUqd5pvTWk/RBlJ2bJ+v5OadMMk9/0+p1p6/m3mf6XggVmBw560vR9FH1rxm1kHmHGllRuMvev/Zslb4pys/6smTNNeZmUZNpgqan174l5PKY+uWCB6ffu2FHq3dv0A7pcteslJ5t6KvYe2zb1ets2f7tcDa8Zl4uJj2iGUFn1fVfHlPeyTJ3eiZhlcsyYl+b0tQK7YNvmIRHRCdrR8e07tp2idYFdCQbNeOxIxJRR0Qf2RR9CFN22Kcsche2wApGA3JZbEScit+VWjCdGLsslxzF9/4GASWdysslD6977lUx9ZH9v64XDpq8zGDT7Er0Ht+Mxj2vuLYCKjaZtEvGbMa3eZJOHRCrNfTM7bNoskSoz5kyS4ruZ+mHNvMnqAUzJ/ZvVxggGzX2rQMD8vhkZ9edQSOY3S2yN5oodMccjVGTadHHZpg0XrjTHKFxu+p9TBjer/btunXko56ZNZnzh0KGmrubxmHM1WvcqLDQPFNy82dxD7dfPrBd9iGVVlbnHEAqZelwwaMZJJSXV/v7RIAqpqbXj7/HLEf19o/XH6PVS97qxrLZdf/SH/FqyfYkWbV2kLaVbNCBzgAr9hSqoLFD/jP4a2XmkerXrrdWrXNq82eQR3bvXtmui80DCYTNmJ3oPb6ciQdMPYgdNXSn68LFIVe0DtVwxe3TsNtoIxzb5eSDf9GXEdTbjR8KV1X0apZLllpMySDn+Qi3LXabVhasV44lRh4QOWlO0Rulx6RqQOUD9M/pr9Y+xmjrVPMQvM1M6+WQz5sLrrc2n27WTxp8Q0qrCVfoh9wdtL9+ubindVBGqUKG/UD3b9dTg9oPVJbmLrPLVpu1vuarL1fjaeffRcjVloGx3nMoCZSr0Fypsh5UUk6TSQKli3DFqF9dOSb4kWeFyM5/Ev82UWwndzD4H8k17IVxm7rG2P6p5xy7vS/OgxECe1P4YMwbFDpgxGOWrzbXT5Yzq8Ta7+BkcM8YmHDavo/XEuvWxusvxy7JggbR4sXnY+9ChtXMJPR5zTgQCUreuttKdebXjopL6mLw6XG7+BYtM3Sv9UCmw3Vy/nsQ6MSsqTR5vByV3jHLLO2vhQlNfSk0191bj42vLx3DYnG95edIHH0gbNph619Chpn8s2o8WCJh5N5GIqc/5/WYsXXq6ue7rlkmpqeYBRDk5ZlnPnqYeG42HY9tmOx07tu1yujlCIdMmjETMvkTbhHVvsVtW6/UDm4bfDvet6rKs6ntbzd+cs4vNtUr7MlRuxvDYATOH0JciyWXacBG/yae9ySb/bob8ynx9svYTzd04VzkVORrZaaRW5q+UP+zXiOwRGttzrPqkDtSf/2xp5kxzrp93Xu0DJS3LXCPFxdL5E22t93+nmatn6uttXyvJl6Teab01b/M8dUrqZMa29RxbM59oj3Acczyqck1iomV+tFwNVQ8ST+xtlu/HbNvkqcGg2dVo30e0PSiZ//dqPIKdjS9d+y/z0ENZ5l5nbHvzuwQLzP1Pl08aOKn+nKJGlEpKkVRSUqLk6KC3ppLzcwO47Wl9+/ZVz549NXPmzHrLt23bpuzsbN1///2a1GDknuHz+fTb3/5Wf/vb3+otnzdvnkaPHq1XXnlF559/fqOfnTx5su6+++4Gy8ePP14eT5xs2yPJkuNYkpzqzDsilyvYrJOlfUKlhmflKT3er00lSSqqipHLkhK8IaXEBuR12VpdmKIV+c27uHNzD1RxcW8Fg8lKSVmrmJgiuVxhmSceW5JcSk5ZrUBijooTiuX3+WXJUnwgXmWxZfLYHiVUJSi1MlVxoTj97513dvmdJxx/rvz+TIXD8XK5AvL5ymVZ4XqFmNsdkON45fenKRKJk9dbLo/HL8uK1Bw3x7Hk9ZbrqB7r1DfdVNx/KminipBHqbFBxXtDSo+rUiDi1vuruqs8uOseGpflyOOKyG1JEUeyHdPZ6bIcuSxzituOpZDtrvMZWx6XI7dljlnYthSyXdXHTzusZ8ttOXJkKRRxKeLUL73M0+A9chy3nOr3LMuWyxWSy2XvMv3R74n1ROS2bIXt2u9wW44sy5ElR2HbpUDEXZMelyXZ0cyrel3J7EfYdlUfF7t6uVMns7MUcaSQ7VLQipjvsd1yqXa/bMtWpPo9j+2RpZbnitHjYtteuVxNXy9mPZ9s2y2XKyS3OyxHjsIu04vudtxy1Tnmdd9z2S7Z1cd4x3TashVx1e6DS5LbZX53S3WzPvNXxK5/jkiquTZOOfnkestDoQQFAsmy7Ri53X55PAFJkXrbdLur5PEEG2xrx+3ZsrUlbYtWZ61WbChWGaUZSq5KVn5SvvKT8uUNe9V3W1/F5QzRihUXqbIyS7GxherS5RPFxBTLsuya42hZjpLSl6s4vlil8aUKeAKKD8bLsRz5vX7FhGKUWpmq5MpkeRzPLtO2p0UiHgUC6QqHY2RZtrzeSllWWKr5Pazq/EKqqspQOBwrtzsgr7dCLlf0+Jrz3O2uktdbuct9cBxLa9eeqry8YQoGU5SVtUDx8dvldgdlWbZs26VIJE7t2i3X6tXnqLy8kzyeSnXt+rF8vnJJtizLqc7/pcSOX2tp16UqSihSdlG2kv2moK30VWpL2hbFhmI1dMNQJVfVL4CbOpdSYwNK8gXlshyVB70K2y5z3bocxbgjsh0przJewciuW0K27VIgkKpIxPT41R7f+mZ+OG2X25Kko468RoWFg1RVla64uFwlJGyXyxVU9PdyHJfi4/O0bduhKigYqqqqdurceY7i4vLkclV3GsqS47iVkrZCq3p/qS1pW9SxqKOSqmonuhckFqggsUB9tvdR75zejR63HY9dXlKevun5jbxhr4avHy6XbfII22VrSfclCnqCOmjtQcosy9zltiRpa7utWpG9QjHhGLUvaa/4YLwCnoDyk/NVEl+i3tt7a0BhJ503aI36pBcrvzJOS3My5A+5NSCzSNlJFeqeWqrKkEfXzTxSdp08q6nfPj8pX1/3/Fq+sE8DNg+oyYMjVkTLuiyTYzk6ZNUhSvWn7nIfHDlan7leP3X8SSmVKcooy5Dbdsu2bBUkFagwsVC9cnrpwKIuumjoSnVLKdPaohQtzUlXIOJR/4xCZSVWKjupQuVBr+6Yc7CKEotUkFggv8+v2FCsvBGvSmNLFROOUbuKdkovS5c34lXEFVHEFZFjOXLZLjmWI8dyZDmW3LZbbtstS1adcrdhmWQ7Ush2663/vatdOe2Uk5QWV6VYT0Rh26WqsEcRW/K5zXXjtmyFbJe2FHVUQcFg+f3p8ngCSkjYIrc7IKv6+00+4lek/TIt7bZUIU9I2YXZJs+Uo9L4Um1tt1WZpZkavGmwYsK1rfSd/Q7bUrdpddZquRyXMkoz1K6inQqSClSQVCCX7VLv7b3VpSJd/TOKlRpbpYqgVwX+WIVtl5J8IcV4wor1RFQW8Gnp9g4KhZJk2z5ZVkRud1V1nm/SL5n6qOWtVMAbUMATkO2y5Qv7zO9iReSxPYoNxcoX9smSJUumbuBx1f8dHFmmrhRxyXbcsu1oncaSuZbrt2PC4Rht3XqEKio6SbLVrt0qeb1ldcokl1yuoGI6z9e3Pb5V0BNU1/yucleXsxFXRBszNiomFKMD1x2omPIO2rBhvIqLe6uqKkOJiZvl9ZbXbM+23crKWijHsbRt22EqL++kuLh8JSZuqsnPHceS43jUp/ssXT36C3VJNuf511vbKxDxqHdasTLj/cpOKldV2KMHvhwh26ndqaau1SpPlTZlbNLWdlsVF4xTVnGWIq6IclNyFfAE1LmwszoXdFas7a2udzr1tmvVOXZh26quL0Z/v+j5WJ9jRerVYerVb+rU0bx2/aAJdete5pwxda+wy9StXI5Lbqd+eVL3Pbv6eO+4XlN1rwb1xx3qXvXrj4587ohclhSMuOsdo91Rv/4YlssVaqKe6VIk4pVkzsna+kT0fUu27a0+f+rW4yM7tHVc1fV9V/V6TvUxDst2hWRbtixZ8tj1BxU1duzrfqfkkuNY1edCRC53SLY71Ojv1dTxrVvnj9ZZQralsO1SOByv9euPV1FRf4XD8WrX7kfFxBSZvKN6XY8noLS0H1RQMERVVenyesuVmLhVbndAte1LS15vmRITtzbr9ylKKNLG9I0qiS9Rkj9JWcVZyk/OV3F8seKD8eqS30UZZRkqTCzUtnbbVBZbpvhgvFIrU5WXlKewO6z0snR1LK5fZ9jTmlsHbmq9gCeguf3nKuQO6aC1BymtovZG6fLOy2vqPQdsOKDR7e2q3r2z9XqnFevIbls0MLNQKTEBxXvDCkbcKvTHaHNpomYs76NNpUkNttX09zryuux6behouzFiN2wDuyxbMW6TFwQirnp1n/rrmTptxLEUjDRsb0e/2+Oy5XXZijiuna7nc9s1ZX24ukyxLVuFiYXKTc5VRUyFvBGv4oPxKkooUkwoRu3K26l9aXs5lqOlXZeqNL5U2YXZNedWRUyFtqRtUUJVgoZuHKq+PqlHaqnivWFtLUtQRcgjr8u015NjTPtuZUGq8itrJ100dXwjVkRLui9RbkquOhd0VpK/9jfJTclVQWKBeuX0Ut/tfevt6c89R8pjyrUxY6PykvOUUJWg7OJslcWWqSCpQJLUNb+rOhZ1rMljavs9VJM3RBwpbDf8bVt63exsHZMfuuU4Jn+t7UeJNPmZptXWcVyWKYvD1X0jOyufIlakpvxrbrm695i6crQ9GO2j2LHMdFu23DV9PaYeF7YtRWyXHFnVN2Q8sm23TDkj1dYdHVlWWEWp27S4+2J5Ih51za8NZB92h7Wu/TolViVqxNoRig3VjiZp6re35KhPerHS46oUti3lV8YpGHEp3huWzx2pyZ++z02vOZ/q98mp5veKOJYa9suZfMRR03WIun13pl/MbM+RavuWdqi31Ot32uE9KTq4yCe3O1xTJ42eL42V+XXfk6OaNlHdvheptm5gOZY2ZG7QT9k/KbUiVX231eYDlb5KLeuyTL6wT6NWjtLKTiu1rd02ZRdmK6u4NhBVYWKh1rdfr7TyNB249kAt7rFYBUkF6prfVQlVCTXr5aTmqDChUH239VWfvJ7yuGxZ1XVWp059ItrOsB3poI55OqHPerWLDeh/K3sotyJe8d6wOiZVqGe7ErktR4u2ttdn67s0OG7Rek70mql7rHe8Buu+F29ZOjArTx0S/SoPerW93PSFRMu5eG9IZUGfvtqU3eAcaB5zLgUj7pr93tvq5yNOTdul7vvmenVJirYTnOr7DuF6/cr1r/2m+7J/bh/fzvLMsBU253b1NdAxsVxjum/R0A75ahcXkNcVqbmWcyvi9fmGTpq9rotGZOdoZKft6p1WLLfLqbmW470h5VXE6a2VPfV1bjuznzu5Vi3bkuNyGk1b3XRbjlUvnXXt7DqWHMV6Ig36/0MuM/GysfZU9L0d+68l85t5XHaDcy5iRRR2h2vbX7ZLEVdElkw/iifiaZAnSZLPbY6D6SNs+hw255ynTh+ItDF9o5Z3Xq4kf5I6FXaqWbfKV6V1meuUWpmqg9YcpIV9Fqosrkz9tvZT17za8mFzxmat6LRCSf4kjV45utH07cqeqAPvuM6O6zmOpaKi/qqo6KBIJEaJiVvl8VTIsur277qUlLSx+n7azrfn9/q1otMK5SXnKas4S2nlabJkqSihSNtTtyulMkWDNg/SyBS/Du+6VelxVfo+N0MFlbGKqa47ZieVS5I+WdtFKwvSdvmdZj9U3XdQ2zcTzR8kVecnVQ3qJY5jKRKJqc4/GvYJ7x2m/rJje2FHtf0luz53IhGv3O7aCc8Bd0Db0rZpW+o2WY6lzNJM2S5b+Un5shxLHYs6Krs4W96IqcsFAinauvVwbd16uCoqOlb3YecqI2OJevR4T7GxRYpEfNqy5Sjl5w9RcXEfBYNJsixbsbEFSk1drf79X1JMTElNGpqTt1py5HbZ8lb3uYVtV6P5tFTbL2D6NGrvneUl5Wl55+WSpA7FHZQQSFDEHVFBYoHykvPUPa+7em3rpXn95qkitkIDNw1Ut4JuNdvdmL5Ry7osU0JVgg5efbC+7P+lQu6QRqwdoZTKlJr1lnderm3ttqlzQWedUdFZp/Vfq45JFZq7IVubSpPktmz1TitR99RSJfpCWp6XpsfXZGlx98WSpM4FnWvyvKAnqE3pm5TsT9bw9cNr6o8uy65uY0bbGKbOF3FcCtv163y27aqpv5r7743389QvV2253aF65WpL2La7ur7srumXsaxQvWtnZ3V/R47yk/K1KX2TKmMqlexPVkZZhranbFdFbIVSK1LVpaCLUitTG3wy2j8WCDddJ3Fbtnxuu7oO3HSbO1r3Mvl+w36vuiKR+nW0n8PnNvf9d14mmXK1sXuvO2qs7No95vi6LXPcGs+bHHlcpg9EUk3bQbIa1HXqqtvHF/AGlJucq6KEIoU8IbWraKfy2HJFXBElVCWofWl7tStvV1Ne1tbjdt3mjtYPI5Gff57vSdH7Cu7qNnfErr2ebTm7bHNbsmQ5VrP6UB3LUXlsuSpiKhR2hRUXilPYFVbYHZYv7FNiVaLiA/H16iM/t48vLa5Kp/Zbo15pJdpSmqhVhakKRlzqmFipdnFVSvKFtL44WS9+PUoFBUPl92dU96Fuqe5Dre1L83rLlJS0ZXcOc7M0N89sbt2r/niOcE0Z/HPqwD63vZNrMLofbtm2T5JdnS/t/rVvRfMbZ+d1ZVNX8qmpewUtZcYnObtoY9bv02g6bXXz89ryqDSuVJvTNqsgqUDxgXh1KO6g4sRiFccXKy4Yp84FnZVZmtms68HjsjW250YNy8pTrCeiNYUpqgx5FHFc6pdepG6ppdpUkqQ7Fg7Sd92+U1lcmToXdFZ80PSB+r1+bU7frLhgnIatH6YhcbYGZRYqKSaodUUpKg14FeOJKM4TVnq8CYy9eFt7HdZ1qw7plKOqsFuz1nZVXkWcUmMDSo0NqG96kSxLeuX7vvoxElZ+cr7K4sokScmVySpOKJbH9ii5MlmZpZlKDNSfGbmvxriEQnGy7RjZtqtOeRu9d+JIclXnBdrF/T9rr+fp0X40U741Vf7W9rPvvD/e5Dm2HSMpUl0mNX6t2rZbkYivXj7SXId23qYR2bmK94b0fU6GiqtilOgLKtEXUqfkCkVsS2/+2EvbyxN2ua3kmIAmDlmp/hlF2liSpMXbMlUW9KlzcrnS4qqUGe9XgT9Wz307uN7nmsozy2LLtLLjShUnFCuzNFOZpZkKu8PKTc5VYVKhuuR3Ua+cXprQfZtGZOfI57a1aEsHlQR86pBQqcwEvw7plKPKkEdPLhqi6XFbtSVti7KKspTir62fFyQWKD8pXz1ze6rftn6Npm3H9HVPLdFJfdarS0qZfshN19ayRLktW52TyzW4fYESfGHN35ylFXlpGttrozLi/Zq7IVvbyxMU44koNTagnu1K5HXZ+t/KHpr57TnKzT1Qfn+mMjOXKD4+p7p8id6Ddys9Y7GKs1ZqXeY62S5baeVpSi9L1/bU7SpOKFZiVaJ65Paod69sT9mxvbXj+Mew7ZbtmHGT7jpjUupuIeJIoYhbYctW2B2uud/udtymX6Z6fIvH9jQo35qjbr989H5Hw7qcU9Mv7tqhL1uy6rRTXDJj1RrmGZYrrPK4UhUlFMkf45fLdikuGKeyuDJ5Ih4l+ZPUrqKd4sIxcrvq9/maI6Gaa9l2LFV4AtqcvlnbUrcpNhSrrOIsBT1B5SXnybZsdS7srOzCbHWIiSg1tkpuy1FpIEbBiKv6N7EV543IcaStZQl67a0PdnmsdrzWmjrPM+L9Oqhjjton+LW5NFEF/jhJjpJ8Zry1z21rXVGyvs9Nl6e6/Wk79ffV47LrHGf3Lr/TkqPeacXKiK9SyHYpvzJWoYhbcd6wYtzhOvc70uSyouN6zZjTKFedMb2BSP16757oH9vZ2KvoeR6tmzRWjw83ct93x3FEEceqtx3DqTNmue54bNOuqfJU1YwHCHqCSqlMkd/nV9gdVnwgXull6WpXEW0n1X5f9Jys7Teovr/juHYoVxtyXBGVxpWqOL5YAW9AvrBPnohHFbEV8oV9SvInKbUyVSF3SGs6rNH21O1KL0tXh5IOsi1bOak5KkooUpeCLuqR00NlOSOUnz9UVVXpSkpar/j4nHp1Vds2/Yr5+cNUVNRfwWCy0tOXKTY2v079wOQFGRlL5PX6G/ymO/6uzRm3L0kPXHmQxvfeoOSYoP63sqdyK+KU4A0pK7FSvdJKZEmavzlLH+Yma3vqdhUmFsqxHGWUZqgsrkx+n19JVWbcRruydqqIq1Becp5K40rlWI5SKlJUnFAst+1Wkj9J7Uvby1PUTT/9NFFlZZ3l85WpU6fP5fWWVd+3cGr6U1LbL1ZOSo5yUnIU8AaUWpkqt+1WQWKBvGGv2pe2V4fiDoqJ1J8d19R5HvAEVBZr0hxxRcwYTm9AjhzFhGKUVJWkuGBcnbGIpr3d2Bi4QNhVfc/K1MVNvtowb33v/Teb9Ts0t85ZUtJdlZVZCofjFR+fI48nOvbZ5MmOYykufrvkq5DU8L5IY21pqeG97N1tczc2Hqnp+6ZN3YOv37+34/3r6H2scPX966i6ZV3t2Kv6cy1M36mn+v1oXtD4vbOfKxyO1ebNR6u0tJscx6W0tB/l85UqOmZc1ffe22XP1/rM9dqYsVEplSnqUNJBnoin5nrLKslSz5yeOjKjTKf0W6vU2IBmre2qTSWJ8rptZcb71bNdiWI8EX2+oZO6pZTpwI65ijiW3vuph0oDPmXE+5UWV6X+GUUKRNx6+8eeWlOUWpPWpts/pg3gdtWOF1P19WHJlEsRx1Ig7KtzXJ3qcWPm8/VZNb+RWaf23K1Zw3LkjylXQVKBSuJKFHaHlVqZqvLYctmylRBIUEZZhpL9yfX6iXY2h6IkvkSFiYXy+/zyRryKCcWoLK5M3rBXKf4UpZWn6cM3P2rW7zp+3EQFAu0UicTI46msnsdk15vv5PFUyeOp2uW2LDnKiPcrwRdW2LZUEfQq4ljyuSPyusz1EbYtbStPUFPtqt3h96fVzNny+Url9VZU/xa17VCvt7ReWdMUx3HJ789QKBRf8zm3u/68DROYoFyBQIoiEZ8sy5HHU1kznyP6vZZly+UrV2VMpSp9lYq4I/KFfHIsRyF3SJ6IRwnBBMUF4uSxrOo6Wm05HxWtowUjLgXDvjr5dO1YzfpjpOsu//nCVliVsWYfwu6wYkOxirgiCrlC8ka8SggkNOh/3On2XGEFPUGTj1qSJ+JR2B02bYyIW76Ir2bctFPnmjOjuZ2a15Jq5jqZPNdVU7d1WeZ8tCwzBjkc8dQba1VbxtXmz5ZlKxhMUDicKNv2yOOprG7n1bYTHMfMNanbT9bUtepzR9Q1pUzJMUFVBD0qDcTIdizFeUOKcdvyuCKqCPm0rSxeqdX1dX/YU93vIHldtrxuM1alPOhVWXDXY/IlKckXVLzXlFGVIbdsx1UzH8zjsmU7UmFlrMLVY4mjY95r65C1x9zlCsux7JrysOZ3qB7fYzlW9Zgfd3WeaY5nbV5Yy7JsyRWW7bJrytboOIW65a3LcTWyPXuHtFlyuUJyrIjZXnXaa8p3x6rZliNH/hi/KmIqaq47t+1WlbdKHtuj+GC84qvi5XJcCnqDCnqCZi5BxCNZZuy+23bLF/bJF/YpGEhWMJgs2/bJ46nc4T6NyW88ngq99/4b2pVTTj65pv+67r5GgyVEud3BJrfRUO1Yurr3HGv7A0x7ZFfzJsO2W2HHMfWq6nFMdceVRI+xVV1Xq1sXqd8PaLg8flV5qxTwBRR2heWJmHsjIXdIbtut2FCsYkOxevd/7zXruLVE3XtOjdWBd9bX15jaubA7H7dUd85s3XHv5h5FuPq3cVX3i5hr0anJ+50W3fOKRDw1cwnNnMPyBnMJLcuWz1fWrH0Mu8Ly+/wKeAOKuCKKCcUo5A7JsRx5I17FBs3vtTtzZne2D4FAmiKRGEn2DvP6astVX3WbYJfbsyKmrKkeaxSdw+VYjilrwj7Tl149F0myVBU2Y7Oi7Xiv25btWCr0+xTwhBTwBGrKK4/tUdATlMt2yRf2KSYUI5/cclfXoezq6yl6PUdLMMexFIr46tQfo+Msd8wzJdsVqikvHcuRJ+JRxF07n9kb9ta0eZwdPm++3XzrnvydouqO56w71rOxec11xzz/nPNcqn8923V22RxjmXp8xIwpix63aL9ltHzw2KYccCxHQXdQIU+o/jkixxzfiFfeiFcpMUEleMNyJHOPyLbkdZv80+c25Wp+ZdwuxwBJdcd/186/qV9nM3nyu++93azjceIJZyscjqsz9iEaJ0GKxiNwuwMKe/2q8lUp6AnKlq2YcIyC1XO3fWGf4oJx8kV2fDBt4+eNx2X6ymPcEQUiHgXCJg/1Vt9DcVmOqsIeFQW8CnpMuWq7bHkiHjmW06Bcbcn5ucs+jYilcDPuwdftA6gtw6J91NF8OqSIq/GxEI2d582JRxCy6teBouzqupblWHI7Zi6pJZMHReeo1N1WdI5K9LqvV0erc83X3f/Gtlc7Br15dfjacc7mN4/OrdpxHcsVku0216Dtqq2X1bun0MhYz6b6vTZuPE5bthypQCBVHTt+pbS05dX31Zya3zA+PlcFBYNVWDhQVVXtlJ6+rHqedu39ScdxKS19qYoz1mlTxiZVeauUWpGqtPI0bU/drvLYcqWVp6lLQZd696N2ljaPy1aMOyy3y1Eo4lbEMb+Cq/q+i2Tud7ssR3GecPX14a6pi0XLGseRyoI+hWrujTc1DsDZy3Mydq12Xl/dfipV14NM26luH3tTfdnRexHumpgVdcfImzw+WH2voO51WndMqGU59cZ8Nja2vGHdq/a+VPS8qD2utWVSU3W06BzGvTE/ZldRi8z70b6/pu6tS7IiCviqVB5broDX3I+PDcbWuz+WUJUgXzim3rGo3yZUzbbd7uaPqa1fxjf7Yw13QY687trYN5Hq+S3Rdr7LMjlfIOypHs/irk5/pJHvjd6r8Kq6tlBdX69b9zDnVHP7UKNj76PzhBvMLbbdNcsi1W1WOdXr1ckXo/EDmpq3blJv+owrq1Kr+73i5Hb75fNF+71q28gej19WTEmL+rLrXjdO9frReb+OFW7W2DaP7a4zn7LuMZWiMWnqzr9pjsbu65n01sZUsJ3aunZraap86J1WrOykcrksR9vKEhWIuBXrCSvGHVFSTFAR26Ul2zNUEYyp1x+wYzwCE4OqeflNdHxC3XsIdfOIaL92S8ea1Y1FVTuG08RTaM5vGgqFNHPmzP03gFuvXr30wQf1b+ZHA7j95S9/0S233NLoZ30+ny677DI988wz9ZZHA7hNmzZN5513XqOfDQQCCgQCNX+XlpaqS5cuzTqIALAnBMIB/WvxvzRnwxz1SeujtcVrNXHwRJ3Ut/Yx88GgeXpFUZF5Umf0CSzR6MjJydKgQa24E/uBSMREVY5U9+F6PLUR0bdulVauNE9/cblMlHmXq/YJIZI0ZozkOI7+8c0/dPOsmzW6y2h1Se6iF5a8oFsOv0W3H3m7fO4WhFhvW8XwbvnuO+mLL8y52aGDeYpK9ElAjmOidh96qHmq+ZQvpui22bfpuJ7H6eGxD2viGxO1rmidnj/1eZ096OyGG9/Jk87vmXOP7vrsLsW4Y3TFQVdIkv7xzT8UiAR0z5h7dMdRdzR7W5JU5C/SHZ/eoX8t/pfOG3ye3vzxTR3b41hNHTdV3VK7mSjPa5+XCr82UXXTRkjeJPMEHzmSY5sI0B2Obvx7G/nOl5a+pN+8+RvFemL1yPhH5A/5dfOsm2XJ0tvnva0T+pzQon1YvG2xLnrzIhVVFenuMXdryhdT5MjRi6e9qMO7Hm4+k/+lVPyDiV6d0L36aR3VFWMnYvahGU8c+CXxh/y667O79Oj8R/X7g36vFfkrtGT7Ej06/lH9ZthvGn5gF7+D7diasXyGPlz9obqldtPGko06vf/p9fLzX5OSqhL99n+/1ds/vq0px02R7dia9MkknTngTD13ynNKjknWmDHSnDlm/YULpYMPbrgdx5HGjZM++cQ83eD116URI0xe7fGYcjE31zw5JMFZK5UsN0/ZikkzT+KuuRZtKSZTaje0/hfs4in3oUhIH6/9WMVVxXIcRx0SO+iYHsfI1YIo98C+9v330u9+Jy1aJI0cKU2aZJ76FB9f++TBigrpiCP2zvcXVBZo7sa5sh1TkTo4+2B1SenSYL1gJKgtpWZio8flaXSdVrWTfP/f3/1bF791sSSpS3IXeVweFVUVqbiqWJnxmVp25TJlJmTW+8yu8ptdrrfmn9LC35n3B98ldZtoyu9QqfRWdVCb0dOkbuc13FZzvvcXzHZsPb7gcd0++3aN7z1ecZ44vb7idU0+arJuGH2DPLv7ZNedHN+wHdYV71yh55c8r9P7n667x9ytC9+8UN/nfK+p46bq+lHXN9xGU1r421WGKjVr7SxVhavkOI76pvfV8I7DW7QN/HJ9n/O9Tnn1FBX6C/Xa2a9p3qZ5mjxnsk7ue7JePuNlJcXsEECTfGSvuPCNC/Xy9y+rW0o3/d+I/9OG4g362zd/U5wnTp9e/KlGdh6pQDig418+Xp+t/0xHdjtSFw+7WO/+9K7e/PFNDW4/WJ9f8rnaxbVTIBzQRW9epNeWv6YLhlygG0bdoPNfP1+rC1fr6ZOermk3N4tjS+VrzNP0QmWm7Wt5VHMnzYlI7YZXPx0Jv0r586VPxpinQPW7XhpwsxSTIYVKpC/Pk3JmSV3OlpL7ScvuNU85PvxNKes4qXKTVLZK+uIMU3854EFpwE2tvUe/eK98/4oufftSZSVmafpZ0/Wfpf/RU4ue0vG9j9eMs2cowZegr7d+rUOfO1QRJ6KM+AzFeeLkD/uVX5kvt+XWl7/9UiM7j9y7CW1uXXkfeu+n93Tdh9epXWw7Jcck68f8H/Xg2Ac1ccjElm1oL9T3fm1+KvhJRf4iSVJmQqZ6tutZ7/1PPpHOPtvcP2nMM89Ixx0njR0rrV9v7q+cfrrpX4qPN0+v/Phj6V//kg46qM4H92E9qDJUqfvn3q9H5j2iswedrdnrZqt7anc9ecKTGpY1TJL0/qr3ddIrJ8nr8irRVxvIpDxYrpAd0v/O+59O7ndyvfZqv/R+8rl92la+TfmV+eqc3Fnf/+F7pXpjpfx5ptx3IlJcJ/MkZ8sMfpATkVIGSfGdtb18uya+PlHzNs/T0yc+re9yvtNjCx7THw/5ox4a95C5L/IrlFOeoyXbl5jBz5Zbh3Y+tGFdGsCeR7mKX5GqcJUWblmoUMQExhqYOVAdk5p4KnFT9Zb8BdInR5qnfA+fKvW9xrTzVz0tOWGz3PJI/a9X2A7rvs/v031z79PEIROV5EvSM18/oxtG3aB7jr5HMZ4WPpo6VC4FC6Vwmbmv7oQluSSX1zyJPLF7y7YHNEe40vRZ2GHTz+VymzEe7niphfcB5m6Yq6nzpiorMUs5FTlqH99etx15m7qmVAc+3/iatPU904fW/kgptkP1k7ODqpnk2/NSyeXV3Z/drclzJuu4nsfpseMf00VvXqSlOUv11IlPNd5319Q1Xfy9tOoZqXS5lHGYlNTXrBssNnV4JyJljZXaDav9bPTJ5k6kehagW3LFSrtRj5+3aZ6+2vSVYj2xCtkhndTnJPVJ79Pi7aDtiNgRzd04V2WBMjly1Cmpkw7KPmjXH9wTWuPeA/c7fpXWFq3VkwuflMtyyR/yKy0uTVcfcrU6JHbYO1+4J9ssjiNVrJf8W0yfujve5ON1+2/aHSR5a/uJCv2FNfXH9Pj03boPvny59OOPZixtSoqUllZ/rLLbLR1dZ5hkZahSpYFSSVKCN4H+EfzilFSV6Llvn9P28u2K95pg15cfeHn9MU52RAoVm/tl0bqXZNpb7lgpLluSY+6TVeWaMbyepOrrWabuKsfUKwEAAAAAwC/K1q1STo5UXGz+9tWZgm7bUq9eUscmbgM3ZWPJRn23/TtZliW35dYR3Y6oN54MAAD8fKWlpUpJSdm7AdweeeQR3X///Vq6dKmys7MbvL9161YNGzZMd9xxh/74xz82e7ujRo1SJBLRwoUL6y1ftmyZBg8erL///e+64orGJ5t17NhRRxxxhKZPn15v+XvvvacJEyboww8/1Lhx45qVjpYcRADAr1NeRZ42lW6SJGXGZ7a9YCNt1Pur3tdf5/9VbpdbLsul+4+5v2byWQM7GTTnOI7OnH6m3vzxTd0z5h5ZlqU7Pr1DZww4QzPOniFrx4FQLRiA5zhOw8/vJU8ufFLXfHCNxvcar5JAiRZuWahXznhF5w4+t+HKzdiHQDig91e9r4gTkSVL43uPp+OlmTYUb1Chv1CS1C21m9Li9vzToX/NXljyglbmr5Qk9c/or4sPuLjmvY0bpUcekb7+WiopMQHc2rc3gdoCAamqSjrlFDPwLy9P+uknadMmE7StqspcDrGxUmqqmYibQhwJoJ5QyARazc8310wwaAbTJiSYa61bt9ZOYRvUggHVJ087We/+9K4mHzVZtx5xq4b9bZhW5K/Q9LOm7zxA7e4GcHuzo1S1XcoaLx090yz74V5p7b+kinXmbwK47VROeY62lW+TJHVI6ND0hMfmasbxvWP2Hbr/i/uVlZilQn+hXjj1hcbre8A+lF+Zrz+89wflV+YrGAnq6O5H656j72k8QC35yF4RCAd03H+O0xcbv9DTJz6tZ799Vku2L9H0s6frrIFn1axXGijVUS8cpaU5S3XPmHt039z71D6hvb787ZfqlNypZj3bsXXdzOv0xMIn1DGxo4qrijXtzGk6tf+prbF7+CVb9H/S6r9LsqSzKyRPnFS0VFp8Q+067Y8ygdxy50iJvaSTVpoJ0wWLpNzP6qw3RkpvJIo39rhP1n6i0/97upJikrS1bKsuHnaxnjvluXqT9ybNmqQpX07RmQPO1IxzZuj818/Xqz+8qhtH3aiHxj209xPZBgO4Yf+Ql2cGsZWVmYmkN90kXXaZafOuWSO98oo0ZIj08ssmSJskvfuudFIjz1uwbbONGq1QDwrb4Zpg6I0FRou2Q68ccaVuP/J2/eWLv+iJhU/oxD4n6r2JtU9zP3P6mXpjxRu67YjbNOnwSRr09CBtLNmoDy/8UGN7jW1xumzH1t+//ru2lm2VJI3sPFIT+k7Yzb0EAAB73M7qLYFCKW+uCRQQLpfccSbwRzToR+aRUubomtV/zP9Ra4vWSjIPLxnSYcg+2AHgl+/VH17VfXPvU5wnTiE7pIfHPqxjex7b+Mr0yQIAAAAAAAAAAAAAALSafRLAbdSoUYqLi9Ps2bObXGfs2LGqqKjQV1991eztXnHFFZo2bZqKiork8dROGnn11Vd1/vnn68svv9To0aMb/ey4ceO0adMmrVixot7yKVOmaNKkSdqyZUujweYaQwA3AABaSQsCppQHy3Xoc4fqx/wfJZmgUPMvn7/fBSz7xzf/0OJtiyVJR3Y7UucPOb+VUwS0vlBICoelmJgdJs0CQBuzrWybBj09SJWhSl049EL9c/E/dfbAszX97OmNf+DnBnD77ERp2wdSfFdp/NdSbKZkhyUnXLuOy1f7hN6622rO9wIA9qmCygId//Lx2lZmAkteO/Ja3XTYTQ3WyynP0Q0f3aBgJCjLsnTPmHvUL6Nfo9uMdvnvq8Dk+BUqWirNOsxM+u9xqTTgBimxt6mDBPKl0hVSQncTBGDBZVLe51LKIKnTKVJslqmnVOWa9UY8JcWkt/Ye/Wo4jiNHJo9oLGBnIBzQgf84UMvzluuGUTdo6ryp6pfeT0v+b4liPbF7P4EEcMNueugh6eabzesbbpAefrjhOiUlJvi/JHXpYh4o0CxtsD21pnCNBj09SG6XW3Mvnasjnz9SYTusH678Qb3Tetesl1+Zr0FPD1KRv0gn9jlRb698W1eOuFJPnfRUK6YeAAAAAAAAAAAAAAAAAAAAANq2fRLALT09XRdccIEef/zxJte57rrr9PLLLysvL6/Z2/3ggw904okn6tVXX9W5555bs/yEE07Q0qVLtXHjRrnd7kY/+8wzz+jKK6/U/PnzNXLkSElSOBzWAQccoMTERM2fP7/Z6SCAGwAA+4eSqhLlVuRKktontFdKbEorpwgAAPzavLT0JV32v8skSRnxGVry+yXKTMg0b+7p4Dn+HGnRH6St70nuWClrrBTXyQRIqdwkFS2WTt2wZ78TAABgR5VbpU0zpJzZkn+rFCwyy73JJnjb0HtM0DZJCpVJRd9KgQIpVCpZbsnXTkroZtZpJJAYWs+CzQt02L8OU8SJyGW5NPfSuRrdpfEHK+1xBHDDbho5Ulq40Lz+4Qdp0KCG6wSDUlqaVFEhJSZKBQWSz9eMjbfBAG6SdPvs23Xf3PuU5EtSWbBMkw6fpPuPvb/Beu+sfEc3fnyjJNN//uGFHyreG7+vkwsAAAAAAAAAAAAAAAAAAAAA+419EsAtLi5O1113nf7yl780uc4tt9yixx57TH6/v0XbHjdunL7++ms98MAD6t27t6ZNm6Znn31WL730ki644AJJ0mWXXaYXX3xRa9asUbdu3SRJgUBABx10kEpLSzVlyhS1b99eTz/9tN555x3NmjVLRx11VLPTQAA3AAAAAADQZoXKpIKFUlWuFCqWXD4ptoOU3F9K6t3aqQMAAMB+LBQJyZEjS5a8bu+++2ICuGE39eghrV9vXldWSnFxja93333S7beb12eeKT3xhNSxo/k7EpG++krq21fq0KHOh9poALfKUKVu+PAGheyQPC6Ppo6bqgRfQmsnCwAAAAAAAAAAAAAAAAAAAAD2ey2JPebZ3S/p1q2bvvrqq52uM2/ePHXu3LnF237jjTd022236c4771RhYaH69++vadOm6bzzzqtZJxKJKBKJqG78uZiYGH3yySe6+eabdc0116iyslIHHHCAPvjggxYFbwMAAAAAAGjTvElS1rGtnQoAAAD8Au2zoG11A2PtbHkbCpqFtqldu9oAbps3S336NL7epEnmdHrwQen116U33zQB3BITpU2bTPC3b77ZIYBbGxXvjdczE55p7WQAAAAAAAAAAAAAAAAAAAAAwK+a5Ti7N+vhxhtv1KOPPqpnn31Wv/3tbxu8/9xzz+n3v/+9rr32Wj3yyCM/O6H7Wkui4AEAAAAAAAAAAABogaYCuO2IAG7YhcmTpbvvNq/vvlu6886drx8KSd9+Ky1cKOXnS2631KmTdPDB0tChat65yXkJAAAAAAAAAAAAAAAAAAAAAL9ILYk9ttsB3PLy8jR8+HBt27ZNRx11lMaOHatOnTppy5Yt+uijj/T5558rOztb3377rTIzM3drR1oTAdwAAAAAAAAAAAAAoG3btEnq3VsKBqWYGOnBB6VLL5WSkqScHOmVV6QuXaSzzmrtlAIAAAAAAAAAAAAAAAAAAAAA2rp9EsBNklatWqULL7xQixYtMhuzLEU3d8ghh+ill15S7969d3fzrYoAbgAAAAAAAAAAAADQ9v33v9LFF0uBgPnb7ZZiY6WKCvP3M89I//d/rZc+AAAAAAAAAAAAAAAAAAAAAMD+oSWxxzw/54v69OmjBQsW6Ouvv9bChQtVXFys1NRUHXLIIRoxYsTP2TQAAAAAAAAAAAAAALt07rnSsGHSCy9Ir70mrVtngrdlZ0tjx0rHHdfaKQQAAAAAAAAAAAAAAAAAAAAA/NJYjuM4e2pj4XBY33//vSRp8ODB8nq9e2rT+1xLouABAAAAAAAAAAAAANqGcFiybcnna+2UAAAAAAAAAAAAAAAAAAAAAAD2Jy2JPeZqyYbXrVunf/3rX/rpp58avPfuu++qU6dOGjFihEaMGKGOHTtq+vTpLUs5AAAAAAAAAAAAAAA/g8dD8DYAAAAAAAAAAAAAAAAAAAAAwN7VogBuzz77rH73u98pJiam3vLVq1frnHPOUV5enrp27ar+/furqKhIF1xwgRYvXrxHEwwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAraVFAdy++OILDRs2TN26dau3/LHHHlNVVZWuuuoqrVu3TsuWLdNrr72mSCSiJ598co8mGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaS4sCuK1bt06DBg1qsHzmzJny+Xy6//77a5adccYZOuKIIzR37tyfn0oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaANaFMAtPz9fXbp0qbesuLhYa9as0ciRI5WUlFTvvQMOOEBbtmz5+akEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDagRQHcPB6PiouL6y1bvHixJGnEiBEN1k9MTNz9lAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAG9OiAG59+/bVJ598Um/ZRx99JMuyNHr06Abrb926VR07dvx5KQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACANqJFAdzOPPNMrVq1Sr///e+1dOlSvfHGG3rmmWeUmJio448/vsH6X375pXr37r3HEgsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAralFAdyuv/56DRkyRM8++6yGDx+us88+W6WlpbrzzjuVkJBQb92vv/5aq1ev1tixY/doggEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgtXhasnJcXJy+/PJLPfroo5o/f77S0tJ09tln65RTTmmw7rfffqtTTz210fcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYH9kOY7jtHYi2qLS0lKlpKSopKREycnJrZ0cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHtJS2KPufZRmgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgv0cANwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoJgK4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzEcANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJqJAG4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EwEcAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZiKAGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EwHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCZCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM1EADcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCYCuAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMxHADQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaydPaCWirHMeRJJWWlrZySgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsTdGYY9EYZDtDALcmlJWVSZK6dOnSyikBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsC+UlZUpJSVlp+tYTnPCvP0K2batrVu3KikpSZZlqbS0VF26dNGmTZuUnJzc2skDAAB1UE4DANB2UU4DANA2UUYDANB2UU4DANA2UUYDANB2UU4DANA2UUYDANB2UU4DANB2UU4DAND6HMdRWVmZsrOz5XK5drquZx+lab/jcrnUuXPnBsuTk5Op5AAA0EZRTgMA0HZRTgMA0DZRRgMA0HZRTgMA0DZRRgMA0HZRTgMA0DZRRgMA0HZRTgMA0HZRTgMA0LpSUlKatd7Ow7sBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoQwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmokAbs0UExOju+66SzExMa2dFAAAsAPKaQAA2i7KaQAA2ibKaAAA2i7KaQAA2ibKaAAA2i7KaQAA2ibKaAAA2i7KaQAA2i7KaQAA9i+W4zhOaycCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYHrtZOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsLwjgBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNRAA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgmArjtQnl5ua677jplZ2crNjZWBxxwgF599dXWThYAAL8qn332mSzLavTf/Pnz66377bff6rjjjlNiYqJSU1N1xhlnaO3ata2UcgAAflnKysp08803a9y4ccrMzJRlWZo8eXKj67akTH7iiSfUv39/xcTEqEePHrr77rsVCoX24p4AAPDL0twy+pJLLmm0bd2/f/9Gt0sZDQDAzzN79mz99re/Vf/+/ZWQkKBOnTrp1FNP1TfffNNgXdrRAADsW80tp2lLAwCwby1ZskQnnXSSunbtqri4OKWlpWnUqFF66aWXGqxLWxoAgH2rueU0bWkAAFrfc889J8uylJiY2OA92tMAALSupspp2tMAAOy/PK2dgLbujDPO0KJFizRlyhT17dtXr7zyis4//3zZtq2JEye2dvIAAPhVuf/++3X00UfXWzZ48OCa1z/++KPGjBmjAw44QNOnT1dVVZXuvPNOHXHEEVqyZIkyMzP3dZIBAPhFKSgo0D/+8Q8NGzZMp512mp577rlG12tJmXzffffpjjvu0C233KJx48Zp0aJFuv3227Vlyxb94x//2Fe7BgDAfq25ZbQkxcXFafbs2Q2W7YgyGgCAn++ZZ55RQUGBrr32Wg0cOFB5eXmaOnWqDj30UH344Yc65phjJNGOBgCgNTS3nJZoSwMAsC8VFxerS5cuOv/889WpUydVVFTo5Zdf1kUXXaT169fr9ttvl0RbGgCA1tDcclqiLQ0AQGvasmWLbrzxRmVnZ6ukpKTee7SnAQBoXTsrpyXa0wAA7K8sx3Gc1k5EW/X+++/rpJNOqgnaFjVu3DgtW7ZMGzdulNvtbsUUAgDw6/DZZ5/p6KOP1muvvaazzjqryfXOOeccffrpp1qzZo2Sk5MlSRs2bFCfPn10/fXX64EHHthXSQYA4Bcp2oVgWZby8/OVmZmpu+66S5MnT663XnPL5IKCAnXu3Fm/+c1v9Pe//73m8/fff79uv/12/fDDDxo4cOC+2TkAAPZjzS2jL7nkEs2YMUPl5eU73R5lNAAAe0Zubq7at29fb1l5ebl69+6twYMHa9asWZJoRwMA0BqaW07TlgYAoG049NBDtXXrVm3cuFESbWkAANqSHctp2tIAALSuk08+WZZlKS0trUGZTHsaAIDWtbNymvY0AAD7L1drJ6Ate/PNN5WYmKizzz673vJLL71UW7du1YIFC1opZQAAYEfhcFjvvvuuzjzzzJqbCJLUrVs3HX300XrzzTdbMXUAAPwyWJYly7J2uk5LyuSZM2eqqqpKl156ab1tXHrppXIcR2+99dYeTT8AAL9UzSmjW4IyGgCAPWPHoDCSlJiYqIEDB2rTpk2SaEcDANBamlNOtwTlNAAAe1dGRoY8Ho8k2tIAALQ1dcvplqCcBgBgz3vppZc0Z84cPf300w3eoz0NAEDr2lk53RKU0wAAtD0EcNuJH374QQMGDGhwI2Ho0KE17wMAgH3nqquuksfjUXJyssaPH68vvvii5r01a9bI7/fXlNN1DR06VKtXr1ZVVdW+TC4AAL9KLSmTo+3qIUOG1FuvY8eOysjIoN0NAMBe4Pf7lZWVJbfbrc6dO+vqq69WYWFhvXUoowEA2HtKSkr07bffatCgQZJoRwMA0JbsWE5H0ZYGAGDfs21b4XBYeXl5evrpp/Xhhx/qT3/6kyTa0gAAtLadldNRtKUBANj3cnNzdd1112nKlCnq3Llzg/dpTwMA0Hp2VU5H0Z4GAGD/1PJHnPyKFBQUqGfPng2Wp6Wl1bwPAAD2vpSUFF177bUaM2aM0tPTtXr1aj300EMaM2aM3nvvPY0fP76mXI6W03WlpaXJcRwVFRWpY8eO+zr5AAD8qrSkTC4oKFBMTIwSEhIaXZd2NwAAe9awYcM0bNgwDR48WJI0Z84cPfroo/rkk0+0aNEiJSYmShJlNAAAe9FVV12liooK3XbbbZJoRwMA0JbsWE5LtKUBAGgtV155pf7+979Lknw+nx5//HH9/ve/l0RbGgCA1razclqiLQ0AQGu58sor1a9fP/3hD39o9H3a0wAAtJ5dldMS7WkAAPZnBHDbBcuydus9AACw5wwfPlzDhw+v+fuII47Q6aefriFDhujmm2/W+PHja96j7AYAoG1obplM2Q0AwL5z/fXX1/t77NixGj58uM466yw9++yz9d6njAYAYM+744479PLLL+uJJ57QQQcdVO892tEAALSupspp2tIAALSOW2+9VZdffrlyc3P1zjvv6Oqrr1ZFRYVuvPHGmnVoSwMA0Dp2VU7TlgYAYN97/fXX9c4772jx4sW7LENpTwMAsG81t5ymPQ0AwP7L1doJaMvS09MbjTBbWFgoqfFI8wAAYN9ITU3VhAkTtHTpUvn9fqWnp0tSk2W3ZVlKTU3dx6kEAODXpyVlcnp6uqqqqlRZWdnourS7AQDY+04//XQlJCRo/vz5NcsoowEA2PPuvvtu3Xvvvbrvvvt09dVX1yynHQ0AQOtrqpxuCm1pAAD2vq5du2rEiBE68cQT9cwzz+iKK67QpEmTlJeXR1saAIBWtrNyuim0pQEA2HvKy8t11VVX6ZprrlF2draKi4tVXFysYDAoSSouLlZFRQXtaQAAWkFzy+mm0J4GAGD/QAC3nRgyZIhWrFihcDhcb/n3338vSRo8eHBrJAsAAFRzHEeSiQjfq1cvxcXF1ZTTdX3//ffq3bu3YmNj93USAQD41WlJmTxkyJCa5XVt375d+fn5tLsBANhHHMeRy1V7u4AyGgCAPevuu+/W5MmTNXnyZN1666313qMdDQBA69pZOb0ztKUBANi3DjnkEIXDYa1du5a2NAAAbUzdcnpnaEsDALB35OfnKycnR1OnTlW7du1q/k2bNk0VFRVq166dLrjgAtrTAAC0guaW0ztDexoAgLaPAG47cfrpp6u8vFyvv/56veUvvviisrOzNXLkyFZKGQAAKCoq0rvvvqsDDjhAsbGx8ng8Ovnkk/XGG2+orKysZr2NGzfq008/1RlnnNGKqQUA4NejJWXy8ccfr9jYWL3wwgv1tvHCCy/Isiyddtpp+yjVAAD8es2YMUOVlZU69NBDa5ZRRgMAsOf8+c9/1uTJk3X77bfrrrvuavA+7WgAAFrPrsrpptCWBgBg3/v000/lcrnUs2dP2tIAALQxdcvpptCWBgBg78nKytKnn37a4N/48eMVGxurTz/9VPfeey/taQAAWkFzy+mm0J4GAGD/4GntBLRlJ5xwgsaOHas//OEPKi0tVe/evTVt2jTNnDlTL730ktxud2snEQCAX4WJEyeqa9euGjFihDIyMrRq1SpNnTpVOTk59ToZ7r77bh188MGaMGGCbrnlFlVVVenOO+9URkaGbrjhhtbbAQAAfkE++OADVVRU1Ny4X758uWbMmCFJOvHEExUfH9/sMjktLU2333677rjjDqWlpWncuHFatGiRJk+erMsvv1wDBw5slX0EAGB/tKsyOi8vTxMnTtR5552n3r17y7IszZkzR3/96181aNAgXX755TXboowGAGDPmDp1qu68804df/zxOumkkzR//vx670cH1tGOBgBg32tOOb1hwwba0gAA7GNXXHGFkpOTdcghh6hDhw7Kz8/Xa6+9pv/+97+66aablJmZKYm2NAAAraE55TRtaQAA9r3Y2FiNGTOmwfIXXnhBbre73nu0pwEA2LeaW07TngYAYP9mOY7jtHYi2rLy8nLddtttmj59ugoLC9W/f39NmjRJ5513XmsnDQCAX40pU6bov//9r9atW6fy8nKlpaXp8MMP16RJk3TwwQfXW/ebb77Rn/70J82bN08ej0fHHHOMHn74YfXq1auVUg8AwC9L9+7dtWHDhkbfW7dunbp37y6pZWXy448/rqeeekrr169XVlaWLr30Ut12223yer17c1cAAPhF2VUZnZKSossuu0yLFy9WTk6OIpGIunXrptNPP1233nqrUlJSGnyOMhoAgJ9nzJgxmjNnTpPv171VTzsaAIB9qznldFFREW1pAAD2seeff17PP/+8VqxYoeLiYiUmJmrYsGG6/PLLdeGFF9Zbl7Y0AAD7VnPKadrSAAC0HZdccolmzJih8vLyestpTwMA0Pp2LKdpTwMAsH8jgBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANJOrtRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsLArgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDMRwA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmokAbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQTARwAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBmIoAbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQTAdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJkI4AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzUQANwAAAAAAAAAAAAAAAADAr9r69etlWZYuueSSFn3OsiyNGTNmr6QJAAAAAAAAAAAAAAAAANB2EcANAAAAAAAAAAAAAAAAANCqogHU6v7z+Xzq0qWLJk6cqKVLl7ZKusaMGSPLslrluwEAAAAAAAAAAAAAAAAAbZentRMAAAAAAAAAAAAAAAAAAIAk9erVSxdeeKEkqby8XPPnz9e0adP0xhtvaPbs2Ro9evRe+d5OnTppxYoVSklJadHnVqxYofj4+L2SJgAAAAAAAAAAAAAAAABA20UANwAAAAAAAAAAAAAAAABAm9C7d29Nnjy53rLbb79d9913n2677TZ9+umne+V7vV6v+vfv3+LP7c5nAAAAAAAAAAAAAAAAAAD7P1drJwAAAAAAAAAAAAAAAAAAgKZcc801kqRFixZJksLhsB599FENGzZMcXFxSklJ0dFHH6333nuvwWdt29Zzzz2nQw45RGlpaYqPj1f37t112mmn6fPPP69Zb/369bIsS5dccknNMsuyNGfOnJrX0X87rjNmzJgG31tQUKDrr79ePXr0UExMjNq3b69zzz1Xy5cvb7DuJZdcIsuytH79ej399NMaMGCAYmNj1a1bN919992ybXt3DhsAAAAAAAAAAAAAAAAAYC/ytHYCAAAAAAAAAAAAAAAAAABoimVZNa8dx9G5556rN954Q3379tVVV12liooKTZ8+XRMmTNBjjz2mP/7xjzXrT5o0SQ8++KB69eqliRMnKikpSVu2bNHcuXM1e/ZsHXnkkU1+71133aUXXnhBGzZs0F133VWz/IADDthpegsKCnTooYdq9erVGjNmjM477zytX79eM2bM0HvvvaePP/5Yo0aNavC5m266SZ999pkmTJigcePG6a233tLkyZMVDAZ13333teCIAQAAAAAAAAAAAAAAAAD2NgK4AQAAAAAAAAAAAAAAAADarMcff1ySdPDBB+ull17SG2+8oaOOOkofffSRfD6fJOm2227TQQcdpBtvvFEnn3yyevToIUl67rnn1KlTJy1dulTx8fE123QcR0VFRTv93smTJ+uzzz7Thg0bNHny5Gan9+abb9bq1as1adIk3X///TXLL7nkEh1//PG6+OKL9eOPP8rlctX73DfffKOlS5eqY8eOkqQ77rhDffr00RNPPKG77rqrZl8BAAAAAAAAAAAAAAAAAK3PtetVAAAAAAAAAAAAAAAAAADY+1avXq3Jkydr8uTJuvHGG3X44YfrvvvuU2xsrO6//3698MILkqQHH3ywXkCzzp076/rrr1coFNLLL79cb5s+n08eT/1nnVqWpbS0tD2e/mAwqGnTpik9PV233357vffGjx+v8ePHa9WqVfrqq68afPaOO+6oCd4mSRkZGTr11FNVVlamlStX7vG0AgAAAAAAAAAAAAAAAAB2HwHcAAAAAAAAAAAAAAAAAABtwpo1a3T33Xfr7rvv1uOPP64NGzZo4sSJWrhwoUaNGqXFixcrLi5OhxxySIPPjhkzRpK0ZMmSmmXnnHOO1q1bp8GDB+uOO+7QrFmzVFFRsdfS/+OPP8rv9+uQQw5RfHx8s9IYdeCBBzZY1rlzZ0lScXHxnkwmAAAAAAAAAAAAAAAAAOBnIoAbAAAAAAAAAAAAAAAAAKBNGD9+vBzHkeM4CgaD2rRpk15++WUNGTJEklRaWqoOHTo0+tmsrCxJUklJSc2yxx9/XA8++KC8Xq/uvfdejR07VhkZGbr44ouVn5+/x9NfWloqSS1KY1RKSkqDZR6PR5IUiUT2VBIBAAAAAAAAAAAAAAAAAHsAAdwAAAAAAAAAAAAAAAAAAPuF5ORk5eTkNPpedHlycnLNMq/Xq5tuuknLli3Tli1b9Morr+iII47Qv//9b11wwQV7JX1109KcNAIAAAAAAAAAAAAAAAAA9j8EcAMAAAAAAAAAAAAAAAAA7BeGDx8uv9+vhQsXNnhvzpw5kqQDDjig0c9mZ2fr/PPP18yZM9WnTx/NmjVLfr9/p9/ndrslSZFIpFnp69+/v2JjY7Vo0SJVVla2OI0AAAAAAAAAAAAAAAAAgP0DAdwAAAAAAAAAAAAAAAAAAPuFiy++WJI0adIkhUKhmuVbtmzRI488Io/HowsuuECSFAgENHv2bDmOU28bFRUVKisrk9frrQnQ1pS0tDRJ0ubNm5uVPp/Pp/PPP1/5+fn6y1/+Uu+9WbNm6YMPPlDv3r112GGHNWt7AAAAAAAAAAAAAAAAAIC2ydPaCQAAAAAAAAAAAAAAAAAAoDkuuugivfHGG3r77bc1dOhQTZgwQRUVFZo+fboKCgo0depU9ezZU5Lk9/t17LHHqmfPnho5cqS6du2q8vJyvfvuu9q+fbv+9Kc/yefz7fT7jjnmGM2YMUNnn322TjzxRMXGxmrIkCE66aSTmvzMAw88oDlz5ujee+/VV199pZEjR2r9+vWaMWOG4uPj9fzzz8vl4tmrAAAAAAAAAAAAAAAAALA/I4AbAAAAAAAAAAAAAAAAAGC/YFmWZsyYoccee0wvvviinnjiCfl8Ph144IH6f//v/+mUU06pWTchIUEPPPCAPvnkE82dO1e5ublq166d+vfvrwceeEDnnnvuLr/vd7/7ndavX69XX31V9913n8LhsC6++OKdBnDLzMzUggUL9Oc//1lvv/225s6dq5SUFJ166qm66667NHjw4D1yLAAAAAAAAAAAAAAAAAAArcdyHMdp7UQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwP7A1doJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID9BQHcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCZCOAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM1EADcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCYCuAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMxHADQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaiQBuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBMBHADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGYigBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBMB3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgmQjgBgAAAAAAAAAAAADA/2/nDgQAAAAABPlbrzBAgQQAAAAAAAAAAAAAAJPADQAAAAAAAAAAAAAAAAAAAAAAAGAKhkwUzY9IsqoAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1843,7 +1854,7 @@
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
@@ -1861,7 +1872,7 @@
},
{
"cell_type": "code",
- "execution_count": 46,
+ "execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
@@ -1869,7 +1880,7 @@
"evaluator = crested.tl.Crested(data=datamodule)\n",
"\n",
"evaluator.load_model(\n",
- " \"deeppeak_benchmarking/dyn_log_loss_TL/checkpoints/01.keras\", # Load your model\n",
+ " \"deeppeak_benchmarking/dyn_log_loss_TL/checkpoints/01.keras\", # Load your model\n",
" compile=True,\n",
")"
]
@@ -1890,22 +1901,22 @@
},
{
"cell_type": "code",
- "execution_count": 47,
+ "execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-10-01T16:20:49.161191+0200 INFO Loading sequences into memory...\n"
+ "2024-10-09T14:39:57.113865+0200 INFO Loading sequences into memory...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "100%|██████████| 88835/88835 [00:01<00:00, 85887.34it/s]\n",
- "100%|██████████| 10/10 [00:21<00:00, 2.17s/it]\n"
+ "100%|██████████| 88835/88835 [00:01<00:00, 86667.70it/s]\n",
+ "100%|██████████| 10/10 [00:24<00:00, 2.43s/it]\n"
]
}
],
@@ -1917,19 +1928,19 @@
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 261ms/step\n"
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 249ms/step\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAEiCAYAAAAxqKXyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdtUlEQVR4nO3dd3gU5f738c9CekWS0CEUQaqAdEQTmoiA0pQiSgDLoZwjxQYKhKIgiI/lUBVCB0WKAoKi9EMRQaVZjoUmvYYaEnI/f/jLHpYNYZNM2Ozyfl1XLsjs7Mx3PjvZnd3vzj02Y4wRAAAAAAAAAAAAAI+Wx90FAAAAAAAAAAAAAMg+Gn8AAAAAAAAAAACAF6DxBwAAAAAAAAAAAHgBGn8AAAAAAAAAAACAF6DxBwAAAAAAAAAAAHgBGn8AAAAAAAAAAACAF6DxBwAAAAAAAAAAAHgBGn8AAAAAAAAAAACAF6DxBwAAAAAAAAAAAHgBGn8AAAAAYJHp06fLZrPZf3x8fFSsWDF169ZNf/31122poWTJkoqLi7P/vnbtWtlsNq1duzZTy9m0aZPi4+N19uxZp9tiY2MVGxubrTpzWnx8vGw2W5buO3fuXL377rvWFgQAAAAAt4GPuwsAAAAAAG+TkJCg8uXL6/Lly1q/fr1GjRqldevWadeuXQoODr6ttdx3333avHmzKlasmKn7bdq0ScOGDVNcXJzy5cvncNuECRMsrDD3mTt3rnbv3q2+ffu6uxQAAAAAyBQafwAAAABgscqVK6tmzZqSpIYNG+ratWsaMWKElixZoieffDLd+1y6dElBQUGW1xIWFqa6detauszMNhEBAAAAALcHQ30CAAAAQA5La7zt379fkhQXF6eQkBDt2rVLDz30kEJDQ9W4cWNJ0tWrVzVy5EiVL19e/v7+ioqKUrdu3XTixAmHZSYnJ+vll19WoUKFFBQUpAYNGujbb791WvfNhvrcunWrWrVqpYiICAUEBKhMmTL2M9zi4+P10ksvSZJKlSplH7o0bRnpDfV5+vRp9erVS0WLFpWfn59Kly6t1157TUlJSQ7z2Ww29enTR7NmzVKFChUUFBSkqlWratmyZbfMMW1bZs+erf79+6tQoUIKDAxUTEyMvv/++1vePzU1VWPGjLFnW6BAAT399NM6dOiQfZ7Y2FgtX75c+/fvdxi2FQAAAAA8AWf8AQAAAEAO++233yRJUVFR9mlXr17Vo48+queff16vvvqqUlJSlJqaqscee0wbNmzQyy+/rPr162v//v0aOnSoYmNj9d133ykwMFCS9Oyzz2rmzJl68cUX1bRpU+3evVtt27bV+fPnb1nPl19+qVatWqlChQp65513VKJECe3bt09fffWVJOmZZ57R6dOn9cEHH2jRokUqXLiwpJuf6XflyhU1bNhQv//+u4YNG6Z7771XGzZs0KhRo/TDDz9o+fLlDvMvX75c27Zt0/DhwxUSEqIxY8aoTZs2+uWXX1S6dOlb1j9o0CDdd999+uijj3Tu3DnFx8crNjZW33//fYb379mzp6ZMmaI+ffqoZcuW2rdvnwYPHqy1a9dqx44dioyM1IQJE/Tcc8/p999/1+LFi29ZCwAAAADkJjT+AAAAAMBi165dU0pKiq5cuaJ169Zp5MiRCg0N1aOPPmqfJzk5WUOGDFG3bt3s0+bPn6+VK1dq4cKFatu2rX161apVVatWLU2fPl09e/bUzz//rBkzZqhfv34aM2aMJKlp06YqWLDgTYcSvV7v3r1VokQJbd26VQEBAfbpabUUK1ZMJUqUkCRVr15dJUuWzHB5M2bM0M6dO/XJJ5/o8ccft9cTEhKiV155RatWrVLTpk3t81++fFlff/21QkNDJf19HcIiRYrok08+0auvvnrL+qOiorR48WL7mXgNGjRQ2bJlNWrUKH344Yfp3ufnn3/WlClT1KtXL33wwQf26dWrV1edOnX0//7f/9Mbb7yhihUrKl++fPL397d8iFQAAAAAyGkM9QkAAAAAFqtbt658fX0VGhqqli1bqlChQlqxYoUKFizoMF+7du0cfl+2bJny5cunVq1aKSUlxf5TrVo1FSpUyD7U5po1ayTJqcn3xBNPyMcn4+93/vrrr/r999/Vo0cPh6ZfdqxevVrBwcFq3769w/S4uDhJ0jfffOMwvWHDhvamnyQVLFhQBQoUsA+FeiudO3d2GH4zOjpa9evXt+eSnrTb0mpKU7t2bVWoUMGpRgAAAADwRJzxBwAAAAAWmzlzpipUqCAfHx8VLFjQPlTm9YKCghQWFuYw7dixYzp79qz8/PzSXe7JkyclSadOnZIkFSpUyOF2Hx8fRUREZFhb2rUCixUr5trGuODUqVMqVKiQ07XwChQoIB8fH3u9adKr0d/fX5cvX3ZpfTdud9q0H3/8McMaJaX7WBQpUsTlpiMAAAAA5GY0/gAAAADAYhUqVFDNmjUznOfGJpkkRUZGKiIiQitXrkz3PmlnyaU1zo4ePaqiRYvab09JSXFqst0o7TqDhw4dynC+zIiIiNDWrVtljHHYruPHjyslJUWRkZGWrUv6e7vTm5ZR0zPttiNHjjg1PQ8fPmx5jQAAAADgDgz1CQAAAAC5RMuWLXXq1Cldu3ZNNWvWdPq55557JEmxsbGSpDlz5jjc/5NPPlFKSkqG6yhXrpzKlCmjadOmKSkp6abz+fv7S5JLZ+E1btxYFy5c0JIlSxymz5w50367lebNmydjjP33/fv3a9OmTfZc0tOoUSNJ0uzZsx2mb9u2TT/99JNDjZk5+xAAAAAAchPO+AMAAACAXKJjx46aM2eOHnnkEb3wwguqXbu2fH19dejQIa1Zs0aPPfaY2rRpowoVKqhLly5699135evrqyZNmmj37t16++23nYYPTc/48ePVqlUr1a1bV/369VOJEiV04MABffnll/ZmYpUqVSRJ7733nrp27SpfX1/dc889DtfmS/P0009r/Pjx6tq1q/bt26cqVapo48aNevPNN/XII4+oSZMmluZ0/PhxtWnTRs8++6zOnTunoUOHKiAgQAMHDrzpfe655x4999xz+uCDD5QnTx41b95c+/bt0+DBg1W8eHH169fPPm+VKlW0aNEiTZw4UTVq1FCePHlueQYnAAAAAOQGNP4AAAAAIJfImzevPv/8c7333nuaNWuWRo0aJR8fHxUrVkwxMTH2ZpwkTZ06VQULFtT06dP1/vvvq1q1alq4cKE6dux4y/U0a9ZM69ev1/Dhw/Wvf/1LV65cUbFixfToo4/a54mNjdXAgQM1Y8YMffjhh0pNTdWaNWvSPasuICBAa9as0WuvvaaxY8fqxIkTKlq0qF588UUNHTrUkmyu9+abb2rbtm3q1q2bEhMTVbt2bc2fP19lypTJ8H4TJ05UmTJlNHXqVI0fP17h4eF6+OGHNWrUKIdhQl944QXt2bNHgwYN0rlz52SMcTjDEAAAAAByK5vh3QsAAAAAwAOsXbtWDRs21IIFC9S+fXt3lwMAAAAAuQ7X+AMAAAAAAAAAAAC8AI0/AAAAAAAAAAAAwAsw1CcAAAAAAAAAAADgBTjjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACPu4uwAqpqak6fPiwQkNDZbPZ3F0OAAAAAAAAAAAAYAljjM6fP68iRYooT56Mz+nzisbf4cOHVbx4cXeXAQAAAAAAAAAAAOSIgwcPqlixYhnO4xWNv9DQUEl/b3BYWJibq0FmJScn66uvvtJDDz0kX19fd5fj8cjTOmRpLfK0FnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK1DltYiT2uRp3XI0lrk6dkSExNVvHhxez8sI17R+Esb3jMsLIzGnwdKTk5WUFCQwsLCeMKxAHlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8vYMrl7vLeCBQAAAAAAAAAAAAAB6Bxh8AAAAAAAAAAADgBWj8AQAAAAAAAAAAAF6Axh8AAAAAAAAAAADgBWj8AQAAAAAAAAAAAF6Axh8AAAAAAAAAAADgBWj8AQAAAAAAAAAAAF7Ax90FAABuj1YfbHTr+n1tqepaXOowebOSjfu+d7L0nw3ctm4AAAAAAAAAyEmc8QcAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBeg8QcAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBeg8QcAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBeg8QcAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBeg8QcAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBeg8QcAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBeg8QcAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBdwa+Nv7dq1stls6f5s2bLFnaUBAAAAAAAAAAAAHsXH3QVI0ptvvqmGDRs6TKtcubKbqgEAAAAAAAAAAAA8T65o/JUtW1Z169Z1dxkAAAAAAAAAAACAx+IafwAAAAAAAAAAAIAXyBWNv969e8vHx0dhYWFq1qyZNm7c6O6SAAAAAAAAAAAAAI/i1qE+w8PD9cILLyg2NlYRERH67bffNHbsWMXGxmr58uVq1qxZuvdLSkpSUlKS/ffExERJUnJyspKTk29L7bBO2mPGY2cN8rSOt2Xpa0t18/rNdf+6rxZveTy9bf90J7K0FnlaizytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPK1FntYhS2uRp2fLzONmM8aYHKwl086ePasqVaoof/78+vHHH9OdJz4+XsOGDXOaPnfuXAUFBeV0iQAAAAAAAAAAAMBtcenSJXXu3Fnnzp1TWFhYhvPmusafJPXs2VOTJk3SpUuXFBgY6HR7emf8FS9eXCdPnrzlBiP3SU5O1qpVq9S0aVP5+vq6uxyPR57W8bYsO0ze7Nb1+9qMOhc7q7mH8inZ2NxWx8fP13Pbuq3kbfunO5GltcjTWuRpHbK0FnlaizytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPD1bYmKiIiMjXWr8uXWoz5tJ60XabOl/MOzv7y9/f3+n6b6+vuywHozHz1rkaR1vyTLZuPuyrqn/V4fNrbV4w2N5PW/ZP3MDsrQWeVqLPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5GnZ8rMY+buT4GdnDlzRsuWLVO1atUUEBDg7nIAAAAAAAAAAAAAj+DWM/46d+6sEiVKqGbNmoqMjNR///tfjRs3TseOHdP06dPdWRoAAAAAAAAAAADgUdza+Lv33nv18ccfa9KkSbpw4YLy58+vBg0aaNasWapVq5Y7SwMAAAAAAAAAAAA8ilsbf6+++qpeffVVd5YAAAAAAAAAAAAAeIVcd40/AAAAAAAAAAAAAJlH4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwArmq8ffRRx/JZrMpJCTE3aUAAAAAAAAAAAAAHiXXNP7++usvvfjiiypSpIi7SwEAAAAAAAAAAAA8Tq5p/P3jH//Qgw8+qKZNm7q7FAAAAAAAAAAAAMDj5IrG3+zZs7Vu3TpNmDDB3aUAAAAAAAAAAAAAHsntjb/jx4+rb9++Gj16tIoVK+bucgAAAAAAAAAAAACP5OPuAnr16qV77rlHPXv2dPk+SUlJSkpKsv+emJgoSUpOTlZycrLlNSJnpT1mPHbWIE/reFuWvrZUN6/fXPev+2rxlsfT2/ZPdyJLa5GntcjTOmRpLfK0FnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeXq2zDxuNmOMycFaMrRw4UJ17txZ33//vSpWrChJiouL06effqoLFy7c9H7x8fEaNmyY0/S5c+cqKCgox+oFAAAAAAAAAAAAbqdLly6pc+fOOnfunMLCwjKc122NvwsXLujuu+9Wly5d9Prrr9un9+rVS59//rkOHTokX19fBQcHO903vTP+ihcvrpMnT95yg5H7JCcna9WqVWratKl8fX3dXY7HI0/reFuWHSZvduv6fW1GnYud1dxD+ZRsbG6r4+Pn67lt3Vbytv3TncjSWuRpLfK0DllaizytRZ7WIUtrkae1yNM6ZGkt8rQWeVqHLK1Fnp4tMTFRkZGRLjX+3DbU58mTJ3Xs2DGNGzdO48aNc7r9rrvu0mOPPaYlS5Y43ebv7y9/f3+n6b6+vuywHozHz1rkaR1vyTLZuPuyrqn/V4fNrbV4w2N5PW/ZP3MDsrQWeVqLPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5GnZ8rMY+a2xl+hQoW0Zs0ap+mjR4/WunXrtGLFCkVGRrqhMgAAAAAAAAAAAMDzuK3xFxAQoNjYWKfp06dPV968edO9DQAAAAAAAAAAAED6stX4u3r1qo4fP67U1FSH6SVKlMhWUQAAAAAAAAAAAAAyJ0sXWfrvf/+rBx54QIGBgYqOjlapUqVUqlQplSxZUqVKlcpWQdOnT9eFCxeytQwAAAAAAAAAAADgTpOlM/7i4uLk4+OjZcuWqXDhwrLZbFbXBQAAAAAAAAAAACATstT4++GHH7R9+3aVL1/e6noAAAAAAAAAAAAAZEGWhvqsWLGiTp48aXUtAAAAAAAAAAAAALIoS42/t956Sy+//LLWrl2rU6dOKTEx0eEHAAAAAAAAAAAAwO2VpaE+mzRpIklq3Lixw3RjjGw2m65du5b9ygAAAAAAAAAAAAC4LEuNvzVr1lhdBwAAAAAAAAAAAIBsyFLjLyYmxuo6AAAAAAAAAAAAAGRDlhp/knT27FlNnTpVP/30k2w2mypWrKju3bsrPDzcyvoAAAAAAAAAAAAAuCBPVu703XffqUyZMvp//+//6fTp0zp58qTeeecdlSlTRjt27LC6RgAAAAAAAAAAAAC3kKUz/vr166dHH31UH374oXx8/l5ESkqKnnnmGfXt21fr16+3tEgAAAAAAAAAAAAAGctS4++7775zaPpJko+Pj15++WXVrFnTsuIAAAAAAAAAAAAAuCZLQ32GhYXpwIEDTtMPHjyo0NDQbBcFAAAAAAAAAAAAIHOy1Pjr0KGDevTooY8//lgHDx7UoUOHNH/+fD3zzDPq1KmT1TUCAAAAAAAAAAAAuIUsDfX59ttvy2az6emnn1ZKSookydfXVz179tTo0aMtLRAAAAAAAAAAAADArWWp8efn56f33ntPo0aN0u+//y5jjO6++24FBQVZXR8AAAAAAAAAAAAAF2Sp8ZcmKChIVapUsaoWAAAAAAAAAAAAAFnkcuOvbdu2mj59usLCwtS2bdsM5120aFG2CwMAAAAAAAAAAADgOpcbf+Hh4bLZbJKksLAw+/8BAAAAAAAAAAAAuJ/Ljb+EhAT7/6dPn54TtQAAAAAAAAAAAADIojxZuVOjRo109uxZp+mJiYlq1KhRdmsCAAAAAAAAAAAAkElZavytXbtWV69edZp+5coVbdiwIdtFAQAAAAAAAAAAAMgcl4f6lKSdO3fa/793714dPXrU/vu1a9e0cuVKFS1a1LrqAAAAAAAAAAAAALgkU42/atWqyWazyWazpTukZ2BgoD744AOXl/fDDz/otdde065du3TixAkFBgbqnnvuUe/evdWlS5fMlAYAAAAAAAAAAADc0TLV+Pvzzz9ljFHp0qX17bffKioqyn6bn5+fChQooLx587q8vLNnz6p48eLq1KmTihYtqosXL2rOnDl66qmntG/fPr3++uuZKQ8AAAAAAAAAAAC4Y2Wq8RcdHS1JSk1NtWTlsbGxio2NdZjWsmVL/fnnn5oyZQqNPwAAAAAAAAAAAMBFebJyp1GjRmnatGlO06dNm6a33nor20VFRkbKxydTPUkAAAAAAAAAAADgjpalxt/kyZNVvnx5p+mVKlXSpEmTMr281NRUpaSk6MSJE5owYYK+/PJLvfLKK1kpDQAAAAAAAAAAALgjZem0uqNHj6pw4cJO06OionTkyJFML69Xr16aPHmypL+vFfj+++/r+eefv+n8SUlJSkpKsv+emJgoSUpOTlZycnKm1w/3SnvMeOysQZ7W8bYsfW3WDNOc9fWb6/51Xy3e8nh62/7pTmRpLfK0FnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK1DltYiT8+WmcfNZowxmV1B2bJlNXToUHXp0sVh+qxZszR06FD98ccfmVregQMHdPz4cR0/flxLly7VlClT9NZbb+nFF19Md/74+HgNGzbMafrcuXMVFBSUqXUDAAAAAAAAAAAAudWlS5fUuXNnnTt3TmFhYRnOm6XG31tvvaWxY8dq7NixatSokSTpm2++0csvv6wBAwZo4MCBWav8//Ts2VMfffSRDh8+rKioKKfb0zvjr3jx4jp58uQtNxi5T3JyslatWqWmTZvK19fX3eV4PPK0jrdl2WHyZreu39dm1LnYWc09lE/Jxua2Oj5+vp7b1m0lb9s/3YksrUWe1iJP65CltcjTWuRpHbK0FnlaizytQ5bWIk9rkad1yNJa5OnZEhMTFRkZ6VLjL0tDfb788ss6ffq0evXqpatXr0qSAgIC9Morr2S76SdJtWvX1qRJk/THH3+k2/jz9/eXv7+/03RfX192WA/G42ct8rSOt2SZbLJ0WVcLpf5fHTa31uINj+X1vGX/zA3I0lrkaS3ytA5ZWos8rUWe1iFLa5GntcjTOmRpLfK0FnlahyytRZ6eKTOPWZYafzabTW+99ZYGDx6sn376SYGBgSpbtmy6zbisWLNmjfLkyaPSpUtbsjwAAAAAAAAAAADA22Wp8ZcmJCREtWrVyvL9n3vuOYWFhal27doqWLCgTp48qQULFujjjz/WSy+9lO7ZfgAAAAAAAAAAAACcudz4a9u2raZPn66wsDC1bds2w3kXLVrk0jLr1aunhIQEzZgxQ2fPnlVISIiqVq2qWbNmqUuXLq6WBgAAAAAAAAAAANzxXG78hYeHy2az2f9vhW7duqlbt26WLAsAAAAAAAAAAAC4k7nc+EtISEj3/wAAAAAAAAAAAADcL4+7CwAAAAAAAAAAAACQfS6f8Ve9enX7UJ+3smPHjiwXBAAAAAAAAAAAACDzXG78tW7d2v7/K1euaMKECapYsaLq1asnSdqyZYv27NmjXr16WV4kAAAAAAAAAAAAgIy53PgbOnSo/f/PPPOM/vWvf2nEiBFO8xw8eNC66gAAAAAAAAAAAAC4JEvX+FuwYIGefvppp+ldunTRwoULs10UAAAAAAAAAAAAgMzJUuMvMDBQGzdudJq+ceNGBQQEZLsoAAAAAAAAAAAAAJnj8lCf1+vbt6969uyp7du3q27dupL+vsbftGnTNGTIEEsLBAAAAAAAAAAAAHBrWWr8vfrqqypdurTee+89zZ07V5JUoUIFTZ8+XU888YSlBQIAAAAAAAAAAAC4tSw1/iTpiSeeoMkHAAAAAAAAAAAA5BJZusafJJ09e1YfffSRBg0apNOnT0uSduzYob/++suy4gAAAAAAAAAAAAC4Jktn/O3cuVNNmjRReHi49u3bp2eeeUb58+fX4sWLtX//fs2cOdPqOgEAAAAAAAAAAABkIEtn/PXv319xcXH673//q4CAAPv05s2ba/369ZYVBwAAAAAAAAAAAMA1WWr8bdu2Tc8//7zT9KJFi+ro0aPZLgoAAAAAAAAAAABA5mSp8RcQEKDExESn6b/88ouioqKyXRQAAAAAAAAAAACAzMlS4++xxx7T8OHDlZycLEmy2Ww6cOCAXn31VbVr187SAgEAAAAAAAAAAADcWpYaf2+//bZOnDihAgUK6PLly4qJidHdd9+t0NBQvfHGG1bXCAAAAAAAAAAAAOAWfLJyp7CwMG3cuFGrV6/Wjh07lJqaqvvuu09NmjSxuj4AAAAAAAAAAAAALsh04y8lJUUBAQH64Ycf1KhRIzVq1Cgn6gIAAAAAAAAAAACQCZke6tPHx0fR0dG6du1aTtQDAAAAAAAAAAAAIAuydI2/119/XQMHDtTp06etrgcAAAAAAAAAAABAFmTpGn/vv/++fvvtNxUpUkTR0dEKDg52uH3Hjh0uLWf16tWaPXu2Nm3apIMHDypfvnyqWbOmhgwZoho1amSlNAAAAAAAAAAAAOCOlKXGX+vWrWWz2WSMydbKJ06cqFOnTumFF15QxYoVdeLECY0bN05169bVl19+yfUDAQAAAAAAAAAAABdlqvF36dIlvfTSS1qyZImSk5PVuHFjffDBB4qMjMzSysePH68CBQo4THv44Yd19913680336TxBwAAAAAAAAAAALgoU9f4Gzp0qKZPn64WLVqoU6dO+vrrr9WzZ88sr/zGpp8khYSEqGLFijp48GCWlwsAAAAAAAAAAADcaTJ1xt+iRYs0depUdezYUZL05JNP6v7779e1a9eUN29eSwo6d+6cduzYwdl+AAAAAAAAAAAAQCZkqvF38OBBPfDAA/bfa9euLR8fHx0+fFjFixe3pKDevXvr4sWLeu211246T1JSkpKSkuy/JyYmSpKSk5OVnJxsSR24fdIeMx47a5CndbwtS19bqpvXb6771321eMvj6W37pzuRpbXI01rkaR2ytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0Dllaizw9W2YeN5sxxrg6c968eXX06FFFRUXZp4WGhmrnzp0qVapU5qpMx+DBgzVy5Eh98MEH6tOnz03ni4+P17Bhw5ymz507V0FBQdmuAwAAAAAAAAAAAMgNLl26pM6dO+vcuXMKCwvLcN5MNf7y5Mmj5s2by9/f3z5t6dKlatSokYKDg+3TFi1alOmihw0bpvj4eL3xxhsaNGhQhvOmd8Zf8eLFdfLkyVtuMHKf5ORkrVq1Sk2bNpWvr6+7y/F45Gkdb8uyw+TNbl2/r82oc7Gzmnson5KNzW11fPx8Pbet20retn+6E1laizytRZ7WIUtrkae1yNM6ZGkt8rQWeVqHLK1FntYiT+uQpbXI07MlJiYqMjLSpcZfpob67Nq1q9O0Ll26ZK66dKQ1/eLj42/Z9JMkf39/h+ZjGl9fX3ZYD8bjZy3ytI63ZJls8ri5gtT/q8Pm1lq84bG8nrfsn7kBWVqLPK1FntYhS2uRp7XI0zpkaS3ytBZ5WocsrUWe1iJP65CltcjTM2XmMctU4y8hISHTxdzKiBEjFB8fr9dff11Dhw61fPkAAAAAAAAAAADAnSBTjT+rjRs3TkOGDNHDDz+sFi1aaMuWLQ63161b102VAQAAAAAAAAAAAJ7FrY2/pUuXSpJWrlyplStXOt2eicsPAgAAAAAAAAAAAHc0tzb+1q5d687VAwAAAAAAAAAAAF4jj7sLAAAAAAAAAAAAAJB9NP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACPu4uAAAAT9Pqg43uLkG+tlR1LS51mLxZycZ93+NZ+s8Gbls30ufu/ZN9EwAAAAAAwH1o/AHItfjw+n/4ABsAAAAAAAAAcCsM9QkAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBeg8QcAAAAAAAAAAAB4ARp/AAAAAAAAAAAAgBeg8QcAAAAAAAAAAAB4AR93FwAAAADkRq0+2OjuEuRrS1XX4lKHyZuVbNz3nb2l/2zgtnUDAAAAAADXccYfAAAAAAAAAAAA4AVo/AEAAAAAAAAAAABegMYfAAAAAAAAAAAA4AXc2vg7f/68Xn75ZT300EOKioqSzWZTfHy8O0sCAAAAAAAAAAAAPJJbG3+nTp3SlClTlJSUpNatW7uzFAAAAAAAAAAAAMCj+bhz5dHR0Tpz5oxsNptOnjypjz76yJ3lAAAAN2j1wUa3rt/XlqquxaUOkzcr2bh3FPSl/2zg1vUDAAAAAADAs7m18Wez2dy5egAAAAAAAAAAAMBruPdr7QAAAAAAAAAAAAAs4dYz/rIqKSlJSUlJ9t8TExMlScnJyUpOTnZXWciitMeMx84a3pSnry3Vzes31/3r3lqseDzJ82/ekOXfNZCnVXJLlhJ5Wskbsvy7Bu/J09286RgpNyBPa5GndcjSWuRpLfK0DllaizytRZ7WIUtrkadny8zjZjPGmBysxWUnT55UVFSUhg4dqvj4+AznjY+P17Bhw5ymz507V0FBQTlUIQAAAAAAAAAAAHB7Xbp0SZ07d9a5c+cUFhaW4bweecbfwIED1b9/f/vviYmJKl68uB566KFbbjByn+TkZK1atUpNmzaVr6+vu8vxeN6UZ4fJm926fl+bUediZzX3UD4lG/dek/Tj5+tlexnk+TdvyFIiTyvlliwl8rSSN2QpeVee7uZNx0i5AXlaizytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPD1b2siXrvDIxp+/v7/8/f2dpvv6+rLDejAeP2t5Q57Jxt2XIU39vzpsbq/FisfS3duQW/L0jiwl8rRS7shSIk8reUeWkjflmVt4wzFSbkKe1iJP65CltcjTWuRpHbK0FnlaizytQ5bWIk/PlJnHLDd8mgEAAAAAAAAAAAAgm9x+xt+KFSt08eJFnT9/XpK0d+9effrpp5KkRx55hGv2AQAAAAAAAAAAAC5we+OvZ8+e2r9/v/33BQsWaMGCBZKkP//8UyVLlnRTZQAAAAAAAAAAAIDncHvjb9++fe4uAQAAAAAAAAAAAPB4bm/8AQAAAPB+rT7Y6Nb1+9pS1bW41GHyZiUb917qfOk/G7h1/QAAAAAA7+Xed7wAAAAAAAAAAAAALEHjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL0DjDwAAAAAAAAAAAPACNP4AAAAAAAAAAAAAL+Dj7gIAAAAAAACAnNTqg43uLkG+tlR1LS51mLxZycZ938Vf+s8Gbls3AADIeTT+AAAAAAAAAMANaEr/D01pALAGQ30CAAAAAAAAAAAAXoDGHwAAAAAAAAAAAOAFGOoTAAAAADwIQ4L9D0OCAQAAAIAjzvgDAAAAAAAAAAAAvIDbG38XLlxQ3759VaRIEQUEBKhatWqaP3++u8sCAAAAAAAAAAAAPIrbh/ps27attm3bptGjR6tcuXKaO3euOnXqpNTUVHXu3Nnd5QEAAAAAAAAAAAAewa2Nvy+++EKrVq2yN/skqWHDhtq/f79eeukldejQQXnz5nVniQAAAAAAAAAAAIBHcGvjb/HixQoJCdHjjz/uML1bt27q3Lmztm7dqvr167upOgAAAAAAAAAAgOxp9cFGd5cgX1uquhaXOkzerGTjvqvALf1nA7et+07h1sbf7t27VaFCBfn4OJZx77332m+n8Zfz3P2kwxMOAAAAAAAAAABA9rm18Xfq1CmVLl3aaXr+/Pntt6cnKSlJSUlJ9t/PnTsnSTp9+rSSk5NzoFIvd+W8e9dvM7p06ZJ0xVcyNreVcbP9LTPipn1rQSXZ42szerzoJXV4b5WS3Zjn9O61s78Q9k07K/ZP8vybV2QpkaeVckmWEnlaySuylMjTSrkkS8mCPN2dpZRr8uQY3lpWHMO7O8/ckqWU/TzdnaWUe/L0iveXEs+dFsot+6Zkwf7JvmnnDfumlHv2T17XrcXfunUseX95Bzp//u99yBhzy3ltxpW5cki5cuVUpkwZrVixwmH6kSNHVKRIEY0aNUqvvvqq0/3i4+M1bNiw21UmAAAAAAAAAAAA4FYHDx5UsWLFMpzHrWf8RUREpNvdPX36tKT/nfl3o4EDB6p///7231NTU3X69GlFRETIZnNv5x+Zl5iYqOLFi+vgwYMKCwtzdzkejzytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPK1FntYhS2uRp7XI0zpkaS3ytBZ5WocsrUWens0Yo/Pnz6tIkSK3nNetjb8qVapo3rx5SklJcbjO365duyRJlStXTvd+/v7+8vf3d5iWL1++HKsTt0dYWBhPOBYiT+uQpbXI01rkaR2ytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0DllaizytRZ7WIUtrkafnCg8Pd2m+PDlcR4batGmjCxcuaOHChQ7TZ8yYoSJFiqhOnTpuqgwAAAAAAAAAAADwLG4946958+Zq2rSpevbsqcTERN19992aN2+eVq5cqdmzZytv3rzuLA8AAAAAAAAAAADwGG5t/EnSokWL9Nprr2nIkCE6ffq0ypcvr3nz5qljx47uLg23ib+/v4YOHeo0fCuyhjytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPK1FntYhS2uRp7XI0zpkaS3ytBZ5WocsrUWedw6bMca4uwgAAAAAAAAAAAAA2ePWa/wBAAAAAAAAAAAAsAaNPwAAAAAAAAAAAMAL0PhDtrz//vuy2WyqXLlylu6/d+9excfHa9++fdYW5mGmT58um81205+1a9dasp74+HjZbDZLlpUbpOX23XffpXv7r7/+qhdffFE1atRQvnz5lD9/ft1///369NNPM72uixcvqmPHjrrnnnsUGhqq4OBgVapUSSNHjtTFixcd5k3L+eTJk1q7dm2Gj+31P7nVrXKWdNNtGj16tMN8adnc7Gffvn2Ki4tzKa+4uLgc3vKclxPZesN+Z2Uurtq/f7+6d++uIkWKyN/fX0WLFlWbNm0c5knLuECBAjp//rzTMkqWLKmWLVtmWGd4eLhiY2O1fPnyLNWZk1zJXXItqzQbNmzQE088oaJFi8rPz0/h4eGqX7++Jk6cqIsXL97yOSHtJzY2Nge2+PaxMltv+lvPLitzjYuLU0hISE6We9u4mktuU7JkyXT33X/84x/ZWu71x9npHVMbY3T33Xc7PdfYbDbFx8dna905Yd++fQ755MmTRxEREXrkkUe0efNmSdJnn30mm82mSZMm3XQ5q1atks1m0zvvvCNJ9uOv0NBQXbhwwWn+/fv3K0+ePG7JZcuWLXr88cdVuHBh+fn5qVChQmrfvr19e9Pc+J7Kx8dHxYoVU7du3fTXX385LfePP/5Qnz59VK5cOQUGBiooKEiVKlXS66+/nu78niiz2V3/vjwuLk4lS5a8vQXnMpndp6yQ9jc+ffp0+7TrX/u9xdatW9WmTRuVKFFC/v7+KliwoOrVq6cBAwa4uzSvY0XWly5dUnx8vGWfTeWk27W9O3fuVLdu3VSqVCkFBAQoJCRE9913n8aMGaPTp0/b50vvPWJOSHtfcH3Nt/t5vE2bNgoMDNTZs2dvOs+TTz4pX19fHTt2TDabTX369MlwmbGxsbLZbCpdurTSu1rZ+vXr7c/R1z9vpnH1cfJkmcn9rbfecnq9h/fycXcB8GzTpk2TJO3Zs0dbt25VnTp1MnX/vXv3atiwYYqNjb3j31RIUkJCgsqXL+80vWLFim6oxvN99dVXWr58uZ566inVqlVLKSkp+vjjj/X4449r2LBhGjJkiMvLSk5OljFG/fv3V6lSpZQnTx6tX79ew4cP19q1a/X111+ne7/77rvP6Y11mzZtVKZMGb399tvZ2r7cpn379k4H0yVKlEh33pUrVyo8PNxpeuHChTV48GCHD/l27Nih3r17680331TDhg3t06OioiyqPPfLTLbSnbPfZTaXm9m9e7diY2NVunRpvf322ypWrJiOHDmiL7/8Mt35T5w4oTFjxmjEiBGZqjM1NVV//PGHRo4cqVatWmnp0qVq0aJFput1p8xkNXToUA0fPlz169fXiBEjVKZMGV26dEmbNm1SfHy8fv31Vw0YMEAPP/yw/T5HjhxR27Zt9c9//lOdO3e2Tw8LC7st2+dOmd0PpTvnbz07spIr3Of+++932ncLFixoybJDQ0M1depUpy8SrFu3Tr///rtCQ0Mdpm/evFnFihWzZN05Ie158tq1a9qzZ4+GDRumhg0bavPmzWrRooUKFSqkadOm3bRxmpCQIF9fXz311FP2ab6+vvbj5R49ejjNHxoaqsTExBzdrht98MEH6tu3r2rXrq0xY8YoOjpaBw4c0Pjx49WgQQO99957Th8apr2nunz5stavX69Ro0Zp3bp12rVrl4KDgyVJy5YtU8eOHRUZGak+ffqoevXqstls2rVrl6ZNm6bly5fr+++/v63barWsZHe9wYMH64UXXriNFederuxTcN3y5cv16KOPKjY2VmPGjFHhwoV15MgRfffdd5o/f77GjRvn7hK9hlVZX7p0ScOGDZOkXP2FvNu1vR9++KF69eqle+65Ry+99JIqVqyo5ORkfffdd5o0aZI2b96sxYsXW7lpHqFHjx5asmSJ5s6dq169ejndfu7cOS1evFgtW7bM1PFdaGio/vzzT61evVqNGzd2uG3atGkKCwtL9/jkTnmcMpN79+7dFRMTo8KFC7uhUtx2Bsiibdu2GUmmRYsWRpJ59tlnM72MBQsWGElmzZo1Ls1/8eLFTK/DEyQkJBhJZtu2bTm6nqFDhxpv+rO/VW4nTpwwqampTtNbtGhhgoKCzJUrV7Jdw8svv2wkmd9//90+LS3nEydOpHuf6Oho06JFi2yv+3ZxZf+UZHr37n3LZd0qm/SsWbPGSDILFixw+T6e4nZm60n7nZW53EpqaqqpVq2aqVat2i2fE9Iyfvjhh01wcLA5cuSIw+3pZZxenb/99puRZJo0aZLt+q10q9wzk9Unn3xiJJkePXqk+zycmJhovvzyS6fpf/75p5Fkxo4dm7WNyKWszNab/tazy8pcu3btaoKDg3OizNvudh1XWi2n9t20PJ555hkTGBhozp0753B7ly5dTL169UylSpVMTEyM5eu/evWqSU5Otmx5N3ue/Oabb+zbacz/jlF37drltIwzZ86YgIAA065dO/u0tL+Bjh07mvr16zvMn5qaaqKjo82zzz5rJJmhQ4datj0Z2bhxo8mTJ49p2bKlU4bJycmmZcuWJk+ePGbjxo3GmJvv+4MHDzaSzOzZs40xxvzxxx8mODjYVK9e3Zw9e9ZpvampqWbhwoU5tFW3R1az+/PPP91Qbe7l6j5lpbS/8YSEBPu0rLyHys0efPBBU6ZMmXSfG69du+aGiryXVVmfOHHitj7/Z9Xt2N5NmzaZvHnzmocffjjd48ukpCTz2Wef2X+/XcfmaZ+bXP/5ateuXU10dHSOrztNSkqKKVKkiKlRo0a6t0+cONFIMkuXLjXGuPaePiYmxlSqVMnUrVvXdO7c2eG2xMREExQUZD8+uf55M7OPkyfLbO64czDUJ7Js6tSpkqTRo0erfv36mj9/vi5duuQwz8SJE1W1alWFhIQoNDRU5cuX16BBgyT9PWzG448/Lklq2LCh06nZsbGxqly5stavX6/69esrKChI3bt3lyQdOHBAXbp0UYECBeTv768KFSpo3LhxSk1NvU1b7x5pp8HPmjVLFSpUUFBQkKpWraply5Y5zbt8+XJVq1ZN/v7+KlWq1E2/+X/lyhUNHDhQpUqVkp+fn4oWLarevXtneIq4p4iMjEx3eLPatWvr0qVLlpzWn3bWmY8PJ1ADnmj9+vX64Ycf1LdvX/n7+7t0n5EjRyolJSXLQ52VKVNGUVFR2r9/f5bu7y6ZyWr48OG666677EOC3yg0NFQPPfRQTpXqcbKyH+LWspLrnj171LhxYwUHBysqKkp9+vRxOr71dFeuXNGAAQNUrVo1hYeHK3/+/KpXr54+++wzp3nTjj0TEhJ0zz33KDAwUDVr1tSWLVtkjNHYsWNVqlQphYSEqFGjRvrtt98c7p92PL9hwwbVrVtXgYGBKlq0qAYPHqxr167drk2WJHXq1EmSNG/ePPu0c+fOaeHChfb3GNdLb0jLv/76S88995yKFy8uPz8/FSlSRO3bt9exY8ck/W+YrVmzZmnAgAEqWrSo/P397blMmzZNVatWVUBAgPLnz682bdrop59+smT76tatK0n215a0M/YSEhKc5p03b56uXLmS7nZ3795dmzZt0i+//GKf9vXXX2v//v3q1q2bJbW6atSoUbLZbJo4caLTsbaPj48mTJjg0jDfN2bzzjvv6OLFi5owYUK6I1DYbDa1bdvWoq1wDyuyS2+IuLNnz6pHjx7Knz+/QkJC1KJFC/3xxx/p/r1s3LhRjRs3VmhoqIKCglS/fv1cOdR5VqTtU7/99ptsNpv9s5HrrVixQjabTZ9//rl93m7duqls2bIKCgpS0aJF1apVK+3atcvl9R48eFBt27ZVWFiYwsPD1aVLF504ccKajbqNTp06pcjIyHTfQ+fJ87+PKdOGSFy5cqXuu+8+BQYGqnz58vaRp653q+dn6e/X+IceekhBQUGKiopS7969tXz58psOBe0NXM169erVio2NVUREhAIDA1WiRAm1a9dOly5d0r59++yfewwbNixXX3rjdmzvm2++KZvNpilTpqR7fOnn56dHH33Uabor+/Hu3bv12GOP6a677lJAQICqVaumGTNmOM33888/6+GHH1ZQUJAiIyP1j3/8I91LUdxuefPmVdeuXbV9+/Z0n9sSEhJUuHBhNW/ePNPL7t69uxYtWuTwWeX8+fMlSR07dnSaP6uPkyfKTO7pDe2dm47XYS0af8iSy5cva968eapVq5YqV66s7t276/z581qwYIF9nvnz56tXr16KiYnR4sWLtWTJEvXr189+PbQWLVrozTfflCSNHz9emzdvtg9Nk+bIkSPq0qWLOnfurC+++EK9evXSiRMnVL9+fX311VcaMWKEPv/8czVp0kQvvvjiLceGzu2uXbumlJQUh58bn2SXL1+uf//73xo+fLgWLlxo/9Dgjz/+sM/zzTff6LHHHlNoaKjmz5+vsWPH6pNPPnF642+MUevWrfX222/rqaee0vLly9W/f3/NmDFDjRo1UlJS0m3Z7tttzZo1ioqKUoECBTJ9X2OMUlJSlJiYqJUrV2rcuHHq1KlTloYX9DZz585VYGCg/P39VaNGjXQ/aErjyr6O/8lMtncSK3JZv369pL8bUY888oh93P+WLVvq559/Tvc+0dHR6tWrl6ZOnapff/010+s8c+aMTp065XHD1bqa1ZEjR7R79277Byu4tazsh7i1zOaanJysRx55RI0bN9aSJUvUp08fTZ48WR06dLjdpeeopKQknT59Wi+++KKWLFmiefPmqUGDBmrbtq1mzpzpNP+yZcv00UcfafTo0Zo3b57Onz+vFi1aaMCAAfrPf/6jf//735oyZYr27t2rdu3aOV1/5ejRo+rYsaOefPJJffbZZ2rfvr1GjhyZ7hCC69evV2hoqHx9fVWxYkWNGzfOsuODsLAwtW/f3uGDtnnz5ilPnjwuPcZ//fWXatWqpcWLF6t///5asWKF3n33XYWHh+vMmTMO8w4cOFAHDhzQpEmTtHTpUhUoUECjRo1Sjx49VKlSJS1atEjvvfeedu7cqXr16um///1vtrcvrbmY9tpSrlw5NWjQQLNnz1ZycrLDvAkJCSpatKiaNWvmtJwmTZooOjraIaepU6fqwQcfVNmyZbNdp6uuXbumNWvWqGbNmjcdcrV48eKqUaOGVq9eneF+cmM2X331lQoWLGhv3ngbK7O7Xmpqqlq1aqW5c+fqlVde0eLFi1WnTh2HIbvTrFu3To0aNdK5c+c0depUzZs3T6GhoWrVqpU+/vjjbG1fbpC2TxUpUkTVq1dP9xh0+vTpKlCggB555BFJ0uHDhxUREaHRo0dr5cqVGj9+vHx8fFSnTh2HRntG2rRpo7vvvluffvqp4uPjtWTJEjVr1szpbzy3q1evnrZu3ap//etf2rp1a4b1//jjjxowYID69eunzz77TPfee6969Ohhf42XXHt+PnLkiGJiYvTLL79o4sSJmjlzps6fP+/xnyHdiitZ79u3Ty1atJCfn5+mTZumlStXavTo0QoODtbVq1dVuHBhrVy5UtLfXypJ++xu8ODBt3tzbimnt/fatWtavXq1atSooeLFi7tclyv78S+//KL69etrz549ev/997Vo0SJVrFhRcXFxGjNmjH2+Y8eOKSYmRrt379aECRM0a9YsXbhwIdfsy927d5fNZnNqbO7du1fffvutunbtqrx582Z6uR07dlTevHkdvsA1depUtW/f3umyEFl9nDxZdnPPzPE6PIh7TziEp5o5c6aRZCZNmmSMMeb8+fMmJCTEPPDAA/Z5+vTpY/Lly5fhcjIa6jMmJsZIMt98843D9FdffdVIMlu3bnWY3rNnT2Oz2cwvv/ySxa1yn7QhRNL7yZs3r30+SaZgwYImMTHRPu3o0aMmT548ZtSoUfZpderUMUWKFDGXL1+2T0tMTDT58+d3GOpz5cqVRpIZM2aMQz0ff/yxkWSmTJmSE5trmawMZfXhhx8aSea9997L0jrnzZvn8Ph069bNaRgJbxuGzZWcO3fubObMmWPWr19vPv30U9O8eXMjybz++usO86Vlk95PmTJl0l32nT7UZ2az9Yb9zspcbuX55583kkxYWJjp0aOH+frrr82sWbNMdHS0iYyMNIcPH7bPe33GJ0+eNOHh4Q7DpN1sqM9evXqZ5ORkc/XqVfPTTz/Zax0/fnymas1pt8rd1ay2bNliJJlXX3010zXcqUN9ZnU/TI8n/a1nl5W5du3aNd3jgzfeeMNIsg+H5wkye3yUkpJikpOTTY8ePUz16tUdbpNkChUqZC5cuGCftmTJEiPJVKtWzWEo33fffddIMjt37rRPSzuev3EopWeffdbkyZPH7N+/3z6tV69eZtq0aWbdunVmyZIl5sknnzSSTJcuXTK1/Te6Po+0Y4rdu3cbY4ypVauWiYuLM8YYp6E+dcMQX927dze+vr5m7969N11X2vIffPBBh+lnzpwxgYGB5pFHHnGYfuDAAePv7+80dFVG0p4n33rrLZOcnGyuXLlitm/fbmrVqmUkmeXLlztt+6JFi+zTdu/ebSSZ1157zWG51w93O3ToUFOoUCGTnJxsTp06Zfz9/c306dNv61BvR48eNZJMx44dM5yvQ4cORpI5duyYfXu3bNlikpOTzfnz582yZctMVFSUCQ0NNUePHjXGGBMQEGDq1q2b49vgLtnJ7vqhPm8cIm758uVGkpk4caLDckaNGuW0X9StW9cUKFDAnD9/3j4tJSXFVK5c2RQrVizdYcBzI1f2qffff99Icvgc4vTp08bf398MGDDgpstOSUkxV69eNWXLljX9+vWzT89oqM/r5zPGmDlz5uTYkKM56eTJk6ZBgwb294G+vr6mfv36ZtSoUQ77THR0tAkICHB4rbh8+bLJnz+/ef755+3TXHl+fumll4zNZjN79uxxmN6sWbObfiblDVzJ+tNPPzWSzA8//HDT5XjKUJ85vb2uPr9ez9X9uGPHjsbf398cOHDA4f7Nmzc3QUFB9qGpX3nlFWOz2Zzqb9q0qduH+kwTExNjIiMjzdWrV+3TBgwYYCSZX3/91T5NmRjq05i/t6dmzZrGGGP27NljJJm1a9faL0WV9ryZlcfJG7iSe3qv95k5Xodn4Yw/ZMnUqVMVGBhoP506JCREjz/+uDZs2GD/xmrt2rV19uxZderUSZ999plOnjyZ6fXcddddatSokcO01atXq2LFiqpdu7bD9Li4OBljtHr16ixulfvNnDlT27Ztc/jZunWrwzwNGzZUaGio/feCBQuqQIEC9qFrLl68qG3btqlt27YKCAiwz5f2DcvrpWV14xANjz/+uIKDg/XNN99YuXlut2LFCvXu3Vvt27fXP//5zywto1mzZtq2bZtWr16tN954QwsXLlS7du28fpjZW5kzZ446d+6sBx54QO3atdMXX3yhli1bavTo0ekOP/P111877etLliy5/YV7gMxme6ewKpe0v9169erpo48+UuPGjdWlSxctWbJEJ0+e1Pjx49O9X0REhF555RUtXLjQ6Xn6RhMmTJCvr6/8/PxUoUIFbdq0ScOHD0/3wtu5WVazwq2Rbc7ISq5PPvmkw++dO3eW9PdoAd5kwYIFuv/++xUSEiIfHx/5+vpq6tSp6Q472bBhQwUHB9t/r1ChgiSpefPmDkP5pk2/cRjj0NBQp6GUOnfurNTUVIdvuo8fP17dunXTgw8+qMcee0yzZ89Wnz59NHv2bH3//ffZ32hJMTExKlOmjKZNm6Zdu3Zp27Zt6Q53mZ4VK1aoYcOG9u3MSLt27Rx+37x5sy5fvux0zF28eHE1atQoS8fcr7zyinx9fRUQEKAaNWrowIEDmjx5sv3sIkl64oknFBoa6vDt72nTpslms2U4bGe3bt107NgxrVixQnPmzJGfn5/9Eg25jfm/M0yv3xfr1q0rX19fhYaGqmXLlipUqJBWrFihggULuqvMXCm97DKybt06SX/vV9dLG0Y3zcWLF7V161a1b99eISEh9ul58+bVU089pUOHDrl8hltukdE+9eSTT8rf399+yRLp77OJk5KSHP7OUlJS9Oabb6pixYry8/OTj4+P/Pz89N///tflIX9vfI164okn5OPj43GvUREREdqwYYO2bdum0aNH67HHHtOvv/6qgQMHqkqVKg6fHVWrVs1hdJ2AgACVK1fO4bXGlefndevWqXLlyqpYsaLD9Bv3X2/jStbVqlWTn5+fnnvuOc2YMcNhNClPk1u315X9ePXq1WrcuLHTGWpxcXG6dOmSNm/eLOnvY9JKlSqpatWqDvOlHbPmBj169NDJkyftQx2npKRo9uzZeuCBB7I1ekD37t313XffadeuXZo6darKlCmjBx980KqyPV52cnf1eB2ehcYfMu23337T+vXr1aJFCxljdPbsWZ09e1bt27eXJPsby6eeekrTpk3T/v371a5dOxUoUEB16tTRqlWrXF5X4cKFnaadOnUq3elFihSx3+6pKlSooJo1azr81KhRw2GeiIgIp/v5+/vr8uXLkv4eQi41NVWFChVymu/GaadOnZKPj4/TcHM2m02FChXy6Cxv9OWXX6pt27Zq2rSp5syZ4/Ib3Bvdddddqlmzpho2bKhBgwZpypQp+vzzz9O9Ls6drkuXLkpJSdF3333ndFvVqlWd9vXKlSu7oUrPlFG2d7Ks5JL2nHrjcGfVqlVT4cKFtWPHjpvet2/fvipSpIhefvnlDNfxxBNPaNu2bfruu+/0yy+/6NSpU7lyaJxbcTWrtDe1f/755+0t0INlZz/EzWU2Vx8fH6fjrLRjJ286Jlq0aJGeeOIJFS1aVLNnz9bmzZvtDbArV644zZ8/f36H3/38/DKcfuMy0mu2uJprly5dJElbtmzJcD5XpTW8Zs+erUmTJqlcuXJ64IEHXLrviRMnbjps4o1ufK+Stp03ew+Tlf3rhRde0LZt27R9+3b9/vvvOnLkiJ577jmHeYKCgtSxY0etXLlSR48etX8AlNYAvZno6Gg1btxY06ZN07Rp09SxY8fbPnRzZGSkgoKCbvlasm/fPgUFBTnsj2lfpvz+++91+PBh7dy5U/fff7/99hIlSnj1a1R2sstI2nvHG+e/8W/8zJkzMsZ41Xv2jPap/Pnz69FHH9XMmTPtw6ZOnz5dtWvXVqVKlezL6N+/vwYPHqzWrVtr6dKl2rp1q7Zt26aqVava38vfyo3v59NetzwtzzQ1a9bUK6+8ogULFujw4cPq16+f9u3b5zCs4a0+/5Bce34+depUuq9Hd8oXAjLKukyZMvr6669VoEAB9e7dW2XKlFGZMmX03nvvubvsLMup7XX1+fVGruzHrn7WeerUKZc+73On9u3bKzw83D4M8hdffKFjx47Zrz+cVWnDjk+ePFmzZs2yD295o6w+Tp4uO7ln53gduReNP2TatGnTZIzRp59+qrvuusv+k3ZtvhkzZtgPeLt166ZNmzbp3LlzWr58uYwxatmypdM3gW8mvSfwiIgIHTlyxGn64cOHJf39BH8nu+uuu2Sz2XT06FGn226cFhERoZSUFKezY4wxOnr0qNdk+eWXX6p169aKiYnRwoUL7R9MWSHtzNOsXOfL26V9i/j6i2jDGmSbvqzkcu+992a4vIyWFRgYqPj4eK1fv17Lly+/6XxRUVH2L3KUK1cuS9c0yA1czapw4cKqUqWKvvrqK126dOl2lefRsrMf4uYym2tKSorTG9u0Y6f0PrDxVLNnz1apUqX08ccfq3Xr1qpbt65q1qyZY9d2PnbsmNM0V3PNide7uLg4nTx5UpMmTcrwrLcbRUVF6dChQy7Ne+N7mLTtvNl7mKwccxcrVkw1a9bUfffdp9KlS9/0S209evRQSkqKZs6cqWXLlun48eMufQDUvXt3ff755/rhhx9cPivSSnnz5lXDhg313Xff3TT3Q4cOafv27WrUqJHDa2valynTmvw3atasmY4dO2ZZQzm3yU52GUl773j69GmH6Te+x7zrrruUJ08er3rPfqt9qlu3bvrrr7+0atUq7d27V9u2bXN6fpk9e7aefvppvfnmm2rWrJlq166tmjVrZmpkpBuzTnvd8obXKF9fXw0dOlSStHv37kzd15Xn54iIiAxfj+4k6WX9wAMPaOnSpTp37py2bNmievXqqW/fvpo/f747S7WEldubN29eNW7cWNu3b3f5mMBVrn7WGRER4dLnfe4UGBioTp06aeXKlTpy5IimTZum0NBQS0YP6NatmyZOnKjTp0+ra9eu6c6Tk49Tbpad3LNzvI7ci08RkCnXrl3TjBkzVKZMGa1Zs8bpZ8CAATpy5IhWrFjhcL/g4GA1b95cr732mq5evao9e/ZI+vsbLpJc/oabJDVu3Fh79+51+pb2zJkzZbPZ1LBhw2xupWcLDg5W7dq1tWjRIodvXJ8/f15Lly51mLdx48aS/n4Tcr2FCxfq4sWL9ts92VdffaXWrVurQYMGWrJkiX2fs0rasCp33323pcv1BrNmzZKvr6/TWavIPrJNX1Zyad68uYKCgpxet3bs2KGjR4+qbt26Gd6/e/fuqlChgl599VWvH/I3M1kNHjxYZ86c0b/+9S/7B/fXu3Dhgr766qscr9lTZHc/RPqykuucOXMcfp87d64kKTY2NsfqvN1sNpv8/PwcGkVHjx7NsdELzp8/bx9yKM3cuXOVJ0+eWw7PNHPmTEmy9G+gaNGieumll9SqVaubfmCUnubNm2vNmjVZGqKwXr16CgwMdDrmPnTokH1or5xSp04dVa5cWQkJCUpISFB4eLjTUKTpadOmjdq0aaPu3bu77Tlo4MCBMsaoV69e9i+Wprl27Zp69uwpY4wGDhyYqeX269dPwcHB6tWrl86dO+d0uzFGixcvzlbt7pYT2cXExEiSPv74Y4fpN35QHhwcrDp16mjRokUO7/NTU1M1e/ZsFStWTOXKlcvsJuVqDz30kIoWLWr/OwsICHAaQtJmszm9F12+fLn++usvl9dz42vUJ598opSUFI97jUqvuSHJPuRp2hlOrnLl+TkmJka7d+/W3r17HaZ7Q2MrI5nNOm/evKpTp459OPS0z92y8tmdO9yO7U17fn322Wd19epVp9uTk5OdPntzRePGjbV69Wp7oy/NzJkzFRQUZH8tbtiwofbs2aMff/zRYb60Y9bcokePHrp27ZrGjh2rL774wrLRA7p27apWrVrppZdeUtGiRW86X049TrldVnPPzvE6ci8fdxcAz7JixQodPnxYb731VroHl5UrV9a///1vTZ06VZ999pkCAwN1//33q3Dhwjp69KhGjRql8PBw1apVyz6/JE2ZMkWhoaEKCAhQqVKlMvw2Qb9+/TRz5ky1aNFCw4cPV3R0tJYvX64JEyaoZ8+eHv0mYvfu3UpJSXGaXqZMGafhODMyYsQIPfzww2ratKkGDBiga9eu6a233lJwcLDDNzSbNm2qZs2a6ZVXXlFiYqLuv/9+7dy5U0OHDlX16tX11FNPWbJdOW316tXat2+f0/QCBQqodevWKlSokAYNGqQffvjB4faKFSsqLCzMpXVMnjxZGzZs0EMPPaTixYvr4sWL2rBhgz744APVr19fjz32mAVbkrvdLOc9e/Zo3759aty4sYoVK6bjx49r6tSp+uqrrxQfH5/uN3q3b9+u8PBwp+mZeUy8iZXZepPbkUu+fPk0fPhwvfjii4qLi1OnTp109OhRDR48WCVKlLjldfjy5s2rN998U23atJGU8RlGnuJmuT/yyCMuZ/X4449r8ODBGjFihH7++Wf16NFDZcqU0aVLl7R161ZNnjxZHTp00EMPPXQbt8z9rMgWzqzK1c/PT+PGjdOFCxdUq1Ytbdq0SSNHjlTz5s3VoEGD27Q11rlZLo0aNdKiRYvUq1cvtW/fXgcPHtSIESNUuHBh+7W6rRQREaGePXvqwIEDKleunL744gt9+OGH6tmzp31o4Llz52rRokVq0aKFoqOjdfbsWS1YsEDz589XXFyc03Vssmv06NGZvs/w4cO1YsUKPfjggxo0aJCqVKmis2fPauXKlerfv7/Kly9/0/vmy5dPgwcP1qBBg/T000+rU6dOOnXqlIYNG6aAgAD7mQg5pXv37urfv79++eUXPf/88woMDLzlfQICAvTpp5/maF23cv/99+vdd99V37591aBBA/Xp00clSpTQgQMHNH78eG3dulXvvvuu6tevn6nllipVSvPnz1eHDh1UrVo19enTR9WrV5ck7d271z7CTdpruyfKiewefvhh3X///RowYIASExNVo0YNbd682d6gv/7M3FGjRqlp06Zq2LChXnzxRfn5+WnChAnavXu35s2bl+XLLuRWefPm1dNPP6133nlHYWFhatu2rdN7nZYtW2r69OkqX7687r33Xm3fvl1jx451eQhh6e+hmn18fNS0aVPt2bNHgwcPVtWqVZ2uu5jbNWvWTMWKFVOrVq1Uvnx5paam6ocfftC4ceMUEhKiF154IVPLc+X5uW/fvpo2bZqaN2+u4cOHq2DBgpo7d65+/vlnSd47koorWU+aNEmrV69WixYtVKJECV25csV+CZ8mTZpI+vv6X9HR0frss8/UuHFj5c+fX5GRkSpZsqQbt87Z7djeevXqaeLEierVq5dq1Kihnj17qlKlSkpOTtb333+vKVOmqHLlymrVqlWmah86dKiWLVumhg0basiQIcqfP7/mzJmj5cuXa8yYMfbnlLR9uUWLFho5cqQKFiyoOXPm2Pfl3KJmzZq699579e6778oYc9PRBn7//fd0jzcqVqzodE1O6e/m7ZIlS265/px6nHI7V3O/kSvH6/BABsiE1q1bGz8/P3P8+PGbztOxY0fj4+Njpk+fbho2bGgKFixo/Pz8TJEiRcwTTzxhdu7c6TD/u+++a0qVKmXy5s1rJJmEhARjjDExMTGmUqVK6a5j//79pnPnziYiIsL4+vqae+65x4wdO9Zcu3bNsm29nRISEoykm/58+OGHxhhjJJnevXs73T86Otp07drVYdrnn39u7r33XuPn52dKlChhRo8ebYYOHWpu/LO/fPmyeeWVV0x0dLTx9fU1hQsXNj179jRnzpzJqc21zK1y69q1a4a3r1mzxuV1/ec//zEtW7Y0RYoUMX5+fiYoKMhUrVrVjBgxwly8eNFh3rScT5w4ke6yoqOjTYsWLbKz6bfVrXJ+//33TYMGDUxUVJTx8fExoaGh5oEHHjDz5s1zWlZaNjf7WbVqldN91qxZYySZBQsW3I7Nva1yIltv2O+szMVVH374oalcubLx8/MzERER5sknnzQHDx50mCejjOvXr28kOWV8s+ft3OhWuf/555/GGNeySrNu3TrTvn17U7hwYePr62vCwsJMvXr1zNixY01iYqLT/H/++aeRZMaOHZuTm3rbWZmtN/2tZ5eVuXbt2tUEBwebnTt3mtjYWBMYGGjy589vevbsaS5cuOCGrcs6V3IZPXq0KVmypPH39zcVKlQwH374YbrHiek9h93s7zS91+u04/m1a9eamjVrGn9/f1O4cGEzaNAgk5ycbJ9v8+bNpnHjxqZQoULG19fXBAUFmVq1apkJEyZk+/g+LY9t27ZlOF+lSpVMTEyM/XdJZujQoQ7zHDx40HTv3t1eZ9r7m2PHjt00g+t99NFH9uPz8PBw89hjj5k9e/Zkanuy8jx54sQJ4+fnZySZb7/9Nt150v4GbrWc9HLJaZs3bzbt27c3BQsWND4+PqZAgQKmbdu2ZtOmTQ7zufpYp/n9999Nr169zN133238/f1NYGCgqVixounfv7/9+cPTZTa767e7a9euJjo62mG+06dPm27dupl8+fKZoKAg07RpU7NlyxYjybz33nsO827YsME0atTIBAcHm8DAQFO3bl2zdOnSnNrUHJGZferXX3/N8D3NmTNnTI8ePUyBAgVMUFCQadCggdmwYYOJiYlxeO5J+xtP+1zEmP+99m/fvt20atXKhISEmNDQUNOpUyf7848n+fjjj03nzp1N2bJlTUhIiPH19TUlSpQwTz31lNm7d699vpsd09yYmTG3fn42xpjdu3ebJk2amICAAJM/f37To0cPM2PGDCPJ/Pjjjzm2ve7kStabN282bdq0MdHR0cbf399ERESYmJgY8/nnnzss6+uvvzbVq1c3/v7+9s9bcpvbub0//PCD6dq1qylRooTx8/MzwcHBpnr16mbIkCEOn5lmZj/etWuXadWqlQkPDzd+fn6matWqDs8Fafbu3WuaNm3qsC9/9tlnTp9zpfc8fju99957RpKpWLFiurdndLyadqyR0WfDabZt2+b0vJnG1cfJm2SUe3qv964er8Pz2IxJZ/wlAAAAAACyITY2VidPnsz09ZoAeI65c+fqySef1H/+859Mn30JuNtzzz2nefPm6dSpU/Lz83N3OQBw23G87r0Y6hMAAAAAAAAZmjdvnv766y9VqVJFefLk0ZYtWzR27Fg9+OCDNP2Q6w0fPlxFihRR6dKldeHCBS1btkwfffSRXn/9dZp+AACvQ+MPwB3NGON0wfsb5c2b1+uuQwF4O/62AQCehNcteILQ0FDNnz9fI0eO1MWLF1W4cGHFxcVp5MiR7i4NuCVfX1+NHTtWhw4dUkpKisqWLat33nkn09cUBADAEzDUJ4A72tq1a9WwYcMM50lISFBcXNztKQiAJfjbBgB4El63AAAAAFiFxh+AO9r58+f1yy+/ZDhPqVKlFBERcZsqAmAF/rYBAJ6E1y0AAAAAVqHxBwAAAAAAAAAAAHiBPO4uAAAAAAAAAAAAAED20fgDAAAAAAAAAAAAvACNPwAAAAAAAAAAAMAL0PgDAAAAAAAAAAAAvACNPwAAAAC4Q8XHx6tatWr23+Pi4tS6dWu31QMAAAAAyB4afwAAAADggY4ePap//vOfKl26tPz9/VW8eHG1atVK33zzTY6tc/r06cqXL1+OLR8AAAAAkD0+7i4AAAAAAJA5+/bt0/333698+fJpzJgxuvfee5WcnKwvv/xSvXv31s8//+zuEgEAAAAAbsAZfwAAAADgYXr16iWbzaZvv/1W7du3V7ly5VSpUiX1799fW7Zssc937tw5PffccypQoIDCwsLUqFEj/fjjj1la59q1a9WtWzedO3dONptNNptN8fHxGj58uKpUqeI0f40aNTRkyBBJ/xtCdNiwYfZann/+eV29etU+vzFGY8aMUenSpRUYGKiqVavq008/td9+5swZPfnkk4qKilJgYKDKli2rhISELG0LAAAAAHgrzvgDAAAAAA9y+vRprVy5Um+88YaCg4Odbk8bitMYoxYtWih//vz64osvFB4ersmTJ6tx48b69ddflT9//kytt379+nr33Xc1ZMgQ/fLLL5KkkJAQnT17VsOGDdO2bdtUq1YtSdLOnTv1/fffa8GCBfb7f/PNNwoICNCaNWu0b98+devWTZGRkXrjjTckSa+//roWLVqkiRMnqmzZslq/fr26dOmiqKgoxcTEaPDgwdq7d69WrFihyMhI/fbbb7p8+XJWIgQAAAAAr0XjDwAAAAA8yG+//SZjjMqXL5/hfGvWrNGuXbt0/Phx+fv7S5LefvttLVmyRJ9++qmee+65TK3Xz89P4eHhstlsKlSokH16SEiImjVrpoSEBHvjLyEhQTExMSpdurTD/adNm6agoCBVqlRJw4cP10svvaQRI0bo8uXLeuedd7R69WrVq1dPklS6dGlt3LhRkydPVkxMjA4cOKDq1aurZs2akqSSJUtmqn4AAAAAuBPQ+AMAAAAAD2KMkSTZbLYM59u+fbsuXLigiIgIh+mXL1/W77//bmlNzz77rLp376533nlHefPm1Zw5czRu3DiHeapWraqgoCD77/Xq1dOFCxd08OBBHT9+XFeuXFHTpk0d7nP16lVVr15dktSzZ0+1a9dOO3bs0EMPPaTWrVurfv36lm4HAAAAAHg6Gn8AAAAA4EHKli0rm82mn376Sa1bt77pfKmpqSpcuLDWrl3rdFvacKBWadWqlfz9/bV48WL5+/srKSlJ7dq1c+m+NptNqampkqTly5eraNGiDrenna3YvHlz7d+/X8uXL9fXX3+txo0bq3fv3nr77bct3RYAAAAA8GQ0/gAAAADAg+TPn1/NmjXT+PHj9a9//cvpOn9nz55Vvnz5dN999+no0aPy8fGxbFhMPz8/Xbt2zWm6j4+PunbtqoSEBPn7+6tjx44OZ/dJ0o8//qjLly8rMDBQkrRlyxaFhISoWLFiuuuuu+Tv768DBw4oJibmpuuPiopSXFyc4uLi9MADD+ill16i8QcAAAAA16HxBwAAAAAeZsKECapfv75q166t4cOH695771VKSopWrVqliRMn6qefflKTJk1Ur149tW7dWm+99ZbuueceHT58WF988YVat25tv1ZeZpQsWVIXLlzQN998Yx+6M63B98wzz6hChQqSpP/85z9O97169ap69Oih119/Xfv379fQoUPVp08f5cmTR6GhoXrxxRfVr18/paamqkGDBkpMTNSmTZsUEhKirl27asiQIapRo4YqVaqkpKQkLVu2zL4+AAAAAMDfaPwBAAAAgIcpVaqUduzYoTfeeEMDBgzQkSNHFBUVpRo1amjixImS/h5C84svvtBrr72m7t2768SJEypUqJAefPBBFSxYMEvrrV+/vv7xj3+oQ4cOOnXqlIYOHar4+HhJfw9BWr9+fZ06dUp16tRxum/jxo1VtmxZPfjgg0pKSlLHjh3t95WkESNGqECBAho1apT++OMP+1mLgwYNkvT32YYDBw7Uvn37FBgYqAceeEDz58/P0nYAAAAAgLeymbQrwwMAAAAAkEXGGJUvX17PP/+8+vfv73BbXFyczp49qyVLlrinOAAAAAC4Q3DGHwAAAAAgW44fP65Zs2bpr7/+Urdu3dxdDgAAAADcsWj8AQAAAACypWDBgoqMjNSUKVN01113ubscAAAAALhjMdQnAAAAAAAAAAAA4AXyuLsAAAAAAAAAAAAAANlH4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC9A4w8AAAAAAAAAAADwAjT+AAAAAAAAAAAAAC/w/wERJJvFPbhl1wAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAEiCAYAAAAxqKXyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdAElEQVR4nO3dd3gU5f7+8XshyaYHSUKHCAhSBaQjmtBFQKqKESWA5VCOUkQFRUJREMSv6KEqhA6KFBUERalKEUGlWY6FovQaakjI8/vDX/awbAibZMImy/t1Xbkgz0555p7J7ux+dp6xGWOMAAAAAAAAAAAAAORp+TzdAQAAAAAAAAAAAADZR+EPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAACwyY8YM2Ww2x4+Pj49KlCihbt266e+//74pfbj99tsVFxfn+H3t2rWy2Wxau3ZtppazceNGxcfH6/Tp0y6PxcTEKCYmJlv9zGnx8fGy2WxZmnfevHl6++23re0QAAAAANwEPp7uAAAAAAB4m4SEBFWoUEEXL17U+vXrNWrUKK1bt047d+5UUFDQTe3L3XffrU2bNqlSpUqZmm/jxo0aNmyY4uLiVKBAAafHJk6caGEPc5958+Zp165d6tu3r6e7AgAAAACZQuEPAAAAACxWpUoV1apVS5LUqFEjXblyRSNGjNDSpUv12GOPpTvPhQsXFBgYaHlfQkNDVa9ePUuXmdkiIgAAAADg5mCoTwAAAADIYWmFt3379kmS4uLiFBwcrJ07d6p58+YKCQlRkyZNJEmXL1/WyJEjVaFCBdntdkVGRqpbt246duyY0zKTk5P1wgsvqEiRIgoMDFTDhg317bffuqz7ekN9btmyRW3atFF4eLj8/f1VtmxZxxVu8fHxGjhwoCSpdOnSjqFL05aR3lCfJ0+eVK9evVS8eHH5+fmpTJkyevnll5WUlOQ0nc1mU58+fTR79mxVrFhRgYGBqlatmpYtW3bDHNO2Zc6cOerfv7+KFCmigIAARUdH6/vvv7/h/KmpqRozZowj20KFCumJJ57QX3/95ZgmJiZGy5cv1759+5yGbQUAAACAvIAr/gAAAAAgh/3222+SpMjISEfb5cuX9eCDD+qZZ57RSy+9pJSUFKWmpqpt27basGGDXnjhBTVo0ED79u3T0KFDFRMTo++++04BAQGSpKeeekqzZs3S888/r2bNmmnXrl3q0KGDzp49e8P+fP7552rTpo0qVqyot956S6VKldLevXv1xRdfSJKefPJJnTx5Uu+++64WL16sokWLSrr+lX6XLl1So0aN9Pvvv2vYsGG66667tGHDBo0aNUo//PCDli9f7jT98uXLtXXrVg0fPlzBwcEaM2aM2rdvr19++UVlypS5Yf8HDx6su+++W++//77OnDmj+Ph4xcTE6Pvvv89w/p49e2rq1Knq06ePWrdurb1792rIkCFau3attm/froiICE2cOFFPP/20fv/9dy1ZsuSGfQEAAACA3ITCHwAAAABY7MqVK0pJSdGlS5e0bt06jRw5UiEhIXrwwQcd0yQnJ+vVV19Vt27dHG0LFizQypUrtWjRInXo0MHRXq1aNdWuXVszZsxQz5499fPPP2vmzJnq16+fxowZI0lq1qyZChcufN2hRK/Wu3dvlSpVSlu2bJG/v7+jPa0vJUqUUKlSpSRJNWrU0O23357h8mbOnKkdO3boww8/1EMPPeToT3BwsF588UWtWrVKzZo1c0x/8eJFffnllwoJCZH0z30IixUrpg8//FAvvfTSDfsfGRmpJUuWOK7Ea9iwocqVK6dRo0bpvffeS3een3/+WVOnTlWvXr307rvvOtpr1KihunXr6v/+7//02muvqVKlSipQoIDsdrvlQ6QCAAAAQE5jqE8AAAAAsFi9evXk6+urkJAQtW7dWkWKFNGKFStUuHBhp+k6duzo9PuyZctUoEABtWnTRikpKY6f6tWrq0iRIo6hNtesWSNJLkW+hx9+WD4+GX+/89dff9Xvv/+uHj16OBX9smP16tUKCgpSp06dnNrj4uIkSV999ZVTe6NGjRxFP0kqXLiwChUq5BgK9UZiY2Odht+MiopSgwYNHLmkJ+2xtD6lqVOnjipWrOjSRwAAAADIi7jiDwAAAAAsNmvWLFWsWFE+Pj4qXLiwY6jMqwUGBio0NNSp7ciRIzp9+rT8/PzSXe7x48clSSdOnJAkFSlSxOlxHx8fhYeHZ9i3tHsFlihRwr2NccOJEydUpEgRl3vhFSpUSD4+Po7+pkmvj3a7XRcvXnRrfddud1rbjz/+mGEfJaW7L4oVK+Z20REAAAAAcjMKfwAAAABgsYoVK6pWrVoZTnNtkUySIiIiFB4erpUrV6Y7T9pVcmmFs8OHD6t48eKOx1NSUlyKbNdKu8/gX3/9leF0mREeHq4tW7bIGOO0XUePHlVKSooiIiIsW5f0z3an15ZR0TPtsUOHDrkUPQ8ePGh5HwEAAADAExjqEwAAAAByidatW+vEiRO6cuWKatWq5fJz5513SpJiYmIkSXPnznWa/8MPP1RKSkqG6yhfvrzKli2r6dOnKykp6brT2e12SXLrKrwmTZro3LlzWrp0qVP7rFmzHI9baf78+TLGOH7ft2+fNm7c6MglPY0bN5YkzZkzx6l969at+umnn5z6mJmrDwEAAAAgN+GKPwAAAADIJTp37qy5c+fqgQce0HPPPac6derI19dXf/31l9asWaO2bduqffv2qlixorp06aK3335bvr6+atq0qXbt2qU333zTZfjQ9EyYMEFt2rRRvXr11K9fP5UqVUr79+/X559/7igmVq1aVZI0fvx4de3aVb6+vrrzzjud7s2X5oknntCECRPUtWtX7d27V1WrVtXXX3+t119/XQ888ICaNm1qaU5Hjx5V+/bt9dRTT+nMmTMaOnSo/P39NWjQoOvOc+edd+rpp5/Wu+++q3z58qlly5bau3evhgwZopIlS6pfv36OaatWrarFixdr0qRJqlmzpvLly3fDKzgBAAAAIDeg8AcAAAAAuUT+/Pn1ySefaPz48Zo9e7ZGjRolHx8flShRQtHR0Y5inCRNmzZNhQsX1owZM/TOO++oevXqWrRokTp37nzD9bRo0ULr16/X8OHD9eyzz+rSpUsqUaKEHnzwQcc0MTExGjRokGbOnKn33ntPqampWrNmTbpX1fn7+2vNmjV6+eWXNXbsWB07dkzFixfX888/r6FDh1qSzdVef/11bd26Vd26dVNiYqLq1KmjBQsWqGzZshnON2nSJJUtW1bTpk3ThAkTFBYWpvvvv1+jRo1yGib0ueee0+7duzV48GCdOXNGxhinKwwBAAAAILeyGd69AAAAAADygLVr16pRo0ZauHChOnXq5OnuAAAAAECuwz3+AAAAAAAAAAAAAC9A4Q8AAAAAAAAAAADwAgz1CQAAAAAAAAAAAHgBrvgDAAAAAAAAAAAAvACFPwAAAAAAAAAAAMALeLTwt3btWtlstnR/Nm/e7MmuAQAAAAAAAAAAAHmKj6c7IEmvv/66GjVq5NRWpUoVt+dPTU3VwYMHFRISIpvNZnX3AAAAAAAAAAAAAI8wxujs2bMqVqyY8uXL+Jq+XFH4K1eunOrVq5fl+Q8ePKiSJUta2CMAAAAAAAAAAAAg9zhw4IBKlCiR4TS5ovCXXSEhIZL+2eDQ0FAP9waZlZycrC+++ELNmzeXr6+vp7uT55GndcjSWuRpLfK0DllaizytRZ7WIUtrkae1yNM6ZGkt8rQWeVqHLK1FntYiT+uQpbXIM29LTExUyZIlHfWwjOSKwl/v3r3VuXNnBQYGqn79+hoyZIgaNmzo9vxpw3uGhoZS+MuDkpOTFRgYqNDQUJ5wLECe1iFLa5GntcjTOmRpLfK0FnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK1DltYiT+/gzu3uPFr4CwsL03PPPaeYmBiFh4frt99+09ixYxUTE6Ply5erRYsW6c6XlJSkpKQkx++JiYmS/jlwk5OTb0rfYZ20fca+swZ5WocsrUWe1iJP65CltcjTWuRpHbK0FnlaizytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPPO2zOw3mzHG5GBfMu306dOqWrWqChYsqB9//DHdaeLj4zVs2DCX9nnz5ikwMDCnuwgAAAAAAAAAAADcFBcuXFBsbKzOnDlzw5Evc13hT5J69uypyZMn68KFCwoICHB5PL0r/kqWLKnjx48z1GcelJycrFWrVqlZs2ZcYmwB8rQOWVqLPK1FntYhS2uRp7XI0zpkaS3ytBZ5WocsrUWe1iJP65CltcjTWuRpHbK0FnnmbYmJiYqIiHCr8Jcr7vF3rbRa5PXGKrXb7bLb7S7tvr6+HLB5GPvPWuRpHbK0FnlaizytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPK1FntYhS2uRp7XI0zpkaS3yzJsys8/y5WA/suTUqVNatmyZqlevLn9/f093BwAAAAAAAAAAAMgTPHrFX2xsrEqVKqVatWopIiJC//3vfzVu3DgdOXJEM2bM8GTXAAAAAAAAAAAAgDzFo4W/u+66Sx988IEmT56sc+fOqWDBgmrYsKFmz56t2rVre7JrAAAAAAAAAAAAQJ7i0cLfSy+9pJdeesmTXQCAW0abd7/26Pp9banqWlJ6ZMomJRvPjTT96b8bemzdAAAAAAAAAJCTct09/gAAAAAAAAAAAABkHoU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8AIU/AAAAAAAAAAAAwAtQ+AMAAAAAAAAAAAC8QK4q/L3//vuy2WwKDg72dFcAAAAAAAAAAACAPCXXFP7+/vtvPf/88ypWrJinuwIAAAAAAAAAAADkObmm8Pevf/1L9913n5o1a+bprgAAAAAAAAAAAAB5Tq4o/M2ZM0fr1q3TxIkTPd0VAAAAAAAAAAAAIE/yeOHv6NGj6tu3r0aPHq0SJUp4ujsAAAAAAAAAAABAnuTj6Q706tVLd955p3r27On2PElJSUpKSnL8npiYKElKTk5WcnKy5X1EzkrbZ+w7a5CndbwtS19bqofXb67613N98Zb96W3HpyeRpbXI01rkaR2ytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0DllaizzztszsN5sxxuRgXzK0aNEixcbG6vvvv1elSpUkSXFxcfroo4907ty5684XHx+vYcOGubTPmzdPgYGBOdZfAAAAAAAAAAAA4Ga6cOGCYmNjdebMGYWGhmY4rccKf+fOndMdd9yhLl266JVXXnG09+rVS5988on++usv+fr6KigoyGXe9K74K1mypI4fP37DDUbuk5ycrFWrVqlZs2by9fX1dHfyPPK0jrdl+ciUTR5dv6/NKLbEac37q4CSjc1j/fjgmfoeW7eVvO349CSytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0DllaizytRZ7WIUtrkWfelpiYqIiICLcKfx4b6vP48eM6cuSIxo0bp3Hjxrk8ftttt6lt27ZaunSpy2N2u112u92l3dfXlwM2D2P/WYs8reMtWSYbT9/WNfX/98Pm0b54w768mrccn7kBWVqLPK1FntYhS2uRp7XI0zpkaS3ytBZ5WocsrUWe1iJP65Cltcgzb8rMPvNY4a9IkSJas2aNS/vo0aO1bt06rVixQhERER7oGQAAAAAAAAAAAJD3eKzw5+/vr5iYGJf2GTNmKH/+/Ok+BgAAAAAAAAAAACB9nh73DQAAAAAAAAAAAIAFcl3hb8aMGTp37pynuwEAAAAAAAAAAADkKbmu8AcAAAAAAAAAAAAg8yj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF6Awh8AAAAAAAAAAADgBSj8AQAAAAAAAAAAAF7AJzszX758WUePHlVqaqpTe6lSpbLVKQAAAAAAAAAAAACZk6XC33//+191795dGzdudGo3xshms+nKlSuWdA4AAAAAAAAAAACAe7JU+IuLi5OPj4+WLVumokWLymazWd0vAAAAAAAAAAAAAJmQpcLfDz/8oG3btqlChQpW9wcAAAAAAAAAAABAFuTLykyVKlXS8ePHre4LAAAAAAAAAAAAgCzKUuHvjTfe0AsvvKC1a9fqxIkTSkxMdPoBAAAAAAAAAAAAcHNlaajPpk2bSpKaNGni1G6Mkc1m05UrV7LfMwAAAAAAAAAAAABuy1Lhb82aNZas/IcfftDLL7+snTt36tixYwoICNCdd96p3r17q0uXLpasAwAAAAAAAAAAALgVZKnwFx0dbcnKT58+rZIlS+rRRx9V8eLFdf78ec2dO1ePP/649u7dq1deecWS9QAAAAAAAAAAAADeLkuFP+mfot20adP0008/yWazqVKlSurevbvCwsLcXkZMTIxiYmKc2lq3bq0///xTU6dOpfAHAAAAAAAAAAAAuClfVmb67rvvVLZsWf3f//2fTp48qePHj+utt95S2bJltX379mx3KiIiQj4+Wa5JAgAAAAAAAAAAALecLFXX+vXrpwcffFDvvfeeo0CXkpKiJ598Un379tX69esztbzU1FSlpqbq1KlTWrhwoT7//HP95z//yUrXAAAAAAAAAAAAgFtSlgp/3333nVPRT5J8fHz0wgsvqFatWpleXq9evTRlyhRJkp+fn9555x0988wz150+KSlJSUlJjt8TExMlScnJyUpOTs70+uFZafuMfWcN8rSOt2Xpa0v18PrNVf96ri/esj+97fj0JLK0FnlaizytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPK1FntYhS2uRZ96Wmf1mM8aYzK6gcOHCmj17tpo3b+7U/vnnn+uJJ57QkSNHMrW8/fv36+jRozp69Kg+/fRTTZ06VW+88Yaef/75dKePj4/XsGHDXNrnzZunwMDATK0bAAAAAAAAAAAAyK0uXLig2NhYnTlzRqGhoRlOm6XC37PPPqslS5bozTffVIMGDWSz2fT1119r4MCB6tixo95+++2s9l2S1LNnT73//vs6ePCgIiMjXR5P74q/kiVL6vjx4zfcYOQ+ycnJWrVqlZo1ayZfX19PdyfPI0/reFuWj0zZ5NH1+9qMYkuc1ry/CijZ2DzWjw+eqe+xdVvJ245PTyJLa5GntcjTOmRpLfK0FnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeeZtiYmJioiIcKvwl6WhPt98803ZbDY98cQTSklJkST5+vqqZ8+eGj16dFYW6aROnTqaPHmy/vjjj3QLf3a7XXa73aXd19eXAzYPY/9Zizyt4y1ZJpt8Hu5B6v/vh82jffGGfXk1bzk+cwOytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0DllaizytRZ7WIUtrkWfelJl9lqXCn5+fn8aPH69Ro0bp999/lzFGd9xxh2XDbK5Zs0b58uVTmTJlLFkeAAAAAAAAAAAA4O2yVPhLExgYqKpVq2Z5/qefflqhoaGqU6eOChcurOPHj2vhwoX64IMPNHDgwHSv9gMAAAAAAAAAAADgyu3CX4cOHTRjxgyFhoaqQ4cOGU67ePFit5ZZv359JSQkaObMmTp9+rSCg4NVrVo1zZ49W126dHG3awAAAAAAAAAAAMAtz+3CX1hYmGw2myQpNDTU8f/s6Natm7p165bt5QAAAAAAAAAAAAC3OrcLfwkJCY7/z5gxIyf6AgAAAAAAAAAAACCL8mVlpsaNG+v06dMu7YmJiWrcuHF2+wQAAAAAAAAAAAAgk7JU+Fu7dq0uX77s0n7p0iVt2LAh250CAAAAAAAAAAAAkDluD/UpSTt27HD8f8+ePTp8+LDj9ytXrmjlypUqXry4db0DAAAAAAAAAAAA4JZMFf6qV68um80mm82W7pCeAQEBevfddy3rHAAAAAAAAAAAAAD3ZKrw9+eff8oYozJlyujbb79VZGSk4zE/Pz8VKlRI+fPnt7yTAAAAAAAAAAAAADKWqcJfVFSUJCk1NTVHOgMAAAAAAAAAAAAga/JlZaZRo0Zp+vTpLu3Tp0/XG2+8ke1OAQAAAAAAAAAAAMicLBX+pkyZogoVKri0V65cWZMnT852pwAAAAAAAAAAAABkTpYKf4cPH1bRokVd2iMjI3Xo0KFsdwoAAAAAAAAAAABA5mSp8FeyZEl98803Lu3ffPONihUrlu1OAQAAAAAAAAAAAMgcn6zM9OSTT6pv375KTk5W48aNJUlfffWVXnjhBQ0YMMDSDgIAAAAAAAAAAAC4sSwV/l544QWdPHlSvXr10uXLlyVJ/v7+evHFFzVo0CBLOwgAAAAAAAAAAADgxrJU+LPZbHrjjTc0ZMgQ/fTTTwoICFC5cuVkt9ut7h8AAAAAAAAAAAAAN2Sp8JcmODhYtWvXtqovAAAAAAAAAAAAALLI7cJfhw4dNGPGDIWGhqpDhw4ZTrt48eJsdwwAAAAAAAAAAACA+9wu/IWFhclmszn+DwAAAAAAAAAAACD3cLvwl5CQkO7/AQAAAAAAAAAAAHhePk93AAAAAAAAAAAAAED2uX3FX40aNRxDfd7I9u3bs9whAAAAAAAAAAAAAJnnduGvXbt2jv9funRJEydOVKVKlVS/fn1J0ubNm7V792716tXL8k4CAAAAAAAAAAAAyJjbhb+hQ4c6/v/kk0/q2Wef1YgRI1ymOXDggHW9AwAAAAAAAAAAAOCWLN3jb+HChXriiSdc2rt06aJFixZlu1MAAAAAAAAAAAAAMidLhb+AgAB9/fXXLu1ff/21/P39s90pAAAAAAAAAAAAAJnj9lCfV+vbt6969uypbdu2qV69epL+ucff9OnT9eqrr1raQQAAAAAAAAAAAAA3lqXC30svvaQyZcpo/PjxmjdvniSpYsWKmjFjhh5++GFLOwgAAAAAAAAAAADgxrJU+JOkhx9+mCIfAAAAAAAAAAAAkEtk6R5/knT69Gm9//77Gjx4sE6ePClJ2r59u/7++2+3l7F69Wp1795dFSpUUFBQkIoXL662bdtq27ZtWe0WAAAAAAAAAAAAcEvK0hV/O3bsUNOmTRUWFqa9e/fqySefVMGCBbVkyRLt27dPs2bNcms5kyZN0okTJ/Tcc8+pUqVKOnbsmMaNG6d69erp888/V+PGjbPSPQAAAAAAAAAAAOCWk6XCX//+/RUXF6cxY8YoJCTE0d6yZUvFxsa6vZwJEyaoUKFCTm3333+/7rjjDr3++usU/gAAAAAAAAAAAAA3ZWmoz61bt+qZZ55xaS9evLgOHz7s9nKuLfpJUnBwsCpVqqQDBw5kpWsAAAAAAAAAAADALSlLhT9/f38lJia6tP/yyy+KjIzMVofOnDmj7du3q3LlytlaDgAAAAAAAAAAAHArydJQn23bttXw4cP14YcfSpJsNpv279+vl156SR07dsxWh3r37q3z58/r5Zdfvu40SUlJSkpKcvyeVoRMTk5WcnJyttaPmy9tn7HvrEGe1vG2LH1tqR5ev7nqX8/1xVv2p7cdn55EltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5GntcjTOmRpLfLM2zKz32zGGJPZFSQmJuqBBx7Q7t27dfbsWRUrVkyHDx9W/fr19dlnnykoKCizi5QkDRkyRCNHjtS7776rPn36XHe6+Ph4DRs2zKV93rx5CgwMzNK6AQAAAAAAAAAAgNzmwoULio2N1ZkzZxQaGprhtFkq/KVZvXq1tm/frtTUVN19991q2rRpVhelYcOGKT4+Xq+99poGDx6c4bTpXfFXsmRJHT9+/IYbjNwnOTlZq1atUrNmzeTr6+vp7uR55Gkdb8vykSmbPLp+X5tRbInTmvdXASUbm8f68cEz9T22bit52/HpSWRpLfK0FnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK1DltYiz7wtMTFRERERbhX+Mj3UZ0pKivz9/fXDDz+ocePGaty4cZY7miat6BcfH3/Dop8k2e122e12l3ZfX18O2DyM/Wct8rSOt2SZbLJ0W1cLpf7/ftg82hdv2JdX85bjMzcgS2uRp7XI0zpkaS3ytBZ5WocsrUWe1iJP65CltcjTWuRpHbK0FnnmTZnZZ5n+5NXHx0dRUVG6cuVKZmdN14gRIxQfH69XXnlFQ4cOtWSZAAAAAAAAAAAAwK0m01f8SdIrr7yiQYMGac6cOSpYsGCWVz5u3Di9+uqruv/++9WqVStt3rzZ6fF69epledkAAAAAAAAAAADArSRLhb933nlHv/32m4oVK6aoqCgFBQU5Pb59+3a3lvPpp59KklauXKmVK1e6PJ6N2w8CAAAAAAAAAAAAt5QsFf7atWsnm82W7cLc2rVrszU/AAAAAAAAAAAAgH9kqvB34cIFDRw4UEuXLlVycrKaNGmid999VxERETnVPwAAAAAAAAAAAABuyJeZiYcOHaoZM2aoVatWevTRR/Xll1+qZ8+eOdU3AAAAAAAAAAAAAG7K1BV/ixcv1rRp09S5c2dJ0mOPPaZ77rlHV65cUf78+XOkgwAAAAAAAAAAAABuLFNX/B04cED33nuv4/c6derIx8dHBw8etLxjAAAAAAAAAAAAANyXqcLflStX5Ofn59Tm4+OjlJQUSzsFAAAAAAAAAAAAIHMyNdSnMUZxcXGy2+2OtkuXLulf//qXgoKCHG2LFy+2rocAAAAAAAAAAAAAbihThb+uXbu6tHXp0sWyzgAAAAAAAAAAAADImkwV/hISEnKqHwAAAAAAAAAAAACyIVP3+AMAAAAAAAAAAACQO1H4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC1D4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC1D4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC1D4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC1D4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC1D4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC1D4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC1D4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC1D4AwAAAAAAAAAAALwAhT8AAAAAAAAAAADAC3i08Hf27Fm98MILat68uSIjI2Wz2RQfH+/JLgEAAAAAAAAAAAB5kkcLfydOnNDUqVOVlJSkdu3aebIrAAAAAAAAAAAAQJ7m48mVR0VF6dSpU7LZbDp+/Ljef/99T3YHAAAAAAAAAAAAyLM8Wviz2WyeXD0AAAAAAAAAAADgNTw61CcAAAAAAAAAAAAAa3j0ir+sSkpKUlJSkuP3xMRESVJycrKSk5M91S1kUdo+Y99Zgzyt421Z+tpSPbx+c9W/nuuLt+xPbzs+PYksrUWe1iJP65CltcjTWuRpHbK0FnlaizytQ5bWIk9rkad1yNJa5Jm3ZWa/2YwxJgf74rbjx48rMjJSQ4cOVXx8fIbTxsfHa9iwYS7t8+bNU2BgYA71EAAAAAAAAAAAALi5Lly4oNjYWJ05c0ahoaEZTpsnr/gbNGiQ+vfv7/g9MTFRJUuWVPPmzW+4wch9kpOTtWrVKjVr1ky+vr6e7k6eR57W8bYsH5myyaPr97UZxZY4rXl/FVCy8dw9Xj94pr7H1m0lbzs+PYksrUWe1iJP65CltcjTWuRpHbK0FnlaizytQ5bWIk9rkad1yNJa5Jm3pY186Y48Wfiz2+2y2+0u7b6+vhyweRj7z1rkaR1vyTLZePq2rqn/vx82j/bFG/bl1bzl+MwNvCXLNu9+7dH1+9pS1bWk1GX6dx79W//03w09tu6c4C3HZ25AltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5Fn3pSZfebpT4EBAAAAAAAAAAAAWMDjV/ytWLFC58+f19mzZyVJe/bs0UcffSRJeuCBB7hnHwAAAAAAAAAAAOAGjxf+evbsqX379jl+X7hwoRYuXChJ+vPPP3X77bd7qGcAAAAAAAAAAABA3uHxwt/evXs93QUAAAAAAAAAAAAgz+MefwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEfT3cAAIC8ps27X3u6C/K1paprSemRKZuUbDz3PZ5P/93QY+sGAAAAAAAA4IzCHwAA8ChPF1JzSxFVopAKAAAAAACA7GGoTwAAAAAAAAAAAMALUPgDAAAAAAAAAAAAvABDfQIAAADp8PQwtFLuGYqWYWgBAAAAAMgbuOIPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvwFCfAHItTw+xlluGV5MYYg0AAAAAAAAAcGNc8QcAAAAAAAAAAAB4Aa74AwAAAJDjuJL/f7iSHwAAAACQU7jiDwAAAAAAAAAAAPACFP4AAAAAAAAAAAAAL0DhDwAAAAAAAAAAAPACFP4AAAAAAAAAAAAAL+Dxwt+5c+fUt29fFStWTP7+/qpevboWLFjg6W4BAAAAAAAAAAAAeYqPpzvQoUMHbd26VaNHj1b58uU1b948Pfroo0pNTVVsbKynuwcAAAAAAIA8rs27X3u6C/K1paprSemRKZuUbDz3XfxP/93QY+sGAAA5z6OFv88++0yrVq1yFPskqVGjRtq3b58GDhyoRx55RPnz5/dkFwEAAAAgV+HD6//hw2sAAAAAcObRwt+SJUsUHByshx56yKm9W7duio2N1ZYtW9SgQQMP9Q4AAAAAAAAAcg5f6PkfvtADANbwaOFv165dqlixonx8nLtx1113OR6n8JfzPH2CwckFAAAAAAAAAMBbefozeInP4W8lHi38nThxQmXKlHFpL1iwoOPx9CQlJSkpKcnx+5kzZyRJJ0+eVHJycg701MtdOuvZ9duMLly4IF3ylYzNY9243vGWGXHTv7WgJ9njazN6qPgFPTJ+lZI9mOeM7nWyvxCOTQcrjk/y/IdXZCmRp5VySZYSeVrJK7KUyNNKuSRLyYI8PZ2llGvy5BzeWlacw3s6z9ySpZT9PD2dpZR78vSK95cSz50Wyi3HpmTB8cmx6eANx6aUe45PXtetxd+6dSx5f3kLOnv2n2PIGHPDaW3GnalySPny5VW2bFmtWLHCqf3QoUMqVqyYRo0apZdeesllvvj4eA0bNuxmdRMAAAAAAAAAAADwqAMHDqhEiRIZTuPRK/7Cw8PTre6ePHlS0v+u/LvWoEGD1L9/f8fvqampOnnypMLDw2Wzebbyj8xLTExUyZIldeDAAYWGhnq6O3keeVqHLK1FntYiT+uQpbXI01rkaR2ytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0DllaizzzNmOMzp49q2LFit1wWo8W/qpWrar58+crJSXF6T5/O3fulCRVqVIl3fnsdrvsdrtTW4ECBXKsn7g5QkNDecKxEHlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8866wsDC3pvPcHRwltW/fXufOndOiRYuc2mfOnKlixYqpbt26HuoZAAAAAAAAAAAAkLd49Iq/li1bqlmzZurZs6cSExN1xx13aP78+Vq5cqXmzJmj/Pnze7J7AAAAAAAAAAAAQJ7h0cKfJC1evFgvv/yyXn31VZ08eVIVKlTQ/Pnz1blzZ093DTeJ3W7X0KFDXYZvRdaQp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5GntcjTOmRpLfK0FnlahyytRZ7WIk/rkKW1yPPWYTPGGE93AgAAAAAAAAAAAED2ePQefwAAAAAAAAAAAACsQeEPAAAAAAAAAAAA8AIU/pAt77zzjmw2m6pUqZKl+ffs2aP4+Hjt3bvX2o7lMTNmzJDNZrvuz9q1ay1ZT3x8vGw2myXLyg3Scvvuu+/SffzXX3/V888/r5o1a6pAgQIqWLCg7rnnHn300UeZXtf58+fVuXNn3XnnnQoJCVFQUJAqV66skSNH6vz5807TpuV8/PhxrV27NsN9e/VPbnWjnCVdd5tGjx7tNF1aNtf72bt3r+Li4tzKKy4uLoe3POflRLbecNxZmYu79u3bp+7du6tYsWKy2+0qXry42rdv7zRNWsaFChXS2bNnXZZx++23q3Xr1hn2MywsTDExMVq+fHmW+pmT3Mldci+rNBs2bNDDDz+s4sWLy8/PT2FhYWrQoIEmTZqk8+fP3/A5Ie0nJiYmB7b45rEyW2/6W88uK3ONi4tTcHBwTnb3pnE3l9zm9ttvT/fY/de//pWt5V59np3eObUxRnfccYfLc43NZlN8fHy21p0T9u7d65RPvnz5FB4ergceeECbNm2SJH388cey2WyaPHnydZezatUq2Ww2vfXWW5LkOP8KCQnRuXPnXKbft2+f8uXL55FcNm/erIceekhFixaVn5+fihQpok6dOjm2N82176l8fHxUokQJdevWTX///bfLcv/44w/16dNH5cuXV0BAgAIDA1W5cmW98sor6U6fF2U2u6vfl8fFxen222+/uR3OZTJ7TFkh7W98xowZjrarX/u9xZYtW9S+fXuVKlVKdrtdhQsXVv369TVgwABPd83rWJH1hQsXFB8fb9lnUznpZm3vjh071K1bN5UuXVr+/v4KDg7W3XffrTFjxujkyZOO6dJ7j5gT0t4XXN3nm/083r59ewUEBOj06dPXneaxxx6Tr6+vjhw5IpvNpj59+mS4zJiYGNlsNpUpU0bp3a1s/fr1jufoq58307i7n/KyzOT+xhtvuLzew3v5eLoDyNumT58uSdq9e7e2bNmiunXrZmr+PXv2aNiwYYqJibnl31RIUkJCgipUqODSXqlSJQ/0Ju/74osvtHz5cj3++OOqXbu2UlJS9MEHH+ihhx7SsGHD9Oqrr7q9rOTkZBlj1L9/f5UuXVr58uXT+vXrNXz4cK1du1ZffvlluvPdfffdLm+s27dvr7Jly+rNN9/M1vblNp06dXI5mS5VqlS6065cuVJhYWEu7UWLFtWQIUOcPuTbvn27evfurddff12NGjVytEdGRlrU89wvM9lKt85xl9lcrmfXrl2KiYlRmTJl9Oabb6pEiRI6dOiQPv/883SnP3bsmMaMGaMRI0Zkqp+pqan6448/NHLkSLVp00affvqpWrVqlen+elJmsho6dKiGDx+uBg0aaMSIESpbtqwuXLigjRs3Kj4+Xr/++qsGDBig+++/3zHPoUOH1KFDB/373/9WbGysoz00NPSmbJ8nZfY4lG6dv/XsyEqu8Jx77rnH5dgtXLiwJcsOCQnRtGnTXL5IsG7dOv3+++8KCQlxat+0aZNKlChhybpzQtrz5JUrV7R7924NGzZMjRo10qZNm9SqVSsVKVJE06dPv27hNCEhQb6+vnr88ccdbb6+vo7z5R49erhMHxISosTExBzdrmu9++676tu3r+rUqaMxY8YoKipK+/fv14QJE9SwYUONHz/e5UPDtPdUFy9e1Pr16zVq1CitW7dOO3fuVFBQkCRp2bJl6ty5syIiItSnTx/VqFFDNptNO3fu1PTp07V8+XJ9//33N3VbrZaV7K42ZMgQPffcczexx7mXO8cU3Ld8+XI9+OCDiomJ0ZgxY1S0aFEdOnRI3333nRYsWKBx48Z5uotew6qsL1y4oGHDhklSrv5C3s3a3vfee0+9evXSnXfeqYEDB6pSpUpKTk7Wd999p8mTJ2vTpk1asmSJlZuWJ/To0UNLly7VvHnz1KtXL5fHz5w5oyVLlqh169aZOr8LCQnRn3/+qdWrV6tJkyZOj02fPl2hoaHpnp/cKvspM7l3795d0dHRKlq0qAd6ipvOAFm0detWI8m0atXKSDJPPfVUppexcOFCI8msWbPGrenPnz+f6XXkBQkJCUaS2bp1a46uZ+jQocab/uxvlNuxY8dMamqqS3urVq1MYGCguXTpUrb78MILLxhJ5vfff3e0peV87NixdOeJiooyrVq1yva6bxZ3jk9Jpnfv3jdc1o2ySc+aNWuMJLNw4UK358krbma2eem4szKXG0lNTTXVq1c31atXv+FzQlrG999/vwkKCjKHDh1yejy9jNPr52+//WYkmaZNm2a7/1a6Ue6ZyerDDz80kkyPHj3SfR5OTEw0n3/+uUv7n3/+aSSZsWPHZm0jcikrs/Wmv/XssjLXrl27mqCgoJzo5k13s84rrZZTx25aHk8++aQJCAgwZ86ccXq8S5cupn79+qZy5comOjra8vVfvnzZJCcnW7a86z1PfvXVV47tNOZ/56g7d+50WcapU6eMv7+/6dixo6Mt7W+gc+fOpkGDBk7Tp6ammqioKPPUU08ZSWbo0KGWbU9Gvv76a5MvXz7TunVrlwyTk5NN69atTb58+czXX39tjLn+sT9kyBAjycyZM8cYY8wff/xhgoKCTI0aNczp06dd1puammoWLVqUQ1t1c2Q1uz///NMDvc293D2mrJT2N56QkOBoy8p7qNzsvvvuM2XLlk33ufHKlSse6JH3sirrY8eO3dTn/6y6Gdu7ceNGkz9/fnP//fene36ZlJRkPv74Y8fvN+vcPO1zk6s/X+3atauJiorK8XWnSUlJMcWKFTM1a9ZM9/FJkyYZSebTTz81xrj3nj46OtpUrlzZ1KtXz8TGxjo9lpiYaAIDAx3nJ1c/b2Z2P+Vlmc0dtw6G+kSWTZs2TZI0evRoNWjQQAsWLNCFCxecppk0aZKqVaum4OBghYSEqEKFCho8eLCkf4bNeOihhyRJjRo1crk0OyYmRlWqVNH69evVoEEDBQYGqnv37pKk/fv3q0uXLipUqJDsdrsqVqyocePGKTU19SZtvWekXQY/e/ZsVaxYUYGBgapWrZqWLVvmMu3y5ctVvXp12e12lS5d+rrf/L906ZIGDRqk0qVLy8/PT8WLF1fv3r0zvEQ8r4iIiEh3eLM6derowoULllzWn3bVmY8PF1ADedH69ev1ww8/qG/fvrLb7W7NM3LkSKWkpGR5qLOyZcsqMjJS+/bty9L8npKZrIYPH67bbrvNMST4tUJCQtS8efOc6mqek5XjEDeWlVx3796tJk2aKCgoSJGRkerTp4/L+W1ed+nSJQ0YMEDVq1dXWFiYChYsqPr16+vjjz92mTbt3DMhIUF33nmnAgICVKtWLW3evFnGGI0dO1alS5dWcHCwGjdurN9++81p/rTz+Q0bNqhevXoKCAhQ8eLFNWTIEF25cuVmbbIk6dFHH5UkzZ8/39F25swZLVq0yPEe42rpDWn5999/6+mnn1bJkiXl5+enYsWKqVOnTjpy5Iik/w2zNXv2bA0YMEDFixeX3W535DJ9+nRVq1ZN/v7+KliwoNq3b6+ffvrJku2rV6+eJDleW9Ku2EtISHCZdv78+bp06VK62929e3dt3LhRv/zyi6Ptyy+/1L59+9StWzdL+uquUaNGyWazadKkSS7n2j4+Ppo4caJbw3xfm81bb72l8+fPa+LEiemOQGGz2dShQweLtsIzrMguvSHiTp8+rR49eqhgwYIKDg5Wq1at9Mcff6T79/L111+rSZMmCgkJUWBgoBo0aJArhzrPirRj6rfffpPNZnN8NnK1FStWyGaz6ZNPPnFM261bN5UrV06BgYEqXry42rRpo507d7q93gMHDqhDhw4KDQ1VWFiYunTpomPHjlmzUTfRiRMnFBERke576Hz5/vcxZdoQiStXrtTdd9+tgIAAVahQwTHy1NVu9Pws/fMa37x5cwUGBioyMlK9e/fW8uXLrzsUtDdwN+vVq1crJiZG4eHhCggIUKlSpdSxY0dduHBBe/fudXzuMWzYsFx9642bsb2vv/66bDabpk6dmu75pZ+fnx588EGXdneO4127dqlt27a67bbb5O/vr+rVq2vmzJku0/3888+6//77FRgYqIiICP3rX/9K91YUN1v+/PnVtWtXbdu2Ld3ntoSEBBUtWlQtW7bM9LK7d++uxYsXO31WuWDBAklS586dXabP6n7KizKTe3pDe+em83VYi8IfsuTixYuaP3++ateurSpVqqh79+46e/asFi5c6JhmwYIF6tWrl6Kjo7VkyRItXbpU/fr1c9wPrVWrVnr99dclSRMmTNCmTZscQ9OkOXTokLp06aLY2Fh99tln6tWrl44dO6YGDRroiy++0IgRI/TJJ5+oadOmev755284NnRud+XKFaWkpDj9XPsku3z5cv3nP//R8OHDtWjRIseHBn/88Ydjmq+++kpt27ZVSEiIFixYoLFjx+rDDz90eeNvjFG7du305ptv6vHHH9fy5cvVv39/zZw5U40bN1ZSUtJN2e6bbc2aNYqMjFShQoUyPa8xRikpKUpMTNTKlSs1btw4Pfroo1kaXtDbzJs3TwEBAbLb7apZs2a6HzSlcedYx/9kJttbiRW5rF+/XtI/hagHHnjAMe5/69at9fPPP6c7T1RUlHr16qVp06bp119/zfQ6T506pRMnTuS54WrdzerQoUPatWuX44MV3FhWjkPcWGZzTU5O1gMPPKAmTZpo6dKl6tOnj6ZMmaJHHnnkZnc9RyUlJenkyZN6/vnntXTpUs2fP18NGzZUhw4dNGvWLJfply1bpvfff1+jR4/W/PnzdfbsWbVq1UoDBgzQN998o//85z+aOnWq9uzZo44dO7rcf+Xw4cPq3LmzHnvsMX388cfq1KmTRo4cme4QguvXr1dISIh8fX1VqVIljRs3zrLzg9DQUHXq1Mnpg7b58+crX758bu3jv//+W7Vr19aSJUvUv39/rVixQm+//bbCwsJ06tQpp2kHDRqk/fv3a/Lkyfr0009VqFAhjRo1Sj169FDlypW1ePFijR8/Xjt27FD9+vX13//+N9vbl1ZcTHttKV++vBo2bKg5c+YoOTnZadqEhAQVL15cLVq0cFlO06ZNFRUV5ZTTtGnTdN9996lcuXLZ7qe7rly5ojVr1qhWrVrXHXK1ZMmSqlmzplavXp3hcXJtNl988YUKFy7sKN54Gyuzu1pqaqratGmjefPm6cUXX9SSJUtUt25dpyG706xbt06NGzfWmTNnNG3aNM2fP18hISFq06aNPvjgg2xtX26QdkwVK1ZMNWrUSPccdMaMGSpUqJAeeOABSdLBgwcVHh6u0aNHa+XKlZowYYJ8fHxUt25dp0J7Rtq3b6877rhDH330keLj47V06VK1aNHC5W88t6tfv762bNmiZ599Vlu2bMmw/z/++KMGDBigfv366eOPP9Zdd92lHj16OF7jJfeenw8dOqTo6Gj98ssvmjRpkmbNmqWzZ8/m+c+QbsSdrPfu3atWrVrJz89P06dP18qVKzV69GgFBQXp8uXLKlq0qFauXCnpny+VpH12N2TIkJu9OTeU09t75coVrV69WjVr1lTJkiXd7pc7x/Evv/yiBg0aaPfu3XrnnXe0ePFiVapUSXFxcRozZoxjuiNHjig6Olq7du3SxIkTNXv2bJ07dy7XHMvdu3eXzWZzKWzu2bNH3377rbp27ar8+fNnermdO3dW/vz5nb7ANW3aNHXq1MnlthBZ3U95WXZzz8z5OvIQz15wiLxq1qxZRpKZPHmyMcaYs2fPmuDgYHPvvfc6punTp48pUKBAhsvJaKjP6OhoI8l89dVXTu0vvfSSkWS2bNni1N6zZ09js9nML7/8ksWt8py0IUTS+8mfP79jOkmmcOHCJjEx0dF2+PBhky9fPjNq1ChHW926dU2xYsXMxYsXHW2JiYmmYMGCTkN9rly50kgyY8aMcerPBx98YCSZqVOn5sTmWiYrQ1m99957RpIZP358ltY5f/58p/3TrVs3l2EkvG0YNndyjo2NNXPnzjXr1683H330kWnZsqWRZF555RWn6dKySe+nbNmy6S77Vh/qM7PZesNxZ2UuN/LMM88YSSY0NNT06NHDfPnll2b27NkmKirKREREmIMHDzqmvTrj48ePm7CwMKdh0q431GevXr1McnKyuXz5svnpp58cfZ0wYUKm+prTbpS7u1lt3rzZSDIvvfRSpvtwqw71mdXjMD156W89u6zMtWvXrumeH7z22mtGkmM4vLwgs+dHKSkpJjk52fTo0cPUqFHD6TFJpkiRIubcuXOOtqVLlxpJpnr16k5D+b799ttGktmxY4ejLe18/tqhlJ566imTL18+s2/fPkdbr169zPTp0826devM0qVLzWOPPWYkmS5dumRq+691dR5p5xS7du0yxhhTu3ZtExcXZ4wxLkN96pohvrp37258fX3Nnj17rruutOXfd999Tu2nTp0yAQEB5oEHHnBq379/v7Hb7S5DV2Uk7XnyjTfeMMnJyebSpUtm27Ztpnbt2kaSWb58ucu2L1682NG2a9cuI8m8/PLLTsu9erjboUOHmiJFipjk5GRz4sQJY7fbzYwZM27qUG+HDx82kkznzp0znO6RRx4xksyRI0cc27t582aTnJxszp49a5YtW2YiIyNNSEiIOXz4sDHGGH9/f1OvXr0c3wZPyU52Vw/1ee0QccuXLzeSzKRJk5yWM2rUKJfjol69eqZQoULm7NmzjraUlBRTpUoVU6JEiXSHAc+N3Dmm3nnnHSPJ6XOIkydPGrvdbgYMGHDdZaekpJjLly+bcuXKmX79+jnaMxrq8+rpjDFm7ty5OTbkaE46fvy4adiwoeN9oK+vr2nQoIEZNWqU0zETFRVl/P39nV4rLl68aAoWLGieeeYZR5s7z88DBw40NpvN7N6926m9RYsW1/1Myhu4k/VHH31kJJkffvjhusvJK0N95vT2uvv8ejV3j+POnTsbu91u9u/f7zR/y5YtTWBgoGNo6hdffNHYbDaX/jdr1szjQ32miY6ONhEREeby5cuOtgEDBhhJ5tdff3W0KRNDfRrzz/bUqlXLGGPM7t27jSSzdu1ax62o0p43s7KfvIE7uaf3ep+Z83XkLVzxhyyZNm2aAgICHJdTBwcH66GHHtKGDRsc31itU6eOTp8+rUcffVQff/yxjh8/nun13HbbbWrcuLFT2+rVq1WpUiXVqVPHqT0uLk7GGK1evTqLW+V5s2bN0tatW51+tmzZ4jRNo0aNFBIS4vi9cOHCKlSokGPomvPnz2vr1q3q0KGD/P39HdOlfcPyamlZXTtEw0MPPaSgoCB99dVXVm6ex61YsUK9e/dWp06d9O9//ztLy2jRooW2bt2q1atX67XXXtOiRYvUsWNHrx9m9kbmzp2r2NhY3XvvverYsaM+++wztW7dWqNHj053+Jkvv/zS5VhfunTpze94HpDZbG8VVuWS9rdbv359vf/++2rSpIm6dOmipUuX6vjx45owYUK684WHh+vFF1/UokWLXJ6nrzVx4kT5+vrKz89PFStW1MaNGzV8+PB0b7ydm2U1K9wY2eaMrOT62GOPOf0eGxsr6Z/RArzJwoULdc899yg4OFg+Pj7y9fXVtGnT0h12slGjRgoKCnL8XrFiRUlSy5YtnYbyTWu/dhjjkJAQl6GUYmNjlZqa6vRN9wkTJqhbt26677771LZtW82ZM0d9+vTRnDlz9P3332d/oyVFR0erbNmymj59unbu3KmtW7emO9xlelasWKFGjRo5tjMjHTt2dPp906ZNunjxoss5d8mSJdW4ceMsnXO/+OKL8vX1lb+/v2rWrKn9+/drypQpjquLJOnhhx9WSEiI07e/p0+fLpvNluGwnd26ddORI0e0YsUKzZ07V35+fo5bNOQ25v9fYXr1sVivXj35+voqJCRErVu3VpEiRbRixQoVLlzYU93MldLLLiPr1q2T9M9xdbW0YXTTnD9/Xlu2bFGnTp0UHBzsaM+fP78ef/xx/fXXX25f4ZZbZHRMPfbYY7Lb7Y5blkj/XE2clJTk9HeWkpKi119/XZUqVZKfn598fHzk5+en//73v24P+Xvta9TDDz8sHx+fPPcaFR4erg0bNmjr1q0aPXq02rZtq19//VWDBg1S1apVnT47ql69utPoOv7+/ipfvrzTa407z8/r1q1TlSpVVKlSJaf2a49fb+NO1tWrV5efn5+efvppzZw502k0qbwmt26vO8fx6tWr1aRJE5cr1OLi4nThwgVt2rRJ0j/npJUrV1a1atWcpks7Z80NevTooePHjzuGOk5JSdGcOXN07733Zmv0gO7du+u7777Tzp07NW3aNJUtW1b33XefVd3O87KTu7vn68hbKPwh03777TetX79erVq1kjFGp0+f1unTp9WpUydJcryxfPzxxzV9+nTt27dPHTt2VKFChVS3bl2tWrXK7XUVLVrUpe3EiRPpthcrVszxeF5VsWJF1apVy+mnZs2aTtOEh4e7zGe323Xx4kVJ/wwhl5qaqiJFirhMd23biRMn5OPj4zLcnM1mU5EiRfJ0ltf6/PPP1aFDBzVr1kxz5851+w3utW677TbVqlVLjRo10uDBgzV16lR98skn6d4X51bXpUsXpaSk6LvvvnN5rFq1ai7HepUqVTzQy7wpo2xvZVnJJe059drhzqpXr66iRYtq+/bt1523b9++KlasmF544YUM1/Hwww9r69at+u677/TLL7/oxIkTuXJonBtxN6u0N7V//vnnze1gHpad4xDXl9lcfXx8XM6z0s6dvOmcaPHixXr44YdVvHhxzZkzR5s2bXIUwC5duuQyfcGCBZ1+9/Pzy7D92mWkV2xxN9cuXbpIkjZv3pzhdO5KK3jNmTNHkydPVvny5XXvvfe6Ne+xY8euO2zita59r5K2ndd7D5OV4+u5557T1q1btW3bNv3+++86dOiQnn76aadpAgMD1blzZ61cuVKHDx92fACUVgC9nqioKDVp0kTTp0/X9OnT1blz55s+dHNERIQCAwNv+Fqyd+9eBQYGOh2PaV+m/P7773Xw4EHt2LFD99xzj+PxUqVKefVrVHayy0jae8drp7/2b/zUqVMyxnjVe/aMjqmCBQvqwQcf1KxZsxzDps6YMUN16tRR5cqVHcvo37+/hgwZonbt2unTTz/Vli1btHXrVlWrVs3xXv5Grn0/n/a6ldfyTFOrVi29+OKLWrhwoQ4ePKh+/fpp7969TsMa3ujzD8m95+cTJ06k+3p0q3whIKOsy5Ytqy+//FKFChVS7969VbZsWZUtW1bjx4/3dLezLKe2193n12u5cxy7+1nniRMn3Pq8z5M6deqksLAwxzDIn332mY4cOeK4/3BWpQ07PmXKFM2ePdsxvOW1srqf8rrs5J6d83XkXhT+kGnTp0+XMUYfffSRbrvtNsdP2r35Zs6c6Tjh7datmzZu3KgzZ85o+fLlMsaodevWLt8Evp70nsDDw8N16NAhl/aDBw9K+ucJ/lZ22223yWaz6fDhwy6PXdsWHh6ulJQUl6tjjDE6fPiw12T5+eefq127doqOjtaiRYscH0xZIe3K06zc58vbpX2L+OqbaMMaZJu+rORy1113Zbi8jJYVEBCg+Ph4rV+/XsuXL7/udJGRkY4vcpQvXz5L9zTIDdzNqmjRoqpataq++OILXbhw4WZ1L0/LznGI68tsrikpKS5vbNPOndL7wCavmjNnjkqXLq0PPvhA7dq1U7169VSrVq0cu7fzkSNHXNrczTUnXu/i4uJ0/PhxTZ48OcOr3q4VGRmpv/76y61pr30Pk7ad13sPk5Vz7hIlSqhWrVq6++67VaZMmet+qa1Hjx5KSUnRrFmztGzZMh09etStD4C6d++uTz75RD/88IPbV0VaKX/+/GrUqJG+++676+b+119/adu2bWrcuLHTa2valynTivzXatGihY4cOWJZQTm3yU52GUl773jy5Emn9mvfY952223Kly+fV71nv9Ex1a1bN/39999atWqV9uzZo61bt7o8v8yZM0dPPPGEXn/9dbVo0UJ16tRRrVq1MjUy0rVZp71uecNrlK+vr4YOHSpJ2rVrV6bmdef5OTw8PMPXo1tJelnfe++9+vTTT3XmzBlt3rxZ9evXV9++fbVgwQJPdtUSVm5v/vz51aRJE23bts3tcwJ3uftZZ3h4uFuf93lSQECAHn30Ua1cuVKHDh3S9OnTFRISYsnoAd26ddOkSZN08uRJde3aNd1pcnI/5WbZyT075+vIvfgUAZly5coVzZw5U2XLltWaNWtcfgYMGKBDhw5pxYoVTvMFBQWpZcuWevnll3X58mXt3r1b0j/fcJHk9jfcJKlJkybas2ePy7e0Z82aJZvNpkaNGmVzK/O2oKAg1alTR4sXL3b6xvXZs2f16aefOk3bpEkTSf+8CbnaokWLdP78ecfjedkXX3yhdu3aqWHDhlq6dKnjmLNK2rAqd9xxh6XL9QazZ8+Wr6+vy1WryD6yTV9WcmnZsqUCAwNdXre2b9+uw4cPq169ehnO3717d1WsWFEvvfSS1w/5m5mshgwZolOnTunZZ591fHB/tXPnzumLL77I8T7nFdk9DpG+rOQ6d+5cp9/nzZsnSYqJicmxft5sNptNfn5+ToWiw4cP59joBWfPnnUMOZRm3rx5ypcv3w2HZ5o1a5YkWfo3ULx4cQ0cOFBt2rS57gdG6WnZsqXWrFmTpSEK69evr4CAAJdz7r/++ssxtFdOqVu3rqpUqaKEhAQlJCQoLCzMZSjS9LRv317t27dX9+7dPfYcNGjQIBlj1KtXL8cXS9NcuXJFPXv2lDFGgwYNytRy+/Xrp6CgIPXq1UtnzpxxedwYoyVLlmSr756WE9lFR0dLkj744AOn9ms/KA8KClLdunW1ePFip/f5qampmjNnjkqUKKHy5ctndpNytebNm6t48eKOvzN/f3+XISRtNpvLe9Hly5fr77//dns9175Gffjhh0pJSclzr1HpFTckOYY8TbvCyV3uPD9HR0dr165d2rNnj1O7NxS2MpLZrPPnz6+6des6hkNP+9wtK5/decLN2N6059ennnpKly9fdnk8OTnZ5bM3dzRp0kSrV692FPrSzJo1S4GBgY7X4kaNGmn37t368ccfnaZLO2fNLXr06KErV65o7Nix+uyzzywbPaBr165q06aNBg4cqOLFi193upzaT7ldVnPPzvk6ci8fT3cAecuKFSt08OBBvfHGG+meXFapUkX/+c9/NG3aNH388ccKCAjQPffco6JFi+rw4cMaNWqUwsLCVLt2bcf0kjR16lSFhITI399fpUuXzvDbBP369dOsWbPUqlUrDR8+XFFRUVq+fLkmTpyonj175uk3Ebt27VJKSopLe9myZV2G48zIiBEjdP/996tZs2YaMGCArly5ojfeeENBQUFO39Bs1qyZWrRooRdffFGJiYm65557tGPHDg0dOlQ1atTQ448/bsl25bTVq1dr7969Lu2FChVSu3btVKRIEQ0ePFg//PCD0+OVKlVSaGioW+uYMmWKNmzYoObNm6tkyZI6f/68NmzYoHfffVcNGjRQ27ZtLdiS3O16Oe/evVt79+5VkyZNVKJECR09elTTpk3TF198ofj4+HS/0btt2zaFhYW5tGdmn3gTK7P1JjcjlwIFCmj48OF6/vnnFRcXp0cffVSHDx/WkCFDVKpUqRvehy9//vx6/fXX1b59e0kZX2GUV1wv9wceeMDtrB566CENGTJEI0aM0M8//6wePXqobNmyunDhgrZs2aIpU6bokUceUfPmzW/ilnmeFdnClVW5+vn5ady4cTp37pxq166tjRs3auTIkWrZsqUaNmx4k7bGOtfLpXHjxlq8eLF69eqlTp066cCBAxoxYoSKFi3quFe3lcLDw9WzZ0/t379f5cuX12effab33ntPPXv2dAwNPG/ePC1evFitWrVSVFSUTp8+rYULF2rBggWKi4tzuY9Ndo0ePTrT8wwfPlwrVqzQfffdp8GDB6tq1ao6ffq0Vq5cqf79+6tChQrXnbdAgQIaMmSIBg8erCeeeEKPPvqoTpw4oWHDhsnf399xJUJO6d69u/r3769ffvlFzzzzjAICAm44j7+/vz766KMc7deN3HPPPXr77bfVt29fNWzYUH369FGpUqW0f/9+TZgwQVu2bNHbb7+tBg0aZGq5pUuX1oIFC/TII4+oevXq6tOnj2rUqCFJ2rNnj2OEm7TX9rwoJ7K7//77dc8992jAgAFKTExUzZo1tWnTJkeB/uorc0eNGqVmzZqpUaNGev755+Xn56eJEydq165dmj9/fpZvu5Bb5c+fX0888YTeeusthYaGqkOHDi7vdVq3bq0ZM2aoQoUKuuuuu7Rt2zaNHTvW7SGEpX+Gavbx8VGzZs20e/duDRkyRNWqVXO572Ju16JFC5UoUUJt2rRRhQoVlJqaqh9++EHjxo1TcHCwnnvuuUwtz53n5759+2r69Olq2bKlhg8frsKFC2vevHn6+eefJXnvSCruZD158mStXr1arVq1UqlSpXTp0iXHLXyaNm0q6Z/7f0VFRenjjz9WkyZNVLBgQUVEROj222/34Na5uhnbW79+fU2aNEm9evVSzZo11bNnT1WuXFnJycn6/vvvNXXqVFWpUkVt2rTJVN+HDh2qZcuWqVGjRnr11VdVsGBBzZ07V8uXL9eYMWMczylpx3KrVq00cuRIFS5cWHPnznUcy7lFrVq1dNddd+ntt9+WMea6ow38/vvv6Z5vVKpUyeWenNI/xdulS5fecP05tZ9yO3dzv5Y75+vIgwyQCe3atTN+fn7m6NGj152mc+fOxsfHx8yYMcM0atTIFC5c2Pj5+ZlixYqZhx9+2OzYscNp+rffftuULl3a5M+f30gyCQkJxhhjoqOjTeXKldNdx759+0xsbKwJDw83vr6+5s477zRjx441V65csWxbb6aEhAQj6bo/7733njHGGEmmd+/eLvNHRUWZrl27OrV98skn5q677jJ+fn6mVKlSZvTo0Wbo0KHm2j/7ixcvmhdffNFERUUZX19fU7RoUdOzZ09z6tSpnNpcy9wot65du2b4+Jo1a9xe1zfffGNat25tihUrZvz8/ExgYKCpVq2aGTFihDl//rzTtGk5Hzt2LN1lRUVFmVatWmVn02+qG+X8zjvvmIYNG5rIyEjj4+NjQkJCzL333mvmz5/vsqy0bK73s2rVKpd51qxZYySZhQsX3ozNvalyIltvOO6szMVd7733nqlSpYrx8/Mz4eHh5rHHHjMHDhxwmiajjBs0aGAkuWR8veft3OhGuf/555/GGPeySrNu3TrTqVMnU7RoUePr62tCQ0NN/fr1zdixY01iYqLL9H/++aeRZMaOHZuTm3rTWZmtN/2tZ5eVuXbt2tUEBQWZHTt2mJiYGBMQEGAKFixoevbsac6dO+eBrcs6d3IZPXq0uf32243dbjcVK1Y07733Xrrniek9h13v7zS91+u08/m1a9eaWrVqGbvdbooWLWoGDx5skpOTHdNt2rTJNGnSxBQpUsT4+vqawMBAU7t2bTNx4sRsn9+n5bF169YMp6tcubKJjo52/C7JDB061GmaAwcOmO7duzv6mfb+5siRI9fN4Grvv/++4/w8LCzMtG3b1uzevTtT25OV58ljx44ZPz8/I8l8++236U6T9jdwo+Wkl0tO27Rpk+nUqZMpXLiw8fHxMYUKFTIdOnQwGzdudJrO3X2d5vfffze9evUyd9xxh7Hb7SYgIMBUqlTJ9O/f3/H8kddlNrurt7tr164mKirKabqTJ0+abt26mQIFCpjAwEDTrFkzs3nzZiPJjB8/3mnaDRs2mMaNG5ugoCATEBBg6tWrZz799NOc2tQckZlj6tdff83wPc2pU6dMjx49TKFChUxgYKBp2LCh2bBhg4mOjnZ67kn7G0/7XMSY/732b9u2zbRp08YEBwebkJAQ8+ijjzqef/KSDz74wMTGxppy5cqZ4OBg4+vra0qVKmUef/xxs2fPHsd01zunuTYzY278/GyMMbt27TJNmzY1/v7+pmDBgqZHjx5m5syZRpL58ccfc2x7PcmdrDdt2mTat29voqKijN1uN+Hh4SY6Otp88sknTsv68ssvTY0aNYzdbnd83pLb3Mzt/eGHH0zXrl1NqVKljJ+fnwkKCjI1atQwr776qtNnppk5jnfu3GnatGljwsLCjJ+fn6lWrZrTc0GaPXv2mGbNmjkdyx9//LHL51zpPY/fTOPHjzeSTKVKldJ9PKPz1bRzjYw+G06zdetWl+fNNO7uJ2+SUe7pvd67e76OvMdmTDrjLwEAAAAAkA0xMTE6fvx4pu/XBCDvmDdvnh577DF98803mb76EvC0p59+WvPnz9eJEyfk5+fn6e4AwE3H+br3YqhPAAAAAAAAZGj+/Pn6+++/VbVqVeXLl0+bN2/W2LFjdd9991H0Q643fPhwFStWTGXKlNG5c+e0bNkyvf/++3rllVco+gEAvA6FPwC3NGOMyw3vr5U/f36vuw8F4O342wYA5CW8biEvCAkJ0YIFCzRy5EidP39eRYsWVVxcnEaOHOnprgE35Ovrq7Fjx+qvv/5SSkqKypUrp7feeivT9xQEACAvYKhPALe0tWvXqlGjRhlOk5CQoLi4uJvTIQCW4G8bAJCX8LoFAAAAwCoU/gDc0s6ePatffvklw2lKly6t8PDwm9QjAFbgbxsAkJfwugUAAADAKhT+AAAAAAAAAAAAAC+Qz9MdAAAAAAAAAAAAAJB9FP4AAAAAAAAAAAAAL0DhDwAAAAAAAAAAAPACFP4AAAAAAAAAAAAAL0DhDwAAAABuUfHx8apevbrj97i4OLVr185j/QEAAAAAZA+FPwAAAADIgw4fPqx///vfKlOmjOx2u0qWLKk2bdroq6++yrF1zpgxQwUKFMix5QMAAAAAssfH0x0AAAAAAGTO3r17dc8996hAgQIaM2aM7rrrLiUnJ+vzzz9X79699fPPP3u6iwAAAAAAD+CKPwAAAADIY3r16iWbzaZvv/1WnTp1Uvny5VW5cmX1799fmzdvdkx35swZPf300ypUqJBCQ0PVuHFj/fjjj1la59q1a9WtWzedOXNGNptNNptN8fHxGj58uKpWreoyfc2aNfXqq69K+t8QosOGDXP05ZlnntHly5cd0xtjNGbMGJUpU0YBAQGqVq2aPvroI8fjp06d0mOPPabIyEgFBASoXLlySkhIyNK2AAAAAIC34oo/AAAAAMhDTp48qZUrV+q1115TUFCQy+NpQ3EaY9SqVSsVLFhQn332mcLCwjRlyhQ1adJEv/76qwoWLJip9TZo0EBvv/22Xn31Vf3yyy+SpODgYJ0+fVrDhg3T1q1bVbt2bUnSjh079P3332vhwoWO+b/66iv5+/trzZo12rt3r7p166aIiAi99tprkqRXXnlFixcv1qRJk1SuXDmtX79eXbp0UWRkpKKjozVkyBDt2bNHK1asUEREhH777TddvHgxKxECAAAAgNei8AcAAAAAechvv/0mY4wqVKiQ4XRr1qzRzp07dfToUdntdknSm2++qaVLl+qjjz7S008/nan1+vn5KSwsTDabTUWKFHG0BwcHq0WLFkpISHAU/hISEhQdHa0yZco4zT99+nQFBgaqcuXKGj58uAYOHKgRI0bo4sWLeuutt7R69WrVr19fklSmTBl9/fXXmjJliqKjo7V//37VqFFDtWrVkiTdfvvtmeo/AAAAANwKKPwBAAAAQB5ijJEk2Wy2DKfbtm2bzp07p/DwcKf2ixcv6vfff7e0T0899ZS6d++ut956S/nz59fcuXM1btw4p2mqVaumwMBAx+/169fXuXPndODAAR09elSXLl1Ss2bNnOa5fPmyatSoIUnq2bOnOnbsqO3bt6t58+Zq166dGjRoYOl2AAAAAEBeR+EPAAAAAPKQcuXKyWaz6aefflK7du2uO11qaqqKFi2qtWvXujyWNhyoVdq0aSO73a4lS5bIbrcrKSlJHTt2dGtem82m1NRUSdLy5ctVvHhxp8fTrlZs2bKl9u3bp+XLl+vLL79UkyZN1Lt3b7355puWbgsAAAAA5GUU/gAAAAAgDylYsKBatGihCRMm6Nlnn3W5z9/p06dVoEAB3X333Tp8+LB8fHwsGxbTz89PV65ccWn38fFR165dlZCQILvdrs6dOztd3SdJP/74oy5evKiAgABJ0ubNmxUcHKwSJUrotttuk91u1/79+xUdHX3d9UdGRiouLk5xcXG69957NXDgQAp/AAAAAHAVCn8AAAAAkMdMnDhRDRo0UJ06dTR8+HDdddddSklJ0apVqzRp0iT99NNPatq0qerXr6927drpjTfe0J133qmDBw/qs88+U7t27Rz3ysuM22+/XefOndNXX33lGLozrcD35JNPqmLFipKkb775xmXey5cvq0ePHnrllVe0b98+DR06VH369FG+fPkUEhKi559/Xv369VNqaqoaNmyoxMREbdy4UcHBweratateffVV1axZU5UrV1ZSUpKWLVvmWB8AAAAA4B8U/gAAAAAgjyldurS2b9+u1157TQMGDNChQ4cUGRmpmjVratKkSZL+GULzs88+08svv6zu3bvr2LFjKlKkiO677z4VLlw4S+tt0KCB/vWvf+mRRx7RiRMnNHToUMXHx0v6ZwjSBg0a6MSJE6pbt67LvE2aNFG5cuV03333KSkpSZ07d3bMK0kjRoxQoUKFNGrUKP3xxx+OqxYHDx4s6Z+rDQcNGqS9e/cqICBA9957rxYsWJCl7QAAAAAAb2UzaXeGBwAAAAAgi4wxqlChgp555hn179/f6bG4uDidPn1aS5cu9UznAAAAAOAWwRV/AAAAAIBsOXr0qGbPnq2///5b3bp183R3AAAAAOCWReEPAAAAAJAthQsXVkREhKZOnarbbrvN090BAAAAgFsWQ30CAAAAAAAAAAAAXiCfpzsAAAAAAAAAAAAAIPso/AEAAAAAAAAAAABegMIfAAAAAAAAAAAA4AUo/AEAAAAAAAAAAABegMIfAAAAAAAAAAAA4AUo/AEAAAAAAAAAAABegMIfAAAAAAAAAAAA4AUo/AEAAAAAAAAAAABegMIfAAAAAAAAAAAA4AX+H6FdXM24ymsCAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1940,26 +1951,26 @@
],
"source": [
"prediction = evaluator.predict_sequence(designed_sequences[0])\n",
- "prediction_bar(prediction, classes=list(adata.obs_names))"
+ "crested.pl.bar.prediction(prediction, classes=list(adata.obs_names))"
]
},
{
"cell_type": "code",
- "execution_count": 49,
+ "execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-10-01T16:21:16.238588+0200 INFO Calculating contribution scores for 1 class(es) and 1 region(s).\n"
+ "2024-10-09T14:40:31.856432+0200 INFO Calculating contribution scores for 1 class(es) and 1 region(s).\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Region: 100%|██████████| 1/1 [00:01<00:00, 1.26s/it]\n"
+ "Region: 100%|██████████| 1/1 [00:01<00:00, 1.25s/it]\n"
]
}
],
@@ -1971,7 +1982,7 @@
},
{
"cell_type": "code",
- "execution_count": 50,
+ "execution_count": 47,
"metadata": {},
"outputs": [
{
@@ -1984,7 +1995,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAE4gAAADJCAYAAADPqthRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADhQUlEQVR4nOzdd3hUVeLG8XfSCUkIAULvXZogoAgqVlBBxF5wBbGsa9e1rOj+LLt2rCt2BEWwA4IigtTQO9IhhCSkQXpvM/P742RmMiSBmRBIgO/nefLMnXvPPfcMTLnlnPda7Ha7XQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAWudT2w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgExAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAHUFAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUEQTEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAdQUAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQRBMQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQB1BQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1BEExAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAHUFAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUEQTEAQAAAAAAAAAAAAAAAABOGS+88IIsFoteeOGF2m4KAAAAAAAAAAAAAAAAAAAnBAFxAAAAAAAAAAAAAAAAAIA6ITMzUy+88ILefffdk7rdJUuWyGKxyGKxeLzO0KFDnetU9tesWbNK12vXrt1R13P8TZkyRZI8Knvk39ChQ2vgXwUAAAAAAAAAAAAAAAAAUFv8arsBAAAAAAAAAAAAAAAAAABIJiDuxRdfVNu2bfXoo4/WdnM80rNnTzVo0KDC/EaNGh11vc6dOysyMrLK5U2bNpUkDR48uMKyrKwsbdu2rcrlvXr1Ouq2AQAAAAAAAAAAAAAAAAB1GwFxAAAAAAAAAAAAAAAAAABU0wcffKChQ4d6vd6zzz6rsWPHHrNcVFRUhXlLlizRxRdfXOVyAAAAAAAAAAAAAAAAAMCpzae2GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAiIAwAAAAAAAAAAAAAAAIAzTGxsrO677z516NBBgYGBCg0NVYcOHTR69Gh9++23znLPPPOMLBaLHnrooSrrWr9+vSwWi5o3by6r1SpJWrJkiSwWi4YOHSqbzab33ntPPXv2VFBQkJo2barx48fr8OHDbvWMHTtW7du3d7bPYrG4/VUmKytLjz76qNq0aaPAwEB16tRJL7/8skpLS4/3nwgAAAAAAAAAAAAAAAAAgFrjV9sNAAAAAAAAAAAAAAAAAACcPAcOHNCAAQOUmpqq4OBgde3aVb6+voqLi9OsWbMUExOjW265RZJ011136fXXX9eMGTM0ceJEBQQEVKhv6tSpkqQxY8bI19e3wvI77rhD06dPV+fOndWpUyft3r1bkydP1po1a7RhwwYFBgZKkrp06aL+/ftr/fr1CgwMVP/+/Y/6OrKysjRo0CDt3btXPXv2lK+vr6Kjo/Xvf/9bcXFx+uyzz473n8ojH3/8sd566y0VFhaqefPmuvjii3XbbbcpKCjopGwfAAAAAAAAAAAAAAAAAHD68antBgAAAAAAAAAAAAAAAAAATp6JEycqNTVVd955p1JSUrR161Zt2rRJaWlp2rlzp/7xj384y3bp0kWDBw9WWlqafv311wp1lZSUaMaMGZKksWPHVli+cuVKLVmyRGvWrNGePXu0bds2bd++Xa1atdL27dv15ZdfOss+++yz+uGHHyRJzZo1U1RUlNvfkT788EM1adJEsbGx2rRpk2JiYvTLL7/I19dXn3/+uXbt2nW8/1Qe+e677/Trr7/qzz//1LRp0zR+/Hh16dJF69evPynbBwAAAAAAAAAAAAAAAACcfgiIAwAAAAAAAAAAAAAAAIAzyN69eyVJjz/+uEJCQtyWdevWTffee6/bvLvuukuSNHXq1Ap1zZ07V2lpaerfv7969OhRYXlJSYk++OADDRw40DmvS5cueuqppyRJ8+bNq/br8PPz0zfffKMWLVo4540cOVKjRo067ro90bt3b73//vvasWOH8vLylJ6erp9//lndunVTfHy8hg0bptjY2CrXHzdunCwWS5V/mZmZJ7T9AAAAAAAAAAAAAAAAAIC6y6+2GwAAAAAAAAAAAAAAAAAAOHlat24tSfrxxx/Vq1cvWSyWo5a/6aab9Mgjj+i3337T4cOH1aRJE+cyR2jc2LFjK123YcOGuu666yrMHzBggCRp//791XkJkqThw4erVatWldb9888/H1fdnnj//ffdngcHB2v06NEaOnSozjnnHMXExOill17SF198Uen6nTt3VmRkZJX1+/nRvQ8AAAAAAAAAAAAAAAAAzlQ+td0AAAAAAAAAAAAAAAAAAMDJ88ADD8jf318vv/yy2rdvr7///e/65ptvlJiYWGn5kJAQ3XjjjSopKdGMGTOc81NTU/Xbb78pICBAt956a6XrduzYsdL5jmC03Nzcar+OE1n38WjYsKGeeeYZSdKsWbNkt9srLffss88qKiqqyr+QkJCT2WwAAAAAAAAAAAAAAAAAQB1CQBwAAAAAAAAAAAAAAAAAnEHOPvtsLVu2TFdccYUSEhL0ySefaMyYMWrVqpWGDRumnTt3VljnrrvukiRNnTrVOW/69OkqKSnRNddco4iIiEq3Vb9+/Urn+/iYrmtVhad54kTWfbwGDRokSUpPT1d6enqttQMAAAAAAAAAAAAAAAAAcGoiIA4AAAAAAAAAAAAAAAAAzjDnnXee5s+fr4yMDP3+++96+umn1apVK/3xxx+6/PLLlZmZ6VZ+yJAh6tKlizZu3Kht27ZJcoXFjR079iS3vu7z9/d3TpeWltZiSwAAAAAAAAAAAAAAAAAApyIC4gAAAAAAAAAAAAAAAADgDBUSEqJhw4bptdde065du9SxY0clJCRo3rx5FcqOGzdOkjRlyhRt27ZNGzduVLNmzTR8+PAaa4/FYqmxumrT9u3bJUlBQUFq1KhRLbcGAAAAAAAAAAAAAAAAAHCqISAOAAAAAAAAAAAAAAAAAKDg4GD16tVLkpSYmFhh+Z133ilfX1998803+vzzzyVJY8aMka+vb421oV69epKkgoKCGqvzZLPZbHr33XclSUOHDpWfn1/tNggAAAAAAAAAAAAAAAAAcMohIA4AAAAAAAAAAAAAAAAAziD333+/vvvuO+Xn57vNX7Zsmf78809JUr9+/Sqs17x5cw0fPlzJycn68MMPJUljx46t0bY1adJEoaGhOnTokHbu3Fmjddekr7/+Wq+//rpSUlLc5qekpOjWW29VVFSUfHx8NGHChFpqIQAAAAAAAAAAAAAAAADgVMatSQEAAAAAAAAAAAAAAADgDLJq1Sp9/PHH8vPzU+fOnRUaGqqUlBTFxsZKksaMGaOLL7640nXvuusu/frrryotLVX//v3Vo0ePGm2bxWLRjTfeqMmTJ6tfv37q2bOn6tevL0lasmRJjW6rKo0bN65yWa9evbR48WKlpaXpmWee0TPPPKN27dopMjJS+fn52rlzp6xWq/z9/TVp0iQNGTKkyrpeeeUVff7551Uuv+mmm/Twww8f12sBAAAAAAAAAAAAAAAAAJyaCIgDAAAAAAAAAAAAAAAAgDPIO++8o9mzZ2v58uWKj49XdHS0mjdvrmHDhumBBx7QiBEjqlx35MiRaty4sVJTUzV27NgT0r733ntPoaGhmj17trZs2aKSkpITsp2qpKWlVbksIyNDknTFFVfon//8p1avXq0DBw5oy5Yt8vX1VadOnXTxxRfroYce0llnnXXU7ezdu1d79+6tcnn//v2r9wIAAAAAAAAAAAAAAAAAAKc8i91ut9d2IwAAAAAAAAAAAAAAAAAAdV9mZqaaNWsmu92upKQkRURE1HaTAAAAAAAAAAAAAAAAAAA47fjUdgMAAAAAAAAAAAAAAAAAAKeGb775RkVFRRo1ahThcAAAAAAAAAAAAAAAAAAAnCAWu91ur+1GAAAAAAAAAAAAAAAAAADqtvT0dPXt21dxcXFavHixhg4dWttNAgAAAAAAAAAAAAAAAADgtORT2w0AAAAAAAAAAAAAAAAAANRdr732mi644AJ17NhRcXFxuuKKKwiHAwAAAAAAAAAAAAAAAADgBCIgDgAAAAAAAAAAAAAAAABQpV27dikqKkq+vr664447NH369NpuEgAAAAAAAAAAAAAAAAAApzWL3W6313YjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACST203AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgEBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUEAXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUEcQEAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdQQBcQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQRxAQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1BAFxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBHEBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUEAXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUEcQEAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdQQBcQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQRxAQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1BAFxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBHEBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUEAXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUEcQEAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdQQBcQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQRxAQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1BAFxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBHEBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHUEAXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUEcQEAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdQQBcQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQRxAQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1hF9tN+BUZ7PZlJiYqNDQUFksltpuDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA6yG63KycnRy1atJCPj0+V5QiIO06JiYlq3bp1bTcDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCkgPj5erVq1qnI5AXHHKTQ0VJL5hw4LC6vl1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoi7Kzs9W6dWtnfllVCIg7ThaLRZIUFhZGQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAo3Lkl1XF5yS1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwDATEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAdQUAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQRBMQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQB1BQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1BEExAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAHUFAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUEQTE4ZjatWsni8WiKVOmHLPslClTZLFYjvr3+++/V1jvhRdeOOZ6FotFQ4cOlSSNHTvWo/JH/h04cKBm/3EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAGuRX2w3A6SkyMlKdO3eudFnDhg2rXC8sLEy9evWqcrljWZcuXTR48OAKy9evX6+ioiJ17txZkZGRFZYHBQUdq+kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABArTkhAXFFRUXy9fWVnx/5c2eqK6+8UlOmTPF6vb59+2rJkiXHLPfss8/q2WefrTC/Xbt2io2N1bPPPquxY8d6vX0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgNvlUd8WoqCi99NJLyszMdM5LS0vTlVdeqZCQEIWFhWnChAnVqjs3N1ePPvqoWrRooaCgIJ199tn69ttvj7nezz//rFtvvVWdOnVSvXr11K5dO91+++3au3dvhbJDhw6VxWKp8Dd8+PBqtRkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjpdfdVecOHGitm7dqn//+9/OeU888YTmz5+vzp07KycnR6+99pr69u2rG264wau6r7vuOq1bt06vvfaaunTpounTp+vWW2+VzWbTbbfdVuV6r7/+upo1a6YJEyaoQ4cOio+P1yuvvKJ+/fpp9erV6tGjh1v5Dh066JtvvnGbFx4e7lVbAQAAAAAAAAAAAAAAAABnGIvFs3J2+4ltBwAAAAAAAAAAAAAAAADgtFTtgLjNmzfroosucj7Pz8/X999/ryuuuEK///67cnJy1Lt3b02aNMmrgLjffvtNCxYscIbCSdLFF1+s2NhYPfnkk7r55pvl6+tb6bpz5sxRZGSk27xLLrlE7dq10zvvvKPPP//cbVm9evV03nnnedw2eG7Lli267bbblJycrLCwMPXt21djxoxRx44da7tpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJ3lU90VDx06pJYtWzqfr1q1SoWFhRo3bpwkKTQ0VCNGjNCuXbu8qnfmzJkKCQnRjTfe6DZ/3LhxSkxM1Jo1a6pc98hwOElq0aKFWrVqpfj4eK/ageOzefNmzZgxQ4sXL9bs2bP1wgsvqGvXrvrvf/9b200DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6qxqB8QFBQUpJyfH+Xzp0qWyWCy66KKLnPNCQkKUkZHhVb3btm1T9+7d5efn5za/d+/ezuXe2L9/v2JjY9WjR48Ky6KjoxURESE/Pz917NhREyZMUEFBgVf1w114eLgeeughrVixQikpKSosLNSmTZt0xx13yGq16rnnntP//ve/Ktd3vI+q+nv33XdP3osBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATjK/YxepXKdOnfT777+rqKhIPj4++u6773TWWWepWbNmzjJxcXGKjIz0qt60tDR16NChwvyIiAjnck+VlpZq/PjxCgkJ0WOPPea2bMiQIbr55pvVrVs3FRQUaN68eXrjjTcUFRWlxYsXy8en8uy8oqIiFRUVOZ9nZ2d73J4zwbXXXqtrr73Wbd7ZZ5+tr776So0aNdK7776r5557TnfeeadCQ0MrrB8WFqZevXpVWX/Lli1ruskAAAAAAAAAAAAAAAAAzjAZBRmyyy4fi4/Cg8JruzkAAAAAAAAAAAAAAAAAALipdkDcPffco3vvvVedO3dWQECAYmJi9MYbb7iVWbNmjc466yyv67ZYLNVaVp7dbtf48eO1fPly/fTTT2rdurXb8v/85z9uz6+66iq1a9dO//znPzV79myNHj260npfffVVvfjiix61Ae5efPFFffTRR8rKytKiRYs0atSoCmX69u2rJUuWnPzGAQAAAAAAAAAAAAAAADhjtH23rXKKc9QuvJ1iHomp7eYAAAAAAAAAAAAAAAAAAODGp7orjh8/Xk8++aTy8/OVmZmp++67T48++qhz+eLFi7V//35deumlXtXbqFEjpaWlVZifnp4uSYqIiDhmHXa7XXfffbemTZumKVOmVBpEVpkxY8ZIklavXl1lmX/961/Kyspy/sXHx3tUN6SwsDD16NFDkrRv375abg0AAAAAAAAAAAAAAACAM1GprVQ5xTmSpIyCjFpuDQAAAAAAAAAAAAAAAAAAFflVd0WLxaLXX39dr7/+eqXLBw8erIyMDNWvX9+renv16qUZM2aotLRUfn6u5v3111+SpJ49ex51fUc43JdffqkvvvjCGfrmDR+fqnPzAgMDFRgY6HWdMPz9/SVJpaWltdwSAAAAAAAAAAAAAAAAAGeirMIs53R2UbZsdpt8LNW+1yoAAAAAAAAAAAAAAAAAADXuhPVqCwgIUIMGDdxC3jwxevRo5ebm6qeffnKbP3XqVLVo0ULnnntuleva7Xbdc889+vLLL/XJJ59o3LhxXm176tSpkqTzzjvPq/XgGavVqt27d0uSWrVqVcutAQAAAAAAAAAAAAAAAHAmyijMcE7bZXcLjAMAAAAAAAAAAAAAAAAAoC7wLr2tEjNnztSMGTO0a9cu5efna9++fZKkXbt26ZdfftHtt9+uli1belzflVdeqcsvv1z333+/srOz1alTJ82YMUO///67pk2bJl9fX0nS+PHjNXXqVEVHR6tt27aSpIcfflhffPGF7rrrLvXq1UurV6921hsYGKi+fftKkpYvX67//ve/Gj16tDp06KDCwkLNmzdPn376qS655BKNHDnyeP9ZUIkvvvhCmZmZ8vX11dChQ2u7OQAAAAAAAAAAAAAAAADOQBkFGe7PCzPUsF7DWmoNAAAAAAAAAAAAAAAAAAAVVTsgzmaz6dZbb9WPP/4oSapXr54KCgqcyxs2bKgJEybIarXqX//6l1d1//zzz5owYYL+/e9/Kz09Xd26ddOMGTN0yy23OMtYrVZZrVbZ7XbnvDlz5kiSJk+erMmTJ7vV2bZtWx04cECS1Lx5c/n6+urll19WamqqLBaLOnfurJdeeklPPPGEfHx8vGovjOzsbN1333167LHHNHDgQOd8q9WqyZMn65FHHpFkwv28CQ0EAAAAAAAAAAAAAAAAgJqSUXhEQFxBhnSS8uG2bJGefFJKTpb+8Q/pvvski8W9zOxds7X98HZJ0j8G/EPhQeEnp3EAAAAAAAAAAAAAAAAAgDrDYi+fsOaFiRMn6sknn9Tf//53vfbaa3r77bf18ssvy2q1OstccsklKi4uVlRUVI01uK7Jzs5WgwYNlJWVpbCwsNpuzgnRrl07xcbGKiQkRIGBgVWWmzVrli644AJJUnh4uNq3by8/Pz/t3btXmZmZkqQrr7xSP//8s4KCgtzWfeGFF/Tiiy8qLCxMvXr1qnIboaGhmjdv3jHb+uWXX2rs2LGev0gAAAAAAAAAAAAAAAAAZ4Tvtn2nW35y3ax0wR0LdFmHy46vUkfK21G64yUlSd26SdnZrnkTJ0qPP+5ebsT0Efp176+SpE33bdLZzc4+vrYBAAAAAAAAAAAAAAAAAOoMT3PL/Kq7gSlTpqh///6aNGmSJMly5G1MJXXq1Em//vprdTeBOiY3N1e5ublVLg8MDNQbb7yhlStXatu2bYqOjlZBQYEaNWqkq6++Wn/729904403VvpeccjOztaKFSuqXN6gQYPjeg0AAAAAAAAAAAAAAAAAzmwZhRnuzwsyqihZsx57zD0cTpKefloaMULq0sU1L60gzTWdnyYAAAAAAAAAAAAAAAAAwJmn2gFx+/bt0wMPPHDUMo0aNVJaGh3UTnUHDhzwuOyAAQOqtY0XXnhBL7zwQrXWLc+btgIAAAAAAAAAAAAAAAA48xwZCHdkYNyJsHy59N13FeeXlkoffSS9845rXvlQuPJhcQAAAAAAAAAAAAAAAACAM4dPdVesV6+eso+8nekRYmNjFR4eXt1NAAAAAAAAAAAAAAAAAABQo44MhDsyMO5E+OqrqpcVFbk/Lx8KVz4sDgAAAAAAAAAAAAAAAABw5qh2QFzfvn01f/58FR3ZO61Menq6fv/9d5133nnVbhwAAAAAAAAAAAAAAAAAADXpyEC4IwPjalppqTRzpmdlrTarW/vKh8UBAAAAAAAAAAAAAAAAAM4c1Q6Ie/jhhxUfH68bbrhBCQkJbsuio6M1evRoZWVl6eGHHz7uRgIAAAAAAAAAAAAAAAAAUBMcgXAWWczzghMbELdunZTmYc5bZmGm7LI7n6flExAHAAAAAAAAAAAAAAAAAGciv+quOGrUKD3zzDN67bXX1KZNG9WvX1+SFBkZqbS0NNntdj3//PO65JJLaqyxAAAAAAAAAAAAAAAAAAAcla1EKkqVgppJFkuFxY6AuOahzZWYk+h8fqKsXet52bSCtKM+BwAAAAAAAAAAAAAAAACcGXyOZ+VXXnlF8+fP14gRIxQcHCxfX1/ZbDYNHz5c8+bN04svvlhT7QQAAAAAAAAAAAAAAAAA4OhSlkhzO0uzWkhzO0nJiyoUySzMlCS1C2/n9vxEWbPG/fnVV0tLl0o331yxbFo+AXEAAAAAAAAAAAAAAAAAAMmvuivGxcUpICBAl19+uS6//PKabBMAAAAAAAAAAAAAAAAAAN4pPCytuFkqOmSe5+6Xll4pXbxQirzAWSyjIEOS1LZBW62MX6mMwoyj12u3m0eLpVrN2rTJNd2ggfT551KzZtKQIVJysnvZIwPhjgyMAwAAAAAAAAAAAAAAAACcGXyqu2L79u01YcKEmmwLAAAAAAAAAAAAAAAAAADVs+FBVzicg61YWnOX2yxHIFzbBm3N84KjBMTtfk+aGSn9FC6tvU8qyfG6WQcPuqafeMKEw0mSj4/0wQfuuXNHBsIdGRgHAAAAAAAAAAAAAAAAADgzVDsgLiIiQhERETXZFgAAAAAAAAAAAAAAAAAADIvl2H8O+QlS3A+V11OY7Jy02W3KKsySJLULbyfJFRhXQex30sZHpaJUqSRbiv5UWnSJVFrg8UvIzTV/Dtdc4768Vy/psstczx2BcI2DG5vn+QTEAQAAAAAAAAAAAAAAAMCZqNoBcRdccIFWr15dk20BAAAAAAAAAAAAAAAAAMB7sdMl2Y9ZLKswS/aycm3D20qSMgszZbPb3AvmJ0rr7q1YQfp6aedrHjcrKck1HRJiAuGOVD40zhEI17FhR2fbrDarx9sDAAAAAAAAAAAAAAAAAJweqh0Q9+qrr2rbtm168cUXVVpaWpNtAgAAAAAAAAAAAAAAAADAc0nzPSqWUZjhnG4X3k6SZLPblFOU415w/xdSSXbllRQe8rhZiYmu6d69JZ9Keuz5+rqm0wrKAuIiTECcXXa3NgMAAAAAAAAAAAAAAAAAzgx+1V3x9ddfV8+ePfXSSy/p008/VZ8+fdS0aVNZLBa3chaLRV988cVxNxQAAAAAAAAAAAAAAAAAgApsJVLaatdznwCp/d+kzK1S2lq3ohkFJmzN1+KrFqEtXPMLM9QgqIF5YrdL+7+skaYlJbmmO3Y8dnlHQFyH8A6ueflpahzcuEbaAwAAAAAAAAAAAAAAAAA4NVQ7IG7KlCnO6aSkJCWV78lWDgFxAAAAAAAAAAAAAAAAAIATJmu7VJrnet7vXanz/ZLdJq3/h3TgG+eijEITEBceFK7QgFD5WHxks9uUUZChduHtTKHcfVJeTI00rXy3uiZNjl0+Ld8ExEXWj1RYYJiyi7KdoXEAAAAAAAAAAAAAAAAAgDNHtQPiYmJqpgMcAAAAAAAAAAAAAAAAAADVlnfANd14kNTp72ba4iP1e98EyJXJKHAFxFksFjUIbKCMwgxncJwkKWWJe/1tbpJa3yjtnywlzfOqaV4HxJWFwUXUi1BEvQgTEJdPQBwAADhzzN41W+N/GS9JemLQE/rXBf+q5RYBAAAAAAAAAAAAQO2odkBc27Zta7IdAAAAAAAAAAAAAAAAAAB4L/+ga7r1TZLF4nruGyCd/abzqSMILjwo3PmYUZjhDI6TJKWvc003HiSd97Wpp/V10opbvGpaSopr2qOAuLIwuIb1GiqiXoQOZB5whsYBAACcCaIzop37P3vS99RyawAAAAAAAAAAAACg9vjUdgMAAAAAAAAAAAAAAAAAAKjAbnf/q2y+JOUnuJY1GVKxnsbnOScdQXANghq4PTqC4yRJeXGu6V4vmXA4SbL4SOd+LgU18/glFBSUa5onAXFlYSgR9SLUMKihmZdPQBwAADhzxGfFVzoNAAAAAAAAAAAAAGea4w6Imz59uq644gpFRkYqMDBQTZo00RVXXKHp06fXRPsAAAAAAAAAAAAAAAAAAKhaQbmAuPCeRy2aWZhpigWFuz065kuS8suCSPxCpMih7hX4h0ndHvO4aSUlrumGDY9eNr8kX4WlhZJMQFxEvQhJrtA4AACAM0F8dnyl0wAAAAAAAAAAAABwpvGr7oo2m00333yzfv75Z9ntdtWrV08tWrTQoUOHtHDhQv3555/66aef9MMPP8jH57hz6AAAAAAAAAAAAAAAAACciSyWY5ex2098O1B35R80jwERkm/QUYtmFGZIksIDw81jWUBcRkFGufrKgkgaDZR8Kuli5x/mcdPKB8QFBBy9bFq+Kwguol6EGgY1rDAfAADglOPl/nxcVpzbtN1ul8WTOgAAAAAAAAAAAADgNFPt5LYPPvhAP/30ky688EKtWrVKeXl5iomJUV5enlavXq2LLrpIs2bN0gcffFCT7QUAAAAAAAAAAAAAAKeY+Kx4jZs9TuNmj9OnGz6t7eYAOInm7J6jGX/N0E87fqrtppxQVptVrd5upcg3I9X3k7613ZwzT0GCeQxqdsyizoC4smC4BoEN3OarOEsqzTHTIR2Ou2nFxa5pv2PczjU1P9U5HR4Uroh6EZKktAIC4gAAwJkjPjveOV1YWnj8+0L5idKqv0nzB0pRN0iJ846zhQAAAAAAAAAAAABwchyjy1nVpkyZoq5du2rBggXyO6Ln2sCBA/XHH3+od+/e+vLLL/XII48cd0MBAAAAAAAAAAAAADgtWCzHLmO3n/h2nERbUrZoyuYpkqT9Gft17zn31m6DAJwUdrtdt/50q/JK8mSRRfkT8hXkF+QqUJPfh57U5U19XkrISVBCjgkpS81PVVFpkQL9Ak/ItlCJwkPmsZ4HAXEF7gFxjkdnQFy+K5BEQc2Pu2lWq2va1/foZR3hJ2GBYfLz8SMgDmcGu838+VS7OysA4DRSVFqk5Nxkt3nxWfFqHNzYPPF2v//wSinqeqmwrM70dVL8T1LHu6UBn0gWnxpqOQAAAAAAAAAAAADUvGpf0dy9e7dGjhxZIRzOwc/PTyNGjNCePXuq3TgAAAAAAAAAAAAAAHDq25e+r9JpAKcYi+XYf+Uk5yYrryRPkmSXXfsz9tdGq0+K6PRo57RddsVkxtRia85AtiLzGBh5zKKOILgGQQ0klQuIKwuOU0GCq3C94w+IK9+9rnxYXGXS8k0QnCMYrmG9hm7zgdNKaYG07n7phxDpuwBpfn8p7odqV2e3S999J119tXT++dIDD0h799ZgewEAJ4UjdFmSOjTsIEmKy4qrXmVFqdLSq13hcOVFfy7ZiqtXLwAAAAAAAAAAAACcJNUOiAsICFBeXt5Ry+Tl5SkgIKC6mwAAAAAAAAAAAAAAAKeB8qFwiTmJyis+en8DAKeHIwMhT+eAyCNfW/nAOJwEthLz6FvPNW/fp9LK21x/aesluYLgHMFwDQJNUJwjOE7WAlcdNRAQ5+/vmi4pOXrZtAL3gDjHo2M+cNrIT5T+GCjt+7jsM2eX0jdIK26Sdr7pdXVpadJNN0m33CL99pu0apU0aZLUs6c0c2bNNx8AUMbLAGlPxGfFS5KaBDdxBsTFZ8dXr3073pBKMqu3bhWyi7I18LOBGvjZQN05684arRsAAAAAAAAAAAAAjuR37CKV69u3r77//ntNmDBBLVq0qLA8KSlJ33//vfr163dcDQQAAAAAAAAAAAAAAKe2I4OT9mfsV6+mvWqpNYC7vDxpzhwpKUlq21YaNkyqX7+2W3V62Ju+1/152t4qSh6D3e6adoRMlJ9Xfn5N8aS+cm2IznAPhDudw/DqHLtdspeaaZ9yaWxpa6XYGa7nbW6W1N8ZBOcIiHM8OoLjZCt2reMX6pre8YZkt5ZtJ0Dq/oRHzSsfEFdcXHU5SUrLN0FwDYMaSioXEJefJrvdLktNv8+B2rLxYSlrW+XLsnZ6VZXdLo0dK82dW3FZcbGZP3q0900EANSgyvbnj5xfxhEG1yqslVqGtjTzsqoREGcrlQ587Xoe0Ejq8oBUeNjML831vk5Ju1J3aV3iOknS7rTd7KMBAAAAAAAAAAAAOKGqHRD3xBNP6JprrlH//v31xBNP6KKLLlLTpk2VkpKiJUuW6O2331Z6eroef/zxmmwvAAAAAAAAAAAAAACnNi8GRp8IsZmxSi9IlyR1b9JdQX5BJ3ybRwYl7UvfR0Acap3dLv38s/TYY1J8ubyBJk2kjz6Srr++9tp2uqjss3/CVBUYd5K+Wx2vzcfiI5vdViEwDieQI7RNkiw+Ry1qs9uUWZgpSfpu+3dam7BWOw7vkCRncJys5VLcygfO/fW8KzzOL8TjgLiAANd0RsbRy6YVmIA4RzCcIyiuyFqk/JJ81Q8gvRKngexdUvxP7vP8w6WSzGpV9/vvlYfDAQBOTXFZcZKklmEtnQFxcdlx3leUuVUqTDbTgZHS5Sul0I7mefd/SkuGV6t9Ow+7gkyzi7KVlJukFqEtKpQrLC10vpbwoHBF1o+s1vYAAAAAAAAAAAAAnNmqHRA3YsQIvfPOO3ryySf11FNPuS2z2+3y8/PTW2+9pREjRhx3IwEAAAAAAAAAAAAAOFOtT1yvV6NelSRd3flq3dX3ruOq754592jB/gWSpAV3LNBlHS7zvpLywXZVKQtlKrGW6EDmAUlS98bdtTN154kNiQIk2WzStGnSxIlSbKwUESFdfbX0zDNSS5MxoEmTpAcfrLju4cPSCy8QEFcpLwMu96bvlSS1CG2hxJxE5/Pq1leXOQLhBrQYoDUJa/ieO5ksvq7p8mFxlcgpypHNbpMkTf9rutuyjIIM2e12Weyl5equdvc6p3r1XNOHDx+97JEBcY5HxzIC4nBaiPnKNR3SQRrys9Swj5S1XVr3dzPfk31NSbLb9d57rqeBgdLbb0tXXilt3Gh+94/0V8pfSsxJlCQNbjNYIQEh1XwhAIATIT7LpHe3DG2plmEt3eZJ8jwYOuZr13S3J1zhcJL5/Rn6u/t+pId2pu50f354Z6UBcX9E/6FR346SJF3f/Xr9eNOPXm8LAAAAAAAAAAAAAI6rB9sjjzyia665RtOmTdPmzZuVnZ2tsLAw9e3bV7fddps6dOhQU+0EAAAAAAAAAAAAAOCMtDhmsX7e+bMkKa84r8qAuGJrsQpLCyVJ9fzqyd/Xv9JyW1K2uKaTt7gHxHkR/Oap2KxYWe1WWWTR0HZDCYjDCXf4sDR8uAmGccjKkv73PxMal54uHTwoPf547bXxTOH4rF/W4TJ9teWrU+uz70V4nd1ud762S9pfojUJa5yBcTgJLBbJJ0CyFUu2kqMWzSjMqHKZ1W5VbnGuQn3K/X6WD4urpqZNXdPHDIjLNwFxO1N36o0Vb6igpMBtWZsGbY67PUCtS1/vmh78owmHk6QGPaSL/5QOzpT0pUdVlZZKS5e6nk+dKt18s5lu31665BIzr7yH5j2kpbFmpV9v+1VXdb6qmi8EAHAiAp/js00YXKuwVmoV1sptnleytrumW19XcXlI9cY57ErdVeH5pR0urVBuS3K5cy/lzsMAAHA6+GH7D3p+8fOSpPv7369HznukllsEAAAAAAAAAKev477Fafv27fX888/XRFsAAAAAAAAAAAAAADjl2e12Xf715SooLVB9//qaP2a+LJ4Er1Vhc8pm13Ty5irLPb/oeb2x8g1J0rvD3q10UFZybrIO5R1yPj8Zg5QdoUktQluoe+PuZl7GKRQShVOK3S7deqt7OFx5mZnm8Z13pOJiMx0UJL3xhjR2rJSQIE2cKK1efTJae3orH5p2WXsTEBeXFaei0iIF+gXWcutq1uH8w8otzpVkAuJejXpVMRkxstqs8vXxreXWnSF8/E1AXEn2UYtlFFQdECeZALlQnwDXjGMEznmiRQvX9DED4gpMQNyy2GVaFrus0mXAKS9zq3mM6C9F9HVf5hsgtb1Z0i0eVbVjh1Ro8pHVsaN0003uyxs2lB4pt0tss9u0KXmT8/mmpE0ExAFAHROXFSdJahnaUi1DW0qSErITvN+3zt5hHn0Cjx4G52VQ/s7UnZKk9uHtFZMZ43x+pPLnW6LTo5VbnKuQgJBjbwsAgFpks0mzZ0tffSWlpEhNmkjDhkl33inVr+8qtzR2qXan7ZYk/RnzJwFxAAAAAAAAAHACHXdAHAAAAAAAAAAAAAAAcNmXvk9/xvzpfH4g84DaN2xf7fo2JblCLFLyUpSUk6Tmoc0rlFuXuM45vTZxbaV1bU3Z6va82gFx5QZHuw2mLj+/jCMgqkPDDs5/B8e8k2HXLmn7djO4rWdPqVs3z8Z/49Q0b570p+vjp0svlR59VMrPl775RvrlFzN/4UJXmXfekf7+dzPdrZv02WfS3LknrcmnrZS8FGdo2tB2Q2WRRXbZtT9jv7o36V57DfMyAMITju+0YP9gDWw5UJJUYitRfHa82oW387aFqA7fYKk0TypMcc1rcbXkHybtfsc5K6PwGAFxBRlqUz4griTzuJvWvNxP9jED4vKrDoE72jKgTvDk+zU/2fU5bTSw6nJHfg876j5i/vrJrulLLqm8CeXnxWTEKLvIFSS5MbmKRFkAQK2Jz46XJLUMa6mWYSYgzmq3Kik3Sa3CWnleUc5e8xjaSbL41Ejbiq3Fik6PliSN7DJS769936OAOLvs+ivlLw1qPahG2oG6L7soW/kl+ZKkiHoRCvAtd4zh5TGp3W7Xw/MeVrG1WKGBoXrrirdqurkAIEnas0e6/npp2zb3+b/8In38sbS13KWFjUkbK52ursUxi5WYkyhJGt19tIL9g4+7TgAAAACQzGmWpCQpK8tctw0PL1vgacehcudp1ieuV0quuc51SftLVM+/Xs02FgAAoArVvtr59ttvq3HjxkpMTKx0eWJiopo0aaL333+/2o0DAAAAAAAAAAAAAOBUszZh7VGfeyO/JF+703ZLkkIDQiVJm5M3Vyhns9u0PnG98/m6hHUVykjSlmQzQLlro66SpJ2Hd6rYWuwqYLe7/sqrar4HHMFJ7Ru2V/twExAXnxWvwtJCr+vyxpIlJhyse3fphhukm26SzjpLGjBA2ln5+G2cBn76yTV9003SggXSiBFmevZs6ZNPTMdfx0DHhg2lu+6qWM+IEe7P5++br/vn3q/7596vJQeWnLD2n04cn/36/vXVKqyVM8zhZAZEniyOkIj24e0VFhimiHoRkk7P11pn1StLYSsfENd6tNRjgluxzMLMo1aTWZgp+YW6ZhQku6YHfSO1v9PrppUPiNt3jLdEWsFRAuKOsgw4WT7f+LmeX/S8nl/0vFvQmsdydrmmw7odd3s2uXKU1aOHB+WTzQo+ZUFB5YOYAQC1L6cox7m/1iqslSLrR8rPx0+SOY/glVITVq3g1uU2sFdKWuD6y0/wqsq9aXtltVvla/HVsE7DJJnzKkfKLc51HiN0iugk6TgC+lGnFBRIkydLd9whjR4tPfigCZi3Wt3LjZs9Ts0nNlfzic31046fKq/MQ/vS9+l/6/6nTzd+qomrJiopJ+m46gOAyuTkSFdcUTEczuHQIdd0qa3U7RpFQk6CMyChuu765S6NmTlGY2aO0cr4lcdVFwAAAABIUlGR9MUXUp8+UsuWpr9Qw4bSoEHS/PnVq3PMz2M0YsYIjZgxQiviV9RsgwEAAI6i2gFxP/zwg3r37q0WLVpUurxFixY6++yz9e2331a7cQAAAAAAAAAAAAAAnGpqMiBu26FtstltCg0I1aUdLpVUeUDc7tTdyinOcQ6c3pu+t9IQHMeA5Gu6XqNA30CV2Eq0K3VXhXI1yRGQ1CG8g9qFt5Mk2WVXTEbMCdvm7NnSZZdJixZVXLZhg3uYCE4vS5e6pl9+ueJNn++9V1q71pV12L+/FBBw7Honb56sjzd8rI83fKyvt3xdcw0+je1N2ytJ6tCwgywWizo07GDmp++tzWadEOWDMCU5wzAdoRA4Ceq1NI9Fh45aLKMg4+jLCzOk4FauGYXlwhfa3CA17Ot108oHxP31l2SzVSxTUmIGWB8twC4tn4A41C6rzaon/nhC/1n+H/1n+X+0PHa595WUlAuVq9/ONZ30h5T4W9nfPI+rS011TXfteuzyjkC4S9ub/eqYzJhjBkcCdc2C6AWas3uOft/3e203Bahx8dmuELiWoS3lY/FR8xCzMxWXFeddZaUF5tG3nmte9GRpyRWuv6R5XgXl70w1YXDtG7ZXjyYmmTQpN0lZhVluq/6V8pfssissMEzDOw6X5ArsR930655f5f+yv/xf9tfo70ZXWmbKFKlVK2n8eGnaNGnWLOnDD6WRI6V77nGVs9vtioqLcj4vP10dRwYlEZwE4ER46y0pNtZMN2ggffyxlJkpHTggvf66FFouS39X6i4VlBYo0DdQbRu0lSRtSNpQ7W0nZCfoQOYB5/MVcUeELFgsx/5zsNulQ8ulqJukWS2lnxpLv58jbX5ayoutdhsBAAAAnFqKisxNAe++21yfLW/1aumNN7yv83DeYecNPqXjP+cDAADgjWoHxO3Zs0c9e/Y8apkePXpo797Tr1MnAAAAAAAAAAAAAABVWZtoAuGGtBni9rw6HGFwPSN7qndkbzMvZXOFcusS10mS+jTto1ZhJthmfeL6CuUcAXF9mvZRt8bdzLwTPEi5fHBS/YD6alq/qdv8mpaZKd11l2S1mueDBkkzZ0orVkgffCB16nRCNos6ICFBii7L42reXOrSpfJyu119dnX22ceu1263a+kBV/Lc0tilRykNB2c4ZFkwnOPxRH32PVY+6KF8CERVwRAeiM4wbzxHMJwjKK7WX+uZJLgsIK4k2z2A6ggZhccIiCs4IiCuIPm4m1Y+IC4vr/KQ0p9+OnZ4XVpBWUCcNwOjAQ/tS9+nJQeWaMmBJVW+F7ekbFF2kevzVeH30JOAndJ81/zygT1RN0hLrzZ/y0d53O68PNd0+cCCqmxM3ihJurzD5WoS3ERS5eHLQF2Vmp+qYdOG6Zpvr9GV31yphOwE9wL8RuAUF59lAuLq+9dXWGCYJKllmNnPKx8e5xnv9+uPZedhExDXpVEXtW7QWoG+gWZ+WXCcg+PcS48mPdQzsqfbPJwkXn4fLopZpFJbqUptpc7p8mbOlMaNk9LTzfOICGnIEKm9OfRTRrndp73pe3UozxVcvTzuiFBdL0IJJWlFvAlKssji9hwAatKsWa7pqVOl++4zQXFt20pPPSUtXOhavjHJHFf1iOyhfs37uc2rjiO/16LiqxmyYLdL6/8h/XmhFP+DVJAoFadJGRulnW9IW56ter1qnA8EAAAAUHe99JLrOMbPzwT+f/ml9MorUu/eZYU86TdQbv6Rof2cowEAACdTtQPi8vPzVb9+/aOWCQoKUm5ubnU3AQAAAAAAAAAAAADAKaXYWqxNSSb55Z5+90iSNiRuUIm1pFr1OQIrekX2cg4qrizEYl2CCYjr17yf+jbr6zbPoai0SLtSd0kygXMnY5Cy1WbV/oz9klzhUBWCkzwZtOtFkMHcua4Bu4MHS0uXStdeK51/vvTgg9LWrWYap589e1zT/fpVXa58V5ZmzTyoN22PUvJSFOAbIB+Lj6IzoiuGcaCCfRnuAXGO8LTTMTTNGYTpCIgre3QEx+EkqNfSNZ1RSQKbY9ExQtgyCjMkv2ApIMLMyNl91PKeqF/fPbhq9mz35evWScuWlQuAq8KxlgPH49459+riqRfr4qkX68vNX1ZaxhGW6gjDqVZgqqXaXVYrVX68jie7i4799D7N+qh3UzMC6HiCDICT7c/9f8peLvRqwf4Fx1Xf4pjFGjJ5iIZMHqIXl7x4vM0DjpsjBK7EVqJLv7pUl0y9RHvSzIGeIzzOY44gUmtBjbXPEQTXJaKLfCw+6tyos5l/2D0gbmvKVknu5162pmyVzW6rsbagZi06sMg5nV2U7dxnkMz+xuOPu8o++qgUFyctXy7t3y+tWuUePh8VZ4KNOkeY98e2Q9uOeRxyNI7BxyO6jHB7DgA1JTHRnDOXpJYtpWuuqVimbVvX9IbEDZLMTWj6NO1j5iVtqPb2V8SZUIVBrQZJklYfXF0hqNMjB6ZJ+z420/7hUvenpYFfSD2ek0I6upctSJG2vyr91kv6PtD8zeksrb1Xyj7+c0EAAABAXZeSIs2ZI02fLs2bJyUl1XaLak5pqfTJJ67nc+dKn38ujR0r/etf5mZez1aRH300jnM+/Vv0lyStil9VvWMXAACAaqh2b5u2bdtq5cqjX1xatWqVWrVqddQyAAAAAAAAAAAAAACcLrambFWRtUhBfkG64awbFOAboILSAm0/vL1a9W1KNgNSezXtpV5Ne0mS9qbtVW6x+83a1iWaMLi+zfq6AuIS3QPidqbuVKmtVD4WH3Vt3FU9mvSQdGID4uKz41ViM+F4RwYnnaiQqPLBO48/Lvn7uy+vV09q1+6EbBq1LCfHNd2kSdXlSsrlNfr6HrteRwBO/xb9nYMeqxWKc4bZm7ZXkisgzvG4N31vrbXpRHEEwTkCME/nMLw6q3xAXMriKotlFJpghsbBjTW03VDnX3hQuFnuCG4ILuvzlr5RshYfd/Nat3ZNv/OOFF+Wb1JaKj30kJlOyz9GQJxjeWV3sj/afOAYMgsztTxuufP53D1zKy23JHaJJGns2WMlmVCAnKKcSstWyTfYNV3i5bqVKH+P45xjVJeUk6SUvBRJUu+mvdUr0uxbO/a3gVrhZVC2IxAuJCDE7bmTl78R0/+arhXxK7QifoUmrZ8kq81as68P8FJcVpwkE76/+MBiLT6wWOkFJgE+LjvOu8r8zOdE+Qdd88J7Sq2vr3b7HAFxXRt3lSR1adTFbb6D4zxLz8ie6hFpzr3kleQ5A/RxEnjxfZiWn+a8GcN5rc6TJC2KcQXGbdokHThgpvv0kSZOdN8HOe886f/+z/XcsV91Tddr1C68neyyVzvULaMgw3lO8aGB5sBhY9JGFZTUXPAhAJQfGjhkyLHDtzcmm5DtPk37qE8zc670eIK3o+JNyML4vuMV7B+s3OJcZ9iqJM+/06M/NY9+odLwDdLZr0kd75J6vyxdvVvq+qhZnrVT+r2PtPVZKWubZCuVZJFy90nRn0kHj0j2BwAAAE4j8+dLF1wgNW9uwqFvv1266iqpRQvplluOKGy3SRlbpaT5UvIiKXf/KXEdcuVKKa3ssurQodKwYe7LfXykSy/1vt4jj13ySvK0JfnE9bcCAJxhavgmyzj9VDsgbsSIEYqKitLkyZMrXf75558rKipKI0eOrHbjAAAAAAAAAAAAAAA4laxNWCvJhE4E+wc7gycc871htVmdA6F6RfZSp4hOCvQNlF12twFSxdZi50DWfs37qW/zygPiHB0TO0d0VpBfkHpG9nTOt5+gTpzlw5FGfTtKAz8bqD9j/jTLMsqWlR/IVb4dVc0/hvID2oYOPZ7W41TjU64XzNHeMiEhruns7GPXuyx2mSRpcOvBOr/1+ZKkpQcqD4grKClQdlG2souyz+iADbvd7vz8T90yVdd+e60+XPehJBP6UFRaVJvNq1FZhVlKzU+VJI3/ZbxaTGyhZxeZW45HZ0RX+/vVapXWr5emTpU+/liaMUPaskWy2Wqs6aeX4HIBcbHTJWthpcUcAXFXd75ai+9c7Py7oM0FbssVXJboZs2Xkv847ub16+eazs01d6ifM0caNUpas8bMTyswIxV8LD4a3Hqw869tg7Zuy4Ga9kf0Hyq1lapVmAlGXB63XJmFmW5lbHablseasJNbe96qFqEtZLVbvQ87CYxwTedGu6YHfia1H+t12xs1ck3v2XP0so7AgibBTdS0flP1btpbkrQpiYA4nBrsdrv+iDa/SQ8PfFiStCB6gWz26u0cWG1W/bLnF0mSn4+fDuUd0uqDq4+rjRkFGTqYfVAHsw+quAYCVlH77Ha7bv7xZl089WJdPPViHcw+eOyVjkN8dnzVy7KqXlap0E7mMTfadYDY7nZpyI+SvB9AY7PbtDt1tyRXMFyXiIoBcTa7zXnOpkeTHgoPClfLULOvyoDRumnJgSWSzP/rDd1vkCQtPuAKnZ4zx1V29Gj3cw+ViYozg4XPa3WeM3CufBivNxzfy81CmunSDpcqLDBMJbYSrU9cX636AKAyGRmu6Q4djl7WarM6j6H6NOvjvJlGXFac8/yYN3KLc52/j4PbDNY5zc+RJK2IW+FdRYWHpdSy49O2t0ohR7wQH1+p0QAzvWacVJgi+fhL/d6TbsiUbiqUromVzn5TCor0+nUAAAAAdYLdJqWtlw5Ml2K+khJ+lfJinYunTZOGD5eiosyN9K65RnrxRXPjxQEDpB07ygqW5kubn5ZmtzbhykuGS4svleZ0lGa3NDfYqsMWl7uX2GWX1UydBSUF2pC4QZLpN9K/RX9J0or4cscuhPoAAIATyK+6Kz799NP69ttvdc8992jatGm6/PLL1bJlSyUkJOiPP/7QsmXL1KJFC/3rX/+qyfYCAAAAAAAAAAAAAFBnOYLg+jUzSTD9mvfThqQNWpuwVveec69Xde1L36f8knxJUq+mveTn46fuTbprc/JmbU7e7Ayq2nZom4qsRfKx+KhX015qHtpcknQw+6CSc5PVLKSZJGlLihlo1SOyh9vj4fzDSslLcZarSeUD4jYkbahyWU1yDGgLCpIiIo5eFqeXsDDXdFJS1eWalXurOzs5V8Fut2tprAmDG9x6sPJL8vXhug+d844sO3jyYG1KNoMkPxnxidef+9PFobxDyinOkSStT1yv9XINXrfZbYrJjFG3xt1qq3k1KjrDFXCUXpDutiy/JF/JucnO72VP5OZKEyaYYLisrIrLr7pK+vXXivNLS81fYOAZ2rc8tKtrOmevGbRwzntS9m63YhkF5keiQWADt/nhQeFmuSMgrn4718LNT0mRQyX/EMleveDHc881gy4cFi0yf+Wl5ZsAuKb1myrqrijn/I/WfaR//PYP53Kgps3dM1eSdFvP2/Tr3l+1/fB2/RH9h27qcZOzzF8pfymjMEN+Pn4a0HKAzm99vn7c8aOWHFiiYZ2Geb6xBj1c0znlPp9tb5aKM6SYKV61vW9f1/T27Ucv6/h97t20tywWizMgbmfqTuWX5CvYP9irbXvFWiSlr5fy401IUWAjqcFZUnCrE7fNE8FWIhWlSrZSKaCh+V48U6Wtk+J/lg4vNeESskj1mksN+0pdHnYFUx1L+SDZ8j/glQTM7k7brfjsePn5+OnxQY/r7dVv63D+YW1J3uIMCffGmoQ1OpR3SBH1IjSiywh9teUrzdo1S4PbDPa6LtNkuy6ccqG2HdomSfrflf/TAwMfcBXwZAflBAWXo/rWJKzR99u/dz7/astXevaCZ0/Y9uKy4qq1rFINekiJv0rWAjMQNqTdcbUtNjNWBaUFkqRnFj6j+gH1naF1Ow+7AuJiMmKUW5wrSc5g/p6RPZWQk6AtKVt0/VnXH1c7UPMcYXAXtLlAF7Q1wdHL45ar2FqsAN8AxZfLJuzT5+h1JecmO893DWo1SIk5ifp227fO0DhvOQYZD2w5UD4WHw1oMUB/xvyplfErnW11+CvlLz38uwkQbR/eXpNHTa7WNgGcebzZBduTtkd5JXmSpD5N+yg8KFxhgWHKLsrWhsQN7seHBclSyp9S6mpzvOcTYI6BIvpLzYdJvoFac3CNrHarwoPC1aVRF53b8lwtj1uuFfEr9NC5D3nesMwtJgxDkiIvdM1PXWWOYxwCGktpZUn9XZ+Quj7sWla/jdT9n55vE8App6REmjtXWrJEWrfOXE/095fatJHOO0967DGpfv2ywrZSKWOTlB9nzgkHREhh3d1vVAIAQA1y7JdX6zqvrVTa9qK09yOpuJLriZ0fVHHvD/TPst3dgABp6VLz+1fe7t1lDVk6QjpUlrLW6lop8mLJr7657powWyo8VI1Gnjxp5f4J2revmTrXJa5Tia1EIQEhOqvJWTqv5XlaFrtMUXFRevjch49dAQAAx3LkSTrHTsFRTt4t3L/QeVO/4Z2Ga2DLgSeqdagDqh0Q16RJEy1evFhjxozRkiVLtGTJElksFuddbwcOHKhp06apSZMmNdZYAAAAAAAAAAAAAADqMmdAXPN+bo+O+d7YnLxZkuTn46dnFj4jyRVs41gmSesS1kmSujXupiC/ILUMbamIehFKL0jXuoR1Gtl1pCRXQNzy2OUa8NkA2RwDpiRtSd6iZp1ObEDckQ5kHnAOtq1JQUFSQYFUXCxZrebOxzgNeNAT+qzDrg5RGzaY/lGVrVa+o/OGDRWXlxeTGaOD2QclSYNaD1JBiQkE2J222y2AUZJWH1ytTcmb5GvxldVu1YfrPtQ9/e6R5QxM6zpWAOS+9H2nTUCcJ6/V04A4u10aMcJ0yJek22+XHnhAatdOysuT1q+Xdu0yywoKpC+/lObPl9aulZKTzfygIKlLF+mf/5TuuKOaL+oke+z3x/Tl5i8lSXf2uVPvXfme95WEdJACI6WisgEJe96XDv5sBiOX4wiAcwTCOTgD4sp+Z9XoPGnvh2Y6e6e0bIQUeZEZWFEN55577DJpBWa0QkQ993TThvUaui0HapLVZtVve3+TJF3R8QqV2Eq0/fB2zd0z1y0gzhGM2q95PwX7B2tw68H6ccePlQamHpV/mAlgzDsgHY6q+sfaQ/37u6YXLaq8Osc8R0BcTnGO3lzxpjPkx2a36a+Uv3RuKw8+qN4qSJY2PiodnCXZisw8vxCp1AQHqecLUq//q/nt1iS7TYr+QoqdIaWtNkFLDkHNpG7/lLo/UXvtqw1bJkg7XjHT4b2l5sMlv1AzaDz+JxN44WlAnBcWRC+QJA1oMUCNghtpcOvB+jPmTy3Yv6BaAXGzds2SZAYLjOwy0gTE7Z6lNy5/o1r7r8vjlmvboW3y9/FXia1Ek9ZP0j8G/KPa+8IpuSkaO3us7Ha76vnX07fXf6tAv8Bq1YXq+2LjF5Kks5udrc3JmzV502Q9M+QZ+Vh8Tsj2HIFrlTmcf1iFpYUK8gvyrLKws1zTCbOlro8cV9t2prpC4NYlrnNbFpMZ42yb49yLJI36dpQsFoui002odPllqKYTEDa5KMYkN1/Q5gL1bdZXwf7Byi/J19qEtRrSZohsrtNn8jnGW98RBNcqrJVahrXUea3MCYh1ieu8e/+WcQzsOrfluc7HP2P+dAbHlffO6ne05MASSdISLdH9/e/XgJYDvNreGcXT3yfCS3EGaNjQNR0be/SyG5M2SjLB+47voqb1myq7KFsbkzaagDi7Xdr2krTjvyacLbCJCci2+EuHlkjbX5aGb5Ya9nF+bzqCMB3HZVFxUbLb7Z7vSzqOsSTJv9xNAZZdY0KuHfq+45puXRbaaitxv8GAb6AU2tmz7QKnicLSQt0x8w4VlRbJYrHoy1FfVjhHearbv18aOdJ106Bzz5UuusicT9+3T3r9dWnMGKm+X7q06Z9S/PdSqQnElG+QZC00092fks5+vXZeBADgtJKeLn3+ubkuvH69dPiwmd+4sdSrl/Taa9KAcof19nLHpxX2kzc+Ju39n5nu8pDU9napXjOzL5y6UrIWavZsKSXFFBk9umI4nCR17SopaaErHK73f6UeR9ws4uzXXb+LdZS/v2u6uLhm6ix/7OLr41v5sYsXN4Q56biBCwDUCXa7XYWl5nfUx+JzXNc+rTar7pt7n/Zn7JckLdi/QMvHLa+0bExGjDILMyVJXRt3rd7N807Qb8mnGz7VV1u+kiSN7DJSTw952us6zhTVDoiTpM6dO2vNmjVav3691q5dq8zMTIWHh2vgwIHqX77njZdyc3P13HPP6fvvv1d6erq6deumZ555Rrfccssx1z106JCeeuopzZ07V/n5+erTp4/+85//6NJLL61QduHChXr++ee1ZcsWBQcHa8SIEXrjjTcUGRlZ7bYDAAAAAAAAAAAAAE4x1iIpfZ1UmCIVpUsWHzNoKbSTFNpV8vEsYSyrMEu7Uk1yz1MLn9K/l/zb2aFj++Htyi3OVUhAiMfNcoTAldpK9dnGzypdJrkGJu84vEO+L7m3dW3CWo3sOlJ2u11bks1A5MP5h3U4/7BbuS0pW8zgrRp2tOAkm92m2MxYdW7k4WArDweDte9nV0aGZLNJW7ZI/fp5Vj3qOA860zaW1KOHtH27uSv0pk2V//+3by81bWo6QO/dazpcH9nN5fBhqUkTaekBE3zTpkEbldpK5efjpybBTXQ4/7CWxy7XjT1udK7z4ToTJvXoeY/q661fa2vKVq2IX6EhbYYc98s/1XgSmna6cIQ9VLk8I1oXtL3Ao7rmzHGFw11zjTRtmvvyTmVZMzk50vnnS9u2mYCC++6TrrrKvGczM817PyfHyxdSS5JykvTR+o9ks9tksVj08YaP9dTgp9QyrKV3FVksUpMhJhTOIf9ghWKOALgqA+LKAuQUeZH7ioeWmr9q6tfP9b1TlbT8ygPiHM8zCzOd30OnApvNvA/T06XCQikszPwb+J0aza+7arjT7ZqENUorSFOwf7CGtBmiUlup3ln9jn7b+5usNqt8y/aDHUFwfZv1VXpBuno06SHJ7IfmFeepfkB9z19DeG8TEJe9S0peKDW/3PN1j9CjhxQYKBUVmd/0mTOl665zLc/Kkr7+WnrwQVeQwdqEtRXCmzclb6r5gDibVVoyTMrcKtVrLg34TGp2mQkbKM2T0tZJ9tKa3WYVCgqkkhIpJOTYwTYVrLtfiv5UsviaQdAtRkiBjaXiDCljoyT391tenhQdbT772dlmoHXz5lLnzmb6lJe+wRUO1/Vxqe9bR+yb2tzDKWrQH/v/kCQNbTfU+fhnzJ/6I/oPPTX4Ka/qstvtzoC4qzpdpcs7XC5fi6/2pe/TztSdOqtJWbBWcZYJvUucI+XHmwGFdrt5D4R2kXq9KIV1kSRNWjdJkvTEoCc0ZcsU7Ti8Q8til+midhc5NupqgAeD495Y8YZ+3/e7fCw+stlt+nzj53pg4ANevU4cn7ziPH27/VtJ0qcjPtXV069WdEa0lscud/2/1iC73a74bBMQd2WnK9U6rLUkKb80X9O2mh3jg9kH1SnCwwDGBuUC4na9JbW+QQr2ch+znJ2Hd1a5zGa3aU/aHvVu2tt57kUyv7PllV+GuiEpJ8kZ/ndh2wvl7+uvQa0G6c+YP7UoZpGGtBmiZuXup7BzpzlWq8ryWDP4qkVoC83bO0/FVjMKudharHUJ6zw+NpSkEmuJ8z204/AOvbr8Ve1N3yvJBMeVD046nHdY0/+aLossGtN7jL7e+rXeW/Oepl03rcr6zwRFpUXKLTa/y8H+warnX6+WWwTUTeWDIaKOkeO9IcncbSOrKEsjZ4ysdJkSf5O2vWCmuz9j9hnL3yQmJ1oKNOc6ygdeTt40Wcm5Jug/ISdBcVlxahve1rMX4Rfqmi5Ick3XayHZSqWSTPO8JMu1LKiJeSxKleb1cs1v0Eu6aqtn20WtsFrNse0ZeF8Wr6SnS7NnS7//LsXHm2smRUVSRIQ5z/zkk67QmU83fKofd/zoPP56e9Xb+s8l/6ndF1CD7Hbp3ntd4XDTppmbs5SXlyf5+dql5aPMTQ0CIqTBX0rNr5T8Q6SSXCljg3msdCM2syEPrykDAOqehARp82bzG5qVZULGmjc31yE6dqzZbe3eLV14oXTokBQaaq5hnH++uZaWkiKtWiWllss53nl4p3p91EtWu1UWWbTpvk3q06yPWZifIEV/YqY73iOd875rxfptpYhzJEl7yl1CrSwczinuO9d0l4fNY3GmuabjENj4hNwkpaa0aeOa3ry5Zup0BMT5+/hr2tZpzmOXpNwkHcg8oPYN23tdZ0FJgfP6W2hAqAa3GXxcbVx6YKlWH1wtSRrcZrB7P5Ujz8M7dqaPck1xU9Im5ZfkSzLBeP6+/lWWBQCYY+70dNNvy26XGjWSIiPdz19M2zpNf5v1N0lS4+DG2vfQPjUIalB5hccwe/ds7c/Yr26NuyktP01RcVFam7BWA1sOdCuXWZipAZ8NcN6U8rkLntPLl7xcob7U/FQNnjzY+d0/59Y5OrvZ2a4Cnl7r9aJPS15xniYsmqDU/FT5Wny1MWmjxvUdp8j6ZH5Vpka6W/Xv31/9+/dXaWmp/vrrL0lSSUmJ/P2r90N/3XXXad26dXrttdfUpUsXTZ8+XbfeeqtsNptuu+22KtcrKirSpZdeqszMTL333nuKjIzUhx9+qOHDh2vhwoW66CLXxeilS5fqyiuv1NVXX63Zs2fr0KFDevrpp3XppZdq/fr1Cgz0MmmxgQcfOpJzAQAAAAAAAAAA6j5roRkAa82XfALNIAXfU2QUc16clPyHlL5RKk6XSnMkn4CyjlndpO5P1HYLgbqlNF/a+IgU+60JZ2h2uVS/nSQfqTBJytgsXTBLatDdo+o2JG2QvSwgwXHHPQeb3aaNSRt1YdsLPW7epuRNVS7769BfzpAYR0BcZRzLknKTnJ08KrMl5cQMUo7OMMFJQ9sNVZ+mfZzzJ62bpBJbiaIzoj0PiPOww+KI/5M2mvwPzZxZeUDY0Qa5oYYVZ0hp66XitLIBeD5SQAMpuI3UsJ/74MAacNFFJiBOMgOcfvvNBMdIZuDYs8+au20PHiz9XNYJ+u67pV9+cXUUXrZMeuklaeFCVyBOXFacWr7tHiawNHapMyDuUN4h/bDjB0nSfefcJx+Lj95c+aY+XPfhGRkQ5xi03iK0hYZ3HO6cvyR2ifZn7NfetL211bQa5wi76xXZS6O6jnLOn75tuvZn7PcqDG95uRu5jhpVdbn//teEw0nSK69ITx9x89RhNZ/3ecK8tfItFVmLdGefO+Xn46cvNn2hN1e+qXeHv+t9Za1GuQfEVcIRAFdlQFxZgJzqtzYDgrP+8r4dlfD1NaFVH31UdRnH73RVAXGSlF6QXmsdIe12E8AVFSUdOGA6teblSfXqSc2aSRdcYAazfP+9NH26tHixVFoqnXWWGdySnS3FxUnPPSc98kitvIQTprDQ/HtkZ5sQrvr1TRhevRORP+FlwNKxzN0zV5LUtVFXZwCJRRalFaRpTcIand/6fNnsNmdg6icbPtEnGz5xrl9qK9Wqg6t0WYfLPN9o48FSwi9mOup6aeCnZoBS2pqjr1cJf3/z3lu40DwfM0b63/+k4cNNWOaTT0qDBpnP9oHMA1XWsynJtd+9dasZPL16tRmAlZlp9iHCw6V27cw+gkeDwRLnmnA4Ser7jtTyajNYOHu3mVevuWSp+cREm83sA8+aZX5X0tNN5/PgYBPa6O8vffKJdJkn/2VZ2004nCT1eE7q9ULZRkoktZciXDvav/8uvfmm+Y4ICDD7WpGR5jMRG2veritWVNhCnVNcbN47u3aZ//ucHPN6GjWSunaVhgRPdxXu/qR5YYWHpAPl5tdvI7V2JRXGZcXpcJ4J6O7QsIMa1mvofbusxVpyYIkkMxBt7KyxisuKcz7PL8n36k7vu1J3OffXzm11ruyya2DLgVp1cJVm7ZplAuIKkqT5A6SCBLPf3v1JKay7CTksSDYBgbYiSVJybrJ+2vmTJOmec+6RXXa9vuJ1fbjuw2oFiSXnJuuj9R/Jx+Kjz0d+rrt+uUuvRL2i8f3GK8jvFDlHV5dlbJYOzpQOr5SKDpvzhxY/yb+BFNJeGvCxFNBQP+74UbnFuereuLv6t+ivm3vcrP+t+58mb558QgLiUvNTnSH7L138kvq3MCnexdZiZ0BcXFac5wFxDc824f9Fh01w8IJBUqf7pdx9OjLc0hOOELEqlx/eaQLijnJ+JTYrVlmFWdUe7APV+L7Q4gOLndNDpw6VRRal5qc6l/37on/ryiulV181ZebOrXj8VV5UvBksvDZhra6afpXbsuVxy70KiNuastU5EOubv75xW5ZWkKa96XvVpZEJ6fxkwycqshbp6s5X6+WLX9a0rdP0/fbv9eblb6p5aHOPt3kiJCebY4O1a00wTWam2V8JD5fatpUeeEBq0aLmt2u323XNt9foj2gTsHpeq/MUNS7KGYBcnYHRwOmqdWtz7L5jhzlu//136cor3cskJprPqiN4uzLOZftMcLD8w6U+/zU35MmLKwuYLhPSSaV+oVp1cJUk6Y/oP5yfV4eouCjPA+IizjH7M/ZSKXWF1OkeM//KLVL0ZGntePM8qNw5lbxYE5jhW09qN8aEeOfs9mx7OGmSkqSpU6U//zTv0dJS1/kWu10aOtQslyTlxUupK83NoByhgP4NpODWUtOLpQDvj8VOVWvWmHPEWVnmhjlPPy317WvO0aWnm5srFZpdbxWUFOjVKLOz8+mIT3XPnHv03pr39Oh5j6pxcONafBU1JzravIckE/JzZDicZM7nKWWJCYeTpD6vSm3KbhCUU3YMUa+FVK8seT9zm7T/Syl5gbmm7BNg+pbYS0xo5dlvmnNBZUptpSq1mRsF+Pv4u/ZJAFRp5+GdWha7TJLUMaJjleegX1n+ilbGr5QkjewyUvf1v8+1sIZvuFLbFu5fqP0Z+yWZkPNujbvVcotOD3PmSM8/b34fIyOlyy83wXA2m7n2EBtrjmm9tT9jvzNErEujLm6/q//4hwmHk0yfhSPP1994o/vzJxc8KavdqgEtBmhd4jo9/sfjWnjHQhMcn7Gx7Jy9pGZXuFZacbPp/1imfv3fndPlw+cqKMk2j771JL+ymwOlrpaWljtIaHu7dH71QultNnN90WYzN7XxPQE/iVdfLT36qJmeM0d6663ju4GVzW5zfs/Mj56v+dHz3ZZHxUVVKyDupaUv6bUVr0ky1+aWj1te7ZC49IJ03fjDjUovSJdddkXWj9SuB3ZV+zzkyviVGjJ5iLMP3KuXvqpnhjxTrboA4HSWkSG9+67066+mv2rLlqZPgb+/+a1PTpbWrTPH5vkl+Xp20bOSzPnq1QdX65Xlr+j1y1+v1rbfWvmWJOnBAQ8qISdBr0a9qomrJuq7G75zK/d61OtKK0jTsI7DtChmkSaumqj7B9yvFqHuJ+b/b/H/aU/aHnVt1FW703br0d8f1eI7FztvVOMxL67jTFo3San5qRreabiahTTTlM1T9OaKN/XmFW96t80zhFe7MzExMVq8eLGGDBmiLl26uC2bO3euxo8fr9SyvcKGDRtq0qRJuummm7xq0G+//aYFCxY4Q+Ek6eKLL1ZsbKyefPJJ3XzzzfKtYm/viy++0LZt27Ry5UoNGjTIuW6fPn301FNPac0aVweiJ598Ul26dNGPP/4ov7K9uvbt22vw4MGaPHmy7r//fq/arawsE80sHf/FodPsoBMAAAAAAACAkZCd4LxI3Ci4kS5pf0kttwgA4JS1Q9rxunTYDHpXxEDTSdxWIhUmS34h0pDva7eNx7L7fWnTY2YARI8JUodxZhCkvVQqSHTeybOoSFqwwFx03rXLPA8IMB2hrFZzyev1183dwyVpzcE1+mrLV5KkBkEN9H8X/Z8C/by82RJQV21+Sor+3IRAXrlVCu1sQiJL811lvAiIXJvg6hVqkeu6r6PD3NqEtV4FxG1O3ixJGtJmiFqHtZZkBhD8sOMHFZYWanfqbrVv2F7bD5k0rPr+9Z0DCkptpcovyde6xHWy2+3akmwGKPv7+OuhgQ85t7H10FYt3L/Qubwm2ew2RaebgLiHBz6s0d1HO5f9tvc37U3f61VwkqeuvdYEd0gmpKJvX2n0aHMpvqTEBGK0amXK4QTKi5NW3SEdXi6F95Za32AGz1h8zeD85D+l7k2kUFfCSlFpkax2qySpnl897zsYyQzsmVQ2BnHRIunss00H6/x8acYM07H7tdek++5zBcRt2SL16iVdcokZ7Lh2rdSzp1nmGHhQGUd4nCR9vvFzFVuLdW7Lc9U4uLGu636d3lz5pn7a8ZOShyWrWUgzr1+Lx4qzpKJUqTTX/O77Bkn+Dc2AR5+aD57xhOOzfXmHy/XFqC+c85+Y/4TeXv229mXU/Ge/tjiCMK/qfJXbHVbjs+O1P2O/c7mbKjrARZYboxoTU/U2N5XLDx1yCucPHs47rI83fCxJemLQE/L18dUXm77Qpxs+1b+G/EtNQ5p6V2Gra83731pY6WJ7QGNnAFyVAXFlAXKSpA5jpU1VBCz7ep/8deedVQfEBQdLMR4ExKXlp9V8QFxRqpT0h5S+wQygtZeWhVbZJf8wqc1NSrZfrFGjzPdjo0bSE0+YQM7wcDOYND5eSkgwAyyeespU++CD5rgiuFxekc1mQtRkLZTifza/Edk7zaBJnwDzG+EYRDnoK69fitVqOtnm55s/X18z8LVpU3PMU5PS001Y48KFJjjv/POlTp1cIVxxcdL48ZKX3SdrTtYOKWm+GRhUkmUGqFr8JNnMdLfHpYZnOwPiNiVv0kVT3MN+5uyeo/Nbn68dh3ccNWh46YGl3gXEtRsjbX1WsltNKNHKW6vzCp0eftgVEFdQYP7dyxs0yLVf7WPx0eUdLncui8uK087UndqYbIIKnnvO/L9KJqzkxRelDh1M2Gx6uhmMfmTwn81uc077WHxcCwqTXdPBrcoKl0i/lhu0V6+FdG2C16/5aJ54wnRCl8ygtn/+09W1VTKd1K1WDyvLKfd7Hd7bNT2zqQkBliSLj5a3tGrECFPvhRea8JzQUPeqSku9fSUnQHGmCT0rzZVsxeZ7JyBcqtdCNp/6evpp6cMPzfvollukSy81HfhtNtN5f+5cacjNPhXrLTos7fvInHspzTXB42UBcdHp0Rrw2QAVWYuUX5KvAS0GaOnYparn793vyOqDq5VbnCvJBAwtj3OlyhZZi7Q8drmGdfI8IXb27tnO6c4fdK6w7NkLnpW2vWTC4Sy+0sULzA0UCpKkQ2X7x/Vamtcrsy9caivVea3OU0hAiEZ0GaHXV7yumbtmKjEnscIAg2N5Y8UbKigt0C09b9HYs8fq042favXB1fp84+d6cOCDFVeogZCoM4YjIMXiI/V5XWp7m1SvmSSL2SfI/EuymBvEf7HJ7Md3adRFM3fNdIYb/rD9B70//P0aDzmLz453TrcKa+WcDvANUGT9SB3KO6T4rPjKVq2cj7/U7nZp97vmeX68+f2ppl2p5tzqE4OecBsMedU3V2ld4jrnckdA3LCOw5wDte12uz5Y+4HssmtrylZd0M7Dc0O8n0+4RTGLnNOO4E2HlfErVVBSoPPPr6fISLOfGRUlffCB2U/wKftJiI83g79uG5ft3OeoTPnvbk+siD96suqKuBXq0qiLiq3FmrTOnAj5e/+/q214W13Z+Ur9tvc3fbT+I7108UtebbcmvfOOOT4oLZVuvlkaN87sWwUEmH2rnTvL9hE8HD+zfbv07bfS+vXSwYPm/F5AgPm/KC2VGjaUvio7jPh84+f6I/oPDW49WA2CGui3vb/p7VVv68nBT3r3Ihjb4xGbzfxTcUOOU9eoUeZ4R5LuuMN8fm+5xQyV+/Zbs5+8fYfNGQLXpVEXhQaYnf4ia5G2HdqmmMwYpRekK6K0wFTkV8/sc0gmcGn9P8rCJuxSt3/qr2a3OfdxK7MifoVu711JilNlAsKlyIuklD+l2Okm3LhBj4rlWoyQ9IBpw/4vpcgLzbqDvpY2PEpAXB0THW2O6Q8fNkHt339vnjt+g4uLTRkVJEnLr5PSVksN+0rt/maOYS3+5oZqGZul+u2liFMkIM5aZD4rpbmS7OY8ZECECev20N13m8+vJP3xhzlnVd7gcrkjn2z4RMm5yRrcerDG9xuvefvm6aedP2niyol69bJXj//1HKdSW6n+tfBfOphzUJJ0fffrdcNZN7gKePDjY9nn4W91QflzOW1c07/1MOcRJHPe8pJF0sIhJjS9y0NSz/+TAhuVqyfFnPcqk1GQofMnn689aXtks9t0eYfL9ettv8rf19+zdtUR6emuc69FRSbwoGFDEyB6Qm6U4Q1rkVSUJlnzzPk33yATVBrQkB2UU1Rafpqu/OZKHcw+qCb1mygtP01Lxy7VoNaD3MrN2T1HExZNUPfG3ZVdlK350fPVt3lfDWw50BSo4ZDx2rQiboWu/OZKNQluokN5h9SmQRttuHeD62YUHLtUqaTEXMPKyzPfYRaLCSaLjJT27zc3eCotlQYONP0L6tc//m3uSdujgZ8NlNVuVW5xrvo176fl45Y7b/LhuOGhxWJugnM0C6IX6Ne9v6plaEst/NtCnf3x2VoUs0hz98zVyK4jpYByv0GFKa5p/wZSboyUbm4qOWKE9Pjj5m3w3XfS//2f+S6vILynFP+DZC0w1/AanGVuFnPhL9KWCV7fXOvwYXNjn2XLzDFH+/au4/mcHPP/8uqr0rnnelihB+/1Tna7evY0N1zbv9/cuOrNN13XLLdvN31H/vMfzza5/dB2ZRVlVbk8Ki5Kd/S5w7PKymxO3qw3V76piHoReuvyt3TXL3fp7jl3a9N9m6p1k5SnFzytw/mH9eCAB1ViK9EnGz7RhEUT9L+r/ud1XYWlhRr/y3jZZdfHV3+sJxc8qReWvKDR3Uara+OuXtcHnMry800fia1bTYB5bq7pHxEYaPpXn3++uXFZrSjJMTcTT1tvrlFaC8x1EUnyD5VaXC21HFlLjTu9xGbGOm9w1KFhB+exXFGRdMUV5nx1QIA0b555Xv6nytFvRZLeXvW2DmYf1NWdr9akqyep8wed9e6ad/X3/n/3Omh0VfwqrTq4SiEBIbqjzx3KLMzU6yte1487ftSBzANqF95OkhSfFa9317wrX4uvPrzqQ01cNVEfrf9I/7f4//TZNZ856/sr5S99vOFjhQaEavGdi3Xx1Iu1NHapftr5k/sxeA3KK87TGyvfkCQ9PfhpRdaP1JTNU/Thug/15OAnT8jNM+12c11i/Xpp927Tfym37PRkaKi5Oebf/+4aP1HXeNUL9LPPPtPrr7+u/fv3u83ft2+fbrrpJhUWFqpt27YKDg7Wrl27dPvtt6tz587q27evx9uYOXOmQkJCdOMR8cbjxo3TbbfdpjVr1uj888+vct2uXbs6w+Ekyc/PT2PGjNGzzz6rhIQEtWzZUgkJCVq3bp1effVVZzicJJ1//vnq0qWLZs6c6X1AnBcKSwv1xoo3lJSTJEnq36K/7up7l6tjs6cHnRywAQAAAABwUtjtZsBMaqo5mVtcbDoa1atnOjg0O4HjewF4yNOOPLV4vmx/xn5dMvUSZRRm6LxW5+mP6D/c76jlxWvYt88MBo+NNRcN6tc3Fw4sFtNR4fzzTadIVNPpcO71dHgNwMlUkistvMB0EG91nTT4e8nHV0peZAbCOhSlSoEn5i7Z2w5tcw5Aax3WWr2a9nIt9OQzbbOZoCu7TWp1jdTz32b+ng+llIXOYlk+/XTh6P7autXsy37/vQl2cHT4sttNp15HZ7eNSRs1bNowBfkF6fZet+vVqFe1M3Wnvr/he3OR25vfYGuRlBdj7t5uzXcFd/gGmU5pEf0l/xBJpnNecrKrc7HNZtroCHcIJJ8Ox+Lpe3PhUPMY2FgKKRsdkfirtP2/UtY204H8rGelPv/1qDpHQNw9/e7RpyM/dc6/+5e79cWmL9wC5I4lOTdZKXmm8+b7w99X3+bmurvdbteiNxcprSBNm5M3K7Mw0xmolfB4gnOA9t60veryvy5KL0hXTGaMc4By9ybdNXHYROd2FkQv0ML9C7UrdZcKSwur1dGwKkk5SSooGwzWoWEHt2UdGnY4YQFxffuaMJbvvzffIddfL3XrJjVpYjqAZmRI33xT45s9s5QWmMFyebGmw5mt0HzX+waZTmaNzpXW3y8dXmY+X8PWmU5o6Rul+J9MHYGNpZw9zoC4n3b8pNt/vl0tw1pqf8Z+3dTjJk29dqrX78nzz5duu02aPt0837XLBMcc6fLLpZEjzR2jJdPhZ9Ys9zLxWfGKyTQpXa9d+poaBZvO1Uk5Sfr3kn9r26FtSs1PVcOghvp4vQm5WpOwRhFvuHoJldhK9NmGz/T8Rc979TqOqSRX2vIvKeEX8+/e9hapfjsT+mMtMJ2/w7pKra+v2e16aG/6XkmVf/Yl8x11unB8jx35WtuHt3db7onx400wUVaWGXh71VXux/dWq/keGzHCDOyTpK+/Nu/7I3/67HbJUpJhQriytptBhcGtyjqE+kiymUFtPZ5zdRI9yd5Z/Y7yS/IV7B+s/y43v7UhASHKLc7V26ve9v4uuf5hUrd/Stsr6c3f5hblhfdx/mYeGRDXIND8fmYWZsput5t+XB3GSbsmms60R+rzmndtkxnYMHasNGWK+/zAQOmhh6Q7F3sQEHeUkK5qSd8gLbrEvD+6Pir1fVMKairlHTBvoqLDkqSX/m06PktmAMW4cZVXV35w6V13uYfDSea8engDu7RouHRoqRTWXbroVymkvZR7wLk9FWdKRekmjOgYioqkN96QfvzRnCu75hqzL9CgLLMmM1NKSTFhdd6yWk1QVHGxOefm729eU2CgGTwfFWXKrV7t4cCVkzUA7cB0adUYSXbp3MlSm1vMdF5Z8mRxpiQfxWbG6q9DZiBPz8ieznCzzMJMxWXFae7euXr1sle19IAJRG0Z2lLPXficczPzo+dr1q5ZboGpHgluIXV+QNrzfhUFKgngOooRI6Rhw6T586su4wgx6Nqoq34f87tz/tw9czVyxkj9lfKXcvJK9N//mu/D8HAT/lL+vywy0j3I02a36akFT2niqolq06CNEnMS9fHVH2t8v7KEuubDTQCZrdgEDzQ+3zy/IUfa8aq04xW3NuaX5OuReY9o2+Ft8vPxU6uwVpp01STXAD8PTZ1qHi0W6emnKw5ma+hNdY0HmcD80lwp7gepVVnq8rD1UuwMaat5P6xe7QqdGzq0YjicZELpT6iqPl+2UhN0duArc3zXYZwU2kXyDTb/N0WHJd9gfbfuHr1lbrKuceOkyZOr2E7GHdKusoI7XpH6vWuCJ0bsllbcIsW57sieU5SjUd+OUkZhhmbePFNRcVGauGqi7p17r7669iuvwpAXRC+QZM4Zlb/xzLLYZYrJjNGC/Qu8CoibtWuWJCksMEz1/MwobrvsOpR3SGsT1ppQN+f+gd2Eh0pmsHXSfClpnglBbHubSiMG6JMNn0gyQXZN33IFvJbaSvX5xs/174v+7XHbknOT9dF6k6iaVZilh+c9LF+LGTnxatSrurvf3dU6bk3KSXIGkDUOblxh3+2M4fjuDesudf+nmT4w3f07udPftafB+c4wq9m7Z7uFChaUFui77d/p3nPurdGmOcLf/Hz8Kgz6aBna0gTEZXsRECdJ3Z+Woj+TSvMqX+4X4lE1drtdO1N3SpL6NO2jxsGuc8RnNTlL6xLXaWfqTmUVZulA5gFJ0vMXPq/BbVw7R7/u/VXRGdHakrJFF1Q1JoDrNiedIyDuuu7XqVekOSdvt9v12orXVGwt1sr4lbq0w6V64QUTPi+ZcwyffCKdc44ZYL5smXT11VKHy1fLZrfJ38dfP9z4g3Pfan3ier207CWtjF8pq83qvLnDsThuOjaq6yhNuGCCc/7zi5/X/Oj5Whm/UuP6jtMP239QUq4Zl3LTDzfJx+KjYqsJMPl4/cd69oJna/R8n6fy8szAc8kMppoxw/3num1bs98uyaPxM0uXmsF1xcUmxHX5crPPVp4jkDY2M1aP//G4/Hz89MmIT1Q/oL56TOqh5xc/r6u7XK2zmpzl+QvxMlAiMSdRM/6aIbvsssii23vffmJvGlALfvnFhAns3Gn6S3XrZvpP+fiYfcKiInPzDq9CFUqyzQ0lSvPKrh3ZzTku/1CpflvJrwYSGs5QqanSkiXSvn3mulvjxuaY1sen7LC/SHr0URPmOHWquXlGWpr0t7+ZP4emTc05rpziHEnSb7f9po4R5rxuYWmhQl4JkdVu1cakjbqs7a3SocUmtCvue6nNTVK728zfr92dN7SKijMH1e3C2+nLUV86t/Xzzp/1wdoPnMs91uUhExBnK5F+P8cExdZvZwZLOwS3klpcZa4DxUwx+wIdxppzSvlxVVSsU/u32loo5SeY4zq3z1eIVK+VCfKro2bPNoEikgkaLX/eSTKDr7t3l7TmeRMOZ/GVLltuvjOyd0t7P3QVztwiRXg+vvWkKzwsbZ0gHVpiAsiaDyu74Y6f+W4sTJFajZKaHPGPUMV7s/wxeHFx1ZvNL8nXa1HmPKevj68emfeI8krMvvMHaz/Q44MeV5P6TY731VWbzW7T+F/G66stX+mhgQ9p8YHF+nHHjwr0DTSBOJJHv9Ud7Oaa0IIFJhBm6lTzHVe+eE6O5B9+iYL86pt/85gp5v/BYpGuOyztnWSuyUjSwZkmHE4y56MDG5lzm8tHm+tltlIp4hxp8LcqsZbohh9u0K7UXXpv+Hvanbpbk9ZP0kPzHtJHV3/kdm7AbrdrXeI65ZeYG5n1jOzpduxxoiyOWez8zg0PCte959zrvGHggQPSM8+Y35KAAGnMGKlzZ/M7X1pqPqMNGpjz3g6bkzc7b9TSpVEXtQxr6VpYnf5sVe2DWQulv16UEmaZczytrjf7Db71zP9D4SFzc7h2Jmy01Faql5a+pLUJa53HnROvmOj1ubfTTbG1WKU2syMd6Bvo8fHKiWS1WTVm5hjFZsXqlUte0YVtL9SFUy7UjT/cqI33bXSeM0jITtC42ePka/HV16O/1qG8Q7pq+lW69adbtem+TQoLDDvGllwKC80xx86dJgQ8LMy8zy0W87YrKTHXn9u2NeUTcxL1655fJZnzGDf2uFEhAeXOMRSlS6mrpNxoc5MU33quG/PYrVKTIVKjgR63Lzk3WTf9eJPsdrt+vOlHLY5ZrOcWP6cxM8dozq1zzPHnaRSGVxOsVhN6PHWqCZQdPVo67zxzfOrjY67FxsWZEFrHsWSvXkc5jvGif1x2UbZGfTtKWUVZmnPrHC2LXaY3V76pe+bco2mjp8lisejKK81xst1uHst/j5arSja7VY//YQ6uL2p3kRbFLNJF7S5SzOYY/XPBPzW803D5Nz5PatDT9HHa+YbUcoT5Phz4adnNIkxAXKdO5trWrFnm+ODaa81Nc845x/SVWLbM3Ixn0sR7zLVWW4m05i7p/G+lkHYmZGjXO178L5j/h/PPN9sLCDABS12PN1/Mw/f6K6+Ya4aSucHgjz9K/fqZgKctW8zNAz3l+J1sHdba7djll92/6P217x8z5P9IpbZSjf9lvKx2qyZcMEE3nHWDpm+broX7F+q/y/7rdlM6p6Mck0TFRenzTZ8r2D9Yd/e7W1a7VVO3TNWkdZP0tz5/c4VmeujlpS9rV+ouDe80XGPPHqvMwkw98+czGv/LeC0bt8z9ZkmoVTabtGGDCV+MLzt1HhxsxpTY7eYzeN11JpgR3vvjD3MsmpkpXXaZCdY86ywTMlpcbPog5FVx6aFKBSlS7l4TTm0tMMcVFj/JL9gEfja71LN6cvaZPu+FyVK7O6TeL5uQ67xYSbay8OQCLxt3hjrGOZ/3Vr+nR+c/qn7N+2lT0iYN6zRMP9z4g0ICQpScbILGJPM5G1bJpVpHn5mknCTn8fc5zc/RuoR1GtBigFbEr9Azfz6j7274ruLKRzFxlen/W2ItUb9P+pmXIousdqveW/2e3hlufrP/veTfKiwtVK/IXloWu0zNQ5pLkiZvnqxHz3tUPSJ7yG6369H5j8pmt+myDpdp++HtuqrzVdqdtltPLnhSV3e+2uubn3li0rpJSs1PVaBvoGb8NUMWi0XhQeHKLMzUWyvf0huXv1Gj2yssNN+J8+ZJQUGmX94VV5g+IH5+Zn8oJsY1nqLEWqL7f71fX2z6Qm0atFFqfqq+ue4bXdvt2hptlze86nIRFRWlPn36qK3jKKbMe++9p8LCQj3wwAP64IMPJEk///yzbrjhBv3vf//TF198UVl1ldq2bZu6d+/uFtwmSb1793Yuryogbtu2bbqgkqhkx7rbt29Xy5YttW3bNrf5R5ZdscK7HTFv7ErdpZt/vFn70vfps5Gfafuh7bp7zt2at2+ePhv5mXcnFDhgO23l5ZkvkLw8c3BptZr/Yj8/82XTummmLIlzpJy9ZsBUaMeyOxP7yHmSILSTOYkFADgtlJaaE80HDpgDyogIcyDp42P+bDZzoHDOOV5UWpJrBj2X5piLUPayW/jJxwwkCuloBkLjzFRaYDr0Zu82dxwL6Wg6SDsPeK3mpEGD7rXbzmrgbpU1KHmR6TxTnGEuUAU2Nu8Ne9l3iq1UanOjV3etA04au8109MrYZN6rDXqYjl4WH0kW8172D1NM7mDdfbcZ2NK+vbkI1r696+JfVpb5fb7ySpmLYEWpptOirdjUa7GY+nwDTYcd/yMuNtvtpi2S2TZfTsePQKQzl6cDKQqSzd3QCpLNHSIDIso+fz7m82i3Sk0ukHwDdCjvkF5c8qJmbJuh23rdppm7Zmpgy4F67dLX1LVxV+XlmcGna9eagaLXXCM1b25OCDv200tKzEnkmJxduvSrS5WYk6jHzntM/Vv0118pf+lff/5L+SX5enHoi7J4+Boee0x6910zPWmSubNZ+bu4OTrxOqTlp2nxgcWy2W2y2W3q1rib+jTt49bBrLjYdfcTx/koyZyPCgw0HbtP+AC+uuREnns9WR2HvXgNBSUF+nnnz4rPjldIQIisNquuP+t6tQprdWLbCNQlvoFSWDcpdaWUu88E3oR1N53HS7KkDQ+ZcpevrvGAuLziPD236Dl9sPYDPTjwQflafPXemvf0wIAH9N9L/2s6EHr6O9flQRNgkbxAipkmtRgutb9DanqJ9JsZ8GQNv1v5pj+x/PzMAKry3/EWixnI7eNjQuuu+PoKZRVl6fru16tdeDt1bNhRs3bN0t9m/U3TRk+Tr6dt2/WOGThuLzUBfA3PNqEEh6PMgISiVP1/e/cdHlWZ/338MzWT3oEkQOgSBSkq6CqKqGBBUdeOrrjWXXVd14qKgh1d+6o/XR+7osgirqLoAoKooCggHakBAoT0ZDLJ1PP8cScTQg0KJOL7dV1cwJkzZ+4zc865+/dWJKAHXhms1183naz33isdd5xpC3O5TH67ebMUDITVOfSsGSBvc0pZg02e7i+WQj6Tnzs8UpdrzN97UFgovfaaCbbicpnJBenpDcFXIxGTHzbbSn/4ZZp6bRZ/J315kpl89u1FUudrpZRe5jqddsLOA8LsRn0AuCOyGjfW9s3qu9cB4hZsWSBJctgcystsaIez2Wzq2bqnZqyboQVbFqjIZ2bHdEnrEg0OJ0md0zor0Z2oqkCV5hbM1cLChZLMZIJtHdbqMElS2AprWdGyaCC6fWHboEjbr3L4SwIn7Y1XXzX9rZPNuGwtX27+1Ps9BZqsrZVefFGaO9eU+U8+2dRdnM6GQe3hsAmu4mnKfOH896TvrzITZI5+q2Fw2qZPzQCzyuUmaFzbcxu2rXndTASMz5XanSd9fa4JPtT9FllZp+rpOU/rli9uUfvk9npp6Et6f/H7emX+KyqoLNBHF30UDczWVC+/bM574sQdX+tUFwfCZjMDwkeMMBNbt9e3r6IBb1I9qbrt2NuiA12D4aAe/eZR+YI+zcqfJbvNrg2VG5TiSdGjJz0arW8tKlykf839l1768SWNHDBSTvs+rFgVfyOtrFvtud//kzr/2fx74b1mJe/yhZI7pVkCxFmWtcugafX/z6/IVyAckNvhPuDp25dqgjUqqDIBheufa/Xqn3urS1c3+XhpadJ770nDh0ulpWbAfJ8+UocO5pk2b54ZcDp9uvTtt2bfl14yg35PO80MWisvN/t17SqNPek0qeQ70/45ZJ7kcEtF30ilP0gVS82HFs+RWu1hafr9oKymTP/63lzDZx1ylhLdidF/v7voXb3wwwu6/djb9/r+12H3SBsnmUkQ9dL7Sf1eVpmvLLpp+wBx9f8PhAOqCdUozhVn2o76vy7NGNz4Mw75hwkw9As8/rgJTFmyTZy3Z581k4qKfcWSzDNnW0kxSbLb7IpYEZX49nGAuEBFw8DguHZSTKZp614/Qdo8xUzoju+oK65Yo3ffNW3izz1nrsl+/UwfdTgsbdxozumf/zTl5spK83wdNco8T5OSzLaff5YSE6RjowHAtmkj9+WbQKLz66JIHDehSc+wuXOlMWNMOgYNMnnATvOzJra/fzTJ0nPPmf75Y481gRpbtTITV0Ihcx5t25rX6gPEffKJyV8yt5kvW1pq2gZbt9755+xKobcwGoDGbrOrb1bfxhPLmiJcI6mu3OtKMXXe2kJp8/+kNf/P3B/ZQzU57jRJZjL+wusWRvOvZUXLdOgLh2rx1sVaV74umh+e3OlkXXfkddGP6ZDSQZOWT9J3Bd+pJlizd4OCD3/IlME3bpdZOxOlY97eq9O12UywzCuvbAj8Gj2c0wzE/u+W+eZjWzceM9qrdS9Jkj/s1zrvco0a1VMPPGCepddfL11zjfltPR5zjS9dagJgpLby6bIPL9PEZRM1tNtQ3XHsHbr+0+t11cdXaXXZaj046EHZ43OlPk9K8/5mvvey+aZ+7k4199Y21pat1Tnvn6NFWxeZiameVF3zyTWaWzBXH174YeMg8nvw9NPmuwiFTNDkW24xaY6LM+e1dKnp68prSle/p5V0xHPS91dL698zExqzTjUTn0u+i+72179KH34ozZ5tnnP1dejMTNP2vH69mZjyp8v3Ish8vV/bPludLy1/3EwaPuRmqecD5pgrnjW/yVZzfZ9w9B/VpUuaVq0ywQY/+sgEn0moa5YpLzfPsP79D5d63i8tuk/6+TnTBpN+tGlDKm4YexyxIrrsw8u0pGiJUj2pGr9kvIKRoCTp7YVvq1frXrr1D7c2+TS+WGOCWlzR+wqNOXFMdPvYr8fqzml36ovVX+zqrTvYVLVJ3xWY32/G5TMaBSPv+ExH5Vfk678r/qvreowy5XnvamnaiSaQaFJ3qcvVpixRu0WS9PGKj7WxcqNSPCl67OTHos+ShYUL9dz3z5my8HEjzUIDTTD267GqDdWqW3o3pcamqrS2VLkpuVpXvk4FVQV6+ceX9bf+O4kAvQvBcFBPzn5SY2aO0VmHnKWshCw9P/d5XX/U9br/xPuVGJOodeukadPMtRoX1zDZ3W5vWJinfXtTDmtOFbUV0WCxMY6YxpPsmyrvdmnOZaYsuPgBKfdiE2giZ6j0cWfTvpZzll5f+7ok6ajso/TgoIbgu/9Z+h+9PO9lvTr/1X0eIK5+8YzsxOwdJhm2TWqr+VvmR/dpstg20oD/St+cZ8a2bKv7bVL7C5t0mCJfkUprSiVJh2Q0nsXaLb2bJGlZ8bJo4FWpob2lXo9WPUyAuC0/7d05YL9ZV74uGhT+gRMfaBQ0bNraafpmwzeavna6Tup0kq67zgRWeughU+5cssT8qed0SrPyTVDFvll9Naz7sOhrR2Qfofu/ul+V/kot2rpIvdv0blL66icXD+k8REflHBXdfnKnk/X56s/1zYZvZFmWnvnuGUnSH/P+qP45DVGLn/nuGRVUFWjconG6os8vq7/8GnFxJujU00+bsvGdd5ogrB07mrJ1WZkpc3fp0rQyc0KCCUIWCJh6SWGhCUaybbNvcbHUqnVEf/7vn+UNeJXgTtCgN82Mb4fNIV/YpxGTRujbK7/dt200dT5Y8oGum3ydcpNz9chJj+iOqXfoka8f0b/P/LfOyTtnn3/e/rKqdJWmr50ut8Ot2lCtjsw+UkdkHSGbzaaffzaLcYRCUo8epgy403bWQLm0arxpo3Knm3Gmjlgzlqp+vktCZ9M+OO9mE8y6z5Mm8JHdLRXNMuW3QKkJWtz+fHNcyzJ1VitkjiGZfiK7u9F4Z8uytKFyg8IRs0/rhNamnr+fBIPmmqysNH1ZUuMxqklJUueUH6R1b0neNVKrE6T49qY+HChr+E7anGLKW/vI5s1St26mTbhzZ1N/3j5gdH0R22Yz5eCzzzYBNLaXmtoQeDvRndiovd/j9OiQjEO0tGipCRB3zM1mXF7BR9I3F0qrXpZS6upivoaFueqfcwPaD9DADgOj2512p577/jkt3rpY5bXlO7Th7FLbYWYBrcX3mwnWa7aL+uype9j0+3/SjCEmYNjKfzW0sdZrpoUULMu0MyxebOqfubkmoJ/T2RDQLxw2gU2+/VZascL8tl26mN+nvr83EjF9nIO6f2baWCqXS4c/XNf+Zzd9s5Fac+2l9ZM6XNws59sUV1whvfmmCeDxwgtSTo6ZuJuZae67jRtNn/I5R58vrX3DPBuWPS51udYEA+z6VxPUpHi2Kfd1GtHkz/YGvHpmzjN6a+FbOqPrGZq+brr6tumre0+4V7kpDfNq11es130z7tOMdTM07JBh+s+y/+jc7ufqnuPv2bvAamvfNIGNJWnwXCn9SBPcauWLpv7l2yAFSnYMELcLr71m2kO2bjWB0f7+d9POnJRk8uUFC0zb3nzPiyqsLlTbpLbKScxRka9IqZ5UdU3rqpWlK/XPb/+54yIeB2gOq2VZ+ttnf9ObP72pzLhMtU9ur5M7nqzFWxfr/A/O16fDP20UQH13bDbTZnjWWdKiRabd8rnnpN69TZvP6tUmKM6SJa3V4Yh/1bWDvG/qTVlDzFiEbYNNdrlOWvuaCYQ591qz2FjSIdLJM+veO17ytJZlWfrL5L9o+trpSnQnalnRMgUjQdltdr3040vqlt5N/zjGtIWur1ivv07+q2asm6ExA8fo458/1qKti/Tk4Cf1p15/MnXt4jnmeghWmjmjriQTGFE2k6c43CaPaaLaUK3umnaXnprzlK7sc6UGdx6saz+5Vq8ueFXvnPuODs08VG+9ZQLDSqYNdtSoXTezbq3eqps/v1kTlk7QqONH6YdNP5hAN4MeMmNh7I592+ZT8p20bKwkSzryeXPPS3ULwS2TyheY8SIdhqvQW6iL/3Oxvlz3pUafMFqHZh6qKz66QjPWzdB/LvjPL+oftyxTNg0GzfPZsszzOibGlHe3Pb1gOBj9t9Pu3KtFA8wBvNLmT+vm9sSZecOO2Loxr3WB/RM6SUmHKGJF9P7i93XX9LvUIaWDYp2xWli4UPefeL8u73V5NABcTbBGT8x+QmO/Gatzup+j5cXLVVZbpsdPeVzDDhlm0thM47Ef+OoBTVllFvmYtnaaZuTPUFJMkgqqCnTRhIv0xWVfyCabLvvwMpXUlMjj9OhPk0xkW4fNoTVla/SXyX+JBuLak0jElG1XrzbPhPr20+1Zlnk2vbPoHd342Y3Ky8jTrX+4Vbd8cYsenPWgXh/2ugbkDpC2zjIL81ghqe8zpv3BZjeLiISqzZ/C6TsGiNvFmJZQJKSLJlykTVWblOJJ0ZiZY6Ll3E9XfqqHvnpo3y9UdhBYt84E8vH5TPv4Cy80LCy0rVDI9PFMmmTyz6QkE0wuK8tcG+vXm7rrjU0cgxSxIho+cbiWFy9XqidVby18K/oMeHfRu+rdurduO/Y2Pf20aW/+8Uez4NJ//mP6hZOTTfvDt9+adv6qbv9Pi7cuVlpsmtaWrdVj35hAKRlxGfq55Ge9+MOLpq20/6vSzDNM0ONPupk269g2ZszANl57zdRbpk+XPv3U/NlWz56SYrOkfq+aMSEl30kfdzL1F3uMiWmwF+x20xexapV5Xn73ndSuXeMFpkpKzHi9pCTJH/LrvcXv6av8r3RIxiH6ueRnDe02VGd2O3OvA1ieeaYJ/PKPf5gx9Vu3SlMa1g+Sey+GKXy9wXQIHtf+OJ3UqSF4U5wrTs9+/6yWFC1RaU3pDouA7cpTs5/SvM3zFOeK02PfPBb9XR02hx795lGdf9j5O/Rn7UogHNB1n5i+uxRPis5+/2xJZgGyTVWbdO0n12ru1XOb3A6yYMsCjf1mrBw2h37c9KPaPdVOkqn3fbPhG70w9wXd0O+GJh3rYBAImHFHixaZe6dPH1MfcTga5oqEw6Y/2e83i0lUVJi2gfrg7JJ5VHg8dffYPmJZZrHB7783n/Pdd2Zu+bZZX336msRfIq36P6nsJ1OfSjvClDvqF3izwiYIe/Zp++4kmkltrVl8YuVKMw6nY0fz/HXUPWYsyzwjVq40/YOSeZYdeWTDOAS327RXbjtnZ7csS/rqTNNektJL6veKKdOV/2Tq7VWbJP8cU6ZLMAWRpUVLNWfjHLnsLoUiIR3X/jh1Ta+LHRPymrgAkpmr6MkyP/6G/0hFM6WCj83vd0HTIth9/70p969cab6PI45oGEde30+Wm7uX8Qt+4yzL0t3T79YjXz+iLmld9OCJD+r9Je/rjZ/e0ElvnqTJl0xWbm6G7r7b9BusWGHaMf78Z/Mdulwm71mwwIznGvXtKFUHq5WbnKtpa6dp2tppkszzdfyS8bqp/036Q7udx9Ha3pqyNfpw+YeSpL8f/ffoAjHFvmI9P/d5vTL/Fd038D6tr1ivNxa8IZfdpcz4TL29yIzDyMvI07LiZbpz2p36+OKP9dGKjzR97XQluBO0oXKDRk4zwdFbxbfSuvJ1enL2k7r7+Lt3nphfqDpQrce+Nfnf4M6Do4tQD+48WOOXjNfzc5/XrX+4NRocOmJFtGTrkuh+reNbN2qfaYraWvM7Seb+Peoo09ZU/9xMSTH1ApvNLKp43vjzNG3tNF12+GW6ovcVuurjq3Tu++fqicFP6O9H/33v63X7wF71aqxdu1YDBw7cYfuUKVPkdrv18MMNKxqee+65GjBggGbNmrVXCSopKVGn+tG420hLS4u+vrv31u+3u/fW/72rfXf3GX6/X/5tntSVlZW73Hd73274VjdNuUmpnlQ9NeQpVQeq1SGlg54e8rReW/Cahk8crpeGvqR2ye2afMy91sICya0tW6uaUI1axbdqtKJBTbBGa8vXym6zq2ta1yYV3H1Bn9aVr5NNNnVL79boPVurt6rYV6w4V5zaJ3VQJNJw+vWFq+3rY44m1hUqKkyhLhg0lRK3u+GY9ceLi5M2VK9SIBxQdmJ2ow6KKn+VNlRukMPmUJa7m8aOtWn+fPPQP/98M6DS4zHpCwTMihRtU0pkK19kVlNP7yfJZoIPFM8xhYDaLWbiWv9XmnYS+5BlWVpXvi76u9YP4JXMg7CkpkTxrnjlJrc3jdOhullo9Y1SskxnXrhGsrkUiM1Wfnm+wlZYmXGZjR6UJb4SRayI2iW3U5wVMAMZw7VmEJ3DUxeUJNCwyk1MptbXeuUNeJUem67WCY1XqqxfobxjSgd5FKp73zZpqw90YoUk2U1wvqZUKkM+E4k3WG4GMbpTTQNsyGs6niIByZWsmtj2yq/Il002tU5oLZsazrWwulARK6L2ye0V599iGpmDVSbyujPRdHSGa8x3KkkpvVXuSNQW7xbFOGKUGNPwO/hDflX4K5TiSVFWfGvZajaZCY62+nNymXO36r4Dm1OR+A4q9JWovLZciTGJ0Q7ScCSsSn+lwlZYWQlZSnS6TWE/XGPS5fAoen1GAqYC4IxTYTDccC1sl/muLFmpYCSorIQsJcekKlIfK2MX7Yp7E+DHssyAgurqhkJ3feG0viE2M9M0rpSUmOdAmzY7VsQcDik2vUhFviLFOmN3mNCUX56v6mB1o+usqspUBPx+UxC2LNMJ53abjru9WiWtKScaqja/oc1hOr4bXcMRyeZQdSBB+fnmGeZ0mgmP23fSu1wNgzXLy02jWDC44/eemmomKzRFxIooFAkpYkVkWZYcdocidQO+7Ta7aeyWTfkV+fIFfUqPTW+0emGlv1JVgSqlxaapTWyqVFNgGrudsea6s9nrImfXBWVxxknxuQqHG37/QKBxgCi73TQiJaSYCRwRK6IUT0q04cMf8qu8tlwJ7gRlJ2arOlitzVWb5XK4lOhOjA5Iqw3VqtJfqRRPitoktNmnhbuff5ZeecV0YnboYDrs6tNfn3dZlmnU2VS1Sf6QX8meZMXUBWWqDdWqwl+hOFecshKy5NrwgbThA/P86HCpFN/RPAtqt9YFygmYldoyjtlj2izL0pqyNfKH/WqT0EbxroYLuqy2TKU1pUp0Jyorvp3Kykwh2mYz+eP2ASZsNinRUylVrzfXsTulYeW/cE3d8ylsBozEN63MZFmWgpFgNBiG0+6MNobXX3N720i47YCInQr7TX4crjH5SH1gtXBAsoJ112a8aWxtiiZ2rFTUVmiLd0v02qy/v3xBn6oD1cqIy1CKO1Mff2waqH0+07GZkdHQMCWZhp9jehXLXfK9mRCf0kuSTVJEKvrWDFCpXi/FtVP46DdUFahSpb9SgXBAHqdHNtlUE6qRy+5SYkyiEt2JTR7o6w/5VRWoki/oUzgSVrw7Xv6QX2ErHM3T4l3xTbq/vF7p3/82lejaWumEE8xgsvrgKfWNXOeeHZItXG1+G5urbnCHbZtBRJbZ7mraxItAOKCymjJVBaoU44hRsidZ/pBf1cFqWZal1NhUJbuTZAtV1q1QbJlrxO5qGLwUCUqyyXJnqKTcLZ/PpDchoSH925ZfkxIjsoUqzDVmd5qGd5ut7nh1gW7sLq3blKIJE8wzJSnJNEwlJTWUfSMRU5E9Zs+3ft3JltSV6arNd2azm87umk2mE9KZICumtTaETlFZmXn+pqWZwXrb5iWWJaWnheUObzb3j8PTEKgr7DfnEQmY/8c1fYBzKBJSOBJWxIpErxnLsmS32eWwO5o+0K8+b43U1hUGPCaPtcINAfEkM8GmCceMWBGV1pSqqLpI3oBXLodL8a54ldWWyWV3KTU2Va3iWzV5UJo/5NcW7xbVhmqjZTXLsuQL+lQVqFKiO1GtE1rv3cDGQEVdkLO6c47ec3YzoC62jblmG+1X17tts5vX7B6FPa3NufqK5Av65HF6FOOIUYW/Qm6HW6meVGXGZ5q8PuQzgwPrJ6JFA7WFomVVnz1Wm6o2ybIsJXuSo+dUG6pVRW2FEmMS1SY+S5GwI9rZXv982/6xYbcCslcsNWXrmPSGQG5l8yXvWvO3M0E5R76ryy9vo27dzEDSn382z5dtJ1BblqTyxdLyf5qBOFmnSun9zXdVtcoMZvQXmQF8qX2k/HFmW6sTzIS7SNDUZ7xrzPm2PVvlqf21unS11lesly/oU7vkdiqrKVNNqEbpsenqktZF7ZLayhmubljt3Blvrs1IUJIVfZYoJr1J12YwaBofa2rM+SUnm2fO9vXlhG0fh/5iUxaL1JrPcnhMvcKdooLKgmjdIzsxu9FnrSheobAVVtuktkqKSVIoZMqbXm/jwRIOhymjtm7d0JDu95vyem1tw+qWMTGm8Tk9XY0DbDW1HeRXBmsq9hVra/VWxbniGrVvBMNBbfFukdPuVMfUjuaajYTqgvRW1z2nw3X3jdvkBzEZpq4ZDpj9wr6G57nNYSbyOeIkTxMHkAWrzCS7sM/8No66Z0ukru5tRSR3uqrC2aqoMN9vfLz5vrdtM7Es8z2HbNXROmqCO0GxzliFIiF5A17VhmqVEZehVE+qVpauVNgKq11Su0Z10kp/pTZWbpTT7lTXtK7N0iCqLVOlLZ+bPKb9BeYEazaZ+7f4G8keIysS1KSKGj36zaPKSczR6IGj1Tq+tQ5vfbjmbJyj8z84X9ceca2uOPwatWvn0qZNDZ0/O7uctni36C+T/6JUT6rGnjw2ek+8fe7beunHlzRh6QTlJufqyr5XNukURo40AzwXLDCrtW3ebOpl9b9ZKGQ6XzIOXay3F76tHzb9oEMzD9XQbkM1f/N8TVg6QXabXcN7DtcpHU/T88+6NWuWua/OP98cOy7OHC8YNPWopCTJGetTlb9K/rBfdptdMY4Y+YI+OewOxbni9qrcJ5nrrbzcPHeCwYbndf01l5xs7uuoYFVdXlFt7hlXcl2Av22uo1Bd+0i4xtxvdqcpk7tSJFeCampMe15tXbNPTMyO5ZJWrRq37+2KN+DVhooNstvs6pzWudFkpbVla+UP+5WVkLXPVxmtf74mxyQr3t1Q//IFfSqvLVdSTFKTA7tV+is1btE4vb3obXVK7aRBHQapVXwrTVk1RRdNuEjHtT9OV/W9SrnJuSqpKVGJr0T+sD86Kdkb8Mrj9Cg9Nl1psWlassil2bPN4PfcXPOnvuxXP1g5N9cM8JBkfiN/cd0zMWB+V2eCFJNWV9YoN7+7FTa/o71uUGMkYLbbnVJcrmoDjui1VN8pu+21ZLNJ2a1q6toPfSbPjD4Pt223SpRi93LW9m5YVkM7VCRinq31wabqX5ckuzOotRWrZMlS59TO0VV4JdMGWlhdKI/To4y4DG2s3CiHzbHDBLTNVZtVVlumpJgkOe1OldaUKsGdoPbJ7Rvtt75ivbwBr2lXqV1nBpv5S6S0I03eEq4137tvvfmuc86UUhoHEdqZQDgQDQDSJa1LoyAf9e39kpnEt7Fyo2yyqXtG9x3aewurCxXjiImuNr8nGys3Rttiti9vrClbo9pQrVrFt1I4YtojE9wJ0Y7C+nQXVBbIYXeoU2onOQdNNxMVCmdIP/7N5JN2t6SI1GaIlNBBAWeOZtVNFg0GzaSKpKTG7YyRiHR4r4i8wUpV1FbIH/bL7XDLZXfJG/DKaXcqKSZJyZ5kra9Yr5um3KRCb6EeOemRaP/Boyc/qveXvK8LPrhAT5/6dHSS4R71frwuGM8nUv47ZkJDyGcGAmedKiV0UVqHbpo/30x0njvXBEF2OhvaauoXrRnzeLH+Nv1vahXfSs+e9qw6p5rf5Z1z39HLP76s2Rtn68nZT+q2Y29rWtranWeusYpFUuE0c53Z3aZ8s2myuRcTu2noUPPdrlxpyqcrVjRMyJVMPpfVxi7FZ5iyUyQg025RV3/wF0tbp0vOJBM4rgkTaerL9dHy/a7U3yORgCn72t11nxtsmNTkjN8xMPQurC5dLX/Yr9bxrRsFPgmGg9F7qnNaZ7kdbvn9Jg+rrm4oM0sNiwtlZTVu+/Z4dgz8V99nte15l5eb9mufzzw/09NNHryhYoOqAlVK9aQqKzGrUbrrnyXb97UoUGbqiHV9PHIl1dW3tstYI0FTRo0EJVeimZDza1YW/bX9nxn9paGrTWCKwunS4tHmXOwuKbmnuadyzmzSoUp8JUqKSVJSTJKObnt0o9eObnu08jJMBIamTmjaXLVZeRl5yk3JbdROLkmDOgxSobdQFf4KuapdysvI08mdTm60j91m15mHnKn5m+eroKpANaEa5WXkaUD7xkGAshKydFT2UfIGvNpYuXGfBogrrSlVXkaekj3JO6zQfUT2EcrLz9tv9YL4eDOQd+5cM+hzyRJzifToYVa3P+kk1V23VeaZ74w35YtIXftcqMr0scS3N9dDqLqh7cKq6+zZtp7mTjHPoHCtaZ9zeBrat+rrds44FcujrdVb5XF6dgictarU9Ck3KkeGfCa/jtS1k9kcdeXhhCa3R9ntplwWG2ueIdu2cf+ir7/NYKnXI1Lpjya4SW1h3XPRKZXMMe0gjlipxz2mnFHwsVTwX2nt69G2SsV3kDKPl9oM1ks/vqR/z/u3Lu55sc4/9Hx5A16d0e0M9WzdU//3w//pqo+v0mvDXmv6RECZ3/8//zED+p54QsrPN22TQ4eaQC/1552aavLETz6R/vWvhrLsZZeZYN8PfrVWeRl5OrbdsY3K/C6HS+fmnasfN/2o1WWrta58nfIy8nTeoefp2iOvje7nC/r09Yav5Q/59e2Gb9U6vrXCVlg5iTmNAjoGw0GtLK3vrzZBOSJWRB1SOjRqJ6yorVBBVYGcdqe6ZQ0xwWs3fWzKMFtnmL5ou8tce/G5UmLjcmM4bCZ/VVebepHbbb6D7SeGmsRvqlvR3mOe1U0IuhpNp79COYk5yknMiT776nVL7xbdtsW7ZYcy62/NZu/m6PlEB2LWycvIi75W5a9q1EayO6eeagbJf/KJGZy/ZIkpGyUlmUm6551n6hbjxpkB7V98YQb7fvKJucdTUszK62ecIemID6T8d83g/7nXmMGktrpGv4rFJq+W6auNRBrKBoHAjuWNpHSfNnrXRc9t2+e3N+DV+or1ssmmVvGtdlm2r29H8zg9mrluptomtVXH1I5699x3G7XjewNerSxZqQ+Xf6ir+l7V5N9Dknkun/CptPAuM0kha4gJhOKMV21oS/Q32bYdTzKTxetf8wa8Dfde1inSgA+lZf80fc+dr5Lanf8LH6CmX272bNO+U1go/eUv0iWXKJqmvIy8HcYg2G129cvpp4raimjf+j7TZpB06gITVK/oaxPoyJlYl795pOyhUlpfHdXTTI6aPNk8Wx95xJRPA4GGcQXDhpln7Nq1ZsXd6dNNX11pqamzJyaa4DpXX22TTvys7jNnmUmUjtiGBYdaDzJt59s9w3bluOPMROGPPzYTty64wDzL68dwhcPm+n66iZN3DlslDRxoxot4PKasXFbWUCepH8fyyCMmMMLUqWYCzwV1TY315fC4OLPQQ1OCXYQiIX2V/5UmLJ2ggqoC9cjsoWPaHaMvVn+hsd+MVZ82fXTeoeftsOjDLnW+0gSG3PyZmRC/+t91ZR2XmdiT2E3KPk3LVvykvIw8nZt3bqPjds/orgHtB6jYV6y5BXNV5CtSXkaehnRuvOT1MW2Pid43y4qXqW9W3z2nrZ4rwQQBXPkvE3xWlikbdLtxr/oD62Vmmjz9rbfM5PGyMtMXfsstJqDTuPerlZeRpxNyG0+SbZvUVkdmH6nqQLXyK/J1//09dcEFJjDC7NnmNywra+hHzc2VRo6q1T2fXq9lRcs0+oTR6tm6p7ZWb9V9J9ynqWumatLySfI4PRp1/CjZul1vgulumCht/apuMrHNBGM85O9Sm8FaUbxCV318lZx2p14a+lK07P/y0Jf173n/1p//+2e9eMaLOiTdTIZaU7ZGVYEq5STmqCZUo/LacqV6UtUtvZs6p3XWn/7k1sCBZmLXV1+ZAellZSaPSE42Y05u274qv7t6VacRZlGVDf+Rir4y5TpZZtxGl+ukzOMVH2+eDTNnNnx3kyeb50R9nfXEE3dy7AOxmEZiZ+nUn6QNE0z/3zcXmr5Om8ucR0InKTZb2W1dWrjQfG9ff20CLD/6qHmGOBymf6xXL6l/f0k9Rkk5w6SNH5oAc6U/mvsrtY/U6c9S23P11k9v6eeSn3XWIWfp+dOfj5Yl7zvhPl0+6XK9vuB1ndzp5CYFCfIFffIFfeY+7NL4PhzcebDe+OkNha1wk+ua3238TnkZeUqNTW30+TabTX/q9SdNWDpBiwoXSUdeJ52+WCr4xPzu69+TaotMuT82y/R1tjtXU3+YEC0LX33E1Y3SPWv9LPlDfs3eOFvH5x6/x7RV+iv11fqvlJeRp5fPfFnHtT8u+tr7i9/XmJlj9NGKj3T9Udc3aazPxsqNuuWLW7SieIXuGnCXchLN8+Xhkx7WxGUTdd4H5+mJwU9o65oe+ukn0+bXu/eO/QbRW6RgsrmPg1UmwEZMRl2feYUZz2tzSl2vMxP1g5V17SR1fenRL9pp8jxPmybV53xBn6avna5PV36qIl+RDm91uLITszUjf4bCkbBO7HCiTu96unLiUszvYwXrxtDG1jVW1o+hrav3drjE1NM2fmgWy9g8xaTf7jbXcEInWa1O1Nx59yovI0839b9Jgzs3BMvtnNpZs9bPUqW/Uusr1u/T8nwoElJeRp56tem1w2t9s/pqVekqOWx7N8ZLkinvDJ4rLbjd9NMnHWKeX632fE3W21i5MZrnbd9W26dNH+Vl5Mlhc6igskB5GXnKjM/c4X48Pvd4/Vzys6qDTZuQJW3Xpp/QeJzZzyU/KxQJKScxR1u8Wxr1v9eLWBGtKF4hS5Y6JHcwwZJ20odbX9d02V071Gt+rd2NG6ifR5AZl6nSjZlavtzkWTk5Jm/fdrxCJGLyk0Z9h7/SosJFysvIU2JM4g5112GHDFNpTak2VG6QVNdmPka66ioTpHvGjLox/W3NWM4rrpBu/tLUD4d2G9roWNmJ2To+93gVVRdpRfGKJj37i6qLlOg26Tq2feNAMAPaD4jWyeZtmSdvwKtDMw/Vc6c916gt1+1w66UfX9IXa77QOXnnaFPVpp3+xo36WjyJZpxCJFjXtusyz7CIv65NzKpr993zgGGbTXrqKelPfzL11u+/l667ztQ76/uCc3Ol++/f46Ekmf7vFStMme+HH0wwX5erodwfCpkAn4Ou+1Sbqzbr+NzjNWX4lGgQ41AkpDPHnan88nyNXzJel/S8pGkf3AThSFiPffOY3lr4ls4/9Hz1bNVTq0pX6eq+V2th4ULdPf1urSpdpX8c84+9HqvaJJGgyQPCNSYfkM20Tzrj69qKtussqLdNGcyyLH1X8J1em/+a1lWsU582fTSk8xDN3jhbD371oNwOt67ofYVO6XKKFi1yatIkMwb1wgsbAio7HKbs5PdLD4z0Ks633owzddYNNLIiZjG/qp/N9oROUp8npK5/MZOPvWtMHml3m76Dku9Me6s7TSr80rRvVNeNy0roaK7L2iIzfyZcI3UYrpXOtpq8crJmb5yteFe8BnYYqKVFS7WmbI1yk3N1etfTdWy7Y7W2fO1On4fbzu3plt6tSfWvlStNsPT8fPP8+uMfG9cD69tblOqoG1NX/3vU9Xv7i019PFxjfsu6fq1QyIyP8vkaxr27XKbdMz1d8ltV2uLdIofdoQR3gmIcMY3G72TGZyorK03Tppk2o5UrTf2mS5eGuRGRiDn23/9ujtujh1lk5f33zcIaW7ea5/GQIdLVV0uvLt0czau3D+Y6pPMQWZZlgt/bXaYtpXCaCThc8p1pb3DEmr67tCOl9heodPF1ysvI0ymdTml0rL5ZfXVY5mGKWBEtK1qmY9o1dUCrpJ5jTADcFc+YIEpWxFxrWadKuReZeyC2tTT4e9Ofuu5tc+3ZXWa/1ic1OYDs3ij0Fkb7q7fNq/0hf3ReTYarvb75xqaFCxsmXu+sDb+kxNS5li83bS1duuyimSq1r6mflP1k5luUL6y7v5KkrfNMu74rqdF8uw4pHaJvtyxLP5f8HL1XgpGgCr2FinXFKjlmm7btSFAlPhOcJze5vexVP5sx9Da7maBudzfMAQh5zT2Q2qdJ7c2pqaaPZ+pUE9B58mTp7bfN/Jf6MYXHHSedc84QaeiKhvatby5o6K90xEi5w6W2w1QdqFZBVUF0vG1mXGa0vpUUk6ScpBy1jm+taWun6ZGvH1FSTJKuOeIadUjpoO4Z3fXtxm817L1huuaIazSi9wiNWzROz899Xoe1Okx3Hnun0uPMuM6Z+TM1dNxQ3XrMrTo371xtqNygmmCN0mLTGo3jrfBXyB/yKysxSynd/2HqEVtnmL7K2Bzz/Kxv74/NbnJbmWTqNatXmzr6Z5+Z72/8eNMvkJpq8sxThoT0ycJPlJeRp/tPvF/nHXpe9P0z1800gc3WTY8GXd1vdtE28MZPb2j62uk6p/s5GnncyOgzeXDnwbpj6h26c+qdev+893doS92VDh3MwiqffWbaL77/3vxxucw4plGjzJgxxY2oaweZYOr89YHhYjKlrjeYdp74dtLpy0zfzJb/mSDy9fP53KlSh8ukNidr4rKJ+nbDtxrcebD+ddq/ouWAG/vdqKs/vlqvzn9Vx+cer9KaUt0z/R5lxGXo4ZMeVrwrXsN7DtfqstUa+81Y/bDpBz006H4l1S/+4ko07XuymTHQvvVSyfcm7/e0MXWe7b/f7b7jYl+xbvj0Bi3eulgPDXpIKZ4UFfuK9dCgh/TfFf/VZR9eprEnj9U995yso482bUw//WTGFmZnN4yhDoVMsIzeQ+fotv/dJqfdqbEnj1WCO0FndD1DvVr30ivzX9H8LfP1+CmP713gxD1pdYI0+DvzO2z+wiwMF5PW0ObjyZISOiq/PF9XfXyVSmtK9a/T/qUEd4J8QZ/+dfq/9MZPb+jK/16pZ059JlrvXF22WlX+KmUlZikYDqqkpkTJMcnqmt5VnVM7639TYvTRRyb41DHHSIcf3jAfIxw2eXdeniUrfYWmr52un7b8pEAkoH7Z/fRT4U8KRULqntFdgzoOUu82vRvnqbtqo/MXm/anqp+l1CMUHR9TNNv0g9QUSAldtCHvfo36cpR+KvxJl/a8NLpw3PLi5Xrxhxf1xeov9NCgh1Tpr9Rd0++SN+DVqONHqV1SOw3uPFiLChdp1JejNHXNVI0eOFoZTRmPbVlmHlrYZ9o8XHXz+kJ1ZdOQz/zfnS4VTjX5rjvNPPMcMaY8F6w0827dqVrgOUwTlk5QnzZ99N557ykzzlwzlixd/fHVWla0TK8veF3xrnht8W7RqV1O1aQLJ0XHrVb5q3TGu2do/ub50YDfe2K3m/LSxIkmf737bhNQLDbW/K71ZabzLgzozfz7NXHZRP3p8D+pW3o3bfFu0S3H3KI5G+foL5P/opuPvll/PvxS2Y5+07SlFn3dMKfY7jRjprxrGt+ne/Dq/Fe1tXqr/pj3R7185svROcfFvmJdOOFCvb/kfQ3rPqzJwaQa2WX9wOQZofppMtvNJ6jvL6kPsFVba8q81dXmPZGI2ac+6FfGNl1yXq/Zt7bWtFm7XA1zALyhcq0sWal15eui8ycqaitUHaxWWmyauqV3U4eUDnLandGxwPXjj+vHu9ntJl1t25o+o4kTTV/rxReb8lVMTOO6y9ixZp/vvjPBw+bPl+66y6TR7TZ9RUcd1fSv9M2f3tTq0tUadsiwRu3CD5z4gP406U9646c3NLjzYPVq00vff2/y6q++MvXc994zx8jMNGXzw/sEdMN345SXkacHBz2oc/POjX7Opys/1a1f3KrxS8brmiOukSf9KOmM5aYdf/NnZj5MsML0t2WfYcrDMv0c//ufKU9OnGj+9nrN9j59pIsuqvuAjpdKmceZuaebPmsYA9L+AtOm1u48ffWVaU9fv97kBXl5pm9s2/HChxxiAotPm2b6ECZMMEHq3G7z20ci5j33jg5ppf0jPT/3eaXHpUfbPsKRsF6Z94penf+q/tb/bzqp40l7Ncbor381/Xcvv2x+34oKk48NGWIC8DVVia9EeRl5jdpJJalPVp9o3WVp0dJG7dm7Uuwr1ntL3lNeRp5eP/t19ctpCBb5+DeP67UFr+nJ2U/qtWGvNelcJyydoIgV0eDOgzX5ksnR8mYwHNRp75ymTVWb9OGyD3X+Yefv8ViWZemf3/5T3dK76aq+V0UD2UomRspV/71Kb/70pob3HL5Px8aX1pRqi3eL3A63uqR1afRafbvVzsYw7kpRtZn7H++KbzQmMxAOqNBbKJfDpY4pHZvURlNba67x/PyGPmKp4ZlY//eaNWZs0vr15rlx4YU7ztWvf6Y2souysD/kV2lNqcpryxWMBJUUk6RAOCB/yC+P06O02DSleFL01lsOTZxo2mieesrch7GxpqxmWeb5eNZZlmJam7n6GXEZjcr2lf7KhvHmngRJ9m3GcdZVSGu3mjKId5UpXx0EAeI2bzZjGX7+2TxzO3bceb36+utNkPYvvjBl4bPOMnWG+rJwMGjyiJtu2u6NO/tdbTapx2gpuYdZmGnjRFPvsztN+1DBx5I7VZHaQs0oWqs3fnpDJb4SHZF1hAZ2GKipa6bqg6UfKDsxW5f3ulzHtT9OttMWmj7oku9N8Dl3imkTtCwp6zQpsZsiVkTVgWp5A14FI0G5HW45bA7VhGrksDkU745XgjtBLpdTbnfD3JqdnYZlmb6EteVrtbFyo2qCNcpOzFaFv0K1oVqlelLVMbWj2ia11dbqrSqvLVdyTHKjtreaYE20HaRdUjsVVBVExylvO3/CG/BG58PHOGN2OX+ivk1jZ/FKfq0nZz+pScsn6YreV+iPeX9UxIro/EPPV582ffTSjy/pmo+v0Rtnv6EHH0zUJZeYuubs2aZuWVZmjpGebtptDj9ug+ZsnKO8jDxNumhSo36msV+P1Rs/vaFX5r3S5ABxk5ZP0iHph6hvVl89evKj0e31bTkbKzfq05Wf6vuC79U9o7vO7n62Hj6pIRbYFu8WnfLWKVpduloLCxfq1fmvRoMf/7nPn6P7zcqfpWs/uVYfrfhIN/a/cYfxv7/Gf1f8V5lxmerVupcmXTSpUb3Isiwt3rpYHyz5QGd3P1uTlk/S/9b8TymeFJ3c6WQVVRdp9sbZcjvcOrv72Tq1y6mN2y12UcZNSTFz8D780IzxufVWUw6Jjzf3dSRintX3PVype+ZerU1Vm/TPU/6pjqkdo8G0Jy2fpH/P+7fcDreu73d945M6AGMfbJbV9KPHxsbq5ptvbhQIrry8XGlpaRowYIBmzpzZaP+bbrpJr7zyiqqrm96R2a1bN3Xu3FmfffZZo+2bN29Wdna2HnnkEd155507fa/b7daVV16pF198sdH22bNn6w9/+IPGjRuniy66SO+++66GDx+uOXPmqH///o32vfbaa/XGG2+otn6G4HZGjx6tMWPG7LD91FNPlas+UsNB7L/bL7G5C2ed2XiSRP37tt8etAe1OXWzNqVuktfjVauKVipLKJPNsim7LFvZpdmKC8bt9Fg7O15hUqFWZK9QrbtWrctbK7U6VfmZ+fLGeNWupJ26bumqmNB2Jaom2tU5NJXf6dem1E0qSCtQwBlQq4pWKkoqkiPiUE5ZjnJKc+QJNn1A9S/xa8+hqSK2iCriKlQaX6qgI6jE2kRVxlbKE/QotTpVSb4kue2WWsXXyOMMqyboVHXQqYhlU7yrvoRrKRB2qKzWo4gi8sX45PV45Qq75Ig4VOOqUXwgXvG18XJYTe8oDdqDKkgvUH5GvoKOoHJKc1QRV6HKuEq1Lm+t3KJcpdSk/KLz3t212VQhe0hVnip5PV65Q27ZZJPf5VdCTYISaxPljOxVXE+FbWH53D4FnAF5gh4FnAHZLJviAnFyh/cixPk26atx18iyWXKGnQo4A4oJxsgT9DQKaCdJNlnb5J+W2WJJlmwK28LamLZRa1qvUdgeVtvStgo6zPMgzh+nzoWd1aa8zQ7H/DXCYac2bz5ONTXpstkspacvkdtdKSmyTWAPp+LjN8lm23PWGLKHtCJ7hda2WqtkX7JySnNks2wqSCtQeXy5coty1b2gu4o2Hq+1a89SdXUbZWYuUGbmfLndlbLbQ7Isp0Ihj+LiCpWcvDZ67N1dS015Du/re7yysr2KivoqEEhQfPxmpaSslsPhl+pWm7YsmxwOv2JjS/fp51qyVB1TrcrYSkXsEcX6Y1XtqVZMMEZJNUmKDcY2+Vheb7Y2bTpWgUCyYmOLlZa2VC5XXVAmWbIsh+z2kOLjt8iSJb/Tr1pXrVxhlyL2iCybJU/A0+i+idgiqnHVKOAy90HAEZBddsX6Y+WKNH+ZIOAIqNZVK0fEIctmmXMIeuQK75+0hW1hVcRVqCy+TCFHSAm1CaqMrVRsINY8+2uS9uk9vTO/Np9rjvtrf4goolpXrYLOoFwhl0LOkBwRhzwBz17lmdizPV1zliyF7WFZdc9Lu2XnN9gjSy57RHab1ZA/R1+zKWJJoQjf4a4E7UH5XX7ZLXv0uosJxshp7ViG3HV5w9LADhvVLsmr2pBTPxVmqMrvUorHr3h3SK3jfYpYNs3Z2Fond9qgnKRqFXrj6vZzq3WCT8kxfmXG16g25NRHyzvJasLzPyvBq15tihXnCmlFcapKajxy2CJK8QSUFBNQjDOs9RUJWlOWYvJqV11eHarLq2UpNhi73/K5g01T6i6WZa9rj7LV/ZEkSzabpV5ttuqSnsvVMaVSn67soOXFqbLbpO4ZpTqm3Ra1SfDp2w1tdP/sXlrderXWtVqnOH+ccoty5YvxaVPqJtlk0yGbDlFOaY42rB+swsIjFQgkKSvrWyUm5svprJXNFq4rM8coLm6Lli69UqWlebIsu3r0+Lfi47fI4aiRzWYpHHYrGExQaupyOZ1NXYJl36px1agirkK+GJ/ia+MVcAUUsUWU7EtWYk2iHJZdl/dapj+02yxf0KkvVudqizdOqbF+ZcbVKC+zVOGITa/Nz9P5h63S4a2LVVCVoOlr26nY51F2YrVaxdeoU2qFaoJOPTm7j4L78JkYDjsVCsXKslyy2SKy24Oy2Rp6sUyHflAOh6m3Bx1BBRwBOSIOhe1hOSIOxYRiomU+n8un9ZnrVZBWIGfYqTblbbQlZYtCjpDalrRV++L2ig3G/qIy2IFq38Du1ec1v7ScX1WVo+Li3goGExQbW1hX1ww0HN+yyeEIqG3aRg3vuUI9W5fIH3Jo0dZ0Vfndstksnd19jSxLevnHnjoko0xHZReqrDZG45d0VbEvVh1SKtU+uUrHtd8kSRo76yh9u6qfgkETVC0hYbPsdvPMMG0BtrpgiBVNahuQJJ/bp+LEYpUklig2ECtHxKEqT5XSqtOUUZmhBP/+GSBZ46pRVWyVgo6g4gJx8rl9coadSqxJ3KE9tSU6u/tqndRxg+JcQU1ZlauCqgSlePxqk+DT2d3XKGJJY2b01xZvnOJcIQXCDlUF3ApHbIpzhWSzmRJG2LJpU0WqSksPUzAYL4cjoMTEfNntgbp2KUuWZZPNJnk8+7bdYlv7ol2wIrZCa1utVWFyoZJqkpRZmamN6RsVsofUvqS9coty5Q65tTFto1Zkm6WLssuyFe+PV35Gvrwer3KLctV1S1eF7CHN6TZHPrdP7UrbyWbVBVmwWdqQvkFx/jgd8/Mxe9W2sqdztWTp60O+VnlCuToVdlJ2acMkr/zMfG3I2KDW5a115OojtaTdEq1rtU5pVWlKq06TzbLJ7/RrS8oWSdJRq49SWnXjiUW7evZXeao0u+tsk7+Uto1WIMIO0/6YVJOkY34+Rq6wS9Ux1SpLKJM3xqvEmkTVumtl2SylelOV4kvZ67ZXYG/s6hqucdVoVZtVKkgrULw/XrlFuSpKKlJRUpGSfcnqtrmbUisztXr1uSotzVMk4lROzteKi9sULfdGIg6Fw7FKTV3WpLKwZUnr1p2hTZuOVWVlRyUmrldy8mq5XNWyLIf8/hQ5nT7FDhqppe2WKqEmQScuPTH6/rAtrP8d/j8FnUEdufpIDbDH6uIeK9QtvVw/l6RoRUmqqgMu2WyWrui9VDab9Pz3h2va2vY6pu0mndFtnbqll8vjbJgYXRtyaHVpsp79rrc2exuCn+6L5yuwe5bSYv2KdYYUsWyqDjoVjtjkckRkrytLRCybQhGbRvReri5p5VpXnqTvC1qrotatdslepcfWKiuxWlV+t/7f/MOUFOOX2xFRIOyQP2SC3zvspm5lk+QPO1QTcqgoqUgb0zaqJLFE6VXpitgjKosvU2ZlptqWtFW6N13De67Q6V3XSZKe+663NlbGKzXWr+zEah2ZXSin3dL/VrfX7I0NAyC5b1q+osQizes4T3bLrtYVrRUbiFXQEVRRUpGqYquUtzFPnbd2VqWnUqvbrFZhcqGSfcnKKsvSxvSNqo6pVk5ZjjoVdlJcoGll/1DIrZUrL9DWrUeopqa1MjPnKTFxg5zOGkUiDgUCyXK5vOradYI6plTogsNW6rBWJUrxNNTRIpa0qSpe45d01Yx1TVvAB78dlmXT8uWXasuWoxUMxis393MlJa2r608NKxKJUTAYp5RWP+qrIycq5Ayp36p+al3RMNt5cdvFWtt6rTIqM9S5sLO+6/qd7BG7hvw0pFFZe16HeSpIL1B2abaOWHtEM5wtfmsOlj5cAMDvh02WTum8XrnJVaoOOjV/c6Yq/W6lxfqV4A4qK7FaoYhNU9e0ly/Y0L+9b+pzlpx2S/bt+jjqZwqEIvYm9d+j5fC5fVqQu0BlCabNILMyMzrWtiq2Sl02d1G3zd20ttVaLW23VEm+pEbt81VxVSpIK1BmRab6r+qvWletNqRvUEFageyWXa0qW2lL8hbZLbtySnPUrqTdDuPsm3pt7qoNtNJTqdndZitsD6t9cfto32LYHlZ+Rr4SahP0h5//8IvH96NpLJk+op+zfpYktS1tq5hgjNZnrJfP7VOnrZ3UqbCT3BGn3I6wnPaIJJvC9X1M2yw2EAg7FLEaniW0R/1yv/b+GtRxgy7usUJpsbV6fm4vrStPUowjpC5pFerVplhJMQHNLWitD5bu28CPBwOf26e1rdaqILVAscFYZZdla3PKZvncPuWU5ajj1o47tL0dqGv9558vVH7+YNXWpuuQQ8YpM3OBnE6v7PaIIhGHQqFYxcSUKS6uWJYsBZwBBR1BOSNOhewhOSNOuYNu2fUrFubBflHrrFVVbJX8Lr/i/fGqcdXIbtnNOI9A3H4fZ78rliwVJxZrU+omlSaUKq06TQFHQNUx1Wpd0VrZZdlKrjEB4QKOgLwer2rdtYr1xyrgDMiyWc1+Di2dJUs1rhpVe6pls2xyh92qcdcoJhCjBH8CYxUA/ObFOkOKcYYlWQpuV1+o73P3h3nWHYyqqnK0YsWlqqjopNjYIuXkfCWPp1gOR6hukVW3bLaIbLawVq36oyoqOislZaWys7+Wx1Mquz0gy3IoGIyX2+1VRsbCJn3uxo0DVVZ2iEIhj1q3/kFxcVvkcARks0VkWXaFwzGKj99c19cJYH/b2/aN7feL2CJa02qNVmatlCfgUduStnJFXNqQvkGVsZXqUNRB3TZ122HO9u7mlGw7tyehNkG1rlpZspRcUz+3x7HTY+3pHH6rIoqoKrZK5fHlCjqCSqhNUJWnSjGhGKVUpyixNvEX1+eaOreHOUC/Pz63T5WxlfI769pBYmrkCDuUVJOkeH989Jqrry9HbBHFBGNU466RO+RWQm2C3GG3IopoRfYKrWqzSsm+ZLUpbyNnxKmy+DIVJhcqoTZBfdf23W/zdoADIRgMasqUKaqoqFBS0q4D8e1VgLjExERddtlleuGFF6LbvvzyS5100km6+eab9cQTTzTa/+6779bTTz+9VwHijjnmGIXDYX3//feNti9ZskQ9evTQSy+9pGuuuWan783KytKAAQM0fvz4RtsnT56soUOH6vPPP9fgwYP1+eef69RTT9XkyZN1+umnN9r3/PPP1zfffKNNmzbt9DP8fr/8/obJFZWVlWrXrt0ev+jfvV8b7bApEZ23OfZHyz/S3E1zFeOIkcPu0IjeI3ZYdaw51YZqFbEisskWXZUKB96q0lXyh8z93D65fZNX68a+Y1mWvsr/SqU1ZoJuu+R2OjL7yGZO1d75cdOPuv7T6xW2wnI73KoN1epfp/1rtytVmQYus9rATu1uVV4AAADgl9jLevVulS2Qlj0mlc2XMo6VUg43q1VGas2Kb5FaKXuolGpWdt/i3aL/++H/FAwHVROqUV5Gnkb0HhFdra2pliyRvv1W2rjRrM7Qtq1ZPao+oGQoJJ1xhllF7DcjEjKrbdvsZuW8nf1OkbBZ6a9+P7t7m1V5Wr5QJBRdld5us6tberdGK6ECe/RFf7OqUVKedPpic/1v+sys0lo0y6ygfdjdUvJh0ubPpZrNZnXFmFaSzVH3kAibeyx336/yjF/ou6uk/Hek+I7S4Q+YVY5rt5gVqoOVkr9E6naj5E7e87EOMlurt+qnLT9JklwOl/7Q7g9yOxov9BAIB/TSDy9pSdESJbgTZJNNN/a/Ue2T20f32Vy1WSe/dbJWla7SpAsnKWJFdO74c9U1raum/mmq2iS0+WUJ3E271aLCRer7cl+FIiEdlnmY0uPStblqs1aWrlSiO1FLr1+qtkltJUnPf/+8bppyk07qdJKu6XuNLp90uTqldtLHF3+88xW8dtPHsKp0lU568ySV1pTq80s/15qyNbp80uXql9NPnw3/TCmelF92rsABtKlqk95f/L4iVkShSEjHtT9Ox7Y/dr981tNPSzffbP49cqS0zbpgjZTXlivnyRz5gr5Gz6JKf6XmbZ6n9sntteZva+T4/Aip/CdTLzh1gblft0wzK6UHyiRZUu4lUsUS6ccbzMG73yp1GmFWQKxYIk2tWz31pJlmldl6tJXjdyAQDqg2ZBavi3XGNq4rWxGpYqnk22DuJ1eiKePKLskydcU2QyRnEyZQcw+1KOsr1uu88edpadFSPXryo3pqzlPyBX0af954Dcgd0GjfjZUb9VX+V7IsSw67Q6d0OqXRCsdNMWaMNHq0+ffYsdLtt+9ix7KF0hdHmZVpc4ZJPcfUrV5vk6b0liqXS4f8Xer71F6eMX6L6tvbpIbVjyXp9v/drse/fVypnlRlxmdG988vz5c/7NcXl36h43OPV/pj6aoOVuvVs15tdF0f++qx2lq9VW+f87aGHz78QJ4SAABAy7Mv+3Bx0LIsS899/5zunHqnBnUcpMVbFyvOFac3zn5DR+UcFd3vhk9v0PNzn9eR2UfqycFPavyS8frX3H+pV+temnXFrEZjpC3LUmF1oSzL9OG2Tmi9s482dtVG15Trt+49P235SYPeHKRAOKDPhn+mjZUbNXzicHVO7ayZI2YqKzFrz8fBPhEIB/TKvFe0qnSVPE6PYp2x+stRf1FGXMbeHYjnV8sQ9pu+dO8qKVQteVpLdpdpQ7QsyQpKmcdLnsw9H+t3qjpQrbmb5kbn9hyVc5QS3LuYTHqA+ixqaqQff5Ty86XSUikjQ4qLk+x1Q4VCIalHD6krcf8AAADwG/HNN9I//ynNny916iQNGyZlZ0sejxQISBUVZl7A4MHNnVIAv0hT68t72K/QW6j7ZtyngqoCJboTFbEiGj1wtLpndN/98WiDal78DjhAZq6bqUs/vFRxrjgd3/54vbrgVd1yzC16aNBDez0/EWhpKisrlZycvG8DxB1xxBHyer1asWJFdNvIkSP12GOPafz48frjH//YaP8rrrhCs2bN0qpVq5qc8GuuuUbjxo1TWVmZnM6GyaLvvfeeLr74Yn3zzTf6wx/+sNP3Dh48WBs2bNCyZcsabX/00Uc1cuRIFRQUKDs7WwUFBWrbtq0effRR3XHHHY327d69u9q3b68vvviiSelt6hcNAAAAAABwULIiUthMZpc9RrLvKhIyAPwC+e9Jc6+Twj6p+21Sm5OlmLoB7IESqWq1CfzmjG/edGLvRYKSd43kK5DCNVLEbwL5OeMlTysppWdzp/A3r9hXrMFvDdby4uWyZOnQzEP1xaVf7HVAkUb2MEBj5NSRevSbR/XHvD9qwgUTNOC1Afp6/dd65tRn9Lf+f2u079Q1UzVh6QRJUnJMskadMGrPEy520aWVX56vk948SVurt8oX9Om49sfpk0s+2fXxgN+xdeuk884zk4s6dpTuukvq00dKSZGCQWnrVqm8XDrrLOnaj6/Vy/NeVoonRce1N0Hc/rf6f/KH/Xp40MMaOWCkVL1BWvGUVPKd+YDkQyVHrCS7mXwWrpX6PCX9N1cKlpuAQ8dPMvuueU3a+pW09nXzfwLEAfgdCYQDGrdonPxhv2yy6cxDzvzlQXz3wO83geGmTJF+/lkaMEA67DATZD8YlIqKpDZtpJEDzjfBuF1J0rnFZkLx1lnSz8+YwJ/BSgLEQQWVBer4TEcFI0Fd3utydUzpqGlrp2nW+lnq1bqXFly3QJJ09ntn66MVH+30GA6bQ1tv26q02LQDmHIAAADgt80b8KomWCNJSvGk7DDhKRwJa9h7wzR55WRdf9T1em3Ba0r1pOq7q75TTlJOcyS5kR83/aiT3zpZ8a54Vfgr1Cq+lWaOmBldWAYAWjz6LAAAAIBfLRyWqqul2lrTV+1ySQkJJigygN+ofRQgDgD2pKK2QitLV0oycw+6prOCAg4O+yVA3MMPP6x77rlHV199ta6//nqtWrVKf/7zn2VZljZt2qT4+MaT8Lp166ZOnTppypQpTU74Z599ptNPP13vvfeeLrzwwuj20047TQsXLtT69evlcOx8ovGLL76ov/71r5ozZ4769+8vSQqFQurdu7cSEhI0Z86c6L79+/eXz+fTggULosebM2eOjjnmGL344ou67rrrmpReAsQBAAAAAAAAwH4UDkjlC6TyRVKgXAp5zarn7mQpNlvKOcsELgCw/+1hgEZtqFY9Xuih1WWrdU3fa/TyvJfVL6efZl85W3ab/dd/7h66tOq7vGzbphPATq1dK82bJ23YIFVVST6fGXSZliYdfrg0aJC0qHCRDv+/w+VxerTpH5u0xbtFh75wqDxOjzbcvEEZcRk7P7gVkba950PV0gd1ARu7XCcd9aL595rXpfKFDft1u0FK6NTwfwaFAcA+Z1mS12sG3dfUSG63lJpaN+D+q7Okgo8ld6p0bol5DletlAqnNxwg5XAp45hmSz9ahhGTRuiNn97QDUfdoOdOf06HPn+olhUv01vnvKVLD79UkvTKvFd09cdXS5LSY02Qam/AK3/Yr+PaH6dZV8xqtvQDAAAAB6vqQLVu/vxmeQNeSdLtx96u3m16N2+itrGxcqM2V22WJHVM7bjr9kUAaInoswAAAAAAwGjKGF3Lavp+AAD8ju2XAHE1NTU6+uijtWjRoujkGsuy9Pjjj+uWW25ptO8PP/ygfv367fS1PRk8eLB++OEHjR07Vl26dNG4ceP073//W2+//baGDx8uSbryyiv1xhtvaPXq1crNzZUk+f1+HXHEEaqsrNSjjz6qVq1a6YUXXtDHH3+sqVOn6oQTToh+xowZM3TKKafozDPP1F//+ldt3bpVd955p5KTk/XDDz8oJiamSWklQBwAAAAAAAAAADho7eUAjalrpuqUt06RJDntTv1w9Q/q1abXvv/M7T4XwP4x8PWBmpk/U8+c+ozyy/P15JwndXmvy/X62a/v3YG+vkDa8IHkTpcGTZVSezd+3bdRimvbeBuTrQDgwCr6Vpp6nCRL6nSldPgDUmyWeS3kk4pnSyk9JU+rZk0mmt/irYvV88WeSnQn6s1z3tQ575+jdknttOamNXLanZKkzVWblfNkjixZWnvTWnVI6aATXj9BX+V/pUdPelR3HHdHM58FAAAAAADAXqDPAgAAAAAAAACwjzU1bplzbw4aGxurb775Rk899ZTmzJmjtLQ0nX/++TrrrLN22HfevHkaNmzYTl/bk4kTJ+ruu+/Wvffeq9LSUnXv3l3jxo3TRRddFN0nHA4rHA5r2/h2MTExmjZtmm6//XbdeOON8vl86t27tz777LNGweEkaeDAgfr0009177336swzz1RcXJyGDh2qxx9/vMnB4QAAAAAAAAAAAA5qeznB4eROJ6tqZJUsy5LD7lCcK26/fyaA/eeGfjdoZv5MvfTjS9pavVWSdGO/G/f+QEe9IIVrpE2fSFP6Sml9pbh2UrhWqlwuWRFpWP4+Tj0AYK9k/kE68Qtp8f3SurekNf9PciVLdrfkL5YcsdKQuQSIg3q06qFTu5yqKaumaMSkEZKkm/rfFA0OJ0lZiVnqm9VXP27+UZ+v+lyX9LxEszfMliQN7Ta0OZINAAAAAACwd3a1qBXB4gAAAAAAAAAAB5DNsmiN/jWaGokPAAAAAAAAAAAAAH5LQpGQOj7TURsrN0qSjm57tGZfOfuXH7B6vVT8rVS5TArVSK4EKS5XSu8nJefterLVtujeBoD9L+yXKpZIwQrJ5pRi20jxnSS7o7lThhZi+trpOunNkyRJyTHJ2nDzBiXGJDbaZ/SM0Rozc4zO6X6ORvQeoWHvDVPHlI5ac9Oa5kgyAAAAAAAAAAAAAAAAAAAtRlPjljl3+QoAAAAAAAAAAAAA4HfLaXfq8VMe1xerv5AkXdzj4l93wPj25g8AoGVzxEhpfZs7FWjBBnUcpNLbSyVJLodLCe6EHfYZ2m2oxswco+lrp6tVfCtJ0hldzzig6QQAAAAAAAAAAAAAAAAA4LfMZlkssf5rNDUSHwAAAAAAAAAAAAAAAAD8HliWpZwnc7TZu1kep0e1oVpNGT5FQ7oMae6kAQAAAAAAAAAAAAAAAADQrJoat8x+ANMEAAAAAAAAAAAAAAAAADjI2Ww2nd71dElSbahWCe4EDewwsHkTBQAAAAAAAAAAAAAAAADAbwgB4gAAAAAAAAAAAAAAAAAA+9SwQ4Yp0Z2oRHeihnYbqhhnTHMnCQAAAAAAAAAAAAAAAACA3wxncycAAAAAAAAAAAAAAAAAAHBwOfOQM1U5srK5kwEAAAAAAAAAAAAAAAAAwG+SvbkTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwnM2dgN86y7IkSZWVrHYLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYOfq45XVxy/bFQLE/UpVVVWSpHbt2jVzSgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0dFVVVUpOTt7l6zZrTyHksFuRSESbNm1SYmKibDabJBOdr127dtqwYYOSkpKaOYUAAGB75NUAALRs5NUAALRs5NUAALRs5NUAALRs5NUAALRs5NUAALRs5NUAALRs5NUAALRs5NUAALQclmWpqqpK2dnZstvtu9zPeQDTdFCy2+1q27btTl9LSkqiUAQAQAtGXg0AQMtGXg0AQMtGXg0AQMtGXg0AQMtGXg0AQMtGXg0AQMtGXg0AQMtGXg0AQMtGXg0AQMuQnJy8x312HToOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBAESAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFoIAsTtBzExMbrvvvsUExPT3EkBAAA7QV4NAEDLRl4NAEDLRl4NAEDLRl4NAEDLRl4NAEDLRl4NAEDLRl4NAEDLRl4NAEDLRl4NAMBvj82yLKu5EwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkOzNnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEGAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoIQgQtw95vV79/e9/V3Z2tjwej3r37q333nuvuZMFAMDvzowZM2Sz2Xb6Z86cOY32nTdvnk4++WQlJCQoJSVF5557rtasWdNMKQcA4OBTVVWl22+/XYMHD1ZmZqZsNptGjx690333Jl9+7rnn1L17d8XExKhjx44aM2aMgsHgfjwTAAAOTk3Nq0eMGLHTenb37t13elzyagAAfr3p06frz3/+s7p37674+Hjl5ORo2LBh+vHHH3fYlzo1AAAHXlPzaurUAAA0jwULFuiMM85Q+/btFRsbq7S0NB1zzDF6++23d9iXejUAAAdeU/Nq6tUAALQcr7zyimw2mxISEnZ4jbo1AADNb1d5NXVrAAB+25zNnYCDybnnnqu5c+fq0UcfVbdu3fTuu+/q4osvViQS0SWXXNLcyQMA4Hfn4Ycf1oknnthoW48ePaL/Xr58uQYOHKjevXtr/Pjxqq2t1b333qsBAwZowYIFyszMPNBJBgDgoFNSUqKXX35ZvXr10tlnn61XXnllp/vtTb780EMPadSoUbrzzjs1ePBgzZ07V/fcc48KCgr08ssvH6hTAwDgoNDUvFqSYmNjNX369B22bY+8GgCAfePFF19USUmJbrrpJh166KEqKirSE088oaOPPlqff/65Bg0aJIk6NQAAzaWpebVEnRoAgOZQXl6udu3a6eKLL1ZOTo6qq6v1zjvv6LLLLtO6det0zz33SKJeDQBAc2lqXi1RrwYAoCUoKCjQrbfequzsbFVUVDR6jbo1AADNb3d5tUTdGgCA3zKbZVlWcyfiYPDpp5/qjDPOiAaFqzd48GAtWbJE69evl8PhaMYUAgDw+zFjxgydeOKJ+uCDD3Teeeftcr8LLrhAX375pVavXq2kpCRJUn5+vrp27aqbb75ZY8eOPVBJBgDgoFXf7GCz2VRcXKzMzEzdd999Gj16dKP9mpovl5SUqG3btvrTn/6kl156Kfr+hx9+WPfcc48WL16sQw899MCcHAAAB4Gm5tUjRozQhAkT5PV6d3s88moAAPadrVu3qlWrVo22eb1edenSRT169NDUqVMlUacGAKC5NDWvpk4NAEDLcvTRR2vTpk1av369JOrVAAC0NNvn1dSrAQBoGc4880zZbDalpaXtkDdTtwYAoPntLq+mbg0AwG+bvbkTcLD48MMPlZCQoPPPP7/R9iuuuEKbNm3Sd99910wpAwAAOxMKhfTJJ5/oj3/8Y7TzQZJyc3N14okn6sMPP2zG1AEAcPCw2Wyy2Wy73Wdv8uUpU6aotrZWV1xxRaNjXHHFFbIsS5MmTdqn6QcA4GDXlLx6b5BXAwCw72wfcEaSEhISdOihh2rDhg2SqFMDANCcmpJX7w3yagAADoyMjAw5nU5J1KsBAGiJts2r9wZ5NQAA+8/bb7+tmTNn6oUXXtjhNerWAAA0v93l1XuDvBoAgJaJAHH7yOLFi5WXl7dDJ8Thhx8efR0AABxY119/vZxOp5KSkjRkyBB9/fXX0ddWr16tmpqaaF69rcMPP1yrVq1SbW3tgUwuAAC/W3uTL9fXr3v27Nlov6ysLGVkZFD/BgBgP6qpqVGbNm3kcDjUtm1b3XDDDSotLW20D3k1AAD7V0VFhebNm6fDDjtMEnVqAABamu3z6nrUqQEAaD6RSEShUEhFRUV64YUX9Pnnn+uOO+6QRL0aAICWYHd5dT3q1QAANJ+tW7fq73//ux599FG1bdt2h9epWwMA0Lz2lFfXo24NAMBv194vqYKdKikpUadOnXbYnpaWFn0dAAAcGMnJybrppps0cOBApaena9WqVXr88cc1cOBATZ48WUOGDInmzfV59bbS0tJkWZbKysqUlZV1oJMPAMDvzt7kyyUlJYqJiVF8fPxO96X+DQDA/tGrVy/16tVLPXr0kCTNnDlTTz31lKZNm6a5c+cqISFBksirAQDYz66//npVV1fr7rvvlkSdGgCAlmb7vFqiTg0AQHP761//qpdeekmS5Ha79eyzz+raa6+VRL0aAICWYHd5tUS9GgCA5vbXv/5VhxxyiP7yl7/s9HXq1gAANK895dUSdWsAAH7rCBC3D9lstl/0GgAA2Lf69OmjPn36RP8/YMAAnXPOOerZs6duv/12DRkyJPoa+TcAAC1HU/Nl8m8AAA68m2++udH/TznlFPXp00fnnXee/v3vfzd6nbwaAID9Y9SoUXrnnXf03HPP6Ygjjmj0GnVqAACa367yaurUAAA0r7vuuktXXXWVtm7dqo8//lg33HCDqqurdeutt0b3oV4NAEDz2VNeTb0aAIDm85///Ecff/yx5s+fv8e8lLo1AAAHXlPzaurWAAD8ttmbOwEHi/T09J1GvC0tLZW08+j3AADgwElJSdHQoUO1cOFC1dTUKD09XZJ2mX/bbDalpKQc4FQCAPD7tDf5cnp6umpra+Xz+Xa6L/VvAAAOnHPOOUfx8fGaM2dOdBt5NQAA+8eYMWP04IMP6qGHHtINN9wQ3U6dGgCAlmFXefWuUKcGAODAad++vY488kidfvrpevHFF3XNNddo5MiRKioqol4NAEALsLu8eleoVwMAsP95vV5df/31uvHGG5Wdna3y8nKVl5crEAhIksrLy1VdXU3dGgCAZtLUvHpXqFsDAPDbQYC4faRnz55atmyZQqFQo+2LFi2SJPXo0aM5kgUAALZhWZYkE6W+c+fOio2NjebV21q0aJG6dOkij8dzoJMIAMDv0t7kyz179oxu39aWLVtUXFxM/RsAgAPMsizZ7Q1dDeTVAADse2PGjNHo0aM1evRo3XXXXY1eo04NAEDz211evTvUqQEAaB79+vVTKBTSmjVrqFcDANACbZtX7w71agAA9q/i4mIVFhbqiSeeUGpqavTPuHHjVF1drdTUVA0fPpy6NQAAzaSpefXuULcGAOC3gQBx+8g555wjr9er//znP422v/HGG8rOzlb//v2bKWUAAECSysrK9Mknn6h3797yeDxyOp0688wzNXHiRFVVVUX3W79+vb788kude+65zZhaAAB+X/YmXz711FPl8Xj0+uuvNzrG66+/LpvNprPPPvsApRoAAEyYMEE+n09HH310dBt5NQAA+9YDDzyg0aNH65577tF99923w+vUqQEAaF57yqt3hTo1AADN58svv5TdblenTp2oVwMA0AJtm1fvCvVqAAD2vzZt2ujLL7/c4c+QIUPk8Xj05Zdf6sEHH6RuDQBAM2lqXr0r1K0BAPjtcDZ3Ag4Wp512mk455RT95S9/UWVlpbp06aJx48ZpypQpevvtt+VwOJo7iQAA/G5ccsklat++vY488khlZGRo5cqVeuKJJ1RYWNioYWLMmDE66qijNHToUN15552qra3Vvffeq4yMDN1yyy3NdwIAABxkPvvsM1VXV0c7/ZcuXaoJEyZIkk4//XTFxcU1OV9OS0vTPffco1GjRiktLU2DBw/W3LlzNXr0aF111VU69NBDm+UcAQD4LdtTXl1UVKRLLrlEF110kbp06SKbzaaZM2fq6aef1mGHHaarrroqeizyagAA9p0nnnhC9957r0499VSdccYZmjNnTqPX6wfnUacGAKB5NCWvzs/Pp04NAEAzueaaa5SUlKR+/fqpdevWKi4u1gcffKD3339ft912mzIzMyVRrwYAoLk0Ja+mXg0AQPPxeDwaOHDgDttff/11ORyORq9RtwYA4MBral5N3RoAgN8+m2VZVnMn4mDh9Xp19913a/z48SotLVX37t01cuRIXXTRRc2dNAAAflceffRRvf/++1q7dq28Xq/S0tJ03HHHaeTIkTrqqKMa7fvjjz/qjjvu0OzZs+V0OjVo0CD985//VOfOnZsp9QAAHHw6dOig/Pz8nb62du1adejQQdLe5cvPPvusnn/+ea1bt05t2rTRFVdcobvvvlsul2t/ngoAAAelPeXVycnJuvLKKzV//nwVFhYqHA4rNzdX55xzju666y4lJyfv8D7yagAAfr2BAwdq5syZu3x9265+6tQAABx4Tcmry8rKqFMDANBMXnvtNb322mtatmyZysvLlZCQoF69eumqq67SpZde2mhf6tUAABx4TcmrqVcDANDyjBgxQhMmTJDX6220nbo1AAAtw/Z5NXVrAAB++wgQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAthL25EwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAgQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtBAHiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCFIEAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQQBIgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBaCAHEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EIQIA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWggCxAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAC0GAOAAAAAAAAAAAAAAAAAAA9oF169bJZrNpxIgRe/U+m82mgQMH7pc0AQAAAAAAAAAAAAAAAAB+ewgQBwAAAAAAAAAAAAAAAAA4KNQHaNv2j9vtVrt27XTJJZdo4cKFzZKugQMHymazNctnAwAAAAAAAAAAAAAAAAB+e5zNnQAAAAAAAAAAAAAAAAAAAPalzp0769JLL5Ukeb1ezZkzR+PGjdPEiRM1ffp0/eEPf9gvn5uTk6Nly5YpOTl5r963bNkyxcXF7Zc0AQAAAAAAAAAAAAAAAAB+ewgQBwAAAAAAAAAAAAAAAAA4qHTp0kWjR49utO2ee+7RQw89pLvvvltffvnlfvlcl8ul7t277/X7fsl7AAAAAAAAAAAAAAAAAAAHL3tzJwAAAAAAAAAAAAAAAAAAgP3txhtvlCTNnTtXkhQKhfTUU0+pV69eio2NVXJysk488URNnjx5h/dGIhG98sor6tevn9LS0hQXF6cOHTro7LPP1ldffRXdb926dbLZbBoxYkR0m81m08yZM6P/rv+z/T4DBw7c4XNLSkp08803q2PHjoqJiVGrVq104YUXaunSpTvsO2LECNlsNq1bt04vvPCC8vLy5PF4lJubqzFjxigSifySrw0AAAAAAAAAAAAAAAAA0AyczZ0AAAAAAAAAAAAAAAAAAAD2N5vNFv23ZVm68MILNXHiRHXr1k3XX3+9qqurNX78eA0dOlTPPPOM/va3v0X3HzlypB577DF17txZl1xyiRITE1VQUKBZs2Zp+vTpOv7443f5uffdd59ef/115efn67777otu7927927TW1JSoqOPPlqrVq3SwIEDddFFF2ndunWaMGGCJk+erP/973865phjdnjfbbfdphkzZmjo0KEaPHiwJk2apNGjRysQCOihhx7ai28MAAAAAAAAAAAAAAAAANBcCBAHAAAAAAAAAAAAAAAAADjoPfvss5Kko446Sm+//bYmTpyoE044QV988YXcbrck6e6779YRRxyhW2+9VWeeeaY6duwoSXrllVeUk5OjhQsXKi4uLnpMy7JUVla2288dPXq0ZsyYofz8fI0ePbrJ6b399tu1atUqjRw5Ug8//HB0+4gRI3Tqqafq8ssv1/Lly2W32xu978cff9TChQuVlZUlSRo1apS6du2q5557Tvfdd1/0XAEAAAAAAAAAAAAAAAAALZd9z7sAAAAAAAAAAAAAAAAAAPDbsWrVKo0ePVqjR4/WrbfequOOO04PPfSQPB6PHn74Yb3++uuSpMcee6xRwLS2bdvq5ptvVjAY1DvvvNPomG63W05n4zVZbTab0tLS9nn6A4GAxo0bp/T0dN1zzz2NXhsyZIiGDBmilStX6ttvv93hvaNGjYoGh5OkjIwMDRs2TFVVVVqxYsU+TysAAAAAAAAAAAAAAAAAYN8jQBwAAAAAAAAAAAAAAAAA4KCyevVqjRkzRmPGjNGzzz6r/Px8XXLJJfr+++91zDHHaP78+YqNjVW/fv12eO/AgQMlSQsWLIhuu+CCC7R27Vr16NFDo0aN0tSpU1VdXb3f0r98+XLV1NSoX79+iouLa1Ia6/Xt23eHbW3btpUklZeX78tkAgAAAAAAAAAAAAAAAAD2EwLEAQAAAAAAAAAAAAAAAAAOKkOGDJFlWbIsS4FAQBs2bNA777yjnj17SpIqKyvVunXrnb63TZs2kqSKiorotmeffVaPPfaYXC6XHnzwQZ1yyinKyMjQ5ZdfruLi4n2e/srKSknaqzTWS05O3mGb0+mUJIXD4X2VRAAAAAAAAAAAAAAAAADAfkSAOAAAAAAAAAAAAAAAAADA70pSUpIKCwt3+lr99qSkpOg2l8ul2267TUuWLFFBQYHeffddDRgwQG+++aaGDx++X9K3bVqakkYAAAAAAAAAAAAAAAAAwMGDAHEAAAAAAAAAAAAAAAAAgN+VPn36qKamRt9///0Or82cOVOS1Lt3752+Nzs7WxdffLGmTJmirl27aurUqaqpqdnt5zkcDklSOBxuUvq6d+8uj8ejuXPnyufz7XUaAQAAAAAAAAAAAAAAAAC/bQSIAwAAAAAAAAAAAAAAAAD8rlx++eWSpJEjRyoYDEa3FxQU6Mknn5TT6dTw4cMlSX6/X9OnT5dlWY2OUV1draqqKrlcrmgAuF1JS0uTJG3cuLFJ6XO73br44otVXFysRx55pNFrU6dO1WeffaYuXbro2GOPbdLxAAAAAAAAAAAAAAAAAAC/Lc7mTgAAAAAAAAAAAAAAAAAAAAfSZZddpokTJ+qjjz7S4YcfrqFDh6q6ulrjx49XSUmJnnjiCXXq1EmSVFNTo5NOOkmdOnVS//791b59e3m9Xn3yySfasmWL7rjjDrnd7t1+3qBBgzRhwgSdf/75Ov300+XxeNSzZ0+dccYZu3zP2LFjNXPmTD344IP69ttv1b9/f61bt04TJkxQXFycXnvtNdntrBELAAAAAAAAAAAAAAAAAAcjAsQBAAAAAAAAAAAAAAAAAH5XbDabJkyYoGeeeUZvvPGGnnvuObndbvXt21f/+Mc/dNZZZ0X3jY+P19ixYzVt2jTNmjVLW7duVWpqqrp3766xY8fqwgsv3OPnXX311Vq3bp3ee+89PfTQQwqFQrr88st3GyAuMzNT3333nR544AF99NFHmjVrlpKTkzVs2DDdd9996tGjxz75LgAAAAAAAAAAAAAAAAAALY/NsiyruRMBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJDszZ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBBgDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCEIEAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQQB4gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACghSBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0EASIAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAWggBxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBCECAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFoIAsQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAtBgDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCEIEAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQQB4gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACghSBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0EP8fXA17tDu+95AAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAE4gAAADJCAYAAADPqthRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADJC0lEQVR4nOzdd3hUVeLG8XfSQwokQBJ6B5GOiAVQQFFUXKzYcEVcdV3XsnZB/YFdV8Xu2kFFEBWwgiAdpCotCEgggZDee5/5/XEyjRQmoSTA9/M888y955x77pnMZO69M/e+Y7HZbDYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqcV0MPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgEBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI0EAXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EgQEAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjQQBcQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQSBAQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNBAFxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBIEBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI0EAXEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EgQEAcAAAAAAAAAAAAAAAAAOGFMmTJFFotFU6ZMaeihAAAAAAAAAAAAAAAAAABwTBAQBwAAAAAAAAAAAAAAAABoFLKzszVlyhS9/vrrx3W9y5cvl8VikcVi8XiZ4cOHO5ap7hYVFVXtch07dqx1Oftt+vTpkuRR20Nvw4cPPwp/FQAAAAAAAAAAAAAAAABAQ/Fp6AEAAAAAAAAAAAAAAAAAACCZgLipU6eqQ4cOuv/++xt6OB7p3bu3mjZtWqW8efPmtS7XrVs3RURE1FgfGRkpSRoyZEiVupycHEVHR9dY36dPn1rXDQAAAAAAAAAAAAAAAABo3AiIAwAAAAAAAAAAAAAAAACgnt566y0NHz68zstNmjRJEyZMOGy71atXVylbvny5RowYUWM9AAAAAAAAAAAAAAAAAODE5tXQAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGATEAQAAAAAAAAAAAAAAAMApZv/+/brzzjvVuXNn+fv7KyQkRJ07d9aVV16p2bNnO9o99thjslgsuueee2rsa9OmTbJYLGrVqpUqKiokScuXL5fFYtHw4cNltVr1xhtvqHfv3goICFBkZKRuu+02paWlufUzYcIEderUyTE+i8XidqtOTk6O7r//frVv317+/v7q2rWrnnnmGZWXlx/pnwgAAAAAAAAAAAAAAAAAgAbj09ADAAAAAAAAAAAAAAAAAAAcP3FxcTrzzDOVnp6uJk2aqEePHvL29taBAwc0f/58xcbG6vrrr5ckTZw4US+99JJmzZqlV199VX5+flX6mzFjhiRp/Pjx8vb2rlJ/880368svv1S3bt3UtWtX7d69W5988onWr1+v33//Xf7+/pKk7t27a9CgQdq0aZP8/f01aNCgWh9HTk6OzjnnHO3Zs0e9e/eWt7e39u7dq6eeekoHDhzQhx9+eKR/Ko/873//0yuvvKLi4mK1atVKI0aM0I033qiAgIDjsn4AAAAAAAAAAAAAAAAAwMnHq6EHAAAAAAAAAAAAAAAAAAA4fl599VWlp6frlltuUUpKirZt26bNmzcrIyNDO3fu1L/+9S9H2+7du2vIkCHKyMjQTz/9VKWvsrIyzZo1S5I0YcKEKvW//fabli9frvXr1+uvv/5SdHS0duzYobZt22rHjh369NNPHW0nTZqkr7/+WpIUFRWl1atXu90O9c4776hly5bav3+/Nm/erNjYWH3//ffy9vbWRx99pF27dh3pn8ojX331lX766SctWbJEX3zxhW677TZ1795dmzZtOi7rBwAAAAAAAAAAAAAAAACcfAiIAwAAAAAAAAAAAAAAAIBTyJ49eyRJDzzwgIKDg93qTjvtNN1xxx1uZRMnTpQkzZgxo0pfP/74ozIyMjRo0CD16tWrSn1ZWZneeustDR482FHWvXt3PfLII5KkBQsW1Ptx+Pj4aObMmWrdurWj7PLLL9fYsWOPuG9P9O3bV2+++ab+/PNPFRQUKDMzU3PnztVpp52m+Ph4XXzxxdq/f3+Ny996662yWCw13rKzs4/p+AEAAAAAAAAAAAAAAAAAjZdPQw8AAAAAAAAAAAAAAAAAAHD8tGvXTpL0zTffqE+fPrJYLLW2HzdunO677z79/PPPSktLU8uWLR119tC4CRMmVLtsWFiYrrrqqirlZ555piRp37599XkIkqTRo0erbdu21fY9d+7cI+rbE2+++abbfJMmTXTllVdq+PDhOuOMMxQbG6unn35aH3/8cbXLd+vWTRERETX27+PD6X0AAAAAAAAAAAAAAAAAcKryaugBAAAAAAAAAAAAAAAAAACOn7vvvlu+vr565pln1KlTJ/3zn//UzJkzlZiYWG374OBgXXvttSorK9OsWbMc5enp6fr555/l5+enG264odplu3TpUm25PRgtPz+/3o/jWPZ9JMLCwvTYY49JkubPny+bzVZtu0mTJmn16tU13oKDg4/nsAEAAAAAAAAAAAAAAAAAjQgBcQAAAAAAAAAAAAAAAABwCunfv79Wrlypiy66SAkJCXr//fc1fvx4tW3bVhdffLF27txZZZmJEydKkmbMmOEo+/LLL1VWVqa//e1vCg8Pr3ZdQUFB1ZZ7eZlT12oKT/PEsez7SJ1zzjmSpMzMTGVmZjbYOAAAAAAAAAAAAAAAAAAAJyYC4gAAAAAAAAAAAAAAAADgFHP22Wfrl19+UVZWlhYuXKhHH31Ubdu21aJFizRq1ChlZ2e7tR86dKi6d++uP/74Q9HR0ZKcYXETJkw4zqNv/Hx9fR3T5eXlDTgSAAAAAAAAAAAAAAAAAMCJiIA4AAAAAAAAAAAAAAAAADhFBQcH6+KLL9aLL76oXbt2qUuXLkpISNCCBQuqtL311lslSdOnT1d0dLT++OMPRUVFafTo0UdtPBaL5aj11ZB27NghSQoICFDz5s0beDQAAAAAAAAAAAAAAAAAgBMNAXEAAAAAAAAAAAAAAAAAADVp0kR9+vSRJCUmJlapv+WWW+Tt7a2ZM2fqo48+kiSNHz9e3t7eR20MgYGBkqSioqKj1ufxZrVa9frrr0uShg8fLh8fn4YdEAAAAAAAAAAAAAAAAADghENAHAAAAAAAAAAAAAAAAACcQu666y599dVXKiwsdCtfuXKllixZIkkaOHBgleVatWql0aNHKzk5We+8844kacKECUd1bC1btlRISIhSU1O1c+fOo9r30fT555/rpZdeUkpKilt5SkqKbrjhBq1evVpeXl6aPHlyA40QAAAAAAAAAAAAAAAAAHAi46dJAQAAAAAAAAAAAAAAAOAUsnbtWv3vf/+Tj4+PunXrppCQEKWkpGj//v2SpPHjx2vEiBHVLjtx4kT99NNPKi8v16BBg9SrV6+jOjaLxaJrr71Wn3zyiQYOHKjevXsrKChIkrR8+fKjuq6atGjRosa6Pn36aNmyZcrIyNBjjz2mxx57TB07dlRERIQKCwu1c+dOVVRUyNfXV++++66GDh1aY1/PP/+8Pvrooxrrx40bp3vvvfeIHgsAAAAAAAAAAAAAAAAA4MREQBwAAAAAAAAAAAAAAAAAnEKmTZum7777TqtWrVJ8fLz27t2rVq1a6eKLL9bdd9+tMWPG1Ljs5ZdfrhYtWig9PV0TJkw4JuN74403FBISou+++05bt25VWVnZMVlPTTIyMmqsy8rKkiRddNFFeuihh7Ru3TrFxcVp69at8vb2VteuXTVixAjdc889Ov3002tdz549e7Rnz54a6wcNGlS/BwAAAAAAAAAAAAAAAAAAOOFZbDabraEHAQAAAAAAAAAAAAAAAABo/LKzsxUVFSWbzaakpCSFh4c39JAAAAAAAAAAAAAAAAAAADjpeDX0AAAAAAAAAAAAAAAAAAAAJ4aZM2eqpKREY8eOJRwOAAAAAAAAAAAAAAAAAIBjxGKz2WwNPQgAAAAAAAAAAAAAAAAAQOOWmZmpAQMG6MCBA1q2bJmGDx/e0EMCAAAAAAAAAAAAAAAAAOCk5NXQAwAAAAAAAAAAAAAAAAAANF4vvviihg0bpi5duujAgQO66KKLCIcDAAAAAAAAAAAAAAAAAOAYIiAOAAAAAAAAAAAAAAAAAFCjXbt2afXq1fL29tbNN9+sL7/8sqGHBAAAAAAAAAAAAAAAAADASc1is9lsDT0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDk1dADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBMQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCNBQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBIExAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAI0FAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EgTEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAjQUAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQSBMQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCNBQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBIExAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAI0FAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EgTEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAjQUAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQSBMQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCNBQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBIExAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAI0FAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EgTEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAjQUAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQSBMQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCNBQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBIExAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAI0FAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0EgTEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAj4dPQAzjRWa1WJSYmKiQkRBaLpaGHAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKARstlsysvLU+vWreXl5VVjOwLijlBiYqLatWvX0MMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAKIj49X27Zta6wnIO4IhYSESDJ/6NDQ0AYeDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDGKDc3V+3atXPkl9WEgLgjZLFYJEmhoaEExAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAColT2/rCZex2kcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDDICAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoJAuIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJEgIA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgkC4gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgkSAgDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaCQLiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCRICAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoJAuIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJE4JgFxJSUlKi8vPxZdowF07NhRFotF06dPP2zb6dOny2Kx1HpbuHBhleWmTJly2OUsFouGDx8uSZowYYJH7Q+9xcXFHd0/DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAU+dR3wdWrV2vp0qW699571axZM0lSRkaGxo8fr19//VW+vr76z3/+o+eee+5ojRUnkIiICHXr1q3aurCwsBqXCw0NVZ8+fWqst9d1795dQ4YMqVK/adMmlZSUqFu3boqIiKhSHxAQcLihAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2m3gFxr776qrZt26annnrKUfbggw/ql19+Ubdu3ZSXl6cXX3xRAwYM0DXXXHNUBosTxyWXXKLp06fXebkBAwZo+fLlh203adIkTZo0qUp5x44dtX//fk2aNEkTJkyo8/oBAAAAAAAAAAAAADga0tKkrVulc8+VmjRp6NEAAAAAAAAAAAAAAAAAAAAAOJF41XfBLVu2aNiwYY75wsJCzZkzRxdddJF2796t3bt3q3379nr33XePykABAAAAAAAAAAAAAABOBJs2SX37SqNGSYMHSykpDT0iAAAAAAAAAAAAAAAAAAAAACeSegfEpaamqk2bNo75tWvXqri4WLfeeqskKSQkRGPGjNGuXbuOfJQAAAAAAAAAAAAAAAAnAJtN+sc/pORkM79jh/TvfzfsmAAAAAAAAAAAAAAAAAAAAACcWHzqu2BAQIDy8vIc8ytWrJDFYtH555/vKAsODlZWVtaRjRAnpK1bt+rGG29UcnKyQkNDNWDAAI0fP15dunRp6KEBAAAAAAAAAAAAAHDMLFwobd3qXvbNN9KGDdLgwQ0zJgAAAAAAAAAAAAAAAAAAAAAnFq/6Lti1a1ctXLhQJSUlKisr01dffaXTTz9dUVFRjjYHDhxQRETEURkoTixbtmzRrFmztGzZMn333XeaMmWKevTooeeee66hhwYAAAAAAAAAAAAAwDHzwgvVl7/xxvEdBwAAAAAAAAAAAAAAAAAAAIATV70D4m6//XbFxMSoW7du6tmzp2JiYjRhwgS3NuvXr9fpp59+pGPECaRZs2a65557tGbNGqWkpKi4uFibN2/WzTffrIqKCj3xxBN6++23a1x+xYoVslgsNd5ef/314/dgAAAAAAAAAAAAAAA4xN690ssvSxs2VK3bs0datar65XbsOLbjAgAAAAAAAAAAAAAAAAAAAHDy8Knvgrfddpv27Nmjjz/+WIWFhbrzzjt1//33O+qXLVumffv26Z///OfRGCdOEFdccYWuuOIKt7L+/fvrs88+U/PmzfX666/riSee0C233KKQkJAqy4eGhqpPnz419t+mTZujPWQAAAAAAAAAAAAAADyyapV02WVSXp7k5SV9/rl0443O+mXLGm5sAAAAAAAAAAAAAAAAAAAAAE4e9Q6Is1gseumll/TSSy9VWz9kyBBlZWUpKCio3oPDyWXq1Kl67733lJOTo6VLl2rs2LFV2gwYMEDLly8//oMDAAAAAAAAAAAAAKAWNpt0//0mHE6SrFbpzjuloUOl9u1NGV93AwAAAAAAAAAAAAAAAAAAADgavI5Vx35+fmratKl8fOqdQYeTTGhoqHr16iVJiomJaeDRAAAAAAAAAAAAAADgufnzpT/+cC/Lz5defNE5v2LFcR0SAAAAAAAAAAAAAAAAAAAAgJPUEQfEzZs3T+PGjVPfvn3VtWtXR/muXbv08ssvKyEh4UhXgZOIr6+vJKm8vLyBRwIAAAAAAAAAAAAAgOeefrr68k8/NfcZGVJi4vEbDwAAAAAAAAAAAAAAAAAAAICTl099F7Rarbrhhhv0zTffSJICAwNVVFTkqA8LC9PkyZNVUVGhxx9//MhHihNeRUWFdu/eLUlq27ZtA48GAAAAAAAAAAAAAADPxMVJW7ZUX1dSYu537jxeowEAAAAAAAAAAAAAAAAAAABwsvOq74LTpk3T119/rTvvvFNZWVl66KGH3OojIyM1bNgw/fTTT0c8SJwcPv74Y2VnZ8vb21vDhw9v6OEAAAAAAAAAAAAAAOCRRYsO3+bQgLiICGnOHOnqq4/NmAAAAAAAAAAAAAAAAAAAAACcvOodEDd9+nQNGjRI7777rkJDQ2WxWKq06dq1q2JjY49ogDhx5Obm6oYbbtCGDRvcyisqKvThhx/qvvvukyTddtttatOmTUMMEQAAAAAAAAAAAACAOvMkIO7PP93nX3hBuvZa6auvpLPOOjbjAgAAAAAAAAAAAAAAAAAAAHBy8qnvgjExMbr77rtrbdO8eXNlZGTUdxVoZO655x499NBDNdbPnz9fs2fP1uzZs9WsWTN16tRJPj4+2rNnj7KzsyVJl1xyid54440a+9i8ebOGDh1aY31ISIgWLFhQ78cAAAAAAAAAAAAAAEBdbdp0+DYHDzqnmzaVrrvOTHt7S08+KU2e7N7+QM4B/ZlmUuX6RfZTq5BWR2m0aLSq+fHFKmy2Yz8OAAAAAAAAAAAAAAAAAAAANHpe9V0wMDBQubm5tbbZv3+/mjVrVue+8/Pzdf/996t169YKCAhQ//79NXv27MMuN3fuXN1www3q2rWrAgMD1bFjR910003as2dPlbbDhw+XxWKpchs9enSdx3uqyM/PV0ZGRo03f39/vfzyy7riiivUokUL7d27V1u2bFFAQIAuu+wyffXVV/rpp58UEBBQ4zpyc3O1Zs2aGm9r1649jo8YAAAAAAAAAAAAAHCqy8mR9u8/fDvX38+75BIpKMg5f+mlUqdO7u1nR8/WJTMv0SUzL9FPe346OoMFAAAAAAAAAAAAAAAAAAAAcFLwqe+CAwYM0C+//KKSkhL5+/tXqc/MzNTChQt13nnn1bnvq666Shs3btSLL76o7t2768svv9QNN9wgq9WqG2+8scblXnrpJUVFRWny5Mnq3Lmz4uPj9fzzz2vgwIFat26devXq5da+c+fOmjlzpltZfQLtTnZxcXEetz3zzDPrtY4pU6ZoypQp9VrWVV3GCgAAAAAAAAAAAACAQ+oKKWen1PpSKai9ozg62r2Zj4/02WdSbKw0ebKz3DUg7uyz3ZexWKRrrnEvyyjMqHYaAAAAAAAAAAAAAAAAAAAAAOodEHfvvffqyiuv1DXXXKP//e9/bnV79+7VxIkTlZOTo3vvvbdO/f78889avHixIxROkkaMGKH9+/fr4Ycf1nXXXSdvb+9ql/3hhx8UERHhVjZy5Eh17NhR06ZN00cffeRWFxgYqLMPPSsbAAAAAAAAAAAAAACcWrZPkaKnmmnvJtLQr01QnKoGxP3jH1Ll6QzKz5defNFMuwbEDRxYdRVjxrjPZxZlVjuNE9sPu3/QpsRNkqS7zrxLUcFRDTwiAAAAAAAAAAAAAAAAAAAAnIjqHRA3duxYPfbYY3rxxRfVvn17BQUFSZIiIiKUkZEhm82mJ598UiNHjqxTv/PmzVNwcLCuvfZat/Jbb71VN954o9avX69zzz232mUPDYeTpNatW6tt27aKj4+v0zgAAAAAAAAAAAAAAMApIOdPacezzvmKQmn1tdIlW6WQrkpIcFb5+UlPPOGcf/RR6f33zbRrQFzXrlVX07Sp+3xGUUa10zixzYqepVnRsyRJF3S+gIA4AAAAAAAAAAAAAAAAAAAA1IvXkSz8/PPP65dfftGYMWPUpEkTeXt7y2q1avTo0VqwYIGmTp1a5z6jo6PVs2dP+fi4Z9f17dvXUV8X+/bt0/79+9WrV68qdXv37lV4eLh8fHzUpUsXTZ48WUVFRXUeMwAAAAAAAAAAAAAAOEH98R/JVuFeVlEobXlUkpSW5iw++2ypTRvnfNOm0k03SYWFUnGxKQsMlKI8yATLLMqsdhontvTC9GqnAQAAAAAAAAAAAAAAAAAAgLrwOXyT6h04cEB+fn4aNWqURo0addQGlJGRoc6dO1cpDw8Pd9R7qry8XLfddpuCg4P1n//8x61u6NChuu6663TaaaepqKhICxYs0Msvv6zVq1dr2bJl8vKqPjuvpKREJSUljvnc3FyPxwMAAAAAAAAAAAAAABqR/FgpeVENdXslSekuGV9DhlRtdtNNkuupDK1bSxbL4VedUeRciIC4o8iTP77NdsxWT0AcAAAAAAAAAAAAAAAAAAAAjoZ6B8R16tRJEyZM0Mcff3w0xyNJstRysm5tda5sNptuu+02rVq1St9++63atWvnVv/ss8+6zV966aXq2LGjHnroIX333Xe68sorq+33hRde0NSpUz0aAwAAAAAAAAAAAAAAaMQSvj9sk7Q053TfvlXrBw+Wtmxxzjdr5tmqXUPhXMPicGJzfS4zCnleAQAAAAAAAAAAAAAAAAAAUD9e9V0wPDxc4eHhR3MskqTmzZsrI6PqCbKZmZmO9R6OzWbTP/7xD33xxReaPn26xo4d69G6x48fL0lat25djW0ef/xx5eTkOG7x8fEe9Q0AAAAAAAAAAAAAABqZxJ8P28Q1IK5796r1FovkepqDJwFxNpvNLTzMNSwOJ7b0wvRqpwEAAAAAAAAAAAAAAAAAAIC6qHdA3LBhw2oNUquvPn36aOfOnSovL3cr3759uySpd+/etS5vD4f79NNP9dFHHzlC3+rCy6vmP4u/v79CQ0PdbgAAAAAAAAAAAAAA4ARjs0mZGw/bzDUgrlOn6tvUNSCuqLxIJRUlzuULM2Sz2Q6/IBq1orIiFZYVOubTiw4JiLPZnDdPygEAAAAAAAAAAAAAAAAAAHDKqndA3AsvvKDo6GhNnTq1SpjbkbjyyiuVn5+vb7/91q18xowZat26tc4666wal7XZbLr99tv16aef6v3339ett95ap3XPmDFDknT22WfXfeAAAAAAAAAAAAAAAODEUbBfKs1yzvu3lHo9IYUNdBRZrc7wNy8vqWnT6rvKzHROexIQl1GY4TZfUlGiovIiDweOxiqjyP15TS9Mr6Gl51YfWK0VcSu0KXHTEfcFAAAAAAAAAAAAAAAAAACAE4dPfRd86aWX1Lt3bz399NP64IMP1K9fP0VGRspisbi1s1gs+vjjjz3u95JLLtGoUaN01113KTc3V127dtWsWbO0cOFCffHFF/L29pYk3XbbbZoxY4b27t2rDh06SJLuvfdeffzxx5o4caL69OmjdevWOfr19/fXgAEDJEmrVq3Sc889pyuvvFKdO3dWcXGxFixYoA8++EAjR47U5ZdfXt8/CwAAAAAAAAAAAAAAOBFkbXafH/Su1P4a6fRJ0rILpfICZWWZkDhJCgszIXHVKS11TnsSEJdZZBLlfLx8VG41P8qXUZihJk2b1PFBoDE5NBDu0CDAuqqwVuj86efLarOqY7OOir0v9oj6AwAAAAAAAAAAAAAAAAAAwImj3gFx06dPd0wnJSUpKSmp2nZ1DYiTpLlz52ry5Ml66qmnlJmZqdNOO02zZs3S9ddf72hTUVGhiooK2Ww2R9kPP/wgSfrkk0/0ySefuPXZoUMHxcXFSZJatWolb29vPfPMM0pPT5fFYlG3bt309NNP68EHH5RXTWd0AwAAAAAAAAAAAACAk0PRQed0xAip3dVm2idQOutTae14paU5m4SF1dxVeblzumnTw686o8gEh0UERSirKEtF5UXKLMpUu6bt6vAAcDyt3L9SX+/4WpJ0U9+bdHbbs6u0OTQg7tD5ukorTJPVZhIKk/OTZbPZqvxwIwAAAAAAAAAAAAAAAAAAAE5O9Q6Ii409dr9KHBwcrDfeeENvvPFGjW2mT5/uFlInyREAdzhdu3bVTz/9dAQjBAAAAAAAAAAAAAAAJ7TiFOd0u6sl1+Ct0O5Sx/HKcMn3Cg+vuSvXgLjAwMOvOrMoU5IUFmBS54ryihyhcWiclsYu1dsb35YkdWjWodqAuIxC8xx6WbxktVmPOCAuOT/ZMV1cXqzcklw1DfAggRAAAAAAAAAAAAAAAAAAAAAnvHoHxHXo0OFojgMAAAAAAAAAAAAAAOD4cQ2Iazm0an2X21SS4Jz1NCDOx4MzMexBYmGBJiAuMS/RERp3qB2pO3Qw96AkaUj7IQr2Cz78Ck5lNptz2jX0z7W8HlzD2pLykqptYw+E69iso/Zl7VNOSY7KKsrk6+1br3Wm5Ke4zxekEBAHAAAAAAAAAAAAAAAAAABwivBq6AEAAAAAAAAAAAAAAAAcd/aAOIuPFNqzar1PkFvwW7NmNXfl2s7b+/CrtofBhQWEOULi7KFxh5qyYopGzxyt0TNHa0vylsN3jmMiKd8ZCpdckFxtG3tAXNfwro6ymoL/POEaSlfdPAAAAAAAAAAAAAAAAAAAAE5eRxwQ9+WXX+qiiy5SRESE/P391bJlS1100UX68ssvj8b4AAAAAAAAAAAAAAAAjj57QFyTtpK3X7VNXIPf/P1r7qquAXEZRSYMLiwwTGEBJiCupiCxxLzEaqdxfCXlJVU77cr+vHZq1kleFnNKjj00rj4IiAMAAAAAAAAAAAAAAAAAADh1+dR3QavVquuuu05z586VzWZTYGCgWrdurdTUVP36669asmSJvv32W3399dfy8jriHDoAAAAAAAAAAAAAqGLa2mlKK0yTj5ePnh7xdEMPB8CJpKgybMu/ZY1NPA1+s9nqtmp7GFx4QLgsskhyhosdKiE3odppHGUlGZJskn+LaquT8pOqnXZlD4Nr0aSFwgPDlV6YXuPz6gkC4gAAAAAAAAAAAAAAAAAAAE5d9U5ue+utt/Ttt9/qvPPO09q1a1VQUKDY2FgVFBRo3bp1Ov/88zV//ny99dZbR3O8AAAAAAAAAAAAAODw7Kpn9cLqF/TMymeUV5LX0MMBcKKw2aTiFDNdQyCYJJWVOad9avkJPte6iorDr94eGhYWGKawgDBJztA4V1abVYl5iY75hDwC4o66ihJp1VXS3BbS3JbSkuFS7i63Jlab1S2cLSmv9oC48MBwhQeGu5XVR0pBivt8fkoNLQEAAAAAAAAAAAAAAAAAAHCyqXdA3PTp09WjRw8tXrxYZ511llvd4MGDtWjRIvXo0UOffvrpEQ8SAAAAAAAAAAAAwCnAYjn8zUVhWaFboFJ8bvzxHjGAE1V5vmQtMdO1BMS5hr151XKGRV0D4uzvXWEBYQoLNAFx9tA4VxmFGSqzOlPqXMPicBSUF0or/yYdnOcsS10hLTpHyo52FGUUZqjcWu6YzynJUVFZUZXu7M/h0QqIs4fSNQto5jbvUMftJgAAAAAAAAAAAAAAAAAAAE4c9Q6I2717ty6//HL51PAT2T4+PhozZoz++uuveg8OAAAAAAAAAAAAAGoSnxNf6zwA1KjCJdyrloA4T4PffH2d0+XlNbezcwTEBYYpLCDMrcxVQl5CrfOnqnc3vqsXV7+oN9a9cWQd/fmilLyoanlZtpT4k2PWHszm6+Uri0zoWlJ+UpXF7GFwzQObq3lgc0kmXK6+7OvtHdHbzBck19YcAAAAAAAAAAAAAAAAAAAAJ5Hq09084Ofnp4KCglrbFBQUyM/Pr76rAAAAAAAAAAAAAIAaxefG1zoPADWyljmnfZvW2MzTgDjXdsXFh1+9PTTMHg7nWuYqITeh1vlTkdVm1QO/PKCSihJZZNFdZ94lP+96nJtSXiD99ZZHTe1hcFHBUSoqL1J6YbqS8pLUOayzWzt7QFx4YLjCA8PdyuojpSBFktS7ZW+tPrBaKfkp9e4LAAAAAAAAAAAAAAAAAAAAJxav+i44YMAAzZkzR4mJidXWJyUlac6cORo4cGC9BwcAAAAAAAAAAID6KSorUkp+ilLyU1RUVtTQwwGOiQM5B9zm43MIiAPgIdeAOC9f5/TKK6S5LR03nxLn+0x5ec3duQbE5eTUvmqbzabMokxJUlhgmCMkzl7mKjHPnJNhb5OYlyibzVb7Ck5yyfnJKqkokSTZZKuyLfC8o8VSWbZHTZPyTEBcZHCkIoMiHeNwVVRWpMKyQkmHBMQV1S8grqS8xPGa6BPZp9p1AgAAAAAAAAAAAAAAAAAA4ORV74C4Bx98UBkZGRo0aJBeffVVbdq0SfHx8dq0aZNeeeUVnXHGGcrMzNQDDzxwNMcLAAAAAAAAAABwarJYDn9z8daGtxT1apSiXo3Se5vea6BBA8fWoYFwB3LrGRIE4NRjc0l7cw2IK8uRStIdN1+fCkdVcXHN3fn5Oaezs2tfdX5pvsoqA+pcg8QyizKrhL8l5CVIkga0GiBJKiovUnbxYVZwkovNiq113mMJPzinfUKkC1ZI1+RKA9+QLD5uTZPyKwPigiIVGRzpVmaXUZThmHZ9XjMKM1QfqQWpjuneEb0lSSkFKbLarPXqDwAAAAAAAAAAAAAAAAAAACcWn8M3qd6YMWM0bdo0Pfzww3rkkUfc6mw2m3x8fPTKK69ozJgxRzxIAAAAAAAAAAAA1E1MZky108DJJD7XBMSF+ocqtyS3SmAcANTIVuEyU/Nv6/m4nFWRlVVzd2FhzunDBcRlFmU6lwtwLlhmLVN+ab5C/EMcZQm5JiCud8veWrl/pcqt5UrIS1BYoMsKTzFx2XG1znsse6tz+pzPpYjzzHSPe6XAKCnfGTyXlGfC4KKCo1RYVuhWZpdemO6YDg8MV/PA5lXK6yKlIEWS5Oftp67hXSVJ5dZyZRVlqXkT07dcAwVdw4IPCRoEAAAAAAAAAAAAAAAAAADAiafeAXGSdN999+lvf/ubvvjiC23ZskW5ubkKDQ3VgAEDdOONN6pz585Ha5wAAAAAAAAAAACoAwLi0Ki4htbUpo5BN/aAuDNbn6klsUsc8wBwWBZv57RbWJy7AH+rY7q2gLjmzZ3ThwuIyyjKcEwfGvSWWZTpFhCXmJ8oSWoT2kaRQZFKyEtQYl6iekf0rn0lJ7HY7Nha5z1is0l5lftHQR2kNpe717cfJxXsd8wm5ZswuMigSGdAXL57QFxGoXleQ/xC5Ovtq/DAcEn1D4hLzk+WJEUERahlk5Zu5Y6AOAAAAAAAAAAAAAAAAAAAAJy0jiggTpI6deqkJ5988miMBQAAAAAAAAAAAEcJAXE4FRzIOSBJGtxmsAmIy4mXzWaTxdNAOgAnJ0/eA/LjnNO1BMS1aO6sy8ysubsWLZzThwuIyywyHTXxbSI/bz+3kLiMogx1aNbBMZ+QmyBJigqOUquQVkrIS3CUnapis0wgnI+Xj8qt5fULiCvNlMpyzHTUKMniVbVNkPN5sIe1RQbXHBBnD4KzB8MdzYA4e+BcZlGmkvOT1SuiV736BAAAAAAAAAAAAAAAAAAAwImjmjNcAQAAAAAAAAAA0OjYbM5bdWUu5cXlxTqYe9Axvz9nv0orSo/naIFjzmazKT4nXpIJiJOkovIiR/ASANTK4uuctta8jWzRvNwxnZVVc3fNmzunDxcQl1GYIUkKCzDBcH7efmri20SSqryHJeSZMLhWwa3UKriVW9mpKi4nTpI0sNVAM58dV/dO8vc6p0N6HLa5PQwuMihSkUGRpiyv+oC45k2au93nlOSorKKszkN0DYhzvbeXAwAAAAAAAAAAAAAAAAAA4ORW74C41157TS1atFBiYmK19YmJiWrZsqXefPPNeg8OAAAAAAAAAAAAdRebFSubbPL18pWPl4+sNmvt4Sm5u6SEn6T0tVJFyXEbJ04CFotnt2MguzhbBWUFkqT+Uf3l4+UjSTqQc+CYrA/ASabyPUOSVJZdY7NmTa3yqWyanS1VVFTfzjUgLinJPc/1UPYQuPDAcEeZfdoeHidJJeUljtCxViGtFBUcJUlKzKv+PI1TRWxWrCRpWPthbvN1khfjnA7qcNjm9jC4yOBIRQZXBsTluwfEZRSZ587+XLo+v/UJL03JT5FUNSAupSClzn0BAHAqKC+X/vc/afRo6dxzpdtuk9aubehRAQAAAAAAAAAAAAAAAPVX74C4r7/+Wn379lXr1q2rrW/durX69++v2bNn13twAAAAAAAAAAAAp4q0gjT1eLuHerzdQ1d+deUR9RWTaUJPOjbrqPZN27uVuSlMkNbcIP3UU1o5Rlp8rjS/lfTny5K1hgQcoD5sNvfb4co9EJ8bL0myyKI2IW3UOqS1WzkA1MonyDld4gxl02kPSadPcsxaLFKLFmbaZpOysqrvrkkTyd/fTBcUSKmpNa/aHiSWX5qvtze8rbc3vK2yijJJ7kFirgFkrYJbqVVwK0lSQl7C4R7dSavcWu4IArUHxKUUpKiwrLBuHZWkOaebtK+1aV5JniOQNDIoUpFBJiAurSBN5dZyRzt7mF91AXH2urpILkiWJEU0cQ+IS85PrnNfAACc7P74Q+rXT7rrLumXX0ww3CefmKC4adMaenQAAAAAAAAAAAAAAABA/fgcvkn1/vrrL9100021tunVq5dmzpxZ31UAAAAAAAAAAACcMjYnb9ZfGX9Jkg7kHFC5tVw+XvX7KsceBtcprJMqrBXal7WvakBcUbK06EypKMm9vDRL2vqo1OF6Kaj2wBScGvJL8/X1jq8lSe2attOFnS9s4BEZ8TkmCC4yOFK+3r5qE9JGB3IOOMrdlKRL0c9KCfOl8gIppJvU7lqp6z8ln8DjO3AAx55r4KTFUn25JHk3kSoKzXuEXZvLpICW0p/PO4patpSSKzO59u51Bsa5slik5s2lxEQzHxMjRUa6t8nNlUJDnSFwsdmxumfBPW5t7OFxkpSQa4Lg/Lz9FB4YrlYhrdzKT0UJuQmqsJkQ23PanSOLLLLJpv3Z+9WzZU/PO6oocU77Vz6h5QXS3o+c5X7NpU7j3YL6ooKjHGFxNtmUWpDqCCi1h8Al5Cbo/U3vyybn6831efWUPQjOHgxnD4ojIA4AAHdpadKYMVJSUvX10dHu83N3zlV0qim8feDtjn0sAAAAAAAAAAAAAAAAoLGpd0BcYWGhgoKCam0TEBCg/Pz8+q4CAAAAAAAAAADglLE5abNjuri8WLvSd6l3RO969WUPg+vcrLMqbBVaErukakDclkfdw+H8mkvWEqmc73bgbm38Wk38fqIk6bQWp2nn3TudlYeGLdmDmA4tPwYO5ByQJLUJaWPuQ819fO4hAXGpK6SVf5PKcp1lJelS+lopc6N07pfHfKwAGqmACKkgTiqtPbyrZUvn9O7d0llnuddXVEje3u4BcZs3S0OGuLf76SfphhtqDwuzh8dJUmKe6SwqOEoWi0VRwVFu5aei2OxYSVKof6gigiIUFRylpPwkxWbH1i0gzuoSEOftb+7L8qQ/7neWN+1tAuLyzP6Sn7efmgU0U5Cf81yZpLwkR0Cc/XldE79Ga+LXuK3OHh5XFyn5KZJcAuIq71MKUurc17GyL2ufsouzJUm9I3rLz9uvYQcEADglPfusezjciBHSsGHSzp3SvHlV2z+z8hltSd4iSeoW3k039Lnh+AwUAAAAAAAAAAAAAAAAqCOv+i7YoUMH/fbbb7W2Wbt2rdq2bVvfVQAAAAAAAAAAAHhs927pueek+++Xnn5aWrFCslobelSe25y82X0+aXMNLQ8vJsuEwXUK66ROzTqZMteAuJIMaf9MM+3lJw3+WLoqTbo6WzrveymoY73XjWPAYjn87RjamLjRMb07fbdyinOO6fo8ZQ+CswfD2YPi3ALiSnOk1de6h8O5Ki88pmME0MgFRJr74rRam7kGxG3ZUrV+6VJz37y5s2zdOvc2Npv0zTdm2jUE7lCu4XEJeQmSpFbBrdzuUwpSVG4tr3XMJ6vYLBMQ16FpB3PfrINbucdsnu8kJuWbxJmIoAhZLBb5efspLCDMrU6qPQSuPgFxyfnJjvW63tvLG4OrvrpKZ3xwhs744AytO7ju8AvgxJAXI+18Vdr2lLTnPSl3V0OPCABqVFEhzZjhnH/6aWnJEmnqVGnOHGnDBsn1FNaisiJtT9numHc93gUAAAAAAAAAAAAAAAAaG5/6LjhmzBhNmzZNn3zyiSZOnFil/qOPPtLq1at13333HdEAAQAAAAAAAAAAanPggHTnndLChVXrhg6VVq06/mOqD3tAXLvQdorPjdfm5M26ud/N9erLHgbXqVknVdgq3MokSelrpcpy9XxU6lL5XY/FW2pzudT8bMk7oH4PBCedDQkbHNM22fR70u8a2WlkA47IcATEhRwSEJfjEhAX875UUhn81LS3dOZ7UvhgE3Ty1xsmLBHAqcseEFcYL1WUSt5+1TZr0cI5vXp11fqZM6VRo9zbLVggFRVJgYFmftEiae9eM51RWPN7j2t4XEKuCYiLCo6SJLUKMQFxVptVyfnJaht66v1gX1x2nCSpfdP2jvt1B9c5yj3m7e+ctpbV2tQeyNYsoJkO5ByQJIUFhimrOEtJeZ4FxNX2nFensKxQeaV5kqSnlj+l19a95ljXEQXEZW+X9rwj5ew0+31Ne0ptr5IiR9Y5cDa3JFfbU50BO7/F/6bzOpxXpV25tVwR/41QbkmufLx8lPFIhoL8gur/GHDslGZLG++S4udUDVHscKN07kznvM0mpf8mpa6UKoqkoPZS5AVScKfjOmQAiI6WciozzLt2lSZNct+kDRgg9e3rnN+SvMXxOYlEQNwxYbOZz51yKvcTQrpLLc513/8CAAAAAAAAAAAAAACAR+odEPfoo49q9uzZuv322/XFF19o1KhRatOmjRISErRo0SKtXLlSrVu31uOPP340xwsAAAAAAAAAAOCQnS2df74UF+csCwiQSkslq1XaubOhRlY3+aX52pOxR5J0Q+8b9PJvLzsC4+qqtKLUEZLSOayz48Ln2OxYlVvL5ePlYy7Utev096qdBLSs17pxcrIHxEUERSi1IFUbEzY2joC4nEMC4kLNvT28R5KU8qu59/KXzv9ZCmpn5sP6Smd9LOXtOW7jBdAI2QPibOVS3m6pWZ9qm7V02Sz+/rvZv+jZ08wnJEhz5kjTp0tt2jjbZWZKX38t/f3vZp/kmWdc6lxC4A7lGiSWmJ8oyWzbF+9drJKKEmddXuIpGRAXmx0rSerQtIPbvb3cY14uQbhlubU2tQezRadGq8PrHdzr8p0BcbWFwNUWHledlPwUx/SmxE1V+qqwVsjby9vzDq3l0obbpdjp7uWpy6Q970pnfy51Gl+nMW5I2CCrS4jYb/G/VdtuS/IWZRVnSZIqKir0W/xvGtVlVJ3WhePAZpVWXSGlrqi+PtMlQCnzd2nDHVLWH1XbnT5J6vfcMRkiAFTH9UcBLr1U8q5m8+haZg+EaxvaVgdzD+qPpD+cn5XgyCUtlrY8ImVvcS/3C5POmSm1vuTYrbs0S0pZLpXlSP7NpfAzpcCoY7c+AAAAAAAAAAAAAACA48Crvgu2bNlSy5Yt06BBg7R8+XJNnjxZt956qyZPnqwVK1bozDPP1LJly9SyJRcQAQAAAAAAAACOXH6+9Oef0rZtUlZWQ48GjcVzzznD4Tp1khYulAoLpYIC6dtvpe7dG3R4HtuavFU22RTiF6Ix3cdIMmEaNputzn3tz97vCOvoFNZJnZp1kiSVW8udwVkZJvBLvqFScOcjfwA4tmw291t15cdIQm6CI/zm731NmOCGxA3HbH11EZ9rAuKyirO0NHapI8AnIS9BFdYKyVompVeG1bS6yBkO5yqk2/EaLoDGKCDCOZ22usZm7ds7p61W6f/+z0zbbNLkyVJxsZm3h8bZPf649OOP0i23SGvWOMszimoOEnMNj0vITZAkLYhZoIu+uEiXz7q8St2pxh4E175pe7f7OgfE+TVzThfGO8uGfiu1vsytqWsI3KHs256isiIVlBXU2C69qG4Bccn5yTXWWW1WpRWm1ak//fmCMxzO4iO1vULqNEFq1rey09K69SdnIJw9pG/twbXV7ruuiHMPHFuxv4YAMjSs+LnOcLimvaSRS6XryqUrEqWBb0j+led/FRyQll7oDIfzDZWa9pF8m5n5vN3HfegATm1/uGRVnnHG4dvbA9Cv73W9/L39VVhWqJ1pNfy6QHGaFP+ttG+6dPB7qSC+7gO0WA5/O1mkrZZWXOoMh/MJkgIqA9pKs6ScP4/NeksypHUTpPmtpdVXSetvlVb+TZrfSlp1VdX2FSVS9nYpY6PZrh3Dz1QAAAAAAAAAAAAAAACO1BH97GG3bt20fv16bdq0SRs2bFB2draaNWumwYMHa9CgQUdrjAAAAAAAAACAU9j330sffigtWiSVuuQW9OsnvfmmdN55DTc2NCybTZozxzk/f77UtzLjIiBAuuoq6bLLql30+PDkIt/Ki1A3J2+WJPWN7Ku+keZBZBdnKy47Tp3COtVptTGZMZKkpv5NFRYQJkkK9gtWfmm+9mbuVeewzlJpZTBNSDfJUvl7QpmbpbSVzo5anCs1P7NymDZ1frOzDuYelCRtv2u7TmtxWp3GhROT/eL5LmFdNKLTCL2y9hVtTNjYwKMy4TjxOebi/FfXvqpX177qqCu3liulIEWty9Ok8sqwnuZnNcQwcSIpTJD2z5YSf5SKUyWfQCmkh9TqYqn9dZK3f0OPEMdCQKRzOv4bqes/q91+9+njPv/119LUqVJsrDRjhnOR0093b5eYKF1+uXuZ1WZ1C4E7lGt4XEJezSFwtdWdzOKy4yRJvt6+2pu5Vz5ePm7lHnMNyC2sDND1DpDaXSWlrXJrWmtAXGVdbaF/kpRRWHv9oWoLiLPXRwVHedaZtVza9ZqZDmwlXbBSCunqrE9dKdkq6jQ+yRkQd/vA2/V/y/9P6YXpismMUbfm7uGr9kC401uerj/T/iQg7njz9Jgk4Xsz7eUrnfejFNzRzAe2knrcK3W5zcz/+YJUlm2mez4m9X7CBABZK6SkBc4gagA4TrKzndMdOhy+/cZEczw7uM1g9Ynso02Jm7QxcaP6RLrs8OXHSn/cJyX+XHUbGXWxNGKhYzatIE2jPh8lSWrepLl+vflXWU6m0Le6+OMByVZuPmca8JrU9U6zf1WcJu39SPINPvrrLC8ywaX2UDrfUKlZf6k0U8rZ4QyNl6SC/dKOZ6UDX0tlOc7ygCip58PSaQ8c/fEBAAAAAAAAAAAAAAAcoSMKiLMbNGiQBg0apPLycm3fvl2SVFZWJl9f36PRPQAAAAAAAADgWPH0YvGjeWFjZSCWJyZPlp5/3jnfr58UGSnFxUlbt0obNzoD4mw2m26Zf4sjnOGzKz5T8ybNnQvXIawLJ4YtW6QDlXke/fo5w+Fc+R/jPJ/7Ftyn3Rm7JUmvj3693qFpm5NMQFyfiD5qGtBU7Zu214GcA9qcvLneAXFhgWFaGrtUkhQeGK780nzFZMZoVJdRUnmhaewV4Fwwdbm02eVi2L7POQLiNiVucgtembdznh4f9njdHiQaHZvNpu92f6cKa4UCfAJ0WfeqiYr2i+cHthqoga0GSpLic+OVlJekViGtjut4XaUWpKrMWlZjfXxOvFr7FjkLglz+jzb+SypJdc6f/bkJA8OpK/5bae3NUkWRe3nm79L+L6XwM6Vmp1e/rCuX/Yjff5d++EFatkxKS5N8faUuXaSRI6WJE6UmTY7yY0D9NHFJEUlZKh2cZwLCSrPdmp1+utmVdN1VnDKlanc9ex5+lbklubLarDXWZxZlymqzyiKLEvMSa2xXW93JqqS8RAm5JhjvwUUP6sFFDzrqMosylVuSq1D/UM86cw2Iy9tba9OkvJoD4uxBbocLgEsvTPdsXIf0W99695WvcQ/0cg2Hk6SIuiduW21WrT24VpJ0fsfz1TeyrzYnb9Zv8b+5BcRVWCu06oAJ3HvonIc08fuJ2pCwQYVlhWriyxtho2GzSUm/mOnmZznD4Vz5BEk2q5TwXWW7wVK/553H2V7eUpsx5oZGJ7MoU/csuEeS1LJJS70++vWGHRBwFLn+mISfX+1ts4uz9VfGX5Iqj3GjBmpT4iZtSNigiQMmmkZFKdKvQ6Wiyn2t5mebz0ZKs0yoas52tz6/2/2dtqZsdcz/nvS7BrU+BX9cufCglFkZJt/lDqnHfc66gJZSr8ePzeeucZ85w+G63in1f8UZRFeYIO37xEznx0qLzpJK0sx8SDcppLtUlCRlb5WSFhIQBwAAAAAAAAAAAAAAGqU6BcTFxsZq2bJlGjp0qLp37+5W9+OPP+q2225Tero5qTUsLEzvvvuuxo0bd/RGCwAAAAAAAAA4ZWze7AyHi4oyISuDXK6v3LZNys52zv+e9Ls+3/a5Y37Ojjm668y7js9g0SB27nROn3vu8V//wdyDemvDW7LJXOA6Y8sMvXDhC84Grhe+ugYUVnNB7OZkExDXN9Kk3PWJ6GMC4pI266qeV9VpXPaAuLjsOF34+YXV1sm7MgzLHhZyGHN3zpUkRQRFKLUgVXN3zSUg7ijKy5MWL5aWL5d275ZKSqSwMKl3b+mqq6QBA47NetcnrNeVX13pmN919y71aNHDrc2GhA2SzMXzUcFRigqOUnJ+sjYmbtTfevzt2AzMA/E58bXX58brrPBmLiUu/4NJC6SCOOf8WdOP4shwwilMlH67SbKWmMCoAa9JURdJskpZm6XYzyQvz79WLy2V7rhDmjHDzFssUrt2UmCg9NNP0rx50gUXeBYkhuMgrL/7/IY7pORF0sH5bsVNmkjdukl//VV7dy1amP3W5FqyuzKLMh3Tm+/crC5hXSSZfdkRM0bIarMqryRPNtlUWFZYYz8JeQm1D+YkdCDngGO/qzqxWbHqF9XPs84CW0te/uZ/P21VrU2T8msOiLPXuQbA3X/W/bJU7vttT92uX/f9WueAuJSClNrr82uvd2+83Dnd6qI6jaMmf6b9qdySXHlbvDUgaoDObH2mIyDulv63ONptS9mm7OJs+Xv764Y+N+jhxQ8royhD6w6u08hOI4/KWE5Znoa4e3JMUprtDM8NH+wsT1stFbm8oQVEmCAdSWp9+dENkkfd1DEA/6vor/Tl9i8d8/8Y+A/1juh9LEYGHHfBwc7p3Nza2/6e+LskKdQ/VJ3COmlAK3OwbQ9GlyTFvOsMhzt3ltThemedzSqlLHPr0/55SbBfsPJL8/Xtn9+6B8TV4bOhE1rSQud02yuqb3MsthsH5ph7/5bSGW9JXi4/at2kjdT7STO9fYoJh7N4SUPmSG2vco6nKFlKW3n0xwYAAAAAAAAAAAAAAHAUeNWl8Ycffqjbb79d/v7+buUxMTEaN26c0tLS1L59e5122mnKysrSTTfdpM2bNx/VAQMAAAAAAAAAjiKbzXmrrdyTdofeamrjoffec04//bR7OJwk9e0rnXeec/7zrSYcrm1oWzPvEhZXp8eK46M4TTr4nbTjOWnbk9KfL0pxs6S8GLdmO9N2ymuqlyxTLQp6PkgZhRmOukKXzJSQkOM1cKcvt38pm2yO19zM7TNltVnr3E9pRamiU6MlOQPi7Pf24Li6iMmKOXydf7i5L05zVjYfLPWaLHk3cVvGZrNp7i5zwfNzI5+Tl8VLmxI36UDOAWcji+XwN1Trxx+lzp2lq6+W3npLOnBA8vWVEhOlV16Rnnvu2K37082fSpL8vP0kSdO3THert9qsjgvlB7Ya6Ha/MWGjGlJ8bu0BcQdyDkg+LkkB9tAT4FCx001AlCSdO1tqO1byCZR8gqSWQ6XBH0gh3Tzej3jlFWc43IUXSvv2Sfv3S7t2STk50uzZUrNmx+3R4XCatJP8mjvnSzOkmPel4qrhW2ed5VmXrvun1XHdl2kb2lYh/iEK8Q9Rm5A2zjZFGUrIrT0A7nD1jYIn+wd12EeIy447onr3sXmZUEhJytwo5e6qtllJeYlbqN+hkvOTZbPZHAFwTf2batroaXrt4tf02sWv6faBt0syz2ldJOebUK4mvk3Uvml7x82+zbbXe6TUZfxBHc19zg5pbkvnbdWV1S5ak9/if5Mk9Y7orSC/IA1uY0LFfjv4m1u7FftXSJIGtR6kAJ8AndvOpDqviFvhbHSM9iPfXP+mhnwyREM+GaJ3NrxTtUFZvrT7DWnFGGluhPSVv/RNU+nn3tK6CVJpTr3We0IqL3BO+wQ5p/98QVpzrfOWtcVZF3qac3rlWGnROc5bhdmuxsVJL70kXXGF1L271LatdNpp0qWXmv1eHD/2z0cigyLN/NbPa2sOnFBat3ZOb99ee1v78e2AqAHysnhpQJQJiNuWsk3F5cWmUWzl/0fYAPdwOMnsP0Rd4JjNLs7Wr/t+lSRNHT5VkvTtzm9lOxU/Y7SH6klS017mvjhNWnaR87axnj/kYbNKBfvN/ktejHO7ZbNKqZX7FFGjnOFwRUlS3h7nrThViv/G1LW9Ump3tfv+RWCU1J4fwgYAAAAAAAAAAAAAAI2T5z91Lmn16tXq16+fOnTo4Fb+xhtvqLi4WHfffbfeqjyDb+7cubrmmmv09ttv6+OPP67ToPLz8/XEE09ozpw5yszM1GmnnabHHntM119//WGXTU1N1SOPPKIff/xRhYWF6tevn5599lldcMEFVdr++uuvevLJJ7V161Y1adJEY8aM0csvv6yIiIg6jRcAAAAAAAAAGrPnVj6nlAITcvHAOQ+oY7OODTsgF6WlUlKSlJEh5edLwcFShw5S8+bSmjXOdpdeWns/ZRVlmhU9S5L03mXv6eo5V2vtwbWKyYxR1/Cu9Rrb0tilemrZU5KkLuFdNH3sdFkIuTpyZfnSpruluM8l2UxIRVBHyVrqDOa42hmgMW3dNNlkk5+3nwrLCvX+7+9r0rBJkqTQUGe3qcc5+8lmszkusn9+5PN6ePHDis+N14q4FRrRaUSd+voz7U+VWcskSSM/Gykvi5fKreWS6hkQl1lLQJy9LnyQlLLUhGbl7ZVCukgth5jb3o+kCmf63s70nfor4y/5evnqul7XacbWGVp9YLXm75qve8+61zRyvfjZ9f+khouibTYpPd3csrJMIFqrVlKbNqdWllxCgjRunFRUJEVGSvPnS2ef7awvLJT+/PPYrLuwrFCzd8yWJL1wwQt6cNGD+mzbZ3p25LPy9vKWJO3J2KPcklxJ0tr4tdqdvluFZea1sSFxw7EZmIfic2oPiIvPiZdCXN7/8/c5py+NluK/ldbdcoxGh+MlrSBNK/evlCS1Dmmtc9qdU/dOkheb+ybtzHujZMIHsqOdbUK6SqE9DttVSYk0bZqZ9vOTZs2SWrRw1gcESNdd575Mfmm+Fu81YwgPDNf5Hc+v+2NA/VksUvMzpaSFh2160UXS5x7k6YwYIc2ZU3O9a9hYs4BmjunwwHC3NllFWWaIsugfA//hqNuZvlOrD6xWYp5LCIdkNq6lGSYAozRb8g6UAltJAZENt3E9dD/APo5aQlMyM01Ianq6VFZmAhW7dpXCwqTY7NhaV3e4+iqani7l7jTTa66TLlgu+YVJJc7nyH4cJUnzr5vvOJbanbFb131znUorSpVZlOkIgHN9Hl3ns4uzVVZRJl9vX4+GZg+Au7nvzfrfmP85yi+ZeYkWxiysW0Ccl8s6S3OkwADJWiGVpLuX18Hag2slyREMZ7/fkbpD2cXZjte2PSBuSLshkqRz252rH/76wVEuqc77kZ4oKC3Q1BVTHf9vezL2aOKAiQr0DTQNStKlxUOkvL8k36ZS54mVYTYWEySTslgqy5H8mtZ7DDVZtsy8R/zxh7R7t9nf8/eX2rWThgyRPvzQtLPZTLjotm1SWpoJGW3SRGrfXjrzTKl9Pf6/auTrkrbtFqrrZcKQHCHYLr9D6nK8oKw/pMKDLsvZ9MEH0t13S+XlUsuW0vXXS506mf/rHTtMYOo999R9qCeDJfuWaEvyFknSyE4jNaDVgCptyq3lGvj+QO3LMvuwH17+oW7oc4OzQR3+b/Zk7NHag2vl5+2nty99W9d+fa1mbp+p5y943rHf78ZaLpVkmGN0v6aST8ipdZCGE87Qoc598PXra2+7IcEcxxaWFeql1S+pqLxIkvmf25q8VWdF9ZEKKvcnWg5zLhjzoZT1u3O+x3+k0B768a8fVWYt0+ktT9edZ9ypSUsmaU/mHkWnRqtPZJ+j9RBPEC7vExWVYXvWEufxliQ1S/P8/cRmk1JXSTtfltJWS2XZ7vUh3aSRSyRbhZn3b+ms++MB6cBs5/wZbzu3W5Eu5xH/9Y5U4vLDCT0fdg9KBQAAAAAAAAAAAAAAaATqFBAXGxur4cOHVylfuHCh/Pz89PzzzzvKrrrqKg0bNkyrVq2q86Cuuuoqbdy4US+++KK6d++uL7/8UjfccIOsVqtuvPHGGpcrKSnRBRdcoOzsbL3xxhuKiIjQO++8o9GjR+vXX3/V+ec7T6ZfsWKFLrnkEl122WX67rvvlJqaqkcffVQXXHCBNm3aJH9//zqPGwAAAAAAAAAam19iftETy56Qt8VbFbYKpRWmadbVsxp6WFq6VHr7bWnRInNBfLduUni4mY6JkSZMkCoqnO39/Grvb9HeRUorTFOr4Fa6tNulGt11tL7f/b2+2PaFpgyfUufxWW1WPbToIW1O3qxgv2CtiV+jcaeP02XdL6tzXzjE1seluM8k7wBp6Fyp1WiXMAOrWyBPakGqPtv6mSyy6IMxH2jCdxP01oa39OA5D8rfx1+DBzu7XbFCHvnoj480O9pcJDqk3RBNHTG1fg8jZauiU6MV4BOgK067QusT1uudje/o822f1zkgbnOSMwSutKLUrS4xL1GpBamKCPLsx23KreWKzao5HGVv5l5ZbVZ5NXdJIds/S+r9RI3LzN05V5I0vONwhfiHaEy3MVp9YLXm7ZrnDIjzUHy89N//St9/L+3fb0LR2raVrFYzHxxs7k8Vb71lwuEk6dFH3cPhJBMCMmjQsVn3vJ3zlFuSq54teuq+s+7Tq2tfVWJeohbtXaRLul0iyXnxvCRNWTHFbfmNCRtls9kaLDjzQM4BSdJ5Hc5z26499utj+nzb54rPjZf8W0ihPU34T/y30oDXJC9vc8G3d0CDjBuesdlsyi/NlyR5WbwU5Ff9RfoPLnrQEdbZxLeJdv97t9qGtjWVnr42f6ncmPgEO5dJWiht/KezzemTpH7PHbarAwdMqJUk9e/vHg5Xk2dXPquX1rwkSfK2eGvLP7eod0Rvz8aOo6P1pR4FxI0a5Vl31ZxS4cYeJBbqHyofL+cpG65hcRmFGUrKT5IkRQRF6IPLP3DUzdkxR6sPrFZCXoIpKC+Qdv5X2v+lCbYKbG2C4SpKpYI4Mz1mt2eDbyDl5dJ775kAvo0bzf7AaadJQUEmSHrPHmnGDCm2udnHiQqO0nkdznMs/1v8bzqYe7DWfaBqtbrEbB8kKXub9GN3s+2whxZLSspLckwP6zDMEfjWoonzHzwpP0npheafv3mT5m6rODT4LzI40qOh2YPpIoPc29v3CV2D6w4rqJNzOj9GCoyUgjtJw3+R/nxRSl3meV+Vfov/TZL04R8f6uPNH8tWGUplk03rD67XxV0vltVmdYR4bk/drocXPay9WXslSesOrlNxebECfOq3PS4vl3Jzpbw8c6zYvLn7MeMnmz9RZlGmRnYaqQprhVbsX6HpW6brrjPvMg12PG/C4bx8pVFrKsPhXL1wRAF1Nbn/fumNN8z0mDHS44+bgHSrVdq3zxlsNGuWNGWK9NdfJiRx5Eiz31xcLM2dKwUGmmPpo8YnRArqYAJSs7Y6y8//wRyfLagMOQpweT26hu8OeE1KWSLFvC9Jiomx6J57zPPUrZt5XGFh7qu0WnVKyirK0rhvxjnCC/tE9NHmOzdXCWqbsWWGtqduV+uQ1krMS9RTy5/SNadf43HIpKsvtn0hSRrddbSuOO0KtWzSUgl5CVoWt0wXdr7QNMqPlf56Uzr4ndl2+IWZfaPSLMnLR+r3gtT1Trd+KyrM/2BBgXlNNmsmeXkJOCb2Z+/X+gTzJtmxWUdHMKkkDXPJcfvhB/O5Q7t27svv2CH16iVtTNwoydzbp+02Jm40AXF21hLndPJiKf5r53z766TQHvp2p9mPuLz75QryC9LITiO1IGaB5u6ce+oFxDVx+aPnx5qQbd9m0qD3TFhbauUHd54GnCb/Ki27SJJN6nCD1PNREwonmW1Q2qrKAEtvExJX7NxnU1AH52cBkkvQ6SHTe96Vcl1S+bv9i4A4AAAAAAAAAAAAAADQ6NTptKz09HS1O+TsmezsbO3du1dnnXWWQkJC3Or69++vhISEOg3o559/1uLFi/Xuu+/qzjvv1IgRI/Thhx9q1KhRevjhh1XhekXgIT7++GNFR0drzpw5uummmzRq1Ch988036t69ux555BG3tg8//LC6d++ub775RqNGjdJNN92kOXPmKDo6Wp988kmdxgwAAAAAAAAAjVGFtUIPLX5IkvT+mPfVokkLzY6erfUH1zfouH791QRszJsnnXGGCVPZvVtau1baulXKyZEee0zq29e5zPLltfdpD4e59vRr5WXx0rjTx0kyF0Lb6nFh/5wdc7Q5ebN6teylD8aYQI7HlzyuCmvNn1Gf8iyWw9+sFdJeExqgtldKrS8x5Yk/SztflXZNMxfd5ptwj3c3vquSihJd2u1S/b3f39U7oreS85MdAW8dO5oAHkmKjTWhY4dyDRvbl7VP9y64V+sOrlNMZoyeXvm0VsR5mCx3iM+3mtfcpd0uVYh/iMb1Mq+5b/78RoVlhXXqa3Py5trrk2qvdxWfE68ya5kkac3ENUp6MElJDyZp9a2rJUklFSVKyE2QWpwjqfIi3J0vSQk/mGlrubm5mLdrniQT0vT6utcdgTQr969UWkGax2PLzJTOO8+EouXnS0uWSElJ0qZN0h9/mFClpUs97u6kkJzsnO7a9fiu+9Mtn0qSbuxzo7y9vHV9r+vdyiVVuWDeVVZxliPkpSHE58ZLkjqHdVbrkNaOW9fwrm71almZFlCUIO3672HDXtLSTDjR0qUmXGDhQhNq4vpc4dj7ZPMnCn0xVKEvhirspTBtStxUpc26g+v0+bbPFREUoXsH36vCskI99utjzgY2m/utpvKgzqa8IFaqKDbTLYdKg96V/NyDng4nNNQ5nZp6+GyhmMwYTVs3TU18m+jxoY+rwlah+xbeV699FxyB1pfXXOflK/mb10FkZM3hb02bOqd79Kga+OlaZw8Fcg0OkyRvL2+F+psXUWZRptleS2oV0sqtXatgM59bkmuCFNffJkVPNSE+o36Txh6ULt4kXbpNuiZbOu+Hmh9fIzF5snTvveb999FHzf/Pxo3mGGD7dikryxw/xGabfcSLulykr675ynH7W/e/SXLWe6z1ZZLF5XcVS9LdwuEkOYL6fL18FRbgTLhyDe9NynMGxB36vDYPdL6P2Nt4Ijk/ucp6JGdgnL3eI61dQq73fmTufUOkVheZQME6Si9M118ZfznmrTarbHK+b9nD43ak7nC83hfELNAra19x7FeWVJS4BdF6Yt06aeJEs88UHCxddpn073+bsrPOki4x+bYqt5br1bWvSpLuHXyvI9D4lbWvOI/nkheb+9BeznC4g/OlFWOcN9cgoKNgzRpnONzw4dJ330lXXCENGGCOi6+9VnrlFfO6v+kmEw533nnSwYPSt99K774rffKJtGqV9NNPR3Vo5pis1WgznbFOyqi63ZVkwn+CK3daYz9zHje0v1Zq6Qxt/OFHL5VW5l6PG1c1HE46dYPEnln5jDKLMnVr/1t1brtztT11uz7Z7H6eWkl5iaauMEHmn479VIPbDFZMZoxmbJ1R5/VZbVZ9tu0zSdJ1va6Tj5ePru55tSTn5ygqSpYWnSXtfl0K6S5dHiNdnSGN3S9dkyON3ipFDJdk9o3HjzfBhs2aSZdeKt1+u3n99u1r/iePtrIyaf586T//kUaMMAHaZ59tQsGGDJGuvNJsN3DyKq0o1RVfXaHrvrlOt8y/RSNnjNTeTOexaMuWUr9+ZrqkxGwftlZmXSYkmNfoa6+ZbefB3IM1rmdj4kbJp4kUXHl8kPm7c4e+/4vSsO/c2ueX5mthjAkZLikv0aebP3UEW9uD404p9u2IJMVWvl/5Bkvd/ik1rUdY3vanJNnM83HOF1JYP6k4VUpfZ+5DekhluVJE5Y9Gp66Qyis/j+v/ojTcJQA6sLVzny97i7P8rI+kPs/UfWx1kfm7tH2KtPxSadE55vbrMHNbc51UWPNrEobVaj5HTEkx7/f2H1oAAAAAAAAAAAAAAOBU4XP4Ji6NfXyUnZ3tVrZ5s7koadCgQVXaBwcH13lA8+bNU3BwsK699lq38ltvvVU33nij1q9fr3PPPbfGZXv06KFzzjnHbczjx4/XpEmTlJCQoDZt2ighIUEbN27UCy+8IB8f55/g3HPPVffu3TVv3jzddddddR47AAAAAADAScVaLtkqzAXxllP0qk3gBDd9y3RFp0arT0Qf3TrgVuWU5OjBRQ/qocUPaeWElbJYLA0yrg8/NBd2SdJDD0lt27rX+/hI7dpJ//yn9HXlNflTp5qL6Fu2dLbLzjYXy7frmqPvdpuLNN/Z+I7+9/v/ZLWZFezN2qu1B9fq3HbVf65cndKKUk1eOlmS9H/n/5+u6nmVnl31rLanbtfM7TP1935/r8/DPvm5htm4vrbcQnmskpe/ZC2TKlyu5svdJSUtlFJ+NfNNT1eRf5Te3fiuJKlD0w76asdXOr3l6YpOjdZr617T3/v9XRaLRX//u7Rli1nsxhulRx6Rxo6V8vJMYNzs2SaE0Gaz6Y4f7lBReZH+O+q/Oq3Fabp81uX6xw//0LZ/blOgb6DHD7XcWq4vo7+UJM3bOU9+z/g5QjHySvP0/e7vdX3v6z3uzx4QN7H/RE0cMNFRfsePd+jPtD+1OXmzLu56sUd92QO7LLLojFZnyN/HX5LULKCZo01MZozadRohtbvGBF+U50sr/2Yuui3NkUozHG3jsuP0R9IfkqRf9v6iX/b+4qiz2qz64a8f3MZcmwULpLg4M33lldLIke71FovUpYtHXZ00zjtPmlF53fT8+dLltWQUecST93WbTXHZcVoSu0SS9MHvH2hW9CzlFOdIkr7b/Z0yizIVHhjuCG65qMtFOret83102rppyinJ0caEjY5AtuPNHgDXJqSNW7l9Pj6nMiCuy23SXhP0qa2PSwe/k5r1ldJWOZYpK5OeekqaOVNKTDRBJoMHmzCTigoTLpCdLb3wwjF/WJAUnRqtexbco2YBzfTm6Df19/l/13XfXKc/7vhDTQNMCpfVZtV9C++TZLbVN/W5SV9s/0Izt8/Uv878V522++o4Xjow24TD7Xhe6vu0CQtq2kva9Yrbe+LhREZKF10kLVpk3u++/95sk1zZbOZ15eMjPbjoQZVWlOqRcx/Rk+c/qdnRs7U0dqm+2/2drjjtCs8fw6nE0/3XuoTsBXc0AVqJ1SQudb1LCnQGtE2dKp1/ftVmd9/tPsTHH6/63EsmBO3XQvOacg0bswsPDFduSa4yijKUmJcoyRkIZ+caGJeUE6duB74yM23GVgbASop+Vkpd5lyo/8tS+BlVB9RIfPSRc/qpp6TAQ3bLAgPNLS47TpLZN3TVvml7Sc56jwVGSR1ukOI+r77ey1dJeSYgLjI40u34ydfbV+GB4cosylRSfpIyiszz6hoIJ7kHxtnbHI7NZqsxIM4+X6eAuOCOUthAKesPKXa6FNRe6vZvyTtQKs30vJ9Ka+PXSpL8vP00spNzh25f1j79lfGXfjtoAuKWxy2XJHlbvBXi7/zByfzSfJVby7U8brnO6+AMFavNypXShReabfb550u//+4ezCiZOsmEfe/P2a8QvxA18W0im2wK9gvWvqx9mrtzrq7tda0JOsuJNgGyFaWSt5/k31Jq1s+EZFUUSi3qsC0pTJQOzpWytpjtRkCkZPGtDMkuk4I7Kz7+YUfzjh1rDkj7+WfnW9i110pBQVXb+Pp6PjSPtbtGiqkM81411gTmtDhHSl/rbGOxSO2ukna+bIJV1/1d6vei+XuWZjm7aud8D9637xiM9QS1J2OP3t7wtvy8/TRl+BTFZcfp/Onn64llT+i63tc5QkLf//19xefGa3CbwRrVeZSKy4s1dvZYPb3iaY3vO14BPgEer3PNgTWO98Z/fP8P3fnjnSqtMOl93/75rd659B0Fx38tlVQGf/d92hwXlhdKa292dhQQoc93vae/V34cMn68+Wwn4JCh2IMBj5biYunii817QECACUkcO1Zq0sTUW61mn6sepyjiBPJ/y/5PW5K36Pre1+uCThfo9h9u183zbtbKW1fKx8uc+zlpknTddab99u3mxwRCQ6XcXFM2caK0McEEoAf4BOjJ85509L8pcZPm7ZrnDC7tOF6KflrK3CTt/1LqeFNlaJz7fujCmIUqLjcB06+vf92tbnvqdu3J2KNuzbt59iA93ce1WqWM9eaWu1uSVfIKkCzeld/l+Eg9H5ECIg7blemvwuwfZG+Xig5K5QWVFV4mLC+0p9T+Gs/6CoySWgyR0teYv1vTXlL3e0w/5Xme9eGqrHIZnxDn91PJi812OnenJJvU/xWp/TgpZalUnCJtflDq/18TTOfKN9Ts7yd8ZwJOu/3bBM61OEcqqX7/bGnsUs3fNV+S2W9/fNjjdXr/lSTt+Z+06S4z/sEfSe2udY7NWi7l75V8m9bexylq1SrpvffMD0qUl0vnnmu+F/D2NuHR2dnS++9L4eGH7QoAAAAAAAAAAAAAgBNenQLiunfvriVLlriVLVq0SBaLpdrQtsTERLVq1apKeW2io6PVs2dPt+A2Serbt6+jvqaAuOjoaA0bNqxKuX3ZHTt2qE2bNoqOjnYrP7TtmjVr6jRmAAAAAACAxq6wUEpJMRdOlJaai2YtFsnf31xA16Njhrx2vSilrZR8m5kLY/zCJS8/yVpiLmZtPliK8OzCXRx/Npu5UMbLy1wk41CaJeXFSMXJJvTC4m0uSLLZzAVj4YOlwMgGGzeOnfzSfD25zFzsmJyfrAHvD1BJeYkkafWB1Zq/a76u7Hllg4zt6qulOXPM9KefShdc4Ly4166gQBoxQrrmGumbb6QdO6ROnUx4UmSktH+/CV95+mkprOxbFZcXq1lAM53T1vkDIjvTdyouO06fb/28TkExH/7+ofZlmavY71t4n/7zy3+UXZwtSXpy2ZMa12tc3S8IhGHxMheqbn/KhDT99bbU5XbptAek9tdL3zmDnr7Y9oXSCs1F6u9uelfvbnrXUbctZZuWxC7RhZ0v1D33SD/9JC1ZYl43//d/5mbXvDKj49Mtn2pJ7BJ5W7yVXpiu9QfXKywgTDGZMZqyfIpeGvWSxw9jyb4lSs5PVoBPgEZ0HOEoj82O1a70Xfp82+ceB8RZbVZtSd4iSbq468Ua0n6Io25wm8GOgDhPxWTGSJLahrZ1hMNJ5gLo1iGtlZiXqJjMGI3oNEIa8F8TymcPc8g/JL3BO9BxMWz7pu11x8A7HFVL45ZqaexSzd051+OAuPPPN89HRob0yy9STIzU9ZBssYKC6kMwTlZ//7v09tvS5s0m7MBikSZMMMGZubnS+vXm7/XYYx526ElQo6QZW0wqXfPA5mod0lqSFOIXovzSfOWU5OjL7V/qjjPucLz27hl8j8Z0H+NY/reDv2nR3kXakLBBN/S5oc6P+2iwB8C1DXVPGW0Tat5HkvOTVVpRKr/mg03AU8x7pkHGOnNzMeNzX734opn+97+lt946tmNHzQpKCzTu63EqKi/Srf1vVZvQNrqg0wVaErtE//jhH5pzzRxZLBZ9vvVzR4DDnB1zNH/XfPl5+0ky2+71/1gvL09DrltdbEKA0n+TdjxjwgWiLjD7zkV1CGCq9Oyz5mL2oiKzz3PrrdKwYWZfZ+dO6auvTABuvN8ifb/7e0nmPXVD4gZHwO0Dvzyg0V1Hs79RnUOD3+zvdXUJhKtO//+asFpbhbMsuIvUZ4pbs/POk0aNkhYvdpZFRUkPPODe3ZgxUq9eZh/WbuxYE2wwZ6EJ5HINDrMLCwhTnOKUWZSphLwESdUExLnMH8xPU7fIkeZ1m7JEKkyQmrQxQSbhA6UVl5mGJXUPATuerr3WBDxIZrv40EPu4VlWq/mfis2OlVQ1IK5DMzMfmx0rm81WtyDsvs9IqSukwgPu5V6+0sDXlbTDBBhHBlU9bo4KjjIBcXlJSi9Ml1Q1IC7YL1g+Xj4qt5Y72hxOXmmeI3AmMth9vfaAuJSCFI/6cjjjLWnpCMlaakJvop+u2/Iufos3AXBntTlLC25a4Cj/9s9vdc3X12j9wfWqsFZoxf4VkqRb+t2ij8d+7Gj3yOJH9N/f/uuo90R8vDMArnNnE/pzKF9fE6738pqXJZm/40VfXOTW5qU1L+ma06+Rpddk8z9fkib9doPU73mp+dnms6+9H5iAOE8VJkgL+ph96s4TpXO/MoFzB+c7Q2dsFRp7ab569gx2bAsuu8yEJts/w6mokLZtk264QXrjDfP53UcfmfeOdu3cV5mW5h6eflREXWgCE/fPkooSpQ23Vd/u9MekA3OkgjjTdv8s8/9iLXM0uepKq84+W1q3Tpo1yzxn//qX1KqV+X/evdvs59468RiEfjYgm83m2JZbLJYq+yIPL35YZdYyBfsF6/pvzPGit8VbqQWpemHVC3rhwhdUUFqg51Y9J0n6I+kPBb8QLFvl44/Pjdf7m97XfWff5/GYPt9mAjA7NO2gHi16OMrXH1yvnJIczds5Tze3HyZZfCRbuRQ/VwofZD4T7nG/+X+I+0IK6qQ9e5z99ulTNRxOkvz8PB6aRzIypN/MW45atzb7Vq7r8PIyry87m82mn/f8rBX7V8jb4i1fb1/decadjmMEND65Jbnak2FeXH7efuod0dttO75q/yq9tMZ8XjOo1SD5efspMihSaw+u1QurXtCT55vPPq+91oQzz5zp0neu+7rsxw/9o/pr0rBJbuuYt2uedqfvVm5JrkK73S3t/diEiK4dbz67Cutv3vdcfLvzW0lmeziq8yhH+cztMxWbHatvd36rx4Z6eDDv6T7u7/dKf71lQsVGLpHCBkgF+6XM3019eb5UGO9ZQFxZrvTreVL2VinyAmng61JoDxMWV5olleVIJelSWX7VwLWaDHxdWjLMHEttmyRtf8IEplpLPFveVY//mG1R9lZp56tS939LXW83t2/CpLJs067TLSbgNGuzFPM/s11q2ss8f656P2m2/dYS6ZdBUutLTfCf/W/nYua2mbr1u1s1sNVAje87XvctvE8r9q/Q/Ovnu/0Aw2El/Wzu/cKlDjeZ/YPkX03IXfpvJpCvx/1Sf88/kzwpFCVLhQdNULG11ByDWbzMtscvTDFZgzV8uNln6NVLio42AesAAAAAAAAAAODEY7VKmZnmu7vSUnO9i/06ptBQKcLD3z0CAOBUV6evza+++mo98cQTuvPOO3X33XcrJiZG7733noKDgzV69Ogq7desWaOuh17ZcxgZGRnq7HrmVqXwyp96y8io+ReVMzIyHO1qW9Z+X1Pb2tZRUlKikhLnCSu5h55JdDSUF5qTUMsLzUkP3v4yv0BpkWQzt8A2ssmikhKppMTsEFmtZofIYjHnBnl7S01DyuRTsEMqTpO8A8zJP44TM22SzSr5BElN2nv+S5QAcDRYKypDJkrNe5HsJzVaTFiBT7Dk5V1bD042mzlpzlpsfmFVFveTJb18JX9+MrTeyovMiZNleWZb4tNEkpdzgyObFBChuPgAxcaaA/WICCkszFyIYW9ms0ktWkjNmjXw48HJw1pmLqypKDTvI94Bqu61KS/fhh4p6shqdQYXWa3O894tFnOhR2Bg3U8AttlMX1ars8zLy9w83Q1esEB65RUTRDJkiLnQICjIfZPTsqXUu3fdxoaGtWCBtGyZlJpqwiq6d3e/qMlqNRcdtWmRaX55vqLI/Mq8l58c+xw2m7lv0lY2mwm0KClxXrBosbi/zpo3PyS4qSaZf5gAg8KDUtsrpdDTzAnyubvMhRnlBeZCrXZ1C/YpqyhTYl6i40K1pgFNq70gGSeOzKJMLYtdppjMGPWP6q/o1GhFBUfpgs4XKCo4SllZJnhp82apTRvpgw+kAQPM+6nFIhUXm/8Ba95eecV/bS4m6vmo1PYqya+ZFDfTBMekr5WCOkqX/enRuGbMkD77TEpIMBeyjhhh1imZ9Vqt5uLWLl2kPRl7NGfHHP2R/IdGdR6l3xN/l4+Xj8b1GqfzOpwnb0+PDU4C+fnS449Lu3aZ7dQdd5j9aNdtX0WF2eY88IC0Z48JI7jnHtPOz8+8LVVUmGWGtZ8trb3ZXOB51qdS+3HmWCx9rZSxQcqPlXL/kno+6PEYk/KS9ONfP2pbyjad1+E8bU/dLi+Ll/7W428aEDWgbhfi48jYbOa5re642uKtV397VUn5STqj1Rl6ZsQzjsVWHVilF1a/oEd+fUSXdb/MEaZyPI0bZ/b53nxTmjfPBL6ddZYUHm62pbt3m32uGTPMxeRnnCF9+KG0b580e7azn+BgcyHwm5UXPN824Da9ctErjvqvd3ytcd+M01c7vtLro193C8uqSX5pvp5eacISXhn1is5ofYaj7t8//1s70nbovY3v6T/n/Md9waMVTnIqOH2Suehv1zTp93ukP+43x2/lBabeJ0RWnxBNWzdNkvTyhS+7XQD/4C8P6u2Nb+u1ta/pws4XysdH+uEH6eWXpffeM4Godn5+0o03mveuBxeZ97pJwyY59n8mDZukJ5c9qVfXvqpxvcbpjBZdzAW/ZXlmO+gTZP6n7GxWKbC1vtj+hSRpbI+xmn2N80W5Nn6tzv3kXP0S84tSC1IdAR612Zu5V/ml+ZKkvpHuP2zTN8LMb06qe0Bc57Cq37V0atbJERAnSQrqII1aJ236lwmVsfMLk06fLHW/V3NnmAC863pdp8nnTXY0GdxmsJbGLtXifYuVV5KnEP+Qw46tbVvp119NgN/ixWb/e/Bgs49is0kHDphbaqqHD7bwoJSzUyrPM4/FJ0SS1VyIbLOZ6eAu5rlspHx8pKVLpaeeMu93H39sbq7uuKP6ZevLarNq+tbpkqSpw6fq7sF3O+qeXfmsnlz2pD7d8qnOaXuOSitKJUkDWw1062Ng1EAt2rtIGxM3Ht3Bech+XCNJbULcwx7sgXE22ZSQm6BOYZ2kM96QgjtJ0c+Y14tds/7SgP/qpqb+2rzNhAl8+KE5CWnwYPNZptVqQlgyM6VJk3TK2LlT2rDBhHJ06GBCWv383L+LbNrU/F8fTf9e8G/tTN+poe2HytfbV9/v/l69I3rrQM4BffPnN3pv03u6ue/NemyJCVqYOnyqTm95umP5hxc/rE2Jm/TZ1s80of8Ez1bq5SOd/7O05WFp/5dS+hpzswvuKrUcUvPyhzjzTGntWrNfv2SJCff56CNnffPmkl9gme7/6X5J0n1n3ach7Zz9P7/6eW1J3qJpa6fp8WGPe7xeHKGmPaXeU6TtJmREId2kYd+ZbeIhXn/dBDvFxZn90VmzzH6sKy8vc/w9dqyUnm62ee++a/5/MorM+QhhgVX7tpdlFGY4A+JC3APigvyCFOIXorzSPNPmnC+lLQ+ZUJ8fOpnAw4BIZwCsxavynIPG6/XXzXdLX3whPfqoCcfq00cKCTHvQ9u2SS+8UqDUArOT0L5pe7fl7fP5pfnKKMpQiyYtPF95UAfpguXSkuHOkLgm7aVzZ0othyp5vdnviwqOqrJoZFCk/kz7U8n5yY7wt0M/Z7NYLAoPDFdqQarHAXHJ+c5wykP3J+3zmUWZKikv8egYR5LU8lxp+C/S1serBKUq/AwT4uyh3w46A+JcDW4zWJIJZotOjdbK/SslSUPbD3VrN6TdEP1X/9Xa+LUmzNWDY9IbbzTb4jffNCHj27dLw4ebz0LKy6XERCkvTxr/f4u1NWWrgnyDtPPunQr2M4E2uSW56vlOT/2e9LuWxy03Ycnn/SBteUQ6ONfcLN5ynEfjHSgFHhIoVVP4rn8Lqd21Uux0KXWltO8TE7Bj/yx3lzlGDfzbaC1eHKzHH5e+/dZ8xxAebj4fs9mk2FhzAnRamglDf+4589l1x45S//7muLmkRPrrL/N52vLlh/2z1d1Zn5r957/eNMFBdn5hUrd/Sc36mO+KL1hu/nbx35i/lz0cLiBS6vZvefn4aeFC6cknzf7Vc8+Zm5+f+cyqosI8plvrG/rZyI6/E/MS9cHvH+jDPz5U74jeigiK0M97ftZ1va7T3WferV4RvbQsdpm+2/2dgv2CNX3sdPl6m+8vMwozNPH7iZq2bpruHHSnZm2fpdSCVPWL7Kf3x7zvWMf6hPW6b+F9en7187pt4G2O13ZtisuLNWeHSed/9aJXdfXpVzvq/rPwP3p9/ev6fNvnurnfImnoN1L0VGnnS9KBr6Rm/STfECm98v3CO1BPPWU+y/n8c/NevXixc5+5pMQcyzVvLr3wwtH727ZpI/34ozR5svl8u29f6W9/M+U+PmYbsWuX9NJLUn7ATj2w6AEtjFmokZ1G6vLul+u5Vc/p1bWvatLQSXrw3AfrHL6bW5KrP9P+lEUWVdgq5Oftp9Nbnq4mvk0Ov7ArTz4vbSSv5+MlrSBNb6x/Q29veFvdmnfTqM6j9L9N/1OHZh30+NDHdXXPq5Vfmq+b590sm2y6Y+AdyinJUU5Jjm4feLumrZumqSum6uKuF2twm8GyWKTp06WhQ83xdVqac11nnSXdf7/08FZz/Dowyv34tn9Uf0nmGPL3xN/NNuLC1ebzqsSf3EPGLV5S5IUqDmijH//6UZL06JBH3X6Ew8fLR1NWTKlbQJynIs6X4r81PwbjGkRaliNtfcwEuvV81GzbD8fL3wTf5eww5wRlbTafzRXESpmbpF2vmnYtzpWaefgFePNB0ohfzVjSVptthK3yXNvQ00zIqKc632rOBfnzebOvu/0pqUk783l4WbYJtvRvbs4TGfGrtPlB6cBs87dIr0yW9PKV2ow1gXFNWksXLJM2P2yO9xK+d/lb+EltxsrmHaT/rnlZj/76qFqHtFa/yH6Ky47TeR3O0+oDqzX0k6FaOH6h43OHorIi7UzfqZLyEsf3WD1b9HR+RjboPXMeW8qv0sL+5vvewFZSq0vM9zP2cLRThc0mLb9ESv7FPCdnf2b2LXJ2Svl7zXNSlqtOPadoypSeevtt89nE7beb7xhbtjTHWdnZ5nuCf/3LfC5xIsvNNcdA8fFmP2nECHMM5O3t/OylokIaOLDxnt5dViatWWP2x8vLpdNOM8fJro/BajU/EuJ7NE/fOvCNFPupOTe++z3m/aEsW8rba97TKorMd6KRI7Qva5++iv5Kvx38TaM6j1J0arRKKkp0fa/rdWHnCx37ZcDhlJSXaMX+FVq0d5F6NO8hby9v7UjdoQs7X6gRnUaYfU1P/1lPsX0/j5Rmm5u1xGzfLT4y185Iks18tuVfh897jjObzXxWmJpqfuSgeXPzgyGHvh+2bVMhv9JYE5QqL/P9lZevnNcJyXw32Ygf68mgvNycB7pjhzln6qabzL6Gj4/789Wvn3kebTab0grTlFmUKUvl67Jd03bOY8PyQilvj9kWeQeZ59XiI8l+8qvNhAZzLcPJKWurOa6qKDbHTj7BZl+kLE+OzxrDz1BKVjMlJ5vzYUJCzD6T6/nL9vOPD/1hxZpUVJjPQ+3hCva+7K9hLy+pZbN8s69dlmPG5RvqfG3aV+rfQvI7MXasSytKHT+K6e3l7f75TANtgzMzzedTxcXms92AAOdzYb9+plWrUyv0uqLCvM7tr03J/bXp61v1OzXUjc1mU2Jeovbn7FegT6CKyovUOqS1OjTtwHmbAHCKKi6WNm0yx6Q2mznHKyjI+aN89v2Srl2lpCQpJ8d8rhccbD6XtO+/WK1mv6VVi7zKc2hzzfmYvv/f3p3HyVHX+R9/19F3z/ScSWZyEgIGDBBETq+AEhSCB4pcuqKyuooXigcCEn6KAq664q4s6v4Ef1wii6uACCKHiILhWpA7IeckM5mrp++jjt8f1dMzQzLJBJPMEF5PH3k4dFdXf6u7uj7f81NJBes1TdXruNHptTXGry3duW690P+C4qG48pW8WuOtel3r6157fYxuSXr2X6XcymB+zfRjgjkW2ReDuZnVIclOaLX5CZ10ckRPPRXMm/r+94PzMJkMzslSKVijSYK4PdOaNcFNgAYHg++4s3Ps/FPXDeYazNhyOhawS6XTwfyWbDZoyzc1jfQLSiNzo5u3nNqJnckpBje/q2aC/n+7oVbXGJVTK9wa1EN8P5ib5ldftnauVj+xorXX7vkM359471axWNQRRxyhp556qt5h4Pu+vvvd7+pLXxq7iPSRRx7RYYcdttXntmXffffV3nvvrTvuuGPM45s2bVJnZ6e+853v6Gtf2/pEkXA4rI9//OO68sorxzz+17/+VUcddZRuuOEGnXrqqbr++ut1xhln6KGHHtLhh4+dsPrJT35S11xzjUql0lbfY/ny5br44ou3ePw/PrevOlKOnuxpU38xKsvwNT1ZUHu8qIjtakMmqftW7aNyuUWuG5FllWXbBRlGcAKOJHUra0Fbj1rjRUmGNmYTqrimYrajqO2qOVaW5xtaPZjS6u7Xq1Rqlu9bSia7FArlZBi1BU8y5PuW4tFBzW8ZVGOkrLJjabAUlesZaoxUlAhX1RCuquqZenxTmzoaCkqEHBWqtvLVkDxfitquwpYn2/SUr4TUlR07wfC3t94qSXr3iSeOedyXL8/w5BmefMOX6ZvyDV++gr9N35ThmfK8kDzPlmTKMJza5zGyF8mQabr1Yxr+rOpb+CMXW8+zVKmk5LrBBGjbLsowHI1ZHCtfhuGpUOhQtZqUYVQViWRkmtVR7ymZpqNodHBCx1ostqhcbpHjRBQOZ2vv69f35fuGQqGcPC8ix4nL8yzZdkGmWa2VfWS7SDin6cm8YiFHrmcoX7Xl+YZCpifL9BUyPTmeqU25uEYGPccvm2V4itquTCN4nesHFzbT8GUavgz5qnqWKu7Yhfbj7W/jxiOVy81RtRrXtGmPKxwekmG4teOVfN9SLNat9oYhRW1Hnm+oWLXk+aYs05NdOwbXN7S5GFJXyyb1JfuUKqSULCdl+qYqVkXpRFqe4Wl2/2yliqkJle3lJrLd8DZb2y6TmatisVWuG1Es1lf/vdZzDslUNNqnUqlNlUqDfN9SJJKWaZZr3+vw79BQJDIgz4vJ84IJ5ZblSHJHVRSCc7Mxlld7vKio7ShXCavkWDIMKWy5CluuTENKl8IqO7YaI5Xgd1m15XimTEMyDU8RK7impEsRtcTKak8UZRq++gpRVVxLYctVyPSUCFfl+4ZWDqRUdEYan+N9Jr5vqlJprP++LKtQ+21Ko8/FWCSrZLgq2/RUcU05XnDOWYYvywzOuYprKRZyNCeVUcRy1ZVNKlcJyTSkqO2oIVyVZXrqzce0MdMk1w3L9y2ZplO7Tvj19wwGr6pa2D6gpmhZVddUVzYZvIftKGK7SoQqkgytGmxUT6igvoY+VeyKEuWEkqWk0om0yqGyEqWEWrOtsjIz1dNzuIrFVoVCBaVSK2Xbpfr1KXhPT42NayZ0zg0kBrS2ba0iTkTT09Prj7uWq43NG2W7tvbp3kfpRFobmzcqUUqoqdBU365sl9XX2KdkMan5m+fL8kd+r+N9X548pRNp9Tb2ypevhlKDEuWEBhIDKkaKShaTas+2K1KNKB1PazA5KNd0lSglFHJDGooPSYaUyqfUnG9WZ8TRzIa8IrarjdmEyo4l2/SUDFeVilZkGb66c3E9u2m+CoXpct2YwuFsLS65Gl3RCoczCoXy2h7T8NSRzKshUpXjmcqUw3I8QxHLVcjyFLaC69q6oQZ5/pbXw5d/JrbpKhFyZJmeqq4lxwteY5m+LCOILWXHVNYzlIvkVIgU5FiOopWoXMuVYzkKOSElS0nFy3GFTV+2GRyX6xkaPisNw5dZK07FNZUMVxWxXPmSSo4t3zdkm54Mw5dtevJ8QwOFuPKFGapWg2t7OJyVYYyOEcEOo9GBMZ/RP3o93KdlUPu1DygRcvTSYKOylbCitquY7ag9UZTnSyu6ZihiO5qWKMqQr95CXGXHVMR2FbGCa4nrGXqur0VFx97iPbf2PUxPFBULOSo7lgq1OBexXdm1OFF2LG3KJbZ5TMM6knl1NOQVMj2tG0qq7FoKW57iIUeNkbIMSd25xJj9bevaP5gY1MamjbJ8Sw3FBsXLcRXDRWXiGbmmq47BDs2qJHX0vC61xkvamE1o9WCjHM9UZ0NejZGymmNBnevXz41Nkry74tfK6SuVjWXVnmnXjPRI70gmltHa9rUKOSHt17XfhK4lE33ffDivlR0rJV+a0zdHpj/SkFrful5Vq6q9Nu+liBPR+tb1KoVKaio0KVFKyDd8ZWNZDcWHguvNQKfKmXnK5zvkumHF4z0KhzMyTVeG4cn3TXmeqXA4L9sujlvWYZ5nK5OZp3I5Jd83FY/3yrJG6mq+b8r3bUWjm1UsTpPjxGUYnsLhrEzTUX0ShEwZhqtweEilUquKxXZVq0G92LLKqjc4a9e5hsY1ck13pC7sbVkXHv0dbIsvX67hyrVcuaYbzHfzrTF/227w++tt7NXm1GbFyjGliimFnbAysYwysYwiTkSdg51KVaM6cHq/5qSyitmOevLxoJ7oGcFjtWvCY5umaXqioFjI1WAxorJryZCvsOUpFnJkSNqcj2l19yKl0wtUqTQqkdioaLS/9tlJw3WhRKJbllVRX98Byuc7VS6nFA5nZFmV2vdqyPdtzZp5n2a1dCtmO3I8U0UnuEbYpivL8BWyhuvCMVXsqsqhshzTCT5Pz1LFqsjyLYWdsCLVyBaf8Xi/L8cJq1DoVLncKM8LKxTK19oHI+2ISKRf+3esUXOsJM831JNLqOoZSoQcRW1HLbGyHM/Qc32tWtt9gCqVBkmmkskNtXrk6PaBJcsqaGhoX5VKLfJ9KZHolm2XJAUxwq/FtlTjWs1I5tUaLylmOypUQ3I8Q76Men2wvxDVCwNNck23ft6Zvilffr0tZnmWLM9S1aoqH82rFCop5IQUr8RVsSsq28GkmWQpqVglJlMT6xCpmlVV7aoc05EhQ5ZnybEcGb4h27UVdsITPtdfbrzva2hovvr7F6lUalE83q1kcqMsqzTqGmErFuvT0NBeymbnyHESamv73/q1ZDi2+r6haLRX3d1HqlicJt+3NG3aowqFsrU2zki9P5bcoHRD8PuyPVsNxQbFyjGlk2nlIjklyglNH5quaDWqXCSnXDSnil1RyA3J8iyVQiXZrq1kOalkKSnDN1SIFFQIB/WNiBORZ3iqWlWF3JDi5bji5bhSYUcNkaCuNVLvD+ouEduV70v9xYj6QyUNxYcUckKKVqP1778cKqsUKqmh2KBUMSXfs2q/wSZVqw219s3oRSeepk17Qqbhqi1eVEdDQfFQUJcxjKBuU6ja6i/EtD6z/eQvUtDWKRSmq1RqUbXaINOsyjSD8y34jA1FY73yWl/UUHxIYSeseGVkoNCxHOUiOUWqEbVmW5VOpLWpeZNs11ZjsVGxSkzFSFGZWBCrOwc7Nb3UqNe396s1XlKhaqs3H1PVs9QQrihqO4qFXOUqth7bNH1MWcc757xa34XvWzIM/2X12+B8MgxXpulpIkbH0/G8+8QTVa3Glc93qlJJ1q9Nw31IwTlsqrn5ObluVPl8R629FhrVdhkpW2vrM0qEKupoKKg5WlLI8oK+Ud+QVat/bc7HtSYbVzlUVtkuyzVdhd1wEINMV7ZnK1qNKlKNKB/JazAxqLAbVrQysqDSNV3lI3nFKjG15FrGXEvGb2sa6us7QNnsPFUqDfXYP/I5G5IMNTW9oM2b36BicbpMs6qGhnW1uoBXP5csq6zQtCf10vSX5MtXe6a9PjHXN3xtbgx+w3v37K0OSzpoRq9mJAsqVG0NFqNyfUO+Lx0wvV8V19KD6zr04kDzdo/BdUPauPEtKhSCc6q19e+y7fyoPoTgmjOj9UUdNGOz2uIlZcphbc7HVfUMNUUr9fbrUCmsB/tSWjV9lRzTUXumfUzdqrcxWNU4v2e+5tqGZjXmFLNdbcrFVayGgn4B21MiVJFl+tqYTerJcNDeayo0qaE08tv1DE9dzUGyifZMu6LOji2O3dlKpSYVCsG57Dgx2XZRsdhmNTSsH1W3CK7Nmcw85fOdtX6oXqVSK2VaVW1o2SBJas22Kl4ddS0xHG1q3iRJmj40XWF3+4kHCuGC+pP9MmRo5sDM+rkkSUOxIWViGYXckGYMTWxEMpudrb6+A1UqtSoa7Vcy2TWqXmrI82xFowNKJDbVXzN+Pd2vnTdVSYYKVVuub8g2fVmGp5AVtDV7Milt7D5S+fx0SaZSqRcVChW2uJa0tDw3pqw7s+0yEYZ8zWrMaXYqq5DpqejY6snFtT6TVNlw1d0UJMaYkZ6hkDfSh1UMFdXXECTXmDUwa8x35Lq2BgZer0olpVAoo+bmFxUK5ZWJZoKYuZXvri/Zp2K4qEQ5oX39qDobCopYQX257NgKW66S4YpaYkEc25BJ6q9GLvh95ZvUUB75ffny1dXSJV/+FufjeEqhknoberd6PIVQQf0N/Vt9bjz9yX4VwgXFKjG15cYuIBk+1ng5rtZ866hnfC1sG1RbvKjBYlTP9zfJ8ayxx5NrHROrXSPo35KkaZlpijg7lnjGccLK5eaoXG6s1RUcRSIDamhYp3B4+/1HktQULWlmQ9CnPliMqOjYsgxfUdtRW7wo0wi+r7VDjfXXbKsd3NXcpc2pzWooNoy5bhbCBaUTabXkWjSvf7YO6ejV3FSQMGNDJqmyaytmO2qNFzWzIa+SY+mnz+yl5zpelGd4mts7VyF35BzuaulSIVJQ50CnpmdG6iW+byibnaNcrrNWB8ipoWGd4vFRK9t3Asd0tKlp69fGsl3W5sYg+U5zvlmDiUEZMjRrYGwWsFwkp8HEoCzfUudg504t30Rs6/wbfe2fNjRNEXfkucZIWQvbBmUZntZnGrQhk9ToPu7hOmyhMF2OE5PrRmUYjkKhnOLxHkmmNm06QpVKSvF4j5qbn5dtFzS6D9QwHCUSozJVavzr5qZNhyubnadqNaH29scUiQzVY1/QNjQUifVo5V6PqmJXNLtv9pjfdW9Drza0blC0GtXCroWqlJvV17eoNg6WUCSSrverB/0ghvbe+7djyjB+ezmmXG6mKpXgMwqHh2r99CNDy7ZdUCw2/o23RhscfJ3S6QUql5sUj/coEhmo7W94IqKphpbn1DftRUnSjKEZY343+UheA4kBmb6ppnyTBpIDMnxDMwfHxup0LK1sLKuwEx7z+5qosOVo0bQBJcMVFau21mca1P2ycbkd4TgRDQ4uVLmckmk6ise71di4RpVwoV6/mzk4c0y9LxvNKh1Py/ZsdaZnKGR5sgxfrm/Iq9VbDSMY75N8eb6hrmSfNrZsVLQS1X4b96vvy5OnZ2Y9o6pd1dzeuYpWo+pu6lYhUlCymFRToUllu6xMPKNSqKRpQ9PUlm2rt+dnNWZ10PQ+zUllFbI8Faq2NmYTera3RavTwRheyHR1wPR+7ds6qLZ4SabhK1cJqScX1wv9TXpxoEnZ7BwNDi5Usdgmw3AViQzWx5mCMaCqmpufU2/vYpVKrYpE0mpoWFdr84+Mpdp2QQ0NXa/ou5iovZvTaoxU9HRviyru+Ct2qtWE+voOUFPTC4rFBsbdrlRqUTq9t1pb/65QKOjTHF33aMmPXQUz+rnh/q+X1+claWPTxi3q+mHL0bymrFKRsuIhRyXHUn8xpq5MckwfvjR+PKxWY+rpOVSFwgwZhq/GxtWj5jVIwW/BU0vL81vd3z9aPwxuvtChUqlVlUpKnmcpFMopmdykcHK9usep21fN6kjd8WXXj4lKhivar21AZdfW05tb6mPr9fpTJa7WXOuY14z5vuyyHGvr39empk3jfpdbU7bK2pwK4nHHYIdsf+T7Gx2rOwc7X0H/m6+9m4fU0ZBX1bW0Jt2onnxQx2uKlrV4xmbNSBaUr4TUV4jK9U35vrRoWr8MQ3qiu123lRy5hqvmfLOS5eSoPY/UHZvyTUon0pK2jNVjvq+X1fUnolRqVi7XKcdJyHHiMs2qwuEhJZMbVWxdpVwkp2g1qvZs+5jX9Tb0qhQqKVlKqrkw0uZviRW1T0swx6HsBv0k64aScrwd+2xt09OsxqxaYyXFQo5s01fFNZWrhNRfiGpTLlkf1/R9U7ncTOVys+S6EZlmWbFYvxoa1sq2R25aWa0mavG4UdVqQpZVVizWp4aGtbKs6nhF+YclQlXt396viO2qrxDTyoHUVj+P9nhBC1rSMgypJxfX6nSjPH9s/3Lwu56pbHaOXDcsyyopkehRMrluwn1qE/XStJc0FB9Sa7ZVHYMjyTVz0ZzWTFujkBvSwq6Fsr3tj2t68jQUH1J/Q78cy1GilFC8Elc6kVbFrqih0KDWXKsszwrG5Q1fzbnmekz35WsoMSTHdNSaa1UxXBy3ndad6lbVqipVTKkQLgR/F1JqLI20Y15JW3Nb14vx+j7a4wVNTxbUFC3LNFSP6ZtyiVHnr1QoTFexOE3VakKuG5Vplmvxe4PC4eyWhdmKeU0Z7d/er1Skou5cXNlKcF0PW64Omt6nomPr7pdma0OtP7pajSmbnatqNalqNS7DkGw7p3i8V9HGtdrctEme4ak9265wdSRGDCYHVQgX6tdxxwlrcHChMpl5KpXa5LoR+X6woCWYI/KSps++R5lYRsVwUZFqRLFKTL7hqxgu1uebNBQbXvEYyNZ48rSxZaN6G3vVWGhUopyQ4RvyTE+ZWEalcEkz+2ducf6MJx1Pa/W01bJdW/tv2L9eVk+enpv5nMqhcq190aqFbYOa3zyk6YmCKq4lxzPl+VJjpKJ8NaTHNk3TC/3NagiXdeD0fs1ryigZripqO6q4lrK182TFxulKl0b6GcftUzVc9aR65JpBLBkdt7OxrIqhopLlpEJOKGh3epY60h1j6v39iX4VIlv/TVWrMQ0O7ifHiSmZ3KCGhrUyjG3H443NG7ca21K1NmTEdpUuhbV6MKVsJayKVVFPKmj3daQ7xlxXttVvtXP4aouXNLMhp1gomFPq+UE/YaYcVlcmoaeaN2goPqS2bJtm98+uvzIfzuuFzhdkeqb269pPYTeskOlqVmNOLbGSonYwJ6daGxMaLEW1fihZrxdJE59fMK9pSLMac6q6pjZkGtSVTeiVtat8dSQLmteUUcR2VXIs9RViWjeU3KK+ngxXtH/7gKJ2MMa9ajClQnXLesaMZF57NQ3JMn0NFKN6aTClkmOPuW6+vA42mBhULpJTrBpTc65Z2VhW+UheYSccjK/6pgrhgsqhsmKVmBqLjfXzImI52qs5o4ZwRfGQI9c3lKuE1FeIaVM2oXRmrgYG9lep1KJwOKNYrFemWan3H/u+qYaGNQrHe+VYTjBXQJLlWWP+tl1bvny90PmCyqGyZg7MVKwcqx9Db6q3Hifn9I9NuPyP9gtvSm1Sd3O3EuWEZvWP9CFV7IrWtK+R6Zt63cbXKeqENSOZV1u8pGS4Kl/BeJWhoI1bdGy92J9SvhquLQ5rVT4/U44Tk+NENXytjkQG1di4Wi3xol7fHsx/iIeq9WtYpPa76M7FdfdLc7SwbUB7Nw+pKVrWQDGYR+n6hjqSeYUsTy8NpvSntTOVzc5WOr2gNmclWpsLPNJ2bWl5Wu3tT8rzTA0N7aOBgYUql5tVrSbk+1atn6RPHR1/UTy+/Ttg+L5ULLarWGyX48S3mFc+PK7dkFqpSrhcbyNaniXLt1SxKzI9UxEnokglMuac3db35RquynZZVbsqz/RkO7Y8M5jvbXvBOH/YCU/o+jVc1yuVWuW6YYXDQ2PmWgbbGMH4hxm8n19r5xu+Ic/wZPjGyLzyCV4nTMNXx6i5FMNzrX3fUCoazLPvyiT1fEX1cc14eVTftukqGw36j1ozbTLciHzf0vD46ti57Aq+C7Oqrtb16m/oVyqfUrwS32qsTg3OVU/PISoUpsswpIaGNQqFCho9BynoB3lhQt9XPpzXhtYNqtgVNeWbFC/H5ZmesrGsMrGMWnNB3XcidVwp6NdNJ9IqRArBPIZSUtloNpg/Wk6oKd+kaDWq9a3rNZgcVHO+WbFyLEiYa7pKJ9KqWlXN6ZujpkKTCoV2DQ4uVD4fzMsPxrWDsd7hsbzw62+s91st3Liw/j27hqunZz0t13I1v2e+EtkZ6u9/vXK5WapUGhWN9suyyrX9BesimpufU0PD+gkd69Y+3+1tN56KVVF/Q79cww3mfQyPQ8tXPpqX4Rtqy7ZNaBxysniGp3wkr2w0q6pdVcgJ5rQUw0WF3FB9TvXoc0ka/9xMRcpaXBtzr3qmBooRebU+hP3bB1R0bD24rkNFx9aiaf1qjxc1WIooWw7L9YO5wPu2plWo2rpr1Ry11mJDrhJSbz4m1w/mRkVtV4lQVa5v6n+7WzWY3lfp9AKVSq0KhfKj1jIEbW3TrKp99n3qTnVrIDmgZCnoAzV8Q+l4WrlYTql8SjPSM8aMHWzrWAu1vtzRdYFcNKd8NC/TM9WebVcq16JsZp7K5ab6uT/Stzncv2mqKdmj+S0DaohUla+ENFiKyPMNNUfLioeqioeCeXOPbpqmxkhZYctT2bFUcYOFccPrMUwjmOsx3I7a3jGU7bIGkgPKxDIyPVOpQkrlcFmFcEEhN6TmXLNShZR6Uj3qbu5WspRUQ3GkzlwKlzSYGFRzrllz+uYoU/8eWhSJDL1sLCL4vba2/l29vQfXrofD/Yz5UWMMwTU32fa0upu6NZAYUEOpQalCSoZvaCgejMunCil1pDu2GIcc71grVkW5aE7FcFGO6Sheiatsl+UbviJOpD4/rlpJ1uYoJOX79qh5OcPrBSw1NK5SpXbeSFKkGlG4GlYhUlDVrirshJUsJdViBHMvE2FHQ6WwcrXvJRUtqyFcUcR2lSlH9PjmZhXChaBslqOwE5aMoMwhN6RYJaZ4Ja5SvkO5XIccJ6FwOK1IZPQ8GimYpzqkcDi3xefx8s/El6+B5IC6m7plu8G8t3glrmw0q2wsK9Mz1ZHuUGOxUaVQScVwUVW7KtMzZbu2yqGyLM9StBpVrBJTyvI1szGneKiqTDmifMWWYUgRy62vW0qXotqUi2v/9qAO1hovKVsOyfFM+TLUFi+q7Fh6vLtdKwdSOnhGn2bX5rOmS5H6+pPZqaxylZD+tHZmvW9gW8cqSa4b1sDA/spmZ6tYbFOwHi1YUxbU1/I6YL8bNLMxr0Soqnw1pHxlZO1cxHZlGZ5ylZBeKoa1oWWDctGcmgpNShaTkhGM4QwlhtRYaNTMgZmaFvLq49VDpbBKji2jNsevsyEvz5dWD6b0wqb9ausJg7nRI9eI4bVyhsLhtNxIVqVwSVW7Kl++wk5YFbsiwzeC9kc1JqOcVDq9b71vNJncIMuq1L/1IG5K7Y09mp3KKRGqqr8YVaEakmn4aoxUlKrNPx0oRvRs39h+73HHDk1HxVBRlVBFruEq4kRUtaryDV8hN6RoJaqIE9acxryaY2X5vjRQDL7TsOUpZLmK2a5c39BLgykVPH+rc6MNP5iLanu25AfXoEK4EMxnc8LBnMxwsOYzWokqXolvEb92pnH7Dz1TQ0MLamOpphKJTbX1ZMPX/uF5qgMyanN7R/Ply5Ahwzc0/L+tve/Lv4eqWa1fIx3LUaKckGu6KoVKCjvhoF+x2KhG21M8VK23tYbnnwbr+oL1LUOliKqj+n239fsani9cb4e6o+YL19oRXqVBQ0MLVK3GZFllJZObRq2xG1kXE4oMqGJX6vsbngfvWEF7J+SEFHbCW8xlHu8zyWZn18b344rFemvrmMa2q2Kx/jFrD/7xeuTwOiS/3haRaskuamtfPd9QRa7y0Xx9fVKkOna+cKKcUKKcUKXYqnK5Wa4bzBW1rGKt/3zkGOxQTk4srUwsI8/wFHWiilai9bnCkurX+VfSHzXesVYqCeVys+pjFJFIurYusvZJ+JJlVTSrpUuzGvOK2o4252MqO7YsM1j7lQwH16h1Qw1a6znqbu5Wxa4oWUwqVUypGC4qG8uqalU1PT1dLbkWeaanilWRa7ny5cv27JH56q6lsBuW6ZkaaBhQT2OPQl4omN9diQX1vmhO8Upc09PTFXEi6m7qVn+yX8lSUqlCSqZvBuss4hklS0l1DnZqUUNJh3RsViJc1WObpqmvEFXY8tQULWtaoiDL8LUm3aine1u3+7lJwZzIajUpz7MVCuVq4zoj1wgpWHM8sj5zO32qTT3qbexVspRUYyHoe8pGs8rEMwpXw5o5MFPzQ9JhM3vUnijqpcFG9ebjtb7eaq3/z9HqdEpPdI8dQxvv93XQ9F69rm1QYcvVc30typZDioVcxeyqZiQLkqQH1nXo4Bn9mp7Ma6gU0bN9Laq4ptrjRaWiFU2r9TvfuXKO8qP67rd1rIOJQQ00DARrIosNCrkhpePp+lhsa7ZVKrbUfvvBuRnMPR5eixecm7Zdlh0eqvep+YYvy7PGrPOxPVuWZ4353Yx/7be0efMb6/O6GhvXvGztwcj87tFjYOPtz3EiKpXa5DgxmWa1dj6MXouj+jydUqlJrhsJjmlUn9XwOqagX2nnXeccJ6zu7iOVy82qH1OwHmN4TpMl1w2pre3pcfc9midvzBz1kBcK1kqZrizPUsQJ6trVcnPtehiRbRdGHetwohAjeCwUrNcYXj9ju7ZcayRGhd3wuO3bV/qZzGrM6rCZPUpFyrU8EjGZhqf2eFFt8ZIitquuTEIPd3VsdX9b9NHkOurxKxod3OJcCtYxDW5l7dzYlCBBkiVT+fwclctN8jxL0ehgba3b6PqHqXA4XRtrS8i2S7W+aGfUfoN2WmfzpvoYRE8urpJjyzZdNUaqtTHEYC3xM5lgTc1QbEiSgrZmqKxiuKiwE1ZzvlmNhUZ5TlSeF6nND6q8rH0TCNlVzW0aUioSrM1Kl6KqeqYilltbx+rI8SytHEhNaMwi+H211n5fbv3zHf7Mgv93JzyuWbbLGooF15NoNYjBjuWoFC7JsZwgBpfi8iwv6Hut1ZPDTlhVuyr5ku3ZilQjQd3HCPpq/NrnYMgI+k191ftLt1ZH3BpPnqp2tf6eVq1+N1y3DrkhhZyQEnawFtgyfBWdoC/dULDuP2wF50qmHFLBkxzbkWM68g0/+H2ZQTy2/KCuZnu2mqNldSTzSoarKjq2yo4lX0GfT1O0rLJr6X+721SqxpTLdapSSdXbMGPX6jtqa//fcY9vuN4sSc3Rsjob8orZjvqLUZVq84VDlqt4ba1jdy6urqpR7wexPVupQqo+Xh92wmrJt6ix0KCE7dWPveKa9fU1hiTLDNY75qq2hqI5DSQGVAqVFK1GlSgnlIlnVDWraig1qDnXrIgT0ebGzepN9Spejqux0Fhfq5+NZZUoJdSR7tB+iYoO7dyshkhFj21q10AxKtv01BorqT1RrK2TblDJsbVf+4BitqNneluUr4aUDFfVGitpXlNGvqS/dc3Qkz0j46Tb6htwTVdVq9ZH//K6lWfJdmxZvvWK6pHjqVQaamuiErIsR+FwelS9Z/ianlc0mt7uMUhBzgFz1DxCv1bW4fq3JFU9qWxXVIgUgra0DIWrYZXCpWA8pRpRvBLfoh93/LVCtqrVBnleWIbhjOqvHlkTZxiOiol+rW1fK0lqybXUf4flULneRzm3d64Guw/T4OBCVatJtbQ8o3i8p3Zd9OT7tlw3pESie8y1aWf3gY87FpGfURuvbFU4PKREYlMtlgwL5hCHG9YHbZxaOz1WialiV+SZnsJOuD63phguKh1P1/vPG4oNykfz9f66pnyT4qUG5XOzVC43yvctRaMDtTrzSFtIMhWNdasSCsbJqlZVlm/JcoNxMsu3FK6GFa1GZbgRVatxeV5IpunWP9vRx2AYrsrllAqFGXKcqCKRtMLhl+fCCOapmtG0SqGgj2ZMP4h8hbyQIpWIop6tN83urq8deGkwpbJraUYyWL83szGnsmPphmf21ovxAfU29tbXKJieqXKorKH4kHzD16z+WYpnOrV588EqFGYEY4QNG8bM3Qzm0JYVifSrr+8gFYvtsu1CbX3t6Nhv1o4trUolyNUS1K3Koz6T4DO2rIJsu1L/lHbGOefJGxkT9MfGueExweZoWbMbg/rG5nxcxaot0/DVEKmMWTc9VI5odmNWYcvTxmxC+Wpw7Q9bnhojw2vn4uouhlUJVYJrneEp5IZG2gBuUN8MuUEddHhcVArKM/pv0zM1esSyPse9fnaMfHqefJXCpXp/r+UGa7jLoXKwDrMS9KnOTJS0aFq/mqNlrRtq0FA5LMvwlAwHuTBs09ffu5P68Q1/1dDQkBobGzWeHUoQJ0m5XE4/+MEP9NBDD6mlpUUnn3yy3v3ud2+x3U9+8hPdcccduvzyy7XPPvtMeP9HHnmkXNfV3/72tzGPP/3001q0aJGuuuoqfeITn9jqazs6OvSWt7xFN91005jHb7/9di1btkx33nmnli5dqjvvvFPvfOc7dfvtt+v4448fs+3JJ5+sBx98UBs3btzqe5TLZZXLIxezTCaj2bNna6jrCTWGi8Fdi+zG4E7zw1kGfU+Kz9rq3cWBV5NCIcjGnE4HGcIbG4OMqKYZZAf3fWnu3ODxiXqm9xn9x9/+QwOlAR0842Dds/oevX+/9+uMA8/Y8TvuAhM0UBzQuqF18n1fpmHqdW2vq98pulqV/vd/pQ0bgru4dXQEd2kanTHftoM7U4+xjbuU37fmPn3sNx9Tb6FX31/6fT2y8RH95LGfaNm+y3TVsqvU2RAsoPzjS3/UZ+74jIZKQ/o/R/8fXffUdXpk4yO66G0X6fOHf37LTPLj3aV+lJcGX9La9FqZhinTMHVwx8FbvZv4UGlI6VJakhS1o5qe3PGFc8CewPVc3bP6Hj3c9bD2atpLq9OrdWjnoXr7/LfLNmudw4Wu4G6z1VxwNzUronq13veCu/8l5oz3Fq/MBO8q35vv1TG/OEZ/3/x3HTDtAB2z1zF6pvcZ/eGlP6gl1qK7P3y3Du44ePx9b6tpsI3tVnSt0Ck3n6K1Q2t14VsvVGusVV+5+ytKhpP6xXt/oXft8676tg+ue1A3PX2TZqdma6A4IMuw9OGDPqx9W/fd/jFiu/KVvG594VatH1qv6cnp2pzfrGPnH6uDZhwUbNB1q7Tik1Jxk/TG/5CmLZFkSJvvl0o9UmmT1PwGacHW21yvhOMEdcSNG4Ps+U8/Lc2cudN2j9ew4Tumu+7wwMBI+2RgQFq1KrjTiGkGd20Yfm74Lq977SXFYsG5mc1K5XLw36Pv4Oh5wZ1qQiHJ9309svERrR1aq6gdleM5OnLWkdSbdrOqW9Wdq+7Uiq4VWtCyQCsHVurI2UfqHfPfMRKr8arR0yN985vSk08Gd8D94AeDu+Fa1khfg+dJhxwi3X67tHp1cEezgw4aaacN37EsHg+268336uL7L9bPn/i5/uWQf1G2ktX1T12vzx3+OX3tzV9TY6RReuoiadVPg0K84YdSYq+gfpd5LoiRlQFp4Zek5oNGCruNutDq1cEdjjKZoE8kldryWnLQQcFxTUSmnNFlf75MV/ztCp3y+lPUFG3SlY9cqY8t/pi+8bZvqD3Rvv2dYEobjmHD8at+bkyw3j8R1ap0//1BPCyVgng2fG4Ox0PXlY466pUfB/CqtZ128J0r79SX7vqSik5R5x55rv7z0f9UtpzV5cderg/s/4HgTlXPXxHcCT4xR2o7Mrjjeub54O5U8qRIuzTvQ3p002N67y/fqw2ZDfrsYZ/VommLdN4fz1O6lNYlx1yir7156zdEwtTmOME4yfCdz4cNn1qpVFCnmYh8fuy4Syo1UhcavnvrnDnSc9mHdcwvjlHZKesNHW9QR0OHNmQ26InuJ5QMJ/WnM/+k8OBBWrQoqHscdZT0xz8Gd6nfrm30be8svi/9138Fd6sdGJDe+c7gjpCj22muKx16KHfde6XKTllv/vmb9cjGR7R3895qiweTvzblNmnd0Dodt/dx+t0Zv5NZG79eN7RO966+V/FQXJlyRjMbZ+qYvY5R2KpNfqpmpL9+WOqqJRRs2EeKz5XKfVL6ieCxY+4N/v8vp0ml7qBe3XGcFGmVBp+QNt4uSXp03qDe+o4mFQrSkiXSDTdseefPbDY4B/72t6CdbhjSvHlBPX/0KdrQIC1cuEs+QtQMDUm/+11QjzTNYDysqWnsOJlpSkce+bIX7oZrCXaD1ddKq66SihulfT8vxWcH14Ohv0tuIbgL9PyPS+00JDA1pUtpveu6d+mhDQ9pv7b99O7XvVtP9z6t2164TS2xFt31obt0SOchY180gXGyvkKfNmaDeWS2aWvf1n3pi9wZnvu+1HOPZFjS7PcHd/7Nrw7Gq1SrDC/8YlC32EkeeEB673uDOumSJdJ3vysdcEBwV2gpeHzz5smtbzy+6XFd/pfLtXpwtU7Y5wT98ulfauneS/XFI7+oWY2ztr+DUb7w+y/ohw//UCEzpJP2O0mmYeo3z/9GhWpBZy4+U//33f9XxsMfk1ZfLUXapKV/k5J7SYNPSt1/kNbdEMSBBZ8K7rj82BeC+ZD7f12acWzwmkpauuvQ4A3f9EtpzgdHCjDRcWjsdN25bh35X0dqbXqt9m3dVwvbFipTzuiBdQ/I9Vxd//7rdeqiUye7mKj5xS+ke+8N2kLLlgVtoXB4pN/YcYJr1UTH2DdkNuikX56kFRtX6P37vV/v3+/9uuDeC/TS4Ev6wuFf0HeXfnfLODbR+vw42/m+r/PvOV/f+fN31BZv0/K3LdfTvU/rykeu1PTEdP32tN/qsJmHTewAJqr3QenepUE99aDvSK87J5i/8/R3pP6Hpc33BTFk0XLpoY9I8qW3/lbqPCG4tm28XcqvC9q5yXn64n9+Vj/4QbDrf/s36dOfDsaIRyuVgnbrKadI3d3B9/KpTwVxI5EI+ndeeEF64xulI47YuYeLqeOv6/+qb//52+rOdev4Bcfruqeu0/H7HK8vH/VlzU7N1ubN0m9/G7SrYzHp4IOD8cPh37TvB7/xl93ffpt839e9a+7Vfz/z39qndR91ZbqUCCf0kYM+or2a99ryBROIwb7va7A0KN/3ZRiGWmItW2zz4LoHdflfLle+ktebZr9Jtzx3i07e/2SdfejZao236pprpI99LOiPPOss6YorgmMerVKRTNvRu294t+5YeYfa4+1605w3yfd93bXqLhWdoj532Of0w3f9UB/6kHTddcHrbrpJOvHEsf2bpdLIuDB2o/FixKOfC8bcI23SEb+QkvOD62rmWSm3Kri+7nO29My3pU13Sqn9pQP+jxSbKaWfkgrrgjF6pyAdeIkU2/7cm8cek97znmB+99veFlyvZ88OzrsgYWXQtzW8dKmv0KfbX7hdZbdcj30n7HPCK57nk6vk9GTPk/J8T57vaV7TPM1J7eR5ojtqIuPL0pjvryvTpaoXJJ1vjbWqITI2efKf1/1ZX/7Dl9WV6dK5R52rq5+4WtlKVt95+3f0gf0/oEwmiH8rVgT9hOecE8wNHO7LLZWCuRNve1swTvHSS8HjBxwQ9DOOTdgxcj3syfXoN8//RhW3opAZUtWr6t2ve/fkf8Z7CNdz9ae1f9KTPU+qo6FD3bluHTX7KL2x84275g1X/Iu08qpgjvUJLwS/8czzUs+9Us8fpWpWmnOy9NJ/SX1/lVKLpKUPS3Zc6v9bcJ3YfF+wrwX/IrW/aWTf48S5558P2vrd3UG/9g03SPvtN3bz3t6Jj+ENe3zT47r+qevVHGuW4zkqVAv60IEf0qJpi3b4Y5myXsG1BFOD67lyvCCpS8gK1ccBgVeD5/qe0wNrH1BTtEn9xX7t27qv3jr3ra+o793zPT284WGtSa9RIpxQ2SnrTXPeVF+rN6yv0KdfP/trZStZNYQblK1kdeK+J2qf1lFr36tZqTIoObUbWxpBot66xJygr3TYbu4D7Sv06VdP/0qb85vV0dChrkyXlu27TIfOPHTLjT1H8p1gjVMtiZjMULDu/eUm0jfkVYN9+bWEEqYtGXbw2vKAlF8rORnJigX/ZNQm0XrBZ9Yw8RwDw7oyXeovBjctjNkxLWhZIGOicQvj28F5qr4ftO9dN2iXG0bQzxEKTXxe9B7B94N2bKlXcouSnaj9nkxJtcX18VnBmsLXoIHigCpuMJEuFUkpFopt5xXAruf7vrqyXfU6c3u8XYlw4hXvr+SU1JMLbiBlmZZmNszcIi4VqgX9fuXv1ZPrUWOkUYVqQUv3Xqq5TXNH7ag36Dtz8kGMNKxancOv5aSZLVWHpIHHpEq/FO2QIi2SRi1Q8V2peXFtXTOmgmw5q588+hP91+P/pRP2OUEvDLygdCmtLx/1ZZ2wzwljzpViMfg3HFuH5+OFQsH8SHsPm46Sr+Tl+Z4Mw9hqfotXvd4/B/1evicl9w7qCJLqv2krJrUEa/rXDa3Tzx77mTZkNmjxjMX6y/q/6MR9T9QH9v+AInZEq1ZJ118vrVwZ9GEdeeTY9WmeJyWTwbly++3SunXS/PlB32siUUtaXttu+nRp//0n72PBjslkMkqlUjs/Qdyu9olPfEI33HCDBgcHZY+6et1444067bTT9OCDD+qocVatLV26VOvXr9ezzz475vFLL71U5513nrq6utTZ2amuri7NmjVLl156qb761a+O2XbhwoWaM2eO7rrrrgmVd6IfNADgtS1fyesHD/1A/YV++fJ12MzDdPoBp2+xXdWt6ncv/k5lN0hG+uY5bx7bKb0TF4sD2DP1Ffr09l+8Xc/2PqvvH/d9fetP35LjObr7n+7W4hmLg41eybVkO4NXQ6Uhnf27s/Vs37OK2lE1R5t11bKrNLORTGBTUnkgWOTn5IMk1/IlMxwkNUjMk0IN29vDDunrk/7wB+nFF4PFNbNmBYttLCs4napV6bTTgo4HAAB2hk3ZTeor9EmSZiRnbD2pmlsKBti8suRVJBnBIFuoIZjIPtokLGbsK/TVBxFb462akZyxnVcAACZkAtd013P1yMZH5PquDBl6Q8cbFLFf2USK7ly3TvrlSXqi+wnNb56v9Zn1uu6k67Rs32WvaH947brthdv03hvfq31a99Htp9+upf9vqdYNrdMdZ9yht89/uyTp8cdHFlyFQsHiuFAomBwwnJz0nHMm+UCwy6xNr9UhPzlEuUpOD531kPoL/Vp67VLNSc3Ro594dKsLfcf1yGelF/9dMiPSW/5H6nxn8HhutXTr/ODvt94mrfjnIMnyjOOkt90umVYw2WXT74MEIpJ0Up/KatWTT0rr10v9/SMThocTQ7e2Slu5Jx2mMhaMvTZ4btBeNoyg/5jFZXgVyFVyWnb9Mv1p7Z908ZKL9e8r/l2S9IcP/0EHTn/5XeBEAqvXmLvukk46KUgccfzx0g9/KC1YMPK84wQJ4jo7x9/Hq4nv+/r4bz+unz/xc33h8C+oJdaib9z3DX1g/w/oxvffKMu0pPTfpWcvl9L/G0xWTr1eCqWCa/7wOOK+n5duWxAkVJp5YpBgSZJevFLaeFsQLyTp9edL094yUgB+X5Pq+b7n9ab/+yZVvar+/NEgycedq+7Uvx77r/rSUV+a7OJhFys7ZZ39u7N19RNXa2HbQq1Jr9FVy67SGQeesWM72sF6/9VPXK1P3vZJHdJxiJ7ufVpzU3N162m3jl34tLNUBqXHz5U23REsjpp7arBoyowE4z/l3iBZ0cxlUrEnuM4V1gX1WzMcLGAeXtA8/Wi9uGkvXX55kHzI86S3vjXoV4lGgwWwmUyQ2P7Tnw4WW0hBgpG2tvGLCOxWkzCvNJuVfvQj6c9/Dm4MdthhwQ2Z7Vp+AMcJ/vuss4L5s0dfc7RWbFyh6066Ts/1Padv/umbOnn/k3XjB26sJzPZuDFItLhxY3BT89E3WrJt6c1vDhJRYYrwnNri+M3B4nivIskcGXNPvX6kL6EyKJX7a2PzTvC4FZVCTVJ0x7I19fRIXV3BTSPL5VoiQjNIFNfeLi1evLMP9LXpmd5n5HiODBla2LZwy5uc11SrI9+DYQRzAmOxiVcjsIcqD0jrbpIGHw8S0yQXBIvWDStYxO5VpfkfDRbIbrozuKGjk5NiHbVEM2ZQV/Mq0sJzJnRCZYZ8ffGL0s03B5ufc06QqHU4MWE6HYxRfOpTu/zoAQAAAAAAAGDCXrUJ4u644w4df/zxuvHGG3XKKafUH3/Xu96lJ598UuvWrZM1TlrpK6+8Up/+9Kf10EMP6fDarWQcx9HixYuVTCb10EMP1bc9/PDDVSgU9MQTT9T399BDD+nII4/UlVdeqX/5l3+ZUHlJEAcAAICppr/QrwvuuUAltyRDhr5wxBe2vugFAAAAAADscq7nKlvJSpIiVoQ7ZOIV++mjP9UnbvuEonZUZaes//e+/7fji7uxR7tr1V1613Xv0j4t+yhbyWqgOKAHP/ag3tDxhonvxHOkXyWChVdzT5eOui54/O/fChK/9T0Y/Pch/y49+png70P/U1rwyeDve94h5VaN7O+dj79m75AMAJgcxWpRlz14mQrVgiTpYwd/TAvbFm59YxJYveb090v33is99VSQVMJ1g2Qjw3dcPuQQ6Z//ebJLufO4nquP/fZj+vO6P8uQocUzFuv691+vsBXe+gt8P0isZNRupjFs1X8FdT/fkxaeK804NrjJhu9JpW4p+7y072fH7ovf16T76/q/6u2/eLt8+So5JZ1zxDn6/nHfn+xiYQ/XlelSppyRJM1tmqt4KL7r37QyJFX6a4ktneD6FW6SIu2SaW/35VvjeVKxGCS9CYeleO0wvvhF6Qc/CP6++OLgv5PJkdflckGCnJYdyNEOvFb05nv1pv/7Jq0dWquKW9GSeUv0+zN+/4pvzgIAwHg2bgySweXzIwlHGxqkadOk171usksHAAAAAAAAACNetQniJGnp0qV65JFHdNlll2nBggW64YYb9NOf/lTXXnutzjgjWOTw8Y9/XNdcc41WrVqlubVbQZXLZR1yyCHKZDK69NJLNW3aNP34xz/Wrbfeqrvvvltve9vb6u9x33336dhjj9WJJ56oT3/609q8ebO+9rWvKZVK6ZFHHlEkMrHBRhLEAQAAAAAAAAAAANgd0qW0PN+TZVhKRVOTXRxMQVc/cbVWdK2QJL1j/jv0vv3et2M7cEvSTbVElnufJR320+DvdTdJ6adGtpv9Aened0jlPqlzmfTW30iGuROOAACAXWx00qrxTL3pdMDkq6Sl3gekwSekyqDk5CQzLIVbpOR8af6ZY7cnQdyUkKvkVHWrkqSmaJOMiVwDAYzL96Vbbw3+PfiglE5LiYQUiQRJRy0rSCB37LGTXVJgaqq4FZWdsiQpForJfoVJHAEAAAAAAAAAAIA9was6QVwul9P555+vm266SQMDA1q4cKHOO+88nXrqqfVtzjzzTF1zzTVavXq15s2bV3+8p6dHX/nKV3TbbbepUCho8eLF+uY3v6l3vOMdW7zPH/7wB33jG9/QE088oXg8rmXLlum73/2upk2bNuGykiAOAAAAAAAAAAAAALDHeOB90ob/kSJt0tIVUnLe2OedgmTHpY2/l/56epAgpHF/qfNdUqRdcrLS0DOSFZWOun4yjgAAAACTgQSMAF6DfD/4Z5IzHQAAAAAAAAAAAACwA17VCeJeTUgQBwAAAAAAAAAAAADYY+RWS/e+Q8q9JFlxadZ7pMQ8yS1J6aek/EvSiauCbatZqfsPUv/DUn6N5DlSqCHYfsaxUvubJvFAAAAAAAAAAAAAAAAAAAAAAGDqmWjeMns3lgkAAAAAAAAAAAAAAExlyb2k45+W1t0k9dwrpZ+UBp+Q7KSU3Fuae8rItqEGafZJwT8AAAAAAAAAAAAAAAAAAAAAwE5DgjgAAAAAAAAAAAAAADDCikp7/VPwDwAAAAAAAAAAAAAAAAAAAACw25Eg7h/k+74kKZPJTHJJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAExVw/nKhvOXjYcEcf+gbDYrSZo9e/YklwQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAVJfNZpVKpcZ93vC3l0IO2+R5njZu3KiGhgYZhiEpyM43e/ZsrV+/Xo2NjZNcQgAA8HLEagAApjZiNQAAUxuxGgCAqY1YDQDA1EasBgBgaiNWAwAwtRGrAQCY2ojVAABMbcRqAACmDt/3lc1m1dnZKdM0x93O3o1l2iOZpqlZs2Zt9bnGxkYqRQAATGHEagAApjZiNQAAUxuxGgCAqY1YDQDA1EasBgBgaiNWAwAwtRGrAQCY2ojVAABMbcRqAACmhlQqtd1txk8dBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYrUgQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTBAnidoFIJKKLLrpIkUhksosCAAC2glgNAMDURqwGAGBqI1YDADC1EasBAJjaiNUAAExtxGoAAKY2YjUAAFMbsRoAgKmNWA0AwKuP4fu+P9mFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABI5mQXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQIEEcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwRJIjbiXK5nL7whS+os7NT0WhUixcv1o033jjZxQIA4DXnvvvuk2EYW/330EMPjdn2scce0zve8Q4lk0k1NTXppJNO0ksvvTRJJQcAYM+TzWb1la98RUuXLlV7e7sMw9Dy5cu3uu2OxOUf/ehHWrhwoSKRiPbaay9dfPHFqlaru/BIAADYM000Vp955plbbWcvXLhwq/slVgMA8I+755579LGPfUwLFy5UIpHQzJkz9Z73vEePPvroFtvSpgYAYPebaKymTQ0AwOR44okndMIJJ2jOnDmKxWJqaWnRkUceqWuvvXaLbWlXAwCw+000VtOuBgBg6vjZz34mwzCUTCa3eI62NQAAk2+8WE3bGgCAVzd7sguwJznppJO0YsUKXXrppdp33311/fXX67TTTpPneTr99NMnu3gAALzmfPvb39bRRx895rFFixbV/37uuee0ZMkSLV68WDfddJNKpZK+8Y1v6C1veYueeOIJtbe37+4iAwCwx+nv79dPfvITHXTQQXrve9+rn/3sZ1vdbkfi8iWXXKILL7xQX/va17R06VKtWLFCF1xwgbq6uvSTn/xkdx0aAAB7hInGakmKxWK65557tnjs5YjVAADsHFdeeaX6+/v1+c9/Xvvvv796e3v1ve99T0cccYTuvPNOHXPMMZJoUwMAMFkmGqsl2tQAAEyGdDqt2bNn67TTTtPMmTOVz+d13XXX6cMf/rDWrFmjCy64QBLtagAAJstEY7VEuxoAgKmgq6tL5557rjo7OzU0NDTmOdrWAABMvm3Faom2NQAAr2aG7/v+ZBdiT/C73/1OJ5xwQj0p3LClS5fq6aef1rp162RZ1iSWEACA14777rtPRx99tH71q1/pAx/4wLjbffCDH9S9996rVatWqbGxUZK0du1a7bPPPjrnnHN02WWX7a4iAwCwxxrudjAMQ319fWpvb9dFF12k5cuXj9luonG5v79fs2bN0j/90z/pqquuqr/+29/+ti644AL9/e9/1/777797Dg4AgD3ARGP1mWeeqZtvvlm5XG6b+yNWAwCw82zevFnTpk0b81gul9OCBQu0aNEi3X333ZJoUwMAMFkmGqtpUwMAMLUcccQR2rhxo9atWyeJdjUAAFPNy2M17WoAAKaGE088UYZhqKWlZYvYTNsaAIDJt61YTdsaAIBXN3OyC7Cn+PWvf61kMqmTTz55zOMf/ehHtXHjRj388MOTVDIAALA1juPotttu0/vf//764IMkzZ07V0cffbR+/etfT2LpAADYcxiGIcMwtrnNjsTl3//+9yqVSvroRz86Zh8f/ehH5fu+/ud//menlh8AgD3dRGL1jiBWAwCw87w84YwkJZNJ7b///lq/fr0k2tQAAEymicTqHUGsBgBg92hra5Nt25JoVwMAMBWNjtU7glgNAMCuc+211+r+++/Xj3/84y2eo20NAMDk21as3hHEagAApiYSxO0kf//737XffvttMQhx4IEH1p8HAAC719lnny3bttXY2KjjjjtOf/7zn+vPrVq1SsVisR6rRzvwwAO1cuVKlUql3VlcAABes3YkLg+3rw844IAx23V0dKitrY32NwAAu1CxWNSMGTNkWZZmzZqlz3zmMxoYGBizDbEaAIBda2hoSI899phe//rXS6JNDQDAVPPyWD2MNjUAAJPH8zw5jqPe3l79+Mc/1p133qmvfvWrkmhXAwAwFWwrVg+jXQ0AwOTZvHmzvvCFL+jSSy/VrFmztnietjUAAJNre7F6GG1rAABevXb8lirYqv7+fs2fP3+Lx1taWurPAwCA3SOVSunzn/+8lixZotbWVq1cuVLf/e53tWTJEt1+++067rjj6rF5OFaP1tLSIt/3NTg4qI6Ojt1dfAAAXnN2JC739/crEokokUhsdVva3wAA7BoHHXSQDjroIC1atEiSdP/99+sHP/iB/vjHP2rFihVKJpOSRKwGAGAXO/vss5XP53X++edLok0NAMBU8/JYLdGmBgBgsn3605/WVVddJUkKh8O64oor9MlPflIS7WoAAKaCbcVqiXY1AACT7dOf/rRe97rX6VOf+tRWn6dtDQDA5NperJZoWwMA8GpHgridyDCMV/QcAADYuQ4++GAdfPDB9f9+y1veove973064IAD9JWvfEXHHXdc/TniNwAAU8dE4zLxGwCA3e+cc84Z89/HHnusDj74YH3gAx/QT3/60zHPE6sBANg1LrzwQl133XX60Y9+pEMOOWTMc7SpAQCYfOPFatrUAABMrq9//es666yztHnzZt166636zGc+o3w+r3PPPbe+De1qAAAmz/ZiNe1qAAAmz3//93/r1ltv1eOPP77dWErbGgCA3W+isZq2NQAAr27mZBdgT9Ha2rrVjLcDAwOStp79HgAA7D5NTU1atmyZnnzySRWLRbW2tkrSuPHbMAw1NTXt5lICAPDatCNxubW1VaVSSYVCYavb0v4GAGD3ed/73qdEIqGHHnqo/hixGgCAXePiiy/Wt771LV1yySX6zGc+U3+cNjUAAFPDeLF6PLSpAQDYfebMmaM3vvGNOv7443XllVfqE5/4hM477zz19vbSrgYAYArYVqweD+1qAAB2vVwup7PPPluf/exn1dnZqXQ6rXQ6rUqlIklKp9PK5/O0rQEAmCQTjdXjoW0NAMCrBwnidpIDDjhAzz77rBzHGfP4U089JUlatGjRZBQLAACM4vu+pCBL/d57761YLFaP1aM99dRTWrBggaLR6O4uIgAAr0k7EpcPOOCA+uOjdXd3q6+vj/Y3AAC7me/7Ms2RoQZiNQAAO9/FF1+s5cuXa/ny5fr6178+5jna1AAATL5txeptoU0NAMDkOOyww+Q4jl566SXa1QAATEGjY/W20K4GAGDX6uvrU09Pj773ve+pubm5/u+GG25QPp9Xc3OzzjjjDNrWAABMkonG6m2hbQ0AwKsDCeJ2kve9733K5XL67//+7zGPX3PNNers7NThhx8+SSUDAACSNDg4qNtuu02LFy9WNBqVbds68cQTdcsttyibzda3W7dune69916ddNJJk1haAABeW3YkLr/zne9UNBrV1VdfPWYfV199tQzD0Hvf+97dVGoAAHDzzTerUCjoiCOOqD9GrAYAYOf65je/qeXLl+uCCy7QRRddtMXztKkBAJhc24vV46FNDQDA5Ln33ntlmqbmz59PuxoAgClodKweD+1qAAB2vRkzZujee+/d4t9xxx2naDSqe++9V9/61rdoWwMAMEkmGqvHQ9saAIBXD3uyC7CneNe73qVjjz1Wn/rUp5TJZLRgwQLdcMMN+v3vf69rr71WlmVNdhEBAHjNOP300zVnzhy98Y1vVFtbm1588UV973vfU09Pz5iOiYsvvliHHnqoli1bpq997WsqlUr6xje+oba2Nn3pS1+avAMAAGAPc8cddyifz9cH/Z955hndfPPNkqTjjz9e8Xh8wnG5paVFF1xwgS688EK1tLRo6dKlWrFihZYvX66zzjpL+++//6QcIwAAr2bbi9W9vb06/fTTdeqpp2rBggUyDEP333+//u3f/k2vf/3rddZZZ9X3RawGAGDn+d73vqdvfOMbeuc736kTTjhBDz300Jjnhyfn0aYGAGByTCRWr127ljY1AACT5BOf+IQaGxt12GGHafr06err69OvfvUr/fKXv9SXv/xltbe3S6JdDQDAZJlIrKZdDQDA5IlGo1qyZMkWj1999dWyLGvMc7StAQDY/SYaq2lbAwDw6mf4vu9PdiH2FLlcTueff75uuukmDQwMaOHChTrvvPN06qmnTnbRAAB4Tbn00kv1y1/+UqtXr1Yul1NLS4ve/OY367zzztOhhx46ZttHH31UX/3qV/XXv/5Vtm3rmGOO0b/+679q7733nqTSAwCw55k3b57Wrl271edWr16tefPmSdqxuHzFFVfoP/7jP7RmzRrNmDFDH/3oR3X++ecrFArtykMBAGCPtL1YnUql9PGPf1yPP/64enp65Lqu5s6dq/e97336+te/rlQqtcXriNUAAPzjlixZovvvv3/c50cP9dOmBgBg95tIrB4cHKRNDQDAJPn5z3+un//853r22WeVTqeVTCZ10EEH6ayzztKHPvShMdvSrgYAYPebSKymXQ0AwNRz5pln6uabb1YulxvzOG1rAACmhpfHatrWAAC8+pEgDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmCHOyCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACJAgDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmCBLEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAUQYI4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJgiSBAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFMECeIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYIogQRwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATBEkiAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKYIEcQAAAAAAAAAAAAAAAAAA7ARr1qyRYRg688wzd+h1hmFoyZIlu6RMAAAAAAAAAAAAAAAAAIBXHxLEAQAAAAAAAAAAAAAAAAD2CMMJ2kb/C4fDmj17tk4//XQ9+eSTk1KuJUuWyDCMSXlvAAAAAAAAAAAAAAAAAMCrjz3ZBQAAAAAAAAAAAAAAAAAAYGfae++99aEPfUiSlMvl9NBDD+mGG27QLbfconvuuUdHHXXULnnfmTNn6tlnn1Uqldqh1z377LOKx+O7pEwAAAAAAAAAAAAAAAAAgFcfEsQBAAAAAAAAAAAAAAAAAPYoCxYs0PLly8c8dsEFF+iSSy7R+eefr3vvvXeXvG8oFNLChQt3+HWv5DUAAAAAAAAAAAAAAAAAgD2XOdkFAAAAAAAAAAAAAAAAAABgV/vsZz8rSVqxYoUkyXEc/eAHP9BBBx2kWCymVCqlo48+WrfffvsWr/U8Tz/72c902GGHqaWlRfF4XPPmzdN73/te/elPf6pvt2bNGhmGoTPPPLP+mGEYuv/+++t/D/97+TZLlizZ4n37+/t1zjnnaK+99lIkEtG0adN0yimn6Jlnntli2zPPPFOGYWjNmjX68Y9/rP3220/RaFRz587VxRdfLM/zXsnHBgAAAAAAAAAAAAAAAACYBPZkFwAAAAAAAAAAAAAAAAAAgF3NMIz6377v65RTTtEtt9yifffdV2effbby+bxuuukmLVu2TD/84Q/1uc99rr79eeedp8svv1x77723Tj/9dDU0NKirq0sPPPCA7rnnHr31rW8d930vuugiXX311Vq7dq0uuuii+uOLFy/eZnn7+/t1xBFHaOXKlVqyZIlOPfVUrVmzRjfffLNuv/12/eEPf9CRRx65xeu+/OUv67777tOyZcu0dOlS/c///I+WL1+uSqWiSy65ZAc+MQAAAAAAAAAAAAAAAADAZCFBHAAAAAAAAAAAAAAAAABgj3fFFVdIkg499FBde+21uuWWW/S2t71Nd911l8LhsCTp/PPP1yGHHKJzzz1XJ554ovbaay9J0s9+9jPNnDlTTz75pOLxeH2fvu9rcHBwm++7fPly3XfffVq7dq2WL18+4fJ+5Stf0cqVK3Xeeefp29/+dv3xM888U+985zv1kY98RM8995xM0xzzukcffVRPPvmkOjo6JEkXXnih9tlnH/3oRz/SRRddVD9WAAAAAAAAAAAAAAAAAMDUZW5/EwAAAAAAAAAAAAAAAAAAXj1Wrlyp5cuXa/ny5Tr33HP15je/WZdccomi0ai+/e1v6+qrr5YkXX755WMSps2aNUvnnHOOqtWqrrvuujH7DIfDsu2x92Q1DEMtLS07vfyVSkU33HCDWltbdcEFF4x57rjjjtNxxx2nF198UX/5y1+2eO2FF15YTw4nSW1tbXrPe96jbDar559/fqeXFQAAAAAAAAAAAAAAAACw85EgDgAAAAAAAAAAAAAAAACwR1m1apUuvvhiXXzxxbriiiu0du1anX766frb3/6mI488Uo8//rhisZgOO+ywLV67ZMkSSdITTzxRf+yDH/ygVq9erUWLFunCCy/U3XffrXw+v8vK/9xzz6lYLOqwww5TPB6fUBmHveENb9jisVmzZkmS0un0ziwmAAAAAAAAAAAAAAAAAGAXIUEcAAAAAAAAAAAAAAAAAGCPctxxx8n3ffm+r0qlovXr1+u6667TAQccIEnKZDKaPn36Vl87Y8YMSdLQ0FD9sSuuuEKXX365QqGQvvWtb+nYY49VW1ubPvKRj6ivr2+nlz+TyUjSDpVxWCqV2uIx27YlSa7r7qwiAgAAAAAAAAAAAAAAAAB2IRLEAQAAAAAAAAAAAAAAAABeUxobG9XT07PV54Yfb2xsrD8WCoX05S9/WU8//bS6urp0/fXX6y1veYt+8Ytf6Iwzztgl5RtdlomUEQAAAAAAAAAAAAAAAACw5yBBHAAAAAAAAAAAAAAAAADgNeXggw9WsVjU3/72ty2eu//++yVJixcv3uprOzs7ddppp+n3v/+99tlnH919990qFovbfD/LsiRJrutOqHwLFy5UNBrVihUrVCgUdriMAAAAAAAAAAAAAAAAAIBXNxLEAQAAAAAAAAAAAAAAAABeUz7ykY9Iks477zxVq9X6411dXfr+978v27Z1xhlnSJLK5bLuuece+b4/Zh/5fF7ZbFahUKieAG48LS0tkqQNGzZMqHzhcFinnXaa+vr69J3vfGfMc3fffbfuuOMOLViwQG9605smtD8AAAAAAAAAAAAAAAAAwKuLPdkFAAAAAAAAAAAAAAAAAABgd/rwhz+sW265Rb/5zW904IEHatmyZcrn87rpppvU39+v733ve5o/f74kqVgs6u1vf7vmz5+vww8/XHPmzFEul9Ntt92m7u5uffWrX1U4HN7m+x1zzDG6+eabdfLJJ+v4449XNBrVAQccoBNOOGHc11x22WW6//779a1vfUt/+ctfdPjhh2vNmjW6+eabFY/H9fOf/1ymyT1iAQAAAAAAAAAAAAAAAGBPRII4AAAAAAAAAAAAAAAAAMBrimEYuvnmm/XDH/5Q11xzjX70ox8pHA7rDW94g774xS/q3e9+d33bRCKhyy67TH/84x/1wAMPaPPmzWpubtbChQt12WWX6ZRTTtnu+/3zP/+z1qxZoxtvvFGXXHKJHMfRRz7ykW0miGtvb9fDDz+sb37zm/rNb36jBx54QKlUSu95z3t00UUXadGiRTvlswAAAAAAAAAAAAAAAAAATD2G7/v+ZBcCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCZk10AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECABHEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEWQIA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApggSxAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAFEGCOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYIkgQBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABTBAniAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCKIEEcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwRJIgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCmCBHEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMEWQIA4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApggSxAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAFEGCOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYIv4/kErRPsdqfl8AAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -2014,34 +2025,36 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"designed_sequences = evaluator.enhancer_design_motif_implementation(\n",
- " patterns = {\n",
- " 'SOX10':'AACAATGGCCCCATTGT',\n",
- " 'CREB5':'ATGACATCA',\n",
+ " patterns={\n",
+ " \"SOX10\": \"AACAATGGCCCCATTGT\",\n",
+ " \"CREB5\": \"ATGACATCA\",\n",
" },\n",
- " target_class=\"Oligo\", n_sequences=5, target_len=500\n",
+ " target_class=\"Oligo\",\n",
+ " n_sequences=5,\n",
+ " target_len=500,\n",
")"
]
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 49,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 42ms/step\n"
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAEiCAYAAAAxqKXyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfkUlEQVR4nO3dd3gU5f738c9CekVCrwKC9CJFQDShi4DSVECUADbKOVIsgCKhCAjiT/QAglJEqlQVBEUBQSkHQaVZUYrSSwg1bMj9/OGze1g2hE0yYbPL+3VduSCzM7Pf+cxkd3a/O/fajDFGAAAAAAAAAAAAAHxaLm8XAAAAAAAAAAAAACDraPwBAAAAAAAAAAAAfoDGHwAAAAAAAAAAAOAHaPwBAAAAAAAAAAAAfoDGHwAAAAAAAAAAAOAHaPwBAAAAAAAAAAAAfoDGHwAAAAAAAAAAAOAHaPwBAAAAAAAAAAAAfoDGHwAAAAAAAAAAAOAHaPwBAAAAgEVmzpwpm83m/AkICFCxYsXUrVs3/f333zelhttvv13x8fHO39etWyebzaZ169ZlaD0bN25UQkKCEhMT3W6Li4tTXFxclurMbgkJCbLZbJladu7cuXrrrbesLQgAAAAAboIAbxcAAAAAAP5mxowZKl++vC5evKj169dr9OjR+vrrr7Vz506Fh4ff1Fruuusubdq0SRUrVszQchs3btSwYcMUHx+vPHnyuNw2adIkCyvMeebOnatdu3apb9++3i4FAAAAADKExh8AAAAAWKxy5cqqVauWJKlhw4a6cuWKRowYoWXLlumxxx5Lc5kLFy4oLCzM8lqioqJUt25dS9eZ0SYiAAAAAODmYKhPAAAAAMhmjsbb/v37JUnx8fGKiIjQzp071axZM0VGRqpx48aSpMuXL2vkyJEqX768goODlT9/fnXr1k3Hjx93WafdbteLL76oQoUKKSwsTA0aNNB///tft/u+3lCfW7ZsUevWrRUTE6OQkBCVKVPGeYVbQkKCXnjhBUlSqVKlnEOXOtaR1lCfp06dUq9evVS0aFEFBQWpdOnSevnll5WcnOwyn81mU58+ffThhx+qQoUKCgsLU7Vq1bR8+fIb5ujYltmzZ6t///4qVKiQQkNDFRsbq++///6Gy6empmrs2LHObAsUKKAnnnhCf/31l3OeuLg4rVixQvv373cZthUAAAAAfAFX/AEAAABANvv9998lSfnz53dOu3z5sh588EE988wzGjhwoFJSUpSamqqHHnpIGzZs0Isvvqj69etr//79Gjp0qOLi4vTdd98pNDRUkvTUU09p1qxZev7559W0aVPt2rVL7dq109mzZ29Yz+eff67WrVurQoUKevPNN1WiRAnt27dPX3zxhSTpySef1KlTp/TOO+9oyZIlKly4sKTrX+l36dIlNWzYUHv37tWwYcNUtWpVbdiwQaNHj9YPP/ygFStWuMy/YsUKbd26VcOHD1dERITGjh2rtm3b6pdfflHp0qVvWP/gwYN111136f3339eZM2eUkJCguLg4ff/99+ku37NnT02dOlV9+vRRq1attG/fPg0ZMkTr1q3T9u3blS9fPk2aNElPP/209u7dq6VLl96wFgAAAADISWj8AQAAAIDFrly5opSUFF26dElff/21Ro4cqcjISD344IPOeex2u1599VV169bNOW3+/PlatWqVFi9erHbt2jmnV6tWTbVr19bMmTPVs2dP/fzzz/rggw/Ur18/jR07VpLUtGlTFSxY8LpDiV6td+/eKlGihLZs2aKQkBDndEctxYoVU4kSJSRJNWrU0O23357u+j744APt2LFDH330kR5++GFnPREREXrppZe0evVqNW3a1Dn/xYsX9eWXXyoyMlLSP99DWKRIEX300UcaOHDgDevPnz+/li5d6rwSr0GDBipbtqxGjx6t9957L81lfv75Z02dOlW9evXSO++845xeo0YN3X333fq///s/vfbaa6pYsaLy5Mmj4OBgy4dIBQAAAIDsxlCfAAAAAGCxunXrKjAwUJGRkWrVqpUKFSqklStXqmDBgi7ztW/f3uX35cuXK0+ePGrdurVSUlKcP9WrV1ehQoWcQ22uXbtWktyafI888ogCAtL/fOevv/6qvXv3qkePHi5Nv6xYs2aNwsPD1aFDB5fp8fHxkqSvvvrKZXrDhg2dTT9JKliwoAoUKOAcCvVGOnfu7DL8ZsmSJVW/fn1nLmlx3OaoyaFOnTqqUKGCW40AAAAA4Iu44g8AAAAALDZr1ixVqFBBAQEBKliwoHOozKuFhYUpKirKZdrRo0eVmJiooKCgNNd74sQJSdLJkyclSYUKFXK5PSAgQDExMenW5viuwGLFinm2MR44efKkChUq5PZdeAUKFFBAQICzXoe0agwODtbFixc9ur9rt9sx7ccff0y3Rklp7osiRYp43HQEAAAAgJyMxh8AAAAAWKxChQqqVatWuvNc2ySTpHz58ikmJkarVq1KcxnHVXKOxtmRI0dUtGhR5+0pKSluTbZrOb5n8K+//kp3voyIiYnRli1bZIxx2a5jx44pJSVF+fLls+y+pH+2O61p6TU9HbcdPnzYrel56NAhy2sEAAAAAG9gqE8AAAAAyCFatWqlkydP6sqVK6pVq5bbz5133ilJiouLkyTNmTPHZfmPPvpIKSkp6d5HuXLlVKZMGU2fPl3JycnXnS84OFiSPLoKr3Hjxjp37pyWLVvmMn3WrFnO2600b948GWOcv+/fv18bN2505pKWRo0aSZJmz57tMn3r1q366aefXGrMyNWHAAAAAJCTcMUfAAAAAOQQHTt21Jw5c/TAAw/oueeeU506dRQYGKi//vpLa9eu1UMPPaS2bduqQoUK6tKli9566y0FBgaqSZMm2rVrl9544w234UPTMnHiRLVu3Vp169ZVv379VKJECR04cECff/65s5lYpUoVSdKECRPUtWtXBQYG6s4773T5bj6HJ554QhMnTlTXrl21b98+ValSRd98841GjRqlBx54QE2aNLE0p2PHjqlt27Z66qmndObMGQ0dOlQhISEaNGjQdZe588479fTTT+udd95Rrly51KJFC+3bt09DhgxR8eLF1a9fP+e8VapU0ZIlSzR58mTVrFlTuXLluuEVnAAAAACQE9D4AwAAAIAcInfu3Prkk080YcIEffjhhxo9erQCAgJUrFgxxcbGOptxkjRt2jQVLFhQM2fO1Ntvv63q1atr8eLF6tix4w3vp3nz5lq/fr2GDx+uf//737p06ZKKFSumBx980DlPXFycBg0apA8++EDvvfeeUlNTtXbt2jSvqgsJCdHatWv18ssva9y4cTp+/LiKFi2q559/XkOHDrUkm6uNGjVKW7duVbdu3ZSUlKQ6depo/vz5KlOmTLrLTZ48WWXKlNG0adM0ceJERUdH6/7779fo0aNdhgl97rnntHv3bg0ePFhnzpyRMcblCkMAAAAAyKlshlcvAAAAAAAfsG7dOjVs2FALFy5Uhw4dvF0OAAAAAOQ4fMcfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gKE+AQAAAAAAAAAAAD/AFX8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAHwjwdgFWSE1N1aFDhxQZGSmbzebtcgAAAAAAAAAAAABLGGN09uxZFSlSRLlypX9NX45o/H3zzTcaNWqUNm3apEuXLqlYsWJ64oknNGTIEI+WP3TokIoXL57NVQIAAAAAAAAAAADecfDgQRUrVizdebze+Js7d64ef/xxPfLII5o1a5YiIiK0d+9eHTp0yON1REZGSvpng6OiorKrVGQTu92uL774Qs2aNVNgYKC3y/F55GkdsrQWeVqLPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5GntcjTOmRpLfL0bUlJSSpevLizH5Yerzb+/v77bz399NN65plnNGnSJOf0hg0bZmg9juE9o6KiaPz5ILvdrrCwMEVFRfGAYwHytA5ZWos8rUWe1iFLa5GntcjTOmRpLfK0FnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWefoHT77uLv2BQLPZ+++/r/Pnz+ull17yZhkAAAAAAAAAAACAz/Nq42/9+vXKmzevfv75Z1WvXl0BAQEqUKCAnn32WSUlJXmzNAAAAAAAAAAAAMCneH2ozwsXLujhhx/WoEGD9NZbb2nr1q0aOnSodu3apQ0bNqR52WJycrKSk5OdvzuahHa7XXa7/abVD2s49hn7zhrkaR2ytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0DllaizytRZ7WIUtrkae1yNM6ZGkt8vRtGdlvNmOMycZa0lWuXDn99ttvGj16tAYOHOicPmHCBPXt21erV69WkyZN3JZLSEjQsGHD3KbPnTtXYWFh2VozAAAAAAAAAAAAcLNcuHBBnTt31pkzZxQVFZXuvF5t/NWrV0+bN2/W9u3bVaNGDef0X3/9VXfeeadef/11vfjii27LpXXFX/HixXXixIkbbjByHrvdrtWrV6tp06Z8qagFyNM6ZGkt8rQWeVqHLK1FntYiT+uQpbXI01rkaR2ytBZ5Wos8rUOW1iJPa5GndcjSWuTp25KSkpQvXz6PGn9eHeqzatWq2rx5s9t0Ry8yV660v4IwODhYwcHBbtMDAwM5YH0Y+89a5GkdsrQWeVqLPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5GntcjTOmRpLfL0TRnZZ2l31m6S9u3bS5JWrlzpMv2zzz6TJNWtW/em1wQAAAAAAAAAAAD4Iq9e8desWTO1bt1aw4cPV2pqqurWravvvvtOw4YNU6tWrdSgQQNvlgcAAAAAAOAVrd/5xtslKNCWqq7FpUenbJLdeO+z45/+i/eHAAAAPOXVK/4kacGCBerbt6+mTp2qFi1aaPLkyerXr58WLVrk7dIAAAAAAAAAAAAAn+HVK/4kKTQ0VGPGjNGYMWO8XQoAAAAAAAAAAADgs7x+xR8AAAAAAAAAAACArKPxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBrzb+1q1bJ5vNlubP5s2bvVkaAAAAAAAAAAAA4FMCvF2AJI0aNUoNGzZ0mVa5cmUvVQMAAAAAAAAAAAD4nhzR+Ctbtqzq1q3r7TIAAAAAAAAAAAAAn8V3/AEAAAAAAAAAAAB+IEc0/nr37q2AgABFRUWpefPm+uabb7xdEgAAAAAAAAAAAOBTvDrUZ3R0tJ577jnFxcUpJiZGv//+u8aNG6e4uDitWLFCzZs3T3O55ORkJScnO39PSkqSJNntdtnt9ptSO6zj2GfsO2uQp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5GntcjTOv6UZaAt1dslKNBmrvrXe/X4w/6U/Ov49DaytBZ5Wos8rUOW1iJP35aR/WYzxphsrCXDEhMTVaVKFeXNm1c//vhjmvMkJCRo2LBhbtPnzp2rsLCw7C4RAAAAAAAAAAAAuCkuXLigzp0768yZM4qKikp33hzX+JOknj176t1339WFCxcUGhrqdntaV/wVL15cJ06cuOEGI+ex2+1avXq1mjZtqsDAQG+X4/PI0zpkaS3ytBZ5WocsrUWe1iJP65CltcjTWuRpHX/K8tEpm7xdggJtRp2LJWruX3lkNzav1bHgmXpeu28r+dPx6W1kaS3ytBZ5WocsrUWevi0pKUn58uXzqPHn1aE+r8fRi7TZ0j6pDA4OVnBwsNv0wMBADlgfxv6zFnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK3jD1naTS5vlyDH8J52Y/NqPb6+L6/lD8dnTkGW1iJPa5GndcjSWuTpmzKyz3LCWaSL06dPa/ny5apevbpCQkK8XQ4AAAAAAAAAAADgE7x6xV/nzp1VokQJ1apVS/ny5dNvv/2m8ePH6+jRo5o5c6Y3SwMAAAAAAAAAAAB8ilcbf1WrVtWCBQv07rvv6ty5c8qbN68aNGigDz/8ULVr1/ZmaQAAAAAAAAAAAIBP8Wrjb+DAgRo4cKA3SwAAAAAAAAAAAAD8Qo77jj8AAAAAAAAAAAAAGUfjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADNP4AAAAAAAAAAAAAP0DjDwAAAAAAAAAAAPADOarx9/7778tmsykiIsLbpQAAAAAAAAAAAAA+Jcc0/v7++289//zzKlKkiLdLAQAAAAAAAAAAAHxOjmn8Pfvss7rvvvvUtGlTb5cCAAAAAAAAAAAA+Jwc0fibPXu2vv76a02aNMnbpQAAAAAAAAAAAAA+yeuNv2PHjqlv374aM2aMihUr5u1yAAAAAAAAAAAAAJ8UkJWFL1++rGPHjik1NdVleokSJTxeR69evXTnnXeqZ8+eHi+TnJys5ORk5+9JSUmSJLvdLrvd7vF6kDM49hn7zhrkaR2ytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0jj9lGWhLvfFM2V6Duepf79XjD/tT8q/j09vI0lrkaS3ytA5ZWos8fVtG9pvNGGMyege//fabunfvro0bN7pMN8bIZrPpypUrHq1n8eLF6ty5s77//ntVrFhRkhQfH69Fixbp3Llz110uISFBw4YNc5s+d+5chYWFZWBLAAAAAAAAAAAAgJzrwoUL6ty5s86cOaOoqKh0583UFX/x8fEKCAjQ8uXLVbhwYdlstgyv49y5c+rdu7f+9a9/qUiRIkpMTJT0z1WEkpSYmKjAwECFh4e7LTto0CD179/f+XtSUpKKFy+uZs2a3XCDkfPY7XatXr1aTZs2VWBgoLfL8XnkaR2ytBZ5Wos8rUOW1iJPa5GndcjSWuRpLfK0jj9l+eiUTd4uQYE2o87FEjX3rzyym4y/92OVBc/U89p9W8mfjk9vI0trkae1yNM6ZGkt8vRtjpEvPZGpxt8PP/ygbdu2qXz58plZXJJ04sQJHT16VOPHj9f48ePdbr/tttv00EMPadmyZW63BQcHKzg42G16YGAgB6wPY/9ZizytQ5bWIk9rkad1yNJa5Gkt8rQOWVqLPK1FntbxhyztJpe3S5BjeE+7sXm1Hl/fl9fyh+MzpyBLa5GntcjTOmRpLfL0TRnZZ5lq/FWsWFEnTpzIzKJOhQoV0tq1a92mjxkzRl9//bVWrlypfPnyZek+AAAAAAAAAAAAgFtFphp/r7/+ul588UWNGjVKVapUces0ejLcZkhIiOLi4tymz5w5U7lz507zNgAAAAAAAAAAAABpy1Tjr0mTJpKkxo0bu0w3xshms+nKlStZrwwAAAAAAAAAAACAxzLV+EtriE6rzJw5UzNnzsy29QMAAAAAAAAAAAD+KFONv9jYWKvrAAAAAAAAAAAAAJAFmWr8SVJiYqKmTZumn376STabTRUrVlT37t0VHR1tZX0AAAAAAAAAAAAAPJArMwt99913KlOmjP7v//5Pp06d0okTJ/Tmm2+qTJky2r59u9U1AgAAAAAAAAAAALiBTF3x169fPz344IN67733FBDwzypSUlL05JNPqm/fvlq/fr2lRQIAAAAAAAAAAABIX6Yaf999951L00+SAgIC9OKLL6pWrVqWFQcAAAAAAAAAAADAM5ka6jMqKkoHDhxwm37w4EFFRkZmuSgAAAAAAAAAAAAAGZOpxt+jjz6qHj16aMGCBTp48KD++usvzZ8/X08++aQ6depkdY0AAAAAAAAAAAAAbiBTQ32+8cYbstlseuKJJ5SSkiJJCgwMVM+ePTVmzBhLCwQAAAAAAAAAAABwY5lq/AUFBWnChAkaPXq09u7dK2OM7rjjDoWFhVldHwAAAAAAAAAAAAAPZKrx5xAWFqYqVapYVQsAAAAAAAAAAACATPK48deuXTvNnDlTUVFRateuXbrzLlmyJMuFAQAAAAAAAAAAAPCcx42/6Oho2Ww2SVJUVJTz/wAAAAAAAAAAAAC8z+PG34wZM5z/nzlzZnbUAgAAAAAAAAAAACCTcmVmoUaNGikxMdFtelJSkho1apTVmgAAAAAAAAAAAABkUKYaf+vWrdPly5fdpl+6dEkbNmzIclEAAAAAAAAAAAAAMsbjoT4laceOHc7/79mzR0eOHHH+fuXKFa1atUpFixa1rjoAAAAAAAAAAAAAHslQ46969eqy2Wyy2WxpDukZGhqqd955x7LiAAAAAAAAAAAAAHgmQ42/P//8U8YYlS5dWv/973+VP39+521BQUEqUKCAcufObXmRAAAAAAAAAAAAANKXocZfyZIlJUmpqanZUgwAAAAAAAAAAACAzMmVmYVGjx6t6dOnu02fPn26Xn/99SwXBQAAAAAAAAAAACBjMtX4mzJlisqXL+82vVKlSnr33Xc9Xs8PP/ygli1bqkSJEgoNDVXevHlVr149zZ49OzNlAQAAAAAAAAAAALesDA316XDkyBEVLlzYbXr+/Pl1+PBhj9eTmJio4sWLq1OnTipatKjOnz+vOXPm6PHHH9e+ffv0yiuvZKY8AAAAAAAAAAAA4JaTqcZf8eLF9e2336pUqVIu07/99lsVKVLE4/XExcUpLi7OZVqrVq30559/aurUqTT+AAAAAAAAAAAAAA9lqvH35JNPqm/fvrLb7WrUqJEk6auvvtKLL76oAQMGZLmofPny6dixY1leDwAAAAAAAAAAAHCryFTj78UXX9SpU6fUq1cvXb58WZIUEhKil156SYMGDcrw+lJTU5WamqrTp09r4cKF+vzzz/Wf//wnM6UBAAAAAAAAAAAAt6RMNf5sNptef/11DRkyRD/99JNCQ0NVtmxZBQcHZ6qIXr16acqUKZKkoKAgvf3223rmmWeuO39ycrKSk5OdvyclJUmS7Ha77HZ7pmqA9zj2GfvOGuRpHbK0FnlaizytQ5bWIk9rkad1yNJa5Gkt8rSOP2UZaEv1dgkKtJmr/vVePf6wPyX/Oj69jSytRZ7WIk/rkKW1yNO3ZWS/2YwxJhtr8ciBAwd07NgxHTt2TJ9++qmmTp2q119/Xc8//3ya8yckJGjYsGFu0+fOnauwsLDsLhcAAAAAAAAAAAC4KS5cuKDOnTvrzJkzioqKSndejxt/7dq108yZMxUVFaV27dqlO++SJUs8rzYNPXv21Pvvv69Dhw4pf/78brendcVf8eLFdeLEiRtuMHIeu92u1atXq2nTpgoMDPR2OT6PPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1vGnLB+dssnbJSjQZtS5WKLm/pVHdmPzWh0Lnqnntfu2kj8dn95GltYiT2uRp3XI0lrk6duSkpKUL18+jxp/Hg/1GR0dLZvN5vx/dqpTp47effdd/fHHH2k2/oKDg9McVjQwMJAD1oex/6xFntYhS2uRp7XI0zpkaS3ytBZ5WocsrUWe1iJP6/hDlnaTy9slyDG8p93YvFqPr+/La/nD8ZlTkKW1yNNa5GkdsrQWefqmjOwzjxt/M2bMSPP/2WHt2rXKlSuXSpcuna33AwAAAAAAAAAAAPgLjxt/2eHpp59WVFSU6tSpo4IFC+rEiRNauHChFixYoBdeeCHNq/0AAAAAAAAAAAAAuPO48VejRg3nUJ83sn37do/mq1evnmbMmKEPPvhAiYmJioiIULVq1fThhx+qS5cunpYGAAAAAAAAAAAA3PI8bvy1adPG+f9Lly5p0qRJqlixourV++cLljdv3qzdu3erV69eHt95t27d1K1bN8+rBQAAAAAAAAAAAJAmjxt/Q4cOdf7/ySef1L///W+NGDHCbZ6DBw9aVx0AAAAAAAAAAAAAj+TKzEILFy7UE0884Ta9S5cuWrx4cZaLAgAAAAAAAAAAAJAxmWr8hYaG6ptvvnGb/s033ygkJCTLRQEAAAAAAAAAAADIGI+H+rxa37591bNnT23btk1169aV9M93/E2fPl2vvvqqpQUCAAAAAAAAAAAAuLFMNf4GDhyo0qVLa8KECZo7d64kqUKFCpo5c6YeeeQRSwsEAAAAAAAAAAAAcGOZavxJ0iOPPEKTDwAAAAAAAAAAAMghMvUdf5KUmJio999/X4MHD9apU6ckSdu3b9fff/9tWXEAAAAAAAAAAAAAPJOpK/527NihJk2aKDo6Wvv27dOTTz6pvHnzaunSpdq/f79mzZpldZ0AAAAAAAAAAAAA0pGpK/769++v+Ph4/fbbbwoJCXFOb9GihdavX29ZcQAAAAAAAAAAAAA8k6nG39atW/XMM8+4TS9atKiOHDmS5aIAAAAAAAAAAAAAZEymGn8hISFKSkpym/7LL78of/78WS4KAAAAAAAAAAAAQMZkqvH30EMPafjw4bLb7ZIkm82mAwcOaODAgWrfvr2lBQIAAAAAAAAAAAC4sUw1/t544w0dP35cBQoU0MWLFxUbG6s77rhDkZGReu2116yuEQAAAAAAAAAAAMANBGRmoaioKH3zzTdas2aNtm/frtTUVN11111q0qSJ1fUBAAAAAAAAAAAA8ECGG38pKSkKCQnRDz/8oEaNGqlRo0bZURcAAAAAAAAAAACADMjwUJ8BAQEqWbKkrly5kh31AAAAAAAAAAAAAMiETH3H3yuvvKJBgwbp1KlTVtcDAAAAAAAAAAAAIBMy9R1/b7/9tn7//XcVKVJEJUuWVHh4uMvt27dvt6Q4AAAAAAAAAAAAAJ7JVOOvTZs2stlsMsZYXQ8AAAAAAAAAAACATMhQ4+/ChQt64YUXtGzZMtntdjVu3FjvvPOO8uXLl131AQAAAAAAAAAAAPBAhr7jb+jQoZo5c6ZatmypTp066csvv1TPnj0zfedr1qxR9+7dVb58eYWHh6to0aJ66KGHtG3btkyvEwAAAAAAAAAAALgVZeiKvyVLlmjatGnq2LGjJOmxxx7TPffcoytXrih37twZvvPJkyfr5MmTeu6551SxYkUdP35c48ePV926dfX555+rUaNGGV4nAAAAAAAAAAAAcCvKUOPv4MGDuvfee52/16lTRwEBATp06JCKFy+e4TufOHGiChQo4DLt/vvv1x133KFRo0bR+AMAAAAAAAAAAAA8lKGhPq9cuaKgoCCXaQEBAUpJScnUnV/b9JOkiIgIVaxYUQcPHszUOgEAAAAAAAAAAIBbUYau+DPGKD4+XsHBwc5ply5d0rPPPqvw8HDntCVLlmS6oDNnzmj79u1c7QcAAAAAAAAAAABkQIYaf127dnWb1qVLF8uKkaTevXvr/Pnzevnll687T3JyspKTk52/JyUlSZLsdrvsdrul9SD7OfYZ+84a5GkdsrQWeVqLPK1DltYiT2uRp3XI0lrkaS3ytI4/ZRloS/V2CQq0mav+9V49/rA/Jf86Pr2NLK1FntYiT+uQpbXI07dlZL/ZjDEmG2vJkCFDhmjkyJF655131KdPn+vOl5CQoGHDhrlNnzt3rsLCwrKzRAAAAAAAAAAAAOCmuXDhgjp37qwzZ84oKioq3XlzTONv2LBhSkhI0GuvvabBgwenO29aV/wVL15cJ06cuOEGI+ex2+1avXq1mjZtqsDAQG+X4/PI0zpkaS3ytBZ5WocsrUWe1iJP65CltcjTWuRpHX/K8tEpm7xdggJtRp2LJWruX3lkNzav1bHgmXpeu28r+dPx6W1kaS3ytBZ5WocsrUWevi0pKUn58uXzqPGXoaE+s4uj6ZeQkHDDpp8kBQcHu3zPoENgYCAHrA9j/1mLPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1vGHLO0ml7dLkGN4T7uxebUeX9+X1/KH4zOnIEtrkae1yNM6ZGkt8vRNGdlnXj+LHDFihBISEvTKK69o6NCh3i4HAAAAAAAAAAAA8EleveJv/PjxevXVV3X//ferZcuW2rx5s8vtdevW9VJlAAAAAAAAAAAAgG/xauPv008/lSStWrVKq1atcrs9h3z9IAAAAAAAAAAAAJDjebXxt27dOm/ePQAAAAAAAAAAAOA3vP4dfwAAAAAAAAAAAACyjsYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ae82vg7e/asXnzxRTVr1kz58+eXzWZTQkKCN0sCAAAAAAAAAAAAfJJXG38nT57U1KlTlZycrDZt2nizFAAAAAAAAAAAAMCnBXjzzkuWLKnTp0/LZrPpxIkTev/9971ZDgAAAAAAAAAAAOCzvNr4s9ls3rx7AAAAAAAAAAAAwG94dahPAAAAAAAAAAAAANbw6hV/mZWcnKzk5GTn70lJSZIku90uu93urbKQSY59xr6zBnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK3jT1kG2lK9XYICbeaqf71Xjz/sT8m/jk9vI0trkae1yNM6ZGkt8vRtGdlvNmOMycZaPHbixAnlz59fQ4cOVUJCQrrzJiQkaNiwYW7T586dq7CwsGyqEAAAAAAAAAAAALi5Lly4oM6dO+vMmTOKiopKd16fvOJv0KBB6t+/v/P3pKQkFS9eXM2aNbvhBiPnsdvtWr16tZo2barAwEBvl+PzyNM6ZGkt8rQWeVqHLK1FntYiT+uQpbXI01rkaR1/yvLRKZu8XYICbUadiyVq7l95ZDc2r9Wx4Jl6XrtvK/nT8eltZGkt8rQWeVqHLK1Fnr7NMfKlJ3yy8RccHKzg4GC36YGBgRywPoz9Zy3ytA5ZWos8rUWe1iFLa5GntcjTOmRpLfK0Fnlaxx+ytJtc3i5BjuE97cbm1Xp8fV9eyx+Oz5yCLK1FntYiT+uQpbXI0zdlZJ/lhLNIAAAAAAAAAAAAAFnk9Sv+Vq5cqfPnz+vs2bOSpD179mjRokWSpAceeIDv7AMAAAAAAAAAAAA84PXGX8+ePbV//37n7wsXLtTChQslSX/++aduv/12L1UGAAAAAAAAAAAA+A6vN/727dvn7RIAAAAAAAAAAAAAn8d3/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+gMYfAAAAAAAAAAAA4Ado/AEAAAAAAAAAAAB+IMDbBQAAAAAAAP/Q+p1vvHr/gbZUdS0uPTplk+zGu591/vRfDbx6/wAAALg1ccUfAAAAAAAAAAAA4Ae83vg7d+6c+vbtqyJFiigkJETVq1fX/PnzvV0WAAAAAAAAAAAA4FO8PtRnu3bttHXrVo0ZM0blypXT3Llz1alTJ6Wmpqpz587eLg8A/AbDLv2DIZcAAL7O28/pEs/rAAAAAJBTebXx99lnn2n16tXOZp8kNWzYUPv379cLL7ygRx99VLlz5/ZmiQAAAAAAAAAAAJnGh/f+hw/vZT+vNv6WLl2qiIgIPfzwwy7Tu3Xrps6dO2vLli2qX7++l6q7dXj7QYcHHFwPx+b/cHzmLN4+NqWcc3xacWx6O8+ckqVEnlbyhywl8rRSTslS4nkdALzB289DUs55LuJ53VpZzdPbWUo5J0/OkQDAGl5t/O3atUsVKlRQQIBrGVWrVnXeTuMPvoSTtf/hZA0AAAAAAAAAgJvLq42/kydPqnTp0m7T8+bN67w9LcnJyUpOTnb+fubMGUnSqVOnZLfbs6FSP3fprHfv32Z04cIF6VKgZGxeK+N6x1uGeDtLiTytlEOylMjTSn6RpUSeVsohWUrkaSW/yFIiTyvlkCwlC/L0dpZSjsnTimMzfvp/LagkawJtRg8XvaBHJ6yW3Yt5zuxeJ+sr8fbxmUOOTYm/dSv5xfOQRJ5WyiFZSvytW4nndWtZ8bzu7TxzSpaSBXnyt+5kyfPQLejs2X+OIWPMDee1GU/myiblypVTmTJltHLlSpfphw8fVpEiRTR69GgNHDjQbbmEhAQNGzbsZpUJAAAAAAAAAAAAeNXBgwdVrFixdOfx6hV/MTExaXZ3T506Jel/V/5da9CgQerfv7/z99TUVJ06dUoxMTGy2bzb+UfGJSUlqXjx4jp48KCioqK8XY7PI0/rkKW1yNNa5GkdsrQWeVqLPK1DltYiT2uRp3XI0lrkaS3ytA5ZWos8rUWe1iFLa5GnbzPG6OzZsypSpMgN5/Vq469KlSqaN2+eUlJSXL7nb+fOnZKkypUrp7lccHCwgoODXablyZMn2+rEzREVFcUDjoXI0zpkaS3ytBZ5WocsrUWe1iJP65CltcjTWuRpHbK0FnlaizytQ5bWIk9rkad1yNJa5Om7oqOjPZovVzbXka62bdvq3LlzWrx4scv0Dz74QEWKFNHdd9/tpcoAAAAAAAAAAAAA3+LVK/5atGihpk2bqmfPnkpKStIdd9yhefPmadWqVZo9e7Zy587tzfIAAAAAAAAAAAAAn+HVxp8kLVmyRC+//LJeffVVnTp1SuXLl9e8efPUsWNHb5eGmyQ4OFhDhw51G74VmUOe1iFLa5GntcjTOmRpLfK0FnlahyytRZ7WIk/rkKW1yNNa5GkdsrQWeVqLPK1DltYiz1uHzRhjvF0EAAAAAAAAAAAAgKzx6nf8AQAAAAAAAAAAALAGjT8AAAAAAAAAAADAD9D4Q5a8/fbbstlsqly5cqaW37NnjxISErRv3z5rC/MxM2fOlM1mu+7PunXrLLmfhIQE2Ww2S9aVEzhy++6779K8/ddff9Xzzz+vmjVrKk+ePMqbN6/uueceLVq0KMP3df78eXXs2FF33nmnIiMjFR4erkqVKmnkyJE6f/68y7yOnE+cOKF169alu2+v/smpbpSzpOtu05gxY1zmc2RzvZ99+/YpPj7eo7zi4+OzecuzX3Zk6w/HnZW5eGr//v3q3r27ihQpouDgYBUtWlRt27Z1mceRcYECBXT27Fm3ddx+++1q1apVunVGR0crLi5OK1asyFSd2cmT3CXPsnLYsGGDHnnkERUtWlRBQUGKjo5W/fr1NXnyZJ0/f/6GjwmOn7i4uGzY4pvHymz96W89q6zMNT4+XhEREdlZ7k3jaS45ze23357msfvss89mab1Xn2endU5tjNEdd9zh9lhjs9mUkJCQpfvODvv27XPJJ1euXIqJidEDDzygTZs2SZI+/vhj2Ww2vfvuu9ddz+rVq2Wz2fTmm29KkvP8KzIyUufOnXObf//+/cqVK5dXctm8ebMefvhhFS5cWEFBQSpUqJA6dOjg3F6Ha19TBQQEqFixYurWrZv+/vtvt/X+8ccf6tOnj8qVK6fQ0FCFhYWpUqVKeuWVV9Kc3xdlNLurX5fHx8fr9ttvv7kF5zAZPaas4PgbnzlzpnPa1c/9/mLLli1q27atSpQooeDgYBUsWFD16tXTgAEDvF2a37Ei6wsXLighIcGy96ay083a3h07dqhbt24qVaqUQkJCFBERobvuuktjx47VqVOnnPOl9RoxOzheF1xd881+HG/btq1CQ0OVmJh43Xkee+wxBQYG6ujRo7LZbOrTp0+664yLi5PNZlPp0qWV1reVrV+/3vkYffXjpoOn+8mXZST3119/3e35Hv4rwNsFwLdNnz5dkrR7925t2bJFd999d4aW37Nnj4YNG6a4uLhb/kWFJM2YMUPly5d3m16xYkUvVOP7vvjiC61YsUKPP/64ateurZSUFC1YsEAPP/ywhg0bpldffdXjddntdhlj1L9/f5UqVUq5cuXS+vXrNXz4cK1bt05ffvllmsvdddddbi+s27ZtqzJlyuiNN97I0vblNB06dHA7mS5RokSa865atUrR0dFu0wsXLqwhQ4a4vMm3fft29e7dW6NGjVLDhg2d0/Pnz29R5TlfRrKVbp3jLqO5XM+uXbsUFxen0qVL64033lCxYsV0+PBhff7552nOf/z4cY0dO1YjRozIUJ2pqan6448/NHLkSLVu3VqffvqpWrZsmeF6vSkjWQ0dOlTDhw9X/fr1NWLECJUpU0YXLlzQxo0blZCQoF9//VUDBgzQ/fff71zm8OHDateunf71r3+pc+fOzulRUVE3Zfu8KaPHoXTr/K1nRWZyhffcc889bsduwYIFLVl3ZGSkpk2b5vZBgq+//lp79+5VZGSky/RNmzapWLFiltx3dnA8Tl65ckW7d+/WsGHD1LBhQ23atEktW7ZUoUKFNH369Os2TmfMmKHAwEA9/vjjzmmBgYHO8+UePXq4zR8ZGamkpKRs3a5rvfPOO+rbt6/q1KmjsWPHqmTJkjpw4IAmTpyoBg0aaMKECW5vGjpeU128eFHr16/X6NGj9fXXX2vnzp0KDw+XJC1fvlwdO3ZUvnz51KdPH9WoUUM2m007d+7U9OnTtWLFCn3//fc3dVutlpnsrjZkyBA999xzN7HinMuTYwqeW7FihR588EHFxcVp7NixKly4sA4fPqzvvvtO8+fP1/jx471dot+wKusLFy5o2LBhkpSjP5B3s7b3vffeU69evXTnnXfqhRdeUMWKFWW32/Xdd9/p3Xff1aZNm7R06VIrN80n9OjRQ8uWLdPcuXPVq1cvt9vPnDmjpUuXqlWrVhk6v4uMjNSff/6pNWvWqHHjxi63TZ8+XVFRUWmen9wq+ykjuXfv3l2xsbEqXLiwFyrFTWeATNq6dauRZFq2bGkkmaeeeirD61i4cKGRZNauXevR/OfPn8/wffiCGTNmGElm69at2Xo/Q4cONf70Z3+j3I4fP25SU1Pdprds2dKEhYWZS5cuZbmGF1980Ugye/fudU5z5Hz8+PE0lylZsqRp2bJllu/7ZvHk+JRkevfufcN13SibtKxdu9ZIMgsXLvR4GV9xM7P1pePOylxuJDU11VSvXt1Ur179ho8Jjozvv/9+Ex4ebg4fPuxye1oZp1Xn77//biSZJk2aZLl+K90o94xk9dFHHxlJpkePHmk+DiclJZnPP//cbfqff/5pJJlx48ZlbiNyKCuz9ae/9ayyMteuXbua8PDw7CjzprtZ55VWy65j15HHk08+aUJDQ82ZM2dcbu/SpYupV6+eqVSpkomNjbX8/i9fvmzsdrtl67ve4+RXX33l3E5j/neOunPnTrd1nD592oSEhJj27ds7pzn+Bjp27Gjq16/vMn9qaqopWbKkeeqpp4wkM3ToUMu2Jz3ffPONyZUrl2nVqpVbhna73bRq1crkypXLfPPNN8aY6x/7Q4YMMZLM7NmzjTHG/PHHHyY8PNzUqFHDJCYmut1vamqqWbx4cTZt1c2R2ez+/PNPL1Sbc3l6TFnJ8Tc+Y8YM57TMvIbKye677z5TpkyZNB8br1y54oWK/JdVWR8/fvymPv5n1s3Y3o0bN5rcuXOb+++/P83zy+TkZPPxxx87f79Z5+aO902ufn+1a9eupmTJktl+3w4pKSmmSJEipmbNmmnePnnyZCPJfPrpp8YYz17Tx8bGmkqVKpm6deuazp07u9yWlJRkwsLCnOcnVz9uZnQ/+bKM5o5bB0N9ItOmTZsmSRozZozq16+v+fPn68KFCy7zTJ48WdWqVVNERIQiIyNVvnx5DR48WNI/w2Y8/PDDkqSGDRu6XZodFxenypUra/369apfv77CwsLUvXt3SdKBAwfUpUsXFShQQMHBwapQoYLGjx+v1NTUm7T13uG4DP7DDz9UhQoVFBYWpmrVqmn58uVu865YsULVq1dXcHCwSpUqdd1P/l+6dEmDBg1SqVKlFBQUpKJFi6p3797pXiLuK/Lly5fm8GZ16tTRhQsXLLms33HVWUAAF1ADvmj9+vX64Ycf1LdvXwUHB3u0zMiRI5WSkpLpoc7KlCmj/Pnza//+/Zla3lsyktXw4cN12223OYcEv1ZkZKSaNWuWXaX6nMwch7ixzOS6e/duNW7cWOHh4cqfP7/69Onjdn7r6y5duqQBAwaoevXqio6OVt68eVWvXj19/PHHbvM6zj1nzJihO++8U6GhoapVq5Y2b94sY4zGjRunUqVKKSIiQo0aNdLvv//usrzjfH7Dhg2qW7euQkNDVbRoUQ0ZMkRXrly5WZssSerUqZMkad68ec5pZ86c0eLFi52vMa6W1pCWf//9t55++mkVL15cQUFBKlKkiDp06KCjR49K+t8wWx9++KEGDBigokWLKjg42JnL9OnTVa1aNYWEhChv3rxq27atfvrpJ0u2r27dupLkfG5xXLE3Y8YMt3nnzZunS5cupbnd3bt318aNG/XLL784p3355Zfav3+/unXrZkmtnho9erRsNpsmT57sdq4dEBCgSZMmeTTM97XZvPnmmzp//rwmTZqU5ggUNptN7dq1s2grvMOK7NIaIi4xMVE9evRQ3rx5FRERoZYtW+qPP/5I8+/lm2++UePGjRUZGamwsDDVr18/Rw51nhmOY+r333+XzWZzvjdytZUrV8pms+mTTz5xztutWzeVLVtWYWFhKlq0qFq3bq2dO3d6fL8HDx5Uu3btFBUVpejoaHXp0kXHjx+3ZqNuopMnTypfvnxpvobOlet/b1M6hkhctWqV7rrrLoWGhqp8+fLOkaeudqPHZ+mf5/hmzZopLCxM+fPnV+/evbVixYrrDgXtDzzNes2aNYqLi1NMTIxCQ0NVokQJtW/fXhcuXNC+ffuc73sMGzYsR3/1xs3Y3lGjRslms2nq1Klpnl8GBQXpwQcfdJvuyXG8a9cuPfTQQ7rtttsUEhKi6tWr64MPPnCb7+eff9b999+vsLAw5cuXT88++2yaX0Vxs+XOnVtdu3bVtm3b0nxsmzFjhgoXLqwWLVpkeN3du3fXkiVLXN6rnD9/viSpY8eObvNndj/5oozkntbQ3jnpfB3WovGHTLl48aLmzZun2rVrq3LlyurevbvOnj2rhQsXOueZP3++evXqpdjYWC1dulTLli1Tv379nN+H1rJlS40aNUqSNHHiRG3atMk5NI3D4cOH1aVLF3Xu3FmfffaZevXqpePHj6t+/fr64osvNGLECH3yySdq0qSJnn/++RuODZ3TXblyRSkpKS4/1z7IrlixQv/5z380fPhwLV682PmmwR9//OGc56uvvtJDDz2kyMhIzZ8/X+PGjdNHH33k9sLfGKM2bdrojTfe0OOPP64VK1aof//++uCDD9SoUSMlJyfflO2+2dauXav8+fOrQIECGV7WGKOUlBQlJSVp1apVGj9+vDp16pSp4QX9zdy5cxUaGqrg4GDVrFkzzTeaHDw51vE/Gcn2VmJFLuvXr5f0TyPqgQcecI7736pVK/38889pLlOyZEn16tVL06ZN06+//prh+zx9+rROnjzpc8PVeprV4cOHtWvXLucbK7ixzByHuLGM5mq32/XAAw+ocePGWrZsmfr06aMpU6bo0UcfvdmlZ6vk5GSdOnVKzz//vJYtW6Z58+apQYMGateunWbNmuU2//Lly/X+++9rzJgxmjdvns6ePauWLVtqwIAB+vbbb/Wf//xHU6dO1Z49e9S+fXu37185cuSIOnbsqMcee0wff/yxOnTooJEjR6Y5hOD69esVGRmpwMBAVaxYUePHj7fs/CAqKkodOnRweaNt3rx5ypUrl0f7+O+//1bt2rW1dOlS9e/fXytXrtRbb72l6OhonT592mXeQYMG6cCBA3r33Xf16aefqkCBAho9erR69OihSpUqacmSJZowYYJ27NihevXq6bfffsvy9jmai47nlnLlyqlBgwaaPXu27Ha7y7wzZsxQ0aJF1bx5c7f1NGnSRCVLlnTJadq0abrvvvtUtmzZLNfpqStXrmjt2rWqVavWdYdcLV68uGrWrKk1a9ake5xcm80XX3yhggULOps3/sbK7K6Wmpqq1q1ba+7cuXrppZe0dOlS3X333S5Ddjt8/fXXatSokc6cOaNp06Zp3rx5ioyMVOvWrbVgwYIsbV9O4DimihQpoho1aqR5Djpz5kwVKFBADzzwgCTp0KFDiomJ0ZgxY7Rq1SpNnDhRAQEBuvvuu10a7elp27at7rjjDi1atEgJCQlatmyZmjdv7vY3ntPVq1dPW7Zs0b///W9t2bIl3fp//PFHDRgwQP369dPHH3+sqlWrqkePHs7neMmzx+fDhw8rNjZWv/zyiyZPnqxZs2bp7NmzPv8e0o14kvW+ffvUsmVLBQUFafr06Vq1apXGjBmj8PBwXb58WYULF9aqVask/fOhEsd7d0OGDLnZm3ND2b29V65c0Zo1a1SzZk0VL17c47o8OY5/+eUX1a9fX7t379bbb7+tJUuWqGLFioqPj9fYsWOd8x09elSxsbHatWuXJk2apA8//FDnzp3LMcdy9+7dZbPZ3Bqbe/bs0X//+1917dpVuXPnzvB6O3bsqNy5c7t8gGvatGnq0KGD29dCZHY/+bKs5p6R83X4EO9ecAhfNWvWLCPJvPvuu8YYY86ePWsiIiLMvffe65ynT58+Jk+ePOmuJ72hPmNjY40k89VXX7lMHzhwoJFktmzZ4jK9Z8+exmazmV9++SWTW+U9jiFE0vrJnTu3cz5JpmDBgiYpKck57ciRIyZXrlxm9OjRzml33323KVKkiLl48aJzWlJSksmbN6/LUJ+rVq0ykszYsWNd6lmwYIGRZKZOnZodm2uZzAxl9d577xlJZsKECZm6z3nz5rnsn27durkNI+Fvw7B5knPnzp3NnDlzzPr1682iRYtMixYtjCTzyiuvuMznyCatnzJlyqS57lt9qM+MZusPx52VudzIM888YySZqKgo06NHD/Pll1+aDz/80JQsWdLky5fPHDp0yDnv1RmfOHHCREdHuwyTdr2hPnv16mXsdru5fPmy+emnn5y1Tpw4MUO1Zrcb5e5pVps3bzaSzMCBAzNcw6061Gdmj8O0+NLfelZZmWvXrl3TPD947bXXjCTncHi+IKPnRykpKcZut5sePXqYGjVquNwmyRQqVMicO3fOOW3ZsmVGkqlevbrLUL5vvfWWkWR27NjhnOY4n792KKWnnnrK5MqVy+zfv985rVevXmb69Onm66+/NsuWLTOPPfaYkWS6dOmSoe2/1tV5OM4pdu3aZYwxpnbt2iY+Pt4YY9yG+tQ1Q3x1797dBAYGmj179lz3vhzrv++++1ymnz592oSGhpoHHnjAZfqBAwdMcHCw29BV6XE8Tr7++uvGbrebS5cumW3btpnatWsbSWbFihVu275kyRLntF27dhlJ5uWXX3ZZ79XD3Q4dOtQUKlTI2O12c/LkSRMcHGxmzpx5U4d6O3LkiJFkOnbsmO58jz76qJFkjh496tzezZs3G7vdbs6ePWuWL19u8ufPbyIjI82RI0eMMcaEhISYunXrZvs2eEtWsrt6qM9rh4hbsWKFkWQmT57ssp7Ro0e7HRd169Y1BQoUMGfPnnVOS0lJMZUrVzbFihVLcxjwnMiTY+rtt982klzehzh16pQJDg42AwYMuO66U1JSzOXLl03ZsmVNv379nNPTG+rz6vmMMWbOnDnZNuRodjpx4oRp0KCB83VgYGCgqV+/vhk9erTLMVOyZEkTEhLi8lxx8eJFkzdvXvPMM884p3ny+PzCCy8Ym81mdu/e7TK9efPm131Pyh94kvWiRYuMJPPDDz9cdz2+MtRndm+vp4+vV/P0OO7YsaMJDg42Bw4ccFm+RYsWJiwszDk09UsvvWRsNptb/U2bNvX6UJ8OsbGxJl++fOby5cvOaQMGDDCSzK+//uqcpgwM9WnMP9tTq1YtY4wxu3fvNpLMunXrnF9F5XjczMx+8gee5J7W831GztfhW7jiD5kybdo0hYaGOi+njoiI0MMPP6wNGzY4P7Fap04dJSYmqlOnTvr444914sSJDN/PbbfdpkaNGrlMW7NmjSpWrKg6deq4TI+Pj5cxRmvWrMnkVnnfrFmztHXrVpefLVu2uMzTsGFDRUZGOn8vWLCgChQo4By65vz589q6davatWunkJAQ53yOT1hezZHVtUM0PPzwwwoPD9dXX31l5eZ53cqVK9W7d2916NBB//rXvzK1jubNm2vr1q1as2aNXnvtNS1evFjt27f3+2Fmb2TOnDnq3Lmz7r33XrVv316fffaZWrVqpTFjxqQ5/MyXX37pdqwvW7bs5hfuAzKa7a3Cqlwcf7v16tXT+++/r8aNG6tLly5atmyZTpw4oYkTJ6a5XExMjF566SUtXrzY7XH6WpMmTVJgYKCCgoJUoUIFbdy4UcOHD0/zi7dzssxmhRsj2+yRmVwfe+wxl987d+4s6Z/RAvzJwoULdc899ygiIkIBAQEKDAzUtGnT0hx2smHDhgoPD3f+XqFCBUlSixYtXIbydUy/dhjjyMhIt6GUOnfurNTUVJdPuk+cOFHdunXTfffdp4ceekizZ89Wnz59NHv2bH3//fdZ32hJsbGxKlOmjKZPn66dO3dq69ataQ53mZaVK1eqYcOGzu1MT/v27V1+37Rpky5evOh2zl28eHE1atQoU+fcL730kgIDAxUSEqKaNWvqwIEDmjJlivPqIkl65JFHFBkZ6fLp7+nTp8tms6U7bGe3bt109OhRrVy5UnPmzFFQUJDzKxpyGvP/rzC9+lisW7euAgMDFRkZqVatWqlQoUJauXKlChYs6K0yc6S0skvP119/Lemf4+pqjmF0Hc6fP68tW7aoQ4cOioiIcE7PnTu3Hn/8cf31118eX+GWU6R3TD322GMKDg52fmWJ9M/VxMnJyS5/ZykpKRo1apQqVqyooKAgBQQEKCgoSL/99pvHQ/5e+xz1yCOPKCAgwOeeo2JiYrRhwwZt3bpVY8aM0UMPPaRff/1VgwYNUpUqVVzeO6pevbrL6DohISEqV66cy3ONJ4/PX3/9tSpXrqyKFSu6TL/2+PU3nmRdvXp1BQUF6emnn9YHH3zgMpqUr8mp2+vJcbxmzRo1btzY7Qq1+Ph4XbhwQZs2bZL0zzlppUqVVK1aNZf5HOesOUGPHj104sQJ51DHKSkpmj17tu69994sjR7QvXt3fffdd9q5c6emTZumMmXK6L777rOqbJ+Xldw9PV+Hb6Hxhwz7/ffftX79erVs2VLGGCUmJioxMVEdOnSQJOcLy8cff1zTp0/X/v371b59exUoUEB33323Vq9e7fF9FS5c2G3ayZMn05xepEgR5+2+qkKFCqpVq5bLT82aNV3miYmJcVsuODhYFy9elPTPEHKpqakqVKiQ23zXTjt58qQCAgLchpuz2WwqVKiQT2d5rc8//1zt2rVT06ZNNWfOHI9f4F7rtttuU61atdSwYUMNHjxYU6dO1SeffJLm9+Lc6rp06aKUlBR99913brdVq1bN7VivXLmyF6r0TelleyvLTC6Ox9RrhzurXr26ChcurO3bt1932b59+6pIkSJ68cUX072PRx55RFu3btV3332nX375RSdPnsyRQ+PciKdZOV7U/vnnnze3QB+WleMQ15fRXAMCAtzOsxznTv50TrRkyRI98sgjKlq0qGbPnq1NmzY5G2CXLl1ymz9v3rwuvwcFBaU7/dp1pNVs8TTXLl26SJI2b96c7nyecjS8Zs+erXfffVflypXTvffe69Gyx48fv+6wide69rWKYzuv9xomM8fXc889p61bt2rbtm3au3evDh8+rKefftplnrCwMHXs2FGrVq3SkSNHnG8AORqg11OyZEk1btxY06dP1/Tp09WxY8ebPnRzvnz5FBYWdsPnkn379iksLMzleHR8mPL777/XoUOHtGPHDt1zzz3O20uUKOHXz1FZyS49jteO185/7d/46dOnZYzxq9fs6R1TefPm1YMPPqhZs2Y5h02dOXOm6tSpo0qVKjnX0b9/fw0ZMkRt2rTRp59+qi1btmjr1q2qVq2a87X8jVz7et7xvOVreTrUqlVLL730khYuXKhDhw6pX79+2rdvn8uwhjd6/0Py7PH55MmTaT4f3SofCEgv6zJlyujLL79UgQIF1Lt3b5UpU0ZlypTRhAkTvF12pmXX9nr6+HotT45jT9/rPHnypEfv93lThw4dFB0d7RwG+bPPPtPRo0ed3z+cWY5hx6dMmaIPP/zQObzltTK7n3xdVnLPyvk6ci4af8iw6dOnyxijRYsW6bbbbnP+OL6b74MPPnCe8Hbr1k0bN27UmTNntGLFChlj1KpVK7dPAl9PWg/gMTExOnz4sNv0Q4cOSfrnAf5Wdtttt8lms+nIkSNut107LSYmRikpKW5XxxhjdOTIEb/J8vPPP1ebNm0UGxurxYsXO9+YsoLjytPMfM+Xv3N8ivjqL9GGNcg2bZnJpWrVqumuL711hYaGKiEhQevXr9eKFSuuO1/+/PmdH+QoV65cpr7TICfwNKvChQurSpUq+uKLL3ThwoWbVZ5Py8pxiOvLaK4pKSluL2wd505pvWHjq2bPnq1SpUppwYIFatOmjerWratatWpl23c7Hz161G2ap7lmx/NdfHy8Tpw4oXfffTfdq96ulT9/fv31118ezXvtaxjHdl7vNUxmzrmLFSumWrVq6a677lLp0qWv+6G2Hj16KCUlRbNmzdLy5ct17Ngxj94A6t69uz755BP98MMPHl8VaaXcuXOrYcOG+u67766b+19//aVt27apUaNGLs+tjg9TOpr812revLmOHj1qWUM5p8lKdulxvHY8deqUy/RrX2PedtttypUrl1+9Zr/RMdWtWzf9/fffWr16tfbs2aOtW7e6Pb7Mnj1bTzzxhEaNGqXmzZurTp06qlWrVoZGRro2a8fzlj88RwUGBmro0KGSpF27dmVoWU8en2NiYtJ9PrqVpJX1vffeq08//VRnzpzR5s2bVa9ePfXt21fz58/3ZqmWsHJ7c+fOrcaNG2vbtm0enxN4ytP3OmNiYjx6v8+bQkND1alTJ61atUqHDx/W9OnTFRkZacnoAd26ddPkyZN16tQpde3aNc15snM/5WRZyT0r5+vIuXgXARly5coVffDBBypTpozWrl3r9jNgwAAdPnxYK1eudFkuPDxcLVq00Msvv6zLly9r9+7dkv75hIskjz/hJkmNGzfWnj173D6lPWvWLNlsNjVs2DCLW+nbwsPDVadOHS1ZssTlE9dnz57Vp59+6jJv48aNJf3zIuRqixcv1vnz5523+7IvvvhCbdq0UYMGDbRs2TLnMWcVx7Aqd9xxh6Xr9QcffvihAgMD3a5aRdaRbdoyk0uLFi0UFhbm9ry1fft2HTlyRHXr1k13+e7du6tChQoaOHCg3w/5m5GshgwZotOnT+vf//638437q507d05ffPFFttfsK7J6HCJtmcl1zpw5Lr/PnTtXkhQXF5dtdd5sNptNQUFBLo2iI0eOZNvoBWfPnnUOOeQwd+5c5cqV64bDM82aNUuSLP0bKFq0qF544QW1bt36um8YpaVFixZau3ZtpoYorFevnkJDQ93Ouf/66y/n0F7Z5e6771blypU1Y8YMzZgxQ9HR0W5Dkaalbdu2atu2rbp37+61x6BBgwbJGKNevXo5P1jqcOXKFfXs2VPGGA0aNChD6+3Xr5/Cw8PVq1cvnTlzxu12Y4yWLl2apdq9LTuyi42NlSQtWLDAZfq1b5SHh4fr7rvv1pIlS1xe56empmr27NkqVqyYypUrl9FNytGaNWumokWLOv/OQkJC3IaQtNlsbq9FV6xYob///tvj+7n2Oeqjjz5SSkqKzz1HpdXckOQc8tRxhZOnPHl8jo2N1a5du7Rnzx6X6f7Q2EpPRrPOnTu37r77budw6I733TLz3p033IztdTy+PvXUU7p8+bLb7Xa73e29N080btxYa9ascTb6HGbNmqWwsDDnc3HDhg21e/du/fjjjy7zOc5Zc4oePXroypUrGjdunD777DPLRg/o2rWrWrdurRdeeEFFixa97nzZtZ9yuszmnpXzdeRcAd4uAL5l5cqVOnTokF5//fU0Ty4rV66s//znP5o2bZo+/vhjhYaG6p577lHhwoV15MgRjR49WtHR0apdu7ZzfkmaOnWqIiMjFRISolKlSqX7aYJ+/fpp1qxZatmypYYPH66SJUtqxYoVmjRpknr27OnTLyJ27dqllJQUt+llypRxG44zPSNGjND999+vpk2basCAAbpy5Ypef/11hYeHu3xCs2nTpmrevLleeuklJSUl6Z577tGOHTs0dOhQ1ahRQ48//rgl25Xd1qxZo3379rlNL1CggNq0aaNChQpp8ODB+uGHH1xur1ixoqKiojy6jylTpmjDhg1q1qyZihcvrvPnz2vDhg165513VL9+fT300EMWbEnOdr2cd+/erX379qlx48YqVqyYjh07pmnTpumLL75QQkJCmp/o3bZtm6Kjo92mZ2Sf+BMrs/UnNyOXPHnyaPjw4Xr++ecVHx+vTp066ciRIxoyZIhKlChxw+/hy507t0aNGqW2bdtKSv8KI19xvdwfeOABj7N6+OGHNWTIEI0YMUI///yzevTooTJlyujChQvasmWLpkyZokcffVTNmjW7iVvmfVZkC3dW5RoUFKTx48fr3Llzql27tjZu3KiRI0eqRYsWatCgwU3aGutcL5dGjRppyZIl6tWrlzp06KCDBw9qxIgRKly4sPO7uq0UExOjnj176sCBAypXrpw+++wzvffee+rZs6dzaOC5c+dqyZIlatmypUqWLKnExEQtXLhQ8+fPV3x8vNv32GTVmDFjMrzM8OHDtXLlSt13330aPHiwqlSposTERK1atUr9+/dX+fLlr7tsnjx5NGTIEA0ePFhPPPGEOnXqpJMnT2rYsGEKCQlxXomQXbp3767+/fvrl19+0TPPPKPQ0NAbLhMSEqJFixZla103cs899+itt95S37591aBBA/Xp00clSpTQgQMHNHHiRG3ZskVvvfWW6tevn6H1lipVSvPnz9ejjz6q6tWrq0+fPqpRo4Ykac+ePc4RbhzP7b4oO7K7//77dc8992jAgAFKSkpSzZo1tWnTJmeD/uorc0ePHq2mTZuqYcOGev755xUUFKRJkyZp165dmjdvXqa/diGnyp07t5544gm9+eabioqKUrt27dxe67Rq1UozZ85U+fLlVbVqVW3btk3jxo3zeAhh6Z+hmgMCAtS0aVPt3r1bQ4YMUbVq1dy+dzGna968uYoVK6bWrVurfPnySk1N1Q8//KDx48crIiJCzz33XIbW58njc9++fTV9+nS1aNFCw4cPV8GCBTV37lz9/PPPkvx3JBVPsn733Xe1Zs0atWzZUiVKlNClS5ecX+HTpEkTSf98/1fJkiX18ccfq3HjxsqbN6/y5cun22+/3Ytb5+5mbG+9evU0efJk9erVSzVr1lTPnj1VqVIl2e12ff/995o6daoqV66s1q1bZ6j2oUOHavny5WrYsKFeffVV5c2bV3PmzNGKFSs0duxY52OK41hu2bKlRo4cqYIFC2rOnDnOYzmnqFWrlqpWraq33npLxpjrjjawd+/eNM83Klas6PadnNI/zdtly5bd8P6zaz/ldJ7mfi1PztfhgwyQAW3atDFBQUHm2LFj152nY8eOJiAgwMycOdM0bNjQFCxY0AQFBZkiRYqYRx55xOzYscNl/rfeesuUKlXK5M6d20gyM2bMMMYYExsbaypVqpTmfezfv9907tzZxMTEmMDAQHPnnXeacePGmStXrli2rTfTjBkzjKTr/rz33nvGGGMkmd69e7stX7JkSdO1a1eXaZ988ompWrWqCQoKMiVKlDBjxowxQ4cONdf+2V+8eNG89NJLpmTJkiYwMNAULlzY9OzZ05w+fTq7NtcyN8qta9eu6d6+du1aj+/r22+/Na1atTJFihQxQUFBJiwszFSrVs2MGDHCnD9/3mVeR87Hjx9Pc10lS5Y0LVu2zMqm31Q3yvntt982DRo0MPnz5zcBAQEmMjLS3HvvvWbevHlu63Jkc72f1atXuy2zdu1aI8ksXLjwZmzuTZUd2frDcWdlLp567733TOXKlU1QUJCJiYkxjz32mDl48KDLPOllXL9+fSPJLePrPW7nRDfK/c8//zTGeJaVw9dff206dOhgChcubAIDA01UVJSpV6+eGTdunElKSnKb/88//zSSzLhx47JzU286K7P1p7/1rLIy165du5rw8HCzY8cOExcXZ0JDQ03evHlNz549zblz57ywdZnnSS5jxowxt99+uwkODjYVKlQw7733XprniWk9hl3v7zSt52vH+fy6detMrVq1THBwsClcuLAZPHiwsdvtzvk2bdpkGjdubAoVKmQCAwNNWFiYqV27tpk0aVKWz+8deWzdujXd+SpVqmRiY2Odv0syQ4cOdZnn4MGDpnv37s46Ha9vjh49et0Mrvb+++87z8+jo6PNQw89ZHbv3p2h7cnM4+Tx48dNUFCQkWT++9//pjmP42/gRutJK5fstmnTJtOhQwdTsGBBExAQYAoUKGDatWtnNm7c6DKfp/vaYe/evaZXr17mjjvuMMHBwSY0NNRUrFjR9O/f3/n44esymt3V2921a1dTsmRJl/lOnTplunXrZvLkyWPCwsJM06ZNzebNm40kM2HCBJd5N2zYYBo1amTCw8NNaGioqVu3rvn000+za1OzRUaOqV9//TXd1zSnT582PXr0MAUKFDBhYWGmQYMGZsOGDSY2NtblscfxN+54X8SY/z33b9u2zbRu3dpERESYyMhI06lTJ+fjjy9ZsGCB6dy5sylbtqyJiIgwgYGBpkSJEubxxx83e/bscc53vXOaazMz5saPz8YYs2vXLtOkSRMTEhJi8ubNa3r06GE++OADI8n8+OOP2ba93uRJ1ps2bTJt27Y1JUuWNMHBwSYmJsbExsaaTz75xGVdX375palRo4YJDg52vt+S09zM7f3hhx9M165dTYkSJUxQUJAJDw83NWrUMK+++qrLe6YZOY537txpWrdubaKjo01QUJCpVq2ay2OBw549e0zTpk1djuWPP/7Y7X2utB7Hb6YJEyYYSaZixYpp3p7e+arjXCO994Ydtm7d6va46eDpfvIn6eWe1vO9p+fr8D02Y9IYfwkAAAAAgCyIi4vTiRMnMvx9TQB8x9y5c/XYY4/p22+/zfDVl4C3Pf3005o3b55OnjypoKAgb5cDADcd5+v+i6E+AQAAAAAAkK558+bp77//VpUqVZQrVy5t3rxZ48aN03333UfTDzne8OHDVaRIEZUuXVrnzp3T8uXL9f777+uVV16h6QcA8Ds0/gDc0owxbl94f63cuXP73fdQAP6Ov20AgC/heQu+IDIyUvPnz9fIkSN1/vx5FS5cWPHx8Ro5cqS3SwNuKDAwUOPGjdNff/2llJQUlS1bVm+++WaGv1MQAABfwFCfAG5p69atU8OGDdOdZ8aMGYqPj785BQGwBH/bAABfwvMWAAAAAKvQ+ANwSzt79qx++eWXdOcpVaqUYmJiblJFAKzA3zYAwJfwvAUAAADAKjT+AAAAAAAAAAAAAD+Qy9sFAAAAAAAAAAAAAMg6Gn8AAAAAAAAAAACAH6DxBwAAAAAAAAAAAPgBGn8AAAAAAAAAAACAH6DxBwAAAAC3qISEBFWvXt35e3x8vNq0aeO1egAAAAAAWUPjDwAAAAB80JEjR/Svf/1LpUuXVnBwsIoXL67WrVvrq6++yrb7nDlzpvLkyZNt6wcAAAAAZE2AtwsAAAAAAGTMvn37dM899yhPnjwaO3asqlatKrvdrs8//1y9e/fWzz//7O0SAQAAAABewBV/AAAAAOBjevXqJZvNpv/+97/q0KGDypUrp0qVKql///7avHmzc74zZ87o6aefVoECBRQVFaVGjRrpxx9/zNR9rlu3Tt26ddOZM2dks9lks9mUkJCg4cOHq0qVKm7z16xZU6+++qqk/w0hOmzYMGctzzzzjC5fvuyc3xijsWPHqnTp0goNDVW1atW0aNEi5+2nT5/WY489pvz58ys0NFRly5bVjBkzMrUtAAAAAOCvuOIPAAAAAHzIqVOntGrVKr322msKDw93u90xFKcxRi1btlTevHn12WefKTo6WlOmTFHjxo3166+/Km/evBm63/r16+utt97Sq6++ql9++UWSFBERocTERA0bNkxbt25V7dq1JUk7duzQ999/r4ULFzqX/+qrrxQSEqK1a9dq37596tatm/Lly6fXXntNkvTKK69oyZIlmjx5ssqWLav169erS5cuyp8/v2JjYzVkyBDt2bNHK1euVL58+fT777/r4sWLmYkQAAAAAPwWjT8AAAAA8CG///67jDEqX758uvOtXbtWO3fu1LFjxxQcHCxJeuONN7Rs2TItWrRITz/9dIbuNygoSNHR0bLZbCpUqJBzekREhJo3b64ZM2Y4G38zZsxQbGysSpcu7bL89OnTFRYWpkqVKmn48OF64YUXNGLECF28eFFvvvmm1qxZo3r16kmSSpcurW+++UZTpkxRbGysDhw4oBo1aqhWrVqSpNtvvz1D9QMAAADArYDGHwAAAAD4EGOMJMlms6U737Zt23Tu3DnFxMS4TL948aL27t1raU1PPfWUunfvrjfffFO5c+fWnDlzNH78eJd5qlWrprCwMOfv9erV07lz53Tw4EEdO3ZMly5dUtOmTV2WuXz5smrUqCFJ6tmzp9q3b6/t27erWbNmatOmjerXr2/pdgAAAACAr6PxBwAAAAA+pGzZsrLZbPrpp5/Upk2b686XmpqqwoULa926dW63OYYDtUrr1q0VHByspUuXKjg4WMnJyWrfvr1Hy9psNqWmpkqSVqxYoaJFi7rc7rhasUWLFtq/f79WrFihL7/8Uo0bN1bv3r31xhtvWLotAAAAAODLaPwBAAAAgA/JmzevmjdvrokTJ+rf//632/f8JSYmKk+ePLrrrrt05MgRBQQEWDYsZlBQkK5cueI2PSAgQF27dtWMGTMUHBysjh07ulzdJ0k//vijLl68qNDQUEnS5s2bFRERoWLFium2225TcHCwDhw4oNjY2Ovef/78+RUfH6/4+Hjde++9euGFF2j8AQAAAMBVaPwBAAAAgI+ZNGmS6tevrzp16mj48OGqWrWqUlJStHr1ak2ePFk//fSTmjRponr16qlNmzZ6/fXXdeedd+rQoUP67LPP1KZNG+d35WXE7bffrnPnzumrr75yDt3paPA9+eSTqlChgiTp22+/dVv28uXL6tGjh1555RXt379fQ4cOVZ8+fZQrVy5FRkbq+eefV79+/ZSamqoGDRooKSlJGzduVEREhLp27apXX31VNWvWVKVKlZScnKzly5c77w8AAAAA8A8afwAAAADgY0qVKqXt27frtdde04ABA3T48GHlz59fNWvW1OTJkyX9M4TmZ599ppdfflndu3fX8ePHVahQId13330qWLBgpu63fv36evbZZ/Xoo4/q5MmTGjp0qBISEiT9MwRp/fr1dfLkSd19991uyzZu3Fhly5bVfffdp+TkZHXs2NG5rCSNGDFCBQoU0OjRo/XHH384r1ocPHiwpH+uNhw0aJD27dun0NBQ3XvvvZo/f36mtgMAAAAA/JXNOL4ZHgAAAACATDLGqHz58nrmmWfUv39/l9vi4+OVmJioZcuWeac4AAAAALhFcMUfAAAAACBLjh07pg8//FB///23unXr5u1yAAAAAOCWReMPAAAAAJAlBQsWVL58+TR16lTddttt3i4HAAAAAG5ZDPUJAAAAAAAAAAAA+IFc3i4AAAAAAAAAAAAAQNbR+AMAAAAAAAAAAAD8AI0/AAAAAAAAAAAAwA/Q+AMAAAAAAAAAAAD8AI0/AAAAAAAAAAAAwA/Q+AMAAAAAAAAAAAD8AI0/AAAAAAAAAAAAwA/Q+AMAAAAAAAAAAAD8AI0/AAAAAAAAAAAAwA/8PzRyDJ2LGz/pAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABu4AAAEiCAYAAAAWBiQaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYnklEQVR4nO3dd3gU5f7+8XshvSIhdAhFkCogHdEAoYiA0lSakoDlUI4K2ECBUBQE9St6AEFJ6KBIUUFQFBCUIkWkWY6FooB0Qifl+f3Bb/ewbAgpk+wmeb+uKxdk9pmZZ+6dzM7uZ+cZmzHGCAAAAAAAAAAAAIBbFXB3BwAAAAAAAAAAAABQuAMAAAAAAAAAAAA8AoU7AAAAAAAAAAAAwANQuAMAAAAAAAAAAAA8AIU7AAAAAAAAAAAAwANQuAMAAAAAAAAAAAA8AIU7AAAAAAAAAAAAwANQuAMAAAAAAAAAAAA8AIU7AAAAAAAAAAAAwANQuAMAAACAdJo5c6ZsNpvjx8vLS6VLl1ZMTIz+/vvvHOlDuXLlFB0d7fh93bp1stlsWrduXYaWs3HjRsXGxurMmTMujzVr1kzNmjXLUj+zW2xsrGw2W6bmnT9/vt5++21rOwQAAAAAFvBydwcAAAAAILeJj49XlSpVdOnSJa1fv17jxo3TN998o927dyswMDBH+3LXXXdp06ZNqlatWobm27hxo0aNGqXo6GgVKlTI6bEpU6ZY2EPPM3/+fO3Zs0fPPvusu7sCAAAAAE4o3AEAAABABtWoUUP16tWTJDVv3lzJyckaM2aMli1bpp49e6Y6z8WLFxUQEGB5X0JCQtSoUSNLl5nRIiAAAAAAwBoMlQkAAAAAWWQvnB04cECSFB0draCgIO3evVutW7dWcHCwoqKiJElXr17V2LFjVaVKFfn6+io8PFwxMTE6fvy40zITExP1wgsvqHjx4goICFDTpk31/fffu6z7ZkNlbtmyRR06dFBYWJj8/PxUsWJFxxVmsbGxev755yVJ5cuXdwz9aV9GakNlnjp1Sv3791epUqXk4+OjChUq6OWXX9aVK1ec2tlsNg0cOFBz5sxR1apVFRAQoFq1amn58uW3zNG+LXPnztXgwYNVvHhx+fv7KzIyUj/88MMt509JSdGECRMc2RYtWlSPPfaY/vrrL0ebZs2aacWKFTpw4IDTsKcAAAAA4Am44g4AAAAAsui3336TJIWHhzumXb16VQ888ICeeuopvfTSS0pKSlJKSooefPBBbdiwQS+88IKaNGmiAwcOaOTIkWrWrJm2bdsmf39/SdITTzyh2bNn67nnnlOrVq20Z88ede7cWefOnbtlf7744gt16NBBVatW1VtvvaWyZctq//79+vLLLyVJjz/+uE6dOqV3331XS5YsUYkSJSTd/Eq7y5cvq3nz5vr99981atQo3XnnndqwYYPGjRunnTt3asWKFU7tV6xYoa1bt2r06NEKCgrShAkT1KlTJ/3yyy+qUKHCLfs/bNgw3XXXXfrggw909uxZxcbGqlmzZvrhhx/SnL9fv36aPn26Bg4cqPbt22v//v0aPny41q1bpx07dqhIkSKaMmWKnnzySf3+++9aunTpLfsCAAAAADmJwh0AAAAAZFBycrKSkpJ0+fJlffPNNxo7dqyCg4P1wAMPONokJiZqxIgRiomJcUxbuHChVq1apcWLF6tz586O6bVq1VL9+vU1c+ZM9evXTz///LNmzZqlQYMGacKECZKkVq1aqVixYjcdivN6AwYMUNmyZbVlyxb5+fk5ptv7Urp0aZUtW1aSVKdOHZUrVy7N5c2aNUu7du3SRx99pIceesjRn6CgIL344otavXq1WrVq5Wh/6dIlffXVVwoODpZ07T58JUuW1EcffaSXXnrplv0PDw/X0qVLHVfCNW3aVJUqVdK4ceP0/vvvpzrPzz//rOnTp6t///569913HdPr1Kmjhg0b6v/+7//06quvqlq1aipUqJB8fX0tH2IUAAAAALKKoTIBAAAAIIMaNWokb29vBQcHq3379ipevLhWrlypYsWKObXr0qWL0+/Lly9XoUKF1KFDByUlJTl+ateureLFizuGqly7dq0kuRTpHn74YXl5pf39y19//VW///67+vbt61S0y4o1a9YoMDBQXbt2dZoeHR0tSfr666+dpjdv3txRtJOkYsWKqWjRoo6hRG+lR48eTsNXRkREqEmTJo5cUmN/zN4nuwYNGqhq1aoufQQAAAAAT8QVdwAAAACQQbNnz1bVqlXl5eWlYsWKOYaavF5AQIBCQkKcpv3zzz86c+aMfHx8Ul3uiRMnJEknT56UJBUvXtzpcS8vL4WFhaXZN/u98kqXLp2+jUmHkydPqnjx4i73gitatKi8vLwc/bVLrY++vr66dOlSutZ343bbp/34449p9lFSqs9FyZIl0100BAAAAAB3onAHAAAAABlUtWpV1atXL802Nxa5JKlIkSIKCwvTqlWrUp3HfpWavfB19OhRlSpVyvF4UlKSS5HsRvb77P31119ptsuIsLAwbdmyRcYYp+06duyYkpKSVKRIEcvWJV3b7tSmpVW0tD925MgRl6Ll4cOHLe8jAAAAAGQHhsoEAAAAgBzSvn17nTx5UsnJyapXr57Lzx133CFJatasmSRp3rx5TvN/9NFHSkpKSnMdlStXVsWKFRUXF6crV67ctJ2vr68kpesquKioKJ0/f17Lli1zmj579mzH41ZasGCBjDGO3w8cOKCNGzc6cklNixYtJElz5851mr5161b99NNPTn3MyNV/AAAAAJCTuOIOAAAAAHJIt27dNG/ePN1///165pln1KBBA3l7e+uvv/7S2rVr9eCDD6pTp06qWrWqevXqpbffflve3t5q2bKl9uzZozfeeMNl+M3UTJ48WR06dFCjRo00aNAglS1bVgcPHtQXX3zhKAbWrFlTkjRp0iT17t1b3t7euuOOO5zuTWf32GOPafLkyerdu7f279+vmjVr6ttvv9Vrr72m+++/Xy1btrQ0p2PHjqlTp0564okndPbsWY0cOVJ+fn4aOnToTee544479OSTT+rdd99VgQIF1LZtW+3fv1/Dhw9XmTJlNGjQIEfbmjVrasmSJZo6darq1q2rAgUK3PIKSgAAAADICRTuAAAAACCHFCxYUJ9++qkmTZqkOXPmaNy4cfLy8lLp0qUVGRnpKKZJ0owZM1SsWDHNnDlT77zzjmrXrq3FixerW7dut1xPmzZttH79eo0ePVpPP/20Ll++rNKlS+uBBx5wtGnWrJmGDh2qWbNm6f3331dKSorWrl2b6lVtfn5+Wrt2rV5++WVNnDhRx48fV6lSpfTcc89p5MiRlmRzvddee01bt25VTEyMEhIS1KBBAy1cuFAVK1ZMc76pU6eqYsWKmjFjhiZPnqzQ0FDdd999GjdunNMwm88884z27t2rYcOG6ezZszLGOF3hBwAAAADuYjO8OwEAAAAAeIB169apefPmWrRokbp27eru7gAAAABAjuMedwAAAAAAAAAAAIAHoHAHAAAAAAAAAAAAeACGygQAAAAAAAAAAAA8AFfcAQAAAAAAAAAAAB6Awh0AAAAAAAAAAADgASjcAQAAAAAAAAAAAB7Ay90dsEJKSooOHz6s4OBg2Ww2d3cHAAAAAAAAAAAAkCQZY3Tu3DmVLFlSBQqkfU1dnijcHT58WGXKlHF3NwAAAAAAAAAAAIBUHTp0SKVLl06zTZ4o3AUHB0u6tsEhISFu7g0yIjExUV9++aVat24tb29vd3cnVyNL65CldcjSOmRpDXK0DllahyytQ5bWIUvrkKV1yNI6ZGkdsrQGOVqHLK1DltYhS+uQZe6VkJCgMmXKOOpZackThTv78JghISEU7nKZxMREBQQEKCQkhANNFpGldcjSOmRpHbK0BjlahyytQ5bWIUvrkKV1yNI6ZGkdsrQOWVqDHK1DltYhS+uQpXXIMvdLz+3e0h5IEwAAAAAAAAAAAECOoHAHAAAAAAAAAAAAeAAKdwAAAAAAAAAAAIAHoHAHAAAAAAAAAAAAeAAKdwAAAAAAAAAAAIAHoHAHAAAAAAAAAAAAeAAKdwAAAAAAAAAAAIAH8HJ3BwAAAAAAAPKTDu9+69b1e9tS1LuM9Mi0TUo07vtO92f/buq2dQMAAHgqrrgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADULgDAAAAAAAAAAAAPACFOwAAAAAAAAAAAMADuLVwt3PnTrVr105ly5aVv7+/ChcurMaNG2vu3Lnu7BYAAAAAAAAAAACQ47zcufIzZ86oTJky6t69u0qVKqULFy5o3rx5evTRR7V//3698sor7uweAAAAAAAAAAAAkGPcWrhr1qyZmjVr5jStffv2+vPPPzV9+nQKdwAAAAAAAAAAAMg3PPIed0WKFJGXl1trigAAAAAAAAAAAECO8ojqWEpKilJSUnT69GktWrRIX3zxhf7zn/+4u1sAAAAAAAAAAABAjvGIwl3//v01bdo0SZKPj4/eeecdPfXUUzdtf+XKFV25csXxe0JCgiQpMTFRiYmJ2dtZWMr+fPG8ZR1ZWocsrUOW1iFLa5CjdcjSOmRpHbK0Dllahyytk5ey9LaluHn95rp/3deXvPBc5qX90p3I0TpkaR2ytA5ZWocsc6+MPGc2Y4zJxr6ky8GDB3Xs2DEdO3ZMn332maZPn67XX39dzz33XKrtY2NjNWrUKJfp8+fPV0BAQHZ3FwAAAAAAAAAAAEiXixcvqkePHjp79qxCQkLSbOsRhbsb9evXTx988IEOHz6s8PBwl8dTu+KuTJkyOnHixC03GJ4lMTFRq1evVqtWreTt7e3u7uRqZGkdsrQOWVqHLK1BjtYhS+uQpXXI0jpkaR2ytE5eyvKRaZvcun5vm1GP0mc0/69CSjQ2t/Xjw6cau23dVslL+6U7kaN1yNI6ZGkdsrQOWeZeCQkJKlKkSLoKdx4xVOaNGjRooPfee09//PFHqoU7X19f+fr6ukz39vZmZ82leO6sQ5bWIUvrkKV1yNIa5GgdsrQOWVqHLK1DltYhS+vkhSwTTQE39yDl//fD5ta+5Pbn8Xp5Yb/0BORoHbK0DllahyytQ5a5T0aeL3efKaZq7dq1KlCggCpUqODurgAAAAAAAAAAAAA5wq1X3D355JMKCQlRgwYNVKxYMZ04cUKLFi3Shx9+qOeffz7Vq+0AAAAAAAAAAACAvMithbvGjRsrPj5es2bN0pkzZxQUFKRatWppzpw56tWrlzu7BgAAAAAAAAAAAOQotxbuYmJiFBMT484uAAAAAAAAAAAAAB7BI+9xBwAAAAAAAAAAAOQ3FO4AAAAAAAAAAAAAD0DhDgAAAAAAAAAAAPAAFO4AAAAAAAAAAAAAD0DhDgAAAAAAAAAAAPAAFO4AAAAAAAAAAAAAD0DhDgAAAAAAAAAAAPAAFO4AAAAAAAAAAAAAD0DhDgAAAAAAAAAAAPAAFO4AAAAAAAAAAAAAD0DhDgAAAAAAAAAAAPAAFO4AAAAAAAAAAAAAD0DhDgAAAAAAAAAAAPAAFO4AAAAAAAAAAAAAD0DhDgAAAAAAAAAAAPAAFO4AAAAAAAAAAAAAD0DhDgAAAAAAAAAAAPAAXlmZ+erVqzp27JhSUlKcppctWzZLnQIAAAAAAAAAAADym0wV7v773/+qT58+2rhxo9N0Y4xsNpuSk5Mt6RwAAAAAAAAAAACQX2SqcBcdHS0vLy8tX75cJUqUkM1ms7pfAAAAAAAAAAAAQL6SqcLdzp07tX37dlWpUsXq/gAAAAAAAAAAAAD5UoHMzFStWjWdOHHC6r4AAAAAAAAAAAAA+VamCnevv/66XnjhBa1bt04nT55UQkKC0w8AAAAAAAAAAACAjMnUUJktW7aUJEVFRTlNN8bIZrMpOTk56z0DAAAAAAAAAAAA8pFMFe7Wrl1rdT8AAAAAAAAAAACAfC1ThbvIyEir+wEAAAAAAAAAAADka5kq3EnSmTNnNGPGDP3000+y2WyqVq2a+vTpo9DQUCv7BwAAAAAAAAAAAOQLBTIz07Zt21SxYkX93//9n06dOqUTJ07orbfeUsWKFbVjxw6r+wgAAAAAAAAAAADkeZm64m7QoEF64IEH9P7778vL69oikpKS9Pjjj+vZZ5/V+vXrLe0kAAAAAAAAAAAAkNdlqnC3bds2p6KdJHl5eemFF15QvXr1LOscAAAAAAAAAAAAkF9kaqjMkJAQHTx40GX6oUOHFBwcnOVOAQAAAAAAAAAAAPlNpgp3jzzyiPr27asPP/xQhw4d0l9//aWFCxfq8ccfV/fu3a3uIwAAAAAAAAAAAJDnZWqozDfeeEM2m02PPfaYkpKSJEne3t7q16+fxo8fb2kHAQAAAAAAAAAAgPwgU4U7Hx8fTZo0SePGjdPvv/8uY4xuv/12BQQEWN0/AAAAAAAAAAAAIF/IVOHOLiAgQDVr1rSqLwAAAAAAAAAAAEC+le7CXefOnTVz5kyFhISoc+fOabZdsmRJljsGAAAAAAAAAAAA5CfpLtyFhobKZrNJkkJCQhz/BwAAAAAAAAAAAJB16S7cxcfHO/4/c+bM7OgLAAAAAAAAAAAAkG8VyMxMLVq00JkzZ1ymJyQkqEWLFlntEwAAAAAAAAAAAJDvZKpwt27dOl29etVl+uXLl7Vhw4YsdwoAAAAAAAAAAADIb9I9VKYk7dq1y/H/ffv26ejRo47fk5OTtWrVKpUqVSrdy1uzZo3mzp2rjRs36tChQypUqJDq1aunESNGqG7duhnpGgAAAAAAAAAAAJCrZahwV7t2bdlsNtlstlSHxPT399e7776b7uVNnTpVJ0+e1DPPPKNq1arp+PHjevPNN9WoUSN98cUXDLsJAAAAAAAAAACAfCNDhbs///xTxhhVqFBB33//vcLDwx2P+fj4qGjRoipYsGC6lzd58mQVLVrUadp9992n22+/Xa+99hqFOwAAAAAAAAAAAOQbGSrcRURESJJSUlIsWfmNRTtJCgoKUrVq1XTo0CFL1gEAAAAAAAAAAADkBgUyM9O4ceMUFxfnMj0uLk6vv/56ljp09uxZ7dixQ9WrV8/ScgAAAAAAAAAAAIDcJENX3NlNmzZN8+fPd5levXp1devWTS+++GKmOzRgwABduHBBL7/88k3bXLlyRVeuXHH8npCQIElKTExUYmJipteNnGd/vnjeso4srUOW1iFL65ClNcjROmRpHbK0DllahyytQ5bWyUtZetusGcko8+s31/3rvr7khecyL+2X7kSO1iFL65CldcjSOmSZe2XkObMZY0xGV+Dn56effvpJ5cuXd5r+xx9/qFq1arp8+XJGFylJGj58uMaOHat3331XAwcOvGm72NhYjRo1ymX6/PnzFRAQkKl1AwAAAAAAAAAAAFa7ePGievToobNnzyokJCTNtpm64q5MmTL67rvvXAp33333nUqWLJmZRWrUqFEaO3asXn311TSLdpI0dOhQDR482PF7QkKCypQpo9atW99yg+FZEhMTtXr1arVq1Ure3t7u7k6uRpbWIUvrkKV1yNIa5GgdsrQOWVqHLK1DltYhS+vkpSwfmbbJrev3thn1KH1G8/8qpERjc1s/PnyqsdvWbZW8tF+6EzlahyytQ5bWIUvrkGXuZR85Mj0yVbh7/PHH9eyzzyoxMVEtWrSQJH399dd64YUXNGTIkAwvb9SoUYqNjVVsbKyGDRt2y/a+vr7y9fV1me7t7c3Omkvx3FmHLK1DltYhS+uQpTXI0TpkaR2ytA5ZWocsrUOW1skLWSaaAm7uQcr/74fNrX3J7c/j9fLCfukJyNE6ZGkdsrQOWVqHLHOfjDxfmSrcvfDCCzp16pT69++vq1evSro2fOaLL76ooUOHZmhZY8aMUWxsrF555RWNHDkyM90BAAAAAAAAAAAAcr1MFe5sNptef/11DR8+XD/99JP8/f1VqVKlVK+CS8ubb76pESNG6L777lO7du20efNmp8cbNWqUme4BAAAAAAAAAAAAuU6mCnd2QUFBql+/fqbn/+yzzyRJq1at0qpVq1weN8ZketkAAAAAAAAAAABAbpLuwl3nzp01c+ZMhYSEqHPnzmm2XbJkSbqWuW7duvSuHgAAAAAAAAAAAMjT0l24Cw0Nlc1mc/wfAAAAAAAAAAAAgHXSXbiLj49P9f8AAAAAAAAAAAAAsq6AuzsAAAAAAAAAAAAAIANX3NWpU8cxVOat7NixI9MdAgAAAAAAAAAAAPKjdBfuOnbs6Pj/5cuXNWXKFFWrVk2NGzeWJG3evFl79+5V//79Le8kAAAAAAAAAAAAkNelu3A3cuRIx/8ff/xxPf300xozZoxLm0OHDlnXOwAAAAAAAAAAACCfyNQ97hYtWqTHHnvMZXqvXr20ePHiLHcKAAAAAAAAAAAAyG8yVbjz9/fXt99+6zL922+/lZ+fX5Y7BQAAAAAAAAAAAOQ36R4q83rPPvus+vXrp+3bt6tRo0aSrt3jLi4uTiNGjLC0gwAAAAAAAAAAAEB+kKnC3UsvvaQKFSpo0qRJmj9/viSpatWqmjlzph5++GFLOwgAAAAAAAAAAADkB5kq3EnSww8/TJEOAAAAAAAAAAAAsEim7nEnSWfOnNEHH3ygYcOG6dSpU5KkHTt26O+//7ascwAAAAAAAAAAAEB+kakr7nbt2qWWLVsqNDRU+/fv1+OPP67ChQtr6dKlOnDggGbPnm11PwEAAAAAAAAAAIA8LVNX3A0ePFjR0dH673//Kz8/P8f0tm3bav369ZZ1DgAAAAAAAAAAAMgvMlW427p1q5566imX6aVKldLRo0ez3CkAAAAAAAAAAAAgv8lU4c7Pz08JCQku03/55ReFh4dnuVMAAAAAAAAAAABAfpOpwt2DDz6o0aNHKzExUZJks9l08OBBvfTSS+rSpYulHQQAAAAAAAAAAADyg0wV7t544w0dP35cRYsW1aVLlxQZGanbb79dwcHBevXVV63uIwAAAAAAAAAAAJDneWVmppCQEH377bdas2aNduzYoZSUFN11111q2bKl1f0DAAAAAAAAAAAA8oUMF+6SkpLk5+ennTt3qkWLFmrRokV29AsAAAAAAAAAAADIVzI8VKaXl5ciIiKUnJycHf0BAAAAAAAAAAAA8qVM3ePulVde0dChQ3Xq1Cmr+wMAAAAAAAAAAADkS5m6x90777yj3377TSVLllRERIQCAwOdHt+xY4clnQMAAAAAAAAAAADyi0wV7jp27CibzSZjjNX9AQAAAAAAAAAAAPKlDBXuLl68qOeff17Lli1TYmKioqKi9O6776pIkSLZ1T8AAAAAAAAAAAAgX8jQPe5GjhypmTNnql27durevbu++uor9evXL7v6BgAAAAAAAAAAAOQbGbribsmSJZoxY4a6desmSerZs6fuvvtuJScnq2DBgtnSQQAAAAAAAAAAACA/yNAVd4cOHdI999zj+L1Bgwby8vLS4cOHLe8YAAAAAAAAAAAAkJ9kqHCXnJwsHx8fp2leXl5KSkqytFMAAAAAAAAAAABAfpOhoTKNMYqOjpavr69j2uXLl/Wvf/1LgYGBjmlLliyxrocAAAAAAAAAAABAPpChwl3v3r1dpvXq1cuyzgAAAAAAAAAAAAD5VYYKd/Hx8dnVDwAAAAAAAAAAACBfy9A97gAAAAAAAAAAAABkDwp3AAAAAAAAAAAAgAegcAcAAAAAAAAAAAB4AAp3AAAAAAAAAAAAgAegcAcAAAAAAAAAAAB4AAp3AAAAAAAAAAAAgAegcAcAAAAAAAAAAAB4ALcW7s6dO6cXXnhBrVu3Vnh4uGw2m2JjY93ZJQAAAAAAAAAAAMAt3Fq4O3nypKZPn64rV66oY8eO7uwKAAAAAAAAAAAA4FZe7lx5RESETp8+LZvNphMnTuiDDz5wZ3cAAAAAAAAAAAAAt3Fr4c5ms7lz9QAAAAAAAAAAAIDHcOtQmQAAAAAAAAAAAACucesVd5l15coVXblyxfF7QkKCJCkxMVGJiYnu6hYywf588bxlHVlahyytQ5bWIUtrkKN1yNI6ZGkdsrQOWVqHLK2Tl7L0tqW4ef3mun/d15e88Fzmpf3SncjROmRpHbK0Dllahyxzr4w8ZzZjjMnGvqTbiRMnFB4erpEjRyo2NjbNtrGxsRo1apTL9Pnz5ysgICCbeggAAAAAAAAAAABkzMWLF9WjRw+dPXtWISEhabbNlVfcDR06VIMHD3b8npCQoDJlyqh169a33GB4lsTERK1evVqtWrWSt7e3u7uTq5GldcjSOmRpHbK0BjlahyytQ5bWIUvrkKV1yNI6eSnLR6Ztcuv6vW1GPUqf0fy/CinR2NzWjw+fauy2dVslL+2X7kSO1iFL65CldcjSOmSZe9lHjkyPXFm48/X1la+vr8t0b29vdtZciufOOmRpHbK0DllahyytQY7WIUvrkKV1yNI6ZGkdsrROXsgy0RRwcw9S/n8/bG7tS25/Hq+XF/ZLT0CO1iFL65CldcjSOmSZ+2Tk+XL3mSIAAAAAAAAAAAAAecAVdytXrtSFCxd07tw5SdK+ffv08ccfS5Luv/9+7lkHAAAAAAAAAACAfMHthbt+/frpwIEDjt8XLVqkRYsWSZL+/PNPlStXzk09AwAAAAAAAAAAAHKO2wt3+/fvd3cXAAAAAAAAAAAAALfjHncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgAL3d3AAAAAADgrMO737p1/d62FPUuIz0ybZMSjfu+7/nZv5u6bd0AAAAA4A4U7gAAAAAAwC1RUL6GgjIAAACyE4U7AMjD+HDlGj5cAQAAAAAAAJAbULgDAAAAAAAA8jG+9Pk/fPETQFo4Xl7DsTJ7ub1wd/78eb3yyiv66KOPdOrUKVWpUkUvvfSSunXr5u6uAXATXgCv4QXQc7h7n5Tyzn7p7iw9JUeJLK1ixbGSLK8hS+vwGg4AOcPdrzsSrz1w5e790lP2SYn9EgAyy+2Fu86dO2vr1q0aP368KleurPnz56t79+5KSUlRjx493N09AAAAAAAAAAAAIEe4tXD3+eefa/Xq1Y5inSQ1b95cBw4c0PPPP69HHnlEBQsWdGcX8zy+BXQN3wACAAAAAAAAAADu5tbC3dKlSxUUFKSHHnrIaXpMTIx69OihLVu2qEmTJm7qHZAxFEGvoQgKAAAAAAAAAEDmuLVwt2fPHlWtWlVeXs7duPPOOx2PU7gDAAAAAGQWX7C7hi/YAQCQf3E+dA3nQ8gt3Fq4O3nypCpUqOAyvXDhwo7HU3PlyhVduXLF8fvZs2clSadOnVJiYmI29DQPu3zOveu3GV28eFG67C0Zm9u6cbN9LUPIUhJZWoksrZPlLN2do0SWVvGQHCWytArHSuuQpXXI0jpkaR2ytA5ZWifXnw9JZGkVD8lRIksrZTXL6LjvLepJ5njbjB4qdVGPTFqtRDdmObNPg6wvhP1SEq/hVrIky3zm3Llr+44x5pZtbSY9rbJJ5cqVVbFiRa1cudJp+pEjR1SyZEmNGzdOL730kst8sbGxGjVqVE51EwAAAAAAAAAAAMiSQ4cOqXTp0mm2cesVd2FhYalWZk+dOiXpf1fe3Wjo0KEaPHiw4/eUlBSdOnVKYWFhstnc+00SZExCQoLKlCmjQ4cOKSQkxN3dydXI0jpkaR2ytA5ZWoMcrUOW1iFL65CldcjSOmRpHbK0DllahyytQY7WIUvrkKV1yNI6ZJl7GWN07tw5lSxZ8pZt3Vq4q1mzphYsWKCkpCSn+9zt3r1bklSjRo1U5/P19ZWvr6/TtEKFCmVbP5H9QkJCONBYhCytQ5bWIUvrkKU1yNE6ZGkdsrQOWVqHLK1DltYhS+uQpXXI0hrkaB2ytA5ZWocsrUOWuVNoaGi62rnvTpCSOnXqpPPnz2vx4sVO02fNmqWSJUuqYcOGbuoZAAAAAAAAAAAAkLPcesVd27Zt1apVK/Xr108JCQm6/fbbtWDBAq1atUpz585VwYIF3dk9AAAAAAAAAAAAIMe4tXAnSUuWLNHLL7+sESNG6NSpU6pSpYoWLFigbt26ubtryAG+vr4aOXKky9CnyDiytA5ZWocsrUOW1iBH65CldcjSOmRpHbK0DllahyytQ5bWIUtrkKN1yNI6ZGkdsrQOWeYPNmOMcXcnAAAAAAAAAAAAgPzOrfe4AwAAAAAAAAAAAHANhTsAAAAAAAAAAADAA1C4Q6a98847stlsqlGjRqbm37dvn2JjY7V//35rO5bLzJw5Uzab7aY/69ats2Q9sbGxstlslizLnex5bdu2LdXHf/31Vz333HOqW7euChUqpMKFC+vuu+/Wxx9/nOF1XbhwQd26ddMdd9yh4OBgBQYGqnr16ho7dqwuXLjg1Nae74kTJ7Ru3bo0n9PrfzzVrXKWdNNtGj9+vFM7ezY3+9m/f7+io6PTlVd0dHQ2b3n2yo5cc/s+Z2Um6XXgwAH16dNHJUuWlK+vr0qVKqVOnTo5tbHnW7RoUZ07d85lGeXKlVP79u3T7GdoaKiaNWumFStWZKqf2SU9mUvpy8luw4YNevjhh1WqVCn5+PgoNDRUTZo00dSpU3XhwoVbHgfsP82aNcuGLc4ZVuaaV/6+s8rKTKOjoxUUFJSd3c0x6c3F05QrVy7V/fZf//pXppd5/Xl0aufMxhjdfvvtLscXm82m2NjYTK83u+zfv98pmwIFCigsLEz333+/Nm3aJEn65JNPZLPZ9N577910OatXr5bNZtNbb70lSY7zrODgYJ0/f96l/YEDB1SgQIEcz2Xz5s166KGHVKJECfn4+Kh48eLq2rWrY1vtbny/5OXlpdKlSysmJkZ///23y3L/+OMPDRw4UJUrV5a/v78CAgJUvXp1vfLKK6m2z40ymt3177mjo6NVrly5nO2wB8no/mQF+9/2zJkzHdOuf63PC7Zs2aJOnTqpbNmy8vX1VbFixdS4cWMNGTLE3V3LU6zI+eLFi4qNjbXss6bslFPbu2vXLsXExKh8+fLy8/NTUFCQ7rrrLk2YMEGnTp1ytEvtPWB2sJ//X9/nnDx2d+rUSf7+/jpz5sxN2/Ts2VPe3t76559/ZLPZNHDgwDSX2axZM9lsNlWoUEGp3bVr/fr1juPy9cdKu/Q+R7lVRjJ//fXXXV7bkTd5ubsDyL3i4uIkSXv37tWWLVvUsGHDDM2/b98+jRo1Ss2aNcvXbxzs4uPjVaVKFZfp1apVc0Nvcq8vv/xSK1as0KOPPqr69esrKSlJH374oR566CGNGjVKI0aMSPeyEhMTZYzR4MGDVb58eRUoUEDr16/X6NGjtW7dOn311VepznfXXXe5vGnu1KmTKlasqDfeeCNL2+dpunbt6nLSXLZs2VTbrlq1SqGhoS7TS5QooeHDhzt9cLdjxw4NGDBAr732mpo3b+6YHh4eblHPPVtGcpXyxz6X0UxuZs+ePWrWrJkqVKigN954Q6VLl9aRI0f0xRdfpNr++PHjmjBhgsaMGZOhfqakpOiPP/7Q2LFj1aFDB3322Wdq165dhvvrLhnJaeTIkRo9erSaNGmiMWPGqGLFirp48aI2btyo2NhY/frrrxoyZIjuu+8+xzxHjhxR586d9e9//1s9evRwTA8JCcmR7XOXjO5/Uv74+86KzGQK97n77rtd9ttixYplebnBwcGaMWOGS/H/m2++0e+//67g4GCn6Zs2bVLp0qWzvN7sYj82Jicna+/evRo1apSaN2+uTZs2qV27dipevLji4uJuWvSMj4+Xt7e3Hn30Ucc0b29vx3lx3759XdoHBwcrISEhW7freu+++66effZZNWjQQBMmTFBERIQOHjyoyZMnq2nTppo0aZLLh4D290uXLl3S+vXrNW7cOH3zzTfavXu3AgMDJUnLly9Xt27dVKRIEQ0cOFB16tSRzWbT7t27FRcXpxUrVuiHH37Ise3MDpnJ7nrDhw/XM888k4M99kzp2Z+QPitWrNADDzygZs2aacKECSpRooSOHDmibdu2aeHChXrzzTfd3cU8waqcL168qFGjRkmSR39pLqe29/3331f//v11xx136Pnnn1e1atWUmJiobdu26b333tOmTZu0dOlSKzfN4/Xt21fLli3T/Pnz1b9/f5fHz549q6VLl6p9+/YZOo8LDg7Wn3/+qTVr1igqKsrpsbi4OIWEhKR6LpIfnqOMZN6nTx9FRkaqRIkSbugpcpQBMmHr1q1GkmnXrp2RZJ544okML2PRokVGklm7dm262l+4cCHD68gN4uPjjSSzdevWbF3PyJEjTV74k79VXsePHzcpKSku09u1a2cCAgLM5cuXs9yHF154wUgyv//+u2OaPd/jx4+nOk9ERIRp165dltedU9KzX0oyAwYMuOWybpVNatauXWskmUWLFqV7ntwgJ3PNLfuclZncSkpKiqldu7apXbv2LY8F9nzvu+8+ExgYaI4cOeL0eGr5ptbP3377zUgyLVu2zHL/rXKrzDOS00cffWQkmb59+6Z67E1ISDBffPGFy/Q///zTSDITJ07M3EZ4ICtzzSt/31llZaa9e/c2gYGB2dHNHJdT545Wy4791p7F448/bvz9/c3Zs2edHu/Vq5dp3LixqV69uomMjLR03cYYc/XqVZOYmGjZ8m52bPz6668d22nM/85Fd+/e7bKM06dPGz8/P9OlSxfHNPv+361bN9OkSROn9ikpKSYiIsI88cQTRpIZOXKkZdtzM99++60pUKCAad++vUt+iYmJpn379qZAgQLm22+/NcbcfJ8fPny4kWTmzp1rjDHmjz/+MIGBgaZOnTrmzJkzLutNSUkxixcvzqatyhmZze7PP/90Q289U3r3JyvZ/7bj4+Md0zLzHslT3XvvvaZixYqpHg+Tk5Pd0KO8yaqcjx8/nmPH+6zIie3duHGjKViwoLnvvvtSPZe8cuWK+eSTTxy/59Q5uP3zkOs/L+3du7eJiIjI9nUbY0xSUpIpWbKkqVu3bqqPT5061Ugyn332mTEmfe/XIyMjTfXq1U2jRo1Mjx49nB5LSEgwAQEBjnOR64+VGX2OcquMZo78gaEykSkzZsyQJI0fP15NmjTRwoULdfHiRac2U6dOVa1atRQUFKTg4GBVqVJFw4YNk3RteIqHHnpIktS8eXOXy6GbNWumGjVqaP369WrSpIkCAgLUp08fSdLBgwfVq1cvFS1aVL6+vqpatarefPNNpaSk5NDWu4f90vM5c+aoatWqCggIUK1atbR8+XKXtitWrFDt2rXl6+ur8uXL3/Qb+ZcvX9bQoUNVvnx5+fj4qFSpUhowYECal2Z7uiJFiqQ6XFiDBg108eJFSy6ht1/15eXFRctAbrJ+/Xrt3LlTzz77rHx9fdM1z9ixY5WUlJTpocMqVqyo8PBwHThwIFPzu0NGcho9erRuu+02x/DZNwoODlbr1q2zq6u5Smb2P6QtM5nu3btXUVFRCgwMVHh4uAYOHOhyDpvbXb58WUOGDFHt2rUVGhqqwoULq3Hjxvrkk09c2trPL+Pj43XHHXfI399f9erV0+bNm2WM0cSJE1W+fHkFBQWpRYsW+u2335zmt5+zb9iwQY0aNZK/v79KlSql4cOHKzk5Oac2Wd27d5ckLViwwDHt7NmzWrx4seM9xPVSGxLy77//1pNPPqkyZcrIx8dHJUuWVNeuXfXPP/9I+t+wVXPmzNGQIUNUqlQp+fr6OjKJi4tTrVq15Ofnp8KFC6tTp0766aefLNm+Ro0aSZLjtcR+xVx8fLxL2wULFujy5cupbnefPn20ceNG/fLLL45pX331lQ4cOKCYmBhL+poe48aNk81m09SpU13Op728vDRlypR0DYl9Yy5vvfWWLly4oClTpqQ6yoPNZlPnzp0t2gr3sCK71IZbO3PmjPr27avChQsrKChI7dq10x9//JHq38q3336rqKgoBQcHKyAgQE2aNPG4YcEzw74//fbbb7LZbI7PPK63cuVK2Ww2ffrpp462MTExqlSpkgICAlSqVCl16NBBu3fvTvd6Dx06pM6dOyskJEShoaHq1auXjh8/bs1G5ZCTJ0+qSJEiqb4/LlDgfx872ocZXLVqle666y75+/urSpUqjtGcrnerY7J07TW9devWCggIUHh4uAYMGKAVK1bcdPjk3C69Oa9Zs0bNmjVTWFiY/P39VbZsWXXp0kUXL17U/v37HZ9njBo1yqNvSZET2/vaa6/JZrNp+vTpqZ5L+vj46IEHHnCZnp59eM+ePXrwwQd12223yc/PT7Vr19asWbNc2v3888+67777FBAQoCJFiuhf//pXqrdqyEkFCxZU7969tX379lSPZ/Hx8SpRooTatm2b4WX36dNHS5YscfrcceHChZKkbt26ubTP7HOU22Qk89SGwfaUc3JYi8IdMuzSpUtasGCB6tevrxo1aqhPnz46d+6cFi1a5GizcOFC9e/fX5GRkVq6dKmWLVumQYMGOe4L1q5dO7322muSpMmTJ2vTpk2OoV/sjhw5ol69eqlHjx76/PPP1b9/fx0/flxNmjTRl19+qTFjxujTTz9Vy5Yt9dxzz91yPGVPl5ycrKSkJKefGw+uK1as0H/+8x+NHj1aixcvdnwo8McffzjafP3113rwwQcVHByshQsXauLEifroo49c3tgbY9SxY0e98cYbevTRR7VixQoNHjxYs2bNUosWLXTlypUc2e6csnbtWoWHh6to0aIZntcYo6SkJCUkJGjVqlV688031b1790wN05fXzJ8/X/7+/vL19VXdunVT/QDJLj37OK7JSK75hRWZrF+/XtK1YtL999/vGBu/ffv2+vnnn1OdJyIiQv3799eMGTP066+/Znidp0+f1smTJ3PVMK/pzenIkSPas2eP4wMTpC0z+x/SltFMExMTdf/99ysqKkrLli3TwIEDNW3aND3yyCM53fVsdeXKFZ06dUrPPfecli1bpgULFqhp06bq3LmzZs+e7dJ++fLl+uCDDzR+/HgtWLBA586dU7t27TRkyBB99913+s9//qPp06dr37596tKli8t9SY4ePapu3bqpZ8+e+uSTT9S1a1eNHTs21aH41q9fr+DgYHl7e6tatWp68803LTkXCAkJUdeuXZ0+OFuwYIEKFCiQruf377//Vv369bV06VINHjxYK1eu1Ntvv63Q0FCdPn3aqe3QoUN18OBBvffee/rss89UtGhRjRs3Tn379lX16tW1ZMkSTZo0Sbt27VLjxo313//+N8vbZy8O2l9LKleurKZNm2ru3LlKTEx0ahsfH69SpUqpTZs2Lstp2bKlIiIinHKaMWOG7r33XlWqVCnL/UyP5ORkrV27VvXq1bvpcKVlypRR3bp1tWbNmjT3jxtz+fLLL1WsWDFHASavsTK766WkpKhDhw6aP3++XnzxRS1dulQNGzZ0GuLa7ptvvlGLFi109uxZzZgxQwsWLFBwcLA6dOigDz/8MEvb5272/alkyZKqU6dOqueaM2fOVNGiRXX//fdLkg4fPqywsDCNHz9eq1at0uTJk+Xl5aWGDRs6FcjT0qlTJ91+++36+OOPFRsbq2XLlqlNmzYuf9uerHHjxtqyZYuefvppbdmyJc2+//jjjxoyZIgGDRqkTz75RHfeeaf69u3reE2X0ndMPnLkiCIjI/XLL79o6tSpmj17ts6dO5frPxdKS3py3r9/v9q1aycfHx/FxcVp1apVGj9+vAIDA3X16lWVKFFCq1atknTtSyD2z+KGDx+e05tzS9m9vcnJyVqzZo3q1q2rMmXKpLtf6dmHf/nlFzVp0kR79+7VO++8oyVLlqhatWqKjo7WhAkTHO3++ecfRUZGas+ePZoyZYrmzJmj8+fPe8R+3KdPH9lsNpei5L59+/T999+rd+/eKliwYIaX261bNxUsWNDpy1YzZsxQ165dXW6bkNnnKLfKauYZOSdHLuHeC/6QG82ePdtIMu+9954xxphz586ZoKAgc8899zjaDBw40BQqVCjN5aQ1VGZkZKSRZL7++mun6S+99JKRZLZs2eI0vV+/fsZms5lffvklk1vlPvahOlL7KViwoKOdJFOsWDGTkJDgmHb06FFToEABM27cOMe0hg0bmpIlS5pLly45piUkJJjChQs7DZW5atUqI8lMmDDBqT8ffvihkWSmT5+eHZubZZkZHur99983ksykSZMytc4FCxY4PS8xMTEuwzXktWHN0pNzjx49zLx588z69evNxx9/bNq2bWskmVdeecWpnT2b1H4qVqyY6rLz81CZGc01t+9zVmZyK0899ZSRZEJCQkzfvn3NV199ZebMmWMiIiJMkSJFzOHDhx1tr8/3xIkTJjQ01GnYsZsNldm/f3+TmJhorl69an766SdHXydPnpyhvmanW2We3pw2b95sJJmXXnopw33Ij0NlZnb/S01u+fvOKisz7d27d6rnAq+++qqR5BhWLjfI6LlQUlKSSUxMNH379jV16tRxekySKV68uDl//rxj2rJly4wkU7t2bachcN9++20jyezatcsxzX7OfuMQRU888YQpUKCAOXDggGNa//79TVxcnPnmm2/MsmXLTM+ePY0k06tXrwxt//Wuz8J+7rBnzx5jjDH169c30dHRxhjjMlSmbhgyq0+fPsbb29vs27fvpuuyL//ee+91mn769Gnj7+9v7r//fqfpBw8eNL6+vi7DQaXFfmx8/fXXTWJiorl8+bLZvn27qV+/vpFkVqxY4bLtS5YscUzbs2ePkWRefvllp+VeP1TsyJEjTfHixU1iYqI5efKk8fX1NTNnzsyxodOOHj1qJJlu3bql2e6RRx4xksw///zj2NbNmzebxMREc+7cObN8+XITHh5ugoODzdGjR40xxvj5+ZlGjRpla//dKSvZXT9U5o3Dra1YscJIMlOnTnVazrhx41z2iUaNGpmiRYuac+fOOaYlJSWZGjVqmNKlS6c6bLanSc/+9M477xhJTp8vnDp1yvj6+pohQ4bcdNlJSUnm6tWrplKlSmbQoEGO6WkNlXl9O2OMmTdvXrYN2ZldTpw4YZo2bep4j+ft7W2aNGlixo0b57SvREREGD8/P6fXhkuXLpnChQubp556yjEtPcfk559/3thsNrN3716n6W3atLnp50y5XXpy/vjjj40ks3PnzpsuJ7cMlZnd25veY+r10rsPd+vWzfj6+pqDBw86zd+2bVsTEBDgGM75xRdfNDabzaX/rVq1cutQmXaRkZGmSJEi5urVq45pQ4YMMZLMr7/+6pimDAyVacy1balXr54xxpi9e/caSWbdunWO2zLZj5WZeY5yu/Rkntpre0bOyZF7cMUdMmzGjBny9/d3XMIcFBSkhx56SBs2bHB8o7RBgwY6c+aMunfvrk8++UQnTpzI8Hpuu+02tWjRwmnamjVrVK1aNTVo0MBpenR0tIwxWrNmTSa3yv1mz56trVu3Ov1s2bLFqU3z5s0VHBzs+L1YsWIqWrSoY3iYCxcuaOvWrercubP8/Pwc7ezfgryePasbh0R46KGHFBgYqK+//trKzXOblStXasCAAeratav+/e9/Z2oZbdq00datW7VmzRq9+uqrWrx4sbp06ZLnh2e9lXnz5qlHjx6655571KVLF33++edq3769xo8fn+rwLl999ZXLPr5s2bKc77iHy2iu+YFVmdj/Zhs3bqwPPvhAUVFR6tWrl5YtW6YTJ05o8uTJqc4XFhamF198UYsXL3Y5Lt9oypQp8vb2lo+Pj6pWraqNGzdq9OjRqd5g2lNlNiekjVytl5lMe/bs6fR7jx49JF27Mj8vWbRoke6++24FBQXJy8tL3t7emjFjRqpDNzZv3lyBgYGO36tWrSpJatu2rdMQuPbpNw79Gxwc7DJEUY8ePZSSkuL07fPJkycrJiZG9957rx588EHNnTtXAwcO1Ny5c/XDDz9keZsjIyNVsWJFxcXFaffu3dq6dWuqw0WmZuXKlWrevLljG9PSpUsXp983bdqkS5cuuZxTlylTRi1atMjUOfWLL74ob29v+fn5qW7dujp48KCmTZvmuMpHkh5++GEFBwc7fSs7Li5ONpstzWEvY2Ji9M8//2jlypWaN2+efHx8HLcw8CTm/1/Zef0+2KhRI3l7eys4OFjt27dX8eLFtXLlShUrVsxd3fRIqWWXlm+++UbStX3qevYhaO0uXLigLVu2qGvXrgoKCnJML1iwoB599FH99ddf6b7KzBOktT/17NlTvr6+jlt5SNeu4r1y5YrT31dSUpJee+01VatWTT4+PvLy8pKPj4/++9//pnuo3Btflx5++GF5eXnlqtelsLAwbdiwQVu3btX48eP14IMP6tdff9XQoUNVs2ZNp8+Dateu7TRyjZ+fnypXruz02pKeY/I333yjGjVqqFq1ak7Tb9xv85L05Fy7dm35+PjoySef1KxZs5xGZ8ptPHV707MPr1mzRlFRUS5XiUVHR+vixYvatGmTpGvnn9WrV1etWrWc2tnPT92tb9++OnHihGN44KSkJM2dO1f33HNPlq7U79Onj7Zt26bdu3drxowZqlixou69916rup2rZSXz9J6TI/egcIcM+e2337R+/Xq1a9dOxhidOXNGZ86cUdeuXSXJ8cbx0UcfVVxcnA4cOKAuXbqoaNGiatiwoVavXp3udZUoUcJl2smTJ1OdXrJkScfjuVXVqlVVr149p5+6des6tQkLC3OZz9fXV5cuXZJ0bUi2lJQUFS9e3KXdjdNOnjwpLy8vl+HbbDabihcvnquztPviiy/UuXNntWrVSvPmzUv3m9cb3XbbbapXr56aN2+uYcOGafr06fr0009TvVdMfterVy8lJSVp27ZtLo/VqlXLZR+vUaOGG3qZ+6SVa36VmUzsx9Abhw+rXbu2SpQooR07dtx03meffVYlS5bUCy+8kOY6Hn74YW3dulXbtm3TL7/8opMnT3rk0DNpSW9O9jesf/75Z852MJfKyv6H1GU0Uy8vL5dzKfv5UV4477FbsmSJHn74YZUqVUpz587Vpk2bHEWsy5cvu7QvXLiw0+8+Pj5pTr9xGakVTdKba69evSRJmzdvTrNdetgLVnPnztV7772nypUr65577knXvMePH7/p0IM3uvG9iH0bb/YeJTP71jPPPKOtW7dq+/bt+v3333XkyBE9+eSTTm0CAgLUrVs3rVq1SkePHnV8sGMvYN5MRESEoqKiFBcXp7i4OHXr1i1HhzsuUqSIAgICbvnasX//fgUEBDjth/YvOv7www86fPiwdu3apbvvvtvxeNmyZfP0a1JWskuL/X3hje1v/Ns+ffq0jDF55v14WvtT4cKF9cADD2j27NmOIUdnzpypBg0aqHr16o5lDB48WMOHD1fHjh312WefacuWLdq6datq1arleI9+Kze+T7e/VuWmLO3q1aunF198UYsWLdLhw4c1aNAg7d+/32lowFt9piGl75h88uTJVF9/8kMhP62cK1asqK+++kpFixbVgAEDVLFiRVWsWFGTJk1yd7czLbu2N73H1BulZx9O72eXJ0+eTNfnd+7StWtXhYaGOoYO/vzzz/XPP/847rWbWfYhuqdNm6Y5c+Y4hoi8UWafo9wsK5ln5ZwcnonCHTIkLi5Oxhh9/PHHuu222xw/9nvTzZo1y3FiGxMTo40bN+rs2bNasWKFjDFq3769y7d0bya1g3ZYWJiOHDniMv3w4cOSrh3U87PbbrtNNptNR48edXnsxmlhYWFKSkpyuVrFGKOjR4/m+iy/+OILdezYUZGRkVq8eLHjwyYr2K/4zMz9rvI6+zd8r79ZNLKOXF1lJpM777wzzeWltSx/f3/FxsZq/fr1WrFixU3bhYeHO754Ubly5UyN++9u6c2pRIkSqlmzpr788ktdvHgxp7qXa2Vl/0PqMpppUlKSy5tW+/lRah/C5FZz585V+fLl9eGHH6pjx45q1KiR6tWrl233L/7nn39cpqU3V6tf36Kjo3XixAm99957aV51dqPw8HD99ddf6Wp743sU+zbe7D1KZs6pS5curXr16umuu+5ShQoVbvrls759+yopKUmzZ8/W8uXLdezYsXR9sNOnTx99+umn2rlzZ7qvSrRKwYIF1bx5c23btu2mmf/111/avn27WrRo4fQ6av+io704f6M2bdron3/+saQQ7Imykl1a7O8LT5065TT9xvePt912mwoUKJBn3o/fan+KiYnR33//rdWrV2vfvn3aunWry3Fl7ty5euyxx/Taa6+pTZs2atCggerVq5ehEYduzNn+WpXbX5e8vb01cuRISdKePXsyNG96jslhYWFpvv7kF6nlfM899+izzz7T2bNntXnzZjVu3FjPPvusFi5c6M6uWsLK7S1YsKCioqK0ffv2dJ8DpFd6P7sMCwtL1+d37uLv76/u3btr1apVOnLkiOLi4hQcHGzJlfoxMTGaOnWqTp06pd69e6faJjufI0+Vlcyzck4Oz8QnBEi35ORkzZo1SxUrVtTatWtdfoYMGaIjR45o5cqVTvMFBgaqbdu2evnll3X16lXt3btX0rVvpEhK9zfRJCkqKkr79u1z+Qb17NmzZbPZ1Lx58yxuZe4WGBioBg0aaMmSJU7fhj537pw+++wzp7ZRUVGSrr3ZuN7ixYt14cIFx+O50ZdffqmOHTuqadOmWrZsmWNfs4p92JLbb7/d0uXmBXPmzJG3t7fL1aLIGnJ1lZlM2rZtq4CAAJfXqR07dujo0aNq1KhRmvP36dNHVatW1UsvvZSnh8rNSE7Dhw/X6dOn9fTTTzs+gL/e+fPn9eWXX2Z7n3ODrO5/cJWZTOfNm+f0+/z58yVJzZo1y7Z+5jSbzSYfHx+nYs/Ro0ezbaSAc+fOOYbzsZs/f74KFChwy2GPZs+eLUmW7f+lSpXS888/rw4dOtz0Q6DUtG3bVmvXrs3UMH+NGzeWv7+/yzn1X3/95RgqK7s0bNhQNWrUUHx8vOLj4xUaGuoylGdqOnXqpE6dOqlPnz5uOfYMHTpUxhj179/f8aVPu+TkZPXr10/GGA0dOjRDyx00aJACAwPVv39/nT171uVxY4yWLl2apb67W3ZkFxkZKUn68MMPnabf+KF3YGCgGjZsqCVLlji9h09JSdHcuXNVunRpVa5cOaOb5LFat26tUqVKOf6+/Pz8XIZhtNlsLu81V6xYob///jvd67nxdemjjz5SUlJSrnpdSq1AIckxXKj9KqP0Ss8xOTIyUnv27NG+ffucpueF4tTNZDTnggULqmHDho6hw+2fo2Xmszh3yInttR9Tn3jiCV29etXl8cTERJfP0tIjKipKa9ascRTq7GbPnq2AgADHa2/z5s21d+9e/fjjj07t7OennqBv375KTk7WxIkT9fnnn1t2pX7v3r3VoUMHPf/88ypVqtRN22XXc+TJMpt5Vs7J4Zm83N0B5B4rV67U4cOH9frrr6d6ElmjRg395z//0YwZM/TJJ5/I399fd999t0qUKKGjR49q3LhxCg0NVf369R3tJWn69OkKDg6Wn5+fypcvn+a3AAYNGqTZs2erXbt2Gj16tCIiIrRixQpNmTJF/fr1y9VvFPbs2aOkpCSX6RUrVnQZzjItY8aM0X333adWrVppyJAhSk5O1uuvv67AwECnb1G2atVKbdq00YsvvqiEhATdfffd2rVrl0aOHKk6dero0UcftWS7ssuaNWu0f/9+l+lFixZVx44dVbx4cQ0bNkw7d+50erxatWoKCQlJ1zqmTZumDRs2qHXr1ipTpowuXLigDRs26N1331WTJk304IMPWrAlnu1mOe/du1f79+9XVFSUSpcurWPHjmnGjBn68ssvFRsbm+q3bbdv367Q0FCX6Rl5TvIKK3PNK3Iik0KFCmn06NF67rnnFB0dre7du+vo0aMaPny4ypYte8v70BUsWFCvvfaaOnXqJCntq31yg5tlfv/996c7p4ceekjDhw/XmDFj9PPPP6tv376qWLGiLl68qC1btmjatGl65JFH1Lp16xzcMveyIlc4sypTHx8fvfnmmzp//rzq16+vjRs3auzYsWrbtq2aNm2aQ1tjnZvl0qJFCy1ZskT9+/dX165ddejQIY0ZM0YlSpRw3I/aSmFhYerXr58OHjyoypUr6/PPP9f777+vfv36OYbUnT9/vpYsWaJ27dopIiJCZ86c0aJFi7Rw4UJFR0e73NslK8aPH5/heUaPHq2VK1fq3nvv1bBhw1SzZk2dOXNGq1at0uDBg1WlSpWbzluoUCENHz5cw4YN02OPPabu3bvr5MmTGjVqlPz8/BxXBmSXPn36aPDgwfrll1/01FNPyd/f/5bz+Pn56eOPP87WfqXl7rvv1ttvv61nn31WTZs21cCBA1W2bFkdPHhQkydP1pYtW/T222+rSZMmGVpu+fLltXDhQj3yyCOqXbu2Bg4cqDp16kiS9u3b5xg9xv46nhtlR3b33Xef7r77bg0ZMkQJCQmqW7euNm3a5CisX39F7Lhx49SqVSs1b95czz33nHx8fDRlyhTt2bNHCxYsyPStCTxRwYIF9dhjj+mtt95SSEiIOnfu7PJepn379po5c6aqVKmiO++8U9u3b9fEiRPTPfSudG14Yy8vL7Vq1Up79+7V8OHDVatWLZd7DnqyNm3aqHTp0urQoYOqVKmilJQU7dy5U2+++aaCgoL0zDPPZGh56TkmP/vss4qLi1Pbtm01evRoFStWTPPnz9fPP/8sKW+OVJKenN977z2tWbNG7dq1U9myZXX58mXHLW1atmwp6dp9sCIiIvTJJ58oKipKhQsXVpEiRVSuXDk3bp2rnNjexo0ba+rUqerfv7/q1q2rfv36qXr16kpMTNQPP/yg6dOnq0aNGurQoUOG+j5y5EgtX75czZs314gRI1S4cGHNmzdPK1as0IQJExzHEvt+3K5dO40dO1bFihXTvHnzHPuxJ6hXr57uvPNOvf322zLG3PTK/t9//z3Vc4tq1aq53ItSulZ4XbZs2S3Xn13PkSdLb+Y3Ss85OXIZA6RTx44djY+Pjzl27NhN23Tr1s14eXmZmTNnmubNm5tixYoZHx8fU7JkSfPwww+bXbt2ObV/++23Tfny5U3BggWNJBMfH2+MMSYyMtJUr1491XUcOHDA9OjRw4SFhRlvb29zxx13mIkTJ5rk5GTLtjUnxcfHG0k3/Xn//feNMcZIMgMGDHCZPyIiwvTu3dtp2qeffmruvPNO4+PjY8qWLWvGjx9vRo4caW78k7906ZJ58cUXTUREhPH29jYlSpQw/fr1M6dPn86uzc2yW+XVu3fvNB9fu3Ztutf13Xffmfbt25uSJUsaHx8fExAQYGrVqmXGjBljLly44NTWnu/x48dTXVZERIRp165dVjY9R90q53feecc0bdrUhIeHGy8vLxMcHGzuueces2DBApdl2bO52c/q1atd5lm7dq2RZBYtWpQTm5tjsiPX3L7PWZlJer3//vumRo0axsfHx4SFhZmePXuaQ4cOObVJK98mTZoYSS753uw47Wlulfmff/5pjElfTnbffPON6dq1qylRooTx9vY2ISEhpnHjxmbixIkmISHBpf2ff/5pJJmJEydm56bmKCtzzSt/31llZaa9e/c2gYGBZteuXaZZs2bG39/fFC5c2PTr18+cP3/eDVuXeenJZfz48aZcuXLG19fXVK1a1bz//vupngumdty62d9naq/N9nP2devWmXr16hlfX19TokQJM2zYMJOYmOhot2nTJhMVFWWKFy9uvL29TUBAgKlfv76ZMmVKls7h7Vls3bo1zXbVq1c3kZGRTts9cuRIpzaHDh0yffr0cfTR/v7ln3/+uen2X++DDz5wnH+HhoaaBx980OzduzdD25OZY+Px48eNj4+PkWS+//77VNvY9/9bLSe1XLLTpk2bTNeuXU2xYsWMl5eXKVq0qOncubPZuHGjU7v0Ps92v//+u+nfv7+5/fbbja+vr/H39zfVqlUzgwcPdhw3cruMZnf9dvfu3dtEREQ4tTt16pSJiYkxhQoVMgEBAaZVq1Zm8+bNRpKZNGmSU9sNGzaYFi1amMDAQOPv728aNWpkPvvss+zaVMtlZH/69ddf03zPcvr0adO3b19TtGhRExAQYJo2bWo2bNhgIiMjnY459r9t++cdxvzvtX779u2mQ4cOJigoyAQHB5vu3bs7jju5xYcffmh69OhhKlWqZIKCgoy3t7cpW7asefTRR82+ffsc7W52/nJjXsbc+phsjDF79uwxLVu2NH5+fqZw4cKmb9++ZtasWUaS+fHHH7Nte90lPTlv2rTJdOrUyURERBhfX18TFhZmIiMjzaeffuq0rK+++srUqVPH+Pr6Oj5H8TQ5ub07d+40vXv3NmXLljU+Pj4mMDDQ1KlTx4wYMcLpM9CM7MO7d+82HTp0MKGhocbHx8fUqlXL6Rhgt2/fPtOqVSun/fiTTz5x+fwqtWN3Tpk0aZKRZKpVq5bq42mdl9rPK9L6nNdu69atLsdKu/Q+R3lFWpmn9tqe3nNy5C42Y1IZ1wgAAAAAgDQ0a9ZMJ06cyPD9iwB4vvnz56tnz5767rvvMnz1I+AuTz75pBYsWKCTJ09aep97APBknJPnTQyVCQAAAAAAkE8tWLBAf//9t2rWrKkCBQpo8+bNmjhxou69916KdvBYo0ePVsmSJVWhQgWdP39ey5cv1wcffKBXXnmFoh0AINejcAcg3zHGuNzM/UYFCxbMU/doAPIy/qYBAJ6M1yl4uuDgYC1cuFBjx47VhQsXVKJECUVHR2vs2LHu7hpwU97e3po4caL++usvJSUlqVKlSnrrrbcyfE89AAA8EUNlAsh31q1bp+bNm6fZJj4+XtHR0TnTIQBZwt80AMCT8ToFAAAAICMo3AHId86dO6dffvklzTbly5dXWFhYDvUIQFbwNw0A8GS8TgEAAADICAp3AAAAAAAAAAAAgAco4O4OAAAAAAAAAAAAAKBwBwAAAAAAAAAAAHgECncAAAAAAAAAAACAB6BwBwAAAAAAAAAAAHgACncAAAAAkEfFxsaqdu3ajt+jo6PVsWNHt/UHAAAAAJA2CncAAAAA4IGOHj2qf//736pQoYJ8fX1VpkwZdejQQV9//XW2rXPmzJkqVKhQti0fAAAAAJA2L3d3AAAAAADgbP/+/br77rtVqFAhTZgwQXfeeacSExP1xRdfaMCAAfr555/d3UUAAAAAQDbgijsAAAAA8DD9+/eXzWbT999/r65du6py5cqqXr26Bg8erM2bNzvanT17Vk8++aSKFi2qkJAQtWjRQj/++GOm1rlu3TrFxMTo7Nmzstlsstlsio2N1ejRo1WzZk2X9nXr1tWIESMk/W8IzlGjRjn68tRTT+nq1auO9sYYTZgwQRUqVJC/v79q1aqljz/+2PH46dOn1bNnT4WHh8vf31+VKlVSfHx8prYFAAAAAHIrrrgDAAAAAA9y6tQprVq1Sq+++qoCAwNdHrcPZWmMUbt27VS4cGF9/vnnCg0N1bRp0xQVFaVff/1VhQsXztB6mzRporffflsjRozQL7/8IkkKCgrSmTNnNGrUKG3dulX169eXJO3atUs//PCDFi1a5Jj/66+/lp+fn9auXav9+/crJiZGRYoU0auvvipJeuWVV7RkyRJNnTpVlSpV0vr169WrVy+Fh4crMjJSw4cP1759+7Ry5UoVKVJEv/32my5dupSZCAEAAAAg16JwBwAAAAAe5LfffpMxRlWqVEmz3dq1a7V7924dO3ZMvr6+kqQ33nhDy5Yt08cff6wnn3wyQ+v18fFRaGiobDabihcv7pgeFBSkNm3aKD4+3lG4i4+PV2RkpCpUqOA0f1xcnAICAlS9enWNHj1azz//vMaMGaNLly7prbfe0po1a9S4cWNJUoUKFfTtt99q2rRpioyM1MGDB1WnTh3Vq1dPklSuXLkM9R8AAAAA8gIKdwAAAADgQYwxkiSbzZZmu+3bt+v8+fMKCwtzmn7p0iX9/vvvlvbpiSeeUJ8+ffTWW2+pYMGCmjdvnt58802nNrVq1VJAQIDj98aNG+v8+fM6dOiQjh07psuXL6tVq1ZO81y9elV16tSRJPXr109dunTRjh071Lp1a3Xs2FFNmjSxdDsAAAAAwNNRuAMAAAAAD1KpUiXZbDb99NNP6tix403bpaSkqESJElq3bp3LY/bhNK3SoUMH+fr6aunSpfL19dWVK1fUpUuXdM1rs9mUkpIiSVqxYoVKlSrl9Lj9asG2bdvqwIEDWrFihb766itFRUVpwIABeuONNyzdFgAAAADwZBTuAAAAAMCDFC5cWG3atNHkyZP19NNPu9zn7syZMypUqJDuuusuHT16VF5eXpYNK+nj46Pk5GSX6V5eXurdu7fi4+Pl6+urbt26OV1dJ0k//vijLl26JH9/f0nS5s2bFRQUpNKlS+u2226Tr6+vDh48qMjIyJuuPzw8XNHR0YqOjtY999yj559/nsIdAAAAgHyFwh0AAAAAeJgpU6aoSZMmatCggUaPHq0777xTSUlJWr16taZOnaqffvpJLVu2VOPGjdWxY0e9/vrruuOOO3T48GF9/vnn6tixo+NecRlRrlw5nT9/Xl9//bVj6Et7ge7xxx9X1apVJUnfffedy7xXr15V37599corr+jAgQMaOXKkBg4cqAIFCig4OFjPPfecBg0apJSUFDVt2lQJCQnauHGjgoKC1Lt3b40YMUJ169ZV9erVdeXKFS1fvtyxPgAAAADILyjcAQAAAICHKV++vHbs2KFXX31VQ4YM0ZEjRxQeHq66detq6tSpkq4NQfn555/r5ZdfVp8+fXT8+HEVL15c9957r4oVK5ap9TZp0kT/+te/9Mgjj+jkyZMaOXKkYmNjJV0bwrNJkyY6efKkGjZs6DJvVFSUKlWqpHvvvVdXrlxRt27dHPNK0pgxY1S0aFGNGzdOf/zxh+OqwWHDhkm6drXf0KFDtX//fvn7++uee+7RwoULM7UdAAAAAJBb2Yz9zucAAAAAANyEMUZVqlTRU089pcGDBzs9Fh0drTNnzmjZsmXu6RwAAAAA5BFccQcAAAAASNOxY8c0Z84c/f3334qJiXF3dwAAAAAgz6JwBwAAAABIU7FixVSkSBFNnz5dt912m7u7AwAAAAB5FkNlAgAAAAAAAAAAAB6ggLs7AAAAAAAAAAAAAIDCHQAAAAAAAAAAAOARKNwBAAAAAAAAAAAAHoDCHQAAAAAAAAAAAOABKNwBAAAAAAAAAAAAHoDCHQAAAAAAAAAAAOABKNwBAAAAAAAAAAAAHoDCHQAAAAAAAAAAAOABKNwBAAAAAAAAAAAAHuD/Aa0sAANCsFrcAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -2052,38 +2065,38 @@
],
"source": [
"prediction = evaluator.predict_sequence(designed_sequences[0])\n",
- "prediction_bar(prediction, classes=list(adata.obs_names))"
+ "crested.pl.bar.prediction(prediction, classes=list(adata.obs_names))"
]
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-10-01T15:52:20.959460+0200 INFO Calculating contribution scores for 1 class(es) and 1 region(s).\n"
+ "2024-10-09T14:41:11.716004+0200 INFO Calculating contribution scores for 1 class(es) and 1 region(s).\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Region: 100%|██████████| 1/1 [00:01<00:00, 1.26s/it]\n"
+ "Region: 100%|██████████| 1/1 [00:01<00:00, 1.25s/it]\n"
]
}
],
"source": [
"scores, one_hot_encoded_sequences = evaluator.calculate_contribution_scores_sequence(\n",
- " designed_sequences[3], class_names=[\"Oligo\"]\n",
+ " designed_sequences[0], class_names=[\"Oligo\"]\n",
") # focus on two cell types of interest"
]
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 52,
"metadata": {},
"outputs": [
{
@@ -2096,7 +2109,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAE34AAADJCAYAAADS+CSPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2G0lEQVR4nOzdd5hU5d2H8Xu2sx1Yei+CCmLDhg27xhZ7N5aoMdFoYqJJjEZNsSSv3SQajV0UjTEWsIuKYgcBBekgHbb3NvP+8bANWNhdFwG9P9c115zynOf8ZnbmnDNn53wnEovFYkiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNpm4zV2AJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJH3XGfwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZuYwW+SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmStIkZ/CZJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJm5jBb5IkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZK0iRn8JkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmbmMFvkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkrSJGfwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZuYwW+SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmStIkZ/CZJkiRJkiRJkiRJkiRJ2myuu+46IpEI11133eYuZR2jR48mEokwYcKEJtO35JolSZIkSZIkSZIkSZIkSVsug98kSZIkSZIkSZIkSZIkSZtEQUEB1113Hbfffvtmq6G4uJhbbrmFvffemy5dupCcnEzPnj056qijePTRR4lGo5utNkmSJEmSJEmSJEmSJEnS94vBb5IkSZIkSZIkSZIkSZKkTaKgoIDrr79+swW/vf322wwePJirrrqKSZMm0bFjR0aMGEFtbS0vvfQSZ599NrvtthtLlixpVb85OTkMHTqUnJycTVS5JEmSJEmSJEmSJEmSJOm7yOA3SZIkSZIkSZIkSZIkSdJ3zvvvv8/hhx/OypUrOemkk5g/fz6zZs3i448/Zvny5bzyyisMHDiQzz77jH322Ye8vLwW933JJZcwc+ZMLrnkkk34CCRJkiRJkiRJkiRJkiRJ3zUGv0mSJEmSJEmSJEmSJEmSvlMqKio444wzqKio4Oyzz+app56iX79+9fMjkQiHHnoo7777Lr169WLBggWGuEmSJEmSJEmSJEmSJEmSNjmD3yRJkiRJkiRJkiRJkiRpK7dw4UIuuugiBg4cSHJyMhkZGQwcOJDjjjuOJ598sr7db37zGyKRCJdeemmzfX3yySdEIhF69OhBbW0tABMmTCASiTB69Gii0Sh33HEHw4cPJyUlhW7dunH++eezatWqJv2cc845DBgwoL6+SCTS5LY+hYWFXH755fTt25fk5GQGDx7MH//4R2pqalr1fDz22GMsWLCAnJwc7rrrrmbX17NnT/76178C8NRTTzF79uwW9X/dddcRiUS47rrr1jt/7Nix7LnnnqSlpZGTk8MxxxzD5MmTmzyP6/PFF19w1lln0bt3b5KSkujWrRsnnHACH3zwQYvqkiRJkiRJkiRJkiRJkiRt2Qx+kyRJkiRJkiRJkiRJkqSt2IIFCxg5ciT33XcfK1asYOjQoQwePJjCwkKee+45brrppvq25513HgBjxoyhqqpqvf09/PDDAJx55pnEx8evM/+ss87i8ssvp6qqisGDB5OXl8e///1vDjjgACorK+vbDRkyhJEjRwKQnJzM3nvv3eS2tsLCQvbaay/uueceOnfuTM+ePZk7dy7XXnstF198cauek7FjxwJwxhlnkJmZucG2J510Ejk5OUSjUZ555plWrWd9/vjHP3LKKafw4Ycfkp2dzYABA5gwYQKjRo3i/fffb3a5559/nl133ZXHHnuM0tJSdtxxR2KxGM8++yx77703//rXv75xbZIkSZIkSZIkSZIkSZKkzcvgN0mSJEmSJEmSJEmSJEnaiv3f//0fq1ev5kc/+hErVqxg6tSpTJ48mdzcXGbMmMFPf/rT+rZDhgxh7733Jjc3l5deemmdvqqrqxkzZgwA55xzzjrz33//fSZMmMCHH37IrFmzmD59Ol988QW9e/fmiy++4MEHH6xv+7vf/Y6nn34agO7duzNx4sQmt7Xdc889dOnShYULFzJ58mTmz5/P888/T3x8PPfffz8zZ85s0fMRi8WYNGkSAPvvv/9G2yckJLDXXnsB1C/XVh999BHXXXcdkUiEf/zjHyxevJiPP/6Y5cuXc9JJJ3Hdddetd7mlS5dy1llnUVlZyWWXXcaKFSvql/vzn/9MNBrlZz/7GVOnTv1G9UmSJEmSJEmSJEmSJEmSNi+D3yRJkiRJkiRJkiRJkiRpKzZ79mwAfvnLX5Kent5k3rbbbsuFF17YZNp5550HwMMPP7xOXy+++CK5ubmMHDmSYcOGrTO/urqau+66i913371+2pAhQ7jyyisBGD9+fJsfR0JCAo8//jg9e/asn3b00Udz7LHHtqrvoqIiSkpKABg0aFCLlqlrt3jx4taUvI7bbruNaDTK+eefz09+8hMikQgAqampPPDAA/Tr12+9y/3973+nqKiInXbaidtvv52kpCQA4uLi+N3vfscPfvADqqur+dvf/vaN6pMkSZIkSZIkSZIkSZIkbV4Gv0mSJEmSJEmSJEmSJEnSVqxPnz4APPPMM8RisY22P/nkk0lPT2fcuHGsWrWqyby6MLhzzjlnvct27NiR448/fp3pu+22GwDz5s1rTelNHH744fTu3fsb911cXFw/nJaW1qJl6to1XrYtXn/9dQDOPffcdeYlJiZy5plnrne5V199FYBLLrlkvfMvu+yyJu0kSZIkSZIkSZIkSZIkSVsng98kSZIkSZIkSZIkSZIkaSv2s5/9jMTERP74xz8yYMAAfvKTn/D444+zdOnS9bZPT0/npJNOorq6mjFjxtRPX716NePGjSMpKYnTTjttvcsOGjRovdO7du0KQElJSZsfR3v1nZGRUT9cWlraomXq2jVetrXy8/NZvXo1ACNGjFhvm+amz5o1C4Dtt99+vfOHDRsGwIoVKygqKmpzjZIkSZIkSZIkSZIkSZKkzcvgN0mSJEmSJEmSJEmSJEnaiu2000688847HHrooSxZsoR7772XM888k969e3PYYYcxY8aMdZY577zzAHj44Yfrpz3xxBNUV1dzzDHH0KlTp/WuKy0tbb3T4+LCV9FisVibH0d79Z2ZmUl6ejoAc+fObdEyde169erVovbrUxceF4lE6te/tuaC5epC7epC7tbWrVu3+uHi4uI21yhJkiRJkiRJkiRJkiRJ2rwMfpMkSZIkSZIkSZIkSZKkrdyee+7JK6+8Qn5+Pi+//DJXXXUVvXv35tVXX+WQQw6hoKCgSft99tmHIUOG8NlnnzF9+nSgIQTunHPO+Zarb1+RSIS99toLgLfffnuj7Wtqapg0aRJA/XJtURdcF4vF6kPg1tZcaFtdUNzKlSvXO3/FihX1w82Fx0mSJEmSJEmSJEmSJEmStnwGv0mSJEmSJEmSJEmSJEnSd0R6ejqHHXYYN910EzNnzmTQoEEsWbKE8ePHr9P23HPPBeChhx5i+vTpfPbZZ3Tv3p3DDz+83eqJRCLt1ldrnHTSSQA8/vjjFBUVbbDtM888w+rVq4lEIvXLtUXHjh3JyckBYOrUqettM23atPVOHzJkCABffvnleud/8cUXAHTr1o3MzMw21yhJkiRJkiRJkiRJkiRJ2rwMfpMkSZIkSZIkSZIkSZKk76DU1FR22GEHAJYuXbrO/B/96EfEx8fz+OOPc//99wNw5plnEh8f3241dOjQAYDy8vJ267MlzjrrLPr168fq1au59NJLm223dOlSfvWrXwFw8skns80223yj9R5yyCFACNNbW01NDY8//vh6lzvssMMAuPvuu9c7/84772zSTpIkSZIkSZIkSZIkSZK0dTL4TZIkSZIkSZIkSZIkSZK2YhdffDFPPfUUZWVlTaa/8847vPHGGwDssssu6yzXo0cPDj/8cJYvX84999wDwDnnnNOutXXp0oWMjAxWrlzJjBkz2rXvDUlJSeGxxx4jOTmZRx55hJNPPpmFCxfWz4/FYrz22mvst99+LFmyhL59+9Y/B9/E5ZdfTiQS4f777+df//pX/fTy8nIuuOAC5s+fv97lLr74YjIzM5kyZQq/+MUvqKqqAiAajXLLLbfw0ksvkZiYyBVXXPGNa5QkSZIkSZIkSZIkSZIkbT4Gv0mSJEmSJEmSJEmSJEnSVmzSpEmceuqpZGVlsf3227PHHnvQv39/9t9/f4qLiznzzDM54IAD1rvseeedB0BNTQ0jR45k2LBh7VpbJBLhpJNOAkL43G677cbo0aMZPXp0u65nffbZZx/Gjx9Ply5dePrppxkwYABDhgxht912o3v37hx66KHMnTuXnXbaiYkTJ9K5c+dvvM7dd9+d6667jmg0yoUXXkjv3r3Zfffd6d69O2PGjOG6664DID4+vslyPXv25NFHHyUpKYnbb7+d7t27s/vuu9OjRw+uuuoq4uLiuPvuuxkxYsQ3rlGSJEmSJEmSJEmSJEmStPkY/CZJkiRJkiRJkiRJkiRJW7HbbruNyy67jBEjRrB69WqmTJkCwGGHHcbzzz/PI4880uyyRx99NDk5OQCcc845m6S+O+64g8suu4zu3bvz+eef8/bbb/P2229vknWt7YADDmDOnDnceOON7LnnnuTm5vL5558TiUQ44ogjeOihh/jkk0/o06dPu63z2muv5amnnmL33XcnLy+POXPmsM8++zBx4kR23HFHADIyMtZZ7phjjuHTTz/ljDPOICUlhSlTphCLxTjuuOOYOHEiF154YbvVKEmSJEmSJEmSJEmSJEnaPCKxWCy2uYuQJEmSJEmSJEmSJEmSJH37CgoK6N69O7FYjGXLltGpU6fNXdJ32v/93//xq1/9issuu4zbb799c5cjSZIkSZIkSZIkSZIkSfqWxW3uAiRJkiRJkiRJkiRJkiRJm8fjjz9OZWUlxx57rKFvm1htbS2PPPIIAHvvvfdmrkaSJEmSJEmSJEmSJEmStDkY/CZJkiRJkiRJkiRJkiRJ30N5eXnccsstAPz0pz/dzNV8dzzwwAO8++67Tabl5eVxzjnnMHXqVHr27MnRRx+9maqTJEmSJEmSJEmSJEmSJG1OCZu7AEmSJEmSJEmSJEmSJEnSt+emm27ipZdeYvr06RQUFHDooYcyevTozV3Wd8a7777Lj3/8Y9LT0xk0aBCxWIwZM2ZQXV1Namoqjz76KCkpKZu7TEmSJEmSJEmSJEmSJEnSZmDwmyRJkiRJkiRJkiRJkiR9j8ycOZOJEyfSuXNnzjrrLG677bbNXdJ3yo9+9COqq6v54IMPmDt3LlVVVfTs2ZODDjqIK6+8kqFDh27uEiVJkiRJkiRJkiRJkiRJm0kkFovFNncRkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvRdFre5C5AkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk7zqD3yRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpEzP4TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI2MYPfJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJGkTM/hNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjYxg98kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkaRMz+E2SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNjGD3yRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpEzP4TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI2MYPfJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJGkTM/hNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjYxg98kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkaRMz+E2SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNjGD3yRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpEzP4TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI2MYPfJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJGkTM/hNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjYxg98kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkaRMz+E2SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNjGD3yRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRpEzP4TZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI2MYPfJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJGkTM/hNkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkjYxg98kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkaRNL2NwFbKmi0ShLly4lIyODSCSyucuRJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmStIWJxWIUFxfTs2dP4uLiNtjW4LdmLF26lD59+mzuMiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRt4b7++mt69+69wTYGvzUjIyMDCE9iZmbmZq5GkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0pamqKiIPn361GeXbYjBb82IRCIAZGZmGvwmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkqVl12WUbEvct1CFJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ32sGv0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSJmbwmyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRtYga/SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdImZvCbJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJG1iBr9JkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0iZm8JskSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkbWIGv6nNHnroISKRCOecc06T6QsWLCASidC/f//NUpckSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZK0pTH4TQC88MILnHLKKfTt25eUlBQ6derErrvuyjXXXMOKFSs2d3mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSVm2TBL9VVlZSU1OzKbpWOyssLOTwww/nmGOOYezYsVRUVLDDDjvQpUsXJk+ezJ/+9Ce22WYbxo4d2+I+ExMTGTp0KIMGDdqElUuSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElbjzYHv02cOJEbbriBgoKC+mm5ubkcccQRpKenk5mZydVXX90eNWoTqaqq4pBDDuGVV16hf//+jBs3jhUrVvDxxx/z1VdfsXDhQk499VSKi4s57bTT+M9//tOifnv16sXMmTN54403NvEjkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkrYObQ5++7//+z8efvhhsrOz66ddccUVvPLKKwwcOJDs7GxuuukmnnnmmfaoU5vAH/7wBz7++GN69OjBu+++yxFHHEEkEqmf36dPH8aMGcO5555LNBrlxz/+MStWrNiMFUuSJEmSJGlL8ODkBznsscM47LHDmLJ8yuYuR5IkSZIkSZIkSZIkSZIkSZIkSZIkaavQ5uC3KVOmsO+++9aPl5WVMXbsWA499FC++uorvvrqK/r27cvf//73dilU7augoIC7774bgL/97W/07t272bZ33HEHOTk5TZbZkAULFhCJROjfv/9658+dO5fTTjuNLl26kJqayk477cQ///lPAPr3708kEmHBggXrLFdaWsqf/vQnRowYQVpaGpmZmeyxxx7cc8891NTUbPxBS5IkSZIkqV18tuwzXp37Kq/OfZWFBQs3dzmSJEmSJEmSJEmSJEmSJEmSJEmSJElbhTYHv61cuZJevXrVj0+aNImKigrOPfdcADIyMjjqqKOYOXPmN69S7W7cuHGUlJSQk5PDSSedtMG2GRkZnHHGGQCMHTv2G6136tSpjBw5kieffJLS0lK23357CgoKuPjii7nsssuaXW7VqlXstddeXHPNNXzxxRcMHjyY3r1789FHH3HJJZfwgx/8gIqKim9UmyRJkiRJklqmsLJwvcOSJEmSJEmSJEmSJEmSJEmSJEmSJElqXpuD31JSUiguLq4ff/vtt4lEIuy///7109LT08nPz/9mFWqTeP/99wEYNWoUiYmJG22/3377ATBr1ixyc3PbtM5oNMqZZ55JQUEBRxxxBEuWLOGTTz5hwYIFPPPMM9x7770sXbp0vctefPHFTJs2jWHDhjFr1iw+//xzvvzySz7++GO6devGa6+9xh/+8Ic21SVJkiRJkqTWKaosqh8urDD4TZIkSZIkSZIkSZIkSZIkSZIkSZIkqSXaHPw2ePBgXn75ZSorK6muruapp55i++23p3v37vVtFi1aRNeuXdulULWvJUuWADBo0KAWtW/crm7Z1nrttdeYNm0anTt3ZsyYMXTs2LF+3gknnMBvfvMbqqur11lu9uzZPPvsswA8+uijTWoZOXIkd911FwD33HNPkzBCSZIkSZIkbRqFlQ1hb41D4CRJkiRJkiRJkiRJkiRJkiRJkiRJktS8Nge/XXDBBcyZM4dtttmG7bbbjjlz5nDOOec0afPhhx+y/fbbf9MatQnUBaSlpaW1qH3jdm0NV3vttdcAOP7448nKylpn/rnnntvscrFYjH322Yedd955nfknnHACvXv3prS0lPfee69NtUmSJEmSJKnlCisagt8ah8BJkiRJkiRJkiRJkiRJkiRJkiRJkiSpeW0Ofjv//PP59a9/TVlZGQUFBVx00UVcfvnl9fPfeust5s2bx0EHHdQedaqdZWRkAFBaWtqi9o3b1S3bWrNnzwZgxIgR653fr18/MjMz15k+a9YsgGZDBOPi4th2222btJUkSZIkSRIQiWz8trbSRfDRhTD9BqguWW+3jcPeGofASZIkSZIkSZIkSZIkSZIkSZIkSZIkqXkJbV0wEolw8803c/PNN693/t57701+fj5paWltLk6bTq9evQCYO3dui9o3ble3bGvVhcdtKDguIyODoqKiJtNKSsIFxl27dm12uW7dugFQXFzcptokSZIkSZIEVKyEl3eBqtwwvvg5OHgiJKQ2adY47K1xCJwkSZIkSZIkSZIkSZIkSZIkSZIkSZKaF7epOk5KSiIrK4uEhDZny2kTGjVqFADvv/8+NTU1G23/zjvvALDNNtvQuXPnNq2zLgSwLshtfdYX3Jaeng7AypUrm11uxYoVwIZD5SRJkiRJkrQRM/7WEPoGkD8ZplzVpEksFqOosiG4v/GwJEmSJEmSJEmSJEmSJEmSJEmSJEmSmveNg9/++9//cvLJJzNixAgGDx5cP33mzJnccsstLFmy5JuuQpvAD37wA9LS0li9ejVPP/30BtsWFxfz+OOPA3DKKae0eZ1DhgwBYOrUqeudv2jRIoqK1r1QuG65L7/8cr3LRaNRZs6c2aStJEmSJEmSWqliJcy+Z93pc/4JJfMbmtVUUB2trh8vrCzcYLdPPQX9+sF228Err7RbtZIkSZIkSZIkSZIkSZIkSZIkSZIkSVudNge/RaNRTjnlFE488UT+85//MG/ePObPb7gAtGPHjlx99dU88sgj7VKo2ld2djY/+9nPALjiiitYvHhxs20vu+wyVq9eTVZWVv0ybXHIIYcA8Oyzz1JcXLzO/Iceemi9yx166KFEIhEmTpzI5MmT15n/7LPPsnjxYtLS0th7773bXJ8kSZIkSdL32vyHobZs3emxGlj9fv3o2kFvhRXNB7+99RaceiosWgQzZ8LRR8NHH7VbxZIkSZIkSZIkSZIkSZIkSZIkSZIkSVuVNge/3XbbbTz99NNcdNFF5Ofn86tf/arJ/G7durHvvvvy0ksvfeMitWnccMMN7LLLLixbtoz99tuPl19+mVgsVj9/8eLFnH766Tz44INEIhHuu+8+unfv3ub1HXzwwYwYMYLVq1dz+umnU1BQUD/vueee48YbbyQxMXGd5QYPHszxxx8PwNlnn828efPq53322Wf8/Oc/B+CSSy4hIyOjzfVJkiRJkiR9ry1/rUXN1g56WzsIrk5tLfziF02nVVfDj38M0WibKpQkSZIkSZIkSZIkSZIkSZIkSZIkSdqqJbR1wYceeoiRI0fy97//HYBIJLJOm8GDBxv8tgVLTk7mjTfe4KSTTuL111/niCOOoEuXLvTr14/i4mJmzZpFLBYjPT2d++67j5NPPvkbrS8uLo5HH32U/fffnxdffJFevXqx/fbbs3r1ahYsWMCll17K888/z8KFC4mPj2+y7D/+8Q9mzZrFtGnTGDJkCMOHD6e6upovv/wSCKFy11133TeqT5IkSZIk6XurtgJWvduipkWVRU3G1w6Cq/Pww/D55+tOnzYNxo+HI49sdZWSJEmSJEmSJEmSJEmSJEmSJEmSJElbtbi2Ljhnzhz222+/Dbbp3Lkzubm5bV2FvgXZ2dm89tprPPfcc5x44okkJyczdepUli9fzo477sjvfvc7Zs+ezWmnndYu6xsxYgSffPIJp556Kh06dGD69OlkZGRw9913c+edd1JaWgpARkZGk+W6dOnCpEmTuOGGG9huu+2YNWsWCxcuZLfdduOuu+5i3LhxpKSktEuNkiRJkiRJ3zv5k0P4WwsUVjYNeiuuKiYai67T7uGHm++joKA1xUmSJEmSJEmSJEmSJEmSJEmSJEmSJH03JLR1wQ4dOlBUVLTBNgsXLiQ7O7utq9C36Nhjj+XYY49t1TLnnHMO55xzzjrT+/fvTywWa3a5QYMGMWbMmHWm5+bmsnr1arKzs9f7uklLS+Oaa67hmmuuaVWdkiRJkiRJ2oiC6S1uWlgRgt+6pnVlZelKAIori8lKyapvk5sLEye2b4mSJEmSJEmSJEmSJEmSJEmSJEmSJElbu7i2LrjzzjvzyiuvUFlZud75eXl5vPzyy+y5556t7rukpITLL7+cnj17kpKSwk477cSTTz650eUeeughIpHIem/Lly9vdR36dj344IMAjBo1ajNXIkmSJEmS9D1TuFbwW6ddoc8J629aGYLfemX0WmdanZdfhmi0fUuUJEmSJEmSJEmSJEmSJEmSJEmSJEna2iW0dcGf//znHHfccZx44on885//bDJv7ty5nHfeeRQWFvLzn/+81X0ff/zxfPzxx9x0000MGTKEJ554gtNOO41oNMrpp5++0eUffPBBtt122ybTOnfu3Oo61P6mTZvGpEmTOP3000lPTwcgFovx+OOPc8011wDwk5/8ZHOWKEmSJEmS9N0RizUMRyLrnw5Q+EXDcGImjH4ZknNgxl9hypVNmhZVFgHQJa0LiXGJVEerKawohKyGNh991F4PQJIkSZIkSZIkSZIkSZIkSZIkSZIk6bujzcFvxx57LL/5zW+46aab6Nu3L2lpaQB07dqV3NxcYrEY11xzDQceeGCr+h03bhyvvfZafdgbwAEHHMDChQv59a9/zSmnnEJ8fPwG+xg+fDgjR45s2wPTJpWbm8tFF13ET3/6U/r160fnzp2ZN28eubm5AFx00UUcffTRm7lKSZIkSdJ3SizWNPBK0rrKvm4Y3u6qEPoGsO0VsHBMk6aFFYUAZCZnkpmcSW55bn0YXJ1PP23afVoa9OwJs2e3e+WSJEmSJEmSJEmSJEmSJEmSJEmSJElbjbhvsvBf/vIXXnnlFY466ihSU1OJj48nGo1y+OGHM378eK6//vpW9/nf//6X9PR0TjrppCbTzz33XJYuXcqHH374TUrWZrb99ttz5ZVXssMOO1BYWMjkyZOJxWIcdNBBPPnkk/zzn//c3CVKkiRJkr4rKvPgvdNgbDKM3xlWTNjcFUlbrsrVDcMDzm4YjsTB8GubNC2sXBP8lhSC3xpPA6ithSlTGnURgbffhlmz4A9/aPfKJUmSJEmSJEmSJEmSJEmSJEmSJEmSthoJbV1w0aJFJCUlccghh3DIIYe0W0HTp09nu+22IyGhaWkjRoyonz9q1KgN9nHUUUexatUqsrKyGD16NDfccAPDhw9vtxrVdl27duXmm2/m5ptv3tylSJIkSZK+6z69FBY9GYYLpsCEw2D0y9DtgM1alrTFidZCVX4YThsAqb2bzu95FKx6t360sGJN8FtyJhnJGU2mASxdCqWlDYufdx7sumsYvvZaePHFVtYXiWy8TSzWyk4lSZIkSZIkSZIkSZIkSZIkSZIkSZK+fXFtXXDAgAFcffXV7VkLALm5uXTq1Gmd6XXTcnNzm122e/fuXH311dx///289dZb/PGPf+Tjjz9mzz335PPPP9/geisrKykqKmpykyRJkiRJW6klL8HCJ5pOi1bBB2dDdcnmqUnaUlXnA2uC07JHrDs/LgG67l8/WlQVzptlJmeSmZwJQGFlQ/Db8uVNF7/sskZdxcF117VH0ZIkSZIkSZIkSZIkSZIkSZIkSZIkSVufhLYu2KlTp/UGtLWHSCTSpnmHH344hx9+eP34fvvtx5FHHskOO+zAtddey//+979ml73xxhu5/vrr21awJEmSJEnasnz5l/VPL1sM5Ushcci3W4+0Jatc3TCcOXT9bSINvx9RWBFC3jKSMxqC3yoagt9WrGhYrFs3GD68aVdHHAHvvffNSpYkSZIkSZIkSZIkSZIkSZIkSZIkSdoaxW28yfrtu+++fPDBB+1ZCwCdO3cmNzd3nel5eXkArQ6b69+/P/vss89Ga/3tb39LYWFh/e3rr79u1XokSZIkSdIWonQhrH5/c1chbT0aB7+l9tlo88LKEPKWmZxJRlIGAEWVRfXzGwe/7borrP07DvHxsO++bS9XkiRJkiRJkiRJkiRJkiRJkiRJkiRpa9Xm4Lcbb7yR6dOnc/3111NTU9NuBe2www7MmDFjnT6nTZsGwPDhw1vdZywWIy5uww81OTmZzMzMJjdJkiRJkrQVWvL85q5A2ro0Dn5L2viPLhRWNAS/ZSaHc2h1YXDQNPht2LD197F2GJwkSZIkSZIkSZIkSZIkSZIkSZIkSdL3QUJbF7z55psZPnw4N9xwA/fddx877rgj3bp1I7LWVZuRSIQHHnigxf0ed9xx/Otf/+I///kPp5xySv30hx9+mJ49e7LHHnu0qs758+fz3nvvcfDBB7dqOUmSJEmStJVa9f7mrkDaujQJfuu40eZFlUVAy4LfBgxonxJbKzcX7r0XZsyAvfaC88+H5OTNU4skSZIkSZIkSZIkSZIkSZIkSZIkSVKdNge/PfTQQ/XDy5YtY9myZett19rgtyOOOIJDDjmEiy++mKKiIgYPHsyYMWN4+eWXeeyxx4iPjwfg/PPP5+GHH2bu3Ln069cPgIMPPpj99tuPESNGkJmZybRp07jllluIRCL88Y9/bOtDlSRJkiRJW5PcDxqGE7Nh/5egphQ+vgBKF262sqQtViuD3+pC3jKSMshIygjTKhqC35Yvb2ibk9M+JbZGbi7ssQfMnRvGH3sMxoyBceMgI+Pbr0eSJEmSJEmSJEmSJEmSJEmSJEmSJKlOm4Pf5s+f3551NPHss89y9dVXc+2115KXl8e2227LmDFjOPXUU+vb1NbWUltbSywWq5+2ww478NRTT/G3v/2N8vJyunbtyoEHHsg111zDkCFDNlm9kiRJkiRpE4tEWtauqhhKFzSM7/YP6DIqDI9+FV7Zpd1Lk7Z6VQUNw0mdNti0uraasuoyADKTM8lMzgSgqLKovs2KFQ3t2yX4rdH5vybbgsbT16ipgRNOaAh9qzNxIlx6KTT6LQtJkiRJkiRJkiRJkiRJkiRJkiRJkqRvXZuD3/r169eedTSRnp7OHXfcwR133NFsm4ceeoiH1rpS87bbbttkNUmSJEmSpK1A+dKG4fRB0PeUhvHMITD8D99+TdKWLlbTMJzUcYNNGwe8NQ5+K6wsrJ/eOPitc+f2KbGlnnkG3n57/fOmTPlWS5EkSZIkSZIkSZIkSZIkSZIkSZIkSVpHm4PfJEmSJEmStjgVyxqGexwBkUjT+dv8DGrLmk6LxWD5q1D4JWRtD90PgUjcpq9V2lJEGwW/JaRvsGnjgLfM5EwykjPC9IqG6cXFDe1zctqnxJa69dZvd32SJEmSJEmSJEmSJEmSJEmSJEmSJEmt8Y2vYn7iiSc49NBD6dq1K8nJyXTp0oVDDz2UJ554oj3qkyRJkiRJarmypQ3DnXdbd35CKiQ3SqKKxWDKVTDhcJj8y3D/2t5N+5G+62KNgt/i1vxORP7n8N8eDbf3TwegqLKovmlGcgaZyZlA00C4mkbdde686cpe2/z58PHH3976JEmSJEmSJEmSJEmSJEmSJEmSJEmSWqvNwW/RaJSTTjqJs846i9dff53S0lJ69uxJWVkZr7/+OmeddRYnnHAC0Wi0PeuVJEmSJElqXnmjwLbMbTfefsqVMPOvTaflfgBv/6B965K2ZI2D3yLx4T5aDRXLG25V+QAUVoSAt+T4ZJLikxqC3yoKicViAFRXr+kqAsnJ385DABg/vun40KHw+ONw5ZWQkPDt1SFJkiRJkiRJkiRJkiRJkiRJkiRJktScNge/3XXXXfznP/9hv/32Y9KkSZSWljJ//nxKS0v54IMP2H///Xnuuee466672rNeSZIkSZKk5lUsaxhO6bbhtkUzYeb/NT9P+r6INg5+2/DpwsLKEPxWF/iWkZQBQG2slvKacqAh+O3bDlt7552G4U6d4KWX4PTT4eabQwCcJEmSJEmSJEmSJEmSJEmSJEmSJEnS5tbm4LeHHnqIoUOH8tprr7HHHns0mbf77rvz6quvMnToUB588MFvXKQkSZIkSfqei8Wa3pqbXr60YV5y1w33OesuILbhNtL3QSTS4qaFFU2D3+ruG8+rWZMjl5jYTvW10Ny5DcOXXAKDBjWMn3wynHHGt1uPJEmSJEmSJEmSJEmSJEmSJEmSJEnS2toc/PbVV19x9NFHk5CQsN75CQkJHHXUUcyaNavNxUmSJEmSJLVKxapwn5ABCR2abxeLweL/NZ3WeXfo0GPT1SZtqSKNzu/FohtsWlRZBDQT/FYZgt+iG+5ivX75yi85/3/nc9n4y1q/8Brz5zcMn3DCuvN//vOm47dOupWMGzPIuDGDByf74xWSJEmSJEmSJEmSJEmSJEmSJEmSJGnTW39qWwskJSVRWlq6wTalpaUkJSW1dRWSJEmSJEmtE60M9yldNtyu8AsoX9IwPvIe2OanUFsFn18Fs/+x3sXmzIHPP4eMDNhvP0hJaae6pc2pSfBbLUSa/62IunC3jOSMJvcAhRVhXkICVFZCbW3LVl9ZU8ntH9xOjBgANx18Ex0SNxDcuL66CiE3NwxnZ8Pw4eu2SU5uOj5z9UxKqkoA+Cr3q1atT5IkSZIkSZIkSZIkSZIkSZIkSZIkqS3aHPy28847M3bsWK6++mp69uy5zvxly5YxduxYdtlll29UoCRJkiRJUotFq8N9fFrDtPwpsOLNhvHOe0L50obx3seF0DeA+CTY+VaoKWnSbU0N/OlP4VYXZtWtG9x7Lxx7bPs/DKmlqmurGf3waGKxGP2z+/PECU+0vpO4RqcIo1UQl9hs07pwt8zkTAAS4hLokNCB8ppyiiqLAEhcs3hNTctWv6BgQX3oG8C8/HkM6zqsFQ8A5s9vGB40COKaz66rNzd/7nqHJUmSJEmSJEmSJEmSJEmSJEmSJEmSNpU2B79dccUVHHPMMYwcOZIrrriC/fffn27durFixQomTJjArbfeSl5eHr/85S/bs15JkiRJkqTmRavCfePgqtXvw+QrGsaHXQMJjYLhBpzdtI9IBHa5vX60pgYOOQQmTGjabMUKOO44WLAA+vZtj+Kl1ptfMJ/3v34fgMnLJxONRYmLtCD1rLFIo/dLdVHT98daCitD8Nv0ldM573/nAVAbq20yry74rbYWotGNh7CtHbo2N39uq4Pf5s1rGO7du4XL5M9b77AkSZIkSZIkSZIkSZIkSZIkSZIkSdKm0ubgt6OOOorbbruNX//611x55ZVN5sViMRISEvjb3/7GUUcd9Y2LlCRJkiRJapFYTbiPxG+4XUmjoKmuo9ed3yj46o471g19q19dDCorW1Wh1K5m5c6qH66oqWBx0WL6ZrUyiTA+qWG4qgA69IDkHBh4Pqx4A0oX1M8uqiwCYEHBAh6c8mCTbgorQvBbQqMzjgUF0KnThlc/J29Ok/G5eXObadm8JUsahvv02Xj7qtoqFhUuarLOWCxGJBJp9bolSZIkSZIkSZIkSZIkSZIkSZIkSZJaqs3BbwCXXXYZxxxzDI899hhTpkyhqKiIzMxMdt55Z04//XQGDhzYXnVKkiRJkqTviVgMioogIwPi4lq7dN0CsQ03qwt+S+oISdnNNquqgr/9rem07baDxESYOrW1tUntr3HwW914q4Pfkhols1Xlh/v0/rDH/TDxpCbBb4WVhc12UzcvJaVhWm7uxoPf1g56WzsIriUqKhqGe/TYePuFBQuJxqL144WVheSV59E5tXOr1y1Jm01tFdSWQ2ImGFwpSZIkSZIkSZIkSZIkSZIkSZIkbRW+UfAbwIABA7jmmmvaoxZJkiRJkvQ9VlQEf/oT3HMPlJWF4LcTT4Q//hF69WphJ/FJ4T5as+F2JfPCfWq/DTZ79VVYvrxh/I9/hKuvDtkqH3wAJ5zQwrqkTWR9wW8HDzy4dZ0kNQo7qwt+a0ZhxQaC39bMy8mB+fPDtNWrYZttNrz6ufkh+K1fVj8WFi6sH2+NysqG4dTUjbeflz+vfp35FfkUVRYxN3+uwW+Stg5lS+Czy+DrZ4EYdOgFA8+B7X8LCWmbuzpJkiRJkiRJkiRJkiRJkiRJkiRJGxC3uQuQJEmSJEn6/PMQDvXXv4bQN4DiYnjwQTjssFZ0FEkM99HKDberKgj3aX022OzjjxuGDz8cfv/7EPoGsOeeIRiuJSFT0qZSF/yWmpjaZLxVknMahjcW/FbZfPBbUWURAN27N0zLzd346uuC3g4YcECT8daoqmoYTkxs+ToHdBzAgOwBQEMYnCRt0VZPgpe2g6//A8TCtPIl8MWf4aOLNmtpkiRJkiRJkiRJkiRJkiRJkiRJkjauzcFvt956Kzk5OSxdunS985cuXUqXLl24884721ycJEmSJEn67qushBNOgJUr1z+/LgiuReKSwn1V3obb1QXDJWY3TJv/KHx0QcMt71MmT26YfeGF63YzbBj06tWK+qR29lXuVwAc0P+AJuOtkty5Ybhqw0ltdeFu61MXCtetW8O01as3vOpoLMr8/PlAw2NYULCAmmjNhhdcS10gY0vNzQvBb/2z+9M/u3+TaZK0xaqtgvfPgJriZuaXf7v1SJIkSZIkSZIkSZIkSZIkSZIkSWq1Nge/Pf3004wYMYKePXuud37Pnj3ZaaedePLJJ9tcnCRJkiRJ+u67/36Y2yhv6cQTYdw4eOgh2GOPVnaWlBXuK1dDLBqG+58JR8+HDo0S2morwn1dUBzA6vdg7v0Nt5L5TYLfWl2LtImVVJWwtDj8KMNhgw4DYFburNZ3lJzTqNP5G2xaWFHY/Lz1BL8185sR9ZYULaGyNgQx1gW/1URr+Lrw6w0vuJbk5IbhqqqNt59XMA+A/lmNgt/yDX6TtIVb9CSUrtlOxyXC8Gth9Cuw09+gw/r/VyNJkiRJkiRJkiRJkiRJkiRJkiRpy5LQ1gVnzZrFGWecscE2w4YN4/HHH2/rKiRJkiRJ0vfAs882DF9+Odx2W8P4mWfCnXe2orOUHuE+VgtV+ZDcGRIzwy2u0WmQSARisQ12VVCYyOLFYTgzE3r0aEUd0rdgdu5sABLjEhndfzQACwoWUFlTSXJC8gaWXEty54bhktnNNovGohRVFjU7vy4UrnHw24wZG171nLw5AGQlZ9Enqw85qTmsLlvN3Py5DOg4YOO1r9E4+K2o+RLrzc0LIW/9s/uTVRECI+flz2vx+qStyStzXqGsuoyEuASOHnr05i5H6xOJbLxNLAbLXm4YH/UU9DkuDPc4FAadDwuf2DT1SZIkSZIkSZIkSZIkSZIkSZIkSWo3cW1dsKysjLS0tA22SUlJoaSkpK2rkCRJkiRJ33HV1fDBB2E4KQmuuabp/Ph4+MUvWtFhh0bpbBUrm28XtyYlKlrVbJOCosT64UGDWpbJIn2bZuXOAmBAxwFs03kbIkSIxqKtDzBLzIJIfBjOn9xsKGJJVQkxmg9MrAuFaxz8Nm3a+tvWhSrOzZ9b/xgABmSH+7pgtpZqfJqyru/mxGKx+udoQMcBDevMb906pa1BcWUxRz5xJMePPZ5jnjyGJUVLNndJ3y+RyMZvrZH7YbjPGga9f9h0XlI2bPPT9qhakiRJkiRJkiRJkiRJkiRJkiRJ0ibU5uC3fv368f7772+wzaRJk+jdu3dbVyFJkiRJkrZwk5dN5v2v3+eDxR+0bfnJUFYWhnfaCTp1+oYFdejZMFy6sPl2dcFvVXnNNikrj68fTk//hnVJm0Bd8NugjoNISUihV2avJtNbLBIHSZ3DcPkyKFl/AFpdsFtzCisLAejevWHa1KmQt9bbbM4ceOedMFwX8NY/u3+T+9aGsPXr1zD89dcbbruydCWl1aX166tb55KiJVTUVLRqvdKWbtLiSdTGauvH31307masRt9I5WooWRPsmbO3ibSSJEmSJEmSJEmSJEmSJEmSJEnSVqrNwW9HHXUUEydO5N///vd6599///1MnDiRo48+us3FSZIkSZKkLVdJVQl7PrAne/97b/Z6YC/m5M1pdR9ffNEwvPPO7VBUhx4NwwWfN98ueU3CXFmjhKjtfwsHvlU/GsNAFW3ZZuU1BL81vm918BtAck6jju9cb5PCisL64fhIPAlxCSTEJRAXiWsyv1u3hmViMXj22ab93H57mA4NAW8Dsgc0uW/t9mTgwIbhxYs33LZunQlxCfTM6Em/7JAaFyPGgoIFrVqvtKV7d+G7Gxyvk1+ezwXPX8AFz1/ADW/f8G2U9v0QizXcNjS9Je2KZzdMzx6x4fVGIhu/SZIkSZIkSZIkSZIkSZIkSZIkSdos2hz8dtVVV9GjRw8uuOACDjzwQG688UYeeeQRbrzxRg444AAuuugievbsyW9/+9v2rFeSJEmSJG0hJiyYQFVtVf34y3NebnUfxcUNwz17tkNRKY2C31a+3Xy7tDUpUY2D39L6QceG9Lm0DjX1w6Wl7VCbvnWxGFRUQE3NxttuccoWw8zb4N3j4M2DYeJJMP2PUDCtvkldwNvgToOb3Lcp+C1jUMPwnH9CyXyoKoT8yfWTCysbgt/yr8qn+ppqqq+p5r+n/LfJ/F69mnZ9zTUN7/XPP4d7722Yt07wW8cBTaa3VL9+DTlGs2eHv3tz5uXPA6BPZh8S4hLITskmOyU7rDevdeuVtnTvLHoHgIMHHtxkfG0vz3mZ+yffz/2T7+eGt28grzzvW6tRLVRd0jCc0ihh8/X94MUhDbfaDWwApS1JtAYqV0NlLsSim7saSZIkSZIkSZIkSZIkSZIkSZKkb01CWxfs0qULb731FmeeeSYTJkxgwoQJRCIRYrEYALvvvjuPPfYYXbp0abdiJUmSJEnfriVLYNo0KC+H7GwYNgy6dt3cVWlLMX72eACyU7IpqChg/JzxXLL7Ja3qo3EgV3x8OxTVoVF63Io3oWwJpPZat13GIFjxOlTlh1tSx3WaZGVW1w/PnRtCxOqCpZrzweIPOOLxIwDYNmdbJp0/qU0PQ21XUwOPPQbPPQdvvtkQONa/Pxx0EPz1r9Bx3T/3lmXGX+Hz36wbgvL1MzDnH/DDpcRisfqAt0GdQmjboI7hflZeG4LfMofBkhfCcLQaxg2H+BSoagh/KqwIwW4RIqQlpdVPz0jKAKCipoKq2irS05MYMgRmrSlj+XI46ywYPRpuvLHhfR+LxeqD1j5d9im3TbqN6SunAyGALRaLEdnYm26NlJQQOLd4MVRVwfvvw4EHNm2zdGkImKxbZ1l1GZeNv6xJm9YGzkmbS1ERvPEGvPoqfP112Ef16gWjRsFxx0FWFlTWVPLh4g8B+OWev+T1ea8zfeV08srz6NShU5P+Xpj1Qv1wbayW8bPHc8aIM77Vx7S1enDyg7w671UAfrzzjzlo4EGbZkWx2kYjjfYPpfNDWGh9u1i41anbjjaeJm1KZUuhZHYIdkvpChlDIT6pYf7Kd0LI7JIXoWbNgVp8KuTsCSP+Ajl7tG59sSjkfhT6rS4IfWUMhq77Q4ceG11ckiRJkiRJkiRJkiRJkiRJkiTp29bm4DeAbbbZhg8//JBPPvmEjz76iIKCArKzs9l9990ZOXJke9UoSZIkSfoW1dbC3XfDfffBl1+uO/+ss+CRR779utSOqotC2FkkIYQxxCXWz4rF4K234PnnYcKEEP5XWwvdu8Nuu8Gvfw3Dh4fApvFzQvDbVXtfxW/f+C1vzX+LipoKUhJSWlxKenrDcH5+Ozy2lC6QkBFCJKKV8NGPYf9xYby6qNGKBzUMr5gAfY5bp6uOWdX06hWeg8LCEF7VYyPZEY9NfYyCigIghMBNWzGNHbrt8M0fl1qkoAB+8AOYtCZvr3NnOOQQSE2FGTPggQfgiiu28OC3JS/BlCvDcOc9YNjvodOuUFUAqybCkv8BsLpsdf1r7eo3r+amiTexvGQ5QH0gXKtkbd90vLYs3BoprAzBbxnJGcRF4uqnZyZn1g8XVRaRk5rDrrs2BL8B/O9/4dZYbnlufZ8Pf/5wk3ml1aWsLF1Jt/RuLX4IAweG4DcI4X+Ng9+qq+Hqq+HBBxvC3VaUruDOj+5s0se8/HktXp+0uTz5JPzkJ2HfBCHXKzMzjP/rXxCNwnnnwcdLP6aytpKMpAwOHXQofTL78HXR10xcNJFjhh5T319NtKZ+n/6DbX7AuNnjeHH2iwa/tUA0FuX6t69nYeFCAEqqSjZd8FtCQ+AmlbmbZh1SW8ViMP8h+OpOKJjSdF58Cgy/Hra/EubcBx9fFKYnZkLPH0BSZyiZByvfhryPWhf8tnQ8fHQBlC9Zz8wInJAPSVltfFCSJEmSJEmSJEmSJEmSJEmSJEmbxjcKfqszcuRIRo4cSU1NDdOmTQOgurqaxMTEjSwpSZIkSdrSXHgh/PvfYXj4cPjZz2DQICgpgQ8/hIUL11qg9GvI+wSqCyCSCB26Q/aIECimLUdlLsy4BZaOg8LpDdMjCdBxRxg1huqUbTj77BAoAyHs7eCDIScHli6Fl16CPfcMr4vZebOZXzCf+Eg8F4+8mNs/uJ0VpSt4Z+E7HDro0BaX1bdvw/DUqe3wOCNx0GkkrHwrjC97GV7eCSpXh7C7Oo2D3+Y/vN7gN4Cddw7BbxBe/z/8YfOrrq6tZuwXYwEY0W0EU1dM5YlpT3Bjtxvb/njUKn/+c0Po29lnwz33NA0X/Owz6NJl89TWYnP+Hu6TOsIBr4ZQFIAOPSBrOxh8AdA03G3qiqZvnuUlyymqLGoSyLZR2SM22qSoMoQnrt1v4/HCisL64LcxYzbc39y8uRuenz+3VcFvQ4fCO++E4YcegmOPDbfaWvj5z2Hy5DBvQ+FudaFw0ua0sGAhS4uXAjCk8xA6p3aun/fRR3DaaWG4e/ewnTvySEhODsFv48Y1hJS+szC8IXbvtTvxcfHs1Wcvvv7ia95d+G6T4Lf3Fr1HQUUBnTt05up9r2bc7HGMnz2e6tpqEuM9x78h7y58l4WFC8lJzSGvPI/xs8ezsnQlXdM2wXFwh54Nw+XLGob3eRaWvgTTr2//dUot9eVNMPV3YbjLvtD/DEjpDhUrQ6Bb+ZIQwjz5itCm4y4wenzTz4wVK1sXalgwDd45BmI1kDUMRvwlfK4ByP8cvn46JGNKkiRJkiRJkiRJkiRJkiRJkiRtYVoV/DZ//nzeeust9tlnH4YMGdJk3osvvsj555/P6tWrAejYsSN///vfOfnkk1tdVElJCb///e8ZO3YseXl5bLvttvzmN7/h1FNP3eiyK1eu5Morr+TFF1+krKyMHXfckT/96U8cdNBBra5DkiRJkr5vJk9uCH3baacQdJWU1DD/uOMgFlsz8vV/4PPfQvFsiMSHMIq4pHBRf20FHPoRdN4ttI3WhrCxihVQlQdxiSEIIHM7SO70bT7E76fqYnh1DyiZC8ldQihCp10gLhlK5sGKN6C6iAfHNIS+nXACPPIIpKY2dFNVBXl5YXj87PFACJPJSsnioIEH8cS0Jxg/e3yrgt/22ivkMcRi8MknUFMDCd80pr7zHg3BbwAF60mUy9q+YXjJ/+CrO2DoZVCxvEmznXeGF18Mw/ffv27w24wZkJUFPXvC6/NeZ1XZKnpn9ubPB/6Zo8cczRPTn+DPB/2ZuEjcN3xQ2piyMrj33jCclgZ339009A1gl10ajax8Bxb/D/I+grLFEKuFxGxIHwgDzoI+J3xbpTeI1oSwQoCeRzWEvhV91TQIJWtYk+C39ZmdO5tde+7a8nVnDQ9hc40DEtdSWFEIQEZSRpPpTYLfKkObgw/e+Co3FrI2N28uo/qM2nhHaxxyCPzrX2E4FoPTTw/7renT4fPPYccdN77ejYXRSZtaNBblB0/8gC9XfQnAj3b8EQ/98KH6+Tc2yhL9xz+a7peyshpC4QDeXfQuQP37aFTvUYz9YizvLHqnyTpfmPUCAIcMOoQ9eu1Bx5SO5FfkM3HRRA4YcED7PbjvoEenPgrAGTucwbSV03hz/ps8Of1Jfr7Hz9t/ZekDIalTOJZe8QZwQ5jeeTcontP+69MW69Jxl/LvKeFD26nDTuWBYx/YvAVVFcKXazZOPX8A+73YNHBt8AUQi8K8B6GmJEzb6eZ1g8JTurYuPHzmrSH0LT4VRr8Mqb0b5qX1g94NAZfUlMGy8ZD7Ufj8WlsBCWmQ2gdy9oS+rf9fpiRJkiRJkiRJkiRJkiRJkiRJUlu16lLqf/3rX9x8883MmzevyfQ5c+Zw8sknU1FRQb9+/UhNTWXmzJmcccYZbLPNNuy8886tKur444/n448/5qabbmLIkCE88cQTnHbaaUSjUU4//fRml6usrOSggw6ioKCAO+64g65du3LPPfdw+OGH8/rrr7P//vu3qg5JkiRJW7dPPoH//hfeeQdWrgyBVbEYdO4M22wD99wD/fpt7iq3LM880zB87rlNQ9/qRCLAqvdg4olhwsDzw4X7yZ3DeLQG8j6F1L5QUw7TroX5j0DlyhAslNY3XPhfugiKv4ITiyGhQ33/c/LmUF1bTSQSYWjnoUQahwaobb66I4S+QQhF6NQo/arbaBh0HgB33dUw+aabmoa+QXg9dO8ehl+eG8KpDh4Y0p0OHnBwCH6bM57buK3FpWVlhTCmKVMgPx+eeALOPrtpm08+gZEjW9wldD8EZty04TYZQ0MgROnCMP7Z5eF5Kl/apNluuzUMv/RSeF6uuiq8Dz75JIRKvflmmP/E9CcAOGG7Ezhk4CFkJWexqHAR73/9Pvv03acVD0BtsWQJFBeH4R12gIyMDTSechXMuAUicTDoQhh6+ZownXwomNbwuvi21ZaH7SOEELY6U6+Br59uGD/gDb7K/WqDXX2V+1Xrgt/i4qHraFj83/XPj8TXh7o1Dnpbe7wuHG7ECOjbFxYtan6VGwtZ21gw3NoOOQTi46G2NoyXlcHjjzdtU1pVyvKSEPCYkpBCfCQegNpYLRU1FcwvmE80Fm3/sMaW7Mvqk1X1ffbMl8/w5aov2TZnW74u/JrHpj7G7/f7PYM7DQbgvfca2h55ZPP91EZreW9RaPzavNeYnTebpcVhH/fZss8oqSohPSmkY9YFvx0+6HDi4+I5eODBPP3l07ww6wWD3zagvLqcp78M2+aTh53Mdjnb8eb8N3l06qObJvgtEoHOu4eA0NWTQnhv+sD2X08z8vPh3Xdh8eIwXFER9rV9+sC++0Lv3hvv4/sqFotRVl0GQFwkjg6JHTayRPPm5c/jn5/+k8S4RJLik3jo84f41ahfsV2X7dqr3HXlT4Ulz0H+FKhcHcLb4juE4O9uB0KHHlCz5iBswDkN+7w594VgNghB4Y2Pr7KGhfvShfDG6Ibp2TvCfs+1rK6VE8J9x50aQt+WvdIQogvQ+/gQOv7uD0MIeeZ20OfEUHO0KoTAzXvQ4DdJkiRJkiRJkiRJkiRJkiRJkvStalXw28SJE9lxxx3pt1Yywh133EFFRQU/+9nPuGvNVeLPPvssJ554InfffTcPPPBAi9cxbtw4XnvttfqwN4ADDjiAhQsX8utf/5pTTjmF+Pj49S77wAMPMH36dN5//3322muv+mV33HFHrrzySj788MPWPFxJkrSZLShYwLFPHktFTQUA9x51L6P7j968RUnaatxwA/zhD2H4zDPh1ltD2FtSUgiBmzw5DEejIcBg4kT44gsoKoKSEoiLg+xs6N8f/vrXECTzfdA4c2aDj3nmreE+IR12+yfEJUDJfFj1btN2Cx6F2feEdod8ADl7NJ1flQ/xyfWjL3z1Asc8eUz9+L1H3cuFu17YxkejeqvfD/fJOQ2hb8vfhKm/a2jT+3gKCq6sH+3Ro/nuyqvLmbBgAgB3f3Q3D055kMqaSiCETc3Pn8+AjgNaXN7BB4fgN4BLLgn3Z54JBQVw990huOmrDWdcNdV1P0juApWr1j8/EhcCKXofB1/d3jC9dP46TQ87DLp1gxUrwvhvfxvC6RIT4bPPGi1aVcp/Z4TArB9s8wNqojUcPvhwnvriKR6f+rjBb9+C7OyG4cWLw/Y9bn3ZXfmfh9A3gOHXw/Dfh+HyFUAMckY1tC1fAUv+B6smQvkyqC2FSGJ4/aR0h21+Gl5v7SUhPQS+VeVDUaMXff8zQrjPjJvrJ83KnQXAoYMO5Zwdz6mf/sd3/siM1TPq57dKjyOaD37rezKFMz4G1g1+S0lIISEugZpoTX04XCQCP/wh3Hln86urC3Y7edjJPHH8E/XTz/nfOTw29THm5M1pVfnZ2XD88fD00823mV/Q8D6fc+kcemX2AuCLlV8w/B/DqaipYFnxsvrp1FZA0SyoLghBN5F4SMyEDr0gtU/LAt2g6Q628TKGvUFtZXjN1xRDrBbiU8M2PKHtwUjNisVCOO2KN6Fwevi7VpdAXFIIsM3cFoZf0/7rbaFoLMoNb98AwO/3/T2fLP2E2z+8nT+/+2cePPZBoGkoa2Eh5OSsv6/PV3xOcVUIYvpg8Qd8sPiD+nk10Ro+WPwBBw88mFm5s+q3F09MDwGuM1fPBEIg3P8d+n8hhPc7EF4Yi4V996RJMGtWeP5KSsIxb6dOMHQo/OIXLe/v+a+ep6iyiD6Zfdiz954M6TyEn437GZ8s/YQZq2ZsmiCuLvusCbWKwTs/hFFPhACtimVt6q6qCj76KNwWLw6fhcrKoEMH6NIFRo+GXXYJobyvvQbJyXDqqbDzztCrV2j/3nuhnx/9qD0f6HfLA5Mf4IIXLgAgOT6ZD378ATt136lNfV3/9vXURGu4dPdLSUtM40/v/olrJ1zL0yetu/OrqKmgurYagA6JHUiIa9W/BIPPfwdf3gjxKTDs99Dt4LC9rC0P4YOVq8K2u05cYsPwZ7+A2hB4R3wK7HBDo+JWhPC1uKQQxlY4DcoWQ0rXltcWWfN4otUN0/KnwPyHw34FIG0AzLozrK/TSDh4YpPPn03EopD7UfhMWzIPqgogWhFC7pK7QNf9oc/xLa9Pkr4Pqksg7xMoXwLVRWGbnJAKyV1DMGda381doSRJkiRJkiRJkiRJkiRJkrRFatVVHvPnz2f06NHrTH/55ZdJSkriL3/5S/20448/nn333Zd33313nfYb8t///pf09HROOumkJtPPPfdcTj/9dD788ENGjRrV7LJDhw6tD30DSEhI4Mwzz+R3v/sdS5YsoVevXq2qR5IkbRoVFVBcDOXlUFsbLh7Ozm64iL2ipoITx57I1BVTuXa/a7n5vZs55ZlT+OzCzxpCGNaIxWKUVJUAEBeJIy0p7Vt+NJK+dcVzIH9yuBi7pgSiVUAcJKRBShdys37MH/4QUst694ZHHmmaVdG/f7gVFcF++4WwgqwsuP32EPLUtWton5sLX37ZdNW3vHcL//vqfwD0SO/BA8c8QFZK1qZ7rNFqKJkLpV+HwKHaihA6k5ABKd2g087turpjj4UbbwzDjzwCF10ECev95LieYI+SuTD3X5D3WbjAf5ufweJnw7zOezSEvs26B+Y/2LDc9ldDn+NYUrSEc/93Lolxifzv1P9x2n9O4/KXL2efvvuwfZftAfj8c3jssRDcV1AAQ4ZASkoI7KitDfuXBx8M+xU1kr4mhK0yFypWQUoXSO0JvY6F2XdD+VLouDMHHQQPPxyajh0L5567/u7eXvh2fTBrfkU++RX5Tea/POdlLt7t4haHxPziFyHgre744Ec/gh//GKrXZDgMaHmGXBCXAAPOgZl/XXdefAcYsCaZZJtL4Ks7WO/rGSAukaQkuOIKuLIhE49p09Zt+vxXz1NaXQrAYY8d1mTe2C/HcscRd5AUn9TKB6LW6NIFjjwSXnophNeMHRvCaRqrrYVo4QLqI0myGoXyvLJzeI9Eq0KQyGGfwBv7hYvXB10Iu98Haf3D6zpaDaULQghce4pEoN8Z4X25/FVYPQly9oLex0L2jusNfjt4wMGctsNp9dPHzxnf9uC3/mfC1N9D5cqm09P6Q7/TKPr8DWDd4LdIJEJmciZ55XkUVRbVT7/ySrj//hAi1Fhqagh8/MdLIdhtYPZA4uMa0kYHZg8EGoLhWuOKKzYc/DY3L/SZHJ9Mj4yGhMt+2Q0/dDE3fy69albCZ5dB7gfQZT/ofnAIzyQSXiclc2GnmyEpGwiBmA9MfoCq2ioAThl2yjqfW1osFg3b5cq8sD+N1UBcMiRmQYeekJjesn7aEkr3bYnWwJc3wdf/CSERPQ6DtH4QlxKO7coWQ+8fQt8T23e9n1wMc+4NAT4j74auoyGpUwgtqlgOxa1/zbXGU9Ofqg9gG9hxIJfsfkkIVVvjP1/+hy9WfUGvjF4cOeRIdu6xM3d+dCePfv4oV+97NYM7Dea00+Cmm0L7u++G665bdz21tfDOwncASIpPoktql/p5ueW5VNRU8O7Cdzl44MG8OOvF+nmvzn21ST9z8uYwK3cWQ3OGrj+8cAsPemssLw+OPhrefz+EvN14IxxwQAjOi0ZDMPScNVmT770HL78M06eHcxa9e4fA10gEamrC54jf/Q4emfoIAEuLl9Lp5k4A1K4JwHp06qP85aC/rK+Ub2bgj+GLP4XPBIXTYPwOITgrWtXqrqZMCc/J4sUwfDhce20IdMvMDMdkS5ZAZSWcfz688kpY5rnn4NBD2/URfedNWzGNS8dfSseUjtx62K2c+79zOfnpk/n0wk/JSM5oVV8zVs3gsamPkRSfxK9G/Yqk+CRu++A2nvnyGSYvm8zOPRo+G361+iv2e2g/yqrLKKkq4fDBh/PcKc+RnNCKD0olC0LoG8DQX8Kwq8Pw3AfCdrpOzj5hPxWthK//G7bfACfkwux/wuQ1iYp9ToApVwExmHU37P6vEP42ehx8dGH4LNkavY4KIc4FU6BwRjiu2/6qcBubGsLpolVhnw3QefeG0Ld3T2gadjv65XCcteJNyBoOO94YAosSMkI/5UugprR19UHYTlblhuPJmkYheEkdwy2yvpRi6TuobGkI1M6fDFV54bi67rNUrCaE7w69bPPWSMN5pfLycHyQnAwZGWsCxasKYMnzIWCyfEk4hoxLBCJhW5Pau2E7uZUrL4e33w7nPubPD89F3bm3aDT8kMbvf1tOxpc/hkVPhc+Lg38CmUNDiHNNKZQvBmJbfPDb5MnhPOOUKSEUeH3nGR95BBKqFsOKCQ3h0XHJawJIY0AkBIN22bu+33cXvstXuSHMfducbf0xAEmSJEmSJEmSJEmSJEmSJK2jVcFvq1evpk+fPk2mFRQUMHfuXPbdd18yMppepLLTTjvxySeftKqg6dOns91225GwVrLAiBEj6uc3F/w2ffp09t1333Wm1y37xRdfGPwmqf3EYuECt/LFUJXf6ALLSLjYIzknXEzWzlasCAE0y5aFi+fT0sIFCJFIuOCiVy/Yx+sHtJksKlzEla9dSXFVMVW1VfTJ7MPNB99Ml7Rwkfnzz8Odd8IXX8BOO4WLhbt1CxcKVVSEgKU99oA994RLx13Kp8s+5eCBB3PSsJPILc/lno/v4eRnTuatH71VH5xSVFnERS9exNgvxnLQgIN4fd7r/Gaf33DDATeQENeqQx1JW4v3z4SFj4eLCvd4EDrtCpWroOzrcDF12ddkJq1ghx16Mm1a2Hd++imMHNm0m1gsXMD43nthfNddQ9hU44yULl1g//3r2se4+s2ruXHijZw2/DR+uO0POf0/pzO/YD6vnPkKOak5odOCaVA0I4SHJGSEi7ojcWFerCYEjKQ1/Vy1XrEYfPpzmHd/CHgbfh1kDQshD9VF4eLxohnhosqE1HZ4YoM99oBTToGnnoKPPoJ994VLL4VBg6CkJEybMwceuOmKcKF8TQl88jPY6aYQitP9YHh5l3AxL0DPo2HufZD3MeR/Dh13hL4nQbcDYdwwIAaVq6mN1nLWf88itzyXo4YcRYwYP9z2hzz8+cOc+sypfHTBR8z6MoXddgthYCNHwsSJ4WLMjWomnKSiIlzIOnVqOLbq2TMEgcStufY+Gg1BH9+JcIttfxUCGqKV8O5xsMttkD0Ctvs1LHoyBAwBf/hDCPQoLISf/QwWLIAjjgihKMuWwWuvwY47wjup4wHYu8/e/GH/P9Sv5r7P7uOZL59h/JzxIfhtfSExsM7fomdP+Pvf4bzzGqbVhb612fBrYNGYpqEUADv9tSEIL2MQDP8DTL9u3eV7/gB6HgXAL34BL7wA68u2j0TCscwTnzwBwPZdtmebTtvUz39t3mvklefx6txXOWrIUd/wQWljbrgBJkyA0lI4/XQYNy4EfKamwowZYdv2/LMHs21a/xDcNuMWyBkVQkd+uDQEQn38k9DZ8tfC9hZgm5+G103FSvjwfCieDRXLIHsnOPhtioth7lxYvjysOxYL25JIJNxvsw1sv30LH8TQy2HBY+Fi8jcPhD4nQfYODaElQG20ljl5IaFocKfBTRYf1HEQQNuC3xI6wLZXwOdXNZ2+230Ql0hhRSGwbvAbQEZSBnnlefVtIHw+/c1vQphQY7/7XfgcUBfsNrDjwCbzB3QM79G6kLbW2GOPsM66YKzGzjmnYZ39svsR1yhsJT0pnS6pXVhVtoq5eXPZ78s7oODzEP5y4Ouh0dJxIaisLvhl1UTodRQrSlZw7JPH8tmyz/jTgX/i1km3cuukW3nx9BfZqftOLS++dBF88lNY8RZ02Qf6nR6C3uqCXytzIbUP9D6mZf2tHcrVXFhXyTxY8kJ4XSd1hA69wnmNSFwIRItWhyCHlgbJtcScf8K0a8LwIZMgZ8/wfvv8t2FaUhYUf9V+6wOI1sL8ENRF19HQ9+QwPPO2ELRYd+yy1+PQ/aB2XXUsFuPP7/6Za966hhO2O4GBHQfy85d/zuTlk7n3qHtJjE8kGotywzs3ALCkeAkdb+7YpI8/v/tnHjz2QX7xixBOsXgxXH99OEd09NFhX/311/Dii3D88fBOhxD8dvaIs/nXMQ1hSr95/Tfc/N7NvLMozH9h1gsAHLftcU32UzdOvJE5eXN4YdYLIfhtK/f22yH0DULQ84UXNp3fuTNstx3cd18IPoZwLHTHHeG8W2OxGKwoWcErc0Ia2qg+o0iMD+E1+eX5TF4+mcenPc6fDvxTk+1Mu+jQDUb8BSb/smFa49C3+NQWB0n961/hdQThWGet3+Kh75qcln//u2HayrVyQbVhJVUlnPzMyVTUVHDhLhcyIHsAo/uPZsKCCfzkpZ/w2HGPNQl/3JhrJ1xLNBaluraabe/eFoDymnIAfv/W73np9JcAmJc/j4MeOYjiymLe/NGbvDr3Vf4w4Q+c9p/TeOrEp+pfrxuV3BlSuofPtvmTQ2hnXEI4biqZ2xAK1/902ObiEMK2YE3qet9TIaUrlMxu6C99IAw4G+Y/DPMeCMFJvY6GxOywz22tIZfBvH+H/cebB8J2V4Vjpmhl+OwN4fN47x/C4ufCPnzwT0KbvZ8M+71xw0K70oUh9A1g4PkhVA7g459C0UwonR/Gj/gcEtc9DlpH3qch5C7v4/CZottBkNwpPIe1ZeGYstuB0GmX1j9ufT/FYuEYtKY0bPdjteH9GJccXpN1oYZbotKFMH6n8Plm0AWw1xMQnxTel1VrPjvEqqGmPHwe+ZY991wIq54+HXbYIfx/rWvXEPpaXh7CY488tJDhi3YI5xd6HQN7PQaJGbD8jbCNhBASWZkHyZ2IxcJ5lYICqKoK5zcikRAkl57e8IMTW6Jly2DUqHA+qE8f+N//wnmguEaHF0VFkLr6OVgYzoOwyx3Q68gwPOmscK6wuiS8Nnsf+20/BABmzoTXX4d580Lt/fs3BLrFYuFvMmhQOOdVUxP+J/Xee838kMTSl+HdY8N7b5fbYfi14Uc5lr0c5tdWQMUKIBz33zrpVn792q85ashRRGNRxs8Zz62H3srP9/h5q/b72sTKFsOc+yD/U0jKCefdEzoAcUAsfA7udRSkDwrn+0vmhv13Qvqaz8uR8GKKVodjjZYGtOs7qbY2BGUuXw75+Q3ntevODWZlQePfWC0rCz9+Ul0dtkHx8WH7k5nZwv93SGvURGtYXBQ+2MdF4uiT2WeL2teUV5fXB+SnJqa2/zkSSZIkSZIkSZIkSZIkaSvXqjSUhIQECgoKmkybPDlcEDdy7RQFID299V9uzM3NZeDAgetM79SpU/38DS1b1661y1ZWVlJZWVk/XlRU1OKapc2hsKKQ975+jxUlK+if3Z85eXMY1nUYI3uOrA9DUts88gi88Ua4kPG448Kvuycnhy/mRqPhNnBALT2+2BdWT4JOI2HPRyBjCBRMCRdMLx0XLjjb8c/hgraNKZoJn/8ufGm855HQdX+IJIYLw6rywsXdWdszZvIvOfvs8AXgs86Cv/0tBNLUfXezpiZccDFhArzzDqxaBbvtFkIG6i5WqAuI6949XISvdRVVFvH+1++zrHgZAzoOYE7eHLbL2Y6RPUeSnNC6C6hyy3J5fNrjPDHtCXbqvhMpCSm89/V7nLz9yZy141l0T+++iR7Ftysai3LvJ/dy5etXUlVbxa/2+hVl1WXc9dFdvDDrBe48/E5OHX4qH34Y4b33QtDOqFHhS+51wW+VleE127EjPPDZA9w/+X76Z/enb2Zfbpt0GwC79tiV979+n1+9+ivuPOJOPln6Cac+cyqLChfxg21+wP799qewspCb37uZtxe+zZgTxtA3q+/mfXIktb/MbUOgQXVR2IfGd4DK1SHA59NLAEjcPYVx487jqqtCWNPuu4ftTt0+ccUKmDwZnnkmBB7ceCO8+WYIeTvssLBtikTCdunLL+H++2P8+o3LufOjOxmQPYD0pHQmLJjAvv325Z2F7zD6odG8fvbrdF/231BDLAr7vxQu7q4ugtXvhYvIy5eHWrf9Rcsea21ZuHgskgAJaeFWtigEqH3xx9AmY3C4WL4dPfooDBsWgi8++CDcGjv+eKDL3rDPMzDlNyHYbd4DISgmEhcu6iUCyV1CgFBcEix4FF7eGTrvBh16h4t6WRM8E9+Bm9+7mbcWvMWwLsPYptM2vD7vdTp16MQevfbgwyUf8utXf81fD7yLiy6CBx8MF+T+/vew994hqCMSCRdVzZ8PP/1puEB3Y8aMCYEe5eVw8cUh7KJHj7BsNBouvqqoaNentsUKCuDll2HJknCx1847NwT+QkNmzw47rLVgc6E+6QPgoLfg00vD6/HVuoDiCBALr7HUvgwYAB9+CFdeCa+8EkK0brihafePPQbjl4bgtxO2O4FDBh1SP7+0upRnvnyGN+e/SWVNZauOnc49NwTt/eIXISS2Tq9ecMstLe6mQWJGCKuaeGJ4L0XiQ4DikJ81bTf82hAM8cWf6h4lDDwPRt4NceEJT0gInxGuvz5sL6LR0DInB+69F9K6rOblOeGC338e+U/27dcQSn/Wf8/isamP8fi0x1se/LboGZh9N5QvC++htAFQUwRFX4VtQE0Z9D2l4cJq1dtlF5g0KbyG33gjbM8efbRhfseO0CEjDUaPD0EeK9+C//UN+5ak7PB5DsLwkJ+H4KmFY2DCYdDvjBAW2Pu4EDJS/BXUlnL//WEbUlMTgoSuvz583qpTWRne0y2WMQgOfieEf66cELafjXXeg6+jSVTWhvNYawe/1Y3Pyp1FLBZr/cV+21wMX48NgSWRONjhT9AjvM8LK5sPfqubVtemzq9+FfaxEyaE8ZNPDsFspVWlLC8JIQl1QW91+mf3B2BV2SqKK4vJSG76YxMb8+c/hwCsxx8P43FxcM01cNllcOn4eU3WsfZ6V5WtYl7+vBCQ+fFPoHB6CJ3tfnAIeO91LLx/WtiudNqNL5MGcuQTR7KseBkHDDiAgooCDhxwIONmj2Off+/DUyc+xZFDWvherS6E4lmh77R+4XWZ0g0WjQ1BhCteh+SuLQ9+a6kpV4YwnIyhsPdT4cL2oplQOC1cCA+Q2rdl25yKVfDZ5eH90Wm3cIwS3wHyPgthHxUrwvHB0MvDuZPlr8Bnl8GAc9as4xiYdTcsfTGE7g27uv0eZ1w87PtceG99/TS888Nw/iWpYwjfqQtuaByi1Q5qo7VcMu4S/vnpP+mf3Z/emb2pjdayY7cdeXDKgywvWc7Yk8by8pyXmb5yOp07dObVs16tDzJfWryUIx4/gkc/f5Sr972awV0H88EHYTv3/PPw9NPhVicxEc47L8a7s0Na6ag+TX9EpW78g8UfsKJkBe8uDO1+vsfPGd1/dH27r1Z/xS3v38ILs17gV6N+1a7PSXuKxWD27HCBfUVFOI5PS2u4wD4WC/vtI4+Ev/wF7rorHAMWFcEBB4R9eSwWzgMuWAC//GU4V/H22+FY7J57wnFxRka4KH/VqnC/tM+T1MZqGdxpMG+f83b9tragooCuf+3KosJF4XNCo+e03Qy9PARyfXZ5+DGKOl33h5H3tDj85y9/Cc/Df/8Ll1wSjvl32imEDVRVhVC4rCz45z/D43/6aTj77BCOs+OOYVpxMcyaFT5DXX55+z/Urd0l4y5h5uqZ7N1nb2pjtTz95dMM6zKMRYWLeGLaExzY/0DO3+X8FvU1edlknvnyGRLiEnj+1Ofr97vlNeUcPeZoxs0ex3uL3qNvVl8OeuQglpcs56CBB3HPx/cQi8XYoesO/Hfmf/nRcz/i0eMeJT4ufiNrJBxP7/8ifPaLsI18YRB03Q+SOjUcMwEQF8KVEzNh9t9DsNv8h5v21XmPcL/bfSFMbu59oc+6bS+E/UXX0UAIVxwzfQzPzniWffruQ2lVKdNXTee04adx0vYnkZWSBen94aB3wmecVRNh8lqfs1O6Q8Y2IUg1MSsEFI0fEYJdUrqH8+4QPgt13BF2/j/48iaY+tuwH8veMQQEEwvHjBA+6zfWXLh16cIQElNdFH4cpvPuIahr6YshhLR4VgiE2/+Fjf8d9J1UXR32OZ9+GsJfLrssfB5OTGz6v6g9Riwl7bPjoWBq+N/R0MvCscvqD0JoUdGXIYRojwc290NqXnLXEJ60cEx4ry54DDKHhPdE/mSYdUdo1/PozRL89vrr4bNjRQVccUU4PujSJfwtKirCMULnLmlQewzMvT/8LRY+AZnbQ01xeD9PDydOVtbuybE/6sRnn4XzS3fdFc5FpqWFzUVFRThv1bXrt/4wWyw7Gw4+OJz7Wb06hArn5oZzb3Fx4dhh0SI49ugTSB90YQj8/ORiyP8xpA+GPifAwqdgxXOQ1Jm8vHAOLzcXOnQI53iSk8PzUXeslpISQuYgBKetLF1JdTSkJqUmptKpw7rf/9iQ6upwzPLxx+F45cUXYfjwcIwTHx/OA65eHf4uF1wADz8MU6aE84yjRjU9zzh3Lvz83IHEZ+8QPiOvmhj+75vcNexHFjwOK96AzG2p6nkUP33ppzww+QH6ZfVj+y7bE4vFmL5yOpe/cjkzV8/kziPubHkAq5qoqAhBzsuXh+3jkCEhSLHxudJoFLbdtmlQYbOWvwZf3RaCCkeNgZy9IVoBy16BhU+G/zUUzQj/h5h1RwiqPeBV6LgLlK3Zzy99EWrKiMWn8sKU45kxI5z/2X//8DkjIaHhUCEahQEDwntMm86kSeFzzerV4TNL//5NAx1jsbAN7tmzBZ1Fa2D1+2F/G98h/BBRfEo4vovVhOPC+BQWFu3CnqPiWb48/OjDI4+Ez1V1r83a2nCOf9KkcP5w1qzw/Y1rrmn4H3k0GvY3sdi6P2D0TS1eHEI9S0vD66/ufVO3DY7Fwj4rJSUck1RUhO1oLNawrYZwn5PTwvdXK8RiMb7K/YpPln5Cl9QuFFcVEx+JZ1SfUXRL71bfrjZayxervmD6yun0yujF8pLldEnrwu69dic9qeG7iRU1FXy85GPmF8ynf3Z/FhQsYGDHgYzsOZKUhO9Oql5pVSn/nvxvbvvgNpITkvnh0B/y0OcP0SujF78e9WtO2P4EEsqXwtx/hR+ayNkDsnYI/6srnBZCS2vLw/nHuh9GqNPM/5gmTgznSlatCv+vqvseVePtXNeu0Lt3jDfnv8kdH97Be1+/x5k7nMk7i96hrLqMS3e/lB/t+KNWn+uVpK1atDZ8LyIWpf67EcSF/1vXBQpLkiRJkiRJkiRJkr63IrHY2leDN2/XXXelpKSEr776qn7ab3/7W2655RbGjh3LCSec0KT9ueeey7vvvsucOXNaXNCQIUMYNGgQ48ePbzJ92bJl9OzZkxtvvJHf/OY36102KSmJ888/n3/84x9Npk+aNIlRo0YxZswYTj311PUue91113H99devM/36C3YkMSGRVWUdqKyJJzWxmuSEKKmJ1VTVxvH58i7Uxhq+2fb8Cw0XaRxzdEP4QoQYCXFR4iIxamMRYrHwD/tIJMyLRKA2GqGkrCtFRf2oqsokKamY5OQ84uPX/BwsMSBCYmIJkfTlFKQWUJJSQiwSI6Mig/LEcqrjq0mpTiGrLIuMigwiRDZaG8SIi0BcJBa+2Eek/kt8DV82gGgsQjQSIxqJElszPUKEGDEiRIjEIsTF4ohGopQllVGWXEZNfA1JNSGErDqhmoTaBDpUdiC1KpXaykyqqrKorU0iIaGS+PgKIpG6LzjEgDji4ytISGgI5Gv+MUCUKNFIFCIQI1ZfS+PaqqvSWbp0PyoqOpKQUEHnztNISKho8jghRkbGkiZ916137XU2rmdDjjn6KOLW8924xs9xbSw8o43VPb+NxYhR3KGYotQikqqTSKlOIT4aT018DeVJ5UQjUbJLs0mtSm3y92+p5h5rZWUW5eU51NSkkJhYRmJiKZFILfVBEURISCgjMbFsnb7W7i9CjP7ZRXTsUEE0FiGvPIXq2nhSEmpIio/SIbGG6to4FhZmsGuPlXRPL6OoMomlxWlU1MSTnVJJWlIN6UnVFFYk8cnSbvTPLiIjuYqCimSKKxOJRCAloZaUhBoS4qLkl6cwa2UfSkp6UlOTRkJCOUlJBcTF1TR5xhMSyomPL6e0tDeVlZnU1qaQmFhMXFxNo+83xpGaupzUDnn0yiihc2o56UnV1EbjiMaofz+V1yQwY3U2ZdWJxCKxdd43dcORWHgOu6RW0i2tlMzkaspr4qmujSNGhPSkahLjohRWJjF9ZfgblJb2oKKiEzU14SKYSKTufQNpactJS1tGSUlPqqqyiEbjSU4uIi6uek39Yc3JyfmkdGgaiNnca64kpYRVmauoTqgmtTKVrLIsClMLKU0uJbk6mS7FXUgvz6S2NploNH7Nl4BrmtRV9/rOSCmlX1Yx6UlVFFUmUVyVRCwGHRJrSEmoJSEuSkFFMosKmwYJNPfaXJWxiiWdlpBalUpOUU799Or4apZ3XE5SdRKDlw+mqrgPeXnbUVGRQ1xcNSkpq4mLq270RdQ4OnWeTmX2Yoo6FJFU0/L3V3Ov9cr4SlZlrSJGjKyyrDV/6/BUFHYoJBaJ0aWoC8k1ydTG1VIbqSUWCduvWGTNayQWIT4aT1wsjsLUQhZ3WkxCNIGssiwSaxKJxkUpTS6lKLWInKIceuT3ICESYducPAZ2LCQntYKk+Fpqo2HdlbXx5JWn8Mb8nixKK2BF5gpSq1LJLM8ksSaR0uRSilOLiUQj9MrvRUZF0y/dNvd3KE4pJj8tn4TaBHoU9Kh/fqKRKEuzlxKNi5JTnENqVSrRaAJlZd0oK+tGTU0HamsTicXiiYurJjGxlMysueT2mE40Lkqnkk6kVzZ8Wbsqvorl2SEcontBd1ZmrSQaiZJTlENqdWp9u8IOhRSmFpJYk0j3wu4t3h6WlXWhoGAIpaU9qK5OJyGhvH7fFIvFkZ6+mC5dJpOXN4zS0p5UV6fSocOqNfuSugs/40hLW0pW1vyNvkYAEuKibN8lj/7ZhXTqEPZ51bVxxMeF10B+eTJvzu9Dh8RqduiaS/f0MmqiEcqqE6mJRshIriYtsZrCymSemzmoRX+vtTXXLj9/KLm5w6iszCYzcz5paUtJSKgkEqklFosjGk0gJSWflJS8jT7WuEiUAdlFZKdUUhuLI7cshZpoHB0Sa0iMq6VDYi1VtXHMz8+kX3YxWclVlFYnUFCRTG00QlpSDUnxtSTF11JalcjS4nR6ZJSSllhNcVUSpVUhFCEloZbkhFriIzEKKpKZWxVhYc5CauNq6VTSicTacFFVRVIFeWl5pFek0ze3Lzt3LmRwp0IS46LMycuirDqRzORKMpKrGdI5n6raeN5a0IvXk3IpTikmpziHjqUd6x9fYYdCVmatJK0yjcHLB7doG1GSXMKc7nOIi8Wx/eLtSYg2ZDLP7TqX4g7F5BTl0G3lNuTlDaOkpCe1tR3o0GEFiYnlNH7NpaTkUtFvIsuzl5NWmUaf1X3q+6pKqGJ+1/lEYhGGLhtKck3DVS4bem2u7zWydrvM5Er27buUjh0qWFSYweKiDKpr4+iVWUJmchWZyVWUViXyytx+JMRFiRALx5TrHAvHiMbiqIzFqEqoojqhmmgkSkJtArFIjNq4WuKj8STVJJFYk0gcccRHovTMKKV7eikpCeG1URuLUL7mdbOoMIPymvD3jkbjKSoaQGVlFtXVGcRikJRUQlraEtLSlq/ZX0FFRTbFxX2pqUmlpiYViJKUVEJq6griO85iddYqIrEIvfJ6EUfDZ4DV6aspSy4jtTKVnJIc0hKr6JVZSqcOFSTFh21INBZeFRU18SwrSeOryjgWdV5ENC7sW5KrkyESXheFaYVkl2TTK78XCdEEkuNr6J1ZQk5qOckJtSTGRamNxVFenUBhZRLzCzLIi6uiMLWQ8uRyIrEIaRVplKSUANTvuxtvJ1v694/FoKSkF8XF/amtTSYxsZSMjEWkpi5r8h3kLqllDO5USIfEGmqi4T2+oCCD0uqGQOKEuFoGdSxacywXPk/llafwdWE6RVVJLO60mFgkVr+/qFOZUMmKrBUA9MrrRXwsnlgsjtLS7pSWdqe2tgO1tclAjISEMlJS8snOnl3/d92Y2tpEysq6U17epX6/BHFAlPj4StLTl5GaPYey5DLKk8qpiashpTqFmrgaauNqSaxNJLUylQ5VHZq8Lpp7fqORKF/2/pKauBr6r+xPdnl2/bzctFy+zvmaxJpEtls8nNKS3lRUdKa2NomkpCISEsphzXsmfKaMkJm5sEWPs7HslAqGds4nLamGqto4Vpd1YEFBJhU1TbPha2sTyc8fSkVFJ2KxeFJS8snKmktCUiGLOy8GoGtRV1KqGy6YqomrYWnHpUDYVyfVtj6UOhqNIzd3OJWVnUhJyaVTpxlrHbe3Tk5qGdvm5DMnL5vlJWnNtIqxTacCuqaVMy8/i2XNtgvvicLCASQklJGTM534+CrKEstYnbkagD65fZrsB4qTi8lPzyc+Gk+3wm4sz1pOXkYeGeUZZJZnEheNo6hDEUWpRaRVptEzvyepNcn0SC8hJ7WC1MRqymvCfj8Wi5CdUkk0FmFxUTqfzd2HgoLBVFen06nTl3TosIq4uFoaH4MnJecxe+CH1MTX0Hd1XzqVNlwwXZZUxqwes4gQYfuvtycx2nDxcUu2EVVV6axa9f/t3XecXHW9//H3KdO2l/RKGiQhgURaQMDglYQSpChdBBW4CFgQRCOBBC8giMgVfooUH8C9YCgRVEBAMZCLaCShhS4JaaRn+8xOO+X3x5mZ3c1mN7sxm92E1/PxyINl5syZ75w553y+9TNTVV8/To4Tk20nVVq6Vv37v6b6Qe9qU8UmFaWLtO/Gfdu8rhDnmvqpet2BiseHKpstUTjcpHC4Ifd9t3yGUKhJmUyZmpsHyXGKFY1uUTgcl+S1utYNRSK1uRgZcJyYamsnKJ0ul2k6Ki7eoLKylbljFCgOZTWuul4V0SDLYzwT1sZ4kdY3lRTilWV4GlXZqMpoSsXhrAxJzVlbtcmo1jWVqDkbUiZTrObmwUqnK+Q4URmG2+Y+VFy8XmVlazo4qzrWryip/arrFLZcNabDWllfrtpkdLv3xrxUKKXNZZslScNqhrW5N3VVyHR16NBNWlVfqnVNLW2CjeUblbEzKkuWqaK5os1rOnvO9w1t3vwZWVZa1dXvyDA6v19kraw2VGyQJA2uG9zm3OyOhobRiseHqaLiIxUXB/vbWrpVzeGWuN3altItSoaTKk4VqzpRLUmqiqU0orxRxSFHEduV5xuKZ0JBDGss0prSrcpaWVUkKlSWamnHpuyUNpdvluEbGlI3pM131Dlf1bGUhpbFVRLOKmoH56vjmYpnbNUmg3v2rlYeSWtIaUIV0aD+YpuePN9Q2rXUnA1pRW2ZmjJdSyZVEU1rSGlQH8y4pjKuJc83FLMdxUKOUo6tpesHSDIUtR2NqmhQWSSjolDQ95LMWmpMR7QhXqxExlZ5NKOQ6RX6SiTJNn2FrKB+mciGFM+0nD9duX9Vx5IaXt5U+F6zrqmmTFib4jFtaS5S/6KkSsIZub6heCYsxzMVtoI+i6CNbWptY4m8LvQLxyNx1ZbUyvIsDakb0iZGbCrfpLSdVlmyTI7ldHhubqjYEJxnzRUqS7Z8/55nq65uPyWT/YLjGa1RRcVyGaG41lUF/ZsDGwa2aQNkzaw2VAbXQ2VTpepKg8Rhw2qHyWz1eRLhhGpKa2T4hobVDutSuzpsuSqLZGSbnlKOrawbvCZk+YX2QHM2JNv0VF2UKvR3ZV1ThuErZPqKhYKYvzkR0/I1RyoeH6ZstljV1W8rHG5qdX81colCtiiZHKx0uly+bykW25zrT26dnMkoxEjfl5LJfkokhimbjcl1YzIMT6FQo4qKNhX6hR0nrHh8RO6+HpPrhmWajkKhhIqLNyg5+M3gfpEuVnW8us1xKNwPm8va1PV2tbJIWvv3r5Vp+FpZX6b1Td3/IR4p6OtsahquZLJajlMkzws+azjcoNLStYU2v+8biseHKZnsp2y2RJ4XkmWlFIttUWnpatl2S9LEf7et2dXt8vVn27W1/yf7tzlPPx7wsRpjjapuqtbw2uHb3d+27/lx/4/VWNT+NRkro/eHvS9fvvZbv58GW6YOGLhVg0oS8nxDDamwXD+4TwwpTSiRCemZlYP1Xiy4vgbXDy70R0id3xc6+qx1RXVqijUpko1oYGNLAgRJ2ly2WalQSiWpkmB8JtL+XuLLb9PmMnxDtSW1aoo2KeyGVd5crkQkoWQ4qbATVlW8SmXJskLZKqJpDS9rUlkko4jtKuVYqmmO6ZPGEiWyLZ/NNHztW12nQSXBOEFtMqKVde1jiGUE/WHVRUm5nqnNiZg+ritX1rOUCqW0pTRof7cug2/4aog1yPRN9W/s36buUBFNaUK/OsVCjpqzttY1luiTxhL5rY5tyHQ1qrJRg0oSsk1fyaylLc1FWtNQooybbwv5Gl4WV//iZpWEg7GFtGOpIR3WhqZi1SSj2nYcpyOm4WlQSbMGlSQUy/VXSVLasZTI2trQVKzXw/XaUrZFpclSjdnc0q/nGI7eG/aePNPTmE1j2vTRdnSO+PL10aCP1Bxp1sD6gW36repK6rSpPKib779ltA4YUKP+xUk1Z0PaFI8p61kqi6QVs13FQo4SGVuLNlfqo0EfyTM8jagZIcttqcusq1qndCitEVtHqKK5Qik7pUwoI8d0FHbD8uTJtYK+nEg2okg2IlOmBhQ3a0K/Wg0ri6soF4Ndz1AiG1JdMqLXNgzQouINSkQSGlg/UIMbBhfes76oXqv6r5Lt2pq8YT9NG7xFQ8sSSjmW1jSUKuNa6leUVGU0rcGlCaUdS/Pf2U8Z11JxKKv9B9RoXFW9yqNp+b6hpkxIG5qK9cHWKq3b5v7Z0T3C8yx5XlieZ8o0vdwYWRBv8slTDMNTNltSGP8MhRKyrHS7sRLbTsj3TcXjw5TJlBXG3vJxLhjHsVRR8S+VxZo0vCyuimiwn3zdKpKrmzRnbf1zS4VWDlipVCilfk39ZHkt31dtSa1c09U+W/ZRNBNVXUmd6orrZHqmypPl8gxPTbEm+fJVmahUZaJSY8uC76osktGahhI1ZcKKWK6KQo7261cnxzO1+JNBequ+WE3RpmD8xPRUlC5SKhy0rSLZiEpSJYplYjJkKGy5GlneqKpYujB2l/UsxTMh1TRH9XE8qn8NXKFMKKOB9QML48uStLUsqMMPrR2qKYrpkKGbVB5J6+3N1apNxmQanvoXJQvjIeubivXS5gqtq1qnZDipiuaKwj2yKdakhliDqhJVwXiKZxf6hpqbB8h1o3LdsHzflGVlZdsJVVQsVyTSINt0NaI8rupYMtev7SnrmUpkQqpLRbWmoVTpbFTx+DCl0+VynCJZVlAvyZ8jkqkBA5a26Vfr6JxriDVo5YCVCrkh7bN5nzb3w5X9V8q1XI3eNFrRpoHKZkvlurYsK5M75/JjuAHLyqi2doIaGsYonS5XZeW/FI3W5sYOPfm+Jd+3VVKyVuFwXJ5nKZEYpObmQbljEsntJ6lIpEGVlR/KNINzcJ+KfHvZkWn4SjmWGlIRbYgXaVNjPzU1Bee5aTqt3rPlerCsjELFG5WIJNQcaZbpmcFYkuEpGQ7a+MXpYhWli7rRrpLS6Qo1Nw9QKlWZu3aDeGWajmy7WdXV78q2k4V+xqDPISrXjaptP+O/ZBhSaTitkRVNKg1nFbWDtkvaCc7hTYki/ctxVV9c326czJevDRUb5FiOKhOV7cbd/l1jq+o1rqpeZZGMNidias7a8nxDZZGM9qloVNKxteCDfbS8bLNqS2pbxjl9Q47lqL6oXq7panjNcBU3DdTWrZOVSAyR64ZVXLxJtp0o3MN831Ao1KySkrWqqZmk5ubBct2Qioo2FeZcBPcwS7HYJhVXLlcqlFLGzsgzPYWzYTmWI8/wFHJDimajCjvhLtWFgjrriNz3GVIkUifbzs8vabm+ikrXqLGoXnXFdXIsR7FMTBEnosZYozzDU3myXBXxCkXciEJmUHcbUNysqO0qZAX7yrimmrNBnNgQL1ZVLKWBxQlVRNMKWb48P6gbm4av5qyt1Q2lWlc3RPH4YDlOsQzDUTgc3+aebipWtFHxik+0sWKjLM9SWbJMsUxMzeFmNcYa5Ru+BtcPVkmyRB8P/FjNkWYNaBygkNNS16orrlNzJLgfTvaLNG3YRpVFMnp/S6W2NBfJkK/+xUlVxVKK2m6hjTt5wFYVh7N6c2N/JTIhRW1XVbGUBpcmZBq+PtxaqRfjltZWr1UkG2lTj8haWW0t26riVLFGbRmlVONw1dVNUDJZLcvKKhbb0mpegCHfN1Vd/Y7C4aYdfq/b6mg713C3OwcpY2dku7aKMkUqShfJy5QpHh+qTCa4zsLhxsJ8gJY5Eg2KRGsK8zd8w5fht52/YfqmDEkjy5tUXZSUIak2GVXGNRXN1Zf6FaWUdU29tmGAmjNRxeNDlE5XKpstKVwLQT3BlGWlNWDA68pkSpVIDFYmU5abJxX09wdM2Xazqqo+6PD4tOYZnrJWVo4ZXFO2ZwdzuQxflmfJdm1Zrq2mxtGF+2Bx8UZZVrLVPCUjN17WqIaG0cpkymQYvkpL18q2m9v0bXqeqWi0Tr7hyjO9wjyxYE9t54xFLE+l4YzClqe0m5/3EvTlWIZXmEtT4/qqK6mTYzoqyhQp7ITlG75SoVShvV2RqFDGzqiuOGhbxTIxhZ2wXNNVMpws9EWWJEvUHG1WQ1GDbNdWNBOV7dlyTEepcEqO5ag8Ua6SdEmX5w24hls4poZvyJARzEHLfU7TNzW4pFmTBtSoIprW2oZSNabDMg1PxWFH5ZGMTMPT8toKrair6NJ7dum7l6fN5ZsLnz2SbWlr5WNp0B6s0tDSZvUrSipqO2rKhAtzkMoiaRWHHDVlQnpzY9cy0jpONHd9tZ+DJAX3xUikXunqFWqMNSqSjbSJeVkrW/h+BjYM7FJM931D2WyxPC+YU2RZaZmmt802khVKKB6NqynWVLgvhNyQmiPNCrkhFaeKVZosle1G5Hm2fD8YAzQMr93cSMPwC7FF6nyuZb4P1ZCC8Zvc/DkzN/4tSRnXUmkkq4jlyvODcWLXD8a5bdOXleuDrU1GlAyllQwHcz9N31TIDSkVSsnyLEWzUcUyMRUbUlUsrYjtKpm1lc6102wzGD82jaCvdGu8TI5TLM+zZZquTDOTqx8WPqlM05Flda0vJ50uy/UZWQqFmluN4bTcwwzD0bp105VKVck0HfXv/6ZsO95mDMf3DZWWftJm3//unJYJ/Wp0wMAahS1Xb2/up7pkRGHLVXE4q8ElzbJMT29t7K8Pk5bqSuqUiCZku7bKmsuUiCaUDqUVyQSxryRZKqPNeIq/3ZxcQeJMu9X82pZ2YWuGEcxbyY/rtp09V3iHwljUjj5ryk6pvrheTdEmGQr6TFKhlFKhlCJOJBijaNWP0npf29tf1swqawexxJBRmB9n+IZs1w7qaW4o992HJPmyrEybayT/KVrP7+3sM5SGMyqPphUyPTVlQnI8S6YRxIewFZyjdamIMq6VO3bBnGo/d9yMVtdX1jMVtjxZhifJKFyHpuHLyF2LwXVnt+kf6m69ZNttMpkSJZP95LpRWVY615YProl8ncOy0hpVvVFDyxKyDE8b4iVKZm3ZpqeQ5aoimpHk6+O6MmVcW6HcvS3bau6pIV+WGZw7Scdud55sT9CnPUzZbKkMw1ckUttmbqQUnJex2NYufdZ4fKjq68cokylXNFqraHRrq7nswX06Gq2TV/aJaktqFY/GFXbCKk+UKxHtuJ+xs+8hm41p06ZDlEwOlGG4Kiv7uDA/Kn8tGYav0soPVVdcp7qSOvkK5s/brq2Goga5pquK5gpVxitleZaaw81BfcB0FHEi8gxPjuUEc9kzMcUyMfmGr6ydVdbKFtorrunKV1C3Crth2a6t8dX1GliSkCRtihcr7VqK2UEfV2k4I8cz9ebGfjKNYAzL9w1lXFOeb8g2g/uBbfpyPbXrL+2sz8+xnEK9Lz+O45meDM9QyAsV5lZlzaxcy21TP/QMT6YXxJV8f5FneoV1AJZvBfPupTb1nK7eS1rXmSTJ9E25hluoV1ue1a7+1dE519w8QHV1+yqTKVco1KSios25GNZyzoXDTbKstNLpisIcpqCO27qPLpjLrnBCGStTOCYhNyQnN+/E9myFnJBCnq2KaEYRy5XrS2nHlusbCpmeLDMY23I9o12/cMdtV0OeZymYc5SvV7Sfu2SZLXMJgvO65RvP83xDWdNRc6RZqVBKnukpmokqY2fkG75CTkhFmSJFs9GdWivQEV++slZWGTsj13RlesE54VhOUEdxQgo74XZzEDr6Xn35hbnRMoJzxFOw1iM/N7o7/T1d4XmWMplSeV5YQfxKtatHSr4i4bgiVsvanvwca8PwZeUOqeMZynpdK58nT67Z0mba9vrKf9aY7cg2g747xzPl+sq9X/7er2DdQRfOuYjlaEhpQsXhrBKZkBLZkHxfithurv/YV1MmpDWJaDAvKdaorJUt9L2lQ2mFnJDKkmUqS5a1+S46u/Yd01HaTitrZYPz0Q3JsXLXV64eEXZDKg45ClmePD+YE52/H6pVnGvKhNqssSnUMAt97rn4avoqCWdz4zamHK9l3oBl+oV+SdsM+oqjtqv6VERp15RpqDBHWZK2JGLyfEMl4UyhDu16pqxcnTqS6yPakoiqpn6MUql+ct1Ibhw63x8VtPl9Xyop3qjq4oQiliPXN5Vygj78/L3Eyp1jW5qDa3i711fuXh1xIjJ8I7huTLftvT/3t+VZ272/dkVn32tX1kWdeMKpisdHKJMJxlWi0brcvTrfPgjaRZFIg1KpytxYvNNq3VEL03QVCiUK/TO+gva3cmvB8m1xQ4YymdLCdW3bza3e0yu8p22n5IeCvgLHdNqem35w7w874TbztHd0TLa33fbWsKVDaaVDabmmKzs35uhYTrtxsh3tb9s1PFLHa3ukYKyg9XqT1n/n16w4llM45/L3oqydLZxzYSccxG/TLRy31udc4f6VO+fycb/wfUmFEGn6pgzf0FNPPd3hccz74kknyTQ8WUZLr5znt+wuHyezrinXjeXia3DetI2v+evAkeOUyXVDwX3cSrVquwTnpmH4iobjufuwn6unBZ/VNHyZRr5ebinhGkqFUkqH0vIMT2E3LNcIrkvbC/qeIk6ky5+1J3XYdrEy2lq2VXXFdYpmoqpIVMgzPTUUNShjZ1TdVK3qeHWba6LTvgE7rXgkHhwT01MsE1Mq1DImWJwuVqkbya3/Syjl2FrXVKyMa6ksklHMDtb/JR1bL60aopSdUTqULtwDbc9W2k4X1gpEs1EZbliuG5HvW5K8Dr5/T5bVtbnFnryWurDhy/S2WbPlB2u2bDOIob6vwvpfM7+d0dLn4+XvXx1ch9vWqztTGs4Uxioa0mGlnWBNXthyFbVdGfJVk4xpazK83c/gy5cpU6YXXIeemes/thz58oPx0NycWcuzFHJCsj27S+Xz5SttB/c5x3Rk+cE9IWNnZHqmwk5YkWxEtm/vcF/dkc0WyXFi8n0rN/bpbBNvjFw9ryW+dNauStu5vjc76HuzHVvpUFqWH9yrY5mYrNx8lcJnza3jy983I9lIsMZwm/prV/q3uhpvOubn+jzy/yflo0Tr3/II5pmHcmsM/MIx2/b3PratH3f0GRzDUTKSLKyfiGQj8sygXR1yQ4qlY11ePyFJzc39cmt5LIXDTYU+5pbxPlOhUL18P1ib6vuGLCu7nf4oyTQzuTHulnp8277e/F9Bva31sWwrOD62uW1/b0t/lFm49g1FLE8ROyhP2gnquJYZ9EeFrODe0ZgOyfVCrcq2bV90fu2+JxktdaFt5etDyq3d832zVR9263th8Nm7/L2awRrZtB3c0yPZSJu6fT7OdaVvwJCvyli6TV3Y9QyFrCDO27l1T/WpsKpjaUVsR2kn6Nv2fClkegrl2mUpx9YDj/2l3XHYnllfPFEZK1MYe249Tpav54TcYD13fs1Pvp/Hyx0n0zeD8TTfKtz7PV/y/KCe3/7e37V6pO+bct1wbn213+b+1TK3yJfMbKHPxzeCNqQvv1Dvt11btmcrmylRNlsqz7Nl26lt6t/Bt2BZyTbx8N8dm8235R3TCfqgcvXL/N/5sUhDhhzTCeJN7tjLaKlH5j9DkR302VuGp6Rjy/WMwvr7kBW0jxvTIWVce7vXQp6Ru3byc1x935BpZnLnfusYEaxrT6erC2vvQ6H4NutTApFIQ4fv11q+H9swgj6bbfNvGJJc31RWXtDPaAbXlO3ZhT4Ry7MUckOFY7ej70EKrteMlavPb9uPn+vf6mpcyp9fOxr/lG+o/X2z9XHLx5gdH7fciHy7/sNt+yPzbb8dHRPPswtj7Ybh5er9QV0gf32ZpifLbm63Vl9qaVebninLt5Qp5DiJtJrj17odYcqymjW0vF5lkbR8GWpKh9qMT8RCwfzHtY0lSilYE+vmymR79na/r3zbwjeCjhBTuWPiq1DXsnL9E6bhy/FaxpLM3NiJIV+OZ+buTduek9u2l3x5XqjVdeOobS6X3L5NR6WRdG68xlA6179h5sb4bTOYGdCQCu/ScZeqWFKjKhpVEs5qU6JIiUxIlukplrt3mIavtQ2l+iQR9Ku068fPzZEIO2GF3JDSqercGHMod+3n+5hb1mGHQk1y7VShvZz/vvLjtLbb8n0V6sK5tku+Lmz5ViHHS8QwVBTKFtqarpdva3q5sYFgjlnS6VqdufX1mu9HbTOnxTNlylQ2W5zLzWBuZyw96DMJ2SlVRFOK2K4cz1DGbYnV+e/V8UxtTRQrmy1p1a5uPf/QLxxD004qHUoXjl3reJvvB9m2/7izcyRmO4UxwkyufhDUrSTL9OT7UiIbUnEuv5PnG4U6WOtxF883VJcKyTW9Qp9afh5LoX/Dt2S5lqKWr7JIRiHTVdq1W81p8XK5oKRk1pYvqTKaVsjyCtd+/phFWo1rWkbQbxn0M9qF3BC26StsBWtXapJRFYWCnDe+r0I8DFl+bp9BH2pNc0yZbJCDQ1IuvrfU/fL3utZrNrpyPnUUX/P335a6sC/XD8Yr8/0zlhG8e8Y1lc2NH+SvvdZtzXwdLD9XJx+/pLb3w0Kb1G8Zx2r3fcmQ4QXfWT5WeUar87vl1lXoj/KNoN2XsTOFe4RneIW8BBEnkpun2FKDVstutjlmXWvLe56pdLpSjhNVMO8r0WpsNihkNuto4cLH1NDQoLKyztcBdivx20033aQ5c+booosu0mWXXably5fr61//unzf1/r161Vc3HZh9L777qvRo0frueee6+pb6PDDD5frunr11VfbPP7uu+9q0qRJuvvuu3XxxRdv97WDBw/WUUcdpccee6zN488884xmzZql559/XjNmzNjua9PptNLplgkIjY2NGj58eJcOYm9LO2m5fnDix+yYDH4FrlN1dcEvQTc1BTe4/K+s5xlG8EvQ6KP8XGXS2MU/JYwu2RTfpA+2fiDDMOT7vib2n6j+xf13z5t38MvCkvSnj/6kS56+RIlsQj+f8XM989Ezevy9x3XBlAt024zbVBmt0mWXSQsXBr9A/OMfS+PGtfyidTotNTRI06ZJ/Xfm47S+iXQ9rO6UeCauh5c9rKc/elqf3+fzWrJ+iYaUDtElB1+isVVjpWyT9MKRUv0yaeAXpIN/KZWOk9b9QdryivTBz4IdnfCeVD5BDakGPfH+E1pZv1KjK0fro5qPdOyYY3X0yKNlbu866+R72NP9+tfSZZcFv0b9rW9JN98sFbXNkaRUSrrvPulnP5PWrJGuvFI69VSpqkoKhSTHkRobg19MHzeu1Qs7OkcyDdLzB0vx5dKQWdKh90qxQdKqh6Wt/5BW3BNsd9TvpUWzJPnSpLnS5HnB46vmS4mVUuP7kkzp8AfbFngXfV/ZrJRMBp/PdfMTFSXbDuKovWvHaXa5jJvRo+88qvvfvF9HDD9CG5o2qDZVq8sPuVz/Mfo/go3q3pLq3pCceHDNhMoV/OKul5tR4kj9j1ZTtlnn//58PfnBkzp4yMH63rTv6ZdLfqlX1r6i48cer4dPe1iVscq2BejkHvHtZ7+tO1+9U1WxKk0dNFWS9EnjJ/qw5kNN7D9R//jGP/TyC2X67/+Wli+XjjxSOv54qbpaCoeD7yOZlAYOlA4+xNNVf75Kty++Xf2K+mn2kbP1r5p/6e7X7lZ1rFpPnvmkjhp5VJfL1uXtmtdJyQ2S2yzZpa1+ldgIjmG4Sioa0vG+P8Ucz9EfP/yjHn33UR08+GCtrF+pkBnShZ+5UJMHTt7p/WbcjHzfl2EYClvdT7qFXaST6+Y3r/9GFz51ofoX9deoylGFx5fXLldtsla/O+N3Om3CaburpOgFm+Kb9OQHTyqRSagsUqb6VL1O2u8kje/XvcZoNit98olUXx/Eg5KSoE6SP/1cVxo0SLr9rTm68eUbNXXQVJ13wHmF1//54z/rueXP6csTv6zHT3+87c47OYdTKenb35Z+85ug7rStESOkJ/7xmg6+92BZhqUPLv9A/YuCinbSSWrMHWPUnG3Wn7/yZx075thufWYA6LN2Y9/Ap8XmzUE7qK5OikSkysqg/WlZQfzxfWnUKKmPd99/Ou2KtmYXtktmk5rwywla3bBap088vVDf8HxP975+ryzT0ruXvhv0mW1vf9u85wdbP9BB9xwk13M1dfDUwuNbElu0om6FLpx6oe6d9WvpTxOlpn9JAz8vHblACldKW/4mNa2QGt8L+hYmXC0Vj+z4M3Xzs/YU13O1qn5VYYxpcMlglUZ2bUIadKw+Va+D7zlYK+pWaP/++6s8Wi5JWlW/Suub1uurB35VD57SQX+f1O4c2RTfpFnzZ2np+qU6asRROm3CaVrw3gK9svYVHTb0MP3x7D9qQHHXEjtI0rJNy3TmgjP1wdYPdOXhV2pc1Thd9ZerZBqm7pl1j86cdGbXP+xb10jv3RRcL4feJw04WkpvlRrek/5xruSmpKm3a9WgU3TU/Ufpk8ZPNGnAJE0eMFlrG9fqlTWvKBaK6fmvPK8jhx0mrX9GavpIsmJS2QTJLpKyccnPJcIOlUv9DpdW3Ce9cYXkJKTqacFjoTJpw/NSzWIpNkQ6pe2PQe2pfeBpJ627X7tbN718kw4ffrjGV4/XXUvv0rmTz9Wco+docOngNtuvbVireCb40YCySJmGlg1teXLTS9LmRZLTFByzcHVwDLONkvzgOA85QYq0TX7676pL1unKP1+p+9+8X1+e+GXNGjdLV/75ShWHi3XXiXfphHEnBP2NyfVSaovkJiW7RDLtYNzQz01yiQ2VwhWSpKXrl+rJ95/UoJJBqk/VK2yFddakszSyYifu0T2lk3Pu4WUP68KnLpTne5r3uXlyPEc//r8fK2JF9OApD+pLE7/U7jVdkc0GfQb5Nr1pBvWsvt7Xj204CenVi6SaV6Wy/aSR50rRAVLtUildI2Vqg2vkwJslO6al65fqjn/eoXgmroOHHKxnlz+rL034kr4+9esqi5Tptdek//f/pI8+ksaOlY47TiovD84PKThfysuDvqi775ZWrJBmzpSOOSaoq4dCLWMWI0dKBx7Yu4cnnomrPlUvSQpb4W7FwJ7keI4Wrlyo1ze8rn0q9tGq+lWaNmxam7HZlJPSra/cqp/87Sc6auRROnm/kzX3pbkaWjpUdx5/Z8tYT3KTlN4SjM9YRZJhtczyky9FBwWxsumjIO6aVhAjDUuFqWu+K5WOlexivbflPc3+62z93+r/09VHXK2Fqxbqnc3v6Lqjr9NFB10kU7Yuv1x66SWppkaaMyc4V/Jj7plMMOZ+5JHBOFa30a4GgD1aNhvMyYrHg3GkSCSXqCsXmjxPGj+hi/NauxMHPFdyE5KTDOKa7+be2JLMcDBfIRdjPN/T+qb18vxgwviA4gGK2F37wZO+pC5ZJ8cLFvJVRCsUsnbux3OAXcnxHK2sW1noZxxaOrRtP2MX5rWnU75efllatSqoW44dG/T/m2bwL9+GPfTQltdsaNqgulSdpGD+fOv5FwCA9nzfl+fnEh0YJuuOAGAvl3bSenXdq0q7abmeq8pYpQ4afJAsc9cmXgUAAAAAAEBbjY2NKi8v3/WJ35LJpKZNm6a333670Mnv+75uvfVWXXnllW22Xbp0qQ499NDtPteZiy++WPPnz1ddXZ3sVjOLH3nkEZ199tl65ZVXdMQRR2z3tTNmzNDatWv1/vvvt3n85ptv1uzZs7Vu3ToNGdK1pBPdOYgAgN1gB4utmtJNumvpXYpn4vJ9X5/b53P6wugvbHfbVCr4l8ko9yvWLUkyul2ezvTGhHQ3Jf3ty8HCt8qp0gE3SGUTgwVQTjxY6JFtkIZ/KVgM1V176KK3rqitlW6/XVq8OPh72rQgUUr+vHCcYKHKeblcKdmstGmT1NwcJA90nGDb4mJpwIDgvwUdLVTwXOnta6WVD0iGLY27PFicYxdLniNlaiQvK42+IFg8vPmlINGbFQsWSeYzX/tOkKxs8MweOz5o4fu+fvK3n+jaF6/VxP4T9e7md/Wjo36kHx/z484TJgYvbvOU67k68bcn6vkVz+vWY2/VcWOP02H3HaaYHdOrF72q0ZWj2+3O84L7l+MEC/HyE6bzfvnqL/Wd576jo0cerWWblqkyVqk/nfMnjase1748HX/IrhwKAJ3ZwSK1Mx4/Q4+/97guOegS/eQLP9Glz1yq+e/M18WfuVh3n3T3biwoPg3qknUa9YtRakg3aGzVWA0uGaz6VL3e3vy2TMPUskuWaf8B+7d9USfn8HnnSQ89FPw9c6Y0b540cWJQP1q6VHruuaBeNeXXU/TWpre2W6aR5SO18jsrmUQKYO/BAnWgRWfXw860STvZ34L3Fuj0x0+XZVi69uhrFbEj+sU/f6GN8Y26+oirdcuxt3Rcvu1cq3cvvVuXPHOJJvafqIVfXag/fvhHXfz0xdqvej+9dvFrKg4XB4mF6t6SEh8HiYfMUEvyDN+Vov2loT37y93Ye7y96W0d/pvDZZu23vjPN/T3tX/XV578iqYOmqpXvh4kO2tjB/GmOduss393tp768Cmdsf8Zeuzdx3TK+FP08GkPt99XFyQyCX33ue9q6YalKg2XKmJH9OsTf60xVWO6t6NXzpbWPCIVDZemPy+VT5DiK6Wm5cHzTjzozy7ZRx9u/VBHP3C00k5avz/r97r4qYu1pmGNnjr7qe4ljq5/R3puatB3OuGH0pSfBMdsy9+klQ9KH/9mr0r8lpd20qpN1kqSikJFhYSCe5K/fvxXLVq9SIYMlYRL9M1DvqmScElvF6vXvLruVZ366KkKW2E5niPTMPXHs/6oAwf1clYt9D1eVvIywX8NW7KiOzcW2E2+337MArvGmoY1enVd8KOZRaEizRwzc7csyFtVv0rN2WZJQR9ecbh4u9tlMsEYaesx9+LiIAkcAAAAAAAAAAAAAAAAAACfRj2W+E2S4vG4br/9di1evFhVVVU6/fTT9cUvfrHddvfcc4+effZZ/fSnP9W4ceO6vP9nn31WJ5xwgh555BGdeWbLL8Uff/zxWrZsmdasWSOrg1mCd911ly699FItXrxYhx12mCTJcRxNmTJFJSUlWrx4cZfLQeI3AMAerXmdVPemlPxEysYlLxX8km2oXCrdVxo4vbdLuMfwvOBXQ7utuwuZ0zXB9+bEJS8dfF92qVQ0RIr024kCoM/YwYLchlSDpv1mmj6q+UhDSodoY3yj/nLeX/S5fT6302/54dYPCws8x/cbr8pY5U7vC0A3dOPeX5+q15RfT9HaxrW67ujrNG/RPE3oN0FLL16qolBRDxcUn0Y/XvRjzX1pro4fe7z+dO6f9L3nv6fbF9+usyedrd9+6bftX9BB/PrwwyDJm+dJ++0nvftux4s57/znnfr2c99WcahY3z7s25Kke1+/V1ubt2re5+Zp7vS5u/IjAsDuR1JloEVPXg87aFcf8+AxemnVS/r5jJ/rkKGH6Kj7j9KgkkH61+X/UmmktGtla7XvUx89Vb//4Pe66vCr9L/L/ld1qTr94xv/0GcGf2bnyg/swKPvPKqzfneWDhx4oD6u+1hhK6zXLn5NIytGtt+4C4lGPd/TK2teked7skxLRww/Yvs/VrA7+Z604Xlp69+lhveCvk8rGiRN9J0ggeJnfiHZQXv4rY1v6ZwnzlHGzUiSbj32Vp0y/pTuvefye6Ql/xn8/YVXpP5HBMmQXjiyZZvIAOlzT7V93R6e+A17p+ZssxrTjZKk8kj5TiVyBAAAAAAAAAAAAAAAAAAAANCzejTx2+4wY8YMLV26VLfccovGjh2r+fPn695779VDDz2kc889V5L0jW98Qw8++KBWrFihkSODhQ/pdFoHHXSQGhsbdfPNN2vAgAH61a9+paeeekovvPCCPve5rifPIPEbAAAAdlo3F7yvbVirf3zyD0nS8LLhOnz44T1VMgB9yCtrXtGs+bPk+Z5CZkgLz1+oAwYe0NvFwl6qMd2oUb8YpdpkrV447wWd/MjJSjkpvXfZe9q3et/2L+ggocTdd0uXXBL8PXu2dNNNHb9nbbJWQ24borSb1jvffEeVsUoNv324JGnld1ZqRPmIXfHRAADA3qgb7eq3N72tqXdPVUW0QqMrR2vJ+iV64OQHdP6U83fqrWuaazT17qla37RekvST//iJvv/Z7+/UvoCuuve1e/VhzYeSpJP3O1lHjTxq+xt2IfEbcppWSM9OltykNOYi6ZBfS9smwHNTQQK61kj8BgAAAAAAAAAAAAAAAAAAAADYCd3JWWbvpjJ1yxNPPKFrrrlG1113nWprazV+/HjNnz9fZ511VmEb13Xluq5a562LRCL661//qquvvlrf+ta31NzcrClTpujZZ5/tVtI3AAAA4N/SzYWhw8uHa3j58B4qDIC+6rMjPqu6H9T1djHwKVEWKdNVh1+lHy38kU559BQlsgl99cCvtk361lGClVaPh37TEuNSqc7fsypWpVMnnKpH3nlEDy17SNVF1fJ8TzPGzCDpGwAA6Fw32tWTB07WxQddrLuW3qWaZI0OHXqovnrgV3f6rauLqrXmijU7/XpgZ1x00EW9XYS9T+kY6YjfSksvlVbcK214Xuo3TQpVSJk6qf4tadip0pSbe7ukAAAAAAAAAAAAAAAAAAAAAIBPGcP3+bny7elO9jwAAAAAAIC+LpFJ6JgHj1E8E5dhGPrjWX/UmKox3drHxo3SqFFB0rchQ6QPP5RKSjre/oWPX9Cx/3usRpSPUGW0Um9tekuPfvlRnbH/Gf/mpwEAAGjheq4S2YQkKWpHFbbCvVwiYBfqKEFzawz3dszLSnVvSbVLpdSG4FiFK6WS0VL/z0rR/l3bD8cYAAAAAAAAAAAAAAAAAAAAANCJ7uQsI/FbB0j8BgAAAAAA0N7s2dLNNwd/77efdPXV0sSJUjYrLV0qLVwoPfVU8Lzv+xr1i1Fa3bBaklQdq9b6K9eTjAUAAAAAAAAAAAAAAAAAAAAAAAAAAAB7je7kLLN3U5kAAAAAAACwF7jpJmngQOnWW6UPP5S+8Y22z++/f8vfhmHokoMv0c/+/jNJ0jemfoOkbwAAAAAAAAAAAAAAAAAAAAAAAAAAAPjUMnzf93u7EH1Rd7LnAQAAAAAAfBotWyYtWSI1NUmlpdLEidIhh0g2PzUAAAAAAAAAAAAAAAAAAAAAAAAAAACAT4nu5CxjGS4AAAAAAAB2ygEHBP8AAAAAAAAAAAAAAAAAAAAAAAAAAAAA7BiJ3zrg+76kIIseAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGwrn6ssn7usMyR+60BTU5Mkafjw4b1cEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9WVNTk8rLyzvdxvC7kh7uU8jzPK1fv16lpaUyDEONjY0aPny41q5dq7Kyst4uHgAA2AaxGgCAvo1YDQBA30asBgCgbyNWAwDQtxGrAQDo24jVAAD0bcRqAAD6NmI1AAB9G7EaAIC+w/d9NTU1aciQITJNs9Nt7d1Upj2OaZoaNmxYu8fLysqo7AAA0IcRqwEA6NuI1QAA9G3EagAA+jZiNQAAfRuxGgCAvo1YDQBA30asBgCgbyNWAwDQtxGrAQDoG8rLy7u0Xedp4QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/zYSvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABADyPxWxdFIhHNnTtXkUikt4sCAAC2g1gNAEDfRqwGAKBvI1YDANC3EasBAOjbiNUAAPRtxGoAAPo2YjUAAH0bsRoAgL6NWA0AwJ7J8H3f7+1CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDezOztAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA3o7EbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQw0j8tgPxeFzf/e53NWTIEEWjUU2ZMkWPPPJIbxcLAIBPnZdeekmGYWz33+LFi9ts+/rrr+sLX/iCSkpKVFFRodNOO00ff/xxL5UcAIC9T1NTk66++mrNmDFD/fv3l2EYmjdv3na37U5cvvPOOzV+/HhFIhGNGjVK119/vbLZbA9+EgAA9k5djdUXXHDBdtvZ48eP3+5+idUAAOwaCxcu1Ne//nWNHz9excXFGjp0qE4++WS99tpr7balXQ0AwO7X1VhNuxoAgN7x5ptv6sQTT9SIESMUi8VUVVWlww8/XA899FC7bWlXAwCw+3U1VtOuBgCgb7jvvvtkGIZKSkraPUe7GgCA3tdRrKZdDQDAns/u7QL0daeddpqWLFmim2++Wfvuu69++9vf6uyzz5bneTrnnHN6u3gAAHzq3HTTTTrmmGPaPDZp0qTC3x988IGmT5+uKVOm6LHHHlMqldJ1112no446Sm+++ab69++/u4sMAMBep6amRvfcc48OPPBAnXLKKbrvvvu2u1134vKNN96oa6+9Vj/84Q81Y8YMLVmyRHPmzNG6det0zz337K6PBgDAXqGrsVqSYrGYFi5c2O6xbRGrAQDYde666y7V1NToO9/5jiZOnKgtW7botttu07Rp0/T888/r85//vCTa1QAA9JauxmqJdjUAAL2hvr5ew4cP19lnn62hQ4cqkUjo4Ycf1nnnnadVq1Zpzpw5kmhXAwDQW7oaqyXa1QAA9LZ169bpqquu0pAhQ9TQ0NDmOdrVAAD0vs5itUS7GgCAPZ3h+77f24Xoq/70pz/pxBNPLCR7y5sxY4beffddrVmzRpZl9WIJAQD49HjppZd0zDHH6PHHH9eXv/zlDrc744wz9OKLL2rFihUqKyuTJK1evVrjxo3TFVdcoVtuuWV3FRkAgL1WvivBMAxt3bpV/fv319y5czVv3rw223U1LtfU1GjYsGH66le/qrvvvrvw+ptuuklz5szRO++8o4kTJ+6eDwcAwF6gq7H6ggsu0IIFCxSPxzvdH7EaAIBda/PmzRowYECbx+LxuMaOHatJkybphRdekES7GgCA3tLVWE27GgCAvmXatGlav3691qxZI4l2NQAAfc22sZp2NQAAve+kk06SYRiqqqpqF5dpVwMA0Ps6i9W0qwEA2POZvV2AvuzJJ59USUmJTj/99DaPf+1rX9P69ev1z3/+s5dKBgAAtsdxHD399NP60pe+VBhUkKSRI0fqmGOO0ZNPPtmLpQMAYO9hGIYMw+h0m+7E5eeee06pVEpf+9rX2uzja1/7mnzf1+9///tdWn4AAPZ2XYnV3UGsBgBg19o2kYwklZSUaOLEiVq7dq0k2tUAAPSmrsTq7iBWAwCwe/Tr10+2bUuiXQ0AQF/UOlZ3B7EaAICe8dBDD2nRokX61a9+1e452tUAAPS+zmJ1dxCrAQDou0j81ol33nlHEyZMaDewcMABBxSeBwAAu9dll10m27ZVVlammTNn6m9/+1vhuRUrViiZTBZidWsHHHCAli9frlQqtTuLCwDAp1Z34nK+fT158uQ22w0ePFj9+vWj/Q0AQA9KJpMaNGiQLMvSsGHDdPnll6u2trbNNsRqAAB6XkNDg15//XXtv//+kmhXAwDQ12wbq/NoVwMA0Hs8z5PjONqyZYt+9atf6fnnn9cPfvADSbSrAQDoCzqL1Xm0qwEA6B2bN2/Wd7/7Xd18880aNmxYu+dpVwMA0Lt2FKvzaFcDALBn6/5PpXyK1NTUaPTo0e0er6qqKjwPAAB2j/Lycn3nO9/R9OnTVV1dreXLl+vWW2/V9OnT9cwzz2jmzJmF2JyP1a1VVVXJ933V1dVp8ODBu7v4AAB86nQnLtfU1CgSiai4uHi729L+BgCgZxx44IE68MADNWnSJEnSokWLdPvtt+uvf/2rlixZopKSEkkiVgMAsBtcdtllSiQSuuaaayTRrgYAoK/ZNlZLtKsBAOhtl156qe6++25JUjgc1h133KH//M//lES7GgCAvqCzWC3RrgYAoDddeuml2m+//fTNb35zu8/TrgYAoHftKFZLtKsBANgbkPhtBwzD2KnnAADArjV16lRNnTq18P9HHXWUTj31VE2ePFlXX321Zs6cWXiO+A0AQN/R1bhM/AYAYPe74oor2vz/scceq6lTp+rLX/6y7r333jbPE6sBAOg51157rR5++GHdeeedOuigg9o8R7saAIDe11Gspl0NAEDv+tGPfqQLL7xQmzdv1lNPPaXLL79ciURCV111VWEb2tUAAPSeHcVq2tUAAPSO3/3ud3rqqaf0xhtv7DCO0q4GAGD362qspl0NAMCez+ztAvRl1dXV281QW1tbK2n72eoBAMDuU1FRoVmzZmnZsmVKJpOqrq6WpA7jt2EYqqio2M2lBADg06k7cbm6ulqpVErNzc3b3Zb2NwAAu8+pp56q4uJiLV68uPAYsRoAgJ5z/fXX64YbbtCNN96oyy+/vPA47WoAAPqGjmJ1R2hXAwCw+4wYMUIHH3ywTjjhBN111126+OKLNXv2bG3ZsoV2NQAAfUBnsbojtKsBAOhZ8Xhcl112mb71rW9pyJAhqq+vV319vTKZjCSpvr5eiUSCdjUAAL2kq7G6I7SrAQDYs5D4rROTJ0/W+++/L8dx2jz+9ttvS5ImTZrUG8UCAACt+L4vKcgqP2bMGMVisUKsbu3tt9/W2LFjFY1Gd3cRAQD4VOpOXJ48eXLh8dY2btyorVu30v4GAGA3831fptkyfECsBgCgZ1x//fWaN2+e5s2bpx/96EdtnqNdDQBA7+ssVneGdjUAAL3j0EMPleM4+vjjj2lXAwDQB7WO1Z2hXQ0AQM/ZunWrNm3apNtuu02VlZWFf/Pnz1cikVBlZaXOPfdc2tUAAPSSrsbqztCuBgBgz0Hit06ceuqpisfj+t3vftfm8QcffFBDhgzRYYcd1kslAwAAklRXV6enn35aU6ZMUTQalW3bOumkk/TEE0+oqampsN2aNWv04osv6rTTTuvF0gIA8OnSnbh83HHHKRqN6oEHHmizjwceeECGYeiUU07ZTaUGAAALFixQc3Ozpk2bVniMWA0AwK73X//1X5o3b57mzJmjuXPntnuedjUAAL1rR7G6I7SrAQDoPS+++KJM09To0aNpVwMA0Ae1jtUdoV0NAEDPGjRokF588cV2/2bOnKloNKoXX3xRN9xwA+1qAAB6SVdjdUdoVwMAsGexe7sAfdnxxx+vY489Vt/85jfV2NiosWPHav78+Xruuef00EMPybKs3i4iAACfGuecc45GjBihgw8+WP369dNHH32k2267TZs2bWrT4XD99dfrkEMO0axZs/TDH/5QqVRK1113nfr166crr7yy9z4AAAB7mWeffVaJRKIwmP/ee+9pwYIFkqQTTjhBRUVFXY7LVVVVmjNnjq699lpVVVVpxowZWrJkiebNm6cLL7xQEydO7JXPCADAnmxHsXrLli0655xzdNZZZ2ns2LEyDEOLFi3Sf//3f2v//ffXhRdeWNgXsRoAgF3rtttu03XXXafjjjtOJ554ohYvXtzm+fzEO9rVAAD0jq7E6tWrV9OuBgCgl1x88cUqKyvToYceqoEDB2rr1q16/PHH9eijj+r73/+++vfvL4l2NQAAvaUrsZp2NQAAvSMajWr69OntHn/ggQdkWVab52hXAwCw+3U1VtOuBgBg72D4vu/3diH6sng8rmuuuUaPPfaYamtrNX78eM2ePVtnnXVWbxcNAIBPlZtvvlmPPvqoVq5cqXg8rqqqKh155JGaPXu2DjnkkDbbvvbaa/rBD36gf/zjH7JtW5///Of1s5/9TGPGjOml0gMAsPfZZ599tHr16u0+t3LlSu2zzz6SuheX77jjDv3yl7/UqlWrNGjQIH3ta1/TNddco1Ao1JMfBQCAvdKOYnV5ebm+8Y1v6I033tCmTZvkuq5GjhypU089VT/60Y9UXl7e7nXEagAAdo3p06dr0aJFHT7fegifdjUAALtfV2J1XV0d7WoAAHrJ/fffr/vvv1/vv/++6uvrVVJSogMPPFAXXnihvvKVr7TZlnY1AAC7X1diNe1qAAD6lgsuuEALFixQPB5v8zjtagAA+oZtYzXtagAA9g4kfgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHmb2dgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYG9H4jcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6GEkfgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAHkbiNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoYSR+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAeRuI3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOhhJH4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgB5G4jcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6GEkfgMAAAAAAAAAAAAAAAAAoAOrVq2SYRi64IILuvU6wzA0ffr0HikTAAAAAAAAAAAAAAAAAGDPROI3AAAAAAAAAAAAAAAAAECflU+81vpfOBzW8OHDdc4552jZsmW9Uq7p06fLMIxeeW8AAAAAAAAAAAAAAAAAwJ7J7u0CAAAAAAAAAAAAAAAAAACwI2PGjNFXvvIVSVI8HtfixYs1f/58PfHEE1q4cKGOOOKIHnnfoUOH6v3331d5eXm3Xvf++++rqKioR8oEAAAAAAAAAAAAAAAAANgzkfgNAAAAAAAAAAAAAAAAANDnjR07VvPmzWvz2Jw5c3TjjTfqmmuu0Ysvvtgj7xsKhTR+/Phuv25nXgMAAAAAAAAAAAAAAAAA2LuZvV0AAAAAAAAAAAAAAAAAAAB2xre+9S1J0pIlSyRJjuPo9ttv14EHHqhYLKby8nIdc8wxeuaZZ9q91vM83XfffTr00ENVVVWloqIi7bPPPjrllFP0f//3f4XtVq1aJcMwdMEFFxQeMwxDixYtKvyd/7ftNtOnT2/3vjU1Nbriiis0atQoRSIRDRgwQGeeeabee++9dttecMEFMgxDq1at0q9+9StNmDBB0WhUI0eO1PXXXy/P83bmsAEAAAAAAAAAAAAAAAAAeond2wUAAAAAAAAAAAAAAAAAAGBnGIZR+Nv3fZ155pl64okntO++++qyyy5TIpHQY489plmzZukXv/iFvv3tbxe2nz17tn76059qzJgxOuecc1RaWqp169bp5Zdf1sKFC3X00Ud3+L5z587VAw88oNWrV2vu3LmFx6dMmdJpeWtqajRt2jQtX75c06dP11lnnaVVq1ZpwYIFeuaZZ/SXv/xFhx9+eLvXff/739dLL72kWbNmacaMGfr973+vefPmKZPJ6MYbb+zGEQMAAAAAAAAAAAAAAAAA9CYSvwEAAAAAAAAAAAAAAAAA9kh33HGHJOmQQw7RQw89pCeeeEKf+9zn9Oc//1nhcFiSdM011+iggw7SVVddpZNOOkmjRo2SJN13330aOnSoli1bpqKiosI+fd9XXV1dp+87b948vfTSS1q9erXmzZvX5fJeffXVWr58uWbPnq2bbrqp8PgFF1yg4447Tueff74++OADmabZ5nWvvfaali1bpsGDB0uSrr32Wo0bN0533nmn5s6dW/isAAAAAAAAAAAAAAAAAIC+zdzxJgAAAAAAAAAAAAAAAAAA9K7ly5dr3rx5mjdvnq666iodeeSRuvHGGxWNRnXTTTfpgQcekCT99Kc/bZMIbdiwYbriiiuUzWb18MMPt9lnOByWbbf9/VTDMFRVVbXLy5/JZDR//nxVV1drzpw5bZ6bOXOmZs6cqY8++kh///vf27322muvLSR9k6R+/frp5JNPVlNTkz788MNdXlYAAAAAAAAAAAAAAAAAQM8g8RsAAAAAAAAAAAAAAAAAoM9bsWKFrr/+el1//fW64447tHr1ap1zzjl69dVXdfjhh+uNN95QLBbToYce2u6106dPlyS9+eabhcfOOOMMrVy5UpMmTdK1116rF154QYlEosfK/8EHHyiZTOrQQw9VUVFRl8qY95nPfKbdY8OGDZMk1dfX78piAgAAAAAAAAAAAAAAAAB6EInfAAAAAAAAAAAAAAAAAAB93syZM+X7vnzfVyaT0dq1a/Xwww9r8uTJkqTGxkYNHDhwu68dNGiQJKmhoaHw2B133KGf/vSnCoVCuuGGG3TssceqX79+Ov/887V169ZdXv7GxkZJ6lYZ88rLy9s9Ztu2JMl13V1VRAAAAAAAAAAAAAAAAABADyPxGwAAAAAAAAAAAAAAAABgj1dWVqZNmzZt97n842VlZYXHQqGQvv/97+vdd9/VunXr9Nvf/lZHHXWU/ud//kfnnntuj5SvdVm6UkYAAAAAAAAAAAAAAAAAwN6FxG8AAAAAAAAAAAAAAAAAgD3e1KlTlUwm9eqrr7Z7btGiRZKkKVOmbPe1Q4YM0dlnn63nnntO48aN0wsvvKBkMtnp+1mWJUlyXbdL5Rs/fryi0aiWLFmi5ubmbpcRAAAAAAAAAAAAAAAAALDnI/EbAAAAAAAAAAAAAAAAAGCPd/7550uSZs+erWw2W3h83bp1+vnPfy7btnXuuedKktLptBYuXCjf99vsI5FIqKmpSaFQqJDYrSNVVVWSpE8++aRL5QuHwzr77LO1detW/eQnP2nz3AsvvKBnn31WY8eO1Wc/+9ku7Q8AAAAAAAAAAAAAAAAAsOexe7sAAAAAAAAAAAAAAAAAAAD8u8477zw98cQT+sMf/qADDjhAs2bNUiKR0GOPPaaamhrddtttGj16tCQpmUzqP/7jPzR69GgddthhGjFihOLxuJ5++mlt3LhRP/jBDxQOhzt9v89//vNasGCBTj/9dJ1wwgmKRqOaPHmyTjzxxA5fc8stt2jRokW64YYb9Pe//12HHXaYVq1apQULFqioqEj333+/TJPfcwUAAAAAAAAAAAAAAACAvRWJ3wAAAAAAAAAAAAAAAAAAezzDMLRgwQL94he/0IMPPqg777xT4XBYn/nMZ/S9731PX/ziFwvbFhcX65ZbbtFf//pXvfzyy9q8ebMqKys1fvx43XLLLTrzzDN3+H4XXXSRVq1apUceeUQ33nijHMfR+eef32nit/79++uf//yn/uu//kt/+MMf9PLLL6u8vFwnn3yy5s6dq0mTJu2SYwEAAAAAAAAAAAAAAAAA6JsM3/f93i4EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOzNzN4uAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs7Uj8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9jMRvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDDSPwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2MxG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MNI/AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYzEbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQw0j8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9jMRvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDDSPwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2MxG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MNI/AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPYzEbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQw/4/MhXK1NgBi+kAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAE3MAAADJCAYAAAAnBq8/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACxeklEQVR4nOzdd5xcZaH/8c/U7Zvd7KZvekiooffeQQEFpYOCKIgFbKhXfnhRvKKIFxFRrw1QkI4KUgNKCQQIEiChhfRk07bX2dlpvz/Oliy7CcmSEMrn/XrNa8485znPeWbmzGkz5zuhXC6XQ5IkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZK0ScJbuwOSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9EFkmJskSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDYJhbpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0CIa5SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdIgGOYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSYNgmJskSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkDYJhbpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZI0CIa5SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdIgGOYmSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSYNgmJskSZIkSZIkSZIkSZIkabO6/PLLCYVCXH755Vu7K/0ccsghhEIhHn/88T7l7+c+S5IkSZIkSZIkSZIkSZLevwxzkyRJkiRJkiRJkiRJkiRttMbGRi6//HJ+8YtfbLU+tLS0cNVVV7H//vszbNgw8vLyGD16NMcddxx/+ctfyGazW61vkiRJkiRJkiRJkiRJkqSPFsPcJEmSJEmSJEmSJEmSJEkbrbGxkR/84AdbLcztiSeeYMqUKXznO99h1qxZlJeXM336dDKZDPfffz+f+cxn2HPPPamurt6kdisrK5k2bRqVlZVbqOeSJEmSJEmSJEmSJEmSpA8jw9wkSZIkSZIkSZIkSZIkSR8IzzzzDMcccwxr167l5JNPZvHixcyfP5/Zs2ezevVqHn74YSZNmsSLL77IAQccQH19/Ua3/ZWvfIU33niDr3zlK1vwGUiSJEmSJEmSJEmSJEmSPmwMc5MkSZIkSZIkSZIkSZIkve91dHRw5pln0tHRwWc+8xluv/12xo8f3zM+FApx1FFH8dRTTzFmzBiWLFliMJskSZIkSZIkSZIkSZIkaYszzE2SJEmSJEmSJEmSJEmS3oeWLl3KBRdcwKRJk8jLy6OkpIRJkyZx4oknctttt/XU++53v0soFOKrX/3qett64YUXCIVCjBo1ikwmA8Djjz9OKBTikEMOIZvNcu2117LjjjuSn5/PiBEjOO+886ipqenTzjnnnMPEiRN7+hcKhfrcBtLU1MTXvvY1xo0bR15eHlOmTOGKK64gnU5v0utx8803s2TJEiorK7nuuuvWO7/Ro0fzs5/9DIDbb7+dt956a6Pav/zyywmFQlx++eUDjr/jjjvYZ599KCoqorKykhNOOIE5c+b0eR0H8uqrr3L22WdTVVVFPB5nxIgRfOpTn+LZZ5/dqH5JkiRJkiRJkiRJkiRJkt7fDHOTJEmSJEmSJEmSJEmSpPeZJUuWsMcee/C73/2ONWvWMG3aNKZMmUJTUxN///vf+clPftJT93Of+xwAt956K52dnQO2d9NNNwFw1llnEYlE+o0/++yz+drXvkZnZydTpkyhvr6eP/3pTxx66KEkk8meelOnTmWPPfYAIC8vj/3337/P7e2amprYd999uf7666moqGD06NEsXLiQ73//+1x44YWb9JrccccdAJx55pmUlpZusO7JJ59MZWUl2WyWu+66a5PmM5ArrriCU089leeee46ysjImTpzI448/zn777cczzzyz3unuvfdedt99d26++Wba2trYeeedyeVy3HPPPey///78/ve/f9d9kyRJkiRJkiRJkiRJkiRtXYa5SZIkSZIkSZIkSZIkSdL7zM9//nNqa2v57Gc/y5o1a3jllVeYM2cOdXV1vP7663zpS1/qqTt16lT2339/6urquP/++/u1lUqluPXWWwE455xz+o1/5plnePzxx3nuueeYP38+8+bN49VXX6WqqopXX32VG264oafu9773Pe68804ARo4cycyZM/vc3u76669n2LBhLF26lDlz5rB48WLuvfdeIpEIf/jDH3jjjTc26vXI5XLMmjULgIMPPvgd60ejUfbdd1+AnukG6/nnn+fyyy8nFArxm9/8hhUrVjB79mxWr17NySefzOWXXz7gdCtXruTss88mmUxy8cUXs2bNmp7p/ud//odsNsuXv/xlXnnllXfVP0mSJEmSJEmSJEmSJEnS1mWYmyRJkiRJkiRJkiRJkiS9z7z11lsAfOMb36C4uLjPuG233Zbzzz+/T9nnPvc5AG666aZ+bf3zn/+krq6OPfbYgx122KHf+FQqxXXXXcdee+3VUzZ16lS+/e1vA/Dggw8O+nlEo1FuueUWRo8e3VN2/PHH84lPfGKT2m5ubqa1tRWAyZMnb9Q03fVWrFixKV3u55prriGbzXLeeefxxS9+kVAoBEBhYSF//OMfGT9+/IDT/frXv6a5uZlddtmFX/ziF8TjcQDC4TDf+973+NjHPkYqleLqq69+V/2TJEmSJEmSJEmSJEmSJG1dhrlJkiRJkiRJkiRJkiRJ0vvM2LFjAbjrrrvI5XLvWP+UU06huLiYBx54gJqamj7jugPezjnnnAGnLS8v56STTupXvueeewKwaNGiTel6H8cccwxVVVXvuu2Wlpae4aKioo2aprveutMOxqOPPgrAueee229cLBbjrLPOGnC6Rx55BICvfOUrA46/+OKL+9STJEmSJEmSJEmSJEmSJH0wGeYmSZIkSZIkSZIkSZIkSe8zX/7yl4nFYlxxxRVMnDiRL37xi9xyyy2sXLlywPrFxcWcfPLJpFIpbr311p7y2tpaHnjgAeLxOKeffvqA006ePHnA8uHDhwPQ2to66OexudouKSnpGW5ra9uoabrrrTvtpmpoaKC2thaA6dOnD1hnfeXz588HYPvttx9w/A477ADAmjVraG5uHnQfJUmSJEmSJEmSJEmSJElbl2FukiRJkiRJkiRJkiRJkvQ+s8suu/Dkk09y1FFHUV1dzf/93/9x1llnUVVVxdFHH83rr7/eb5rPfe5zANx00009ZX/9619JpVKccMIJDB06dMB5FRUVDVgeDgc/L8vlcoN+Hpur7dLSUoqLiwFYuHDhRk3TXW/MmDEbVX8g3YFwoVCoZ/5vt76wuO6guu7gurcbMWJEz3BLS8ug+yhJkiRJkiRJkiRJkiRJ2roMc5MkSZIkSZIkSZIkSZKk96F99tmHhx9+mIaGBh566CG+853vUFVVxSOPPMKRRx5JY2Njn/oHHHAAU6dO5cUXX2TevHlAb7DbOeec8x73fvMKhULsu+++ADzxxBPvWD+dTjNr1iyAnukGozuMLpfL9QS7vd36gti6w9/Wrl074Pg1a9b0DK8vEE6SJEmSJEmSJEmSJEmS9P5nmJskSZIkSZIkSZIkSZIkvY8VFxdz9NFH85Of/IQ33niDyZMnU11dzYMPPtiv7rnnngvAjTfeyLx583jxxRcZOXIkxxxzzGbrTygU2mxtbYqTTz4ZgFtuuYXm5uYN1r3rrruora0lFAr1TDcY5eXlVFZWAvDKK68MWGfu3LkDlk+dOhWA1157bcDxr776KgAjRoygtLR00H2UJEmSJEmSJEmSJEmSJG1dhrlJkiRJkiRJkiRJkiRJ0gdEYWEhO+20EwArV67sN/6zn/0skUiEW265hT/84Q8AnHXWWUQikc3Wh4KCAgASicRma3NjnH322YwfP57a2lq++tWvrrfeypUr+da3vgXAKaecwjbbbPOu5nvkkUcCQUDe26XTaW655ZYBpzv66KMB+NWvfjXg+F/+8pd96kmSJEmSJEmSJEmSJEmSPpgMc5MkSZIkSZIkSZIkSZKk95kLL7yQ22+/nfb29j7lTz75JI899hgAu+22W7/pRo0axTHHHMPq1au5/vrrATjnnHM2a9+GDRtGSUkJa9eu5fXXX9+sbW9Ifn4+N998M3l5efz5z3/mlFNOYenSpT3jc7kcM2bM4KCDDqK6uppx48b1vAbvxte+9jVCoRB/+MMf+P3vf99Tnkgk+MIXvsDixYsHnO7CCy+ktLSUl156ia9//et0dnYCkM1mueqqq7j//vuJxWJ885vffNd9lCRJkiRJkiRJkiRJkiRtPYa5SZIkSZIkSZIkSZIkSdL7zKxZszjttNMYMmQI22+/PXvvvTcTJkzg4IMPpqWlhbPOOotDDz10wGk/97nPAZBOp9ljjz3YYYcdNmvfQqEQJ598MhAEyu25554ccsghHHLIIZt1PgM54IADePDBBxk2bBh33nknEydOZOrUqey5556MHDmSo446ioULF7LLLrswc+ZMKioq3vU899prLy6//HKy2Sznn38+VVVV7LXXXowcOZJbb72Vyy+/HIBIJNJnutGjR/OXv/yFeDzOL37xC0aOHMlee+3FqFGj+M53vkM4HOZXv/oV06dPf9d9lCRJkiRJkiRJkiRJkiRtPYa5SZIkSZIkSZIkSZIkSdL7zDXXXMPFF1/M9OnTqa2t5aWXXgLg6KOP5t577+XPf/7zeqc9/vjjqaysBOCcc87ZIv279tprufjiixk5ciQvv/wyTzzxBE888cQWmdfbHXrooSxYsIArr7ySffbZh7q6Ol5++WVCoRDHHnssN954Iy+88AJjx47dbPP8/ve/z+23385ee+1FfX09CxYs4IADDmDmzJnsvPPOAJSUlPSb7oQTTuA///kPZ555Jvn5+bz00kvkcjlOPPFEZs6cyfnnn7/Z+ihJkiRJkiRJkiRJkiRJ2jpCuVwut7U7IUmSJEmSJEmSJEmSJEnaPBobGxk5ciS5XI5Vq1YxdOjQrd2lD7Wf//znfOtb3+Liiy/mF7/4xdbujiRJkiRJkiRJkiRJkiTpPRbe2h2QJEmSJEmSJEmSJEmSJG0+t9xyC8lkkk984hMGuW1hmUyGP//5zwDsv//+W7k3kiRJkiRJkiRJkiRJkqStwTA3SZIkSZIkSZIkSZIkSfqQqK+v56qrrgLgS1/60lbuzYfHH//4R5566qk+ZfX19Zxzzjm88sorjB49muOPP34r9U6SJEmSJEmSJEmSJEmStDVFt3YHJEmSJEmSJEmSJEmSJEnvzk9+8hPuv/9+5s2bR2NjI0cddRSHHHLI1u7Wh8ZTTz3F5z//eYqLi5k8eTK5XI7XX3+dVCpFYWEhf/nLX8jPz9/a3ZQkSZIkSZIkSZIkSZIkbQWGuUmSJEmSJEmSJEmSJEnSB9wbb7zBzJkzqaio4Oyzz+aaa67Z2l36UPnsZz9LKpXi2WefZeHChXR2djJ69GgOP/xwvv3tbzNt2rSt3UVJkiRJkiRJkiRJkiRJ0lYSyuVyua3dCUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6oAlv7Q5IkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0geRYW6SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNAiGuUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSIBjmJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDYJibJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2CYW6SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNAiGuUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSIBjmJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDYJibJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2CYW6SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNAiGuUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSIBjmJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDYJibJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2CYW6SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNAiGuUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSIBjmJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDYJibJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2CYW6SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNAiGuUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSIBjmJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDYJibJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2CYW6SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNAiGuUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSIBjmJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDYJibJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJA2CYW6SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNAiGuUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSIBjmJkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmDEN3aHXi/ymazrFy5kpKSEkKh0NbujiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqT3QC6Xo6WlhdGjRxMOhzdY1zC39Vi5ciVjx47d2t2QJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmStBUsX76cqqqqDdYxzG09SkpKgOBFLC0t3cq9kSRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvReaG5uZuzYsT15ZBtimNt6hEIhAEpLSw1zkyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkj5iuvPINiT8HvRDkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkj50DHOTJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpEEwzE2SJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSBsEwN0mSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEkaBMPcNGg33ngjoVCIc845p0/5kiVLCIVCTJgwYav0S5IkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSXovGOYmAO677z5OPfVUxo0bR35+PkOHDmX33XfnsssuY82aNVu7e5IkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdL7jmFuH3FNTU0cc8wxnHDCCdxxxx10dHSw0047MWzYMObMmcOPfvQjttlmG+64446NbjMWizFt2jQmT568BXsuSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkbV1bJMwtmUySTqe3RNPajDo7OznyyCN5+OGHmTBhAg888ABr1qxh9uzZvPnmmyxdupTTTjuNlpYWTj/9dO6+++6NanfMmDG88cYbPPbYY1v4GUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElbz6DD3GbOnMkPf/hDGhsbe8rq6uo49thjKS4uprS0lEsvvXRz9FFbyH//938ze/ZsRo0axVNPPcWxxx5LKBTqGT927FhuvfVWzj33XLLZLJ///OdZs2bNVuyxJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9P4x6DC3n//859x0002UlZX1lH3zm9/k4YcfZtKkSZSVlfGTn/yEu+66a3P0U5tZY2Mjv/rVrwC4+uqrqaqqWm/da6+9lsrKyj7TbMiSJUsIhUJMmDBhwPELFy7k9NNPZ9iwYRQWFrLLLrvw29/+FoAJEyYQCoVYsmRJv+na2tr40Y9+xPTp0ykqKqK0tJS9996b66+/nnQ6/c5PWpIkSZIkSZIkSZL0gfPVB77Kvn/cl33/uC+JVGJrd0eSJEmSJEmSJEmSJEmSJEmS+hh0mNtLL73EgQce2PO4vb2dO+64g6OOOoo333yTN998k3HjxvHrX/96s3RUm9cDDzxAa2srlZWVnHzyyRusW1JSwplnngnAHXfc8a7m+8orr7DHHntw22230dbWxvbbb09jYyMXXnghF1988Xqnq6mpYd999+Wyyy7j1VdfZcqUKVRVVfH888/zla98hY997GN0dHS8q75JkiRJkiRJkiRJkt5/nlnxDM+ueJZnVzxLfaJ+a3dHkiRJkiRJkiRJkiRJkiRJkvoYdJjb2rVrGTNmTM/jWbNm0dHRwbnnngsEAWDHHXccb7zxxrvvpTa7Z555BoD99tuPWCz2jvUPOuggAObPn09dXd2g5pnNZjnrrLNobGzk2GOPpbq6mhdeeIElS5Zw11138X//93+sXLlywGkvvPBC5s6dyw477MD8+fN5+eWXee2115g9ezYjRoxgxowZ/Pd///eg+iVJkiRJkiRJkiRJev9aN8DNMDdJkiRJkiRJkiRJkiRJkiRJ7zeDDnPLz8+npaWl5/ETTzxBKBTi4IMP7ikrLi6moaFhk9tubW3la1/7GqNHjyY/P59ddtmF22677R2nu/HGGwmFQgPeVq9evcn9+DCrrq4GYPLkyRtVf9163dNuqhkzZjB37lwqKiq49dZbKS8v7xn3qU99iu9+97ukUql+07311lvcc889APzlL3/p05c99tiD6667DoDrr7++zzIpSZIkSZIkSZIkSfrga0j0/u6goWPTf4MgSZIkSZIkSZIkSZIkSZIkSVtSdLATTpkyhYceeohkMkk4HOb2229n++23Z+TIkT11li1bxvDhwze57ZNOOonZs2fzk5/8hKlTp/LXv/6V008/nWw2yxlnnPGO099www1su+22fcoqKio2uR8fZt2hZ0VFRRtVf916gw1MmzFjBhC8v0OGDOk3/txzz+UHP/jBgNPlcjkOOOAAdt11137jP/WpT1FVVcWKFSt4+umnOeaYYwbVP0mSJEmSJEmSJEnS+0smm6Ep2dTzeN1gN0mSJEmSJEmSJEmSJEmSJEl6Pxh0mNsXvvAFzj//fLbZZhvi8TiLFy/mqquu6lPnueeeY/vtt9+kdh944AFmzJjRE+AGcOihh7J06VIuueQSTj31VCKRyAbb2HHHHdljjz027Ql9xJSUlADQ1ta2UfXXrdc97aZ66623AJg+ffqA48ePH09paSnNzc19yufPnw+w3mUpHA6z7bbbsmLFCubPn2+YmyRJkiRJkiRJkiR9SDR2NPZ5XJ+o3zodkSRJkiRJkiRJkiRJkiRJkqT1CA92wvPOO49LLrmE9vZ2GhsbueCCC/ja177WM/7f//43ixYt4vDDD9+kdv/2t79RXFzMySef3Kf83HPPZeXKlTz33HOD7bLWMWbMGAAWLly4UfXXrdc97abqDoTbUBjcQONaW1sBGD58+HqnGzFiBAAtLS2D6pskSZIkSZIkSZIk6V0IhTbutokaOho2+FiSJEmSJEmSJEmSJEmSJEmStrZBh7mFQiF++tOfUltbS21tLb/+9a+JRCI94/fff38aGhr6BLxtjHnz5rHddtsRjUb7lE+fPr1n/Ds57rjjiEQiDB06lJNOOmmjpvmo2W+//QB45plnSKfT71j/ySefBGCbbbahoqJiUPMsKioCesPZBjJQGFtxcTEAa9euXe90a9asATYcFCdJkiRJkiRJkiRJep9peh3m/QhW/B1yuX6j6xP1G3z8duk0PP88bODrZUmSJEmSJEmSJEmSJEmSJEnarAYd5vZO4vE4Q4YM6RfK9k7q6uoYOnRov/Lusrq6uvVOO3LkSC699FL+8Ic/8O9//5srrriC2bNns88++/Dyyy9vcL7JZJLm5uY+tw+zj33sYxQVFVFbW8udd965wbotLS3ccsstAJx66qmDnufUqVMBeOWVVwYcv2zZsgFf9+7pXnvttQGny2azvPHGG33qSpIkSZIkSZIkSZLe51Y9DA9Oh7mXwVMnwlOfgExnnyoNiYYNPl7Xq6/CTjvB3ntDVRVcc80m9icU2ribJEmSJEmSJEmSJEmSJEmSJK3jXYe5/e1vf+OUU05h+vTpTJkypaf8jTfe4KqrrqK6unqT2wxt4MfPGxp3zDHH8KMf/YjjjjuOgw46iC9/+cs89dRThEIhvv/9729wnldeeSVDhgzpuY0dO3aT+/1BUlZWxpe//GUAvvnNb7JixYr11r344oupra1lyJAhPdMMxpFHHgnAPffcQ0tLS7/xN95444DTHXXUUYRCIWbOnMmcOXP6jb/nnntYsWIFRUVF7L///oPunyRJkiRJkiRJkiTpPZJuh9lfhFy6t6z6Pnjpkj7V6hP1fR939H3crbMTzjwTuv4HjFQKvvEN+OtfN2uvJUmSJEmSJEmSJEmSJEmSJKmfQYe5ZbNZTj31VD796U9z9913s2jRIhYvXtwzvry8nEsvvZQ///nPm9RuRUUFdXV1/crr64MfZA8dOnST2pswYQIHHHAAzz777Abr/dd//RdNTU09t+XLl2/SfD6IfvjDH7LbbruxatUqDjroIB566CFyuVzP+BUrVnDGGWdwww03EAqF+N3vfsfIkSMHPb8jjjiC6dOnU1tbyxlnnEFjY2PPuL///e9ceeWVxGKxftNNmTKFk046CYDPfOYzLFq0qGfciy++yEUXXQTAV77yFUpKSgbdP0mSJEmSJEmSJEnSe+T1q6BtSf/y+ddBe++fkTV0NPQZ3ZBoePsUAPzP/8DLL/cvv+giaG19Nx2VJEmSJEmSJEmSJEmSJEmSpA0bdJjbNddcw5133skFF1xAQ0MD3/rWt/qMHzFiBAceeCD333//JrW700478frrr5NOp/uUz507F4Add9xxk/uay+UIhzf8VPPy8igtLe1z+7DLy8vjscce44gjjmDx4sUce+yxjBgxgj333JNtt92WcePGceutt1JcXMwtt9zCKaec8q7mFw6H+ctf/kJZWRn//Oc/GTNmDHvuuScTJ07kxBNP5Atf+AKjR48GIBKJ9Jn2N7/5DTvttBPz5s1j6tSp7LLLLuywww7svvvurFq1iiOOOILLL7/8XfVPkiRJkiRJkiRJkvQeyOVg8Y3rGwnptp5H9Yngj9/CoXCfx+tqb4drrhm4tbo6aGp6N52VJEmSJEmSJEmSJEmSJEmSpA0bdJjbjTfeyB577MGvf/1rSktLCYVC/epMmTKFxYsXb1K7J554Iq2trdx99919ym+66SZGjx7N3nvvvUntLV68mKeffpp99tlnk6b7qCgrK2PGjBn8/e9/59Of/jR5eXm88sorrF69mp133pnvfe97vPXWW5x++umbZX7Tp0/nhRde4LTTTqOgoIB58+ZRUlLCr371K375y1/S1hb8KL+kpKTPdMOGDWPWrFn88Ic/ZLvttmP+/PksXbqUPffck+uuu44HHniA/Pz8zdJHSZIkSZIkSZIkSdIWVP8faFu6UVUbEg0AVJVWBY87GvrVufdeaGnZfN2TJEmSJEmSJEmSJEmSJEmSpE0RHeyECxYs4Mtf/vIG61RUVFBXV7dJ7R577LEceeSRXHjhhTQ3NzNlyhRuvfVWHnroIW6++WYikQgA5513HjfddBMLFy5k/PjxABxxxBEcdNBBTJ8+ndLSUubOnctVV11FKBTiiiuuGNwT/Yj4xCc+wSc+8YlNmuacc87hnHPO6Vc+YcIEcrnceqebPHkyt956a7/yuro6amtrKSsro6ysrN/4oqIiLrvsMi677LJN6qckSZIkSZIkSZIk6X1kzaMbXbU7vG1C2QSWNS3rCXdb19v+K06SJEmSJEmSJEmSJEmSJEmS3lODDnMrKCigubl5g3WWLl06YCjXO7nnnnu49NJL+f73v099fT3bbrstt956K6eddlpPnUwmQyaT6RMattNOO3H77bdz9dVXk0gkGD58OIcddhiXXXYZU6dO3eR+6L11ww03ALDffvtt5Z5IkiRJkiRJkiRJkjbJ2//wKxQauByg7vm+jyOFkEtBNtWvan2iHoCJZRN5cumTNHQ0kM1lCYfCPc3PnPmuey9JkiRJkiRJkiRJkiRJkiRJgzboMLddd92Vhx9+mGQySV5eXr/x9fX1PPTQQxx00EGb3HZxcTHXXnst11577Xrr3Hjjjdx44419yq655ppNnpfeW3PnzmXWrFmcccYZFBcXA5DL5bjlllu47LLLAPjiF7+4NbsoSZIkSZIkSZIkSdqS1g1zK5oAx7wEuTQ8dRLUPNmnakNHAxCEuQFkc1laki0MyR8CwKJFsHp1b/3CQrjvPgiH4QtfgAULtuQTkSRJkiRJkiRJkiRJkiRJkiQID3bCiy66iOXLl/PpT3+a6urqPuMWLlzIiSeeSFNTExdddNG77qQ+POrq6rjgggsoKytj8uTJ7LXXXgwbNoyzzz6bjo4OLrjgAo4//vit3U1JkiRJkiRJkiRJ0paQboPEOr8x2OuPEB8CeRVw4N2QP7JP9fpEPQATyib0KwP4z3/6Nn/VVXDYYXDIIfDQQ0G420bL5fre3qlckiRJkiRJkiRJkiRJkiRJkoDoYCf8xCc+wXe/+11+8pOfMG7cOIqKigAYPnw4dXV15HI5LrvsMg477LDN1ll98G2//fZ8+9vf5pFHHmH58uUsW7aM0tJSDj/8cL7whS9w6qmnbu0uSpIkSZIkSZIkSZK2lMTq3uHSbWHkOr8pyKuE6Vf0qd6QaABgZPFI8iJ5JDNJGjoamMhEAFas6K07ciRceGHv48mT4ZJLNvszkCRJkiRJkiRJkiRJkiRJkqQ+Bh3mBvDjH/+YQw89lF/96lc899xzdHR0kM1mOeaYY7jooos4+uijN1c/9SExfPhwfvrTn/LTn/50a3dFkiRJkiRJkiRJkvRe61jVOzzyyP7jJ3wGMm09D+sT9QCUF5RTll/GmrY1PWUA1dW9k3784xAO923uq1/dLL1+1z5/7+d5afVLADx+zuMUx4u3bockSZIkSZIkSZIkSZIkSZIkbTaDDnNbtmwZ8XicI488kiOPHOAH1pIkSZIkSZIkSZIkSetKrO4dLt+t//hIPLgBHekOEukEAGX5ZT1hbg2Jhp7qK1b0TrrPPv2bq6jYLL3eoGwWZs+GZBL23BMKCvrX+feSf7OoYREA1c3VTKuctuU7JkmSJEmSJEmSJEmSJEmSJOk9EX7nKgObOHEil1566ebsiyRJkiRJkiRJkiRJ+jDrWNU7XDJ1g1XXDW0ryy+jvKAcgPpEfU95dXVv/Z133jxd3BSLF8MOOwRBcgcfDOPHwz//2bdOLpejurm3o9Ut1UiSJEmSJEmSJEmSJEmSJEn68Bh0mNvQoUMZOnTo5uyLJEmSJEmSJEmSJEn6MEus7h3OH77Bqg0dfcPcyvLL+pWvWNFbf/TozdLDjVZdDYcdBm+80VtWUwOf/CQ89lhvWV2ijmQm2fN4RfM6nZYkSZIkSZIkSZIkSZIkSZL0gTfoMLcDDzyQZ599dnP2RZIkSZIkSZIkSZIkfZglVvUOv0OYW32iHoDCWCHxSLwnzK27PJuFlSt76w/fcHOb3Te+AUuW9C/PZOCpp3ofvz28zTA3SZIkSZIkSZIkSZIkSZIk6cNl0GFuV155JfPmzeMHP/gB6XR6c/ZJkiRJkiRJkiRJkiR9GCXXBvfhOERLNli1IdEA0BPiVpZX1qe8rg5SqaDu0KEQi2323q7Xq6/CHXdsXF3D3CRJkiRJkiRJkiRJkiRJkqQPt+hgJ/zpT3/KjjvuyA9/+EN+97vfsfPOOzNixAhCoVCfeqFQiD/+8Y/vuqOSJEmSJEmSJEmSJOkDLpMM7vOGwdt+X/B2DR1vC3Pruu8ub2/vrTtixGbt5Tv661/7lw0ZAk1N/csNc5MkSZIkSZIkSZIkSZIkSZI+3AYd5nbjjTf2DK9atYpVq1YNWM8wN0mSJEmSJEmSJEmSBEAuFdzHSnrLEqug5a3ex4XjoHgC9Yl6oDfErbygHKCnvLOzd5Ly8i3W4wHdfXfvcFERPPQQ7L8/PPkknHJK37rd4W1FsSLaUm2GuUmSJEmSJEmSJEmSJEmSJEkfMoMOc1u8ePHm7IckSZIkSZIkSZIkSfqwy3aFuYVivWXV98LsL/Y+3uH/wfQraEg0AFCeHyS1dYe6NXQE5euGucXjW6zH/bS1wZtv9j7+7W/hgAOC4YMPhgceCMLdulW3VAOw26jdeGrZUz2PJUmSJEmSJEmSJEmSJEmSJH04DDrMbfz48ZuzH5IkSZIkSZIkSZIk6cOuO8wt/M4/V6hP1AO9IW7d993l64a5xWK8Z956q3e4ogJOPbXv+N13h7Fjex+vaF4RlI/anaeWPcXatrUk00nyonnvQW8lSZIkSZIkSZIkSZIkSZIkbWmDDnOTJEmSJEmSJEmSJEnaUho6GoD+YW4NiaA8l+utGwptXJvVzdVc+q9LAdhz9J58ea8vb3K/3nyzd/jIIwcOkhs+vHe4J8xt9O49ZStbVjKxfOImz1uSJEmSJEmSJEmSJEmSJEnS+0/43Tbw17/+laOOOorhw4eTl5fHsGHDOOqoo/jrX/+6OfonSZIkSZIkSZIkSZI+LMJd/zmXTb9j1fpEPdAb4laeXw5AS2cLqUyqT4haKrVxs39x1Yvc9PJN3PTyTfzppT9tdLfXtW6Y2/bbb7huLpdjedNyACaXT+55Dt0Bb5KkD5hcDlbcC3P/G167CupmD1yvbSk8/wV47FB4+lRY8teN2vZJkiRJkiRJkiRJkiRJkj6YooOdMJvNcuqpp3LPPfeQy+UoKChg9OjRrF27lkcffZTHHnuMu+++mzvvvJNw+F1nxkmSJEmSJEmSJEmSpA+6UFcCW+6d09caOhoAWN26mkcWPtITigbQ2NFIPD6s5/HGhrm9VvNaz/DrNa+TzWUJhzbtNw3rhrlNnLjhus3JZtpSbQCMLhnN6JLRNHQ0GOYmfRCFQu9cJ5fb8v3Q1tO2FJ6/AFY/3Ld85NGw382QVxk8XvgnePFiSLf21ll2B7x5DRzxFETy37s+S5IkSZIkSZIkSZIkSZLeE4NOWbvuuuu4++67Oeigg5g1axZtbW0sXryYtrY2nn32WQ4++GD+/ve/c911123O/kqSJEmSJEmSJEmSpA+qcFeYW6rlHavWJ+oB+OOcP3L0zUfz+fs+32dcPN5bt7l542b/eu3rPcOJdIJlTcs2bsJ11NT0Dk+YsOG664a2jSweyeiS0f3KJYDvPfY9dvj1Duzw6x14dsWzW7s7kt4u3Q7/Prp/kBsEZfVzguGamfD85/sGuXWrfyFoR5IkSZIkSZIkSZIkSZL0oTPoMLcbb7yRadOmMWPGDPbee+8+4/baay8eeeQRpk2bxg033PCuOylJkiRJkiRJkiRJkj4EIvnBfbIWcrlguHQ7mHIBRIv7VG1INKy3mYaOBvLzex+vWbNxs3+t5rUNPt4YHR29w8OGbbhudUs1AJWFleRF8xhVMqpPudTtoQUP8VrNa7xW85phbtL70fzroOXN3seRQoiW9K/38qVA1/aNEAw/GMp3fS96KEmSJEmSJEmSJEmSJEnaigYd5vbmm29y/PHHE41GBxwfjUY57rjjmD9//qA7J0mSJEmSJEmSJEmSPkTyRwT32SSkW4Ph4QfBnr+FvN5ktFwuR32ifr3N1CfqqayEcNevHmpqIJPZ8KxzuVxPeNv4IeOBwYW5JRK9w3l5G667onkFAKNLRgf3xaP7lEsAnZlOXq15tefxS6tf2nqd+SgKhd75Ji34Te/w1IvhU3Xw6SY45GEo2SYob10CNU8Gw7EhcPgTcPjjcMyLcPQLULrte9xpSZIkSZIkSZIkSZIkSdJ7ZdBhbvF4nLa2tg3WaWtrIx6PD3YWkiRJkiRJkiRJkiTpfSKXy9GZ6aQz00k6mx5cI/kje4eTNeut1trZSia3/nS2hkQDsRiM6M6Gy0Jd3YZnvbx5OW2p4HcOx009DhhcmFsu1zv8ThlP/cLcSgxzU3+v17xOZ6az5/Gc1XPWW/egGw6i6n+rqPrfKmrba9+L7qlbLtd725jy5vnw7Lnwt1Fw1xB4cGd4+VJIrHnv+qzNo30ltC0NhkccBrtdA5H8YCMw6ig48lkomQz1z/dOs8OlMPzA3sdDd4cjnoJoYU9RMgk33QR77w1DhwbbtGOPhbvv7r84SZIkSZIkSZIkSZIkSZLe3wYd5rbrrrtyxx13sHLlygHHr1q1ijvuuIPddttt0J2TJEmSJEmSJEmSJEnvD08vf5q8H+WR96M8jvjzEYNrpGCdMLeOteut1tDRsMFmusdXVfWWrV694Vl3B7dVlVax26jd+pRtivz83uFkcsN1e8Lcig1z+yhra4NZs+CRR+DVV4PwwXV1h7d1Lx+v1bxGMt1/4aprr+OpZU9R3VJNdUs1s5bP2uJ91yAt/BM8sB0svhE6VkOqGRpfgdd+DLMv2Nq906aqn907POlz/ZM884ZC8SSoe6G3bNyp/dvJqwxC4IDFi2GHHeCcc+D556GhAdauhYcegk9/Gp59dvM/DUmSJEmSJEmSJEmSJEnSljPoMLdvfvOb1NXVsccee/Dzn/+cF154geXLl/PCCy9w9dVXs/vuu1NfX883vvGNzdlfSZIkSZIkSZIkSZK0FTyx5Ime4WdXPEtHumPTG8kf1TvcMn+91eoT9Rtspnv8mDG9Za+9Qy5bd3DbtIppTKuY1lOWy+U2POHbrBvm1rDhzLneMLeSvmFuq1pXkc6mN2m+en+ZXzefs+45i7PuOYtrn712wDpLl8KFF8KoUbDffnD00bDjjjB2LPz5z731Xlr9EgDHbXMcRbEi0tk0r9a82q+9WSv6hrc9vfzpzfZ8PtJyub63gco3RdPrQWBbriu1r2QqjDsFhu7R3fBm6bY2k1DonW/164S0lW/gj00b/hPcx8qgcOx6q3V2woknwsKFvV048kj45CeD9QVs+mInSZIkSZIkSZIkSZIkSdq6ooOd8LjjjuOaa67hkksu4dvf/nafcblcjmg0ytVXX81xxx33rjspSZIkSZIkSZIkSZK2rieXPdkznMwkmV09mwPHH7hpjRSM7B1ueAkmfmbAag2JDaekdY+vquotmz0bTjutb72ODkiloKTkbWFulUGYW0tnC9Ut1VSVVrGxyst7h5csgb33Xn/d6pZqAO6bfx/z6+fTnGwGIJvLsqZ1DWNKxwQpPu/EVJ/3nXvfvJdb5t4CwL8W/4uL9r6I0Drv5VtvwQEHwNq1/adduRL+8Q/4TNfiP2f1HACmj5jOy2te5rnq55izag67jeobGvX0siC8rSReQktni2Fu71dvXQ+5rrDG6T+C7b4L4UjwuOElqP5nMOxn/4OjPQjmJBSBkm2C4WwK0m29dcIx6Oj6wJdu2/v+JlZDYlVvvcIx3Hf/cF5+OXg4YgQ88ghMnx48TqfhN7+BvLwt93QkSZIkSZIkSZIkSZIkSZtf+N1MfPHFF/Pmm29y+eWX88lPfpLDDjuMT37yk/zwhz/kjTfe4Otf//rm6qckSZIkSZIkSdLmFQq9802SJAGQyqR6gqS2H7Y9AE8sfWLTG8pfJ8xtzWPrrVafqN9gM/UdwfgxY3rLHnywf70//xmag/y03jC3ymlUFlYytGBon/KNNXVq7/CSJRuuu6I5CAB6ec3L3PHqHTy04KF+4/TB9MjCR3qGV7Wu4tWaV/uMP++83iC3gw6Cp5+GRAIWLoQrr4QhQ4Jx2VyWl1a/BMBOI3Zip+E7Ab0Bb+t6ZsUzAJy7y7kAzK6eTWemc3M+rQ+tbC5LKpMilUmRzWW37MxWdy0bQ3aA7b/XG+QGUL4L7Pj/tuz8tWlyud7bQGW5XG9oW7QYwl3/nbr6Mbi7vPc2+0t963Vb+Ad4eLfe29LbuPfe3tFXXtkb5AYQjcJXvwq7775lnq4kSZIkSZIkSZIkSZIkact4V2FuABMnTuSyyy7j7rvvZsaMGdx99938v//3/5g0adLm6J8kSZIkSZIkSZIkSdrK5qyeQ1uqjdK8Us7b9TwAnlz65KY3VDCqd7jxFVj71IDVGjoaACiMFXLitif23KYMnRKMTwTjq6p6p3n9dXj44XWab4Qf/jAYzuVyvWFuFdP63G9qmNu0ab3D8+evv157qn2DoXQ9YW4DBQltqFxbXSKV4KllwbK7beW2AMxYOKNn/OLF8FTXoj1+fBA0uN9+kJ8PkybBd78Lv/1tMH5J4xKak0Hi4E7Dd2KnEUGYW3fAW7fOTCfPVz8PwGd2/gwl8RKSmSQvrnpxSz3ND5Vvz/g28R/Fif8ozrdnfHvLzahtObS8FQyPPGrDAdF+9j84ut/HbOod6nUF92U71lsll4P77+99fNxx77JvkiRJkiRJkiRJkiRJkqT3hXcd5iZJkiRJkiRJ0kfJqpZV3DbvNm6bd1tPmII+oDYlPCGbhhX/gNkXwiP7wIM7w6MHwfNfCMol6f0unYDWxUHATGfD1u6NPoC6g9v2qdqHA8cdCMAzy58hlXmHYJu3ixZB4ToJbM+fB6lmaHoNOtb0FHeHoG0zdBvuOfWentuZO53ZZ/wOO/Rt/rzzoK4Omprg9NOhujooX9W6iqZkEwDTKqf1uX83YW6PPjpw3lJ7O1Q3V2+wnZ4wN33gzFw2k450B6NLRvP5XT8PwCOLHukZf9ddvXVPOQUKC/u3EY8H93NWzQGgqrSK8oJypo+YDsDLa14mm8v21J+zag4d6Q4KogXsPHJn9hyzJwBPL3t6cz61D6VsLsvtr97e8/j2V2/v89puVol1PvdDduwdfv1n8NJ/9d4yyS0zf20ZkaLgPtMe7FOtT7Trw56sW2+VREeUuq7RY8fCsGGbqY+SJEmSJEmSJEmSJEmSpK1q0GFu//u//0tlZSUrV64ccPzKlSsZNmwYv/zlLwfdOUmSJEmSJEmS3m+uevoqTr/7dE6/+3ROufMUMtnM1u6StrSOGpixHzz1SVjwW0i3QuE4CEVh+d3w8ne3dg8laWC5HCy6ER47BO4ug/smwT+nwt1D4W+j4K3fbuUO6oPkiaVPALBf1X7sMnIXCqIFtKXaeHHVi5ve2NA9eodb3oJ7KuGBHYOQnC4NiSB0sCy/rM+k3Y8bOoLxO+0EJSW946uroaoqCMd56KHe8nUD23b/3e5UXlXJbfNu6zduY6wb5rZsWRDotq5ly+C3v33nsDbD3D64ZiyaAcAhEw7h0ImHAvDEkidIpoOAroULe+vutdeG25qzOghz22n4Tn3uWztbWVC/oKfeM8ufAWD30bsTDUfZa3TQ8DMrnultLBR659tH0NPLnmZF8wpGFo9kVPEoVjSv2HIheNnO3uFQpHd4wf/B6z/pva1bT1vG5vw8FI3rHe5YFdyPOAQ+sQIq9ukdVzwpuE+shO5zBTt8D05NBWGmQLKzd7nIyxvE85IkSZIkSZIkSZIkSZIkvS8NOsztzjvvZPr06YwePXrA8aNHj2aXXXbhtttu2+S2W1tb+drXvsbo0aPJz8/fpHbWrl3LOeecQ2VlJYWFhey777489thjm9wHSZIkSZIkSdJHTGcD1DwDK/4OS26BFfdCw8uQ6b3Ivq2zjRteugGAUcWjWNq0lPvfun/A5n729M846IaDOOiGg/jtC4blfKDN/T7Uzw7C2w6+Hz42Dw6+Dw7/F5xYA/vcFNQzPEPS+81Ll8Bz58LaJ2DcaXDAPXDEU8H9hLMh1bi1e6gPiEw2w1NLnwJgv7H7EYvE2HPMngA8ufTJTW9w6J59H2dTQK5PUX2iHoDygvI+5d1hbt3jo1HYd9++zXV0QCrVt+z1mtf7tF2XqKMj3QEEYW65XN/5b0hZWRAY1+3cc2HRomB42TL42MegublvWFthrLDnFukKeFrRYpjbB9UjCx8B4NAJh7LziJ0pyy8jkU7w9PIgICyzTt5zNLrhtl5a/RIAjy95nDH/O4bpv53ebxzQ0/beY/YO7quC+6eXPd27/OZyvbd1ra/8I+LWebcCcOK2J3Litif2KdvsYqW9wx2re4cLRkO8YsvMU1veutut1UGYI5F8KBwDkXUS2cp3D+5TTVD/fDAcCkM4CgTHg6XFnT2HhmvW9F1fSNo82tpgxgz42c/gS1+C886Dr341eDxr1tsqZ1OQWAUNr0DjXEis/shuLyVJkiRJkiRJkiRJkvTuvMNPRtdv/vz5nHnmmRuss8MOO3DLLbdsctsnnXQSs2fP5ic/+QlTp07lr3/9K6effjrZbJYzzjhjvdMlk0kOP/xwGhsbufbaaxk+fDjXX389xxxzDI8++igHH3zwJvdFkiRJkiRJkvQh1/Q6vPRtWPUQhCJQvivkVUCqBZpfhxGHwv63A3DL3FtoSjaxb9W+nLLDKXz94a/zq+d/xQnTTujTZHVzNd9//Ptkc1nS2TRz187l1B1O7RdGog+ATAcsCgL8GHcqjP5YMJxYA5lEMJw3HDLJrdM/SR9p9fUwezbU1kJjY5A5UFEBU6bArlMXE33z2qDi1Itg92v7Tjz2xPe8v/1kU1DzNDS+DMk6SLdBtADyR8HQPaBy763dww3L5aBmJqy4BxrmQEcNpFshWggFY2DUsbDdN7d2LzeLuWvn0pRsAoIQq1krZpFIBdvBJ5Y+wSX7X7JpDY48Cl65dINVGjoagN7wtm7l+cH+VEOigVwuRygU4vjj4ZFHNjzL12pe2+C81ratZUTxiHfue5dPfAKuvz4Yrq6GPfaA7baDF18MwuQ+/WmobqkGYLdRu/Gf8//TM+33//19rnjyCqqbqzd6fnrvLGtaxlcf/CoA+dF8/nTCnyiKF/WMX9O6hpfXvAwEYW6RcISDxh/EvW/ey4yFMzhs4mGMGdPb3rx58MlPrn9+c1bPASCRTpBoSfQdt2oOp+xwCrlcrifM7dZ5t/LookdJpIO6a9rWsLhxMZPKJ73bp/6B09oKjz8Oc+cG28SmJsjLg5EjYbfd4NhjIZVJcedrdwJw0nYnESLEr1/4NXe+difXHnMtsUhs83aqdNsg5CvTAQ0v9pYf8SQsuwuePnnzzk/rt24Y07rB2oMJaRq6e+/wkltg8vkDh3UP3WOdejdD5b79qkQiOfbcE55/HlpaYM6cYBsiafP4/e/hkkuCbcLo0XDccTB2LHR2wnPPwb//DQ88AKx8CN66HlZ37UQWjIFwLAh2C4Xg8CegfJet+VQkSZIkSZIkSZIkSZL0ATPoMLf29naKioo2WCc/P5/W1tZNaveBBx5gxowZPQFuAIceeihLly7lkksu4dRTTyUSiQw47R//+EfmzZvHM888w75df7196KGHsvPOO/Ptb3+b5557bpP6IkmSJEmSJEn6ABvowuq362yBJz4GbUtg2AFw4D8gb2jv+FwOkrVdgzl+9fyvAPj8bp/nhGkn8J1Hv8OMRTN4o/YNtq3ctmeyK568go50B1/Z8yvUd9Tz17l/5WfP/IwfH/7jje/bYC4w/xDI5YJAouZmaGuDcBjKymDYMFjP1wNbVqoZsl1BbYXrpHI8d04QANjt6Bc2b1jAR0kuF1w8vfIBqP9PEIQUinTdQlA4Fva7DcKD/lpL+tB5/nn42tfg2WehshJOOAEmTIBYDBYvhj/9CW758fMMz6WDCUYd2zvxv46AbGcwHC2CQx58r7sfWHYHzP4idDbAmONh+GFQsk0QftO2GJYv3qQwt1wOliwJXpNly3q3I/n5wWu0556wSf/9lemA+hegcS50NkKmDUIxiJdD0QSoOgHmfAPe/AVECmH6FUFAWV4lZNqhZSEk127aa/I+9uTSJ3uGr551dZ9xM5fNJJPNEAlvwoZ66O7B+r19+cDjQ1HqE/VAb3hbt+5wt2QmSSKdoDBWyGmnwde/Dun0+mf5Wm0Q5jaqeFSf0LaXV79Mjhyv1by2SWFup5/eG+YG0NAAzzzTt86K5hUAjC4Z3ae8+3H3eL1/5HI5vnT/l7j/rfuZWDaRxY2LGVs6lquP6l3uH130aM/w1F9NJUSITC4DwCOLHuFKruSTn4Qf/CCoc9dd8L3vBfu1b7e2bS0rW1autz/dQW9LGpewunU1ACtbVvab5ullT38ow9yy2SCwrbU1eP2GDIGCgmCd///+H/zsZ5BKwTHHwMc/DiNGQCYDy5fDQw8FYW6PLX6M2vZayvLL2G/sfoQIMbRgKLXttTy2+DGOmXLM5u10JB+GHRTs3674G7RX9z2O2FQbc+wIHnNsaQUjoXgKtC6AmqfghQthl671QmdDb72KvYIwqGwKFvwW8kfAtt8KwqGyqZ5qJ5wQ7M8B/OIX8Je/9H2rW1qCYNBhwzayf7kctLwJNc9AxyrobIJcOtjXKxgFI48M9rPUVy4XhC6u+Rc0vQapxiBcOJwX7NMN3Q2mfpVcDmbNgpkzg4DOpqbgPYpEoLwcJk6En/xk4z+u2nJmzoQLLgje2gMPDMJ+8/P71snlgJUPBucDAXb8Pmx7CcSKeyu0LoB4xXva94F0dsLatcHy1t4O8TgMHRqElvacI0usDs6ldNYF57AIQWwIFIyGyn2CoOktKJkMjrsiESgu3krn7iRJkiRJkiRJkiRJkt4nBn3Vy/jx43nm7b9EfptZs2ZRVVW1Se3+7W9/o7i4mJNP7vtPtOeeey5nnHEGzz33HPvtt996p502bVpPkBtANBrlrLPO4nvf+x7V1dWMGfMufiApSZIkSZIkbUGJRBAAkEgEF2rFYlBaChUVXgQlDcrGBGut+XcQ5AYw6bzeILenPtU3gOWwf/HU8lnMXTsXgIZEA3e/djcTyybyZt2b/Hr2r/nlsb8E4K26t/jDi38gHonznQO+Q3OymVvn3sq1z13LV/f6KqNKRhn6NYB774Vf/xpeeAFGjQouuq2sDF6eurogmOcf/9jIi6M3Z+BBvAIKx0H7Mqh5OpgmFIKdr4Sqk2D2+Rs3L63fnG/Bm/8bXGy8781BGFIkHozLdAahBKEB0k+02a1eDS+9BPPnBwEFbW1BiEpBQfB5PO64IKhAW1djYxBa09AQBHy8/nqwv9hPzVhY0DXctqi3fNgBwfpszaMQK30PejyAjrUw6zNBWOaUC2DP3wbla5+AZH0QngFBmEZ0w38wBrByJZx0Ejz3XLAN+fa3gwCfIUOC/eqVK4MQhI22+M/wwlcg2wFTL4IRh3WFOWShYw20vAWtS4IgN4BtvwnbfiMYXvB7SFT3ttXZCPGyTZj5+9O6YW5v15RsYu7auewycpeNbzAUgonnwKtX9B8XKYBJ59Iw616gN7yt27qPGxINFMYKqawMwtX+8pf+zcViwXrstZogzO1nR/6MM6ef2TN+m+u2YUH9Al6reY1DJx660U9hv/2CgMAnnlh/nZ4wt+KBw9yqW6rJ5rKE3c69b9zx6h3c/9b97DBsBx77zGNs/+vtuebZazh9x9PZffTuAMxYNKOnfjaX7TP9nFVzqGmrYeedh7HttvDGG/Dyy/DFL8L//E+w3s5k4OGH4emn4eDPvQRALBzjtk/fRohgP/aZ5c9w9ayreWl1MP7p5U8DEI/EGT9kfM/81ratpSnZxNPLn+bsnc/eUi/Le2rmzN7jglQq+KwNHx6EudXXB7dTToEfd+Vkn3km3Hzz+tu7bd5tADR2NFL046J+4zZ7mBtA1YlBmFs2Bf86DHb+MQzZIQiN2lRvP2bpPtb5CB87bjXbfCkIcgVY8H+w4HddI9Z5L/KGwrjTYcmfIZeFuf8d3N7m5JPh8suDENJbbgn2V77+9SAI6emn4ac/DcqHDd+IY9uOGnjiOKh7Dir2galfhZHbBMGCqZbgnEdHjWFub5fLwXPnweIbIH8k7HZNsJ8cHxoEHydWQvsK2tqC8L1//St4f372s2BffMSI4ONYUwOvvrq1n8xHy9w1c7n5lWDFXxgr5JL9L6EwFgSW/fvfvavHj3+8f5AbdK1GF/xf8CBWCjteHhTWzoI3/re34qijYfLngSDs9b7599GcbAbgkAmHUFXa/3ex6WyaRxc9SjaXJUSIwycdTrz7/MZGymTg5z+HO+4Ilq0DD4Rddw2ObdLp4LgmPx+u/v4b8PTp0PgSjDgCxn0aisYHwfidDVA7E4onQPEkVq+GOXMGPtavqIDjj4dJG5kJ+9hjQXj4iy8Gbey2WxAwB8GxaioV9H2jNb8Jtc9A0+tBgDbhIMw/lw3en22+HARqfoTkcsG50CVLgveqvb3rvw4Kg3Mz22wTHOPoIyqXg+bXoP5FaF0U/ClGLg2Eg/DGgtGwzYVbu5ebR2IVLLszCKxM1gTb63DXwp9NQclk2OHSjW6usTH4A4DXXgvOgXZ0BMcY4TDk5cHee8MnPxnUTWfTXP745T3H9EdPPprTdzp98z4/SZIkSZIkSZIkSR9Kgw5zO+6447jmmmv405/+xOc+97l+4//whz8wc+ZMLr744k1qd968eWy33XZEo327Nn369J7x6wtzmzdvHgceeGC/8u5pX331VcPcJEmSJEmS9K6tXRtcXLx0KbS0wMiRwcUz4XBwAVM6DWefHVxUlUwn+Z+n/oenlj1FeX452VyWKw+/ku2GbQcEF2R9//vw/PPBBVlnnAHjxwcX5qRSwUXKFRXBRZ7dOjOdpLNpAPIieUTCg0h6a3oV1jweXNCZVxGEU4TCQA5yGSiogjEff9evlfS+V7Yz5A0LLgZacQ9MODO4IGjHy6D63t6LrnM5rp99fc9k35rxrT7N3PTyTfzPYf9DSV4J33/8+2RyGWKhGB+75WMARMNR2lPt/OjJH3H9x69HfT3/PHziE8HwwQcHF99uKI9tdetqPvv3z/LKmlcYWTySlmQLN3ziBg4c3/UdweYMPAhHYPvvwgtfgtqng4u9t/0GFE8OLojXu1cdhPUwZHsY/fHg/Vr4R1h2e3AxNcAe18PEz2y9Pn4EfOUrcH3X6ul//zcIRhk9OriYsb09CMMqLNy6ffwoaG+HZ56Bt96CNWuCC7ULC4Ng31wu2M/cZZfgAn8I9j/XG/pbuW9XcNtMeOWyIJhy1DGw0+VBSMGaR9+jZzWAUBTC8SDMLd3WG5TZ9FrQ36V/BSB97EJu+cck/vUvWLECdtgBxo4N9r1DoWDfOxwOQjSeey5o+pJL4Gtf6zu73XffxP69+DVIt8Doj8GuVwdlC/8Aqx4KwuYAhmzXuw/R+HIQNhAKQ/4waH4jCKmEILDsAx7mlsvlesLcbvrkTZy5U28Q2k6/2YnXa1/niSVPbFqYG8D234HFN0L78r7l038MReNoSDQAUJ5f3md0nzC3jgbGlAa/AbjmGnjkkeCzs67vfhcyeTXUttcCMK1yWp/x21Zu2xPmtilCIbj2WjjoIGhu7j9+223hn10Xfnf3sVt3mFtnppPa9lqGFw3fpHlry6hP1HPRQxcBMH3EdG5/9XZ2Hbkrjy1+jM/f93me//zzRMNRHln4CACXHngph07oDQA89a5TqUvU8djixzhtx9P43e/giCOCkKbf/x7+/OdgHbZ2bbDMnHQSlK6aAwTL4UnbndTT1uShk7l61tWsaVvDqpZVPLM8+LPFY6Ycwz9O+0dPvaufuZpLZlzSM/6D7o034JBDgu3cLrsExwkDhZU8us4mrL4+2D5GB/gFVEe6g7+98TcA9hqzF8XxYgDaOtt4rvo5/vbG3/ht+rfkRwdI+3k3Jp8Hi/4QBE+0zIeZn9687Wvr2OZCWPQnaJrXVfC248to187yzj8OjnFSjQO3Ey1m6uQg4PE73wmK7rwzuPWzMUHwb14bBLkB7H4dVOwRhMk+/3lINUO6HYonwbCBf283WHV18OSTsGhREDI8enRwLjQUCrqXSgXH+SO3RgZTJhmEF7fMD96HvMpg/zMUDvbZsqkgnH3xjUH9qk/A+NOC4bk/CPZH2xYDMCf6EP/61xQgCJf84hf7zmrs2OCm98ZTS5/i+FuPp7ygnIv2uohLZlzCI4se4Z+n/5PygnI+9akg7LOjI9junn12sGyuq7kZSoftD9X/CD4jtc/AsP2haBJM/gL85ytBeHN+sH/Wmenkgn9ewI0v3ciFe1zIP978B7lcjn+e8U92G7VbT7uNHY2ccucp/Gvxvzh/9/P5w4t/YJ+qfbjn1HuoLKzc6Of4y1/2rhu+971gXTHwi/G9IMgtWgSHPhws37XPwvxfQiYRLOv5I7nol+dz3XXBJD//ee9rEo8Hx5+rVkFREVD3PFTfB62LoXhi8PxDESAUBEXFynh65dkceWTwGT/88CCc9p3+hGZB/QIWNwSfp6EFQ3vCcQF49cfwyqUQzoOD/gHDDwnWX02vArkgSLtjzUcmzK2zMzh2ufnmIHTvkkuCcKmhQ4PXubU1CLsdObI3QE9bV3V1EA62fHnwJ03DhgX7pN3fFYZCQej4Y4/B7NnBeY2qquBcT/e+ayYThNJ3h4i9o6dPhuV3Q/EU2OcGKN8NOlZDYnVwHqN9OSTrgu/9um3oz2SyqWB72V4dTJ9N9/6pRiQfSrfdYoGwqVSwP5FMBst/Lhe8LkVFUFG0hujDO0FnHUw4Cw78G0TyYOUDvedlcumN/hOAv/0tONeZSMCnPx2sW6dMCd4rCL7rbQhOQZBMJznt7tP4+xt/54pDr2Dmspmccc8Z1LbX8tW9v7pFXgtJkiRJkiRJkiRJHx6DDnP7zne+w2233cYXvvAFbr75Zo488kjGjBlDdXU1jzzyCE8++SSjR4/mv/7rvzap3bq6OiYN8Dd/Q7t+fVBXV7fBaYcO8CuFjZk2mUySTCZ7HjcP9GtrSZKkD5FMNkOu6yKDSChCaENXyb+Dzkxnz79Qh0NhyvPL31V7kiTpw6uzE554IghB6+yE7bYLAswikd4L/bJZ2GkniIY6ggt3MgkgF1xwR/c+RhZiQ4JQhFwuuNgg2xFcoJTLBlVCoWCaSGEQxAPUttcyZ9UcYpEYHekOyvPL2XXUrsQj8d5p3kFjQ44ddwwCI8aOhX/9CyZP7jtpIhFcDDVn1Rw++/fPMnftXM7c6Uz2HrM333/8++z6f7vyo8N+xNf3+TovvRThkUeCC3EOOwyOPx4mTICCguBChoaGoD2AN2rf4Opnruae1+/hrOln8WrNqyysX8jX9/k65+12Xs9FyT3Wd4FGshZmHBBczDjpPNjxvyFWDCvuDS6UqgmCGpYlD+UPNxayeHFwcckRR0BpaXBxQ3d4RjwOe02dG1xAkVgFww+G/BGQ7YT2ZV3zzcLQPaFsx3d8fTWAVEtwMV3HaoiXQ/6oIGws07Vg5LLBBW0da4OLEBOrYNSxwfuQSUDrQoKQviwMO4CHntuFJ58MQi4OOAAmTQqCetb9DI4fDx+Z/8XIGwoH/h1e+HJwweK946HygOC1bprbU626uZp7Xr8HgJnnzmTnkTsDQbjJrv+3KwsbFnLzKzez79h9uW3ebUTDUX778d9SECsAggs6L/jnBfzuxd/xzf2+yaTy/ufBP8p23hnOPx9uuCEI4/mv/wqCUSorg2Wzri4INvrKV+CRhQ/zmb9/hrVtazl/t/OZUDaBH8/8MYfcdAiXH3w53zvwe4MLudyQKV+EdCu8+iNYfENwW1esDKLFA076UdbREVyk2NgYBGwMGdIbwNS9HSktheH7/gWe/UwQ3PbEx4JAt/zhMPGzsHpG0FgmCW/+MghOiA+FEYcGr3nLW10XGmaCCwwnfoZcpIBnlj/DDS/dQCqbYp8x+3Df/Ps4YNwBfGbnz1BVWrVVX5f3q6FDg+1BMgm1tcEtHg/K2tqCx3l5fafJZoNb925GKBTs161dG1yA/PrrwXt87rlBOG04HNxyueB2xBHv/fN8vzvlFLj//mD4gQfgqKP6XhyfTgcX+j7wAHz1qzBnThBwduKJwT5kNBq8/q+8Ar/6VYgJB9wdBHlU3wdPHh9cjB8rg86uC1/zKpk7F/7yl2AffdKkYP1bXNx7QWsuByUlwbp6s8kbCgfcDS98EZbcDK2Lggv340ODC/m7vLUgxiWXBPve++wTbCumTg2WTQiW1zVrguXstdfgH/+A//7vIJBgjz2grCw47li5MngeF1ywkf3b6/cw+8IgvG32hcE6p2gCjD+9N5Bnmy8FFxPP/mIQ2PLADjDisOA5tC/bjC/W1vdG7RvUtAcBpgeOO7DPdna/sfvxeu3rPLnsSS7eZ9P+6I1oEez+K3j608ExHcC234JpQTv1iWA5XTe8DaC8oDfcrbsOBOuZP/0puDC7+xjq1FODZWLm8t6gtmkVfcPcplVM45/8k9dqNy3MDYLPxYMPwtFHB8d0EHxmf/pTOO00+NrVQZhbd3hbt3Ufr2he8ZEJc1u7Fu66C5YtCy7Q33ff3vVN9/YhEoHddnvntjZaLgerHwnCIgnB0F2DfYjOhiDgiCwQhpFH8q1HvsXatrXsP3Z/xg8Zz6qWVew5ek9Wta7ipdUvcc2z1/DxbT7OqtZVAHxhty8wvmx8z6wOmXAId79+NzMWzuC0HU/jwAOD0LHvfjcI6kwmYcGCoG44HCw/c1YHYW7TR0zv0+1tK7clGo6SzqaZs3oOTy9/GoB9xuzTp95eY/YCYN7aeTR2NPb7vKz3NemsC16DTEewDxWK9R4UkgvOueQNhXQiCLrpPv4MRfrWyxsG0YJNeEM2bNIkuPBC+N3vgvD7Sy+FQw8NgjHC4eAcyYIF8NnPwh//CD/4QfAZ3HFHOOaYINwknQ6WsZoaOPvHD9CcbKY0r5Qnz3mSvGiwjenMdDL8Z8NpSjbxwFsP9AnS2yzCMTjofnjxIlh2R99xsSFBOHTkA5CS233OLZfuOt+WA0LBchCOQXjQPzv7YIrkw6Ez4IULYcXfe8tDEZhyAezys+Bx4Rg4ciY8+9kg0K9btAR2+gFMOheAb3872Af/8Y9h8eK+s9pxx00ICJt0Hqz5V7A/8uxnYPL5UDIZJl8Ab10XHFOlmjbpqda01XDL3FuYsWgGx045llfXvkpbqo1zdjmHQyYcQi4b5tBDYe7c4BzmU08FAYzr7rcmk737k5vLgw8G64elS4NzWocfHmxHuk+BZrPBemDHxrNh+Z1QWAVHzISi8cE5z6ZXYcU/guW5aALscyO8+PUgtBegcn8YuhvESmDONwHY/8gGrroKrrwyCI094QQ49lgYMSKYb01NsL665prN/3w/SuaumcvvX/w9r9e+zglTT+DBBQ8ytnQs5+9+fk/4131v3scpd50CwB6j92BZ0zJ2HbUrz654loNuPIiHznyI7bcfw333wde/DvPmBcdI++0XBCUlk8G5paIiePaZb0BiZfDeP3YQDD8MSqYEAUbJ2q5ehWhINPCpOz7Fv5f8m2kV0yjLL+Pg8Qdz12t3ceANB3Lbp27j+GnHs6B+Acffejxv1r7JvmP3paKggv3H7c+TS59k7z/szX2n38f2w7bfqNfitNOCZX3GjGDfdsiQYN9oyJBgG7dmTXCMfubHfxDs37S8CU+dBGM/DQWjgkC6584LAgkLx1FREQQtdnQEy+vatcFxY35+EOZWUwOxSBLmnR4cl405PjjWyR8Jqx4OgqtXBOdEd95pf844YxK33hqcv/vRj2D//XuDxerrg/XZF74Ay5qW8YPHf8BNL9/Ep7b/FBOGTODa567lgHEHcOXhV7LnmD2DoMloCWTaoHFe1/cKqeB46pX/B4lqmHoR7H4tSxqX8Pv//J5/LfkXJ257Is9XP086m+aC3S/gqMlHbf5zgVtBZ2ewXq2pCY5lp08Pbt1hbi0twTHP28/NrFfPPl9jEKQezusKtlx3X64CYqVb7kl9iL35ZrDt6+gIzj/cd1//ANNEIjhPceaZwfd9554LX/pS8D52b7symYHDwdf75yQFVcG6KtMO7Ssgb3gQ4Nb8GvwnCKYmVgbjNiJMuOl1eGTv4NzqtG/Ajv8vmLb63qDNpnmw+lHY/VpyuRxv1L7BA289QGGskIJYAataVnHk5CPZbdRuhEMbvxG86KIgxHbNmiDAcu+9g/NOkUjwmq1ZA6GJZQwfeUTwZx/1Lwb7XqXbAaHgub52ZdDYiMP6hrmt53vR4cODbfeSJbB6NcyfH1QtLg7em9raYDtRMbKNT97+SR5d9CjTKqaxpnUNVaVVlOWXcdFDF9GUbOLSAy/1N3EfIJlMEBK+bFnweZ08uXd5W/d70e22GzhI/N1oTjZz92t388CCBzh4/MEsbVxKfaKes6afxcETDu7zualP1DO/bj7hUJhMNsOY0jGMLR27yctaOh0EgnZ0BMt29/559/cxsViwXyRJHwWpTKrnPC7A8KLhA/6hw9q2taxqWdWzzp1UPqnfb69yuRzLm5fT1BGcX4lFYkwun0wsspk3HtJWkEwGIdXV1cG+xOTJvd/bdO8v5XIwfVo91D0bhK7nj+oKgY8Gxybd544Lx/LygnE88USwXz95MmyzTXAOovu8WTYbnO+fELkn+DOGXAZGHRWcN+9YE/z2rfuPaMefFvxJgyRJkiRJ0gdMKJd7+ze9G++tt97irLPOYvbs2UFjoRDdze21117cfPPNTJkyZZPanDp1KpMnT+bBBx/sU75q1SpGjx7NlVdeyXe/+90Bp43H45x33nn85je/6VM+a9Ys9ttvP2699VZOO+20Aae9/PLL+cEPftCv/Ohjjia2nm/nQoSAHOt+TZbrGtP9qOfy4lyETCZONhshFMoSCmUIhbp+ENFVKxTKEg5n+szj3vvuA+CE44/vU56MJmkuaKY93g5AUbKIjngH6XCa/FQ+JYkSCjsLu/rYt623t5cNZWkoaqCuuI68dB7FHcXE0jFaClpoy2ujsLOQyuZK8tN9T1yvr2/pUJqOeAcdsQ4y4Qx56TzS4TTZcJZoJkpBZwH5qXwmlzcxuqSNSCjHqtYikukIedEMeZEMJXmdZLIh5q6tpDkTojPaSTqcBiCaiZKOpgnlQkQzUWLpGNFclCxZcqFcTyhNiBC5UI5QLhTcCEEuQiYTI5eLrvM+ZN/2zmYJh7M97fW0tU673e1ls1Gy2Si5XIhweKC2IBRKEw7lut7voIV1L2rqXmrSmRjJZDmZTB6QIxZrJxTK9IyHEKFQllisbaPeh7dbX72amp1paRlLJpNHefmb5OfXEw6nCIVy5HJhstkY8XgDDQ3b0t4+imw2RmnpIuLxFsJd70kuFyGbjTJkyMJ1nuf655kJZWjNb6Utr41UNEVeKviFUTKWJJaOUZwspqijiNbGKTQ0bEsqVURx8XKKitYQiXR09S3U1bdmpo1Yxoii4Mfja9oK6MxEyI+myYtkKYqnyGRDvF47lI50tF/f3um1W99zKIimGVqQID+aobUzRjITIQTEIlnyIsHnu6kjj6ZkXr+2BmovR45cKEeWYBl6+zIXzoV7Ps+5t/+78zpChAiHchREU8QiOVKZEOlsmBwQDeeCZRFIZ0O0p6OkIinS4TS5cI5wNjg7ng1nCWVDxLKx4DMbzVAYSxMJZelIR0lnQ4RDEA5liUWCvrQkY6SyW+5Hcetd36QLSCQqyGTyCYc7icXauj43vb/LCYc7CcWbScaTJKNJsuEs8VScdCRNNhSsl/JT+eSl8zZqnbm+vr29XnG8kx2H11FR0EF9Ip/a9nxyhCiJd1IYS5MXzVDTVsBLNeU9n4d0JE1eKo9cKEdntJNYJkZRRxFFySJyoRyJeIJkNNlv3RpLxyhIFZCXymNiWQuVhQlyOahLFJBMh8mPZoh3fR7S2TBv1JbTmYm843PY2PehPL+D8WXNFMdT1LQV0paKEgnlyI9mKIp3Eg5BdXMx2RyMKmkjL5Klpj2fZDpKNJwlFslSmtdJNgcL68soy08ytKADgLpEPqlMhLxomngkS0E0TTobYkF9WZ9lbmOfw/rEwhmK4mmi4Swd6QiZbBjIEQnniIazhID2VJRkZvDrkYHqpcIpOqOdZCIZyEE0G3wuw7kw0UyUeDpOOBcmE84En9VQjnCu67MayhIiRCQbIZKJEMpFyOVC0L1/0rM4925HIEcqmqQtr41EPEE2nKUgWUAqGqwL4pk4RR1FFHQWkAlngu1vJJhvLB0jFUkRIkQ0GyWeihPJRkjkJWjJbyEVTRFPx8lL5dGW10Y2lKWgs4CSjhJi6RiJeIJEPEE6kiaajRLOhklGk0SzwWewIFlAOBcmHUn3fD4jXe/x29dLyY6hdHQMJZPJIx5vIRJJ9NsGx2KtRKOd7/g+ZMmyumw1TYVNlCRKyE8F+zu5UI6WghZSkRQjG0dS2FnI8orldEY7KW8t73kfABqLGsmRo6q+isLOvhferO9zk4glqC2ppSPeQWGykNJEKR2xjp51QUVLBWXtpexbtZbKwgRtnTEWN5aSykQoL+igOJ6ioqCDdDbMM8tHUl6QpCTeSTITpSUZJ5MLURBNE4tkiIWzJDMRVrcWMaq4jcJYmtbOGO2pKDnoWkdkiIRyNCfjrGkr2qjnMFCd/vVybFdZz4jidrK5MKtbC+nMRCiMpciLZCiOp+jMhHlhVSW1+a3UldQRzUYp6igiP5Xfs79bkCqgoqWCglTBgPPt9/omhtLaOo5UqohotI38/EbC4RTd+965XIh4vJUJFSsYUdxONJyjrj2fZCZCrGu9VBzvJJsLsbC+jNbOvscDA/1ObkPb57fLhrJkwkGY4ts/0+FsmEguQmVBB1WlrRTE0tS2F5BIRYmEs8H6PJYiFIIVzcXUtr/zRXI5gu1KW14bndFOcuTIT+XTEe8glAuRl8qjsLOQeDpOJpwhFUn16U8mkiGUCxHJRIhlY32W/w29D01NE2ls3IZUqoiSkuUUFq7uOt7pPg4KE422kiuuoaGogfa8duKpOKWJUhLxBO157UQyEcrbyinuKKamtIb64nqKkkXBZy0XfFbb4+2057UzrGUYlS2VA/ZtoP5tzHNIh9K057WTiCfIRDLkpfJ61smxTIzCZCEFnQWECfdra6D2kslSMpl8crkI0WiCUCjV55gg2OdP09w8iWSyDMhRUFBDJJLs2c/O5SAUylFUXB3sy0XSZEIZIrlgnZkJZQjnwsQyMWKZGNFQ17YsFOwD9mwngHAoWHLT2TCdZOmMdZKKpHrW++lImhw5otkoeek8YpkoRbEUedFs8Nv/TIRsLkQ4lCUcyhEN58jmQqQyYXYeWcOwogRNHXmsai2iMxNhSF6SwliK4niapmSc56pH0BntpDPaSTaUJZwN9nnT4TSRXIRYOhZsC9m4ZS4bypIOp3s+X5FshGw42D50b1sjuQjpUNe2JpztqZcJZ3q2q9FMtGeb1BnpDMblQsG0kXSwTep6fccUdbDj8DpK4p3MryunKRknEsoxtKCDisIOYuEsK1uK+E9NOS35LbTlt5EOpynsLCQdTpOKpoilY5R0lFDUUbTRy9LmFA0H+/vRcJZUJky667ggHAr2hUIE73UivfkuzMzlwjQ2bkN7+zCy2TgFBWuJxYKLp3uuHyHMyIr57DZqLcXxTta0FbKqpYgcIcrzg2UpP5qmPRVjRXMx2w+rpySvk2VNJTQkgu15UTxFaV4neZEMq1sLea2lgPqiehLxBAWdBRQni8mEM7TmtdIZ7aSsvYwh7UN6Pk/vJJsN09w8kURiGMlk2dvO9wDkGD7uMVYMW0wulGNUwyhimd5tytoha0nEEpS3lVPZWkkmE6O1tYq2ttF0dhaTzeaRzUYJhTJEo+2Uli4hOupF1gxZQywTY0j7kJ7VRyacoaG4IVgu68cQzW7c+xUNZ5hc3syI4jaK4yky2XDP5xpCNCdjPLt8NI3Nk2hrG0E6XUheXhPRaFvP+is4J5KmavhrbFPRSFl+B4lUjMaOOBC0VVXaRiySYVlTCa+sHUomkundFmbDwfmcrn3dSDZCOBOhIzGMzs4yMpk48Xhzz/mA3nNpIWKxJoJte/Ce9d3OQPc6LxdJsrZ8DU0FTb3nzHLB+abmwmbC2TCjGkdRlsmjNC9JPJIlkYqS6vo8xMJZIuEskRC0dkZZHUlSXV5NLNv1PtD7PtQX1VPQWUBVfRXJlqqe/db8/Aai0QSQXadvIeJ5dXQUNtJU2EQymiQvnUdhspDWglZS4RRFnUUMaR9CBRGmVTZQlp+kqSNOfSK/6/PQQXlBkqJYioaOPF5cNZwpQxsZWtBBMh2lsSNOtus4YdyQFqLhLEubSpizYhLNzRN7lt28vDoikXTPc8nlQhQUrKWgoDcYY2Otb/0VfPYn09Y2hs7O4q7XpL1rXz7YNwiHk+TlNdLQsC2dnaUUFKylqGj1OvtywWsXjbYTL6whGU2SigbbrmgmSjac7TmWiKfjxNPxPsf6G6OqtIXxQ1ooy08Si2RpT0VZ01rIooYhrIgkWFu6lmg2ysSaiX2mqympobGwsWe/qnt4TEPfRLzlFcvpiHYwtHUoFW0VG92vZLKE5uZJtLaOIZ0uJJPJI5cLEY12kJfXyMiRs4jHe88bvtv9oI2tt6RyCYm8BBUtFQxv7g0gyZJl/uj55EI5qmqrWDl0JdlwljF1Yyjt6L04sD3WztLhSyEH26zahmguSiYTp7l5Aq2to8lkCkinCwiFskSjbRQU1FEy6hmqK1cQIkRVXRXRdY7VV5avpCPWQUVrBUPb+v/xy+YQCWXZblg9E8qaiYZztHbGWN5UwsKGIT3b0XdSEE2x4/A6Kgs7aEvFqG3PJ5MNURRPMaIo0bPt+3ttIWvK1hBPxZm0dlLP8pwJZVg4YiGZSIaquipKOkp62l7/ZxAymTyy2Ri5XIhIJEX3trd7PEAm3saikUHCyKQ1k8jL9J7frC2upWZIDXmdeUyqmUQqVUBT0yTa20fR2VlKLhfu2h4G67qiopUUFy+nuXkSqVQhBQW1FBTUrLO+hu7PdF5eE5BjVHEbk4c2URJPURBLk86Gg2PV1kIWNZRSUdjBuCEtFMbS1CfySKajZHNQEMswtrSFZCbCk8tHsLiwgda81uC8RCbWs/noPi4a1jyMIYnedfi6r91gPw+Lhi8iGUsyrGkYla29xyaZUIb5o+ZDCMbXjO9z7uDdnl9qKGpgddlqouko26zZps801eXVNBc2M6R9COUrd6SxcRodHeVEo4mu44zOnvcqlwuTl9dIYeFa0uk4ra1jaWsbQypV2HUMEyYSSRKLtVBR8SqJRCXt7SPIZPIpKlpJPN7adV42CMPJZqMUFa0gmaygtbWKzs5SwuEUsVgLoa7vS4JlLsSwYS9v1Ou7YugKWgpaGNI2hNGNfQORFg1bRDLe/7Xf0OsbDWfYrrKB0SVtFMVTXecEQ0TDOfKiGVqScWYuG00skmHbygaGFSaIhLMkUrF1zrtkaeyIc+/qIVRXVBPJRJiyekqf/fr1rSc39FxzOWhrG0Vb2yiSyQqy2QjhcHqd9ytEZeXLFBYGAQMdHWU0Nk6js7OEVCq4uCQeb6awcDXl5W/2fPdYEk8yfUQdw4qC88dNyTyWNpawtKmUVDpGS8sE2ttHkE7nk5/f0HXODYJ9vjDRaDuR4fNYMXQFkVyEipbe7Vg2lKW2tJZoJsq42nHEM3E2Xo5xQ4Ltb2leJ3nRDIlUlPpEPsuailnVWkQuF6GlZRzt7SNIJoN9xGB/KvhuNS+vkVGjZgGQTufT2DiZRGJY1zYzn3A4RTzeRGnpUkpLl27U+wDBcdG4Ic1MKGvpOgbJkMqEaemMUdNWyMKGIT3fPY0paWFCWbAPEY9kSKSj1LYXsLSxhOpkhIUjFgEwae0k8tK969aVZStpKmqipL2E4mQxq8pXEc1EmbJ6Sp/9mO5lqbK5kkg2wpqyNeSl8hhT37uvkQ6nWV65HIAJayf0+W53vdsHctSU1lBXXNf/nEteO+3xdoY1DyMvncfqIasJ58J9tkkAjYWN1JTUEMvEmFA7YaPe9bcbW9rC9BG1vFlXzoL6sp7yBSMWkCPHqMZRFCd7L57KkWPBiGB7NbphNEWdfc9pJhIVrF69D0VFqxg27EVCIWjOb2bNkDWEc2Emr53cp/7meA6dnUWsXr0P2WycYcNepKhoDTlyLByxcMDnkCXLwhELARjTMKbfueUNKYl3suPwWoYVJSiKBd9FJ9JR6hN5LGsq5flUKthmp/KYtLZvgPDSiqW057cztGUoI5pH9Bm3vs/DghELSEVTjGgc0WcfKxlNsmjEIsjBpNVTSLeMo7OzhGw2Ql5eY9f+xrrnTUPE4009x9LBsVJd13FB97mvEKFQhiFlC3vOfeVCb/ses+t3AtFMlDBhMpkoLS0TaG6eQGdnCZlMPtlslEgkSTzeTGXlXLYb/QZjh7SQF8mwtq2AjnSUeCRLXjTNuCEtdGYiPLOykv+UBBf3ja0f2/N9AfQuP5FchIrmCtYOWUskF+n3+tYX1ff87mJc3bg+41paxlJXtz2ZTAH5+fVUVMwlP7+h9xihbSgVrX2PEZZULiEVSVHZUkldSd2Ay1I6lGbx8CAFqqq+qt959IGUxDvZaUQtxfEUq1uLqGkrIJuDisLg+4f8aPA9wormErYfVk9BNM2ihiE0dOQRCeUoyeukNK+TSChLXaKAFxbtTmPjVFKpQkpKllFcvJJwuJPec/LBdgQipFJFZLMxotG2dZaR4DxEcKzfRjicJpOJ09IyjtbWKtLpAtLpfEKhHNFoO/n5dQwbNodwONu13RxDc/MEUqliUqlCwuE0eXkNlJYupWP0i+s9Pqsur6Y93k5ZexnDWoa94+s2WOOGNLPDsHqiXecK562t6POd4+YSDuXYZmgjY0pbGZKXpC0VC34r0PXeJlJRXl5TyYrmdz5+iIaz7DS8luFFCdpSUaqbi0lmIj3LR0k8RSob5rnlVbQnKkmnC4EssVjr2/b36TrvsHF/qNkWb2NV+Spy5ChNlBLPxMkRfE/eXBDs245oGrHR5++2nBw7j6hlfFkLLckYL68ZRn2i/8XA4VCWfapWU1nYQU1bPi+tHkYi3f83aLlcmLVrd6WtbTShUIaysoWUlb25Mf850UdxvJNtKxsoz09SFA9CUhOpCA0d+SxvKmZFW0HPd7aZcIZYOgYhSEVSRLNdv+fqzCcRTwTrvGyEko4SQrng9yuZSIamgiYKOwsZ2TiScDZKa2sV7e0j6OgYSi4X7vrtVKbn+HD4iOeJx1uC79GCU3WB3p/W9exXDPR7jX6/N+pa5ycSw0ilirvOGyb6nKvMy2uktHQpY0tbGV3SSnlBkkw2TCYX/F6rIJamPRXltZoK1rYVEg7lmFTeRFVpa9d3IBmS6QjNyTirWwtZ3Dik67MUoqVlLC0t40mlCkmnCwmFssTjLRQUrGVoxVwy0TSpSKrnu5pwLkw6nA6+o8gGv3GrLamlrrSOgmRBv/2O7m3uyMaRlLf1htdu6Fh/zZo9SSSGk8nEqah4lXi8hb7n2kPk5dXS0jKZ1tZRpNNF5OfXEYu1rnNeLlgOi4tXUlOzK52dJcTjLQwZsqDf9jwcTpNXsJZMpPc3DN3f62fCwfOOZCJEs9GN+g1Ojhx1xXU0FDVQ2Bl879at+/vzIe1DKG8rZ9mwZWTJ9tverXterntdn8tBR0clTU0TaW8fSTYbIxJJUlBQQ1nZAvLzg/Oe8UiG7YfVMbQg2fW7lRCNHXmsaC5iaWMp1aVraclvobSjlBFNvftOyWiSZRXLCBFibO1YVpevpjPSybCWYZS1l/XUay5oZk1pcE5/bO1YOmOdtOe10xnpJJwLE8/EScQSRLKR3u9su46nUqkimpomk0hUkk4XkMnkEQqlicdbKSlZRlnZAiDHiKJ2pgxtorjr90jZXIj2VIy6RD6LGkpp7MjfiGP9eRQW1DGhrJlRJW0MyeskHMp1nVuGbC74vmDO6uHBb8fS+TQ3T6CtbWSf83exWBv5+TUMGfUcKypWQIieY5ie97ukrud3GCXJEmLhDOOGtDC263xPfjRDNhcikYrQlMxjccMQ5mdT1JTWEE/HKe5YZz8o8v/bu+/4KOr8j+Pv2ZbNpofQOwQEpAoKcoioB3iKpygo4KnY+9kLioKneOLvOBXv8PS8E9uhgNjgbAhiO6SJiNKlaKgJ6dmS3Z3fH5MsCSkkSLIBXs/HIw/C7Ozsd3az85nPd77fzwQjx6WmOU31S6NfIjl42b77vNg8ZSZmKjYQq7b72tbobzPFbV0DTIn1a2d+nLK9MTIMqbGnSI3jfIp1BLUzP05f7Ch/flHV8Wtr463yuXxKy0srd95RbCvW5mabJUNqv6e93EG3fL4UFRS0Kslr3SXjSQ3Z7T65XHlq3OwbZaXuUE5cjuJ98ZFrHkF7UPnufIVsITXPaa52hkPdGu+Xx1ms7bmJyvHFyGaYSooJKDHG6v/O9rq1dl+qdeyyhSL966XXbSLn3mGHGnu8ahTrl90WVo4vRsUhmxwl46piS/72MvLiy11T/LV9XzmenCrz5B2NdqjQXajU/FTZTFvkM263r11knZAR0uZmmxU2wmqT1Ub2kF25cbkqiCmQM+SMjE3wOr1yhpxKLkpWvC9OKe5ixTqCCpuSN+hQKGzIaTet8ZI2U+GScXnFwRjl5raXz5dW0v8VLDPm15Dd7leLFl8pGIxVXl5p/LLy1wPHYENxcRlKS1tb5ftzsDhnQB1S8tQsvigypi4Utr772b4Yrc9MUUGgZn0zSTF+tU/JVZrHJ9OU/CVjAGIdQTlspnJ8Ln25K037EvepKKZI8b74yLHa7/Qr350vV9ClJnlNyvV3lP1cK8ZzV0le2EjFxfEl55Bl+77sSkrapNjY/Upw+ZWemqs0j1exzpActrACIZsKAk7t98bqx32pNe6XN01DRUVNlZ/fuqR/ya1w2CnDCMrptK7FBlsvVbYnu0L+EDJC2tZ4m8JGuMY5vHWO11uFhS0UDjuVnLxFLleeDCOo0utioZBTiYnbZZo25eZ2LOkPTJFp2suNH3e7s+Q54R3tSd4jZ9Cp9D3l52ZE+iDzGqlJfs36IDc226iQPaTm2c3Lxa6gLahNzTdJktrvbV8uN67qu+q3l/QPqGLfV9l+3ZOCSerRJFMJMcXakJkSOS6lxFrjRR22sHYXePRNTqwyUjNkyFBSYVJknFKxvVg5cSUxf39L5e7rqby89goGPUpK2iy3O6tk/Hs4Mv49JiZLhYVt5PWmKRx2yuPZJafTumZbOhZdsik+/udycziqG2tYbhxkyCHDNFTssM6p3QG3YgOx8jv92p28W4ZpKNGbKKMkpgbtQeXF5skdcKtpblMF7UFlx2Ur4AjIXexWvC8+sn1DhpILkxXvi6/R9c7iYo/27eul4uJE2e0+JSVtkcPhK3m0dF+lWM8+a2yN3Tru20ybZFp9LmXP5ULBWBUXe2SaDtlsgch7W/bE3mYrVnKsNR7RMCRvsTXG3GGzxps4bWGZkvZ7YxSswXjfkBHSrpRdynfnK8mbpJhATGQcUZ4nT6ZhWn2B/tqPb6xuvTRPkTo3ylGK26/8gEsFAYfCpiGnLawOKXnyBu36YkdzbXQUKjMh0+pH9XsiY3sL3NaYk6a5Tct9n6rb15q27XDW+7XxNxx2yO9PKjn/NEvGuAXLPNPqmy97bbq6thU5i7Q7ZbdCtlBkjG7YCKswplAF7gKlFKaocV7jcrn+r90Hj7NYPZpkKc3jVa7fpX2FsQqZNqW4fUrz+JQYE1BmkVufbm1T6fYqjIOMzdXOlJ1yBV1KLkyOLA/ZQ1ZfYLHVF1h2rE51x5FdKbuU58lTYlGiXMEDMbt0bHeTvCZKLbDO0QKOQCTXsoWt8Ww202aNqwu5lBoTUNe0/UqN9SvL61auz5qLFOsMqk1SgZy2sDbvT9K3u5scsm01fX8NmUp2+w+cuwet8weHLSx7yRjCkGloX5FbxfZiFTsOypPtQdnCJePkQy7FGFZ7HTZT/qBNIdNWMrYxLLvNOt74g3YVhQ1re/byY0RK+4+doZIx5k5rrp3P6ZMzZM1NKnIVRcbkJHoT5Q64VeguVK4nNzLePTYQq3x3vvxOv9zFbiUVJckZdKogtkC5sbmymTZ5/B45Q87I+PJ4f7wSixJl8ydGrl/ZbMUl35uycwNLrs+78iufD2KE5Qw75Q64I2NUfU6fih1W/44z6Dzwe8ipmOIYa/+NcOR4bphG5LhU+rs9bJdhGgrbwpHz/chcuJLf7eHS475HPl+qgsEY2e3FJf32ZcfBqWS+jrdGf0sFBc1L5se5DhozVRrTbIpxZyo7cY8yEzIjY/kcIYd8Tp8K3AWSITXNaap4f3yZORJS+bFhB6TE+tQmqUBxzoAyi2JVVOyUzbCu/ca7imUzTGXkxckfcijZ7ZfdCCvP71Jx+EBu43YEZZqG9hR6ajT/LKyw9iTvUY4nRwm+BLkD7sj7W3YewpEem+B3+JUTl1Mut/E5ffK6rD6G5KJkJXgTFLQH5XP6FLAHZBqmXEGXAo6ADNMaA+sudsse8Cg7u4t8vkYyTZvi4nZHPq+y50st0zaqc6NsJbkDyvHFKMdnnfMlxviV5vHJ7QhqX2GsPv+ps/LyOpaMSQvJ7c4s6V8q/ewMuVx5apO2Xe2S85QYE1Cuz6XCYmdk3MoJaTnyB21as6exdhZ4IvPtpIPm2pX8Pdd2bNihlP28qzN85DDleHJU6C6UI+SwckyndS5XOr4zwZdQ4z6y0s+w9DNyBV3yuXwH+o381jzhzIRM5cTlKM4Xp3hfvGymTQXuAhW4C+Txe2qVn1W132XXsxmmTm5h9XMXFTu0LSdRgZBNjTx+xbsCSvP4VByyafH2FtrtLFJWfJZspk1xfmteUm5srrwurzwBj1ILUms8H+RwVHdcKp2/ETYOjCuP/F4yf8MwDfmdfutzKOm/c4ac8jmtz8FdbJ3vB4vSlJnZWz5fqpzOAmtsb2QcpEpyuqDciT+rMKYwMkfIXexWyAgpaA+Wmy9Yk7Hjpinl5naUz5emUMglj2dvybW3cMmx2poj4/Hslmk6FQ6XjqktVvm5VkbJ8oBM0xHJE8rHrZI1DWusmXX91SW7vbhkHO+BfmXJkM3mV8CTo8yETPkdfsUF4pTgTYgcz0O2UMn8qOQafx/8Tr+KXEWR+XXOkFN+p1+2sC3yOdjDdgXsARU7iq18JmyL9JHZw3ZrrH/QKUOGQraSMctG+THLpXNk7KZdbntIMY5Qybh565qC3SgdT2+9hwUBZ8mcWmv/w2bZeeKmbCX98qWxpfSIZZrGgZHPZcbqhWo4L8c0reut1rV0Kw4emIMSqWCg5gmFahTrld1mKtvrViBkk9MelsMWVpzT6uvalpNUw/47UzH2kOw2KxYUl8xDsRnhyDyUkGmo0JdQMtbIUzI2Jy8y5/zA30hAMTG5kf0vW9Gi7NzHcLl4X/1Y5D17TlZhYTNJhpKTNygmJqfMNUqb9T2J+0W+2ILIPAGbaZMr6IrES4/fo3hfvBxhh/wOf+Tc2x62l5vT4gq65Cq25rSUrTlwsNL536mxPiW4AjIMs2R+n012w/ocYkrOoXfne1TkT1I47Crpq/eVnHuVzhcq3WpIRUXNVFwcJ8OQXK6ckn40s8zfXlipCXvUNN4rtyOofL8zci3aZbfqNdgMU7n+GO3OS1Yw6ImMRSsdQ1o21zeM0u3bJdmqqMGgCueKVeeYdvn9KQqWxCarbkLwoOugYdlj8lTgLlB+bH6kToZhGvK6vHKEHYr3xSvBm6CQP7nkvNUth8Mrh6NINltp+6zvhMPh1YlNM9Q6qUB2w9QveXHyBh2KdVjXIJLcVv2KZRnNlLG3e0m/kSvSb1S2j9e69phbcv0sUQ5HkZKTN8tm85f7HlrvUUhZWT3l86XI7c5WQsIO2e3eyLgG03TIbg/IkfCzsuOylR9r9a0mehMjc/4kKaUwxcozDmNuUVXrBQJx2rOnvwKBRNntXqWkbIzM3yn93pimoZiEDGXHZSvHk2O1zZcomVJ+bL4CjkDkmp1MVVlHxBmycpvS/L/0u1WaxwVL5iuUjvV3hO1KcAUU4wgrbFr5XyTHtJmyl1yvyiqKVTAYr3DYaf3NlBn/eoAph8Nf7XfVMA3ZZCs5rtoi37nK/s6t4+2h/86tz9em8jlLZfNPw5Usq+xVTYWNMjVOSuJ16f9tpq3MubB50HMlW5nXCJtG5PyjdP6OI+xQqKQvtDQ/d5gO2UvmBpY+70DssmJcuCTGlVVl3YtIPZeD6+qUfz8OfH9rpqr5u2XzhMjYhNI35KCxCS57SE1Krjn4gnYVFTukkuUOW1gOm6miYocychqXXKuLlc3ml8tVKMMojryiJNntAdljcsqNcbOH7BX6K5wh5xHPWw5HVeca8a7ScWDWvIhg2Ih8/2IcIZmmoSxvjAI1rK9Q+jdX9tw7MjezpB/CZZhKKelf8ofs8hbbJRly2kNW/7Jhyhu0qzDgtGqc2MIqDtlL5sYqMo/V6pe2yxuyReYSlTvnkymbbJFzxdK6CZX1uThC1vxZR8hRo8/LYQspKSYglz0sf8im4pBdpkrnn1k1XfxBu7K9cQoGYyLfB+tcqfzfvs0WLncO9ev7eG3Kz28nvz9RpmlXbGyW7Ha/DpzHW8f+uLhdlW6vsjo45a4nm/bIsap0zq4j7JBpmJHvQ1hhOcKOcp+JM+SMLCs9R5dUbm6vLWz1adlNe2TOsmQoXPYcUor0WRx8Tl2VGHtQ8a5iOWymfEF7pF5OaR0RyVRhwKnCoNWWsnOSwwpLhnU8DvvD+uSDT5Sbm6vExOpvmvarirmVWrFihZYtW6acnBwlJyfrlFNOUb9+/Q5rW6eeeqpCoZCWLVtWbvkPP/yg7t276/nnn9d1111X6XObN2+u0047TbNnl7+r7YIFCzRixAh99NFHGjZsWKXP9fv98vv9kf/n5eWpdevWNXoTo80X9ClsWsUWYp2Hf8fj4lCxlmUs057CPYpzxskf8qt/y/5qGt/00E/GUS0QsO7Y6fNZdyELlxz/bTbrTpyNGh2445hpWnfrCoetH8M4sF7ZO+weKdbgugNtC4WsZaWvGR8vuWozJwgAgEqs2LlCL6x8QQWBAg1oNUDzN87XsI7DNL73eKV5rEnA/qBfr3//up755hl1Teuqlgkt9d7G9zS+13jd0O8GNfJUUoihqjvllthbuFcrd65UjCNGRcVFapXYSj2b9jxw501/llSUYd2J2u6R7G7rDruld0m2xUjx7Y78GxIlpmlqzZ41ysjPUKwjVoFQQCc1P0mN4+puEhXqTjhs3dk9N9e6q7vbfeCcsvSOrykpUlrJPHtf0KfN+zcrbIZlmqZaJLSo8Nl/v+d7/X3537Vp/yad1/k8vb3+bfVq2ks3n3yzTkg74cDGD+XXp8GoKdOUzJAid94zbJJht/49FoSD1l3J/VnWfjoTD+xf6T7HtpCcByZIhs2wwqaVdNkNu7hrN1B/NmRu0Btr31AgFFDb5Lb6bvd3OrfzuRrWcZgcttpNov4l7xc9s/QZzf5xtsZ2H6vVu1drX9E+3XXqXbr4xItrvT3JOt/MLMq0LhgYNjWLb1bujuwNWg2OZRvWm3riCWnDBqlNG2nkSOtcoPROruGwFBsr9esnbdkiZWVZd3xt1EiKKTO+zDSlxESpZcuqX+tYYprSNddIM2da79XUqdLQoVLTpta5VX6+tGOH1K2blFq2dlnZz6S6c59D5CyHWu/5Fc/rhgU3qGNKR03/3fTI8uUZyzV5yWS1TmytzX/crDs/ulN/X/53DWk3RNeedG1kvbfWvaV56+ZpZJeRmnfJvOrbcCwp+kXKeN86j0jsVpLXGZJ3p/W4GZYSOimc0lvXvnet/r3630pxp2hs97EqDhfrtTWvyRv0atLpkzR5yOTy267pZ1+Ny9++XK+ueVUntzhZXdK6RJZ/tOUj7S3cq/fHvq/w+hEaM0byeqXRo6W//lVq1erANkIhaf9+647Kx5wqvg9Tv5yq+z+9Xz2b9tSMc2ZEli/ZvkQPLnpQbZPaavMfN5ePEbX9rh603r7CfWr3TDsVFRdpxjkz1DqptSTrnPOyty9Tnj9PCy9bqGbes/T559KuXVLbtgfufl262XDYOq60a1erd6JuVPH+/vmLP+uBRQ+oZ9Oe+u6GAwXgvMVeJU9NViAU0Md/+FhDOw6tuK2DtxfySe+1s+7s3XqUdOqrVp/Lzg+l3B+kPZ9a63W9X1p8pnWuf+JDUs8/Wct3zJYKfpJyf5TssTJP/odGzRmleevmKT01XR1TrCJR+4r2adWuVerRpIe+uuorJcQcyAuq29eGbmv2Vj36+aOa/cNsXdf3Ou3I3aFPt36q2/vfrtsH3K4kd9KhN9KQ1NPn8K9V/9K1718rj9Oj4enDleBK0Ordq/X93u/VNa2rFl+xWCmxKTrrlbP0+fbP1bNpT8U5rUmJITOkZRnL1LlRZy2/drkSYxI1Y/kM3fXxXXLYHHr0jEe1NXurpi+brjZJbTTrolka2Hpg5ftZxb6uz1yvF1a+oI1ZG3V2+tmav3G++jTro+v6Xqf2Ke0rrI8oCYekZVdL216V3M2kTrdISV0le5y0daa0/T9SbAvtPGu50qenyxv06omznlCyO1mS5A/5ddfHd8k0Ta29aW25OC/pkOd87ZPba3S30ZHlK3at0KKtizSq2yjNGT2nDne8aq+9Jt18s5SXJ40ZI11/vdS+vZVbeL1SRoaUnGydL6Nu+XxSQYH1vodCpYNdrcdM08rt4uOr3wZ+pf9dJm17zTo+DF8ueVpJeeul7NXS3iVSuFhqc7HUvMy4qSOQPxxpgVBA/930Xy3YuED9WvTTluwtirHH6NKel1Y8bgFHocyiTPV4rod2F+zWeZ3Pi+SIBYECffLTJ+qa1lUrr1tZfgxgNd/VUEjKzLSOwX6/NYbKZrN+TNPK9xISpFdekTZtsvqTzjrL6kcq7Zcr3c7pp1sxNTPTurZnGFbuWJbLJbVufRg73gCPNzj27Pfu15XvXqn3Nrynvs376tZTbtWMFTO0LGOZRnQeoZnnz6w4rqOqv81ArrR/heTbLblSJXdT6xqgzAPXAD2tJXeTyrd30N/5O+vf0cg3R6ppXFNdfOLFkeXrMtdp4U8LdU6nc7Rg3IJa7e/GrI165btXlOPLUa+mvfT5js81tMNQXdT1IsW54g69gfrwK/u+/EG/TnrhJP2470ednX52JLcJhUOa++NcJbuTtfamtUrzpGn0nNF6b8N7apnQUud2Olf+kF9zf5yrwuJCPXrGo5o4eGJku6FwSDtydyhkWhMEmsQ1UWJMwx4njqNbKGSN0y47Pttut8ZAr14tnXOO1Z8+eLD04otSenr5GJ2ZKSWkFqn3P3pr0/5NOjv9bCW4rL7GYDiot9e/raZxTSPfh3KqOC5d/e7V+vfqf2t0t9GaPfrAvIuXV7+s8e+OV6vEVtp++/by1yqr+U6/ufZNXfb2ZZKkkV1HqrGnsT7c/KG2ZG/R6W1P1/tj31eCK17yZ0rFOVLQe2AcXNmxcO5mkjNeef48vfrdq5r942wN7zhcP2X/pMyiTF3f93qdnX52ZJyFaVrnQAePfzcM67wnPr5uxrbjMNRiPNfyjOV6afVLMmTohLQTtGT7Ev2+8+81+sTR8jhrfkOEGls9Qdr7meRMktpfLrlSpLwN1nlAcZ51DtBjkhSTpl/yftHra17XT9k/aUCrAfp8x+ca2GqgRp84OhKnUFHYDOvLHV/q4y0fq1NqJ2XkZyjeFa8Lu16oVomtDr2B2vLvl/YslAp/ljwtpbi2kuGQinMPjGWLayMln1iz7Zmm1u1bp8e+eEwLNi7Qjf1u1PKdy7Uuc53u/839urbvtXI7DkqeDnEetPCnhfrL139Rji9H53Y6V6+ueVWD2w7WXafepa6Nu9Z8X3N/lHZ/Inl3SY36W+et4YB1vFXYOndNPVlK6HjITQHRkuPL0YKNC7Q9d7vSU9O1PnO9BrUZpMFtBx/W+KtoWLt3rV5c9aL2e/drQKsB+nDzhzqr/Vm6rNdlSo2txY0IazqWtOS4EgqHtDVnq4Jha8J3k7gmtXs9HBFhM6xf8n6JfA6NPY0rjg04wjKLMvXxlo/lC/rkcXpUECjQWe3Pqrvrut7d1linUJE1TtruVrmqGLYYKf7Aa2/M2qhf8n6Ry+5S2AyrZ9Oex+S5Ujhs5SKl82xLi8HY7dZ4x5iYQ2/jWJORl6FVu1Yp1hmrgkCB2iS1Ue9mvY+ecbA4qgQC1rUMv7/yPpe0tJqHVjQswXBQxaGSIjt2Z4M4J8zKsvroCgutvzGP58C1OMla1r4kFAaDVccHt/vAtbdgOKhNWZtUHC6WaZpq5GlUNzlyiXDYmt/n9VrfH6n8d8TttsaQStZ55tq9a1VYbBWY8zg96t6ke4P4LAAAiKa8vDwlJSXVXzG3UsFgUN9//70kqXv37nI6K95N9FCuu+46zZo1S9nZ2XI4DgT1N954Q2PHjtVXX32lgQMHVvrcYcOG6eeff9a6devKLX/iiSc0YcIEZWRkqEWLFjVqR23eRAAAAAAAAAAAjrRAQBowQPr2W2vCyQcfSAMHWoMASvl81v/L3fCgnoq5BUIBdXimgzLyM2QzbLIb1oyY4rA1kGL62dN1a/9blZGXofRn0+UL+tQ0rqkSYxJVVFykjPwMGTK0+obV6tm0Z/VtOE6Zpqk7PrpDz3zzjK7ve712FezSexve07Rh03TnqXfWyWtme7N14owTtatglyYMmqDBbQdryhdT9OWOL3V5r8v18gUvKzdXeuYZ6auvrIEqp54qtWhxoIBzMCg1aSJddVWdNLF+1XBUV643R22ebqM8f16ljz89/GndNuC2qrd9GBNaJemOD+/Q0988LUmKdViT/QOhgEJmSKe2OlVfX/11jdrfYFRxvFm1a5X6vtBXhgz9+/x/y2W3Dnqb92/WpM8mKdYRq/337S8/Waa69zdvo7TrQ6lgizUxy92kZFK2rEk8rlSp7RhrQHLm11LhdmuijzOxpDi1YRVESTxBajJYRcVFGvzSYK3ctVKvjXxNXdK6aNBLg5QUk6Rl1y5Tm6Q2Nd7Xo0VmUWbk771JXBPFu46SCj21nARxJP1jxT9044IbdUa7M3T3wLs18s2Rap/cXkvGL4ncXGtPwR71faGvdhfs1mfjP1Pz+OY66YWTFDbD+uaab9St8YGKVGv2rNE1710jm2HTfu9+9WneR/849x9KiU2p+OIUzzg2bJsl/W+c9fuQD6Xmw63JeIuHSb691gTT2ObS777TfZ/cpye/flIx9hid2vpUSdZNTQoCBbqq91X61/n/qrj9Ko5LYTOsAS8O0PKdyzWw9UCd2+lcbcjaoFe+e0Xxrnitu3ldnQ4orc5VV0kvvWT9/sor0mWXVVwnHC5//gwcs8ywtH+llL/RmljlTJRszgM3njCDUrs/lEyyAhBNH27+UOe8fo7iXfFaMG6B8gP5uuCNC2QYhpZevVR9mvcp/4Rj4VzuWNgHHDX++r+/6s9f/lmdG3XWxqyNunfgvbp74N31c4OlanL9C964QO9ueFf9WvTT1X2u1sasjXpq6VPyOD364aYf1C65Xd23r74dgb6vlTtXasC/Bsg0Tf3nov8oNTZVl8y9RPu9+/X6ha9rXA8rRyoOFWvsW2P11rq39OgZj2rFzhV6d8O7mvrbqbr3N/ceyb0CjiivV/rb36SFC62bcfTvb910w+M5cPNtp1O6805p6S9LNejfg2QzbJozeo7iXHG68M0LlR/I13tj3tN5J5xX8QWqOC59teMrDXppkAwZkb5WyZpEGjJDemDQA5py1pTKt1XJ9iRp/sb5Gj1ntDqldtK4HuM04dMJ+l367/TWxW/9qpvVA0BDku3NljfolSSledLKHUMBAAAAAAAAAMeuOivmtnXrVi1evFiDBg1S586dyz02f/58XX311crMzJQkpaSkaMaMGbr44osr21SVPvjgA51zzjl64403dMkll0SW/+53v9OaNWu0Y8cO2au4RdJzzz2nm266SUuXLlX//v0lWQXmevfurfj4eC1durTG7aCYGwAAAAAAAAAg2oqLpUWLpFWrpA0brLsIxsZadw8sLUzxwANSq7L1M+qpmJskPb30ad3x0R0a2HqgvrrqK33606f67au/VZO4Jtp227bIBJ3bPrhN05dN1x96/kGvjnw1UmBkVLdRmjN6Tg3eiePbs988q/WZ6yVJA1sP1KU9L63T15u/cb7Om3WeTmh0gp4f8bzOfOVMNYtvph9u+qHau+WW3kXweHXPx/foL//7i4Z2GKqXL3hZX+74UhfPvVipsanacfsOxbniyj+huu9qTd5I09TO/J3q8EwHFYeLte7mdWqf3F7tn2mvjPwMzR87X+d2PvfX71h9quJ4Y5qmmv6lqfYV7av0acM7DteHf/iw8m1Vsr26sDN/p0755ynK9mUrNTZVmUWZ+uyKz9S/Vf86f20cPZ795lnNWDFDhgylxKZozug5apFQ/mZkS39ZqtNnnq6mcU3VJK6JVu5aqTmj52hUt1GH/8IUzzg2FP4sfdJf8u6SWl0o9X5SSuh44PGiDCnkkxI6KtubrQ7TOyjHl6OV161UsjtZJ/ztBDlsDm28ZaNaJ7WuuP1qzvlW7Fyh/i/2V4o7RZv/uFlj5o7RR1s+inphBNOU5s+XvvxS+v57axcaN7buaGwY1l24L7pIuuCCqDURAIBK3frfW/W35X/TDX1vUEZ+ht7f+L6eOOsJ3TfoPmuFGuaEABqYas6pf8n7RV3/3lWBUEBrb1yrWz+4tUGcUx9xh3P8OkTOOvmzyXpkySMa1W2UujfurslLJlfarxwMB3XfJ/dpS/YWSVZ/0Y0n31jrXQAagkDAym0PnjIxcdFETfliisZ0H6Pm8c311NKndHWfq/Xi71+sfEPVHJe6/K2LNmRtUO9mvdWraS9lebM0f+N8GTK06dZN6pjasfJtVbE9Sfps22ea84P13WzkaaSJgydS6AgAAAAAAAAAAABHvTor5vbAAw9o6tSp+umnn9S2bdvI8s2bN6tnz57y+Xxq27atPB6P1q9fL5vNpmXLlqlPnz7VbLWiYcOGacWKFZo6darS09M1a9Ys/fOf/9Rrr72mSy+1JihdffXVevnll7Vly5ZIW/x+v/r27au8vDw98cQTatKkiWbMmKH3339fCxcu1Omnn17jNlDMDQAAAAAAAABwVKrHYm5FxUVq93Q77Svap/9d/T/9acmf9MHmD8pPQJa0u2B3pODUsmuW6fSZp6uwuFBrblijE5ucWNM9Qz264p0r9Mp3r8jtcMsX9B2dhcHqWUZehjpM76BQOKSfbvtJd398t+b8OEcTT5uoR8981FqpDibk3zj/Rv1j5T90Q98bNLD1QF3+zuXq06yPVl2/6jD2IsqqOd6Me2ucZq2dJY/To6ZxTSVJO3J3KGSGNG3YNN156p2Vb6uK7dWFTVmbtHzncklSemq6Tml5Sr28Lo49b6x9Q//d9F9JUr8W/fTH/n/8dRukmNuxw58l7Zgt7VksFW23irfZXJJMydVISr9Oan2RJOnPX/xZDyx6QOefcL7SPGn617f/0p0D7tS04dOsbdUyJt0w/wY9v/J5DWozSF/u+FJd07rquxu+k9PurIMdBQDg2OYt9qrfP/vpx30/SpJOb3u6Fl2xSDbDFuWWAfhVDtHfWnpjjE6pnbRp/yb1bNpTK69bKYfNUY+NbIAOkbMGw0ENeHGAVu5aKbthV5onTWtvWqs0T1o9NhJoGIpDxer/Yn99u/tb2Qyb2ia11Xc3fKeEmITKn1DNcWnql1N1/6f368z2Z+rTyz/VtK+n6e5P7tbgtoO1ZPySqrdVxfYAAAAAAAAAAACAY1WdFXMbPHiwCgoKtGpV+ckft956q/7+97/r5ptv1rPPPitJmjdvnkaNGqUrr7xS//rXv2q1AwUFBXrwwQc1e/Zs7d+/X126dNGECRM0ZsyYyDrjx4/Xyy+/rK1bt6pdu3aR5Xv27NG9996r+fPnq6ioSL1799ajjz6q3/72t7VqA8XcAAAAAAAAAABHjcMpEHUEirlJBwqFnNziZK3YuULJ7mRtv317hclDd310l/669K9qEtdEewv3akz3MZp10axDtxtRkePL0Zwf5kiSUmNTdVG3i6LcoqPDle9eqZmrZ+rSHpfqzR/elMPm0Pbbt6tJXJM6e83tOduV/my6nDan2ia31frM9Zo7eu7R+ZlVc7x5efXLGv/ueHVu1FkbbtmgPH+eUqemKmSGtPbGtRULQzK5EDiA78Nxqai4SOnT07WrYJccNoc8To9++uNPauRpdFjb2+/dr74v9FWOL0eS9NbFb+nM9mcewRYDAHB8yfHlKLMoU5LUNK5p1UVYABw9DtGPGgqHdMU7V2h3wW5J0pQzp6h/q/711bqGpZb92Rl5GVqzZ40kqX1Ke3VJ61JXLQMavN0Fu7Upa5MkqW1yW7VJalP1ytUcl3YX7Fbrp1orbIa14/YdOm/Wefp297eaef5MXdH7iqq3VcX2AAAAAAAAAAAAgGNVnRVza926tYYMGaJXX3213PJOnTrp559/1r59+5SQcGBQ0emnn65du3Zp48aNtdyF6KOYGwAAAAAAAADgmFbVJJ6aTKQr87w8f57aPt02Uthj0umTNHnI5Aqr7yvcpxNnnChv0CubYdM313zDpDscc37Y+4N6PNdDpqzvx/V9r9c/Rvyjzl+3tIicJHVr3E1rb1wro6bf5YakmsmFu/J3qcVfW0iSMu7M0Kpdq3TerPPUMqGlfrnzl6q3VcX2gOMK34fj1twf52rOj1Zx1uEdh+uqPldFuUUAAADAMaSW/agAUO8OUWTyvFnnaf7G+bqy95V6afVLSnAlaPfdu+Vxeso/vzoc4wAAAAAAAAAAAHCMq00dMkdtNpyZmanWrVuXW5aTk6MtW7botNNOK1fITZJ69+6tFStW1OYlAAAAAAAAAABAXals4s2vLPiUGJOoTy//VLsLdkuSBrUZVOl6jeMaa+89e3/VawEN3YlNTtSfzviTtmZvlSTd+5t76+V1/2/o/+mKXldIktoktTk6C7kdQvOE5urepLvW7l2rRVsX6dtd30qShnYcGuWWAUDDNarbKI3qNirazQAAAACOTRQwAnCUu6r3VZq/cb5eWv2SJOmSEy85UMhN4jgHAAAAAAAAAAAA1FKtirk5HA7l5OSUW/btt9ZEiX79+lVYPz4+/vBbBgAAAAAAAAAAjqw6mnhzUvOT6mS7wNFo4uCJ9f6aaZ40DWk3pN5f91erqujcwctLjl3DOw7X2r1rtXjrYq3avSqyrFbbYwIiAAAAAAAAgGNRLftbR3QeoSZxTbS30LoRz9UnXV2XrQMAAAAAAAAAAACOebUq5ta5c2d9+umn5ZZ9/PHHMgxDAwcOrLD+zp071bx581/XQgAAAAAAAAAAAADHvWEdh2na/6ZpwaYF2lu4VzbDpqEdhka7WQAAAAAAAAAQfbW8kYXT7tS227YpGA5KkhJiEuqiVQAAAAAAAAAAAMBxw1ablS+66CJt2rRJ119/vdasWaN58+bpueeeU3x8vM4+++wK63/11VdKT08/Yo0FAAAAAAAAAAAAcIwwzZr9lBjcdrBiHbHaU7hHpkyd1PwkNfI0qt32AAAAAAAAAACSpFhnrBJiEijkBgAAAAAAAAAAABwBtSrmdscdd6hHjx765z//qT59+mj06NHKy8vTww8/rLi4uHLrrlixQps3b9bQoUOPaIMBAAAAAAAAAAAAHH/cDrdOa3ta5P/DOgyLYmsAAAAAAAAAAAAAAAAAAAAAAAAsjtqsHBsbq6+++kpPPfWUli5dqtTUVI0ePVq///3vK6y7atUqnX/++ZU+BgAAAAAAAAAAAAC1Nen0STon/RxJ0ojOI6LcGqABM4xDLzfN+mkLAAAAAAAAAAAAAAAAAAAAABzjDNNkhHZl8vLylJSUpNzcXCUmJka7OQAAAAAAAAAAAAAA1ExVxdzKYqgAAAAAAAAAAAAAAAAAAAAAAFSpNnXIbPXUJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4pjii3QAAAAAAAAAAAAAAAHAEmWa0WwAAAAAAAAAAAAAAAAAAAAAAxw1btBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEcjirkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGFwRLsBDZVpmpKkvLy8KLcEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQH0prT9WWo+sOhRzq0J+fr4kqXXr1lFuCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID6lp+fr6SkpGrXMcyalHw7DoXDYe3cuVMJCQkyDEN5eXlq3bq1fv75ZyUmJka7eQAAoAziNAAADRdxGgCAhos4DQBAw0WcBgCg4SJOAwDQcBGnAQBouIjTAAA0XMRpAAAaLuI0AADRZ5qm8vPz1aJFC9lstmrXddRTm446NptNrVq1qrA8MTGRkxwAABoo4jQAAA0XcRoAgIaLOA0AQMNFnAYAoOEiTgMA0HARpwEAaLiI0wAANFzEaQAAGi7iNAAA0ZWUlFSj9aov9QYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqBTF3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgMFDMrYZiYmI0adIkxcTERLspAADgIMRpAAAaLuI0AAANF3EaAICGizgNAEDDRZwGAKDhIk4DANBwEacBAGi4iNMAADRcxGkAAI4uhmmaZrQbAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHG1u0GwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARyOKuQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYaCY2yEUFBTo9ttvV4sWLeR2u9W7d2+98cYb0W4WAADHlc8++0yGYVT6s3Tp0nLrrlq1Sr/97W8VHx+v5ORkXXjhhfrpp5+i1HIAAI4t+fn5uvfeezVs2DA1btxYhmFo8uTJla5bm5j87LPPqkuXLoqJiVH79u31yCOPqLi4uA73BACAY09N4/T48eMrza+7dOlS6XaJ0wAA/DqLFi3SVVddpS5duiguLk4tW7bU+eefr5UrV1ZYl1waAID6VdM4TS4NAED9W716tc4991y1adNGsbGxSk1N1amnnqrXXnutwrrk0wAA1K+axmnyaQAAGoYXX3xRhmEoPj6+wmPk1AAARFdVcZqcGgCAo5cj2g1o6C688EItX75cTzzxhDp37qz//Oc/Gjt2rMLhsMaNGxft5gEAcFx5/PHHdcYZZ5Rb1r1798jv69ev15AhQ9S7d2/Nnj1bPp9PDz/8sE477TStXr1ajRs3ru8mAwBwTMnKytILL7ygXr166YILLtCLL75Y6Xq1iclTpkzRQw89pPvvv1/Dhg3T8uXLNXHiRGVkZOiFF16or10DAOCoV9M4LUmxsbFatGhRhWUHI04DAPDrPffcc8rKytJtt92mbt26ad++fZo2bZoGDBigjz76SGeeeaYkcmkAAKKhpnFaIpcGAKC+5eTkqHXr1ho7dqxatmypwsJCvf7667rsssu0bds2TZw4URL5NAAA0VDTOC2RTwMAEG0ZGRm6++671aJFC+Xm5pZ7jJwaAIDoqi5OS+TUAAAcrQzTNM1oN6Kh+u9//6tzzz03UsCt1LBhw/TDDz9ox44dstvtUWwhAADHh88++0xnnHGG5syZo1GjRlW53sUXX6zFixdry5YtSkxMlCRt375dnTp10h133KGpU6fWV5MBADgmlXYhGIahzMxMNW7cWJMmTdLkyZPLrVfTmJyVlaVWrVrp8ssv1/PPPx95/uOPP66JEydq7dq16tatW/3sHAAAR7maxunx48dr7ty5KigoqHZ7xGkAAI6MvXv3qkmTJuWWFRQUKD09Xd27d9fChQslkUsDABANNY3T5NIAADQcAwYM0M6dO7Vjxw5J5NMAADQkB8dp8mkAAKLvvPPOk2EYSk1NrRCXyakBAIiu6uI0OTUAAEcvW7Qb0JC9/fbbio+P1+jRo8stv/LKK7Vz50598803UWoZAAA4WDAY1Pz583XRRRdFLiJIUtu2bXXGGWfo7bffjmLrAAA4NhiGIcMwql2nNjH5ww8/lM/n05VXXlluG1deeaVM09Q777xzRNsPAMCxrCZxujaI0wAAHBkHF4iRpPj4eHXr1k0///yzJHJpAACipSZxujaI0wAA1L20tDQ5HA5J5NMAADQ0ZeN0bRCnAQCoG6+99pqWLFmiGTNmVHiMnBoAgOiqLk7XBnEaAICGh2Ju1Vi7dq26du1a4WJCz549I48DAID6c/PNN8vhcCgxMVHDhw/Xl19+GXlsy5Yt8nq9kThdVs+ePbV582b5fL76bC4AAMel2sTk0ry6R48e5dZr3ry50tLSyLsBAKgjXq9XzZo1k91uV6tWrXTLLbdo//795dYhTgMAUHdyc3O1atUqnXjiiZLIpQEAaEgOjtOlyKUBAIiOcDisYDCoffv2acaMGfroo4903333SSKfBgAg2qqL06XIpwEAiI69e/fq9ttv1xNPPKFWrVpVeJycGgCA6DlUnC5FTg0AwNGp9rc8OY5kZWWpQ4cOFZanpqZGHgcAAHUvKSlJt912m4YMGaJGjRpp8+bN+r//+z8NGTJECxYs0PDhwyNxuTROl5WamirTNJWdna3mzZvXd/MBADiu1CYmZ2VlKSYmRnFxcZWuS94NAMCR16tXL/Xq1Uvdu3eXJC1ZskRPPfWUPv30Uy1fvlzx8fGSRJwGAKAO3XzzzSosLNSDDz4oiVwaAICG5OA4LZFLAwAQTTfddJOef/55SZLL5dL06dN1/fXXSyKfBgAg2qqL0xL5NAAA0XTTTTfphBNO0I033ljp4+TUAABEz6HitERODQDA0YxibodgGMZhPQYAAI6cPn36qE+fPpH/n3baaRo5cqR69Oihe++9V8OHD488RuwGAKBhqGlMJnYDAFC/7rjjjnL/Hzp0qPr06aNRo0bpn//8Z7nHidMAABx5Dz30kF5//XU9++yz6tu3b7nHyKUBAIiuquI0uTQAANHzwAMP6JprrtHevXv1/vvv65ZbblFhYaHuvvvuyDrk0wAARMeh4jT5NAAA0fHWW2/p/fff17fffnvIOEpODQBA/appnCanBgDg6GWLdgMaskaNGlVabXb//v2SKq86DwAA6kdycrJGjBihNWvWyOv1qlGjRpJUZew2DEPJycn13EoAAI4/tYnJjRo1ks/nU1FRUaXrkncDAFA/Ro4cqbi4OC1dujSyjDgNAMCR98gjj+ixxx7TlClTdMstt0SWk0sDABB9VcXpqpBLAwBQP9q0aaN+/frpnHPO0XPPPafrrrtOEyZM0L59+8inAQCIsuridFXIpwEAqFsFBQW6+eabdeutt6pFixbKyclRTk6OAoGAJCknJ0eFhYXk1AAAREFN43RVyKkBADg6UMytGj169NC6desUDAbLLf/+++8lSd27d49GswAAQAnTNCVZ1eE7duyo2NjYSJwu6/vvv1d6errcbnd9NxEAgONObWJyjx49IsvL2r17tzIzM8m7AQCoR6ZpymY7cMmAOA0AwJH1yCOPaPLkyZo8ebIeeOCBco+RSwMAEF3VxenqkEsDAFD/TjnlFAWDQf3000/k0wAANDBl43R1yKcBAKg7mZmZ2rNnj6ZNm6aUlJTIz6xZs1RYWKiUlBRdeuml5NQAAERBTeN0dcipAQBo+CjmVo2RI0eqoKBAb731VrnlL7/8slq0aKH+/ftHqWUAACA7O1vz589X79695Xa75XA4dN5552nevHnKz8+PrLdjxw4tXrxYF154YRRbCwDA8aM2Mfnss8+W2+3WzJkzy21j5syZMgxDF1xwQT21GgCA49vcuXNVVFSkAQMGRJYRpwEAOHIeffRRTZ48WRMnTtSkSZMqPE4uDQBA9BwqTleFXBoAgOhYvHixbDabOnToQD4NAEADUzZOV4V8GgCAutWsWTMtXry4ws/w4cPldru1ePFiPfbYY+TUAABEQU3jdFXIqQEAODo4ot2Ahux3v/udhg4dqhtvvFF5eXlKT0/XrFmz9OGHH+q1116T3W6PdhMBADgujBs3Tm3atFG/fv2UlpamTZs2adq0adqzZ0+5ToZHHnlEJ598skaMGKH7779fPp9PDz/8sNLS0nTXXXdFbwcAADiGfPDBByosLIxcuP/xxx81d+5cSdI555wjj8dT45icmpqqiRMn6qGHHlJqaqqGDRum5cuXa/LkybrmmmvUrVu3qOwjAABHq0PF6X379mncuHEaM2aM0tPTZRiGlixZoqefflonnniirrnmmsi2iNMAABwZ06ZN08MPP6yzzz5b5557rpYuXVru8dLBdeTSAADUv5rE6e3bt5NLAwAQBdddd50SExN1yimnqGnTpsrMzNScOXP05ptv6p577lHjxo0lkU8DABANNYnT5NMAAESH2+3WkCFDKiyfOXOm7HZ7ucfIqQEAqF81jdPk1AAAHN0M0zTNaDeiISsoKNCDDz6o2bNna//+/erSpYsmTJigMWPGRLtpAAAcN5544gm9+eab2rp1qwoKCpSamqpBgwZpwoQJOvnkk8utu3LlSt1333363//+J4fDoTPPPFN/+ctf1LFjxyi1HgCAY0u7du20ffv2Sh/bunWr2rVrJ6l2MXn69On6+9//rm3btqlZs2a68sor9eCDD8rpdNblrgAAcMw5VJxOSkrS1VdfrW+//VZ79uxRKBRS27ZtNXLkSD3wwANKSkqq8DziNAAAv86QIUO0ZMmSKh8ve7meXBoAgPpVkzidnZ1NLg0AQBS89NJLeumll7Ru3Trl5OQoPj5evXr10jXXXKM//OEP5dYlnwYAoH7VJE6TTwMA0LCMHz9ec+fOVUFBQbnl5NQAAETfwXGanBoAgKMbxdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DDYot0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgaUcwNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DxdwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DBQzA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgPF3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgMFDMDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA8XcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAwUMwNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DxdwAAAAAAAAAAAAAAAAAAJC0bds2GYah8ePH1+p5hmFoyJAhddImAAAAAAAAAAAAAAAAAEDDRjE3AAAAAAAAAAAAAAAAAECDUFpMreyPy+VS69atNW7cOK1ZsyYq7RoyZIgMw4jKawMAAAAAAAAAAAAAAAAAGjZHtBsAAAAAAAAAAAAAAAAAAEBZHTt21B/+8AdJUkFBgZYuXapZs2Zp3rx5WrRokQYOHFgnr9uyZUutW7dOSUlJtXreunXr5PF46qRNAAAAAAAAAAAAAAAAAICGjWJuAAAAAAAAAAAAAAAAAIAGJT09XZMnTy63bOLEiZoyZYoefPBBLV68uE5e1+l0qkuXLrV+3uE8BwAAAAAAAAAAAAAAAABwbLBFuwEAAAAAAAAAAAAAAAAAABzKrbfeKklavny5JCkYDOqpp55Sr169FBsbq6SkJJ1xxhlasGBBheeGw2G9+OKLOuWUU5SamiqPx6N27drpggsu0Oeffx5Zb9u2bTIMQ+PHj48sMwxDS5Ysifxe+nPwOkOGDKnwullZWbrjjjvUvn17xcTEqEmTJrrkkkv0448/Vlh3/PjxMgxD27Zt04wZM9S1a1e53W61bdtWjzzyiMLh8OG8bQAAAAAAAAAAAAAAAACAOuaIdgMAAAAAAAAAAAAAAAAAADgUwzAiv5umqUsuuUTz5s1T586ddfPNN6uwsFCzZ8/WiBEj9Mwzz+iPf/xjZP0JEyboySefVMeOHTVu3DglJCQoIyNDX3zxhRYtWqTBgwdX+bqTJk3SzJkztX37dk2aNCmyvHfv3tW2NysrSwMGDNDmzZs1ZMgQjRkzRtu2bdPcuXO1YMECffLJJzr11FMrPO+ee+7RZ599phEjRmjYsGF65513NHnyZAUCAU2ZMqUW7xgAAAAAAAAAAAAAAAAAoD5QzA0AAAAAAAAAAAAAAAAA0OBNnz5dknTyySfrtdde07x583T66afr448/lsvlkiQ9+OCD6tu3r+6++26dd955at++vSTpxRdfVMuWLbVmzRp5PJ7INk3TVHZ2drWvO3nyZH322Wfavn27Jk+eXOP23nvvvdq8ebMmTJigxx9/PLJ8/PjxOvvss3XFFVdo/fr1stls5Z63cuVKrVmzRs2bN5ckPfTQQ+rUqZOeffZZTZo0KbKvAAAAAAAAAAAAAAAAAICGwXboVQAAAAAAAAAAAAAAAAAAqD+bN2/W5MmTNXnyZN19990aNGiQpkyZIrfbrccff1wzZ86UJD355JPlipu1atVKd9xxh4qLi/X666+X26bL5ZLDUf7+p4ZhKDU19Yi3PxAIaNasWWrUqJEmTpxY7rHhw4dr+PDh2rRpk77++usKz33ooYcihdwkKS0tTeeff77y8/O1YcOGI95WAAAAAAAAAAAAAAAAAMCvQzE3AAAAAAAAAAAAAAAAAECDsmXLFj3yyCN65JFHNH36dG3fvl3jxo3TsmXLdOqpp+rbb79VbGysTjnllArPHTJkiCRp9erVkWUXX3yxtm7dqu7du+uhhx7SwoULVVhYWGftX79+vbxer0455RR5PJ4atbHUSSedVGFZq1atJEk5OTlHspkAAAAAAAAAAAAAAAAAgCOAYm4AAAAAAAAAAAAAAAAAgAZl+PDhMk1TpmkqEAjo559/1uuvv64ePXpIkvLy8tS0adNKn9usWTNJUm5ubmTZ9OnT9eSTT8rpdOqxxx7T0KFDlZaWpiuuuEKZmZlHvP15eXmSVKs2lkpKSqqwzOFwSJJCodCRaiIAAAAAAAAAAAAAAAAA4AihmBsAAAAAAAAAAAAAAAAA4KiSmJioPXv2VPpY6fLExMTIMqfTqXvuuUc//PCDMjIy9J///EennXaaXnnlFV166aV10r6ybalJGwEAAAAAAAAAAAAAAAAARyeKuQEAAAAAAAAAAAAAAAAAjip9+vSR1+vVsmXLKjy2ZMkSSVLv3r0rfW6LFi00duxYffjhh+rUqZMWLlwor9db7evZ7XZJUigUqlH7unTpIrfbreXLl6uoqKjWbQQAAAAAAAAAAAAAAAAAHD0o5gYAAAAAAAAAAAAAAAAAOKpcccUVkqQJEyaouLg4sjwjI0N//etf5XA4dOmll0qS/H6/Fi1aJNM0y22jsLBQ+fn5cjqdkWJtVUlNTZUk/fLLLzVqn8vl0tixY5WZmak///nP5R5buHChPvjgA6Wnp+s3v/lNjbYHAAAAAAAAAAAAAAAAAGi4HNFuAAAAAAAAAAAAAAAAAAAAtXHZZZdp3rx5evfdd9WzZ0+NGDFChYWFmj17trKysjRt2jR16NBBkuT1enXWWWepQ4cO6t+/v9q0aaOCggLNnz9fu3fv1n333SeXy1Xt65155pmaO3euRo8erXPOOUdut1s9evTQueeeW+Vzpk6dqiVLluixxx7T119/rf79+2vbtm2aO3euPB6PXnrpJdls3I8VAAAAAAAAAAAAAAAAAI52FHMDAAAAAAAAAAAAAAAAABxVDMPQ3Llz9cwzz+jll1/Ws88+K5fLpZNOOkl33nmnfv/730fWjYuL09SpU/Xpp5/qiy++0N69e5WSkqIuXbpo6tSpuuSSSw75etdee622bdumN954Q1OmTFEwGNQVV1xRbTG3xo0b65tvvtGjjz6qd999V1988YWSkpJ0/vnna9KkSerevfsReS8AAAAAAAAAAAAAAAAAANFlmKZpRrsRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHC0sUW7AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwNKKYGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcBoq5AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBhoJgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwGirkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGGgmBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAaKuQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYaCYGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcBoq5AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBhoJgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwGirkBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwGGgmBsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAaKuQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAYfh/hujDkmTumScAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -2114,7 +2127,7 @@
" class_labels=[\"Oligo\"],\n",
" zoom_n_bases=500,\n",
" title=\"synth Oligo\",\n",
- ") "
+ ")"
]
},
{
@@ -2126,67 +2139,68 @@
},
{
"cell_type": "code",
- "execution_count": 103,
+ "execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "100%|██████████| 30/30 [01:00<00:00, 2.01s/it]\n"
+ "100%|██████████| 30/30 [01:00<00:00, 2.03s/it]\n"
]
}
],
"source": [
- "from crested.tl._utils import EnhancerOptimizer\n",
"import numpy as np\n",
"\n",
"from sklearn.metrics import pairwise\n",
+ "\n",
+ "\n",
"def L2_distance(\n",
" mutated_predictions: np.ndarray,\n",
" original_prediction: np.ndarray,\n",
" target: np.ndarray,\n",
- " classes_of_interest: list[int]):\n",
+ " classes_of_interest: list[int],\n",
+ "):\n",
+ " \"\"\"Calculate the L2 distance between the mutated predictions and the target class\"\"\"\n",
" if len(original_prediction.shape) == 1:\n",
" original_prediction = original_prediction[None]\n",
" L2_sat_mut = pairwise.euclidean_distances(\n",
- " mutated_predictions[:,classes_of_interest],\n",
- " target[classes_of_interest].reshape(1, -1)\n",
+ " mutated_predictions[:, classes_of_interest],\n",
+ " target[classes_of_interest].reshape(1, -1),\n",
" )\n",
" L2_baseline = pairwise.euclidean_distances(\n",
" original_prediction[:, classes_of_interest],\n",
- " target[classes_of_interest].reshape(1, -1))\n",
+ " target[classes_of_interest].reshape(1, -1),\n",
+ " )\n",
" return np.argmax((L2_baseline - L2_sat_mut).squeeze())\n",
"\n",
- "L2_optimizer = EnhancerOptimizer(\n",
- " optimize_func = L2_distance\n",
- ")\n",
+ "\n",
+ "L2_optimizer = crested.utils.EnhancerOptimizer(optimize_func=L2_distance)\n",
"\n",
"target_cell_type = \"L2_3IT\"\n",
"\n",
"classes_of_interest = [\n",
- " i for i, ct in enumerate(adata.obs_names)\n",
- " if ct in ['L2_3IT', 'L5ET','L5IT','L6IT']\n",
+ " i\n",
+ " for i, ct in enumerate(adata.obs_names)\n",
+ " if ct in [\"L2_3IT\", \"L5ET\", \"L5IT\", \"L6IT\"]\n",
"]\n",
- "target = np.array(\n",
- " [\n",
- " 3 if x == target_cell_type else 0\n",
- " for x in adata.obs_names\n",
- " ]\n",
- ")\n",
+ "target = np.array([3 if x == target_cell_type else 0 for x in adata.obs_names])\n",
"intermediate, designed_sequences = evaluator.enhancer_design_in_silico_evolution(\n",
- " target_class=None, n_sequences=5, n_mutations=30,\n",
- " enhancer_optimizer = L2_optimizer,\n",
- " target = target,\n",
- " return_intermediate = True,\n",
- " no_mutation_flanks = (807, 807),\n",
- " classes_of_interest = classes_of_interest\n",
+ " target_class=None,\n",
+ " n_sequences=5,\n",
+ " n_mutations=30,\n",
+ " enhancer_optimizer=L2_optimizer,\n",
+ " target=target,\n",
+ " return_intermediate=True,\n",
+ " no_mutation_flanks=(807, 807),\n",
+ " classes_of_interest=classes_of_interest,\n",
")"
]
},
{
"cell_type": "code",
- "execution_count": 104,
+ "execution_count": 54,
"metadata": {},
"outputs": [
{
@@ -2198,7 +2212,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAEiCAYAAAAxqKXyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkJklEQVR4nO3deZyN9f//8edh9o0MYzeWkn2JbKnBIEIhSlLGTMvX0qeiFMJYiqg+qQ/amCGhZCuirClbosVQ+iRbljBirGOW9+8Pv3M+jhnjzMw1c2ZOj/vtNjfO+7yv67yv57nmnOuc11zvy2aMMQIAAAAAAAAAAABQqBVx9wAAAAAAAAAAAAAA5B6FPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAADIJ/Hx8bLZbI4fLy8vVahQQf369dPhw4fzZQyVK1dWVFSU4/b69etls9m0fv36bK1n06ZNio2N1enTpzPc16pVK7Vq1SpX48xrsbGxstlsOVp27ty5evPNN60dEAAAAABYwMvdAwAAAACAf5q4uDjVqFFDFy9e1IYNGzRhwgR9/fXX2rlzpwIDA/N1LLfddps2b96sWrVqZWu5TZs2acyYMYqKilLx4sWd7ps2bZqFIyx45s6dq4SEBD3zzDPuHgoAAAAAOKHwBwAAAAD5rE6dOmrcuLEkqXXr1kpLS9O4ceO0ZMkSPfzww5kuc+HCBQUEBFg+lpCQEDVr1szSdWa3iAgAAAAAsAZTfQIAAACAm9kLbwcOHJAkRUVFKSgoSDt37lT79u0VHBysyMhISdLly5c1fvx41ahRQ76+vipVqpT69eunEydOOK0zJSVFQ4cOVZkyZRQQEKCWLVvqu+++y/DY15vqc+vWrerSpYtCQ0Pl5+enatWqOc5wi42N1fPPPy9JqlKlimPqUvs6Mpvq89SpUxowYIDKly8vHx8fVa1aVSNGjFBycrJTP5vNpkGDBunDDz9UzZo1FRAQoPr162vZsmU3zNG+LXPmzNHgwYNVpkwZ+fv7KyIiQj/88MMNl09PT9ekSZMc2YaFhenRRx/Vn3/+6ejTqlUrLV++XAcOHHCathUAAAAACgLO+AMAAAAAN/v9998lSaVKlXK0Xb58Wffee6+efPJJvfjii0pNTVV6erruu+8+ffPNNxo6dKhatGihAwcOaPTo0WrVqpW+//57+fv7S5Ief/xxzZ49W88995zatWunhIQEde/eXWfPnr3heL788kt16dJFNWvW1BtvvKFKlSpp//79+uqrryRJjz32mE6dOqW3335bixYtUtmyZSVd/0y/S5cuqXXr1tq7d6/GjBmjevXq6ZtvvtGECRP0448/avny5U79ly9frm3btmns2LEKCgrSpEmT1K1bN+3Zs0dVq1a94fiHDx+u2267TR988IHOnDmj2NhYtWrVSj/88EOWy/fv31/vvfeeBg0apM6dO2v//v0aOXKk1q9frx07dqhkyZKaNm2annjiCe3du1eLFy++4VgAAAAAID9R+AMAAACAfJaWlqbU1FRdunRJX3/9tcaPH6/g4GDde++9jj4pKSkaNWqU+vXr52ibP3++Vq5cqYULF6p79+6O9vr16+v2229XfHy8+vfvr19//VWzZs3Ss88+q0mTJkmS2rVrp9KlS193KtGrDRw4UJUqVdLWrVvl5+fnaLePpUKFCqpUqZIkqWHDhqpcuXKW65s1a5Z+/vlnffLJJ+rZs6djPEFBQXrhhRe0atUqtWvXztH/4sWLWr16tYKDgyVduQ5huXLl9Mknn+jFF1+84fhLlSqlxYsXO87Ea9mypW655RZNmDBB77//fqbL/Prrr3rvvfc0YMAAvf322472hg0bqmnTpvr3v/+tl19+WbVq1VLx4sXl6+tr+RSpAAAAAJBbTPUJAAAAAPmsWbNm8vb2VnBwsDp37qwyZcpoxYoVKl26tFO/+++/3+n2smXLVLx4cXXp0kWpqamOnwYNGqhMmTKOqTbXrVsnSRmKfA888IC8vLL++8/ffvtNe/fuVUxMjFPRLzfWrl2rwMBA9ejRw6k9KipKkrRmzRqn9tatWzuKfpJUunRphYWFOaZCvZHevXs7Tb8ZHh6uFi1aOHLJjP0++5jsmjRpopo1a2YYIwAAAAAURJzxBwAAAAD5bPbs2apZs6a8vLxUunRpx1SZVwsICFBISIhT219//aXTp0/Lx8cn0/WePHlSkpSYmChJKlOmjNP9Xl5eCg0NzXJs9msFVqhQwbWNcUFiYqLKlCmT4Vp4YWFh8vLycozXLrMx+vr66uLFiy493rXbbW/76aefshyjpEyfi3LlyrlcdAQAAAAAd6LwBwAAAAD5rGbNmmrcuHGWfa4tkklSyZIlFRoaqpUrV2a6jP0sOXvh7NixYypfvrzj/tTU1AxFtmvZrzP4559/ZtkvO0JDQ7V161YZY5y26/jx40pNTVXJkiUteyzpynZn1pZV0dN+39GjRzMUPY8cOWL5GAEAAAAgLzDVJwAAAAAUEp07d1ZiYqLS0tLUuHHjDD+33nqrJKlVq1aSpI8++shp+U8++USpqalZPkb16tVVrVo1zZw5U8nJydft5+vrK0kunYUXGRmpc+fOacmSJU7ts2fPdtxvpXnz5skY47h94MABbdq0yZFLZtq0aSNJmjNnjlP7tm3b9MsvvziNMTtnHwIAAABAfuKMPwAAAAAoJHr16qWPPvpI99xzj55++mk1adJE3t7e+vPPP7Vu3Trdd9996tatm2rWrKk+ffrozTfflLe3t9q2bauEhAS99tprGaYPzczUqVPVpUsXNWvWTM8++6wqVaqkgwcP6ssvv3QUE+vWrStJmjJlivr27Stvb2/deuutTtfms3v00Uc1depU9e3bV/v371fdunX17bff6pVXXtE999yjtm3bWprT8ePH1a1bNz3++OM6c+aMRo8eLT8/Pw0bNuy6y9x666164okn9Pbbb6tIkSLq2LGj9u/fr5EjR6pixYp69tlnHX3r1q2rRYsWafr06WrUqJGKFClywzM4AQAAACA/UPgDAAAAgEKiaNGi+uyzzzRlyhR9+OGHmjBhgry8vFShQgVFREQ4inGSNGPGDJUuXVrx8fF666231KBBAy1cuFC9evW64ePcfffd2rBhg8aOHat//etfunTpkipUqKB7773X0adVq1YaNmyYZs2apffff1/p6elat25dpmfV+fn5ad26dRoxYoQmT56sEydOqHz58nruuec0evRoS7K52iuvvKJt27apX79+SkpKUpMmTTR//nxVq1Yty+WmT5+uatWqacaMGZo6daqKFSumDh06aMKECU7ThD799NPatWuXhg8frjNnzsgY43SGIQAAAAC4i83w6QQAAAAA4AHWr1+v1q1ba8GCBerRo4e7hwMAAAAA+Y5r/AEAAAAAAAAAAAAegMIfAAAAAAAAAAAA4AGY6hMAAAAAAAAAAADwAJzxBwAAAAAAAAAAAHgACn8AAAAAAAAAAACAB6DwBwAAAAAAAAAAAHgAL3cPoCBIT0/XkSNHFBwcLJvN5u7hAAAAAAAAAAAAAJIkY4zOnj2rcuXKqUiRrM/po/An6ciRI6pYsaK7hwEAAAAAAAAAAABk6tChQ6pQoUKWfSj8SQoODpZ0JbCQkBA3jwbZkZKSoq+++krt27eXt7e3u4dTqJGldcjSOmRpDXK0DllahyytQ5bWIUvrkKV1yNI6ZGkdsrQGOVqHLK1DltYhS+uQpXXIsvBKSkpSxYoVHfWsrFD4kxzTe4aEhFD4K2RSUlIUEBCgkJAQXqhyiSytQ5bWIUtrkKN1yNI6ZGkdsrQOWVqHLK1DltYhS+uQpTXI0TpkaR2ytA5ZWocsrUOWhZ8rl6vLeiJQAAAAAAAAAAAAAIUChT8AAAAAAAAAAADAA1D4AwAAAAAAAAAAADwAhT8AAAAAAAAAAADAA1D4AwAAAAAAAAAAADwAhT8AAAAAAAAAAADAA1D4AwAAAAAAAAAAADyAl7sHAABW6vL2t+4egrxt6epbUXrw3c1KMe77+4rPn2rptscGAAAAAAAAAOQ/zvgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADUPgDAAAAAAAAAAAAPACFPwAAAAAAAAAAAMADuLXwt3btWkVHR6tGjRoKDAxU+fLldd9992n79u03XDY+Pl42my3Tn2PHjuXD6AEAAAAAAAAAAICCw8udDz59+nQlJibq6aefVq1atXTixAm9/vrratasmb788ku1adPmhuuIi4tTjRo1nNpCQ0PzasgAAAAAAAAAAABAgeTWwt/UqVMVFhbm1NahQwfdfPPNeuWVV1wq/NWpU0eNGzfOqyECAAAAAAAAAAAAhYJbp/q8tugnSUFBQapVq5YOHTrkhhEBAAAAAAAAAAAAhZNbC3+ZOXPmjHbs2KHatWu71L9z584qWrSoSpQooe7duyshISGPRwgAAAAAAAAAAAAUPG6d6jMzAwcO1Pnz5zVixIgs+5UpU0YjRoxQs2bNFBISop07d2rixIlq1qyZNm7cqPr161932eTkZCUnJztuJyUlSZJSUlKUkpJizYYgX9ifL5633POULL1t6e4egrxt5qp/3Teewv5cSp6zX7obOVqHLK1DltYhS+uQpXXI0jpkaR2ytA5ZWoMcrUOW1iFL65CldcjSOmRZeGXnObMZY0wejiVbRo4cqfHjx+vtt9/WoEGDsr38/v37VbduXbVp00ZLly69br/Y2FiNGTMmQ/vcuXMVEBCQ7ccFAAAAAAAAAAAA8sKFCxfUu3dvnTlzRiEhIVn2LTCFvzFjxig2NlYvv/yyhg8fnuP1dOzYUTt27NBff/113T6ZnfFXsWJFnTx58oaBoWBJSUnRqlWr1K5dO3l7e7t7OIWap2T54Lub3T0EeduMelc4rbl/FleKsbltHB8/2dxtj20VT9kv3Y0crUOW1iFL65CldcjSOmRpHbK0DllahyytQY7WIUvrkKV1yNI6ZGkdsiy8kpKSVLJkSZcKfwViqk970S82NjZXRT9JMsaoSJGsL13o6+srX1/fDO3e3t7s7IUUz511CnuWKaYgXLr0yvSeKcbm1vEU5ufxWoV9vywoyNE6ZGkdsrQOWVqHLK1DltYhS+uQpXXI0hrkaB2ytA5ZWocsrUOW1iHLwic7z5fbvyEfN26cYmNj9dJLL2n06NG5Wte+ffu0ceNGNWvWzKLRAQAAAAAAAAAAAIWDW8/4e/311zVq1Ch16NBBnTp10pYtW5zutxfwYmJiNGvWLO3du1fh4eGSpLZt2+quu+5SvXr1FBISop07d2rSpEmy2WwaN25cvm8LAAAAAAAAAAAA4E5uLfx9/vnnkqSVK1dq5cqVGe63X34wLS1NaWlpuvpyhHXr1tXHH3+s1157TRcvXlRYWJjatGmjkSNHqnr16vmzAQAAAAAAAAAAAEAB4dbC3/r1613qFx8fr/j4eKe2f//739YPCAAAAAAAAAAAACik3H6NPwAAAAAAAAAAAAC5R+EPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAPQOEPAAAAAAAAAAAA8ABuLfytXbtW0dHRqlGjhgIDA1W+fHndd9992r59u0vLHz9+XFFRUSpZsqQCAgLUvHlzrVmzJo9HDQAAAAAAAAAAABQ8bi38TZ8+Xfv379fTTz+tL774QlOmTNHx48fVrFkzrV27Nstlk5OTFRkZqTVr1mjKlClaunSpSpcurQ4dOujrr7/Opy0AAAAAAAAAAAAACgYvdz741KlTFRYW5tTWoUMH3XzzzXrllVfUpk2b6y47Y8YMJSQkaNOmTWrevLkkqXXr1qpfv76GDh2qrVu35unYAQAAAAAAAAAAgILErWf8XVv0k6SgoCDVqlVLhw4dynLZxYsX69Zbb3UU/STJy8tLffr00XfffafDhw9bPl4AAAAAAAAAAACgoHJr4S8zZ86c0Y4dO1S7du0s+yUkJKhevXoZ2u1tu3btypPxAQAAAAAAAAAAAAWRW6f6zMzAgQN1/vx5jRgxIst+iYmJKlGiRIZ2e1tiYuJ1l01OTlZycrLjdlJSkiQpJSVFKSkpORk23MT+fPG85Z6nZOltS3f3EORtM1f9677xFPbnUvKc/dLdyNE6ZGkdsrQOWVqHLK1DltYhS+uQpXXI0hrkaB2ytA5ZWocsrUOW1iHLwis7z5nNGGPycCzZMnLkSI0fP15vv/22Bg0alGVfHx8fxcTEaPr06U7tmzdvVosWLTRv3jz16tUr02VjY2M1ZsyYDO1z585VQEBAzjcAAAAAAAAAAAAAsNCFCxfUu3dvnTlzRiEhIVn2LTBn/I0ZM0bjx4/Xyy+/fMOinySFhoZmelbfqVOnJCnTswHthg0bpsGDBztuJyUlqWLFimrfvv0NA0PBkpKSolWrVqldu3by9vZ293AKNU/J8sF3N7t7CPK2GfWucFpz/yyuFGNz2zg+frL5jTsVcJ6yX7obOVqHLK1DltYhS+uQpXXI0jpkaR2ytA5ZWoMcrUOW1iFL65CldcjSOmRZeNlnrnRFgSj8jRkzRrGxsYqNjdXw4cNdWqZu3brauXNnhnZ7W506da67rK+vr3x9fTO0e3t7s7MXUjx31insWaaYgnDp0ivTe6YYm1vHU5ifx2sV9v2yoCBH65CldcjSOmRpHbK0DllahyytQ5bWIUtrkKN1yNI6ZGkdsrQOWVqHLAuf7DxfufpG+vLly/rzzz918OBBp5/sGDdunGJjY/XSSy9p9OjRLi/XrVs3/frrr9q6daujLTU1VXPmzFHTpk1Vrly5bI0DAAAAAAAAAAAAKMxydMbff//7X0VHR2vTpk1O7cYY2Ww2paWlubSe119/XaNGjVKHDh3UqVMnbdmyxen+Zs2aSZJiYmI0a9Ys7d27V+Hh4ZKk6OhoTZ06VT179tTEiRMVFhamadOmac+ePVq9enVONgsAAAAAAAAAAAAotHJU+IuKipKXl5eWLVumsmXLymbL2TWsPv/8c0nSypUrtXLlygz3G2MkSWlpaUpLS3Pclq5M17lmzRoNHTpUTz31lC5cuKAGDRpoxYoVioiIyNF4AAAAAAAAAAAAgMIqR4W/H3/8Udu3b1eNGjVy9eDr1693qV98fLzi4+MztJcuXVqzZs3K1RgAAAAAAAAAAAAAT5Cja/zVqlVLJ0+etHosAAAAAAAAAAAAAHIoR4W/V199VUOHDtX69euVmJiopKQkpx8AAAAAAAAAAAAA+StHU322bdtWkhQZGenUboyRzWZTWlpa7kcGAAAAAAAAAAAAwGU5KvytW7fO6nEAAAAAAAAAAAAAyIUcFf4iIiKsHgcAAAAAAAAAAACAXMhR4U+STp8+rRkzZuiXX36RzWZTrVq1FB0drWLFilk5PgAAAAAAAAAAAAAuKJKThb7//ntVq1ZN//73v3Xq1CmdPHlSb7zxhqpVq6YdO3ZYPUYAAAAAAAAAAAAAN5CjM/6effZZ3XvvvXr//ffl5XVlFampqXrsscf0zDPPaMOGDZYOEgAAAAAAAAAAAEDWclT4+/77752KfpLk5eWloUOHqnHjxpYNDgAAAAAAAAAAAIBrcjTVZ0hIiA4ePJih/dChQwoODs71oAAAAAAAAAAAAABkT44Kfw8++KBiYmL08ccf69ChQ/rzzz81f/58PfbYY3rooYesHiMAAAAAAAAAAACAG8jRVJ+vvfaabDabHn30UaWmpkqSvL291b9/f02cONHSAQIAAAAAAAAAAAC4sRwV/nx8fDRlyhRNmDBBe/fulTFGN998swICAqweHwAAAAAAAAAAAAAX5KjwZxcQEKC6detaNRYAAAAAAAAAAAAAOeRy4a979+6Kj49XSEiIunfvnmXfRYsW5XpgAAAAAAAAAAAAAFzncuGvWLFistlskqSQkBDH/wEAAAAAAAAAAAC4n8uFv7i4OMf/4+Pj82IsAAAAAAAAAAAAAHKoSE4WatOmjU6fPp2hPSkpSW3atMntmAAAAAAAAAAAAABkU44Kf+vXr9fly5cztF+6dEnffPNNrgcFAAAAAAAAAAAAIHtcnupTkn7++WfH/3fv3q1jx445bqelpWnlypUqX768daMDAAAAAAAAAAAA4JJsFf4aNGggm80mm82W6ZSe/v7+evvtty0bHAAAAAAAAAAAAADXZGuqz3379mnv3r0yxui7777Tvn37HD+HDx9WUlKSoqOjXV7f2bNnNXToULVv316lSpWSzWZTbGysS8vGx8c7ipDX/lx9JiIAAAAAAAAAAADwT5CtM/7Cw8MlSenp6ZY8eGJiot577z3Vr19fXbt21QcffJDtdcTFxalGjRpObaGhoZaMDwAAAAAAAAAAACgsslX4s5swYYJKly6d4ey+mTNn6sSJE3rhhRdcWk94eLj+/vtv2Ww2nTx5MkeFvzp16qhx48bZXg4AAAAAAAAAAADwJNma6tPu3XffzXCWnSTVrl1b77zzjsvrsU/NCQAAAAAAAAAAACB3clT4O3bsmMqWLZuhvVSpUjp69GiuB5UdnTt3VtGiRVWiRAl1795dCQkJ+fr4AAAAAAAAAAAAQEGQo6k+K1asqI0bN6pKlSpO7Rs3blS5cuUsGdiNlClTRiNGjFCzZs0UEhKinTt3auLEiWrWrJk2btyo+vXrX3fZ5ORkJScnO24nJSVJklJSUpSSkpLnY4d17M8Xz1vueUqW3jZrrkGauzGYq/5133gK+3Mpec5+6W7kaB2ytA5ZWocsrUOW1iFL65CldcjSOmRpDXK0DllahyytQ5bWIUvrkGXhlZ3nzGaMMdl9gFdffVWTJ0/W5MmT1aZNG0nSmjVrNHToUA0ZMkTDhg3L7ip18uRJlSpVSqNHj1ZsbGy2l5ek/fv3q27dumrTpo2WLl163X6xsbEaM2ZMhva5c+cqICAgR48NAAAAAAAAAAAAWO3ChQvq3bu3zpw5o5CQkCz75uiMv6FDh+rUqVMaMGCALl++LEny8/PTCy+8kKOin1UqV66sli1basuWLVn2GzZsmAYPHuy4nZSUpIoVK6p9+/Y3DAwFS0pKilatWqV27drJ29vb3cMp1Dwlywff3ezuIcjbZtS7wmnN/bO4Uoz7rmP68ZPN3fbYVvGU/dLdyNE6ZGkdsrQOWVqHLK1DltYhS+uQpXXI0hrkaB2ytA5ZWocsrUOW1iHLwss+c6UrclT4s9lsevXVVzVy5Ej98ssv8vf31y233CJfX9+crM5SxhgVKZL1pQt9fX0zHau3tzc7eyHFc2edwp5lisnRpUstdmV6zxRjc+t4CvPzeK3Cvl8WFORoHbK0DllahyytQ5bWIUvrkKV1yNI6ZGkNcrQOWVqHLK1DltYhS+uQZeGTnecrR4U/u6CgIN1+++25WYWl9u3bp40bN6pt27buHgoAAAAAAAAAAACQr1wu/HXv3l3x8fEKCQlR9+7ds+y7aNEilwewYsUKnT9/XmfPnpUk7d69W59++qkk6Z577lFAQIBiYmI0a9Ys7d27V+Hh4ZKktm3b6q677lK9evUUEhKinTt3atKkSbLZbBo3bpzLjw8AAAAAAAAAAAB4ApcLf8WKFZPNZnP83yr9+/fXgQMHHLcXLFigBQsWSLpyBl/lypWVlpamtLQ0GWMc/erWrauPP/5Yr732mi5evKiwsDC1adNGI0eOVPXq1S0bHwAAAAAAAAAAAFAYuFz4i4uLy/T/ubV///4b9omPj1d8fLxT27///W/LxgAAAAAAAAAAAAAUdkXcPQAAAAAAAAAAAAAAuefyGX8NGzZ0TPV5Izt27MjxgAAAAAAAAAAAAABkn8uFv65duzr+f+nSJU2bNk21atVS8+bNJUlbtmzRrl27NGDAAMsHCQAAAAAAAAAAACBrLhf+Ro8e7fj/Y489pn/9618aN25chj6HDh2ybnQAAAAAAAAAAAAAXJKja/wtWLBAjz76aIb2Pn36aOHChbkeFAAAAAAAAAAAAIDsyVHhz9/fX99++22G9m+//VZ+fn65HhQAAAAAAAAAAACA7HF5qs+rPfPMM+rfv7+2b9+uZs2aSbpyjb+ZM2dq1KhRlg4QAAAAAAAAAAAAwI3lqPD34osvqmrVqpoyZYrmzp0rSapZs6bi4+P1wAMPWDpAAAAAAAAAAAAAADeWo8KfJD3wwAMU+QAAAAAAAAAAAIACIkfX+JOk06dP64MPPtDw4cN16tQpSdKOHTt0+PBhywYHAAAAAAAAAAAAwDU5OuPv559/Vtu2bVWsWDHt379fjz32mEqUKKHFixfrwIEDmj17ttXjBAAAAAAAAAAAAJCFHJ3xN3jwYEVFRem///2v/Pz8HO0dO3bUhg0bLBscAAAAAAAAAAAAANfkqPC3bds2Pfnkkxnay5cvr2PHjuV6UAAAAAAAAAAAAACyJ0eFPz8/PyUlJWVo37Nnj0qVKpXrQQEAAAAAAAAAAADInhwV/u677z6NHTtWKSkpkiSbzaaDBw/qxRdf1P3332/pAAEAAAAAAAAAAADcWI4Kf6+99ppOnDihsLAwXbx4UREREbr55psVHBysl19+2eoxAgAAAAAAAAAAALgBr5wsFBISom+//VZr167Vjh07lJ6erttuu01t27a1enwAAAAAAAAAAAAAXJDtwl9qaqr8/Pz0448/qk2bNmrTpk1ejAsAAAAAAAAAAABANmR7qk8vLy+Fh4crLS0tL8YDAAAAAAAAAAAAIAdydI2/l156ScOGDdOpU6esHg8AAAAAAAAAAACAHMjRNf7eeust/f777ypXrpzCw8MVGBjodP+OHTssGRwAAAAAAAAAAAAA1+So8Ne1a1fZbDYZY3L14GfPntW4ceP0448/6ocfftDJkyc1evRoxcbGurT88ePHNXToUC1btkwXLlxQ/fr1NX78eEVGRuZqXAAAAAAAAAAAAEBhk63C34ULF/T8889ryZIlSklJUWRkpN5++22VLFkyRw+emJio9957T/Xr11fXrl31wQcfuLxscnKyIiMjdfr0aU2ZMkVhYWGaOnWqOnTooNWrVysiIiJHYwIAAAAAAAAAAAAKo2wV/kaPHq34+Hg9/PDD8vf319y5c9W/f38tWLAgRw8eHh6uv//+WzabTSdPnsxW4W/GjBlKSEjQpk2b1Lx5c0lS69atVb9+fQ0dOlRbt27N0ZgAAAAAAAAAAACAwihbhb9FixZpxowZ6tWrlyTp4Ycf1h133KG0tDQVLVo02w9us9myvYzd4sWLdeuttzqKfpLk5eWlPn36aPjw4Tp8+LDKly+f4/UDAAAAAAAAAAAAhUmR7HQ+dOiQ7rzzTsftJk2ayMvLS0eOHLF8YDeSkJCgevXqZWi3t+3atSu/hwQAAAAAAAAAAAC4TbbO+EtLS5OPj4/zCry8lJqaaumgXJGYmKgSJUpkaLe3JSYmXnfZ5ORkJScnO24nJSVJklJSUpSSkmLxSJGX7M8Xz1vueUqW3rZ0dw9B3jZz1b/uG09hfy4lz9kv3Y0crUOW1iFL65CldcjSOmRpHbK0DllahyytQY7WIUvrkKV1yNI6ZGkdsiy8svOc2YwxxtXORYoUUceOHeXr6+to+/zzz9WmTRsFBgY62hYtWuTyAOxOnjypUqVKafTo0YqNjb1hfx8fH8XExGj69OlO7Zs3b1aLFi00b948x5Sk14qNjdWYMWMytM+dO1cBAQHZHjsAAAAAAAAAAACQFy5cuKDevXvrzJkzCgkJybJvts7469u3b4a2Pn36ZG90FgkNDc30rL5Tp05JUqZnA9oNGzZMgwcPdtxOSkpSxYoV1b59+xsGhoIlJSVFq1atUrt27eTt7e3u4RRqnpLlg+9udvcQ5G0z6l3htOb+WVwpJufXMs2tj59sfuNOBZyn7JfuRo7WIUvrkKV1yNI6ZGkdsrQOWVqHLK1DltYgR+uQpXXI0jpkaR2ytA5ZFl72mStdka3CX1xcXLYHk1fq1q2rnTt3Zmi3t9WpU+e6y/r6+jqdtWjn7e3Nzl5I8dxZp7BnmWKydenSPHJles8UY3PreArz83itwr5fFhTkaB2ytA5ZWocsrUOW1iFL65CldcjSOmRpDXK0DllahyytQ5bWIUvrkGXhk53nqyB8Q54j3bp106+//qqtW7c62lJTUzVnzhw1bdpU5cqVc+PoAAAAAAAAAAAAgPyVrTP+8sKKFSt0/vx5nT17VpK0e/duffrpp5Kke+65RwEBAYqJidGsWbO0d+9ehYeHS5Kio6M1depU9ezZUxMnTlRYWJimTZumPXv2aPXq1W7bHgAAAAAAAAAAAMAd3F7469+/vw4cOOC4vWDBAi1YsECStG/fPlWuXFlpaWlKS0uTMcbRz9fXV2vWrNHQoUP11FNP6cKFC2rQoIFWrFihiIiIfN8OAAAAAAAAAAAAwJ3cXvjbv3//DfvEx8crPj4+Q3vp0qU1a9Ys6wcFAAAAAAAAAAAAFDKF9hp/AAAAAAAAAAAAAP6Hwh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB7A7YW/c+fO6ZlnnlG5cuXk5+enBg0aaP78+TdcLj4+XjabLdOfY8eO5cPIAQAAAAAAAAAAgILDy90D6N69u7Zt26aJEyeqevXqmjt3rh566CGlp6erd+/eN1w+Li5ONWrUcGoLDQ3Nq+ECAAAAAAAAAAAABZJbC39ffPGFVq1a5Sj2SVLr1q114MABPf/883rwwQdVtGjRLNdRp04dNW7cOD+GCwAAAAAAAAAAABRYbp3qc/HixQoKClLPnj2d2vv166cjR45o69atbhoZAAAAAAAAAAAAULi4tfCXkJCgmjVrysvL+cTDevXqOe6/kc6dO6to0aIqUaKEunfv7tIyAAAAAAAAAAAAgKdx61SfiYmJqlq1aob2EiVKOO6/njJlymjEiBFq1qyZQkJCtHPnTk2cOFHNmjXTxo0bVb9+/esum5ycrOTkZMftpKQkSVJKSopSUlJyujlwA/vzxfOWe56Spbct3d1DkLfNXPWv+8ZT2J9LyXP2S3cjR+uQpXXI0jpkaR2ytA5ZWocsrUOW1iFLa5CjdcjSOmRpHbK0DllahywLr+w8ZzZjjMnDsWSpevXqqlatmlasWOHUfvToUZUrV04TJkzQiy++6PL69u/fr7p166pNmzZaunTpdfvFxsZqzJgxGdrnzp2rgIAA1zcAAAAAAAAAAAAAyEMXLlxQ7969debMGYWEhGTZ161n/IWGhmZ6Vt+pU6ck/e/MP1dVrlxZLVu21JYtW7LsN2zYMA0ePNhxOykpSRUrVlT79u1vGBgKlpSUFK1atUrt2rWTt7e3u4dTqHlKlg++u9ndQ5C3zah3hdOa+2dxpRib28bx8ZPN3fbYVvGU/dLdyNE6ZGkdsrQOWVqHLK1DltYhS+uQpXXI0hrkaB2ytA5ZWocsrUOW1iHLwss+c6Ur3Fr4q1u3rubNm6fU1FSn6/zt3LlTklSnTp1sr9MYoyJFsr50oa+vr3x9fTO0e3t7s7MXUjx31insWaYYt1669P+7Mr1nirG5dTyF+Xm8VmHfLwsKcrQOWVqHLK1DltYhS+uQpXXI0jpkaR2ytAY5WocsrUOW1iFL65Cldciy8MnO8+XWb8i7deumc+fOaeHChU7ts2bNUrly5dS0adNsrW/fvn3auHGjmjVrZuUwAQAAAAAAAAAAgALPrWf8dezYUe3atVP//v2VlJSkm2++WfPmzdPKlSs1Z84cFS1aVJIUExOjWbNmae/evQoPD5cktW3bVnfddZfq1aunkJAQ7dy5U5MmTZLNZtO4cePcuVkAAAAAAAAAAABAvnNr4U+SFi1apBEjRmjUqFE6deqUatSooXnz5qlXr16OPmlpaUpLS5MxxtFWt25dffzxx3rttdd08eJFhYWFqU2bNho5cqSqV6/ujk0BAAAAAAAAAAAA3Mbthb+goCBNmTJFU6ZMuW6f+Ph4xcfHO7X9+9//zuORAQAAAAAAAAAAAIWHW6/xBwAAAAAAAAAAAMAabj/jDwAAT9fl7W/d+vjetnT1rSg9+O5mpRj3/s3P50+1dOvjAwAAAAAAAJ6MM/4AAAAAAAAAAAAAD0DhDwAAAAAAAAAAAPAATPUJAAAA5ALT+V7BVL4AAAAAALgfZ/wBAAAAAAAAAAAAHoAz/gAAmXL3GSwSZ7EAAAAAAAAAQHZwxh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgAbzcPQAAAAAAkKQub3/r1sf3tqWrb0XpwXc3K8W4728kP3+qpdseGwAAAABQuFH4AwAA+AeiwHIFBRYAAAAAAOBJmOoTAAAAAAAAAAAA8AAU/gAAAAAAAAAAAAAP4PapPs+dO6eXXnpJn3zyiU6dOqUaNWroxRdfVK9evW647PHjxzV06FAtW7ZMFy5cUP369TV+/HhFRkbmw8ghMU2YHdOEAQAAoCDhOP0KjtMBAAAA/NO4vfDXvXt3bdu2TRMnTlT16tU1d+5cPfTQQ0pPT1fv3r2vu1xycrIiIyN1+vRpTZkyRWFhYZo6dao6dOig1atXKyIiIh+3AgAA5Ae+yL6CL7IBAAByj2PL/+H4suBgv7yCfRIAcs6thb8vvvhCq1atchT7JKl169Y6cOCAnn/+eT344IMqWrRopsvOmDFDCQkJ2rRpk5o3b+5Ytn79+ho6dKi2bt2ab9sBAAAAAAAAAACQFYr7V1Dcz1tuLfwtXrxYQUFB6tmzp1N7v3791Lt3b23dulUtWrS47rK33nqro+gnSV5eXurTp4+GDx+uw4cPq3z58nk6fgAAAAAAgPzk7i8MJb40BAAAKMjcWvhLSEhQzZo15eXlPIx69eo57r9e4S8hIUF33nlnhnb7srt27aLwh0LF3R/e+OAGAAAAIC/xmecKPvPAE/H7/T/8jsMT8Tt+Bb/fKCzcWvhLTExU1apVM7SXKFHCcX9Wy9r7ZXfZ5ORkJScnO26fOXNGknTq1CmlpKS4Nnhccemsex/fZnThwgXpkrdkbG4bRlb7m8vIUpIFWbo7R4ksrUSW1iggOUpkaRXed6xDltYhS+uQpXWsyDJq5ncWjCTnvG1GPctf0INTVinFjVnGRzfJ/UrYLyV5wPGQRJZWKSA5SmRpJbK0Bu/h1uE93Docp1vHkiz/Yc6evbLvGGNu2NdmXOmVR6pXr65q1appxYoVTu1Hjx5VuXLlNGHCBL344ouZLuvj46OYmBhNnz7dqX3z5s1q0aKF5s2bp169emW6bGxsrMaMGWPNRgAAAAAAAAAAAAB57NChQ6pQoUKWfdx6xl9oaGimld1Tp05JUqZn9Fmx7LBhwzR48GDH7fT0dJ06dUqhoaGy2dz7V0HInqSkJFWsWFGHDh1SSEiIu4dTqJGldcjSOmRpDXK0DllahyytQ5bWIUvrkKV1yNI6ZGkdsrQGOVqHLK1DltYhS+uQpXXIsvAyxujs2bMqV67cDfu6tfBXt25dzZs3T6mpqU7X+du5c6ckqU6dOlkua+93NVeW9fX1la+vr1Nb8eLFszN0FDAhISG8UFmELK1DltYhS2uQo3XI0jpkaR2ytA5ZWocsrUOW1iFL65ClNcjROmRpHbK0DllahyytQ5aFU7FixVzq59ar3Xbr1k3nzp3TwoULndpnzZqlcuXKqWnTplku++uvv2rr1q2OttTUVM2ZM0dNmzZ1qeoJAAAAAAAAAAAAeAq3nvHXsWNHtWvXTv3791dSUpJuvvlmzZs3TytXrtScOXNUtGhRSVJMTIxmzZqlvXv3Kjw8XJIUHR2tqVOnqmfPnpo4caLCwsI0bdo07dmzR6tXr3bnZgEAAAAAAAAAAAD5zq2FP0latGiRRowYoVGjRunUqVOqUaOG5s2bp169ejn6pKWlKS0tTcYYR5uvr6/WrFmjoUOH6qmnntKFCxfUoEEDrVixQhEREe7YFLiBr6+vRo8enWHqVmQfWVqHLK1DltYgR+uQpXXI0jpkaR2ytA5ZWocsrUOW1iFLa5CjdcjSOmRpHbK0Dllahyz/GWzm6moaAAAAAAAAAAAAgELJrdf4AwAAAAAAAAAAAGANCn8AAAAAAAAAAACAB6DwB7d56623ZLPZVKdOnRwtv3v3bsXGxmr//v3WDqyQiY+Pl81mu+7P+vXrLXmc2NhY2Ww2S9blTva8vv/++0zv/+233/Tcc8+pUaNGKl68uEqUKKE77rhDn376abYf6/z58+rVq5duvfVWBQcHKzAwULVr19b48eN1/vx5p772fE+ePKn169dn+Zxe/VNQ3ShnSdfdpokTJzr1s2dzvZ/9+/crKirKpbyioqLyeMvzVl7kWtj3OSszcdWBAwcUHR2tcuXKydfXV+XLl1e3bt2c+tjzDQsL09mzZzOso3LlyurcuXOW4yxWrJhatWql5cuX52icecWVzCXXcrL75ptv9MADD6h8+fLy8fFRsWLF1KJFC02fPl3nz5+/4euA/adVq1Z5sMX5w8pcPeX3O7eszDQqKkpBQUF5Odx842ouBU3lypUz3W//7//+L8frvPo4OrNjZmOMbr755gyvLzabTbGxsTl+3Lyyf/9+p2yKFCmi0NBQ3XPPPdq8ebMkaenSpbLZbHrnnXeuu55Vq1bJZrPpjTfekCTHcVZwcLDOnTuXof+BAwdUpEiRfM9ly5Yt6tmzp8qWLSsfHx+VKVNGPXr0cGyr3bWfl7y8vFShQgX169dPhw8fzrDeP/74Q4MGDVL16tXl7++vgIAA1a5dWy+99FKm/Quj7GZ39WfuqKgoVa5cOX8HXIBkd3+ygv13Oz4+3tF29Xu9J9i6dau6deumSpUqydfXV6VLl1bz5s01ZMgQdw/No1iR84ULFxQbG2vZd015Kb+29+eff1a/fv1UpUoV+fn5KSgoSLfddpsmTZqkU6dOOfpl9hkwL9iP/68ec36+dnfr1k3+/v46ffr0dfs8/PDD8vb21l9//SWbzaZBgwZluc5WrVrJZrOpatWqyuyqZRs2bHC8Ll/9Wmnn6nNUWGUn81dffTXDezs8k5e7B4B/rpkzZ0qSdu3apa1bt6pp06bZWn737t0aM2aMWrVq9Y/+4GEXFxenGjVqZGivVauWG0ZTeH311Vdavny5HnnkEd1+++1KTU3Vxx9/rJ49e2rMmDEaNWqUy+tKSUmRMUaDBw9WlSpVVKRIEW3YsEFjx47V+vXrtXr16kyXu+222zJ86O7WrZuqVaum1157LVfbV9D06NEjw0F3pUqVMu27cuVKFStWLEN72bJlNXLkSKcv/nbs2KGBAwfqlVdeUevWrR3tpUqVsmjkBVt2cpX+GftcdjO5noSEBLVq1UpVq1bVa6+9pgoVKujo0aP68ssvM+1/4sQJTZo0SePGjcvWONPT0/XHH39o/Pjx6tKliz7//HN16tQp2+N1l+zkNHr0aI0dO1YtWrTQuHHjVK1aNV24cEGbNm1SbGysfvvtNw0ZMkQdOnRwLHP06FF1795dTz31lHr37u1oDwkJyZftc5fs7n/SP+P3Ozdykinc54477siw35YuXTrX6w0ODtaMGTMy/PHA119/rb179yo4ONipffPmzapQoUKuHzev2F8b09LStGvXLo0ZM0atW7fW5s2b1alTJ5UpU0YzZ868btE0Li5O3t7eeuSRRxxt3t7ejuPimJiYDP2Dg4OVlJSUp9t1tbffflvPPPOMmjRpokmTJik8PFwHDx7U1KlT1bJlS02ZMiXDl4j2z0sXL17Uhg0bNGHCBH399dfauXOnAgMDJUnLli1Tr169VLJkSQ0aNEgNGzaUzWbTzp07NXPmTC1fvlw//PBDvm1nXshJdlcbOXKknn766XwcccHkyv4E1yxfvlz33nuvWrVqpUmTJqls2bI6evSovv/+e82fP1+vv/66u4foEazK+cKFCxozZowkFeg/usuv7X3//fc1YMAA3XrrrXr++edVq1YtpaSk6Pvvv9c777yjzZs3a/HixVZuWoEXExOjJUuWaO7cuRowYECG+8+cOaPFixerc+fO2TqOCw4O1r59+7R27VpFRkY63Tdz5kyFhIRkeizyT3iOspN5dHS0IiIiVLZsWTeMFPnKAG6wbds2I8l06tTJSDKPP/54ttexYMECI8msW7fOpf7nz5/P9mMUBnFxcUaS2bZtW54+zujRo40nvGTcKK8TJ06Y9PT0DO2dOnUyAQEB5tKlS7kew9ChQ40ks3fvXkebPd8TJ05kukx4eLjp1KlTrh87v7iyX0oyAwcOvOG6bpRNZtatW2ckmQULFri8TGGQn7kWln3OykxuJD093TRo0MA0aNDghq8F9nw7dOhgAgMDzdGjR53uzyzfzMb5+++/G0mmbdu2uR6/VW6UeXZy+uSTT4wkExMTk+lrb1JSkvnyyy8ztO/bt89IMpMnT87ZRhRAVubqKb/fuWVlpn379jWBgYF5Mcx8l1/HjlbLi/3WnsVjjz1m/P39zZkzZ5zu79Onj2nevLmpXbu2iYiIsPSxjTHm8uXLJiUlxbL1Xe+1cc2aNY7tNOZ/x6I7d+7MsI6///7b+Pn5mfvvv9/RZt//e/XqZVq0aOHUPz093YSHh5vHH3/cSDKjR4+2bHuu59tvvzVFihQxnTt3zpBfSkqK6dy5sylSpIj59ttvjTHX3+dHjhxpJJk5c+YYY4z5448/TGBgoGnYsKE5ffp0hsdNT083CxcuzKOtyh85zW7fvn1uGG3B5Or+ZCX773ZcXJyjLSefkQqqu+66y1SrVi3T18O0tDQ3jMgzWZXziRMn8u31PjfyY3s3bdpkihYtajp06JDpsWRycrJZunSp43Z+HYPbvw+5+vvSvn37mvDw8Dx/bGOMSU1NNeXKlTONGjXK9P7p06cbSebzzz83xrj2eT0iIsLUrl3bNGvWzPTu3dvpvqSkJBMQEOA4Frn6tTK7z1Fhld3M8c/AVJ9wixkzZkiSJk6cqBYtWmj+/Pm6cOGCU5/p06erfv36CgoKUnBwsGrUqKHhw4dLujK9Rs+ePSVJrVu3znA6d6tWrVSnTh1t2LBBLVq0UEBAgKKjoyVJBw8eVJ8+fRQWFiZfX1/VrFlTr7/+utLT0/Np693Dfur8hx9+qJo1ayogIED169fXsmXLMvRdvny5GjRoIF9fX1WpUuW6ZwRcunRJw4YNU5UqVeTj46Py5ctr4MCBWZ5aXtCVLFky0+nOmjRpogsXLlgyBYD9rDMvL066BgqTDRs26Mcff9QzzzwjX19fl5YZP368UlNTczz1WbVq1VSqVCkdOHAgR8u7Q3ZyGjt2rG666SbH9N/XCg4OVvv27fNqqIVKTvY/ZC0nme7atUuRkZEKDAxUqVKlNGjQoAzHsIXdpUuXNGTIEDVo0EDFihVTiRIl1Lx5cy1dujRDX/vxZVxcnG699Vb5+/urcePG2rJli4wxmjx5sqpUqaKgoCC1adNGv//+u9Py9mP2b775Rs2aNZO/v7/Kly+vkSNHKi0tLb82WQ899JAkad68eY62M2fOaOHChY7PEFfLbErLw4cP64knnlDFihXl4+OjcuXKqUePHvrrr78k/W/arQ8//FBDhgxR+fLl5evr68hk5syZql+/vvz8/FSiRAl169ZNv/zyiyXb16xZM0lyvJfYz9iLi4vL0HfevHm6dOlSptsdHR2tTZs2ac+ePY621atX68CBA+rXr58lY3XFhAkTZLPZNH369AzH015eXpo2bZpLU3pfm8sbb7yh8+fPa9q0aZnOMmGz2dS9e3eLtsI9rMgus+niTp8+rZiYGJUoUUJBQUHq1KmT/vjjj0x/V7799ltFRkYqODhYAQEBatGiRYGb1jwn7PvT77//LpvN5vjO42orVqyQzWbTZ5995ujbr18/3XLLLQoICFD58uXVpUsX7dy50+XHPXTokLp3766QkBAVK1ZMffr00YkTJ6zZqHySmJiokiVLZvr5uEiR/31taZ8mceXKlbrtttvk7++vGjVqOGaTutqNXpOlK+/p7du3V0BAgEqVKqWBAwdq+fLl153+ubBzNee1a9eqVatWCg0Nlb+/vypVqqT7779fFy5c0P79+x3fZ4wZM6ZAX1IjP7b3lVdekc1m03vvvZfpsaSPj4/uvffeDO2u7MMJCQm67777dNNNN8nPz08NGjTQrFmzMvT79ddf1aFDBwUEBKhkyZL6v//7v0wvNZGfihYtqr59+2r79u2Zvp7FxcWpbNmy6tixY7bXHR0drUWLFjl97zh//nxJUq9evTL0z+lzVNhkJ/PMpvEuKMfksBaFP+S7ixcvat68ebr99ttVp04dRUdH6+zZs1qwYIGjz/z58zVgwABFRERo8eLFWrJkiZ599lnHddE6deqkV155RZI0depUbd682TF1jd3Ro0fVp08f9e7dW1988YUGDBigEydOqEWLFvrqq680btw4ffbZZ2rbtq2ee+65G84nXdClpaUpNTXV6efaF+fly5frP//5j8aOHauFCxc6vlT4448/HH3WrFmj++67T8HBwZo/f74mT56sTz75JMMXA8YYde3aVa+99poeeeQRLV++XIMHD9asWbPUpk0bJScn58t255d169apVKlSCgsLy/ayxhilpqYqKSlJK1eu1Ouvv66HHnooR9MMepq5c+fK399fvr6+atSoUaZfQNm5so/jiuzk+k9hRSYbNmyQdKUYdc899ziuDdC5c2f9+uuvmS4THh6uAQMGaMaMGfrtt9+y/Zh///23EhMTC9U0ta7mdPToUSUkJDi+cEHWcrL/IWvZzTQlJUX33HOPIiMjtWTJEg0aNEjvvvuuHnzwwfweep5KTk7WqVOn9Nxzz2nJkiWaN2+eWrZsqe7du2v27NkZ+i9btkwffPCBJk6cqHnz5uns2bPq1KmThgwZoo0bN+o///mP3nvvPe3evVv3339/huuyHDt2TL169dLDDz+spUuXqkePHho/fnymUwlu2LBBwcHB8vb2Vq1atfT6669bciwQEhKiHj16OH3xNm/ePBUpUsSl5/fw4cO6/fbbtXjxYg0ePFgrVqzQm2++qWLFiunvv/926jts2DAdPHhQ77zzjj7//HOFhYVpwoQJiomJUe3atbVo0SJNmTJFP//8s5o3b67//ve/ud4+e3HR/l5SvXp1tWzZUnPmzFFKSopT37i4OJUvX1533313hvW0bdtW4eHhTjnNmDFDd911l2655ZZcj9MVaWlpWrdunRo3bnzd6VYrVqyoRo0aae3atVnuH9fm8tVXX6l06dKOAo6nsTK7q6Wnp6tLly6aO3euXnjhBS1evFhNmzZ1mqLb7uuvv1abNm105swZzZgxQ/PmzVNwcLC6dOmijz/+OFfb5272/alcuXJq2LBhpsea8fHxCgsL0z333CNJOnLkiEJDQzVx4kStXLlSU6dOlZeXl5o2bepUYM9Kt27ddPPNN+vTTz9VbGyslixZorvvvjvD73ZB1rx5c23dulX/+te/tHXr1izH/tNPP2nIkCF69tlntXTpUtWrV08xMTGO93TJtdfko0ePKiIiQnv27NH06dM1e/ZsnT17ttB/L5QVV3Lev3+/OnXqJB8fH82cOVMrV67UxIkTFRgYqMuXL6ts2bJauXKlpCt/RGL/Lm7kyJH5vTk3lNfbm5aWprVr16pRo0aqWLGiy+NyZR/es2ePWrRooV27dumtt97SokWLVKtWLUVFRWnSpEmOfn/99ZciIiKUkJCgadOm6cMPP9S5c+cKxH4cHR0tm82Woai5e/dufffdd+rbt6+KFi2a7fX26tVLRYsWdfpjrRkzZqhHjx4ZLvuQ0+eosMpt5tk5Jkch4d4TDvFPNHv2bCPJvPPOO8YYY86ePWuCgoLMnXfe6egzaNAgU7x48SzXk9VUnxEREUaSWbNmjVP7iy++aCSZrVu3OrX379/f2Gw2s2fPnhxulfvYpxrJ7Kdo0aKOfpJM6dKlTVJSkqPt2LFjpkiRImbChAmOtqZNm5py5cqZixcvOtqSkpJMiRIlnKb6XLlypZFkJk2a5DSejz/+2Egy7733Xl5sbq7lZHqr999/30gyU6ZMydFjzps3z+l56devX4bpJjxtWjZXcu7du7f56KOPzIYNG8ynn35qOnbsaCSZl156yamfPZvMfqpVq5bpuv/JU31mN9fCvs9ZmcmNPPnkk0aSCQkJMTExMWb16tXmww8/NOHh4aZkyZLmyJEjjr5X53vy5ElTrFgxp2nTrjfV54ABA0xKSoq5fPmy+eWXXxxjnTp1arbGmpdulLmrOW3ZssVIMi+++GK2x/BPnOozp/tfZgrL73duWZlp3759Mz0WePnll40kx7R4hUF2j4VSU1NNSkqKiYmJMQ0bNnS6T5IpU6aMOXfunKNtyZIlRpJp0KCB0xS+b775ppFkfv75Z0eb/Zj92imWHn/8cVOkSBFz4MABR9uAAQPMzJkzzddff22WLFliHn74YSPJ9OnTJ1vbf7Wrs7AfOyQkJBhjjLn99ttNVFSUMcZkmOpT10z5FR0dbby9vc3u3buv+1j29d91111O7X///bfx9/c399xzj1P7wYMHja+vb4bprLJif2189dVXTUpKirl06ZLZvn27uf32240ks3z58gzbvmjRIkdbQkKCkWRGjBjhtN6rp7odPXq0KVOmjElJSTGJiYnG19fXxMfH59vUb8eOHTOSTK9evbLs9+CDDxpJ5q+//nJs65YtW0xKSoo5e/asWbZsmSlVqpQJDg42x44dM8YY4+fnZ5o1a5an43en3GR39VSf104Xt3z5ciPJTJ8+3Wk9EyZMyLBPNGvWzISFhZmzZ8862lJTU02dOnVMhQoVMp32u6BxZX966623jCSn7xdOnTplfH19zZAhQ6677tTUVHP58mVzyy23mGeffdbRntVUn1f3M8aYjz76KM+mHM0rJ0+eNC1btnR8xvP29jYtWrQwEyZMcNpXwsPDjZ+fn9N7w8WLF02JEiXMk08+6Whz5TX5+eefNzabzezatcup/e67777u90yFnSs5f/rpp0aS+fHHH6+7nsIy1Wdeb6+rr6lXc3Uf7tWrl/H19TUHDx50Wr5jx44mICDAMR31Cy+8YGw2W4bxt2vXzq1TfdpFRESYkiVLmsuXLzvahgwZYiSZ3377zdGmbEz1acyVbWncuLExxphdu3YZSWb9+vWOy0rZXytz8hwVdq5kntl7e3aOyVF4cMYf8t2MGTPk7+/vOAU7KChIPXv21DfffOP4i9YmTZro9OnTeuihh7R06VKdPHky249z0003qU2bNk5ta9euVa1atdSkSROn9qioKBljtHbt2hxulfvNnj1b27Ztc/rZunWrU5/WrVsrODjYcbt06dIKCwtzTG9z/vx5bdu2Td27d5efn5+jn/2vMK9mz+raKR169uypwMBArVmzxsrNc5sVK1Zo4MCB6tGjh5566qkcrePuu+/Wtm3btHbtWr388stauHCh7r//fo+fXvZGPvroI/Xu3Vt33nmn7r//fn3xxRfq3LmzJk6cmOn0NKtXr86wjy9ZsiT/B17AZTfXfwKrMrH/zjZv3lwffPCBIiMj1adPHy1ZskQnT57U1KlTM10uNDRUL7zwghYuXJjhdfla06ZNk7e3t3x8fFSzZk1t2rRJY8eOzfQC3QVVTnNC1sjVejnJ9OGHH3a63bt3b0lXZgbwJAsWLNAdd9yhoKAgeXl5ydvbWzNmzMh06snWrVsrMDDQcbtmzZqSpI4dOzpN4Wtvv3bq4uDg4AxTLPXu3Vvp6elOf/0+depU9evXT3fddZfuu+8+zZkzR4MGDdKcOXP0ww8/5HqbIyIiVK1aNc2cOVM7d+7Utm3bMp3uMjMrVqxQ69atHduYlfvvv9/p9ubNm3Xx4sUMx9QVK1ZUmzZtcnRM/cILL8jb21t+fn5q1KiRDh48qHfffddxlpEkPfDAAwoODnb6q/CZM2fKZrNlOW1nv3799Ndff2nFihX66KOP5OPj47gEQ0Fi/v+ZpVfvg82aNZO3t7eCg4PVuXNnlSlTRitWrFDp0qXdNcwCKbPssvL1119LurJPXc0+ha7d+fPntXXrVvXo0UNBQUGO9qJFi+qRRx7Rn3/+6fJZbgVBVvvTww8/LF9fX8elSKQrZxEnJyc7/X6lpqbqlVdeUa1ateTj4yMvLy/5+Pjov//9r8tT/V77vvTAAw/Iy8urUL0vhYaG6ptvvtG2bds0ceJE3Xffffrtt980bNgw1a1b1+n7oAYNGjjNnOPn56fq1as7vbe48pr89ddfq06dOqpVq5ZT+7X7rSdxJecGDRrIx8dHTzzxhGbNmuU0O1RhU1C315V9eO3atYqMjMxwllpUVJQuXLigzZs3S7py/Fm7dm3Vr1/fqZ/9+NTdYmJidPLkScf0xqmpqZozZ47uvPPOXM0UEB0dre+//147d+7UjBkzVK1aNd11111WDbtQy03mrh6To/Cg8Id89fvvv2vDhg3q1KmTjDE6ffq0Tp8+rR49ekiS44PnI488opkzZ+rAgQO6//77FRYWpqZNm2rVqlUuP1bZsmUztCUmJmbaXq5cOcf9hVXNmjXVuHFjp59GjRo59QkNDc2wnK+vry5evCjpypRy6enpKlOmTIZ+17YlJibKy8srw/RzNptNZcqUKdRZ2n355Zfq3r272rVrp48++sjlD7/Xuummm9S4cWO1bt1aw4cP13vvvafPPvss02vl/NP16dNHqamp+v777zPcV79+/Qz7eJ06ddwwysInq1z/qXKSif019Nrpzxo0aKCyZctqx44d1132mWeeUbly5TR06NAsH+OBBx7Qtm3b9P3332vPnj1KTEwskFPnZMXVnOwfePft25e/AyykcrP/IXPZzdTLyyvDsZT9+MgTjnvsFi1apAceeEDly5fXnDlztHnzZkcR7NKlSxn6lyhRwum2j49Plu3XriOzoourufbp00eStGXLliz7ucJe8JozZ47eeecdVa9eXXfeeadLy544ceK6Uyde69rPIvZtvN5nlJzsW08//bS2bdum7du3a+/evTp69KieeOIJpz4BAQHq1auXVq5cqWPHjjm+GLIXQK8nPDxckZGRmjlzpmbOnKlevXrl63TNJUuWVEBAwA3fO/bv36+AgACn/dD+h5I//PCDjhw5op9//ll33HGH4/5KlSp59HtSbrLLiv1z4bX9r/3d/vvvv2WM8ZjP41ntTyVKlNC9996r2bNnO6ZMjY+PV5MmTVS7dm3HOgYPHqyRI0eqa9eu+vzzz7V161Zt27ZN9evXd3xGv5FrP6fb36sKU5Z2jRs31gsvvKAFCxboyJEjevbZZ7V//36nqQ1v9J2G5NprcmJiYqbvP/+EPwTIKudq1app9erVCgsL08CBA1WtWjVVq1ZNU6ZMcfewcyyvttfV19RrubIPu/rdZWJiokvf37lLjx49VKxYMcfUx1988YX++usvx7WGc8o+xfi7776rDz/80DHF5bVy+hwVZrnJPDfH5CiYKPwhX82cOVPGGH366ae66aabHD/2a/PNmjXLcWDcr18/bdq0SWfOnNHy5ctljFHnzp0z/JXw9WT2oh8aGqqjR49maD9y5IikK28K/2Q33XSTbDabjh07luG+a9tCQ0OVmpqa4WwZY4yOHTtW6LP88ssv1bVrV0VERGjhwoWOL6usYD/jNCfX+/J09r8wvvpi28g9cs0oJ5nUq1cvy/VltS5/f3/FxsZqw4YNWr58+XX7lSpVyvGHG9WrV8/RdQ/czdWcypYtq7p16+qrr77ShQsX8mt4hVZu9j9kLruZpqamZvjQaz8+yuxLnMJqzpw5qlKlij7++GN17dpVzZo1U+PGjfPs+s1//fVXhjZXc7X6/S0qKkonT57UO++8k+VZb9cqVaqU/vzzT5f6XvsZxb6N1/uMkpNj6goVKqhx48a67bbbVLVq1ev+8VpMTIxSU1M1e/ZsLVu2TMePH3fpi6Ho6Gh99tln+vHHH10+K9IqRYsWVevWrfX9999fN/M///xT27dvV5s2bZzeR+1/KGkv7l/r7rvv1l9//WVJIbkgyk12WbF/Ljx16pRT+7WfH2+66SYVKVLEYz6P32h/6tevnw4fPqxVq1Zp9+7d2rZtW4bXlTlz5ujRRx/VK6+8orvvvltNmjRR48aNszXj0bU529+rCvv7kre3t0aPHi1JSkhIyNayrrwmh4aGZvn+80+RWc533nmnPv/8c505c0ZbtmxR8+bN9cwzz2j+/PnuHKolrNzeokWLKjIyUtu3b3f5GMBVrn53GRoa6tL3d+7i7++vhx56SCtXrtTRo0c1c+ZMBQcHWzJTQL9+/TR9+nSdOnVKffv2zbRPXj5HBVVuMs/NMTkKJr4hQL5JS0vTrFmzVK1aNa1bty7Dz5AhQ3T06FGtWLHCabnAwEB17NhRI0aM0OXLl7Vr1y5JV/4iRpLLfwknSZGRkdq9e3eGv+CePXu2bDabWrduncutLNwCAwPVpEkTLVq0yOmvsc+ePavPP//cqW9kZKSkKx9WrrZw4UKdP3/ecX9h9NVXX6lr165q2bKllixZ4tjXrGKfduXmm2+2dL2e4MMPP5S3t3eGs1WRO+SaUU4y6dixowICAjK8T+3YsUPHjh1Ts2bNslw+OjpaNWvW1IsvvujRU/1mJ6eRI0fq77//1r/+9S/HF/hXO3funL766qs8H3NhkNv9DxnlJNOPPvrI6fbcuXMlSa1atcqzceY3m80mHx8fp2LRsWPH8mymgrNnzzqmI7KbO3euihQpcsNpm2bPni1Jlu3/5cuX1/PPP68uXbpc90ukzHTs2FHr1q3L0TSFzZs3l7+/f4Zj6j///NMx1Vdeadq0qerUqaO4uDjFxcWpWLFiGaYizUy3bt3UrVs3RUdHu+W1Z9iwYTLGaMCAAY4/GrVLS0tT//79ZYzRsGHDsrXeZ599VoGBgRowYIDOnDmT4X5jjBYvXpyrsbtbXmQXEREhSfr444+d2q/90jwwMFBNmzbVokWLnD7Dp6ena86cOapQoYKqV6+e3U0qsNq3b6/y5cs7fr/8/PwyTCNps9kyfNZcvny5Dh8+7PLjXPu+9Mknnyg1NbVQvS9lVuCQ5Jju1H6Wk6tceU2OiIhQQkKCdu/e7dTuCcWt68luzkWLFlXTpk0dU5/bv0fLyXdx7pAf22t/TX388cd1+fLlDPenpKRk+C7NFZGRkVq7dq2j0Gc3e/ZsBQQEON57W7durV27dumnn35y6mc/Pi0IYmJilJaWpsmTJ+uLL76wbKaAvn37qkuXLnr++edVvnz56/bLq+eoIMtp5rk5JkfB5OXuAeCfY8WKFTpy5IheffXVTA9C69Spo//85z+aMWOGli5dKn9/f91xxx0qW7asjh07pgkTJqhYsWK6/fbbHf0l6b333lNwcLD8/PxUpUqVLP8K4dlnn9Xs2bPVqVMnjR07VuHh4Vq+fLmmTZum/v37F+oPGgkJCUpNTc3QXq1atQzTcWZl3Lhx6tChg9q1a6chQ4YoLS1Nr776qgIDA53+irNdu3a6++679cILLygpKUl33HGHfv75Z40ePVoNGzbUI488Ysl25ZW1a9dq//79GdrDwsLUtWtXlSlTRsOHD9ePP/7odH+tWrUUEhLi0mO8++67+uabb9S+fXtVrFhR58+f1zfffKO3335bLVq00H333WfBlhRs18t5165d2r9/vyIjI1WhQgUdP35cM2bM0FdffaXY2NhM/9p3+/btKlasWIb27DwnnsLKXD1FfmRSvHhxjR07Vs8995yioqL00EMP6dixYxo5cqQqVap0w+vwFS1aVK+88oq6desmKeuzjQqD62V+zz33uJxTz549NXLkSI0bN06//vqrYmJiVK1aNV24cEFbt27Vu+++qwcffFDt27fPxy1zLytyhTOrMvXx8dHrr7+uc+fO6fbbb9emTZs0fvx4dezYUS1btsynrbHO9XJp06aNFi1apAEDBqhHjx46dOiQxo0bp7Jlyzqux22l0NBQ9e/fXwcPHlT16tX1xRdf6P3331f//v0dUwLPnTtXixYtUqdOnRQeHq7Tp09rwYIFmj9/vqKiojJc2yY3Jk6cmO1lxo4dqxUrVuiuu+7S8OHDVbduXZ0+fVorV67U4MGDVaNGjesuW7x4cY0cOVLDhw/Xo48+qoceekiJiYkaM2aM/Pz8HGcm5JXo6GgNHjxYe/bs0ZNPPil/f/8bLuPn56dPP/00T8eVlTvuuENvvvmmnnnmGbVs2VKDBg1SpUqVdPDgQU2dOlVbt27Vm2++qRYtWmRrvVWqVNH8+fP14IMPqkGDBho0aJAaNmwoSdq9e7dj9hr7+3hhlBfZdejQQXfccYeGDBmipKQkNWrUSJs3b3YU5q8+I3fChAlq166dWrdureeee04+Pj6aNm2aEhISNG/evBxfWqEgKlq0qB599FG98cYbCgkJUffu3TN8luncubPi4+NVo0YN1atXT9u3b9fkyZNdnjpYujI9s5eXl9q1a6ddu3Zp5MiRql+/foZrLhZkd999typUqKAuXbqoRo0aSk9P148//qjXX39dQUFBevrpp7O1Pldek5955hnNnDlTHTt21NixY1W6dGnNnTtXv/76qyTPnCnFlZzfeecdrV27Vp06dVKlSpV06dIlxyV52rZtK+nKdcDCw8O1dOlSRUZGqkSJEipZsqQqV67sxq3LKD+2t3nz5po+fboGDBigRo0aqX///qpdu7ZSUlL0ww8/6L333lOdOnXUpUuXbI199OjRWrZsmVq3bq1Ro0apRIkS+uijj7R8+XJNmjTJ8Vpi3487deqk8ePHq3Tp0vroo48c+3FB0LhxY9WrV09vvvmmjDHXnVlg7969mR5b1KpVK8O1OKUrhdslS5bc8PHz6jkqyFzN/FquHJOjkDFAPunatavx8fExx48fv26fXr16GS8vLxMfH29at25tSpcubXx8fEy5cuXMAw88YH7++Wen/m+++aapUqWKKVq0qJFk4uLijDHGREREmNq1a2f6GAcOHDC9e/c2oaGhxtvb29x6661m8uTJJi0tzbJtzU9xcXFG0nV/3n//fWOMMZLMwIEDMywfHh5u+vbt69T22WefmXr16hkfHx9TqVIlM3HiRDN69Ghz7UvGxYsXzQsvvGDCw8ONt7e3KVu2rOnfv7/5+++/82pzc+1GefXt2zfL+9etW+fyY23cuNF07tzZlCtXzvj4+JiAgABTv359M27cOHP+/HmnvvZ8T5w4kem6wsPDTadOnXKz6fnqRjm/9dZbpmXLlqZUqVLGy8vLBAcHmzvvvNPMmzcvw7rs2VzvZ9WqVRmWWbdunZFkFixYkB+bm2/yItfCvs9ZmYmr3n//fVOnTh3j4+NjQkNDzcMPP2wOHTrk1CerfFu0aGEkZcj3eq/TBc2NMt+3b58xxrWc7L7++mvTo0cPU7ZsWePt7W1CQkJM8+bNzeTJk01SUlKG/vv27TOSzOTJk/NyU/OVlbl6yu93blmZad++fU1gYKD5+eefTatWrYy/v78pUaKE6d+/vzl37pwbti7nXMll4sSJpnLlysbX19fUrFnTvP/++5keC2b2unW938/M3pvtx+zr1683jRs3Nr6+vqZs2bJm+PDhJiUlxdFv8+bNJjIy0pQpU8Z4e3ubgIAAc/vtt5tp06bl6hjensW2bduy7Fe7dm0TERHhtN2jR4926nPo0CETHR3tGKP988tff/113e2/2gcffOA4/i5WrJi57777zK5du7K1PTl5bTxx4oTx8fExksx3332XaR/7/n+j9WSWS17avHmz6dGjhyldurTx8vIyYWFhpnv37mbTpk1O/Vx9nu327t1rBgwYYG6++Wbj6+tr/P39Ta1atczgwYMdrxuFXXazu3q7+/bta8LDw536nTp1yvTr188UL17cBAQEmHbt2pktW7YYSWbKlClOfb/55hvTpk0bExgYaPz9/U2zZs3M559/nlebarns7E+//fZblp9Z/v77bxMTE2PCwsJMQECAadmypfnmm29MRESE02uO/Xfb/n2HMf97r9++fbvp0qWLCQoKMsHBweahhx5yvO4UFh9//LHp3bu3ueWWW0xQUJDx9vY2lSpVMo888ojZvXu3o9/1jl+uzcuYG78mG2NMQkKCadu2rfHz8zMlSpQwMTExZtasWUaS+emnn/Jse93FlZw3b95sunXrZsLDw42vr68JDQ01ERER5rPPPnNa1+rVq03Dhg2Nr6+v43uUgiY/t/fHH380ffv2NZUqVTI+Pj4mMDDQNGzY0IwaNcrpO9Ds7MM7d+40Xbp0McWKFTM+Pj6mfv36Tq8Bdrt37zbt2rVz2o+XLl2a4furzF6788uUKVOMJFOrVq1M78/quNR+XJHV97x227Zty/Baaefqc+Qpsso8s/d2V4/JUbjYjMlkXiUAAAAAAPJQq1atdPLkyWxfvwlAwTd37lw9/PDD2rhxY7bPvgTc5YknntC8efOUmJgoHx8fdw8HAPIFx+Seiak+AQAAAAAAkCPz5s3T4cOHVbduXRUpUkRbtmzR5MmTddddd1H0Q4E1duxYlStXTlWrVtW5c+e0bNkyffDBB3rppZco+gEACj0KfwCQTcYYpaWlZdmnaNGiHnWNCsCT8TsNACjIeJ9CQRccHKz58+dr/PjxOn/+vMqWLauoqCiNHz/e3UMDrsvb21uTJ0/Wn3/+qdTUVN1yyy164403sn1NQQAACiKm+gSAbFq/fr1at26dZZ+4uDhFRUXlz4AA5Aq/0wCAgoz3KQAAAADZQeEPALLp7Nmz2rNnT5Z9qlSpotDQ0HwaEYDc4HcaAFCQ8T4FAAAAIDso/AEAAAAAAAAAAAAeoIi7BwAAAAAAAAAAAAAg9yj8AQAAAAAAAAAAAB6Awh8AAAAAAAAAAADgASj8AQAAAAAAAAAAAB6Awh8AAAAAIFOxsbFq0KCB43ZUVJS6du3qtvEAAAAAALJG4Q8AAAAAPNCxY8f01FNPqWrVqvL19VXFihXVpUsXrVmzJs8eMz4+XsWLF8+z9QMAAAAAsubl7gEAAAAAAKy1f/9+3XHHHSpevLgmTZqkevXqKSUlRV9++aUGDhyoX3/91d1DBAAAAADkAc74AwAAAAAPM2DAANlsNn333Xfq0aOHqlevrtq1a2vw4MHasmWLo9+ZM2f0xBNPKCwsTCEhIWrTpo1++umnHD3m+vXr1a9fP505c0Y2m002m02xsbEaO3as6tatm6F/o0aNNGrUKEn/m0J0zJgxjrE8+eSTunz5sqO/MUaTJk1S1apV5e/vr/r16+vTTz913P/333/r4YcfVqlSpeTv769bbrlFcXFxOdoWAAAAACisOOMPAAAAADzIqVOntHLlSr388ssKDAzMcL99Kk5jjDp16qQSJUroiy++ULFixfTuu+8qMjJSv/32m0qUKJGtx23RooXefPNNjRo1Snv27JEkBQUF6fTp0xozZoy2bdum22+/XZL0888/64cfftCCBQscy69Zs0Z+fn5at26d9u/fr379+qlkyZJ6+eWXJUkvvfSSFi1apOnTp+uWW27Rhg0b1KdPH5UqVUoREREaOXKkdu/erRUrVqhkyZL6/fffdfHixZxECAAAAACFFoU/AAAAAPAgv//+u4wxqlGjRpb91q1bp507d+r48ePy9fWVJL322mtasmSJPv30Uz3xxBPZelwfHx8VK1ZMNptNZcqUcbQHBQXp7rvvVlxcnKPwFxcXp4iICFWtWtVp+ZkzZyogIEC1a9fW2LFj9fzzz2vcuHG6ePGi3njjDa1du1bNmzeXJFWtWlXffvut3n33XUVEROjgwYNq2LChGjduLEmqXLlytsYPAAAAAJ6Awh8AAAAAeBBjjCTJZrNl2W/79u06d+6cQkNDndovXryovXv3Wjqmxx9/XNHR0XrjjTdUtGhRffTRR3r99ded+tSvX18BAQGO282bN9e5c+d06NAhHT9+XJcuXVK7du2clrl8+bIaNmwoSerfv7/uv/9+7dixQ+3bt1fXrl3VokULS7cDAAAAAAo6Cn8AAAAA4EFuueUW2Ww2/fLLL+ratet1+6Wnp6ts2bJav359hvvs04FapUuXLvL19dXixYvl6+ur5ORk3X///S4ta7PZlJ6eLklavny5ypcv73S//WzFjh076sCBA1q+fLlWr16tyMhIDRw4UK+99pql2wIAAAAABRmFPwAAAADwICVKlNDdd9+tqVOn6l//+leG6/ydPn1axYsX12233aZjx47Jy8vLsmkxfXx8lJaWlqHdy8tLffv2VVxcnHx9fdWrVy+ns/sk6aefftLFixfl7+8vSdqyZYuCgoJUoUIF3XTTTfL19dXBgwcVERFx3ccvVaqUoqKiFBUVpTvvvFPPP/88hT8AAAAA/ygU/gAAAADAw0ybNk0tWrRQkyZNNHbsWNWrV0+pqalatWqVpk+frl9++UVt27ZV8+bN1bVrV7366qu69dZbdeTIEX3xxRfq2rWr41p52VG5cmWdO3dOa9ascUzdaS/wPfbYY6pZs6YkaePGjRmWvXz5smJiYvTSSy/pwIEDGj16tAYNGqQiRYooODhYzz33nJ599lmlp6erZcuWSkpK0qZNmxQUFKS+fftq1KhRatSokWrXrq3k5GQtW7bM8XgAAAAA8E9B4Q8AAAAAPEyVKlW0Y8cOvfzyyxoyZIiOHj2qUqVKqVGjRpo+fbqkK1NofvHFFxoxYoSio6N14sQJlSlTRnfddZdKly6do8dt0aKF/u///k8PPvigEhMTNXr0aMXGxkq6MgVpixYtlJiYqKZNm2ZYNjIyUrfccovuuusuJScnq1evXo5lJWncuHEKCwvThAkT9McffzjOWhw+fLikK2cbDhs2TPv375e/v7/uvPNOzZ8/P0fbAQAAAACFlc3Yr/wOAAAAAEAeMcaoRo0aevLJJzV48GCn+6KionT69GktWbLEPYMDAAAAAA/BGX8AAAAAgDx1/Phxffjhhzp8+LD69evn7uEAAAAAgMei8AcAAAAAyFOlS5dWyZIl9d577+mmm25y93AAAAAAwGMx1ScAAAAAAAAAAADgAYq4ewAAAAAAAAAAAAAAco/CHwAAAAAAAAAAAOABKPwBAAAAAAAAAAAAHoDCHwAAAAAAAAAAAOABKPwBAAAAAAAAAAAAHoDCHwAAAAAAAAAAAOABKPwBAAAAAAAAAAAAHoDCHwAAAAAAAAAAAOABKPwBAAAAAAAAAAAAHuD/AVGMFny9bqDjAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAEiCAYAAAAxqKXyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkLklEQVR4nO3deZyN9f//8ecx+5gZMozdWMq+RrZkMIhQiJKUYVo+lj4VpRDGUqTlk/qgDUNCyVZEWSNborKVPilLljBirGOW9+8Pv3O+jjPGmZlr5sycHvfbbW7M+7yv67yv57nmnOuc17nel80YYwQAAAAAAAAAAAAgXyvg6QEAAAAAAAAAAAAAyD4KfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAAAAAAAAAIAXoPAHAAAAAAAAAAAAeAEKfwAAAACQS+Lj42Wz2Rw/vr6+KlOmjPr06aMjR47kyhjKly+vmJgYx+/r1q2TzWbTunXrMrWeTZs2KS4uTmfOnHG5rUWLFmrRokW2xpnT4uLiZLPZsrTsnDlz9NZbb1k7IAAAAACwgK+nBwAAAAAA/zQzZsxQ1apVdenSJa1fv17jx4/XN998o127dqlgwYK5Opbbb79dmzdvVvXq1TO13KZNmzR69GjFxMSocOHCTrdNmTLFwhHmPXPmzNHu3bv1zDPPeHooAAAAAOCEwh8AAAAA5LKaNWuqQYMGkqSWLVsqNTVVY8eO1eLFi/Xwww+nu8zFixcVHBxs+VjCwsLUuHFjS9eZ2SIiAAAAAMAaTPUJAAAAAB5mL7wdPHhQkhQTE6OQkBDt2rVLbdu2VWhoqKKjoyVJV65c0bhx41S1alUFBASoWLFi6tOnj06ePOm0zuTkZA0ZMkQlSpRQcHCwmjVrpu+++87lvm801efWrVvVqVMnhYeHKzAwUJUqVXKc4RYXF6fnn39eklShQgXH1KX2daQ31efp06fVv39/lS5dWv7+/qpYsaKGDx+upKQkp342m00DBw7URx99pGrVqik4OFh16tTR0qVLb5qjfVtmz56tQYMGqUSJEgoKClJUVJR++OGHmy6flpamiRMnOrKNiIjQo48+qj///NPRp0WLFlq2bJkOHjzoNG0rAAAAAOQFnPEHAAAAAB7222+/SZKKFSvmaLty5YruvfdePfnkk3rxxReVkpKitLQ03XfffdqwYYOGDBmipk2b6uDBgxo1apRatGih77//XkFBQZKkxx9/XLNmzdJzzz2nNm3aaPfu3eratavOnTt30/F89dVX6tSpk6pVq6Y333xT5cqV04EDB/T1119Lkh577DGdPn1a77zzjhYuXKiSJUtKuvGZfpcvX1bLli21f/9+jR49WrVr19aGDRs0fvx4/fjjj1q2bJlT/2XLlmnbtm0aM2aMQkJCNHHiRHXp0kX79u1TxYoVbzr+YcOG6fbbb9eHH36os2fPKi4uTi1atNAPP/yQ4fL9+vXT+++/r4EDB6pjx446cOCARowYoXXr1mnHjh0qWrSopkyZoieeeEL79+/XokWLbjoWAAAAAMhNFP4AAAAAIJelpqYqJSVFly9f1jfffKNx48YpNDRU9957r6NPcnKyRo4cqT59+jja5s2bpxUrVmjBggXq2rWro71OnTq64447FB8fr379+umXX37RzJkz9eyzz2rixImSpDZt2qh48eI3nEr0WgMGDFC5cuW0detWBQYGOtrtYylTpozKlSsnSapXr57Kly+f4fpmzpypnTt36tNPP1X37t0d4wkJCdELL7yglStXqk2bNo7+ly5d0qpVqxQaGirp6nUIS5UqpU8//VQvvvjiTcdfrFgxLVq0yHEmXrNmzXTbbbdp/Pjx+uCDD9Jd5pdfftH777+v/v3765133nG016tXT40aNdJ//vMfvfzyy6pevboKFy6sgIAAy6dIBQAAAIDsYqpPAAAAAMhljRs3lp+fn0JDQ9WxY0eVKFFCy5cvV/HixZ363X///U6/L126VIULF1anTp2UkpLi+Klbt65KlCjhmGpz7dq1kuRS5HvggQfk65vx9z9//fVX7d+/X7GxsU5Fv+xYs2aNChYsqG7dujm1x8TESJJWr17t1N6yZUtH0U+SihcvroiICMdUqDfTs2dPp+k3IyMj1bRpU0cu6bHfZh+TXcOGDVWtWjWXMQIAAABAXsQZfwAAAACQy2bNmqVq1arJ19dXxYsXd0yVea3g4GCFhYU5tf311186c+aM/P39013vqVOnJEkJCQmSpBIlSjjd7uvrq/Dw8AzHZr9WYJkyZdzbGDckJCSoRIkSLtfCi4iIkK+vr2O8dumNMSAgQJcuXXLr/q7fbnvbTz/9lOEYJaX7WJQqVcrtoiMAAAAAeBKFPwAAAADIZdWqVVODBg0y7HN9kUySihYtqvDwcK1YsSLdZexnydkLZ8ePH1fp0qUdt6ekpLgU2a5nv87gn3/+mWG/zAgPD9fWrVtljHHarhMnTiglJUVFixa17L6kq9udXltGRU/7bceOHXMpeh49etTyMQIAAABATmCqTwAAAADIJzp27KiEhASlpqaqQYMGLj9VqlSRJLVo0UKS9PHHHzst/+mnnyolJSXD+6hcubIqVaqk6dOnKykp6Yb9AgICJMmts/Cio6N1/vx5LV682Kl91qxZjtutNHfuXBljHL8fPHhQmzZtcuSSnlatWkmSZs+e7dS+bds2/fzzz05jzMzZhwAAAACQmzjjDwAAAADyiR49eujjjz/WPffco6effloNGzaUn5+f/vzzT61du1b33XefunTpomrVqqlXr15666235Ofnp9atW2v37t16/fXXXaYPTc/kyZPVqVMnNW7cWM8++6zKlSunQ4cO6auvvnIUE2vVqiVJmjRpknr37i0/Pz9VqVLF6dp8do8++qgmT56s3r1768CBA6pVq5a+/fZbvfLKK7rnnnvUunVrS3M6ceKEunTposcff1xnz57VqFGjFBgYqKFDh95wmSpVquiJJ57QO++8owIFCqh9+/Y6cOCARowYobJly+rZZ5919K1Vq5YWLlyoqVOnqn79+ipQoMBNz+AEAAAAgNxA4Q8AAAAA8gkfHx99/vnnmjRpkj766CONHz9evr6+KlOmjKKiohzFOEmaNm2aihcvrvj4eL399tuqW7euFixYoB49etz0fu6++26tX79eY8aM0b///W9dvnxZZcqU0b333uvo06JFCw0dOlQzZ87UBx98oLS0NK1duzbds+oCAwO1du1aDR8+XK+99ppOnjyp0qVL67nnntOoUaMsyeZar7zyirZt26Y+ffooMTFRDRs21Lx581SpUqUMl5s6daoqVaqkadOmafLkySpUqJDatWun8ePHO00T+vTTT2vPnj0aNmyYzp49K2OM0xmGAAAAAOApNsO7EwAAAACAF1i3bp1atmyp+fPnq1u3bp4eDgAAAADkOq7xBwAAAAAAAAAAAHgBCn8AAAAAAAAAAACAF2CqTwAAAAAAAAAAAMALcMYfAAAAAAAAAAAA4AUo/AEAAAAAAAAAAABegMIfAAAAAAAAAAAA4AV8PT2AvCAtLU1Hjx5VaGiobDabp4cDAAAAAAAAAAAASJKMMTp37pxKlSqlAgUyPqePwp+ko0ePqmzZsp4eBgAAAAAAAAAAAJCuw4cPq0yZMhn2ofAnKTQ0VNLVwMLCwjw8GmRGcnKyvv76a7Vt21Z+fn6eHk6+RpbWIUvrkKU1yNE6ZGkdsrQOWVqHLK1DltYhS+uQpXXI0hrkaB2ytA5ZWocsrUOW1iHL/CsxMVFly5Z11LMyQuFPckzvGRYWRuEvn0lOTlZwcLDCwsJ4osomsrQOWVqHLK1BjtYhS+uQpXXI0jpkaR2ytA5ZWocsrUOW1iBH65CldcjSOmRpHbK0Dlnmf+5cri7jiUABAAAAAAAAAAAA5AsU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AK+nh4AAFip0zvfenoI8rOlqXdZ6cH3NivZeO77FV881cxj9w0AAAAAAAAAyH2c8QcAAAAAAAAAAAB4AQp/AAAAAAAAAAAAgBeg8AcAAAAAAAAAAAB4AQp/AAAAAAAAAAAAgBeg8AcAAAAAAAAAAAB4AQp/AAAAAAAAAAAAgBeg8AcAAAAAAAAAAAB4AQp/AAAAAAAAAAAAgBeg8AcAAAAAAAAAAAB4AQp/AAAAAAAAAAAAgBeg8AcAAAAAAAAAAAB4AQp/AAAAAAAAAAAAgBeg8AcAAAAAAAAAAAB4AY8W/tasWaO+ffuqatWqKliwoEqXLq377rtP27dvv+my8fHxstls6f4cP348F0YPAAAAAAAAAAAA5B2+nrzzqVOnKiEhQU8//bSqV6+ukydP6o033lDjxo311VdfqVWrVjddx4wZM1S1alWntvDw8JwaMgAAAAAAAAAAAJAnebTwN3nyZEVERDi1tWvXTrfeeqteeeUVtwp/NWvWVIMGDXJqiAAAAAAAAAAAAEC+4NGpPq8v+klSSEiIqlevrsOHD3tgRAAAAAAAAAAAAED+5NHCX3rOnj2rHTt2qEaNGm7179ixo3x8fFSkSBF17dpVu3fvzuERAgAAAAAAAAAAAHmPR6f6TM+AAQN04cIFDR8+PMN+JUqU0PDhw9W4cWOFhYVp165dmjBhgho3bqyNGzeqTp06N1w2KSlJSUlJjt8TExMlScnJyUpOTrZmQ5Ar7I8Xj1v2eUuWfrY0Tw9BfjZzzb+eG09+fywl79kvPY0crUOW1iFL65CldcjSOmRpHbK0DllahyytQY7WIUvrkKV1yNI6ZGkdssy/MvOY2YwxJgfHkikjRozQuHHj9M4772jgwIGZXv7AgQOqVauWWrVqpSVLltywX1xcnEaPHu3SPmfOHAUHB2f6fgEAAAAAAAAAAICccPHiRfXs2VNnz55VWFhYhn3zTOFv9OjRiouL08svv6xhw4ZleT3t27fXjh079Ndff92wT3pn/JUtW1anTp26aWDIW5KTk7Vy5Uq1adNGfn5+nh5OvuYtWT743mZPD0F+NqOeZc5ozp+FlWxsHhvHJ0828dh9W8Vb9ktPI0frkKV1yNI6ZGkdsrQOWVqHLK1DltYhS2uQo3XI0jpkaR2ytA5ZWocs86/ExEQVLVrUrcJfnpjq0170i4uLy1bRT5KMMSpQIONLFwYEBCggIMCl3c/Pj509n+Kxs05+zzLZ5IVLl16d3jPZ2Dw6nvz8OF4vv++XeQU5WocsrUOW1iFL65CldcjSOmRpHbK0DllagxytQ5bWIUvrkKV1yNI6ZJn/ZObx8vgn5GPHjlVcXJxeeukljRo1Klvr+uOPP7Rx40Y1btzYotEBAAAAAAAAAAAA+YNHz/h74403NHLkSLVr104dOnTQli1bnG63F/BiY2M1c+ZM7d+/X5GRkZKk1q1bq3nz5qpdu7bCwsK0a9cuTZw4UTabTWPHjs31bQEAAAAAAAAAAAA8yaOFvy+++EKStGLFCq1YscLldvvlB1NTU5WamqprL0dYq1YtffLJJ3r99dd16dIlRUREqFWrVhoxYoQqV66cOxsAAAAAAAAAAAAA5BEeLfytW7fOrX7x8fGKj493avvPf/5j/YAAAAAAAAAAAACAfMrj1/gDAAAAAAAAAAAAkH0U/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAv4NHC35o1a9S3b19VrVpVBQsWVOnSpXXfffdp+/btbi1/4sQJxcTEqGjRogoODlaTJk20evXqHB41AAAAAAAAAAAAkPd4tPA3depUHThwQE8//bS+/PJLTZo0SSdOnFDjxo21Zs2aDJdNSkpSdHS0Vq9erUmTJmnJkiUqXry42rVrp2+++SaXtgAAAAAAAAAAAADIG3w9eeeTJ09WRESEU1u7du1066236pVXXlGrVq1uuOy0adO0e/dubdq0SU2aNJEktWzZUnXq1NGQIUO0devWHB07AAAAAAAAAAAAkJd49Iy/64t+khQSEqLq1avr8OHDGS67aNEiValSxVH0kyRfX1/16tVL3333nY4cOWL5eAEAAAAAAAAAAIC8yqOFv/ScPXtWO3bsUI0aNTLst3v3btWuXdul3d62Z8+eHBkfAAAAAAAAAAAAkBd5dKrP9AwYMEAXLlzQ8OHDM+yXkJCgIkWKuLTb2xISEm64bFJSkpKSkhy/JyYmSpKSk5OVnJyclWHDQ+yPF49b9nlLln62NE8PQX42c82/nhtPfn8sJe/ZLz2NHK1DltYhS+uQpXXI0jpkaR2ytA5ZWocsrUGO1iFL65CldcjSOmRpHbLMvzLzmNmMMSYHx5IpI0aM0Lhx4/TOO+9o4MCBGfb19/dXbGyspk6d6tS+efNmNW3aVHPnzlWPHj3SXTYuLk6jR492aZ8zZ46Cg4OzvgEAAAAAAAAAAACAhS5evKiePXvq7NmzCgsLy7Bvnjnjb/To0Ro3bpxefvnlmxb9JCk8PDzds/pOnz4tSemeDWg3dOhQDRo0yPF7YmKiypYtq7Zt2940MOQtycnJWrlypdq0aSM/Pz9PDydf85YsH3xvs6eHID+bUc8yZzTnz8JKNjaPjeOTJ5vcvFMe5y37paeRo3XI0jpkaR2ytA5ZWocsrUOW1iFL65ClNcjROmRpHbK0DllahyytQ5b5l33mSnfkicLf6NGjFRcXp7i4OA0bNsytZWrVqqVdu3a5tNvbatasecNlAwICFBAQ4NLu5+fHzp5P8dhZJ79nmWzywqVLr07vmWxsHh1Pfn4cr5ff98u8ghytQ5bWIUvrkKV1yNI6ZGkdsrQOWVqHLK1BjtYhS+uQpXXI0jpkaR2yzH8y83h5/BPysWPHKi4uTi+99JJGjRrl9nJdunTRL7/8oq1btzraUlJSNHv2bDVq1EilSpXKieECAAAAAAAAAAAAeZJHC39vvPGGRo4cqXbt2qlDhw7asmWL049dbGysfH19dfDgQUdb3759VaNGDXXv3l1z5szRqlWr9MADD2jfvn169dVXPbE5AAAAAAAAAAAAgMd4dKrPL774QpK0YsUKrVixwuV2Y4wkKTU1VampqY7fpavTda5evVpDhgzRU089pYsXL6pu3bpavny5oqKicmcDAAAAAAAAAAAAgDwiW4W/K1eu6MSJE0pLS3NqL1eunFvLr1u3zq1+8fHxio+Pd2kvXry4Zs6c6dY6AAAAAAAAAAAAAG+WpcLf//73P/Xt21ebNm1yajfGyGazKTU11ZLBAQAAAAAAAAAAAHBPlgp/MTEx8vX11dKlS1WyZEnZbDarxwUAAAAAAAAAAAAgE7JU+Pvxxx+1fft2Va1a1erxAAAAAAAAAAAAAMiCAllZqHr16jp16pTVYwEAAAAAAAAAAACQRVkq/L366qsaMmSI1q1bp4SEBCUmJjr9AAAAAAAAAAAAAMhdWZrqs3Xr1pKk6Ohop3ZjjGw2m1JTU7M/MgAAAAAAAAAAAABuy1Lhb+3atVaPAwAAAAAAAAAAAEA2ZKnwFxUVZfU4AAAAAAAAAAAAAGRDlgp/knTmzBlNmzZNP//8s2w2m6pXr66+ffuqUKFCVo4PAAAAAAAAAAAAgBsKZGWh77//XpUqVdJ//vMfnT59WqdOndKbb76pSpUqaceOHVaPEQAAAAAAAAAAAMBNZOmMv2effVb33nuvPvjgA/n6Xl1FSkqKHnvsMT3zzDNav369pYMEAAAAAAAAAAAAkLEsFf6+//57p6KfJPn6+mrIkCFq0KCBZYMDAAAAAAAAAAAA4J4sTfUZFhamQ4cOubQfPnxYoaGh2R4UAAAAAAAAAAAAgMzJUuHvwQcfVGxsrD755BMdPnxYf/75p+bNm6fHHntMDz30kNVjBAAAAAAAAAAAAHATWZrq8/XXX5fNZtOjjz6qlJQUSZKfn5/69eunCRMmWDpAAAAAAAAAAAAAADeXpcKfv7+/Jk2apPHjx2v//v0yxujWW29VcHCw1eMDAAAAAAAAAAAA4IYsFf7sgoODVatWLavGAgAAAAAAAAAAACCL3C78de3aVfHx8QoLC1PXrl0z7Ltw4cJsDwwAAAAAAAAAAACA+9wu/BUqVEg2m02SFBYW5vg/AAAAAAAAAAAAAM9zu/A3Y8YMx//j4+NzYiwAAAAAAAAAAAAAsqhAVhZq1aqVzpw549KemJioVq1aZXdMAAAAAAAAAAAAADIpS4W/devW6cqVKy7tly9f1oYNG7I9KAAAAAAAAAAAAACZk6nC386dO7Vz505J0t69ex2/79y5Uz/88IOmTZum0qVLu72+c+fOaciQIWrbtq2KFSsmm82muLg4t5aNj4+XzWZL9+f48eOZ2SwAAAAAAAAAAAAg33P7Gn+SVLduXUdxLb0pPYOCgvTOO++4vb6EhAS9//77qlOnjjp37qwPP/wwM8ORdPXag1WrVnVqCw8Pz/R6AAAAAAAAAAAAgPwsU4W/P/74Q8YYVaxYUd99952KFSvmuM3f318RERHy8fFxe32RkZH6+++/ZbPZdOrUqSwV/mrWrKkGDRpkejkAAAAAAAAAAADAm2Sq8BcZGSlJSktLs+TObTabJesBAAAAAAAAAAAA/ukydY0/u/Hjx2v69Oku7dOnT9err76a7UFlRseOHeXj46MiRYqoa9eu2r17d67ePwAAAAAAAAAAAJAXZOqMP7v33ntPc+bMcWmvUaOGevTooRdeeCHbA7uZEiVKaPjw4WrcuLHCwsK0a9cuTZgwQY0bN9bGjRtVp06dGy6blJSkpKQkx++JiYmSpOTkZCUnJ+f42GEd++PF45Z93pKln82aM5KzNwZzzb+eG09+fywl79kvPY0crUOW1iFL65CldcjSOmRpHbK0DllahyytQY7WIUvrkKV1yNI6ZGkdssy/MvOY2YwxJrN3EBgYqJ9//lkVKlRwav/9999VvXp1Xb58ObOr1KlTp1SsWDGNGjVKcXFxmV5ekg4cOKBatWqpVatWWrJkyQ37xcXFafTo0S7tc+bMUXBwcJbuGwAAAAAAAAAAALDaxYsX1bNnT509e1ZhYWEZ9s3SGX9ly5bVxo0bXQp/GzduVKlSpbKySkuUL19ezZo105YtWzLsN3ToUA0aNMjxe2JiosqWLau2bdveNDDkLcnJyVq5cqXatGkjPz8/Tw8nX/OWLB98b7OnhyA/m1HPMmc058/CSjaeu5bpJ0828dh9W8Vb9ktPI0frkKV1yNI6ZGkdsrQOWVqHLK1DltYhS2uQo3XI0jpkaR2ytA5ZWocs8y/7zJXuyFLh77HHHtMzzzyj5ORktWrVSpK0evVqDRkyRIMHD87KKi1jjFGBAhlfujAgIEABAQEu7X5+fuzs+RSPnXXye5bJJkuXLrXY1ek9k43No+PJz4/j9fL7fplXkKN1yNI6ZGkdsrQOWVqHLK1DltYhS+uQpTXI0TpkaR2ytA5ZWocsrUOW+U9mHq8sFf6GDBmi06dPq3///rpy5Yqkq9N/vvDCCxo6dGhWVmmJP/74Qxs3blTr1q09NgYAAAAAAAAAAADAE7JU+LPZbHr11Vc1YsQI/fzzzwoKCtJtt92W7ll0N7N8+XJduHBB586dkyTt3btXn332mSTpnnvuUXBwsGJjYzVz5kzt379fkZGRkqTWrVurefPmql27tsLCwrRr1y5NnDhRNptNY8eOzcpmAQAAAAAAAAAAAPlWlgp/diEhIbrjjjuyNYB+/frp4MGDjt/nz5+v+fPnS7p6Bl/58uWVmpqq1NRUGWMc/WrVqqVPPvlEr7/+ui5duqSIiAi1atVKI0aMUOXKlbM1JgAAAAAAAAAAACC/cbvw17VrV8XHxyssLExdu3bNsO/ChQvdHsCBAwdu2ic+Pl7x8fFObf/5z3/cvg8AAAAAAAAAAADA27ld+CtUqJBsNpvj/wAAAAAAAAAAAADyDrcLfzNmzEj3/wAAAAAAAAAAAAA8r4CnBwAAAAAAAAAAAAAg+9w+469evXqOqT5vZseOHVkeEAAAAAAAAAAAAIDMc7vw17lzZ8f/L1++rClTpqh69epq0qSJJGnLli3as2eP+vfvb/kgAQAAAAAAAAAAAGTM7cLfqFGjHP9/7LHH9O9//1tjx4516XP48GHrRgcAAAAAAAAAAADALVm6xt/8+fP16KOPurT36tVLCxYsyPagAAAAAAAAAAAAAGROlgp/QUFB+vbbb13av/32WwUGBmZ7UAAAAAAAAAAAAAAyx+2pPq/1zDPPqF+/ftq+fbsaN24s6eo1/qZPn66RI0daOkAAAAAAAAAAAAAAN5elwt+LL76oihUratKkSZozZ44kqVq1aoqPj9cDDzxg6QABAAAAAAAAAAAA3FyWCn+S9MADD1DkAwAAAAAAAAAAAPKILF3jT5LOnDmjDz/8UMOGDdPp06clSTt27NCRI0csGxwAAAAAAAAAAAAA92TpjL+dO3eqdevWKlSokA4cOKDHHntMRYoU0aJFi3Tw4EHNmjXL6nECAAAAAAAAAAAAyECWzvgbNGiQYmJi9L///U+BgYGO9vbt22v9+vWWDQ4AAAAAAAAAAACAe7JU+Nu2bZuefPJJl/bSpUvr+PHj2R4UAAAAAAAAAAAAgMzJUuEvMDBQiYmJLu379u1TsWLFsj0oAAAAAAAAAAAAAJmTpcLffffdpzFjxig5OVmSZLPZdOjQIb344ou6//77LR0gAAAAAAAAAAAAgJvLUuHv9ddf18mTJxUREaFLly4pKipKt956q0JDQ/Xyyy9bPUYAAAAAAAAAAAAAN+GblYXCwsL07bffas2aNdqxY4fS0tJ0++23q3Xr1laPDwAAAAAAAAAAAIAbMl34S0lJUWBgoH788Ue1atVKrVq1yolxAQAAAAAAAAAAAMiETE/16evrq8jISKWmpubEeAAAAAAAAAAAAABkQZau8ffSSy9p6NChOn36tNXjAQAAAAAAAAAAAJAFWSr8vf3229qwYYNKlSqlKlWq6Pbbb3f6cde5c+c0ZMgQtW3bVsWKFZPNZlNcXJzby584cUIxMTEqWrSogoOD1aRJE61evToLWwQAAAAAAAAAAADkb5m+xp8kde7cWTabTcaYbN15QkKC3n//fdWpU0edO3fWhx9+6PaySUlJio6O1pkzZzRp0iRFRERo8uTJateunVatWqWoqKhsjQ0AAAAAAAAAAADITzJV+Lt48aKef/55LV68WMnJyYqOjtY777yjokWLZunOIyMj9ffff8tms+nUqVOZKvxNmzZNu3fv1qZNm9SkSRNJUsuWLVWnTh0NGTJEW7duzdKYAAAAAAAAAAAAgPwoU1N9jho1SvHx8erQoYMeeughrVq1Sv369cvyndtsNtlstiwtu2jRIlWpUsVR9JMkX19f9erVS999952OHDmS5XEBAAAAAAAAAAAA+U2mzvhbuHChpk2bph49ekiSHn74Yd15551KTU2Vj49PjgzwRnbv3q277rrLpb127dqSpD179qh06dK5OiYAAAAAAAAAAADAUzJV+Dt8+LBTsa1hw4by9fXV0aNHVbZsWcsHl5GEhAQVKVLEpd3elpCQcMNlk5KSlJSU5Pg9MTFRkpScnKzk5GSLR4qcZH+8eNyyz1uy9LOleXoI8rOZa/713Hjy+2Mpec9+6WnkaB2ytA5ZWocsrUOW1iFL65CldcjSOmRpDXK0DllahyytQ5bWIUvrkGX+lZnHzGaMMe529vHx0fHjx1WsWDFHW2hoqHbu3KkKFSpkbpTXOXXqlIoVK6ZRo0YpLi7upv39/f0VGxurqVOnOrVv3rxZTZs21dy5cx1nJl4vLi5Oo0ePdmmfM2eOgoODszR+AAAAAAAAAAAAwGoXL15Uz549dfbsWYWFhWXYN1Nn/BljFBMTo4CAAEfb5cuX9a9//UsFCxZ0tC1cuDCTQ8688PDwdM/qO336tCSlezag3dChQzVo0CDH74mJiSpbtqzatm1708CQtyQnJ2vlypVq06aN/Pz8PD2cfM1bsnzwvc2eHoL8bEY9y5zRnD8LK9lk7TqmVvjkySY375THect+6WnkaB2ytA5ZWocsrUOW1iFL65CldcjSOmRpDXK0DllahyytQ5bWIUvrkGX+ZZ+50h2ZKvz17t3bpa1Xr16ZWYVlatWqpV27drm029tq1qx5w2UDAgKcipd2fn5+7Oz5FI+ddfJ7lsmmgKeHIPv0nsnG5tHx5OfH8Xr5fb/MK8jROmRpHbK0DllahyytQ5bWIUvrkKV1yNIa5GgdsrQOWVqHLK1DltYhy/wnM49Xpgp/M2bMyPRgckqXLl3Uv39/bd26VY0aNZIkpaSkaPbs2WrUqJFKlSrl4RECAAAAAAAAAAAAuSdThb+csHz5cl24cEHnzp2TJO3du1efffaZJOmee+5RcHCwYmNjNXPmTO3fv1+RkZGSpL59+2ry5Mnq3r27JkyYoIiICE2ZMkX79u3TqlWrPLY9AAAAAAAAAAAAgCd4vPDXr18/HTx40PH7/PnzNX/+fEnSH3/8ofLlyys1NVWpqakyxjj6BQQEaPXq1RoyZIieeuopXbx4UXXr1tXy5csVFRWV69sBAAAAAAAAAAAAeJLHC38HDhy4aZ/4+HjFx8e7tBcvXlwzZ860flAAAAAAAAAAAABAPlPA0wMAAAAAAAAAAAAAkH0U/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAv4PHC3/nz5/XMM8+oVKlSCgwMVN26dTVv3rybLhcfHy+bzZbuz/Hjx3Nh5AAAAAAAAAAAAEDe4evpAXTt2lXbtm3ThAkTVLlyZc2ZM0cPPfSQ0tLS1LNnz5suP2PGDFWtWtWpLTw8PKeGCwAAAAAAAAAAAORJHi38ffnll1q5cqWj2CdJLVu21MGDB/X888/rwQcflI+PT4brqFmzpho0aJAbwwUAAAAAAAAAAADyLI9O9blo0SKFhISoe/fuTu19+vTR0aNHtXXrVg+NDAAAAAAAAAAAAMhfPFr42717t6pVqyZfX+cTD2vXru24/WY6duwoHx8fFSlSRF27dnVrGQAAAAAAAAAAAMDbeHSqz4SEBFWsWNGlvUiRIo7bb6REiRIaPny4GjdurLCwMO3atUsTJkxQ48aNtXHjRtWpU+eGyyYlJSkpKcnxe2JioiQpOTlZycnJWd0ceID98eJxyz5vydLPlubpIcjPZq7513Pjye+PpeQ9+6WnkaN1yNI6ZGkdsrQOWVqHLK1DltYhS+uQpTXI0TpkaR2ytA5ZWocsrUOW+VdmHjObMcbk4FgyVLlyZVWqVEnLly93aj927JhKlSql8ePH68UXX3R7fQcOHFCtWrXUqlUrLVmy5Ib94uLiNHr0aJf2OXPmKDg42P0NAAAAAAAAAAAAAHLQxYsX1bNnT509e1ZhYWEZ9vXoGX/h4eHpntV3+vRpSf935p+7ypcvr2bNmmnLli0Z9hs6dKgGDRrk+D0xMVFly5ZV27ZtbxoY8pbk5GStXLlSbdq0kZ+fn6eHk695S5YPvrfZ00OQn82oZ5kzmvNnYSUbm8fG8cmTTTx231bxlv3S08jROmRpHbK0DllahyytQ5bWIUvrkKV1yNIa5GgdsrQOWVqHLK1DltYhy/zLPnOlOzxa+KtVq5bmzp2rlJQUp+v87dq1S5JUs2bNTK/TGKMCBTK+dGFAQIACAgJc2v38/NjZ8ykeO+vk9yyTjUcvXfr/XZ3eM9nYPDqe/Pw4Xi+/75d5BTlahyytQ5bWIUvrkKV1yNI6ZGkdsrQOWVqDHK1DltYhS+uQpXXI0jpkmf9k5vHy6CfkXbp00fnz57VgwQKn9pkzZ6pUqVJq1KhRptb3xx9/aOPGjWrcuLGVwwQAAAAAAAAAAADyPI+e8de+fXu1adNG/fr1U2Jiom699VbNnTtXK1as0OzZs+Xj4yNJio2N1cyZM7V//35FRkZKklq3bq3mzZurdu3aCgsL065duzRx4kTZbDaNHTvWk5sFAAAAAAAAAAAA5DqPFv4kaeHChRo+fLhGjhyp06dPq2rVqpo7d6569Ojh6JOamqrU1FQZYxxttWrV0ieffKLXX39dly5dUkREhFq1aqURI0aocuXKntgUAAAAAAAAAAAAwGM8XvgLCQnRpEmTNGnSpBv2iY+PV3x8vFPbf/7znxweGQAAAAAAAAAAAJB/ePQafwAAAAAAAAAAAACsQeEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AIU/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AK+nh4AAADertM733r0/v1saepdVnrwvc1KNp79zs8XTzXz6P0DAAAAAAAA3owz/gAAAAAAAAAAAAAvQOEPAAAAAAAAAAAA8AJM9QkAAABkA9P5XsVUvgAAAAAAeB5n/AEAAAAAAAAAAABegDP+AADp8vQZLBJnsQAAAAAAAABAZnDGHwAAAAAAAAAAAOAFKPwBAAAAAAAAAAAAXoDCHwAAAAAAAAAAAOAFKPwBAAAAAAAAAAAAXoDCHwAAAAAAAAAAAOAFKPwBAAAAAAAAAAAAXoDCHwAAAAAAAAAAAOAFKPwBAAAAAAAAAAAAXsDX0wMAAAAAAEnq9M63Hr1/P1uaepeVHnxvs5KN574j+cVTzTx23wAAAACA/I3CHwAAwD8QBZarKLDAW/E3fhV/4wAAAAD+aTxe+Dt//rxeeuklffrppzp9+rSqVq2qF198UT169LjpsidOnNCQIUO0dOlSXbx4UXXq1NG4ceMUHR2dCyMHAAAAAAAAAOvw5Z2r+PIOAGSdxwt/Xbt21bZt2zRhwgRVrlxZc+bM0UMPPaS0tDT17NnzhsslJSUpOjpaZ86c0aRJkxQREaHJkyerXbt2WrVqlaKionJxKwAAQG7gTfBVvAkGAADIPo4t/w/HlwAAeA+PFv6+/PJLrVy50lHsk6SWLVvq4MGDev755/Xggw/Kx8cn3WWnTZum3bt3a9OmTWrSpIlj2Tp16mjIkCHaunVrrm0HAAAAAAAAAABARvjSyVV84SRnebTwt2jRIoWEhKh79+5O7X369FHPnj21detWNW3a9IbLVqlSxVH0kyRfX1/16tVLw4YN05EjR1S6dOkcHT94orLjiQoAAAAAkBs8/T5c4r04AABAXubRwt/u3btVrVo1+fo6D6N27dqO229U+Nu9e7fuuusul3b7snv27KHwh3zF02/eeOMGAAAAuOI4/SorjtPJ8ire88Ab8ff9f/gbBwB4mkcLfwkJCapYsaJLe5EiRRy3Z7SsvV9ml01KSlJSUpLj97Nnz0qSTp8+reTkZPcGj6sun/Ps/duMLl68KF32k4zNY8PIaH9zG1lKsiBLT+cokaWVyNIaeSRHiSytwuuOdcjSOmRpHbK0Dllahyytk++PhySytEoeyVEiSyuRpTWseN2Jmf6dBSPJOj+bUffSF/XgpJVK9mCW8X0bZnsdZHmVFVnyN36VJceW/zDnzl3dd4wxN+1rM+70yiGVK1dWpUqVtHz5cqf2Y8eOqVSpUho/frxefPHFdJf19/dXbGyspk6d6tS+efNmNW3aVHPnzlWPHj3SXTYuLk6jR4+2ZiMAAAAAAAAAAACAHHb48GGVKVMmwz4ePeMvPDw83cru6dOnJSndM/qsWHbo0KEaNGiQ4/e0tDSdPn1a4eHhstk8+60gZE5iYqLKli2rw4cPKywszNPDydfI0jpkaR2ytAY5WocsrUOW1iFL65CldcjSOmRpHbK0DllagxytQ5bWIUvrkKV1yNI6ZJl/GWN07tw5lSpV6qZ9PVr4q1WrlubOnauUlBSn6/zt2rVLklSzZs0Ml7X3u5Y7ywYEBCggIMCprXDhwpkZOvKYsLAwnqgsQpbWIUvrkKU1yNE6ZGkdsrQOWVqHLK1DltYhS+uQpXXI0hrkaB2ytA5ZWocsrUOW1iHL/KlQoUJu9fPo1W67dOmi8+fPa8GCBU7tM2fOVKlSpdSoUaMMl/3ll1+0detWR1tKSopmz56tRo0auVX1BAAAAAAAAAAAALyFR8/4a9++vdq0aaN+/fopMTFRt956q+bOnasVK1Zo9uzZ8vHxkSTFxsZq5syZ2r9/vyIjIyVJffv21eTJk9W9e3dNmDBBERERmjJlivbt26dVq1Z5crMAAAAAAAAAAACAXOfRwp8kLVy4UMOHD9fIkSN1+vRpVa1aVXPnzlWPHj0cfVJTU5WamipjjKMtICBAq1ev1pAhQ/TUU0/p4sWLqlu3rpYvX66oqChPbAo8ICAgQKNGjXKZuhWZR5bWIUvrkKU1yNE6ZGkdsrQOWVqHLK1DltYhS+uQpXXI0hrkaB2ytA5ZWocsrUOW1iHLfwabubaaBgAAAAAAAAAAACBf8ug1/gAAAAAAAAAAAABYg8IfAAAAAAAAAAAA4AUo/MFj3n77bdlsNtWsWTNLy+/du1dxcXE6cOCAtQPLZ+Lj42Wz2W74s27dOkvuJy4uTjabzZJ1eZI9r++//z7d23/99Vc999xzql+/vgoXLqwiRYrozjvv1GeffZbp+7pw4YJ69OihKlWqKDQ0VAULFlSNGjU0btw4XbhwwamvPd9Tp05p3bp1GT6m1/7kVTfLWdINt2nChAlO/ezZ3OjnwIEDiomJcSuvmJiYHN7ynJUTueb3fc7KTNx18OBB9e3bV6VKlVJAQIBKly6tLl26OPWx5xsREaFz5865rKN8+fLq2LFjhuMsVKiQWrRooWXLlmVpnDnFncwl93Ky27Bhgx544AGVLl1a/v7+KlSokJo2baqpU6fqwoULN30esP+0aNEiB7Y4d1iZq7f8fWeXlZnGxMQoJCQkJ4eba9zNJa8pX758uvvtv/71ryyv89rj6PSOmY0xuvXWW12eX2w2m+Li4rJ8vznlwIEDTtkUKFBA4eHhuueee7R582ZJ0pIlS2Sz2fTuu+/ecD0rV66UzWbTm2++KUmO46zQ0FCdP3/epf/BgwdVoECBXM9ly5Yt6t69u0qWLCl/f3+VKFFC3bp1c2yr3fXvl3x9fVWmTBn16dNHR44ccVnv77//roEDB6py5coKCgpScHCwatSooZdeeind/vlRZrO79j13TEyMypcvn7sDzkMyuz9Zwf63HR8f72i79rXeG2zdulVdunRRuXLlFBAQoOLFi6tJkyYaPHiwp4fmVazI+eLFi4qLi7Pss6aclFvbu3PnTvXp00cVKlRQYGCgQkJCdPvtt2vixIk6ffq0o1967wFzgv34/9ox5+Zzd5cuXRQUFKQzZ87csM/DDz8sPz8//fXXX7LZbBo4cGCG62zRooVsNpsqVqyo9K5atn79esfz8rXPlXbuPkb5VWYyf/XVV11e2+GdfD09APxzTZ8+XZK0Z88ebd26VY0aNcrU8nv37tXo0aPVokWLf/QbD7sZM2aoatWqLu3Vq1f3wGjyr6+//lrLli3TI488ojvuuEMpKSn65JNP1L17d40ePVojR450e13JyckyxmjQoEGqUKGCChQooPXr12vMmDFat26dVq1ale5yt99+u8ub7i5duqhSpUp6/fXXs7V9eU23bt1cDrrLlSuXbt8VK1aoUKFCLu0lS5bUiBEjnD7427FjhwYMGKBXXnlFLVu2dLQXK1bMopHnbZnJVfpn7HOZzeRGdu/erRYtWqhixYp6/fXXVaZMGR07dkxfffVVuv1PnjypiRMnauzYsZkaZ1pamn7//XeNGzdOnTp10hdffKEOHTpkeryekpmcRo0apTFjxqhp06YaO3asKlWqpIsXL2rTpk2Ki4vTr7/+qsGDB6tdu3aOZY4dO6auXbvqqaeeUs+ePR3tYWFhubJ9npLZ/U/6Z/x9Z0dWMoXn3HnnnS77bfHixbO93tDQUE2bNs3lywPffPON9u/fr9DQUKf2zZs3q0yZMtm+35xif25MTU3Vnj17NHr0aLVs2VKbN29Whw4dVKJECU2fPv2GRdMZM2bIz89PjzzyiKPNz8/PcVwcGxvr0j80NFSJiYk5ul3Xeuedd/TMM8+oYcOGmjhxoiIjI3Xo0CFNnjxZzZo106RJk1w+RLS/X7p06ZLWr1+v8ePH65tvvtGuXbtUsGBBSdLSpUvVo0cPFS1aVAMHDlS9evVks9m0a9cuTZ8+XcuWLdMPP/yQa9uZE7KS3bVGjBihp59+OhdHnDe5sz/BPcuWLdO9996rFi1aaOLEiSpZsqSOHTum77//XvPmzdMbb7zh6SF6BatyvnjxokaPHi1JefpLd7m1vR988IH69++vKlWq6Pnnn1f16tWVnJys77//Xu+++642b96sRYsWWblpeV5sbKwWL16sOXPmqH///i63nz17VosWLVLHjh0zdRwXGhqqP/74Q2vWrFF0dLTTbdOnT1dYWFi6xyL/hMcoM5n37dtXUVFRKlmypAdGilxlAA/Ytm2bkWQ6dOhgJJnHH3880+uYP3++kWTWrl3rVv8LFy5k+j7ygxkzZhhJZtu2bTl6P6NGjTLe8JRxs7xOnjxp0tLSXNo7dOhggoODzeXLl7M9hiFDhhhJZv/+/Y42e74nT55Md5nIyEjToUOHbN93bnFnv5RkBgwYcNN13Syb9Kxdu9ZIMvPnz3d7mfwgN3PNL/uclZncTFpamqlbt66pW7fuTZ8L7Pm2a9fOFCxY0Bw7dszp9vTyTW+cv/32m5FkWrdune3xW+VmmWcmp08//dRIMrGxsek+9yYmJpqvvvrKpf2PP/4wksxrr72WtY3Ig6zM1Vv+vrPLykx79+5tChYsmBPDzHW5dexotZzYb+1ZPPbYYyYoKMicPXvW6fZevXqZJk2amBo1apioqChL79sYY65cuWKSk5MtW9+NnhtXr17t2E5j/u9YdNeuXS7r+Pvvv01gYKC5//77HW32/b9Hjx6madOmTv3T0tJMZGSkefzxx40kM2rUKMu250a+/fZbU6BAAdOxY0eX/JKTk03Hjh1NgQIFzLfffmuMufE+P2LECCPJzJ492xhjzO+//24KFixo6tWrZ86cOeNyv2lpaWbBggU5tFW5I6vZ/fHHHx4Ybd7k7v5kJfvf9owZMxxtWXmPlFc1b97cVKpUKd3nw9TUVA+MyDtZlfPJkydz7fk+O3Jjezdt2mR8fHxMu3bt0j2WTEpKMkuWLHH8nlvH4PbPQ679vLR3794mMjIyx+/bGGNSUlJMqVKlTP369dO9ferUqUaS+eKLL4wx7r1fj4qKMjVq1DCNGzc2PXv2dLotMTHRBAcHO45Frn2uzOxjlF9lNnP8MzDVJzxi2rRpkqQJEyaoadOmmjdvni5evOjUZ+rUqapTp45CQkIUGhqqqlWratiwYZKuTq/RvXt3SVLLli1dTudu0aKFatasqfXr16tp06YKDg5W3759JUmHDh1Sr169FBERoYCAAFWrVk1vvPGG0tLScmnrPcN+6vxHH32katWqKTg4WHXq1NHSpUtd+i5btkx169ZVQECAKlSocMMzAi5fvqyhQ4eqQoUK8vf3V+nSpTVgwIAMTy3P64oWLZrudGcNGzbUxYsXLZkCwH7Wma8vJ10D+cn69ev1448/6plnnlFAQIBby4wbN04pKSlZnvqsUqVKKlasmA4ePJil5T0hMzmNGTNGt9xyi2P67+uFhoaqbdu2OTXUfCUr+x8ylpVM9+zZo+joaBUsWFDFihXTwIEDXY5h87vLly9r8ODBqlu3rgoVKqQiRYqoSZMmWrJkiUtf+/HljBkzVKVKFQUFBalBgwbasmWLjDF67bXXVKFCBYWEhKhVq1b67bffnJa3H7Nv2LBBjRs3VlBQkEqXLq0RI0YoNTU1tzZZDz30kCRp7ty5jrazZ89qwYIFjvcQ10pvSssjR47oiSeeUNmyZeXv769SpUqpW7du+uuvvyT937RbH330kQYPHqzSpUsrICDAkcn06dNVp04dBQYGqkiRIurSpYt+/vlnS7avcePGkuR4LbGfsTdjxgyXvnPnztXly5fT3e6+fftq06ZN2rdvn6Nt1apVOnjwoPr06WPJWN0xfvx42Ww2TZ061eV42tfXV1OmTHFrSu/rc3nzzTd14cIFTZkyJd1ZJmw2m7p27WrRVniGFdmlN13cmTNnFBsbqyJFiigkJEQdOnTQ77//nu7fyrfffqvo6GiFhoYqODhYTZs2zXPTmmeFfX/67bffZLPZHJ95XGv58uWy2Wz6/PPPHX379Omj2267TcHBwSpdurQ6deqkXbt2uX2/hw8fVteuXRUWFqZChQqpV69eOnnypDUblUsSEhJUtGjRdN8fFyjwfx9b2qdJXLFihW6//XYFBQWpatWqjtmkrnWz52Tp6mt627ZtFRwcrGLFimnAgAFatmzZDad/zu/czXnNmjVq0aKFwsPDFRQUpHLlyun+++/XxYsXdeDAAcfnGaNHj87Tl9TIje195ZVXZLPZ9P7776d7LOnv7697773Xpd2dfXj37t267777dMsttygwMFB169bVzJkzXfr98ssvateunYKDg1W0aFH961//SvdSE7nJx8dHvXv31vbt29N9PpsxY4ZKliyp9u3bZ3rdffv21cKFC50+d5w3b54kqUePHi79s/oY5TeZyTy9abzzyjE5rEXhD7nu0qVLmjt3ru644w7VrFlTffv21blz5zR//nxHn3nz5ql///6KiorSokWLtHjxYj377LOO66J16NBBr7zyiiRp8uTJ2rx5s2PqGrtjx46pV69e6tmzp7788kv1799fJ0+eVNOmTfX1119r7Nix+vzzz9W6dWs999xzN51POq9LTU1VSkqK08/1T87Lli3Tf//7X40ZM0YLFixwfKjw+++/O/qsXr1a9913n0JDQzVv3jy99tpr+vTTT10+GDDGqHPnznr99df1yCOPaNmyZRo0aJBmzpypVq1aKSkpKVe2O7esXbtWxYoVU0RERKaXNcYoJSVFiYmJWrFihd544w099NBDWZpm0NvMmTNHQUFBCggIUP369dP9AMrOnX0cV2Um138KKzJZv369pKvFqHvuucdxbYCOHTvql19+SXeZyMhI9e/fX9OmTdOvv/6a6fv8+++/lZCQkK+mqXU3p2PHjmn37t2OD1yQsazsf8hYZjNNTk7WPffco+joaC1evFgDBw7Ue++9pwcffDC3h56jkpKSdPr0aT333HNavHix5s6dq2bNmqlr166aNWuWS/+lS5fqww8/1IQJEzR37lydO3dOHTp00ODBg7Vx40b997//1fvvv6+9e/fq/vvvd7kuy/Hjx9WjRw89/PDDWrJkibp166Zx48alO5Xg+vXrFRoaKj8/P1WvXl1vvPGGJccCYWFh6tatm9MHb3PnzlWBAgXcenyPHDmiO+64Q4sWLdKgQYO0fPlyvfXWWypUqJD+/vtvp75Dhw7VoUOH9O677+qLL75QRESExo8fr9jYWNWoUUMLFy7UpEmTtHPnTjVp0kT/+9//sr199uKi/bWkcuXKatasmWbPnq3k5GSnvjNmzFDp0qV19913u6yndevWioyMdMpp2rRpat68uW677bZsj9MdqampWrt2rRo0aHDD6VbLli2r+vXra82aNRnuH9fn8vXXX6t48eKOAo63sTK7a6WlpalTp06aM2eOXnjhBS1atEiNGjVymqLb7ptvvlGrVq109uxZTZs2TXPnzlVoaKg6deqkTz75JFvb52n2/alUqVKqV69eusea8fHxioiI0D333CNJOnr0qMLDwzVhwgStWLFCkydPlq+vrxo1auRUYM9Ily5ddOutt+qzzz5TXFycFi9erLvvvtvlbzsva9KkibZu3ap///vf2rp1a4Zj/+mnnzR48GA9++yzWrJkiWrXrq3Y2FjHa7rk3nPysWPHFBUVpX379mnq1KmaNWuWzp07l+8/F8qIOzkfOHBAHTp0kL+/v6ZPn64VK1ZowoQJKliwoK5cuaKSJUtqxYoVkq5+icT+WdyIESNye3NuKqe3NzU1VWvWrFH9+vVVtmxZt8flzj68b98+NW3aVHv27NHbb7+thQsXqnr16oqJidHEiRMd/f766y9FRUVp9+7dmjJlij766COdP38+T+zHffv2lc1mcylq7t27V99995169+4tHx+fTK+3R48e8vHxcfqy1rRp09StWzeXyz5k9THKr7KbeWaOyZFPePaEQ/wTzZo1y0gy7777rjHGmHPnzpmQkBBz1113OfoMHDjQFC5cOMP1ZDTVZ1RUlJFkVq9e7dT+4osvGklm69atTu39+vUzNpvN7Nu3L4tb5Tn2qUbS+/Hx8XH0k2SKFy9uEhMTHW3Hjx83BQoUMOPHj3e0NWrUyJQqVcpcunTJ0ZaYmGiKFCniNNXnihUrjCQzceJEp/F88sknRpJ5//33c2Jzsy0r01t98MEHRpKZNGlSlu5z7ty5To9Lnz59XKab8LZp2dzJuWfPnubjjz8269evN5999plp3769kWReeuklp372bNL7qVSpUrrr/idP9ZnZXPP7PmdlJjfz5JNPGkkmLCzMxMbGmlWrVpmPPvrIREZGmqJFi5qjR486+l6b76lTp0yhQoWcpk270VSf/fv3N8nJyebKlSvm559/dox18uTJmRprTrpZ5u7mtGXLFiPJvPjii5kewz9xqs+s7n/pyS9/39llZaa9e/dO91jg5ZdfNpIc0+LlB5k9FkpJSTHJyckmNjbW1KtXz+k2SaZEiRLm/PnzjrbFixcbSaZu3bpOU/i+9dZbRpLZuXOno81+zH79FEuPP/64KVCggDl48KCjrX///mb69Onmm2++MYsXLzYPP/ywkWR69eqVqe2/1rVZ2I8ddu/ebYwx5o477jAxMTHGGOMy1aeum/Krb9++xs/Pz+zdu/eG92Vff/PmzZ3a//77bxMUFGTuuecep/ZDhw6ZgIAAl+msMmJ/bnz11VdNcnKyuXz5stm+fbu54447jCSzbNkyl21fuHCho2337t1Gkhk+fLjTeq+d6nbUqFGmRIkSJjk52SQkJJiAgAATHx+fa1O/HT9+3EgyPXr0yLDfgw8+aCSZv/76y7GtW7ZsMcnJyebcuXNm6dKlplixYiY0NNQcP37cGGNMYGCgady4cY6O35Oyk921U31eP13csmXLjCQzdepUp/WMHz/eZZ9o3LixiYiIMOfOnXO0paSkmJo1a5oyZcqkO+13XuPO/vT2228bSU6fL5w+fdoEBASYwYMH33DdKSkp5sqVK+a2224zzz77rKM9o6k+r+1njDEff/xxjk05mlNOnTplmjVr5niP5+fnZ5o2bWrGjx/vtK9ERkaawMBAp9eGS5cumSJFipgnn3zS0ebOc/Lzzz9vbDab2bNnj1P73XfffcPPmfI7d3L+7LPPjCTz448/3nA9+WWqz5zeXnefU6/l7j7co0cPExAQYA4dOuS0fPv27U1wcLBjOuoXXnjB2Gw2l/G3adPGo1N92kVFRZmiRYuaK1euONoGDx5sJJlff/3V0aZMTPVpzNVtadCggTHGmD179hhJZt26dY7LStmfK7PyGOV37mSe3mt7Zo7JkX9wxh9y3bRp0xQUFOQ4BTskJETdu3fXhg0bHN9obdiwoc6cOaOHHnpIS5Ys0alTpzJ9P7fccotatWrl1LZmzRpVr15dDRs2dGqPiYmRMUZr1qzJ4lZ53qxZs7Rt2zann61btzr1admypUJDQx2/Fy9eXBEREY7pbS5cuKBt27apa9euCgwMdPSzfwvzWvasrp/SoXv37ipYsKBWr15t5eZ5zPLlyzVgwAB169ZNTz31VJbWcffdd2vbtm1as2aNXn75ZS1YsED333+/108vezMff/yxevbsqbvuukv333+/vvzyS3Xs2FETJkxId3qaVatWuezjixcvzv2B53GZzfWfwKpM7H+zTZo00Ycffqjo6Gj16tVLixcv1qlTpzR58uR0lwsPD9cLL7ygBQsWuDwvX2/KlCny8/OTv7+/qlWrpk2bNmnMmDHpXqA7r8pqTsgYuVovK5k+/PDDTr/37NlT0tWZAbzJ/PnzdeeddyokJES+vr7y8/PTtGnT0p16smXLlipYsKDj92rVqkmS2rdv7zSFr739+qmLQ0NDXaZY6tmzp9LS0py+/T558mT16dNHzZs313333afZs2dr4MCBmj17tn744Ydsb3NUVJQqVaqk6dOna9euXdq2bVu6012mZ/ny5WrZsqVjGzNy//33O/2+efNmXbp0yeWYumzZsmrVqlWWjqlfeOEF+fn5KTAwUPXr19ehQ4f03nvvOc4ykqQHHnhAoaGhTt8Knz59umw2W4bTdvbp00d//fWXli9fro8//lj+/v6OSzDkJeb/n1l67T7YuHFj+fn5KTQ0VB07dlSJEiW0fPlyFS9e3FPDzJPSyy4j33zzjaSr+9S17FPo2l24cEFbt25Vt27dFBIS4mj38fHRI488oj///NPts9zygoz2p4cfflgBAQGOS5FIV88iTkpKcvr7SklJ0SuvvKLq1avL399fvr6+8vf31//+9z+3p/q9/nXpgQcekK+vb756XQoPD9eGDRu0bds2TZgwQffdd59+/fVXDR06VLVq1XL6PKhu3bpOM+cEBgaqcuXKTq8t7jwnf/PNN6pZs6aqV6/u1H79futN3Mm5bt268vf31xNPPKGZM2c6zQ6V3+TV7XVnH16zZo2io6NdzlKLiYnRxYsXtXnzZklXjz9r1KihOnXqOPWzH596WmxsrE6dOuWY3jglJUWzZ8/WXXfdla2ZAvr27avvv/9eu3bt0rRp01SpUiU1b97cqmHna9nJ3N1jcuQfFP6Qq3777TetX79eHTp0kDFGZ86c0ZkzZ9StWzdJcrzxfOSRRzR9+nQdPHhQ999/vyIiItSoUSOtXLnS7fsqWbKkS1tCQkK67aVKlXLcnl9Vq1ZNDRo0cPqpX7++U5/w8HCX5QICAnTp0iVJV6eUS0tLU4kSJVz6Xd+WkJAgX19fl+nnbDabSpQoka+ztPvqq6/UtWtXtWnTRh9//LHbb36vd8stt6hBgwZq2bKlhg0bpvfff1+ff/55utfK+afr1auXUlJS9P3337vcVqdOHZd9vGbNmh4YZf6TUa7/VFnJxP4cev30Z3Xr1lXJkiW1Y8eOGy77zDPPqFSpUhoyZEiG9/HAAw9o27Zt+v7777Vv3z4lJCTkyalzMuJuTvY3vH/88UfuDjCfys7+h/RlNlNfX1+XYyn78ZE3HPfYLVy4UA888IBKly6t2bNna/PmzY4i2OXLl136FylSxOl3f3//DNuvX0d6RRd3c+3Vq5ckacuWLRn2c4e94DV79my9++67qly5su666y63lj158uQNp0683vXvRezbeKP3KFnZt55++mlt27ZN27dv1/79+3Xs2DE98cQTTn2Cg4PVo0cPrVixQsePH3d8MGQvgN5IZGSkoqOjNX36dE2fPl09evTI1emaixYtquDg4Ju+dhw4cEDBwcFO+6H9i5I//PCDjh49qp07d+rOO+903F6uXDmvfk3KTnYZsb8vvL7/9X/bf//9t4wxXvN+PKP9qUiRIrr33ns1a9Ysx5Sp8fHxatiwoWrUqOFYx6BBgzRixAh17txZX3zxhbZu3apt27apTp06jvfoN3P9+3T7a1V+ytKuQYMGeuGFFzR//nwdPXpUzz77rA4cOOA0teHNPtOQ3HtOTkhISPf155/wRYCMcq5UqZJWrVqliIgIDRgwQJUqVVKlSpU0adIkTw87y3Jqe919Tr2eO/uwu59dJiQkuPX5nad069ZNhQoVckx9/OWXX+qvv/5yXGs4q+xTjL/33nv66KOPHFNcXi+rj1F+lp3Ms3NMjryJwh9y1fTp02WM0WeffaZbbrnF8WO/Nt/MmTMdB8Z9+vTRpk2bdPbsWS1btkzGGHXs2NHlW8I3kt6Tfnh4uI4dO+bSfvToUUlXXxT+yW655RbZbDYdP37c5bbr28LDw5WSkuJytowxRsePH8/3WX711Vfq3LmzoqKitGDBAseHVVawn3Galet9eTv7N4yvvdg2so9cXWUlk9q1a2e4vozWFRQUpLi4OK1fv17Lli27Yb9ixYo5vrhRuXLlLF33wNPczalkyZKqVauWvv76a128eDG3hpdvZWf/Q/oym2lKSorLm1778VF6H+LkV7Nnz1aFChX0ySefqHPnzmrcuLEaNGiQY9dv/uuvv1za3M3V6te3mJgYnTp1Su+++26GZ71dr1ixYvrzzz/d6nv9exT7Nt7oPUpWjqnLlCmjBg0a6Pbbb1fFihVv+OW12NhYpaSkaNasWVq6dKlOnDjh1gdDffv21eeff64ff/zR7bMireLj46OWLVvq+++/v2Hmf/75p7Zv365WrVo5vY7avyhpL+5f7+6779Zff/1lSSE5L8pOdhmxvy88ffq0U/v17x9vueUWFShQwGvej99sf+rTp4+OHDmilStXau/evdq2bZvL88rs2bP16KOP6pVXXtHdd9+thg0bqkGDBpma8ej6nO2vVfn9dcnPz0+jRo2SJO3evTtTy7rznBweHp7h688/RXo533XXXfriiy909uxZbdmyRU2aNNEzzzyjefPmeXKolrBye318fBQdHa3t27e7fQzgLnc/uwwPD3fr8ztPCQoK0kMPPaQVK1bo2LFjmj59ukJDQy2ZKaBPnz6aOnWqTp8+rd69e6fbJycfo7wqO5ln55gceROfECDXpKamaubMmapUqZLWrl3r8jN48GAdO3ZMy5cvd1quYMGCat++vYYPH64rV65oz549kq5+I0aS29+Ek6To6Gjt3bvX5Rvcs2bNks1mU8uWLbO5lflbwYIF1bBhQy1cuNDp29jnzp3TF1984dQ3Ojpa0tU3K9dasGCBLly44Lg9P/r666/VuXNnNWvWTIsXL3bsa1axT7ty6623Wrpeb/DRRx/Jz8/P5WxVZA+5uspKJu3bt1dwcLDL69SOHTt0/PhxNW7cOMPl+/btq2rVqunFF1/06ql+M5PTiBEj9Pfff+vf//634wP8a50/f15ff/11jo85P8ju/gdXWcn0448/dvp9zpw5kqQWLVrk2Dhzm81mk7+/v1Ox6Pjx4zk2U8G5c+cc0xHZzZkzRwUKFLjptE2zZs2SJMv2/9KlS+v5559Xp06dbvghUnrat2+vtWvXZmmawiZNmigoKMjlmPrPP/90TPWVUxo1aqSaNWtqxowZmjFjhgoVKuQyFWl6unTpoi5duqhv374eee4ZOnSojDHq37+/40ujdqmpqerXr5+MMRo6dGim1vvss8+qYMGC6t+/v86ePetyuzFGixYtytbYPS0nsouKipIkffLJJ07t139oXrBgQTVq1EgLFy50eg+flpam2bNnq0yZMqpcuXJmNynPatu2rUqXLu34+woMDHSZRtJms7m811y2bJmOHDni9v1c/7r06aefKiUlJV+9LqVX4JDkmO7UfpaTu9x5To6KitLu3bu1d+9ep3ZvKG7dSGZz9vHxUaNGjRxTn9s/R8vKZ3GekBvba39Offzxx3XlyhWX25OTk10+S3NHdHS01qxZ4yj02c2aNUvBwcGO196WLVtqz549+umnn5z62Y9P84LY2Filpqbqtdde05dffmnZTAG9e/dWp06d9Pzzz6t06dI37JdTj1FeltXMs3NMjrzJ19MDwD/H8uXLdfToUb366qvpHoTWrFlT//3vfzVt2jQtWbJEQUFBuvPOO1WyZEkdP35c48ePV6FChXTHHXc4+kvS+++/r9DQUAUGBqpChQoZfgvh2Wef1axZs9ShQweNGTNGkZGRWrZsmaZMmaJ+/frl6zcau3fvVkpKikt7pUqVXKbjzMjYsWPVrl07tWnTRoMHD1ZqaqpeffVVFSxY0OlbnG3atNHdd9+tF154QYmJibrzzju1c+dOjRo1SvXq1dMjjzxiyXbllDVr1ujAgQMu7REREercubNKlCihYcOG6ccff3S6vXr16goLC3PrPt577z1t2LBBbdu2VdmyZXXhwgVt2LBB77zzjpo2bar77rvPgi3J226U8549e3TgwAFFR0erTJkyOnHihKZNm6avv/5acXFx6X7bd/v27SpUqJBLe2YeE29hZa7eIjcyKVy4sMaMGaPnnntOMTExeuihh3T8+HGNGDFC5cqVu+l1+Hx8fPTKK6+oS5cukjI+2yg/uFHm99xzj9s5de/eXSNGjNDYsWP1yy+/KDY2VpUqVdLFixe1detWvffee3rwwQfVtm3bXNwyz7IiVzizKlN/f3+98cYbOn/+vO644w5t2rRJ48aNU/v27dWsWbNc2hrr3CiXVq1aaeHCherfv7+6deumw4cPa+zYsSpZsqTjetxWCg8PV79+/XTo0CFVrlxZX375pT744AP169fPMSXwnDlztHDhQnXo0EGRkZE6c+aM5s+fr3nz5ikmJsbl2jbZMWHChEwvM2bMGC1fvlzNmzfXsGHDVKtWLZ05c0YrVqzQoEGDVLVq1RsuW7hwYY0YMULDhg3To48+qoceekgJCQkaPXq0AgMDHWcm5JS+fftq0KBB2rdvn5588kkFBQXddJnAwEB99tlnOTqujNx5551666239Mwzz6hZs2YaOHCgypUrp0OHDmny5MnaunWr3nrrLTVt2jRT661QoYLmzZunBx98UHXr1tXAgQNVr149SdLevXsds9fYX8fzo5zIrl27drrzzjs1ePBgJSYmqn79+tq8ebOjMH/tGbnjx49XmzZt1LJlSz333HPy9/fXlClTtHv3bs2dOzfLl1bIi3x8fPToo4/qzTffVFhYmLp27eryXqZjx46Kj49X1apVVbt2bW3fvl2vvfaa21MHS1enZ/b19VWbNm20Z88ejRgxQnXq1HG55mJedvfdd6tMmTLq1KmTqlatqrS0NP3444964403FBISoqeffjpT63PnOfmZZ57R9OnT1b59e40ZM0bFixfXnDlz9Msvv0jyzplS3Mn53Xff1Zo1a9ShQweVK1dOly9fdlySp3Xr1pKuXgcsMjJSS5YsUXR0tIoUKaKiRYuqfPnyHtw6V7mxvU2aNNHUqVPVv39/1a9fX/369VONGjWUnJysH374Qe+//75q1qypTp06ZWrso0aN0tKlS9WyZUuNHDlSRYoU0ccff6xly5Zp4sSJjucS+37coUMHjRs3TsWLF9fHH3/s2I/zggYNGqh27dp66623ZIy54cwC+/fvT/fYonr16i7X4pSuFm4XL1580/vPqccoL3M38+u5c0yOfMYAuaRz587G39/fnDhx4oZ9evToYXx9fU18fLxp2bKlKV68uPH39zelSpUyDzzwgNm5c6dT/7feestUqFDB+Pj4GElmxowZxhhjoqKiTI0aNdK9j4MHD5qePXua8PBw4+fnZ6pUqWJee+01k5qaatm25qYZM2YYSTf8+eCDD4wxxkgyAwYMcFk+MjLS9O7d26nt888/N7Vr1zb+/v6mXLlyZsKECWbUqFHm+qeMS5cumRdeeMFERkYaPz8/U7JkSdOvXz/z999/59TmZtvN8urdu3eGt69du9bt+9q4caPp2LGjKVWqlPH39zfBwcGmTp06ZuzYsebChQtOfe35njx5Mt11RUZGmg4dOmRn03PVzXJ+++23TbNmzUyxYsWMr6+vCQ0NNXfddZeZO3euy7rs2dzoZ+XKlS7LrF271kgy8+fPz43NzTU5kWt+3+eszMRdH3zwgalZs6bx9/c34eHh5uGHHzaHDx926pNRvk2bNjWSXPK90fN0XnOzzP/44w9jjHs52X3zzTemW7dupmTJksbPz8+EhYWZJk2amNdee80kJia69P/jjz+MJPPaa6/l5KbmKitz9Za/7+yyMtPevXubggULmp07d5oWLVqYoKAgU6RIEdOvXz9z/vx5D2xd1rmTy4QJE0z58uVNQECAqVatmvnggw/SPRZM73nrRn+f6b0224/Z161bZxo0aGACAgJMyZIlzbBhw0xycrKj3+bNm010dLQpUaKE8fPzM8HBweaOO+4wU6ZMydYxvD2Lbdu2ZdivRo0aJioqymm7R40a5dTn8OHDpm/fvo4x2t+//PXXXzfc/mt9+OGHjuPvQoUKmfvuu8/s2bMnU9uTlefGkydPGn9/fyPJfPfdd+n2se//N1tPernkpM2bN5tu3bqZ4sWLG19fXxMREWG6du1qNm3a5NTP3cfZbv/+/aZ///7m1ltvNQEBASYoKMhUr17dDBo0yPG8kd9lNrtrt7t3794mMjLSqd/p06dNnz59TOHChU1wcLBp06aN2bJli5FkJk2a5NR3w4YNplWrVqZgwYImKCjING7c2HzxxRc5tamWy8z+9Ouvv2b4nuXvv/82sbGxJiIiwgQHB5tmzZqZDRs2mKioKKfnHPvftv3zDmP+77V++/btplOnTiYkJMSEhoaahx56yPG8k1988sknpmfPnua2224zISEhxs/Pz5QrV8488sgjZu/evY5+Nzp+uT4vY27+nGyMMbt37zatW7c2gYGBpkiRIiY2NtbMnDnTSDI//fRTjm2vp7iT8+bNm02XLl1MZGSkCQgIMOHh4SYqKsp8/vnnTutatWqVqVevngkICHB8jpLX5Ob2/vjjj6Z3796mXLlyxt/f3xQsWNDUq1fPjBw50ukz0Mzsw7t27TKdOnUyhQoVMv7+/qZOnTpOzwF2e/fuNW3atHHaj5csWeLy+VV6z925ZdKkSUaSqV69erq3Z3Rcaj+uyOhzXrtt27a5PFfaufsYeYuMMk/vtd3dY3LkLzZj0plXCQAAAACAHNSiRQudOnUq09dvApD3zZkzRw8//LA2btyY6bMvAU954oknNHfuXCUkJMjf39/TwwGAXMExuXdiqk8AAAAAAABkydy5c3XkyBHVqlVLBQoU0JYtW/Taa6+pefPmFP2QZ40ZM0alSpVSxYoVdf78eS1dulQffvihXnrpJYp+AIB8j8IfAGSSMUapqakZ9vHx8fGqa1QA3oy/aQBAXsbrFPK60NBQzZs3T+PGjdOFCxdUsmRJxcTEaNy4cZ4eGnBDfn5+eu211/Tnn38qJSVFt912m958881MX1MQAIC8iKk+ASCT1q1bp5YtW2bYZ8aMGYqJicmdAQHIFv6mAQB5Ga9TAAAAADKDwh8AZNK5c+e0b9++DPtUqFBB4eHhuTQiANnB3zQAIC/jdQoAAABAZlD4AwAAAAAAAAAAALxAAU8PAAAAAAAAAAAAAED2UfgDAAAAAAAAAAAAvACFPwAAAAAAAAAAAMALUPgDAAAAAAAAAAAAvACFPwAAAABAuuLi4lS3bl3H7zExMercubPHxgMAAAAAyBiFPwAAAADwQsePH9dTTz2lihUrKiAgQGXLllWnTp20evXqHLvP+Ph4FS5cOMfWDwAAAADImK+nBwAAAAAAsNaBAwd05513qnDhwpo4caJq166t5ORkffXVVxowYIB++eUXTw8RAAAAAJADOOMPAAAAALxM//79ZbPZ9N1336lbt26qXLmyatSooUGDBmnLli2OfmfPntUTTzyhiIgIhYWFqVWrVvrpp5+ydJ/r1q1Tnz59dPbsWdlsNtlsNsXFxWnMmDGqVauWS//69etr5MiRkv5vCtHRo0c7xvLkk0/qypUrjv7GGE2cOFEVK1ZUUFCQ6tSpo88++8xx+99//62HH35YxYoVU1BQkG677TbNmDEjS9sCAAAAAPkVZ/wBAAAAgBc5ffq0VqxYoZdfflkFCxZ0ud0+FacxRh06dFCRIkX05ZdfqlChQnrvvfcUHR2tX3/9VUWKFMnU/TZt2lRvvfWWRo4cqX379kmSQkJCdObMGY0ePVrbtm3THXfcIUnauXOnfvjhB82fP9+x/OrVqxUYGKi1a9fqwIED6tOnj4oWLaqXX35ZkvTSSy9p4cKFmjp1qm677TatX79evXr1UrFixRQVFaURI0Zo7969Wr58uYoWLarffvtNly5dykqEAAAAAJBvUfgDAAAAAC/y22+/yRijqlWrZthv7dq12rVrl06cOKGAgABJ0uuvv67Fixfrs88+0xNPPJGp+/X391ehQoVks9lUokQJR3tISIjuvvtuzZgxw1H4mzFjhqKiolSxYkWn5adPn67g4GDVqFFDY8aM0fPPP6+xY8fq0qVLevPNN7VmzRo1adJEklSxYkV9++23eu+99xQVFaVDhw6pXr16atCggSSpfPnymRo/AAAAAHgDCn8AAAAA4EWMMZIkm82WYb/t27fr/PnzCg8Pd2q/dOmS9u/fb+mYHn/8cfXt21dvvvmmfHx89PHHH+uNN95w6lOnTh0FBwc7fm/SpInOnz+vw4cP68SJE7p8+bLatGnjtMyVK1dUr149SVK/fv10//33a8eOHWrbtq06d+6spk2bWrodAAAAAJDXUfgDAAAAAC9y2223yWaz6eeff1bnzp1v2C8tLU0lS5bUunXrXG6zTwdqlU6dOikgIECLFi1SQECAkpKSdP/997u1rM1mU1pamiRp2bJlKl26tNPt9rMV27dvr4MHD2rZsmVatWqVoqOjNWDAAL3++uuWbgsAAAAA5GUU/gAAAADAixQpUkR33323Jk+erH//+98u1/k7c+aMChcurNtvv13Hjx+Xr6+vZdNi+vv7KzU11aXd19dXvXv31owZMxQQEKAePXo4nd0nST/99JMuXbqkoKAgSdKWLVsUEhKiMmXK6JZbblFAQIAOHTqkqKioG95/sWLFFBMTo5iYGN111116/vnnKfwBAAAA+Eeh8AcAAAAAXmbKlClq2rSpGjZsqDFjxqh27dpKSUnRypUrNXXqVP38889q3bq1mjRpos6dO+vVV19VlSpVdPToUX355Zfq3Lmz41p5mVG+fHmdP39eq1evdkzdaS/wPfbYY6pWrZokaePGjS7LXrlyRbGxsXrppZd08OBBjRo1SgMHDlSBAgUUGhqq5557Ts8++6zS0tLUrFkzJSYmatOmTQoJCVHv3r01cuRI1a9fXzVq1FBSUpKWLl3quD8AAAAA+Keg8AcAAAAAXqZChQrasWOHXn75ZQ0ePFjHjh1TsWLFVL9+fU2dOlXS1Sk0v/zySw0fPlx9+/bVyZMnVaJECTVv3lzFixfP0v02bdpU//rXv/Tggw8qISFBo0aNUlxcnKSrU5A2bdpUCQkJatSokcuy0dHRuu2229S8eXMlJSWpR48ejmUlaezYsYqIiND48eP1+++/O85aHDZsmKSrZxsOHTpUBw4cUFBQkO666y7NmzcvS9sBAAAAAPmVzdiv/A4AAAAAQA4xxqhq1ap68sknNWjQIKfbYmJidObMGS1evNgzgwMAAAAAL8EZfwAAAACAHHXixAl99NFHOnLkiPr06ePp4QAAAACA16LwBwAAAADIUcWLF1fRokX1/vvv65ZbbvH0cAAAAADAazHVJwAAAAAAAAAAAOAFCnh6AAAAAAAAAAAAAACyj8IfAAAAAAAAAAAA4AUo/AEAAAAAAAAAAABegMIfAAAAAAAAAAAA4AUo/AEAAAAAAAAAAABegMIfAAAAAAAAAAAA4AUo/AEAAAAAAAAAAABegMIfAAAAAAAAAAAA4AUo/AEAAAAAAAAAAABe4P8BeOkCYY6bnVEAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -2208,40 +2222,40 @@
}
],
"source": [
- "idx=1\n",
+ "idx = 0\n",
"prediction = evaluator.predict_sequence(designed_sequences[idx])\n",
- "prediction_bar(prediction, classes=list(adata.obs_names))"
+ "crested.pl.bar.prediction(prediction, classes=list(adata.obs_names))"
]
},
{
"cell_type": "code",
- "execution_count": 105,
+ "execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2024-10-01T16:45:41.770130+0200 INFO Calculating contribution scores for 4 class(es) and 1 region(s).\n"
+ "2024-10-09T14:42:33.750345+0200 INFO Calculating contribution scores for 4 class(es) and 1 region(s).\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Region: 100%|██████████| 1/1 [00:04<00:00, 4.97s/it]\n"
+ "Region: 100%|██████████| 1/1 [00:05<00:00, 5.02s/it]\n"
]
}
],
"source": [
"scores, one_hot_encoded_sequences = evaluator.calculate_contribution_scores_sequence(\n",
- " designed_sequences[idx], class_names=['L2_3IT', 'L5ET','L5IT','L6IT']\n",
+ " designed_sequences[idx], class_names=[\"L2_3IT\", \"L5ET\", \"L5IT\", \"L6IT\"]\n",
") # focus on two cell types of interest"
]
},
{
"cell_type": "code",
- "execution_count": 106,
+ "execution_count": 56,
"metadata": {},
"outputs": [
{
@@ -2254,7 +2268,7 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAE34AAAMWCAYAAAAAeJDoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVeLG8XfSG0kIhI4gVao0e8GGFSv23nXVdf2tu+qqq+uuBXvvfRcVsWCjKCgIIqAoVXpLKOmkTspMZub3x8nk3kkmk0IK5ft5nnnm3HPO3HuSmdy592bOOw6fz+cTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDFhLX1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgX0fwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0MILfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCFEfwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2M4DcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaGEEvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABACyP4DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaGMFvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDCCH4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBa2Rwa/lZSU6I477lC3bt0UExOjESNGaPLkyY1ez/333y+Hw6GhQ4e2wCgBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoGEi2noAwZx33nn69ddfNXHiRA0YMEAffvihLrnkEnm9Xl166aUNWseyZcv01FNPqXPnzk0ag9fr1c6dO9WuXTs5HI4mrQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAvsvn86m4uFjdunVTWFhYyL4On8/na6VxNcj06dN1xhlnVIe9+Z188sn6448/lJ6ervDw8JDrqKys1CGHHKJjjz1Wy5cvV25urlatWtWocWzfvl09e/Zs0s8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYP+xbds29ejRI2SfiFYaS4NNnTpVCQkJuuCCCwLqr7nmGl166aVavHixjjzyyJDrmDhxonbt2qVHHnlE48ePb9I42rVrJ8n8EhMTE5u0DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7rqKiIvXs2bM6uyyUPS74bdWqVRo0aJAiIgKHNnz48Or2UMFvq1ev1sMPP6zPP/9cCQkJDd5uRUWFKioqqpeLi4slSYmJiQS/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKiTw+Got09YK4yjUfLy8pSSklKr3l+Xl5dX52O9Xq+uvfZanXfeeTr99NMbtd3HHntMSUlJ1beePXs2buAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUIc9LvhNCp1YF6rtmWee0YYNG/Tcc881epv/+Mc/VFhYWH3btm1bo9cBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMFEtPUAaurQoYPy8vJq1e/atUuSlJKSEvRx6enpeuCBBzRx4kRFRUWpoKBAklRZWSmv16uCggJFR0crNjY26OOjo6MVHR3dPD8EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANiEtfUAaho2bJjWrFmjysrKgPqVK1dKkoYOHRr0cZs3b1ZZWZn+8pe/qH379tW3BQsWaM2aNWrfvr3+8Y9/tPj4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCmiLYeQE3nnnuu3nzzTX322We66KKLquvff/99devWTYcddljQx40YMUJz5sypVX/HHXeosLBQ7777rnr06NFi4wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAuuxxwW+nnXaaxo0bpz/96U8qKipSv3799NFHH2nmzJmaNGmSwsPDJUnXXXed3n//fW3atEm9evVScnKyjjvuuFrrS05OVmVlZdA2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgNe1zwmyR9/vnnuu+++/TAAw9o165dOuigg/TRRx/p4osvru7j8Xjk8Xjk8/nacKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUD+Hj+S0oIqKipSUlKTCwkIlJia29XAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7GEak1kW1kpjAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID9FsFvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDCCH4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBZG8BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtDCC3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACghRH8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtjOA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhhBL/tx3r37i2Hw6H33nuv3r7r16/XY489ppNPPlldunRRZGSkUlJSdPzxx+vdd9+V1+vd7fFs3LhR999/v8aNG6cDDzxQ8fHxio2N1YABA3TLLbdo06ZNQR/33nvvyeFwqHfv3tV1Doej0bfjjjtut38GAAAAAAAAAAAAAMC+aXnmci3evli/Z/ze1kMBAAAAAAAAAAAAAAAAAAAAsJeKaOsBYM/n8Xg0cODA6uUePXpoxIgRSk9P19y5czV37lxNnjxZX375pWJiYpq8nblz5+qRRx6Rw+FQp06dNHDgQDmdTm3dulWvvvqq3nvvPU2dOlWnnHJKves66qijatUVFhZq1apVdbYPGzasyWMHAAAAAAAAAAAAAOzbzvzoTG0r2qYOsR2Ue1duWw8HAAAAAAAAAAAAAAAAAAAAwF6I4DfUy+fzKTk5WbfddpuuueYa9enTp7ptypQpuvrqq/Xdd9/p/vvv11NPPdXk7QwfPlwffPCBxo0bp9TU1Or63Nxc/fnPf9bkyZN1+eWXKz09XbGxsSHX9dNPP9Wqmzt3ro4//vg62wEAAAAAAAAAAAAAqIvT7Qy4BwAAAAAAAAAAAAAAAAAAAIDGCmvrAWDPFx4ers2bN+s///lPQOibJF144YV68MEHJUnvvPOOvF5vk7dz6KGH6tJLLw0IfZOkjh076v3331f79u2Vm5tLaBsAAAAAAAAAAAAAoNU5XSbwrbyyXB6vp41HAwAAAAAAAAAAAAAAAAAAAGBvRPAb6uVwONS+ffs6208++WRJUn5+vnJyclpkDFFRUTrwwAMlSaWlpS2yDQAAAAAAAAAAAAAAgqn0VqrCU1G9XOrm/9YAAAAAAAAAAAAAAAAAAAAAGo/gN+y28vLy6nJsbGyLbGPXrl1at26dwsPDdfDBB7fINgAAAAAAAAAAAAAACMbpcgYsl7hK2mgkAAAAAAAAAAAAAAAAAAAAAPZmBL9ht02ZMkWSNHToUCUmJjbruvPz8/XDDz/o9NNPl9Pp1F//+lf17t27WbcBAAAAAAAAAAAAAEAoTrcz5DIAAAAAAAAAAAAAAAAAAAAANEREWw8Ae7dVq1bplVdekSTdddddzbLOgoICtW/fPqCuT58+eu+993TVVVc1yzYAAAAAAAAAAAAAAGgop8sZchkAAAAAAAAAAAAAAAAAAAAAGiKsrQeAvVdBQYEmTJggl8ul008/XVdccUWzrDciIkJHHXWUjjrqKPXr10+RkZHasmWLPvjgA6WlpTXLNgAAAAAAAAAAAAAA+zGHo/6bjdPtDLkMAG1pwwbprbekkpK2HgkAAAAAAAAAAAAAAAAAAKgPwW9okoqKCp1zzjlav369hgwZokmTJjXbuhMSEvTTTz/pp59+0oYNG5SRkaFbbrlFs2bN0uGHH66CgoJm2xYAAAAAAAAAAAAAAPVxupwhlwGgrfzyi3TYYdINN0iHHioVFrb1iAAAAAAAAAAAAAAAAAAAQCgEv6HRKisrddFFF+nHH39U79699d1336l9+/Yttr0OHTropZde0vjx45WZmamXXnqpxbYFAAAAAAAAAAAAAEBNTrcz5DIAtJU//1nKzzflNWukxx5r2/EAAAAAAAAAAAAAAAAAAIDQCH5Do/h8Pl1zzTX68ssv1bVrV82ePVvdunVrlW2fccYZkqTff/+9VbYHAAAAAAAAAAAAAIAklbhKQi4DQFv4/Xfpl18C6557TsrLa5PhAAAAAAAAAAAAAAAAAACABiD4DY1y2223adKkSerQoYNmzZqlvn37ttq2KysrA+4BAAAAAAAAAAAAAGgNTpcz5HKzcjgadgOw33vttdp1FRXSRx+1/lgAAAAAAAAAAAAAAAAAAEDDEPyGBrvvvvv0yiuvqF27dpo5c6aGDBnSqtv/4osvJEkjRoxo1e0CAAAAAAAAAAAAAPZvTrcz5HKDEOgGoBmVlEgffBC8berU1h0LAAAAAAAAAAAAAAAAAABoOILf0CDPPPOMHn30UcXGxuqbb77RmDFjmn0bt99+u+bMmSOPxxNQn5aWpquuukrff/+9YmNjdd111zX7tgEAAAAAAAAAAABgT1da2tYj2H85Xc6QywDQEubMkS6/XKr6rsQAixbV/b5QXt6iwwIAAAAAAAAAAAAAAAAAALshoq0HgLb35z//WX/729/qbP/888+r29u1a6d77723zr6ffvqpunTp0qRxfPXVV3rxxRcVGxurfv36KSYmRjt37lRGRoa8Xq/atWunDz/8UL169WrS+gEAAAAAAAAAAABgb+R2S7fdJr3xhnTCCdLnn0tJSW09qv2L0+0MuSyHoxVHA2B/MGOGdNZZUmWl9MEH0scfSxdeaLUvWtR2YwMAAAAAAAAAAAAAAAAAAE1H8BtUUlKikpKSOtsTExPl8/kkSdnZ2crOzq6zb/lufGXwCy+8oOnTp2vhwoXauXOnCgoKFB8fr1GjRunkk0/WLbfcou7duzd5/QAAAAAAAAAAAACwN3r8cRP6Jkk//CDddJM0eXLbjml/43Q5Qy4DQHPy+aQHHjChb3633y6deqqUmGiWCX4DAAAAAAAAAAAAAAAAAGDv5PD5E70QoKioSElJSSosLFSi/xOTAAAAAAAAAAAAAAC0ovJyqVcvqeb3cy1YIB15ZNuMaZ/gcNTfx/Zxilun3apXlrxSvXz1iKv17tnvNm59zY2PewD7rPnzpWOPrV3/3HPSX/5i/vw7dZJyc4M//sgjzfsEAAAAAAAAAAAAAAAAAABoHY3JLAtriQFUVFSo0v6VswAAAAAAAAAAAAAAoNE++KB26JskvfBC649lf+Z0OyVJDpmAN6fL2ZbDAbCPe+aZ4PVvvGHu8/LqDn0DAAAAAAAAAAAAAAAAAAB7tiYHv/3000/697//rYKCguq6vLw8nXbaaUpISFBiYqLuu+++5hgjAAAAAAAAAAAAAAD7peefD14/dWrrjmN/5w9+6xDXIWAZAJpbSYn09dfB29LTzf3Gja03HgAAAAAAAAAAAAAAAAAA0LwimvrAp59+WitWrNADDzxQXXfnnXfq22+/Vf/+/VVcXKyJEydq5MiROv/885tlsNh7XHDBBcrIyGhQ39NPP1333ntvC48IAAAAAAAAAAAAAPYuGRnSypXB29zu1h3L/s7pMkFvHeM6Krc0t3oZAJrbokWSxxO6T7DgtwEDTL3X2zLjAgAAAAAAAAAAAAAAAAAAzaPJwW/Lli3T2LFjq5dLS0s1ZcoUnXzyyZo5c6aKi4s1fPhwvfLKKwS/7Yd+/fVXpaWlNahvv379Wng0AAAAAAAAAAAAALD3mT+/rUewD/P5rLLDEbzexuk2QW+pcalaq7XVywDQ3Bqy768Z/Hb22dLnn0tTp0p8TAsAAAAAAAAAAAAAAAAAgD1bk4PfsrOz1b179+rlhQsXqry8XNdcc40kqV27dho/frw+++yz3R8l9jpbt25t6yEAAAAAAAAAAAAAwF6N4Lc9h9NVFfwWnxqwDADN7aef6u+zaVPg8l//KoWFSRMmmBC4nJyWGRsAAAAAAAAAAAAAAAAAANh9YU19YExMjIqLi6uXf/zxRzkcDo0dO7a6LiEhQfn5+bs3QgAAAAAAAAAAAAAA9kOLF7f1COBX4iqRJKXGpQYsA0BzW7Wq/j72YLeePaWjj7aWb765+ccEAAAAAAAAAAAAAAAAAACaT5OD3/r166eZM2eqoqJCbrdbH3/8sQYPHqwuXbpU90lPT1enTp2aZaAAAAAAAAAAAAAAAOwvfD5p7dq2HgX8nG6nJCv4zb8M7GtK3aXakr9FW/K3qKC8oK2Hs9/Jz5eys+vvV1BglceNk8JsnwA7+WSpNT6uVVEhffih9PPPLb8tAAAAAAAAAAAAAAAAAAD2JU0Ofrvhhhu0ceNG9e/fX4MGDdLGjRt19dVXB/RZvHixBg8e3Oh1l5SU6I477lC3bt0UExOjESNGaPLkyfU+7vPPP9cll1yifv36KTY2Vr1799Zll12mDRs2NHoMAAAAAAAAAAAAAAC0lYwMqbi4rUcBP6fLBL11jOsYsNwifL7AW331QDOauXGm+rzQR31e6KPnFj0X2OhwNOyGJlu3rnbd1VdLY8YE1uXnW+URIwLbwsKkU05p7pEFys2VDj9cuuwy6aijpPvua9ntAQAAAAAAAAAAAAAAAACwL2ly8Nt1112nv//97yotLVVBQYFuuukm3XHHHdXtc+bM0ebNm3XiiSc2et3nnXee3n//fT344IOaMWOGDjnkEF1yySX68MMPQz7u8ccfV2lpqe677z7NnDlTDz/8sJYuXapRo0bpjz/+aPQ4AAAAAAAAAAAAAABoC2vXBi536SJt3ChNmybFxrbNmPZnTrcJekuNT5UkVXgq5PF6GrcSAt2wB8jNlb76SsrMDN5eUF4QtIzWUXPff9FF0rvvSvPmBQa8FRRY5WHDaq/n1FNbYnSWRx6Rli2zlh991Lw/AQAAAAAAAAAAAAAAAACA+kU09YEOh0OPP/64Hn/88aDtRx11lPLz8xUfH9+o9U6fPl2zZs3Shx9+qEsuuUSSdPzxxystLU1///vfddFFFyk8PDzoY7/++mt16tQpoO6EE05Q79699eyzz+qtt95q1FgAAAAAAAAAAAAAAGgL69cHLt92m9S3r7ndc4/0r3+1ybD2S5XeSrk8LklSalxqdb3T7VRidKJZsAe2ORxWeW8Octu1VCpNlzqfKEUmtPVo0Ax++kmaMEHKzpYSE6UvvpCOPz6wT35ZvlUuzxda15Ytgcs33WTuY2OlBx+UrrjC7FbybU9Nnz6119O7d4sNUWlp0iuv1K6/+27ptNOksCZ/DSkAAAAAAAAAAAAAAAAAAPuHFvuoXVRUlJKSkhQR0bhsualTpyohIUEXXHBBQP0111yjnTt3avHixXU+tmbomyR169ZNPXr00LZt2xo1DgAAAAAAAAAAAAAAgqmslCoqWnYbmZlWOSxMuvpqa/mWW6S4uJbdPixOl7O63DGuY9D6fc76l6Tvxkjzz5FmjpBKNrf1iLCb3G7p+utN6JskFRVJF14oZWUF9isoLwhaRuvYtcsqd+8ujR1rLZ95pgl0Kyszz6ckhYdL3bq16hD16KOSy1W7/o8/pN9+a92xAAAAAAAAAAAAAAAAAACwN9rt4LepU6fqwgsv1PDhw9WvX7/q+rVr1+qJJ57Qjh07GrW+VatWadCgQbUC44YPH17d3hibN29WWlqahgwZ0qjHAQAAAAAAAAAAAABQ0yefSF27SomJ0j/+IXm9LbMde/jPwQebACC/jh2ls89ume2ithJXSXU5NT41aP0+pSxDWnaX5Kt6cZdskuafJ3mCJD1hr/Hmm9K6dYF1ubnSI48E1uWX51eXCX5rffZ9/xFHmOBPv/Bw6bzzpHzrKVL37lIjv5Nzt3i90tSpdbf7A+kAAAAAAAAAAAAAAAAAAEDdmvzRP6/Xq0suuUSffvqpJCk2NlZlZWXV7e3bt9d9990nj8ejf/zjHw1eb15envr06VOrPiUlpbq9oSorK3XdddcpISFB//d//xeyb0VFhSpsX8leVFTU4O0AAAAAAAAAAAAAAPZ9q1ZJl1wieTxmeeJEKSlJuuee5t+WPfxnzJja7eec0/zbRHBOt7O6nBKbIocc8skXUL9P+eMRyVMWWFewXNr8ltT/lrYZE3aL2y099FDwtg8+kF54wVq2h73ll+XXfgBalH3fP3p07fazzw4Mfqv6OFWr+f13KSendbcJAAAAAAAAAAAAAAAAAMC+Jqz+LsE9++yz+uSTT3TTTTcpPz9ff/vb3wLaO3furGOOOUbTpk1r9LodDkeT2ux8Pp+uu+46zZ8/X//973/Vs2fPkP0fe+wxJSUlVd/q6w8AAAAAAAAAAAAA2H/4fNIdd1ihb34PPiht3dr827OH/xx8cO32U09t/m0iOKfLBLw55FBsRKziIuMC6vcprnxp0xvB29I/bd2xoNn8/LOUnR28zesNXLYHv9nLaB32ff9BB9VuHzlSKiiwlhMTW3xIAb77rnW3BwAAAAAAAAAAAAAAAADAvqjJwW/vvfeexowZo1deeUWJiYlBA9n69eunLVu2NGq9HTp0UF5eXq36XVWfbExpwFfV+nw+XX/99Zo0aZLee+89nX322fU+5h//+IcKCwurb9u2bWvUuAEAAAAAAAAAAAAA+64ZM6Tvv69d73JJb7/d/Nuz/9u8b9/a7e3aNf82EZzTbQLe4iLj5HA4FB8VH1C/T8n8XvK623oUaGZff93wvvnl+UHLaB324LcDD6zd7nBI+banpbWD35Ysad3tAQAAAAAAAAAAAAAAAACwL4po6gM3btyoW2+9NWSfukLcQhk2bJg++ugjVVZWKiLCGt7KlSslSUOHDg35eH/o27vvvqu3335bl19+eYO2Gx0drejo6EaNFQAAAAAAAAAAAACwf5g8ue42l6v5t2cP/+nTp/nXj4ZzuqzgN/u9v36fkvltW48ALeC77xret6C8oLpc4ipRpbdSEWFN/niR5m6dqy355ksjLxxyYXVwIoKz7/t79w7ep6DAKrd28Nvy5bXrwsMlj6d1xwEAAAAAAAAAAAAAAAAAwN4srKkPjI2NVVFRUcg+aWlpSk5ObtR6zz33XJWUlOizzz4LqH///ffVrVs3HXbYYXU+1ufz6YYbbtC7776r119/Xddcc02jtg0AAAAAAAAAAAAAQE1ut/TNN82/3qlrpmrSikn6fM3ntdrs4T9duzb/ttFwTncdwW/ufTD4LXt+W48AzaysTFq9uuH988vyA5YLywt3a/tPLHhC1351ra796lqlFabt1rr2dV6vlF/164+IqDvULd/2FDUm+M3jkT7+WHrxRWnHjsaPr6hI2rw5sO7nn6WMDCnEx7kAAAAAAAAAAAAAAAAAAEANTf5K3pEjR+rbb79VRUWFoqOja7Xv2rVLM2fO1LHHHtuo9Z522mkaN26c/vSnP6moqEj9+vXTRx99pJkzZ2rSpEkKDw+XJF133XV6//33tWnTJvXq1UuSdPvtt+vtt9/Wtddeq2HDhmnRokXV642OjtbIkSOb+uMCAAAAAAAAAAAAAPZTv/wSGLTTXK776jrll+crMTpR5w06r7reHv4THi4lJDT/ttFwJa4SSVJ8VLy5j4wPqN9nVJZKJRvaehRoZitXmsAvu3HjpC1bpI0ba/cvKC8IWM4vz1eHuA5mwecL7OxwBK+3yS3NDVpGbYWF1q8yKcn69dZUWmqVGxr85nJJJ5wgLVhglv/5T+nbb2sHtj2x4AnNTzcBkK+Pf13d2nWrbluzJrDvZZdJRxxhylOmSP37N2wsAAAAAAAAAAAAAAAAAADs75oc/Hb77bfr3HPP1fnnn6/XXnstoG3Tpk269tprVVhYqNtvv73R6/78889133336YEHHtCuXbt00EEH6aOPPtLFF19c3cfj8cjj8chn+/Do119/LUl655139M477wSss1evXtq6dWujxwIAAAAAAAAAAAAA2L/9+mvzr7PSW6n8cpPuVlRRJJfHpajwKElSQYEV/pOYWHf4D1qH0+WUJMVFxgXc++v3GYWrJZ/XWo7rKfW7SUr7SCr8o+3GhYbJnieVbpM6nyTFdq6uXro0sNsZZ0jffCM5ndJJJ0lr11ptFZUVKqssC+hfMwiusfLK8qxyaV6Inti1yyonJdXdr7LSKjc0+O2xx6zQN8mEzJ19tglza9/eqv9+y/f6btN3kqQdRTsCgt+ysgLXef/9VvmAA6QbbmjYWAAAAAAAAAAAAAAAAAAA2N+FNfWBZ599tu655x5NmzZNBxxwgJ5++mlJUqdOnTRgwADNnz9f999/v0444YRGrzshIUHPP/+8MjIyVFFRoeXLlweEvknSe++9J5/Pp969e1fXbd26VT6fL+iN0DcAAAAAAAAAAAAAQFMsWRK43LevdOedUteuTV/nrrJdAcv2QCR7+E9yctO3gebhdJuAt/jIeHMfFR9Qv88oXBW4PPolach90onzpIS+bTOm/ZHDUf+tpl9vkb4fKy28XPqmv7RzenXTpk1Wt/Bw6cknTTk+XnrtNSnM9skhe8hbckyyJCm/LH+3fpzc0tygZdTW0H2/x2OV27Wrf72rV0sPP1y7PitLeuaZwLocZ45VLs0JbLMt9ughDRwY+Njrr69/LAAAAAAAAAAAAAAAAAAAYDeC3yTp0Ucf1bfffqvx48crLi5O4eHh8nq9OvXUUzVjxgw99NBDzTVOAAAAAAAAAAAAAABajNcrffaZ9MQT0sqVgW2//WaVHQ5p8mTpqaek+fOlxMSmbc8eriMFBuzYw3+Skpq2fjQfp8sEvMVFxgXc++v3GWU7rHKnsVL3M005OkUa9VybDAkNsHOGtPFVa7myWJp/nlRggvyysqymsWOlQYOs5YMPlsaPt5b9wW8OOdQjsUdAXVO4PC4VVRRVL4cKfnt/2ft6duGzeuXXV5q8vb1dQYFVDrXvtwe/RUbWv9433pAqK4O35dZ4SuzvRTWfr+xsq3zEEbUzCA8+uHYYHAAAAAAAAAAAAAAAAAAAqC2iqQ9MT09XVFSUxo0bp3HjxjXnmAAAAAAAAAAAAAAAaDWVldLJJ0tz5pjlf/xDevll6eabJZ9P2rrV6nvVVdKYMabct6/0wAOBYTgNVTNQx75cWmrVJyc3ft1oXk53HcFv7n0s+K3cFkbYc0JgqlO3M6SsH1p/TAjN45J+vbl2vbdCWnGvdOxXAcFvxx9fu+t111nl/PJ8SVK76HZqH9Ne0u4Fv+WV5gUshwp+u3v23cpyZinMEaabRt+k8LDwJm93b+VyWeVQwW/2ELfwen5NlZUmrLQhfD5fwHNUK6DUtjh4cO3HOxxShw4N2xYAAAAAAAAAAAAAAAAAAPuzsKY+8MADD9R9993XnGMBAAAAAAAAAAAAAKDV/etfVuibJHm90p/+JP34o1RcLJWXW22XXx742JtvDh3QU5dQwW/2UJ+mrBvNq8RVIkmKj4o395HxAfX7jArbazL1mMA2h0Pq/6fWHQ/qlzVbKk0P3uYqkBQYTDl6dO1ux9iean/IW3JMspJizM7HHwbXFHllNYLfyoIHv3l9XuWU5lSXaz5uf9HQfb/HY5XrC3775RcFhP+F4nQ7VV5pveH5nxM/+2tp4MCGrRMAAAAAAAAAAAAAAAAAANTW5OC3lJQUpaSkNOdYAAAAAAAAAAAAAABoVcuWSY8+GrztySelzExrOTJSOuqowD7x8dKllzZ+u6GC3+yhPgkJjV83mpfT7ZQkxUXEmfvIuID6fUZFVciTI0xKPKh2e7v+rTse1C/t43q72EO/Bg+u3e5wWGV/8FtSdJKSopMC6pqi5n4urzR4oNuusl3y+rzVy9nO7KD99nX24LfY2Ib1qy/47eefG779UO9LkpRjy4Hr0qXh6wUAAAAAAAAAAAAAAAAAAIGaHPx2zDHHaNGiRc05FgAAAAAAAAAAAAAAWtXrr0s+X/A2jycw+O2gg6SYmNr9evdu/HZzSnMCl53Wsj3UJyKi8etG83K6qoLfImsEv7n20eC3uF5SeJAXOvYsPp+UNaveLtlVGWphYVLPnqFXmV+WL0lKiklSckyypOYNfqu57JdVkhVyeX/R0EA3r5WRp7B6PvlVM/jtxhultDTp/vtr97W/D0m136eybXl8HTqE3i52k9cjbXpbmnu69MtNUuGath4RAAAAAAAAAAAAAAAAAKAZNTn47bHHHtOqVav00EMPqdL+yUMAAAAAAAAAAAAAAPYC5eXShx+G7pNlyx8aPLjh6968WXr4YenJJ6UdO2q3hwpEamj4D1qH020C3uKj4s19ZHxAfZtxOOq/NYY/+C22S/OPFc2vdLtUlmEtO8KkpGFSWGR1VX6+tT9JSak/JMwf8pYUnaSk6CSzjvL8Jg/Rv19zyBGwXFO2Mzvk8v6ioft+e5s9BC6YpUutcv/+0rPPSgccIP3nP9I11wT2rS+oL8eWA5eSEnq72E1//Fv65XopY4a06Q3p29HSzhltPSoAAAAAAAAAAAAAAAAAQDNp8neDP/744xo6dKj+/e9/64033tDBBx+szp07y1Hjg8MOh0Nvv/32bg8UAAAAAAAAAAAAAIDmtHixVFQUuk9mplXu3r1h6/36a+mcc6xAnocekj77TDrlFKuPP1AnMixSbq9buWVWwI7HY/Uj+K3tOV0m4C0uMi7g3l+/T/D5pPKqVKcoEp32CnmLApdHPScN+LNUsFKaM06SlG3LT+vQof5V+kPekmOSlRRjgt/8YXBNGmJpniTpgKQDlFaYRvBbPRq677e32R9Tk9cbGDx6991SXJy1/MQT0sSJ1nJOqS3ZTVKO01r2+QJfTwS/taCsOdKq/wTWecqkBRdJp/8hxfdsm3EBAAAAAAAAAAAAAAAAAJpNk4Pf3nvvvepyRkaGMjIygvYj+A0AAAAAAAAAAAAAsCeaMydwefBg6c47pe++kz7+2NTZg986dqx/ncuXS5dcYoW+SZLTKU2YIP3+uzRggKnzByD1ad9H6/LWBQQiVVZajyX4re053SbgLT4y3txHxQfU7xMqSyRvhSkT/Na2fD6rbP/yRXu9JJVsssqpx0r9bzXl5GHS4f+T/viPsrKsLg0JfvOHvCVFJykp2gS/5ZflN2Lwgfz7tf4d+iutME2FFYVye9yKDI8M6JflzAq5vL+wh7iFhdXdr6HBb3l5ktttLZ9xRmB7x47SNddYy/7nKzUuVTmlOQHvSx6Pta7oaCk2tu7tYjetfFCSr3Z9ZbHk3ELwGwAAANAIPp+0YIH0xRcmwPrKK6UePdp6VAAAAAAAAAAAAMBuBL9t2bKlOccBAAAAAAAAAAAAAECrWrjQKsfFSZ99Jh10kAnCSUmRtmxRo4OT/vxnE/RWk9MpLVliBb/llOZIkgZ0GKB1eeuU48yp7msP9bEHyKFtlLhKJElxkXEB9/76fUJFnlUm+G3vULbTKve5VnLYksK6jpMKV6pwvVXVqOC3mCQlxSQF1DVFbpkJDuvXvp9ma7YkaVfZLnVO6BzQL9uZHXJ5fxFh+xRXqEC3hvbbscMq9+4tdelSu8+QIVbZ/z40oMMA5ZTmKL88vzqozx4gl5ISmEmIZlS0VsqZ39ajAAAAAPYaBQUmODsxMXj7f/4jPfigtfzYY9Knn0qnnNIqwwMAAAAAAAAAAADq1OTgt169ejXnOAAAAAAAAAAAAAAAaFVbt1rl2283oW+SCbR5+mlTl23LH+rYMfT6fv1Vmt/AvJbcUhOINKDDgIBlKTD4LVSoD1qH02WS/GoGv/nr9wneCqscTfBbi2hIUpbP1/D1lWVY5c7H127v9ye5/7AWGxL8ll+eL0lKjklWUvTuB7/llZpAwQPbH6gwR5i8Pq9yS3PrDH6LCo+Sy+Mi+E2h9/329wiXq+5+9uC34cPr3749kHTBtgWSrKC+ykqrX2xs/etCE+34uq1HAAAAAOwVsrPNFzfMmGFOpU85RXrzTalnT6vPu+8Ghr5JUkmJNGGCtGqVCcgGAAAAAAAAAAAA2kpY/V0AAAAAAAAAAAAAANi3+HxSerq1PGFCYHtsrHTXXVKFLQ+rvuC3jz5q+Pb9QW/9U/pXL/uqQp8aGv6D1uF0m4C3WZtn6dmFz2r6hukB9fsEr9sqRya32TDQCGU7zX1UBymuZ+32iNiAsK6EhPpX6Q95S4pOUnJMsiQTBudrTCCdjX8/lxqXqvYx7QPq7LKcWZKsIEz/8v6moft+e7/i4rr72YPfunevf/v+56ZP+z4Kc5iPlPnD4Ny2XUREk79mFPXKmhO4POAv0uB/SBEN+AMGAAAA9hMFBSbobfp0Kz/922+lI46wzoOKi6U77wz+eKdT2ratVYYK7JbyynK9uPhFvbj4RX217qu2Hg4AAAAAAAAAAGhmu/1RvA8//FDvvfeeli1bpsLCQiUmJmrkyJG6+uqrdemllzbHGAEAAAAAAAAAAAAAaFa5uVJ5uSnHxUkjRtTu079/YNhNUlLodU6bFrh88cXS6NHSG29IGzZY9aXuUpW6SyVZQUcVngo53U4lRCUEhOrYg5vQNpwuE/D27rJ3A+pdHpcqvZWKCGujFCR7GJfDEby+weuyvdDCIq3ysrslpy0h8ZBXpKj2jV8/ml9ZhrlPODDw+bex77/Cw+tfZX5ZviQpKSZJSTFmh+fyuFReWa7YyNhGD9EfJJYSm6KU2BTlleUpryyvVr9sZ7YkaVDHQVqVvap6eX9jf45C7fvt/YqK6u5nD37r3Ln+7ftD3jrGdVRKbIpyS3Orn0P7eAh+2z15edKLL0ppaebY49prpXbt/I2LrI6D7pJGPG7KvS6VZh/V2kMFAAAA9ki33y4tW1a7fscO6YsvpFtvld5+W8rPb+2RAc1ra8FW3T7zdknSqK6jdNbAs9p4RAAAAAAAAAAAoDk1+aN4Xq9XF110kT7//HP5fD7FxsaqW7duys7O1uzZs/X999/rs88+0yeffKKwsLDmHDMAAAAAAAAAAAAAtJ3chdKW/0k+t9TlFKnneZKD/4nubbZts8pDh9YdZGMPToqMDN5HkjIypPXrreXzz5c++EAKC5Nuukk6ypbX4g/SkazgN0nKceYoISohINSnrKy+nwQtye1xy+1119nudDmrA7L2al5bqpPD9seQMVMqWGEtj3ya4Lc9gc8nlVcFv8XUnehl3381JKyroLxAkpQUnaSk6KSA+uYIfrPX2fmD3ganDg5Y3t/Yn6OSkrr7JSRY5VDBbzt3WuVOnerfvv+56RjXUR1iOyi3NFc5ThMG5/FY/fgYWNOtXSuNHy9t2mTVvfCCNHOm1L93keSqSqaISpGG/cfqlDxUGvNK6w4WAAAA2AOtX2+ut9Xn449bfixAS0svTA9arsXnk9Y8IW39wHw5QPczpUF3S5Ht6n4MAAAAAAAAAABoc03+KN6LL76ozz77TMcee6wWLlwop9OpLVu2yOl0atGiRRo7dqy++OILvfjii805XgAAAAAAAAAAAABoO2kfS98fJ218Vdr0lrTgAmnOyZI7RPIK9kjptrly3bvX3a+hwW8bN1rl8HDpxRetcJx27aQPP7RCffzhOuGOcHVt11VR4VEB9fbwn8LCen8UtCCn27lb7XsNn+2F7givux/2DO4CyVNuytF1J3rZw7rC63lafT5fdfBbckxyQKBhfnl+o4fo8rhU7CqWJHWI66AOcR0kBQ9+yyrJkmQFv5W6S1XiCpF8tgcrLpZ+/llatCjw/aMhGrrvT062yqGC34qLrXJDgt/8IW8dYms/X/bXj9db/7pQ27p10uGHB4a+SdLmzdKNN0oqtSXSdhsvVR0bVOt1qZQ0pGUHWZ4trX1WWvGAtGOa5PXU/xgAAACgFb33Xv3nJFlZ0uLF1nKnTtKKFVJOjvTnP7fo8IBmlVaQVl3OLc2V0xXkOqTXLf1yvbT8HqlwpfkChz8ekb4dI5Vub8XRAgAAAAAAAACAxmpy8Nt7772ngQMHatasWTrssMMC2g499FB99913GjhwoN59993dHiQAAAAAAAAAAAAAtLkdX0s/Xyx5XYH1Wd9La59umzGhybbZ8lW6dq27X2WlVQ4VnLR5s1UeO1bq0iWwfehQ6YwzTNkfpJMSm6IwR5g6xAYG7ERHW48rKKh7m2h59YVP7a3hVLU52noA+z6fL/AWrL6hXLYgtpi6E70aE9ZV4iqRx2dCnpJikhQfGa/wqhBAfyBcY+SV5lWXU2JTlBKbIql28JvT5awOUBzUcVB1fbYzu9HbbGs//igNGCAddZR0xBHSgQdKM2Y0/PGxsVY5VPBb+/ZWOVTwm8t2uNKxY+htV3orqwP+OsR1qH5fyik1YXD2UDr7+yIa7p576n5ey8okOW2JtKlH1u7kcEjRHVpkbJKk/BXSt4dIS/8q/fEfad54afbRUllGy20TAAAAaASfT/rss8C6Rx6R5syRrr3Wqlu6NPAU+8svpWHDzHnR889L11/f8mN1u6X588147V8WATRGemF6wPK2om21O/3xqLT5ndr1xevNl9gAAAAAAAAAAIA9VpOD39atW6czzzxTEfZP9tlERERo/PjxWr9+fZMHBwAAAAAAAAAAAAB7BJ9XWnZP3e1eUlD2NpmZVjlU8FuY7b/qoYKTaga/BRMfb+7twW/2e3+9PdQnVPgPWp7T5dyt9r2Gw/bZj6rwL+zBvG6rHF13oldkpFWuL6zLHu6WFJ0kh8OhpJgkSVJ+WX4dj6qbPeAtJTZFKTFmP5dXlhfQzx8sJkkHJB2g2AiTfra3Bb+99pp0wgmB7y07dkhnnin98kvD1pGSYpVDhX4mJ1vlhga/2QNFg7EH9XWI7aAOcVXBb07z/DTmtYTaNm2Svviink6ltgn9Cf1bcji1Fa2XZh8VOAZJylsk/fbn1h0LAAAAUIfcXMk+NeWhh6R775WOO056+23prrtM/YYNVp+jj5YOP9xadjikp5+u/YUNzSktzYzp2GOl88+X+veXLr449Pnbfs3hqP+2n0ovCjxHqxkEJ1ehtO6ZVhwRAAAAAAAAAABoTsFT2xogKipKTmc9H3B2OhUVFdXUTQAAAAAAAAAAAADAniH3Z6lodVuPAs2oosIqh5rs2dCwG3vw24ABobftD9LxB+tUB+xUBSB16GD1JfitbTnd9Xwuop72vUYYwW97Fa8t0Ss8xir/fqfktHZGEd73JSVKalzwW3JMsiQTALerbFdAW0P5g98SohIUFR5VvZ+zB8JJUlZJliQpMixSidGJSo1PVXphenX93mDTJumOO4KHg3o8UkZGYF1aQZq8Pq8iwyPVI7FHdb09+C3Uvt8eDhoqOMBtywe0v5cFYw/g6xDXQR1iq56vstxajy8tDb0u1PbRR4HLJ59sQilWrzZhFZKk0m1Wh9gQibQtYcV9UmVJ8DZPRe26ylKpYLkJPm4/UopMaNnxAQAAAAoMfUtKkv72t8D2hx82wdtTplh1Z5xRez2JiebWEn77TTrppNph3h9/LEVESJMmtcx2sW9KK0gLuawdX0pu24WB8FgpKlkqq3EhAgAAAAAAAAAA7JHC6u8S3MiRIzVlyhTt3LkzaHtGRoamTJmiUaNGNXlwAAAAAAAAAAAAALBH2PaZVY5IkMZOk87LlQ55Q4qIb7txoclcttyk+BBPoT3sxh6iU5M9+K1Hj7r7SVbwkT9Ypzpgp6reHupTc6IoWpfTVU/wWz3tew2HLfjNHipWn8I/pNUTpZUPSTtnSl5C41qF17YzCrPtpLLnSNu/qL5FhluBTSV1ZDr55ZfnS5LCHeGKi4yTJCXFJElSk4Lf8sryJEkpsSkB9zWD37Kd2ZKk1PhUORwOpcalBtTvDSZODAwTDcXlcanvC33V54U+Gv7qcPl8vuq2hga/JSdb5dzcOrsFhP2Fh4cel/95iYuMU0xETPX7kj+oNMK2i9i1S7INGw0wd65VPvpo6auvpBNPlP78Z2nevKr3/dLtVqfYbq03uLIsafvngXVhIZIC85ZIM4ZLs46Uvj9WmtpJWnF/4H4JAAAAaAH24LdTT5Xi4gLbIyOlo46SNm606kaPbp2xSSb4+/rr676Wx5c7oLHSC9MlSZ3iOwUsV9v+hVVOHCyN3yCds1M6/nspulMrjRIAAAAAAAAAADRVk4Pf7rzzTuXl5WnMmDF6+umntWTJEm3btk1LlizRU089pdGjR2vXrl3661//2pzjBQAAAAAAAAAAAIDWt+s3q3zEB1K306XoDlK/G6TjZ0nh0W03NjSJPfgtMkS+ib0tVHDSdlteS4OD3+KCB79FRkrt2lnjLC8Pvb7G8Pmkd96Rxo2TxoyRrrlGWrKk+da/r3G66wl+q6d9r2EP+XE3YCayzyutfUaaOUpa/g9p1b+kH0+Tvh0tFa1rsWGiis8WsOeoO9HLvv/Kywu9Sn+4W1JMkhwOhylHm+A3fyhcY/j3Zw0OfqsKfEuN37uC35xOafJkazk5WZoyRfrlF+n222v335y/WZ6q5y+/PD/g9xEXJ0VFmXJRkQkNCMYeDpqRUXcoqT2szR4CF4w/4M3/ftQxrqMk6/kKD7fG5nJJpaWh14dAq1db5QcekKJth42DB0vPPCPJU2YqwmOlyMTmH0RFnlS4RnIXB9Zv/9zs0/3bPmaqdGGFdPJiKXl4YN8d06TZR0olm6w6T5n0xyPSmieaf8wAAADY/7jypd/ukGYfI809XVr3glRprr3Yg98OOaTuVdiD33r1aplhBjN9urRsWWBdzXA6oKE8Xo+2FW2TJB3e43BJUlphWmCngpVVBYc5l4vrbha7nCCdOEeKTGil0QIAAAAAAAAAgKaIqL9LcOPHj9ezzz6rv//977rrrrsC2nw+nyIiIvTUU09p/Pjxuz1IAAAAAAAAAAD2K5VOKSxGCqs7xAEA0MqKq2YWxveWup8Z2NbxCClxcKsPCbvHHoITEeI/5/6gGyl0cJI9nK1bt9Dbzi2rCn6rCtgJFoiUkiIVV2WzZGdLBxwQep0NkZYmXXmlNG+eVffbb9L770uvvSbdeOPub2Nf43TVE/xWT/teIzzGKrt2WeUBt0s5P0lb3gvsv/pxacW9tddTsFza8Ko0+rmWGCX87GFvvjrSwSQlJXqry/UFv+WXmXC3isoK3TLtFknSloItkqxQuMaoDriMDQy4zCsNHEiWM0uSFTTmv/fX7+l+/90KBXU4pNmzpdGjzfIhh0iDBgX2X5cbGIy4Lm9dddidw2H2/ZmZpi07W+ratfY2Y2NNcFhFheT1Sjt2SL17B/bx+QLfv+oKh/OrFUhadZ9TmlM9tk6drJDTXbuk+PjQ69zvbJtqQtQ8ZVLyCKnP1VJcDxUUmIA+SUpKko4/vvZDBw2SNL8qkTainfmFS1LBKmnL+1bHDodJB5zfuHG5CqVlf5M2vWWWHRFS97OkkU9KCX2k/KVW31HPST3OqdrWodJJ86XVE81yZZn0602St44XUyVpgAAAANhNWXOlhZdJZTutuowZ0vrnpRN/1Pr11jctHHhg8FX4fNKWLdZyz54tM9Rg3nnHKsfGSv/7n3TeeWY8N9/ceuPY6/h8Vtl/LlSzfj+UWZKpSq+5gH1EjyP01bqvlF6YbnXwuCRn1Yu907FS4oDAFSQNltr1b6XRAgAAAAAAAACApmhy8Jsk/eUvf9FZZ52lSZMmadmyZSoqKlJiYqJGjhypSy+9VH369GmucQIAAAAAAAAAsG/z+cwk8aV3Ss40KSxS6nS8NOR+qdMxbT06ANi/uQql8qoAmi4nBU5A84tKat0xYbdFRlplewhcTe3bW+Xc3Lr7+YPfIiICw3aCqRWIVBWwYw9+69DBBLVJZoLo7ga/uVzS+edLS5bUbvP5pAULCH4LpsRVslvte42oDlbZlW+V+14nxXYPDH4ry5JWPdRqQ0MQYbYdWF0hTJI6d7JC4eoLfvOHuzndTr265NWgbY3hD3jzB1v67wsrCuX2uBUZbn6GbGe2JFWHn6XGpQbU7+lWrLDK48dboW9+N98sFRZay+vyagS/5a7T0QccXb1sD37bsiV48JskJSdLWVWHJps21Q5+W7cu8L3IHk4ajD/grWZQX25prnw+nxwOh1JTA4PfWjNAYY9WsUv65Xpp+1Srbttn0h8PS4e/rzU7L6quHjo0RNisp8Lc2/++izdIa5+ylvve0Ljgt7Is6btDpNJtVp2v0lx7KFghnblBKlpj6sPjpN5XBD4+MlEaVrW/3/apVLbDakseLiUOknLmSWUZDR8TAABoGcGuVdW0n4coYQ9XliX9NCEwjN6vZLNUsllbtljBb716BV9NZaUVfN2xowlga7Yhusu0Ome1WXdcR/VKDhzEwoVW+fnnpQkTTLlPH2naNOmll5pvLNj3+UPeEqISNCR1SECdJMm52foygNRjg6/Efn4JAAAAAAAAAAD2OLsV/CZJBx54oP75z382x1gAAAAAAAAAANg/+XzS4msDAzW8binzOylzlnT6SilpSHXTn6f/Wb/s/EWSNHnCZB3Y/sBWHjAA7GeKbSEtCf3bbhxoVvZAHJer7n5duljlUMFvFVV5LZENmE+X46wK2IkLDNjxB+9IJvzHb/NmaezYwHW43Q3blt9//xsY+hYVZSaebt1afyDQ/szpdu5W+14jIl4Kj5E85cEnWdttfkfy+gOKoqThD0vtR0rZ86S1T7f8WBE4cddT9x9wp1RvdbmhwW/B5Jfn19lWl9yy4AGXkpRXlqcuCWbnWh38Frd3Br+tXGmVzzoreJ8kWzbs2ty1AW01l2vu+488MnBdpaVSXJwJJfUHv61YIZ14YmC/mTMD3yNychSSP3i0Y1xHSdbz5fK4VOwqVmJ0ojp1svrX93rar/xyQ2Dom5+3Qsr6XmvWWMFvffuGWI9/wr4jrPnG9vsdgaFvdv79eFHVa7DDYVJEkFQM//5m26dWXd/rpTGvmDZPhbTs7802ZAAAAOzbvF6ppERKSJDC7Ie+a58KvB4RnSrJIVVY54alpVZzXUHU9mtc7do1y5Crzdk6R2d8eIYk6bR+p2n6ZdOr27KyrHO0pCTpyisDHxsZKd1xR/OOB/u2tELzjSA9EnuoZ5J5wW8r2iaP16PwsHCpaL3VOSHUySYAAAAAAAAAANhTNeMnxQAAAAAAAAAAQJOkfRQY+hbAJ1WWBdR8uuZT/bLjF/2y4xct2bmkjscBAJpN8SarnNCn7caBpinPkTK+lXZMk0q2VFfbg9+Ki+t+eEOD3xyOhg/JH7CTEmsSfvwBO/56KTD8548/aq9j/vyGb0+SXnrJKg8bZsKK1qyRMjOl229v3Lr2J05XPcFv9bTvNRwOKdoEPslVT8hX1g9W+ejPpUF/l7qcJA3/t3TKr1Js15YbJ4ww2w6swrZjioiXwq3gpvbtvYqo+krIXbvMBPu6hAp3CxUKVxf//iy9KF3/Xf5fzdgwo1abJGU5zcz46uC3+NSA+j3dihVWeciQuvv5rcszYbKDUwcHLPt1sPLxAkLl/GbPNvfJyVbd0qWBfdxuadaswD7Z9eTo+YNHq4P6Yq2B+J8ve/Dbzp2h17ffyF0obf/cWo7uJKUeLUVaaX/2332fUIeR/r9rX2XzjK1ki5T+sbXc+UTpsPekYQ9Jsd1MXUWutQ9p1y/0+vKXmfvojtKoF6xAuPBoadTz0oFXNM+4sefzuqXSHZK7qK1HAmBf5vNJ6Z9IP5woTR8mzTlFWvss+x5gL7ZxowlDi401wWgpKdI115gvJJDPJ21+1+o85D7pnJ3SuZnS8bOlePPlR/ZQt/j44Nux92nMFyY0xLLMZUHLkrR8uVU+8kgpOrr24xtz7RD7KIej/luV9MJ0SVLPxJ7qkdhDklTprVRmSabp4NxqrZf/WQAAAAAAAAAAsFeKaOoDn3nmGT366KNasWKFunXrVqt9586dOvjgg/XPf/5Tt/MpcQAAAAAAAAAAgvP5pD8etpaTh0tDHzDl9E8CJ2pLyijOsD7UL2lp5lJdMOSC1hgpAOy/PLZgp7ie5t7nk9wFtk5hUlSSWoTPK22fKm18U6rIlqJTpc7HS32uk2JSW2ab+wJ3sbTmcWndc1Kl7TnseIQ0+iXFxIyqrsrIqHs1nTtb5awQOUQxMWZyqcsVelg+n686ROeCTy6QQw755JMk7SrbJY/Xo/Cw8IDwn19/rb2eL7+UTjgh9Lb8ioqscKKwMOnTT6UBA8xyUpL0/PPS7783bF37G6e7nuC3etr3KtGpUul2qSyz7j4+n1SwzJSTR0jdzwhsTxosJR7UUiOEX5QtGbLclip10nwpc7Y0Z5wkM1+4UycT0uX1Stu2Sb16BV9lqHC3/LJ6wgCD8O/npm+Yrukbpge05ZXmVZeznWb8HeM6Btz76/d0GzZYZf9+NZR1uSbo7bR+p2l1zupawW/20M8lQTK+v/xSOussqX17q+6776TKSlWH/H31lVRQIB1+uNWnvuA3//P11fqv9EfOH6r0WuFjOc4c9WnfR6m2Q45162quYT9lD6foOUE67B0pMtGEt69+VCrPVpktx71jxxDr8ge/eeo5kGiojG+lquML9b5cOvx9yVH1HbEDbpeW/V1ybrP6J/Ste12ufKnUhA6o+9lSRGxgu8PBvn9/4MqX1jwlrX/eOrZOGiL1v1Xqe4MU1uSPogJAIFeB9OMZUu7PVl3hKinzO2nDy9KZG9tsaI314JwH9XumOdl+8bQX1Tu5d9sOCGgj770nXX+95PFYdYWFpn7dOunnbzdLrqrzxC6nSMNt/zPrcqI07mfJU6qKCqu6rlC3sLDmHr3FHvaWUZKhrJIsdU4wFw6XWU0aNKjlxoD9hz/4rUdiD3WI7aDo8GhVeCqUXpiu7ondJU+p1Tmuu7n3uKRC2zeIRMRyrgYAAAAAAAAAwB6syZ+2+eSTTzR8+PCgoW+S1K1bN40YMUKTJ08m+A0AAAAAAAAAgLqUpktFa0w5aZh08i9SeLRZ7jlB6nVJwKTqpZlLAx7+ewYpLQDQ4jy2xI6IOKvuM1s6S9wB0jnpDVufz9fwbVfkSXNPk3bVSP7K/M4EL0zIbfi69ifeSmn+uVLW97XbchdK6R+rW7eGBb916WKVQwXdRFe9fXs8UlmZFBsbvF9hRaE8Pmumqz/0TZK8Pq8KygvUIa5DrfCfkhIpIcEsV1RIn3xiAtv8VmSt0Eu/vCRJGttrrC4bfll126+/Wi+7E04IHk40alTtOkhOlwk26ZHYQ2cNOKu6fuammdqcv7m6fZ8QXZVI5NxiJoqGR9XuU54hVVTtdzofH3w9jhacZQ0jMkkKj5E85VJFTsiunTub4DdJWr26dvCbz2cym/LL6w53CxUKVxd7uFtN/pAxyQp4+3r919q4a6O2FW2rfnylt1IRe3iQUEmJuY+NVUBgZzC5pbnKKzO/l9P6naanFz6tTbs2yeVxKarq782+71+0SCoultq1M8u7dknffGPKnTpZ/bKypB9+kE4+2Sy/+qq57949sE8oOU7zOtpetF3bi7bXGnfNba5eXXsdPp8JmLMHpu7z8hab+8hk6bB3pciqJysiVhr+H8m5TeWfWd39xwpB+YPf3AWS1yOFhe/e2Hb5kwMdJjjDvm+OSpYOeV3KXWTVxdgOeDa9ExhwnDTMKifbyth/lGVKsw6XnGmB9YV/SEtukVKPkZKHts3YAOx7frk+MPTNrmLvuQbi8/n0+m+vK8tpDsQuGnJRywa/2a81ORy164A2snJl7dC31FQTVu12m5By5dv+z9XnmtoriTXHqvawt8pKKSrIZYuYGKtc35czNJY9+E2Slmct18kJ5kQs05ah35BQcKA+aYXm2LtHYg85HA71SOyhTfmblFaYpiN6HmGuCfmFVb3wy7Okb20XeZNHSKcF/l8ZAAAAAAAAAADsOZr8adv169dr6NDQH9YZMmSINti/2hYAAAAAAAAAgP2Fw9Gwm3+iuCQNussKffPrcbaUNKR6cWmG+YB+t3bmi1mWZi6VjwlcANCyvG6r7GjlAJpFVwaGvkW0s8bgLmzdsexNtrxnC31zSD0vkAbdLXU5xSxLOuAAq3tDg99WraqakFpDUZEUH28tb99eu4+fP1ynzvZS096xo1VXWmqC3vwmTw6cUCpJX637Sm/+/qbe/P1NvfzrywFti2y5LoccEnLzqMHpNsFuo7qO0stnvFx9O7zH4QHt+4ToVHPv80gldXzWwx9YLElJg1t+TAjO4ZBiq76osQHBb36//Va7fd48cx8q3K0pwW/2cLe62jxeT3V5xsYZembRM/pktdnZ+eQLuY49gdcrlVfNs46Lq7//ulyTHhofGa8jex4phxzy+DzanL+5uk9qqtW/tFSaMsVafv11UydJ/foFrnviRBNq8Oqr0vdVb3/24Ldt20KPzf/eE6rNPraff66dI7J4sbRpU+jt7FMqS03olSR1O8MKfbOL76kw26fzgh1DVItqb+59HivUpss4afwGKfngxo9vV9UffEJfKb5X7XZHWGBQgP1axOpHpaV3Wrdi23tC4kGNH0soXre0c4a06S1p60dS4RpCavZEv91uhb45ws0xdZdxUngDdn4A0Bj5y6RtVampEfHSyGeks7dJp/wuDbxDCosM9eg9SlphWnXomyQt2r4oRO8QGvI/hib43/L/6fC3Dtfhbx2u95e937SxAQ3wr39ZoW8DB0oLF5rA6IIC6eWXq77kYJftZDWl7m8msIe6lZcH72MPW86vO9+80YorirVx10ZJ0uiuoyVZ/6+TrHM1KfCaHgyPR/r2W+npp6XHH5c+/9xcT93v+HzWrZ769ELzJTM9E3tKMgFw9nrZvlhEjt0MDgcAAAAAAAAAAG2iybMSSktLFW//5HoQMTExKvF/tS0AAAAAAAAAAKgt1xb8lnpUvd2XZpqJJBcPuVjPLHpG2c5sZZRkVAfBNVhDJoQ1YbJ1QXmBsp3ZkqTO8Z2VFJPU6HUAQIvwVEiVJVJkYuMnCofbZhV6Xc07rlDyfpF2Tjfl2O7SYW9LXU6WvBXS9i+kFf9svbHsbTa/a+4dYdJx30ldTrTadv0u5S9Tz55WVaigNntoUnGxtHy5NHKkVefxSB9+KPXqJW3ebK2vf//g66svyMjfXjPU54UXpIsvlnJzpX8Geernp8+vLi/ZuURl7jLFRsZKkjZutPoNHx5y86ihxGU+8xAXGRhsEhcRF9C+T4i2zUzOWRAQPlzNbZuVm9DX1v9nqxwWIXU4tPnHh0AxXaWSzebm89V5fN+pk1WeM0e6//7A9rfflsaOrT/4zevzKszRsO+XrKisULGruM52/34uryxPXl/dSVjZzmx1SehSZ/veZl2eCX7rl9JPsZGx6pnUU+mF6VqXu04HdTRhWjXfO557TrrgAmn9eumxx6z6mu8Rc+aYoFJ7sIE9+G3ZsrrH5fOFDtnzt9lfS5mZ0sqVge8pb74pXXdd3dvZqzTkfDnnZ2uiffsRdXaLjbXKdYVTSJLibAcm5RlSbGcpMkGK7Bd4LNoQPq9UuMqUk4fV3c/+c4Y6//eUWeWYqr9JT4W02PaER3eQRj/fiDH6pHXPSWufksp2BrYlHywd9635HaDtlWVK26oSiON6mGPrpEFm2VUoreScBEAzyvjWKo95RTrwSlOO6yGljJR6X9k242qCmkFvdQW/ebweHfTyQSosL1R4WLjW37Ze7aKDBMo2s8/WfKbFO8z/JjrFd9JVI65q8W1i/+N2S7NmmXJYmDR1qjSo6jAiLk665Rbp/PMlbdha1Slaiu9T5/rswW8ZGVJKSu0+ERHmyxmcTqmw0NyS6vo3VSP+T7Yye6V88ikpOkmn9TtNv2X8pmVZy6q72Y/1o6LqX+3+wuczAeUTJ9YOJI+Lkz7+WBo/vm3GtqdLKzDBy/7AN/+9v77N/mcBAAAAAAAAAACaTcM+kRlEr1699PPPP4fss3DhQvXo0aOpmwAAAAAAAAAAYN9XssHcR7ST4nvX290f/HZMr2N0QNIBpi5jaUuNrtH+NfdfGvjSQA18aaD+M+8/bT0cAPs7n1faMkn6/jhpSoz0eUdpSpz07SHShlcbvp4w2yQqd2GI7fkCb/XV18c+4fnw96Sup5gJieExUq+LpVOWBPb3eqTM2dLKf0lL/y6tfkLKmit5Kxu+zX2Bu8SE5klSjwmBoW+SlDJK6nutDjjAqlq1qu4wlg4dpPBwa/mrrwLbv/5a2rJF6mObl1pzIqNdQ4PfDjoosH7ZMmnECHOruf5Kb6V+3mb+fx8ZFim3161fdvxS3W7/vrbOZKg0itPtlCTFRwZ+MV58VHxA+z4hOtUqb/sseB97+E+E7Xcy+yjrNvf0lhkfAsV2NfcVOVJZRp3d7H/zP/4orVljLS9dKk2bZsr5Zfmqi08+FVfUHeRWU15ZXoPa/YHRdamvva2FhUnR0aZcVha6ryStzV0rSerfwaS79UvpF1Av1d73r1ol9e0rHXmkCR/1qxn8JgWGvkmBwW8ZGea9qqYFC6RiV7Fcnroniec4cySZYDm7hx6yyhs2SO+/X+cq9k3lWVY50fbE5S0xxyF5v0h5SwKC33bsCLE+e/BbaaiODVBZKvmqjv/s1xm2fSb98Zh1c9mOaz0hXsTeCqscVpVi4fNIaR9Yt+1fNG6MfzwsLf2rFfoWmWyui0hSwXLJtatx60PLyZpjlQ+eaIW+SVJUkjT6heBhsWgZrkJpw2vSrKOlqV2lL3qY890/HpMqQr//AnuFnHnmPqKd1Ouy2u0pI2vX7aH8QW/j+oyTJC3PWq5Sd2mtfkszl2rjro3KKc1RZkmmfkz7MbBDXdeTmnKdqYrX59W8tHnVy/PS5snj9TR6PUB9fv3VOo854ggr9M2uUydJlVXXVqJTpLCqi3CZ30szRli3Vf+WfVrK1q11b7evLac+Pb3Jww+wLHOZJGlY52Ea1nlYQJ1knRtKkosMrmqPPirdeqt1LbN9e2nAAPP7Ki2VNm1q/Do9Xo8mrZikSSsm6et1XzfvgPcQheWFKqww52v+wLeeieacMb2o6kVt/5+Fq+5rOgAAAAAAAAAAYM/V5OC38ePH66efftI777wTtP2tt97STz/9pDPPPLPJgwMAAAAAAAAAYK/V0PAfd1USS0wnE+YjmQnTX/ezbqseliQVlBdoc/5mSdLwzsM1vPNwSdLvGb+31k9Vr+kbpgctA0Cr8/mkhVdIi66Qsv2TZh0mBGPXEmn1Yw1fV3SKVXammfuwaOm474JPRG4od4mUNtmMc84p0rxzpKV3mYmNPq+U9YPpF9VB6nxi7cdHJVnlndOlr3tLc8ZJqx6S1j4lLb9b+uF4ae4pTR/j3ih3oRV20vmEOrslJUntqvJF3G5p8eLafRYvNsE+3bpZdU8/bQJ0JBP0c/fdpmwPfvvjjxDDa2DwW+/eUlRUYNv69dKuIDkoK7JWqMRVovjIeJ3e34RuzU+fX93udlt9IyJCbh41OF3Bg9/iIuMC2vcJcbYZ1JnfSZlV+6DKIlsnR6sOCSH4g98k6/0iCPuEd49H+vvfTdnplG6+WfJ6zXJBeYEkKSIsQtHh0YoOj1ZUuLUT8rc3RF5p6OAZ/34uqyQrZL/62vcE8VW7htLS4Ptnu3V56yRJ/VOqgt/a9wuol8zzFVbj01y5uYH7cX+/+iQnSzG2eeBffhnYvmWLNHly/e9LOaUm+O2gg6xTVkn6/HNp+nQzUf+888zra5/RkICVStv+PyLBKn8/VvruMHP7/lj16mU1bd4cYpvxtkTawpW7NfyAELdw24tg6wfSinutmz0coMwWNtf5eKn9KGs5zJZi4a3xYmyKskxzvCqZfdnYGdKEXdL5hdKpS6Vel+z+NtB8sm3vMV3rOK9wcHzQKoo3SDOGS0v+JOUukMozzd9u9o/mb3rntIDua9dKjz8uXXONdNll0t/+Jn32WcPCSps+xo0mhG7BJdL8CdKSW6XN7xNGgobLrTox73CIFf60p3A4Gnar4g9+u3DIhWof016V3sqg1/FnbZoVcrklLM9crvzyfCVEJSgpOkmFFYUBAVZAc1m40CofeWSIjv5jTIftopW70AQC+2+l2zVggNUcKvjNHpQdLAC7WiOCFf1/I0NTh2pop6GSpHW566zrRrbLRrmhT7H2G9u2SQ88YMrh4dLLL0uZmdK6dSa4/NVXTRBcYy3avkhXTL1CV0y9QudNOa9R1yv2FtuKrG/9OOPDM9Tn+T56/bfXJUnphVXBb9EdrQc4t5r7mM7SqcukAy5qnYECAAAAAAAAAIDd0uSPdN99992aPHmybrjhBk2aNEnjxo1T9+7dtWPHDn333XeaN2+eunXrpn/84x/NOV4AAAAAAAAAAPYtvqrZ8T6vVecukUpsX3NfYWaJ+CeWJEQlqHdybw3vNFzfrP9GSzOXNmG7toks9gm6NSe4VFUtWSLNnCn9+qsJiUhMlIYOlc46SzrkENNv065N2rBrg6LCo+Tz+bQmd422FmxV7+TejR8fAOyu9ClS2oem3GmsNOIJKeUQM2kwc5YJXGuodrZZhc6q2YJh4VLXcVLuT00bX+YP0oILJVeQcJy1T0qnr5YKqkI/Oh5m7asryySvy+obHmsmP84/x0ySjIg3YRnJw6XybBPe5C5s2hj3VqXWxDglm5BUeT3S9s+s+vBYObqfqZ49pdWrTdVHH0ljx1pdcnKkZ581oTgjR5rJipJUXCzdcIN0663SU0+ZMDYpMPjthzoymDIyrACduuQ4TXtEhNS/f+gQOb+f0s3r8JDuh+joA47Wl+u+rK6TAiefOvehnLLW4HSbX5g/6M2vOvjNvQ/9QpOGBi7/eoPU+wpp4+tWXXisVXYXCW0o1pZIufkdqfdlQYN3Ro4MXJ42TRo3zgRQbd5swsEqvZUqdhVLkqZfOl3j+o6TJGU7s9X5qc6SpPzyfPVSLzVEQwMus53ZIfvV174n6N/fCg7dsEE67LC6+67LNQFv/VJMCkH/DiYAzh78Fh1t3k82bgy93fbtpa5drSDSYBwOqWdPMy5Jeuwx6fLLpY4dzTnerbdKvXpZ7zt18T9fCQkmQMG/Pkk644zQ49ynOWxhNJ66U5QGD7bKmzbV2U2K62mVs+dJg+9p+tjCbUFtofbV9gDJElsq3aFvSts+k346v2p9tn1/he31EhYt+dyB1zMaYsfX1rWQMa9J3U612tqPkI78MOi1CbSR4qoXbtwBVrhEWVbgdau47lJ8w94jsBt+vlQqTZfkkAb+n3TglSZ4snCVtOW/8gf0pqeb/f38+cFXc+ed5jymWXnd0i83SFveD9L4ipR5qXTkB828UexzfD7JVZWkm2BLud30lpSzwFoe+BfzfrEHq6isqL5mf0i3QzSm2xjN2jxLi7Yv0tEHHB3Qd9ZmE/R2Up+TNHvz7OrlljR361xJ0hE9jlB4WLhmbpypuVvnanS30S2+bexf8m25nyHDqyOqrrmEOK6WFBD8tmJF3f3697fKP/9s/o9Vk8/XuOxa///nhnUepv4p/RUVHiWXx6VV2at0WI/D1NV2aO2/VticfD7rml58/N6RuztlihU2f+ut0i23WG2xsSaMvim+WvdVdbnSW6kZG2bokmH7Vnh0WkFaddkeAhfQlmj/n8VWcx8eJbU/WIpObeERAgAAAAAAAACA5tDk4LfU1FTNmTNHl19+uebOnau5c+fK4XDIV/Whq0MPPVSTJk1Sair/NAAAAAAAAAAA7JsWbluoW6abmQpDUodo0nmTGr+SyARzHyz4p4alGWay2LBOwxTmCNPwzibMpknBbw2UmSldeGHgZNGUFKm8XPriC+nTT6U1a0z9jI0zJElH9TxKHp9H89LmacaGGfrTIX9qsfEBQJ22Vu2TIxOlY76UopLMclSydMAFUs/zG76uhL4yk+h9UmEDUrjqU54jzT9bqiyRYrpIw/8jdTnZhGbkL5W2/s/M3qssrhpzR+uxy/4mbXjFWj5ysrTjSzPRPjxGGrdQSh5mtQ//j1RkBcrsFzylVjmiKvHMVyktuMiqj+0mdT9TfftawW9vvildeql07LGS2y1dc43kqcokGT1a+sqaU6hp08zNzh78tmSJeX8cNMiqmzHDTHjNTTUBOu1j2le/l0vSquxVyivLCwhMGjmyccFvR/Q4Qkf0OEKS9PO2n+XxehQeFq6UFKvvhg3SqacGWwuCcbrMrNr4qPiA+vjI+ID2fULSYFXv6yQTArTqocA+0bb9UfF6qctJpnz891L6ZGnTm60xUkhSO9tM9uw55nff78Za71PDhknh4db+TJJmzw5cVWG5FRCaHJNcXU6KTqouF5QXNHho/v1YdHi0bh5jzeResnOJFmxbsE8Fvw0bZgW/rV5dd/Cb2+PWpnwTkjRtwzT9kf2H1uSaEyl/IJzfqFH1B79J0uGHS1Onhu4zZowV1JadLV19tfSXv0jvvGPel26+OTCozx7aXVBeoILygoDA0hEjAoPf9msRCVa5wnY+Hx5jQnp9lZJM6IT/b3DlSqmwUEpKUm2x3VW9D86cJZVul+J6NG1s4bb3LPvY2g0wobgFVSkZEXFmG6XbpeIQT6w9lK54ndTlRPPYi8qllQ9Kq/7duPFlzKgaZ5zU9ZTgffaGJIv9hafqWCfS9sLd+Y30y/XW8qC7pRETW3dc+5uCldKuJaY86O/SiMettnZ9pR5nS95KuVzSiSda7yMXXCBdf70JAt25U5o+XWrXrgXGt/JBK/St5/lS/1tMWGDZTinzW/MlF0B9fJWqPhdxhFn1OT8Fhgr2nNA2wW81Q0n971VBwkqXZi6Vy+NSTESMBqcODgh+syt1l2rBNhNq98CxD2j25tlak7tGO4p2qHti9xb5MSRpbtpcSdLRBxytcEdV8FvaXN155J0ttk3snyorrXJYWN39qo8zKnJNcHFkojnnPehv5hpveaakwOC3GTPMMXa4LY/Z5zMB5/36WXVTp5oQbPvh5aZN5hrdmDEN/Dm8lVqZbb6gY1inYYoMj9SgjoO0PGu5lmUu02E9DtPBB1v9/f8z210ulzl3++Ybad4882UUknkvP+ww6emnpeHDQ6+jLX35pVW+8MJmXO86s+LRXUfrt4zf9OW6L/e54Lf0wvQ62worClVYXqgk+5fVFK5shVEBQMOVlprw1fnzzRdX+HxS587mf23jxpkvmAAAAAAAAACwG8FvktS/f38tXrxYS5Ys0S+//KKCggIlJyfr0EMP1ZiG/icMAAAAAAAAANC8Gjo5NsiEJDTOy7++rGWZyyRJyzKX6b5j7tOg1EGhH1RTbDdz7y6SKkvN5Olup0onL5Z+vlQq2VTd1R/wNqyTCfQZ1tncby3Yql1lu5QSm6Lm5PMFhr7deqv04INSaqppW706MDRi+obpkqRxfcZZwW8bCX4D0LKyskyQidcrdeggdesmhanSTC6XpC6nWKFvdo0JkwiPluJ7S84tJojDU25CPZpqy39N6JskHTVF6nSM1ZbQW+p5rimHRZrgEH8AXDCeCmn7F6bcbXxg6Jtf4sCmj3VvFB5rlStCB6sefbT09dem7PWa970rrpDmzJF++80KSGvIv7/79w9cvvxyMykzPl5av1666irpueesgJ2T+pykKRdMqe5/2eeX6cOVHyq3zArgOfZYaVI9ubI+n0/z082b9eE9DteorqMUERahYlexVmSt0MiuIzV6tNV/+fL6fxZYnG4TdhIXGRdQ71/2t+8TIuKkdv1Ch/8kDrbKhautcpcTrDAStI4ONRLGfr1JWv2Y5NwaUB0bKw0ebAKn6mIPdUuKsd4zoyOiFRMRo/LKcuWX5Td4aP79XNd2XfXcqc9V17+25DUt2LZAeWVm35zlzJIk9W3fVzeMuqG638d/fKylmUur2xv0nt1G57f2SfbTppnQ0JpKSqQd5ZtV6TWpB5+v+Tyg3R/62THOBCsec4w0ZUqt1dTSkOC3o46SPvoocIw1g0v9wW6d4ztry1+2VNe//MvLum3GbQHBcGPGSJ98Uv/Y9gsJfa1yaZpVnpAnrX9J+u3PkqToaKlvX3MsUFlpntsbbghc1ccfSxddFCUlHGhCN/2BtSfMMeWKnMAH+HxS1g8m9HHX7+ZYMTzWBLSljJH6Xm9C3orXSyW2FMERE6W+10nf2AIC2h1kgt92/SK5CoMfNycNscrNEYJctrNq2/3McbYk7ZgmrX/B6tPrYqlPkD+o3bEH70v2aGFV5z3uhr0PFBSYQMwlS6ScHPMr7dTJBGUef3wLhY7tD/znfJLU+4rgfcIiNGVKYOjbxx9bL/1Bg0woXLO/zD3l0sbXTbnzCeYc17/Rdn3N+a5toy6XtGiRua1bJ5WVmXOmPn2k446TjjiimceHvUdYpBQWZa6DlOeE7tvQfXob7fv9AW8juoxQZHikxnQbE1DvNy9tnlwelzrFd9LRBxytYZ2GaWX2Ss3ePFtXjbiq2cclSR6vuW4vWcFv/rH4w+OB5pKYaJWzskJ0tF/PLFordTjU1I18UsqZHzT4bds26bPPAgPFPvzQHIsMsR2+rl8vvfuudO21Zrm8XLrySmliIzJr1+WuU3lluSSpfWx77Sjaod7JvauD3yQFBL8tWCBVVJhzAbuG7pYk83OcdJK5PimZgPCTTpLat5fS06XvvpPWrt2zg9+2b7fKw4Jcsm6KdbnrtC5vnSLDIvXkuCd1wn9P0IyNM+TyuBQVHtU8G9kDpBWmhWxPL0w3/yOOSpFcu6Sd0yVvpRS2W9PDAKBZvP66dPfd5ssPJKlLF/PFghkZJnj1zTdNQDkAAAAAAACA3Qx+8xszZozGjBmjyspKraz6pKjb7VZkZGRzrB4AAAAAAADA3sZbKRWtkcqzJFe+FBYtxXaREg8y39KOllVzopJ/FgGTV5tVbmmuPln9iRxy6LT+p2n6hul647c39OypzzZuRSmHSpveMuWs76XuZ0rRHc0tPDBgxB/89s6yd/TByg/kk/WcLstcphMOPGG3fqaafvrJCn075hjppZesNofDTJ7xT6Apc5dpztY5kkyQjcfn0T/n/FPfb/leFZUVio6oMcMFaA0EYe59XIXS5nek7B+l/KWSu0ByREgxnaWkwdKIJ6WEA7V0qfTEE2YftWNH4CratZP++1aRzvG6TUXCgVbjT+dL220JKSfMkTod27CxJQ40wW+ufGnNk9LQfzb958wwQZmK7S6lHm3KZRlSsS2YI66nFN1JqtxihWNIUvezze9j5YNm2bVL8pSZcsohVr9l90hFtlCm0S9L8T2bPua9SZzt5yyrmmEYFikdN1Pa+oG09X/VzccfH/jQrCzpqadqr/Loo6XISMntrnuz7dtLhxwi/fqrWf79d+nII03AwtdfS6Wlpt4foNMhtkPA4/3L9oCdYxvw8tycv1mZJWYC7GHdD1NsZKxGdBmhJTuXaH76fI3sOlKH2fKhvvtO8nik8Bpzub1eKSysasHnM8Ez5ZkmPC8s0rzu2g2QIhPqH9Q+pMRlQhrjI+MD6uOj4gPa9xmpx4QOfotOkeJ6mJCgjG8bN2t5H1ZZKX3xhTRrlvnb37bN7C/atTMhJldeKV19dTNvNLa7FNvVvH/41Qh98zvllNDBb/nlVphPckxyQFtSdJLKK8sDwuHq4w92qxlM7V/27+eyndmSTCDG3UffXd1vR/EOLc1cWt0ecKxmf73tAcdw9snrX3wh/fFHYMjA//5nwg4cB60LuZ51uevU8QAr+K0hDj+8/j5HHVV/nxynCVbxB8/5+Zf97ZJ5Ld19txpkVfYqXf755ZKkxOhEfXv5t4qNjK3nUXuRxIFSRIIJ8905QxpyX51dhwwxgROSCVMfO9YKrXjrLentt6WLLpKUOta8/0pS7s/S170lr1uqsI4N5CqU5p9tjpcd4VLX08x1BflM0Nvye6Rel5gAuOL1JpSzLNNclwv6cxwkZc0221n/ojT0/tp9ojuY0PqyndKOr6VRz9cbKFBeWR7wHhr43Ff9HXvKraqy7VLmd9ZySgt86ewevC9paR6PVFwsRUVJcXH19w/g/8KC8izzOgmLlDodJx3xgbT0r6ZeJszrvvukF180QSft20sjRkhJSdIvv0gPP2xe65de2pw/2X6kKvBGkjkml6SCldLcU6z61GP18ceTqxdvvDH4YVqzH7rlLjTnpZLU61JrA7t+M/8n8OtwqGbNdujaa00QTFiYec874ACpqMgElX70kbRiRTOPbw/ncpljiLlzzXHkzp3m2DI5WerXzzyP48e38SBbU0I/cy3D/34oSaNflAbdJU23HWQ1dJ/eiH2/z2eO5VaulHJzTVBFXJzUs6c51+/du+E/xsLtCyVJ3dt117LMZYoMM5+n31G8Q9uLtqtHYg9J0uzN5ltVjut9nBwOh47rfZxWZq/UrM2zWiz4bXnWchWUFyjcEa7Duh8mh8OhiLAIFVUUaWnm0uqQOqA52M+XFi8O0bH9KKuc/aMJfguiRw8TKJtddap4zTXmi4qOOEL64APpllukZ54xgdXR0eaYRJJuuskEjXbrZq4pL1oUdPV18oe7SdKwVwMTzJZlmbbOnU2wTWameV97/32zD/dzuaQXXpD+9reGbfPJJ63Qt7vuMkF19t2Y12tda9xT2a89ejzNs84v130pSTqm1zEa23usUuNSlVOao7lb5+rkvic3z0b2AOmF6fW2D+s8zBwX5i0y52rrnpMGNfAFBgAt5JtvpJtvNuUxY6R33rGOB3w+88VE1f+HAgAAAAAAAKBGXS7bsmWL3nnnHa33fxLN5ptvvlH37t2rQ+C6du2qKQ35+tkgSkpKdMcdd6hbt26KiYnRiBEjNHny5PofKCk7O1tXX321OnbsqLi4OB1xxBH6/vvvmzQOAAAAAAAAAI3kLpF+/z/pi27SjOHS73+VNr8rbXhZWnil9HnH+tcB7CXeX/a+XB6XTjjwBD1w7AOSpPeWv6cyd1njVmSfwLJ1Up3dytxlWpOzRpJU6a2U0+1Uqdua1bE0Y2njttsA9skvp58euu+PaT+qvLJcyTHJGtV1lMZ0G6Ok6CSVuks1L22e6eRw1H9rQTnOHH2w4gN9sOIDfbfpu/ofgL2fzxd4q68ebas8xxw/LP2rCZAdcq80dpoJ6xr+sJTQV6os0bx5ZsLt5MkmUGfaNKmgwEx2y8mRpkyRuh1gC2iqCiKQZMI5IpMkn9fcGqPTcVZ55QPSb3dIG9+U0j9p/M/qLjb3kUnWvm/HV9L3x1q3TW9aoXS7fpPKqn6OridLB91prcthm0FXaQugyl1ggjn8t8p9LJwqlI5HWL8Xf9CfI0zqeorUrn9A15EjzaTM+iQmSic0IF+15vvlihXSxx8HTsTMKQ0esOMPfrMH7AwYIHXtGnqb89NNSqtDDp09+Wwd/tbh2pxvJsn/lP6TJGngQBO6IZlAKnuYqySlpUn/+Y9MmMeqh6Wv+0rf9JMWXSmtf15a+5T08yXSZ+2l8uz6fg37FKfLKUmKiwxMSfEv+9v3GV3G1d8n+WBzX7JR2vh6y45nL1BWZkIaL7jABDiNGSO9+aY0fboJuDnnHBMa0ewcDqlLwyY11xcWYg91S4pOCmjzB8E1JvitroBLf/BbUUWRXB5XdbBbalxqQD///rE6+G0PNnq0FaLk8ZhA0W+/ldatk/75Tyvwb11uPcFveVb70KFShw4hOlc55BATChNMQlVG58EHm/DBUKqfr7gagaRVy4UVhXJ7TPLp8OEmLKEh7v3+Xi3PWq60wjTNT5+vl399OWi/igoTirZ4sTR7tvTjj9KaNVZIwx7LESaljDbl3J+lorV1dj3rLKuckWGCjm6/XTrxROmGG2ynJJ2PC3xgWUZg6Jsk/fGICcMIi5JO+kka+7U06mlp1DPS2G+kc7OliHbW2CRzXFmXjrYEwZX/lFY/bsKkMr4N7Off95duk1Y9VO951MWfXqzUJ1OV+mSqTv3gVPns/eN6VK0r3Rx7SCZ4dMyrUlQDXvyoV2Gh9Oyz0kknmf1JdLTUt6/5+01Kks48M7D/1oKtmrZ+mqatn6a1uTVey/5zEq/bel206yv1vjTgCz6eeMIEKFdUmNf19u3SDz9IU6dKCxdKeXnSuAYcZqAO4bbwRP9+wes259FlGebm2hVwzNG9eyuNzX9+K5mgSL+5p0qzDq++7dwpTZhgXhvdukmrV5uws//+15wzrVgh7W8f9S0oMMeOF11kjiMPO8yEAn38sQn8OfxwEyC0X/HvcwqWWYHUke1a/P1h0iRz/j1smHTrrdK8eeZ3v3q1OX++6abGrW/RdnNh/bM1n2nk6yN11uSzarVJ0qzNsyRJfZL7aHXOavVK6iXJBML5Wuia5dytcyWZ4/znFj2nZxc+W33M728DmsvYsVb4148/mv1eTV6vpPYjrIr1L0iuIB1lgmLOOcdaLi011+tiY6XrrzfhapI5HzrpJKtfZaV0223Seec1PvRNCgx+q2lF1gp5vCbVzB7O/Ze/mOvUPp+0YYN02mnmd9BQb1YdwoeHS/feW/vfZ2Fh1nnfnsp+LrpkSfOs0x/8dlq/0xTmCNMp/UwI7pdrv2yeDewh/MFvlw27TNMunVZ98weHVgfDdbZ9q8myv0u//UVa+0zgl980ksfr0bkfn6uDXztYB792sD5e9XGT1wVg//Pvf1vlt94KDIF1OExA/PDhrT4sAAAAAAAAYI8V+qs3a3jzzTf1+OOPa/PmzQH1Gzdu1IUXXqjy8nL16tVLcXFxWrt2rS677DL1799fI0eObNSgzjvvPP3666+aOHGiBgwYoA8//FCXXHKJvF6vLg3xlY8VFRU68cQTVVBQoOeff16dOnXSyy+/rFNPPVWzZ8/W2LFjGzUOAAAAAAAAYK/mLpEyZkg5C6Sy7ZKrUJJXCo+RojtLvS42wSHN6bc/S1vek6LaS6f8JqWMCmyvyGve7TWSz2cmli1ZYibaFhVJ5eVSTIz5hvhDDgn84OH+ZGvB1uoQsb7t+yo6Ijqwg6dc2vW7CXdwF0qVZWaScXSKlHhQYHjZnsrjMhPGCtdU/QxO8zNEtZcS+kidj5PPJ61aJS1YIK1caSbKFhWZD6EmJ0s9e0r33CPFx/v0+m8m5OLqEVfr0O6H6qCOB2lt7lp9svoTXXnwlQ0fV9IQMwZXvpQ+RYrvIw39p/mdVxZVd1uZvVIen6fO1SzNrAp+a0h4WgMnjcXbcpPy6vnznb5huiQTfnLg8weastsEoczYOEPj+o6rvV3/WFsheMvn8+nar67VN+u/UWxErMory/XDVT/ouN7Htfi2gTo149/rPmHVv034gyNMOnGuFNvVHM+UZ5r9ZPJwKTJRd95pglUkM3nO/t7dsaN06qmSFC0VHiLt+lXKmS95K6WwCOnw96TijdI3/Wttvl49J0jL77GW1z/f5B9VCQeasTm3SJ4KKTxa6nCENPIZ6Y+HJdcu06/zCdKW9yVfpQneGvlk7XVFpUjRHc3k/7zFVv1RU0wIyU/nN32ce6vIdlLKGPP72PGNlLsoMNTEJiLChPJMnFj/as87z4T5hHLVVSZAzRsiV7C+gB1/u2R2EzfeKD30UO31HH20ufeHu/nk0+IdiwP6zE+fL5/Pp7Awh846S/rf/0z9HXeYCewnn2yOeV54oSoAZNW/zWswLEo67lsTAmbfV1XsMr/f/Yj/eCY+Kj6g3h/85va65fa4FRke2epjaxFdTpIcEWa/U1PSMCm2i9RtvLRzmqlb8iezP0scJG39X+uOdQ/xxBMm0EaS/vUvE/Zld+KJLbjxnheY94m6OMzHgo480pzzZgfJUQsPl/LL8iVJMRExtc4Fk2JMEFx+eX6Dh1Xnfs4WBJdXmqcspwk1TY0PDH7zB8H52/dk7dqZ0L/3q56GnBz/sUggf5DS6K6jdcXwK6rr3/j9Da3OWR0QtBQebkKTgr03HXecVY6NNe87zwc5JLnwQnPvcEiXXio9/HDdP0N9gaSSeU67tusqh8OE9rz4YvB1xcSY+wXpC/T1+q+VGpeqqRdN1dHvHq1H5z+q60ddXx0s8vXXJphq4UJzvn3ssVJqqjnO27HDnIvPnVv3uPcInY4zIWzySXNOlg55zZzjFywP6HbuudItt5igSMn8LQb9HXY/24Q7eUIEym+rCh1OOcQ6vtnxjbTzG6vPAReZ40i/lQ+aEOCeF0g582ps8yxzrdBTbpaX3xN4zOvX41xznVEyxwq5C6V2/aRtn9fq+s36b/Tlui81oMMAJUUnaV7aPH2w8gNdPvxy06HbGdK2T80206dIvS+Tkgab29onJVcbXj9saCD9HnyeVlhowqPWrTMhb6++agJSYmOt9uW2l6jT5dQpk07R+rz1igiLUMe4jlpx8wpr32wPk1g90Rwfhte4bijpuefMvcMhPf20FYrpFxdXuw6N0PEIq5wzX+p1kbn2frFbWnCxlG4COfr0keabXGgtWSINGtQKY4vvbZWLbEGnQx+UsudV77c++EAqrsqIu/56E05dU2pq7bp92b33mvMxyYSL3XhjYPsZZ7T+mNpc6rHSxtdMednd0hEfSBGxoR+zm374QbrySrNrP+448wUDNfdXlUFOj+qys3inFcgTxKLti3T+4POVVZKlFVkrJEkTF0zUxAXWwV+WM0ursldpWOfm/4eVP9wtryxP98+5v1bb3478W6PXWeIq0W3Tb6s+f7736Hs1smvj5g5g35SYaMLQFiww7wE33ii9844VWLZmjTmGeP31ZKnDYeZaXul26dvR0rB/m5DTkk0B67z8cumNN+rf9pVXmr/n5rAsa1mdbaXuUm3ctVEDOw7UtddKX3xh6svLTbDnVVeZslR/KHvAequ+RCIiYs8PeKvLhAnSd1XfwfTf/wYPAa6sND9jQ2SVZGnhNnMBZl7aPG3atan6yy++Wv+VXjr9JTla+AumWktaYZok6dhex+r0/tY3jfRL6aftRdur29VzgrT6MeuB61/Y7W2//OvL+mLtFxrVdZSWZy7XbTNu04l9Tqx1zQD7LqfT7LOdTnN+l5gopaSYwEnsffLypF9/lTZuNNfanE5z7TElxQTE+4PhKyvN+/K2beb5LyuToqJMmPyAAdKBBzZse2lpVnnAgOb/eQAAAAAAAIB9TaOC33766ScdfPDB6tWrV0D9888/r/Lyct166616sepTaZ9//rnOP/98vfTSS3r77bcbvI3p06dr1qxZ1WFvknT88ccrLS1Nf//733XRRRcp3P/VTzW8/fbbWrVqlX7++WcdccQR1Y89+OCDddddd2nx4sVBHwcAAAAAAADsrvJyM2murExyu80H4BITzcTVNvl8sTNNmn2MVLrNTBod9i8TzhUeI1WWSs6tLbPd7VWTPVOPsULf1jwppX1k9Rn+sNTt9NqPDaGiskIbd22UZCai903p2+ihrVkjXXKJmdjYr5/5pvXDDzeTtMvLzaTirVv3z+C3L9d+qQlTJqhTfCdllGTo3IPO1ZQLpigiLMLMdvrjYWn1o1JYtDTw/0yQSlSSCVIrzzKBcHt68NuGV8xEMZ9HGvAXKfUoEyLk80jl2VL+MlUkH6dLLpGmTpWio6VHHzWTMLp0MZMOcnPNpFmHQ5qzdY427NogSfpk9SeatmGa3B63JOn1315vXPBbWITU/xbpj0fM8pqJ5lbD0gwT7Na9XXdNuWBKdf1nqz/TM4ue0e8Zv5sK++Rj+w6oCZOSJ0yQ7rzT/I3873/S3XebUCU7/6SMGRvNBHC3161tRdsC+kzfMF3PnPJMo7dfr0aEZr35+5v6Zv03OqLHEXrkhEd0wn9P0JVTr9SKP62oDh6oxeuR5JMc4W20M98DFK2Xdv0mlWwwAVyS+X1IJmiq3w1SZGKbDG3LFmnOHBNclJVl3nMjIsxT5fFI/ftLt93WJkNruGb8e90nlO0w9+HxUkxnU86ZJy2+1oTH+iqlvjfI6bRm9oWc9HbARSaMqGSzCbsY+qAUHtX08bXrJ3U/U9rxddPX4df7chNy4SmT1jwuDX1Aaj/c3Da8ZAW/dTvD/I25i0zwW8FKqcdZ5ljPLyxCOuBC816X+Z0J3+h5ngnOi+m6+2PdWx14lZks6quUZh8t9b5SiuthQkZquPFGE5pTFiRjxR6CeuWV0uOPSzW+J02SNXHzwAPN++cnn9Q9tOpAJFugjn3ZHvwmmaCYiROligrVqpdMuJsk9U7urfYx7SVJXp9Xy7OWK7MkU5vzN6tvSl/dc4/00UfWhPU33ggyUTa9auDJB1sh0Zvflza8bPUZ+BcT0LIfcHlcqvSaX5g/6M0vPtJ6cTjdTiWHJ7fm0FpOdEepzzXSpjdrtw19wIRz9r5MWnGfta/a/E7rjrE1Zc42gUqFK835Q1SKFBYp+byS1yV1P0tbt55d3b3VJ7N1GWfCVoKd4x9wkRTXTZIUGSk9+KB06621u112mVRQXiBJSopOqtXur/P3aYi8MhPalBKTElCfEpsS0CfbaZLo/EFvfv6woWxntnw+3x4/cfvuu02YTahAkHV5JgjnlL6n6C+H/6W6fm3uWq3OWV3d7nfbbdJTT9Ve55/+FLh88821g9/8YXR+N91k+vjDduwOPFD6qa73JVtwnz/4TTJh6G+9Vft9c/RoaeRIE7p9z/cmOOyuo+7SUQccpbMGnqWv1n2lJxY8oUdPfFSzZ0tnn20Oe085RfryS3Mevtfpd5MJwvJWmGtwPwZP6ElKkv76V+mRR+pZX1SSOa6rK9Cx/Ugpf5n5m6/INvsih3/mtcPsu30eKWmoNOA2qdNYK5huzRPmVlNkO6nPdYHv9cH0ulhaca8JG5akrO/NrYYyd5lun3G7JOmpcU8pJTZFR797tO787k6NHzDenH93O8OEzHpd0u9/lSLiTQCdp9yEIrel5g6sb4Ow708+MdevJHP8WvURzGpJSSZo0e+v3/5V6/PW609j/qSuCV31wNwHdMPXN2jqRVPN/rfdQBM0uOtXKXeBNH2IOdaudJpgliqJiWZCuc9nJpO327+yglte19OliHZSZbE5Dut4uBTfq1a3m2+2wkifeMJM4k9Ottq9Xik9XerduxnHljzMBAQXrjRhI32vl6I7mP1QRHx18FuK7bAgWBjt/miTLcvooIPabhzNwlNh3p/cxZKnKq0oPNYcQ8cdILc3Sp9+Ki1aZK7lJSaaoD//x8FdLumss6QzTx0vRadKFTnS9qlmn9NlnPlCmhYyc6a1K54wIXhIZUNDiSRp8XbzWfXYiFhdNsw6d16Vs0qLti/Sou2LJEmzN88OuZ5Zm2c1e/Cbx+vRvDQTAhsdHq3wsPDq+gpPhealzVOlt9L8b6iBvD6vrpx6paaunaqrDr5KH678UIu3L9avN/yqzgmdm3X82Dv99a8m+E0yxykLFpiQxYwMad48acyYqo4D/iItvNSUSzZLCy8Pur5jjpHGjpV+/DH0didMMP8j2LBh98bv8/m0LHOZJHN8O36Ald52xNtHKL88X0szl2pgx4E6/XRzTrR0qfV4f+hbY51+uvl9VVRIn35qQuT2NuedZ758oqxMmjTJ/H/x7383/3fduFF67TUTOhTsWkUw0zZMk09mh/31+sBr9NuLtmtp5lKN6joq2EP3Km6PWzuLd0qSeib2DGjrkdhDkqyA0fajTGhqzYDvJkovTNe939+ryLBIfXjeh3p1yat6fvHzuvO7O/X+OSG+eKAOWVnS2rXm+NPpNK8Fh8Ncc+/Y0YTcRu3Gv2zQfGbNMkHEv/1mzuXGjjVfIhEeLuXnSzt3mlDxDh3qXxf2DCUl0rXXmveS+HjzmY9jjzXPoddrvrwiLc08v7fcYq7NRUaakO4RI8z5m9tt9tcbNki33eoz+5rchVLRWnONPDzOfG7A5zG3QXfrqKN6aupUM4aZM82XIQBAU/h8Umam+VxQcbEJRvZ6zZfPpKRIQ4aYawsAAAAAAOztGhX8tmXLFh1n/+rYKjNnzlRUVJQeffTR6rrzzjtPxxxzjOb7vz6wgaZOnaqEhARdYP8EoqRrrrlGl156qRYvXqwjjzyyzscOHDiwOvRNkiIiInT55Zfr3nvv1Y4dO9S9e/dGjQfAnsPjMf88qKw03xgUGWluAAAAdXIVSGUZkrvQTLrxVpoPGoTHmA+bt+vf1iMEAOzlFi2SHn7YfHi7Z0/p/POlHj3MB0zcbmnXLql790Z8e3fxJilzlvkwe3SKFN3JChvyecyEyIYGLOQsMBNOJTMJtf0I863o8881QSHONCmmi3TGH9UP2ZK/RRklGZKkjnEdNaBDiBnrdU167HGumZyaM1/KX2HCSw68Wup6mjSjaoKKK79Rkx63FmzVBZ9coHW563TGgDM0edVk/d/h/6fHT3pckeENvzgwcaIJfZPM89baH5D/YcsP+nzN54oKj5LH69F1o67T8M7DW3cQQXy/+Xtd+OmF6pHYQ4uuX6SJP03U84uf13VfXad3z35XYRW50soHTOe+N0nDHjTl1RNN4FuZ+eC5upy45x5feT3S7/9nJhQfcJE0ouqbzze8ZiZAl5oPx6cVjtXUqSMlmcCGO+4I/ObqAw4wN0l6bclrkkxwwarsVdV9HHLo520/a2XWysZNyhp0jwlaKV4fvD2qvZammZkio7qO0pE9revk5ZXlembRM1qXt06l7tJaoSS7o3Nn6b77pH/+03w4f+hQE0AwcKCZbPLLL2Yf+M4XG6rDGaecP6X6W99zSnN00acXaV3eOm3O36w+7fs029gkNTg0a33eev3ft/8nSTqq51HaUrBFQzsN1arsVbpt+m2adN4kyZlugirzFklxPaWU0WZCbViE2X963VKXk8z+dH/x2x3S+udNwMnRn5lJxeVZ5sPcXrf5+y/dLiUNbvWhTZ4sXX65uW58+eVmMkJSjZwSp7PVh4Xd1f8WM6m3slhacb805H4TFntupvTd4SbES9JDD0kXXmgect110uuvm0l8kvnz37zZ/C9hYL8bpc1vmdfs6kelzW+bEAxbOEGjHfy4lLvITECuafA9DV9P19OkjkdKuT+bULrM2VLnE8xE6fIsq190B2nkM9Iv15vlzG/NraZBd0lpH0uuPOmnCSakNXGQ+dn3V32vl7Z+YMIpfB5py7t1dj3wQBOIc+ONgfUxMdJ//hO4/Mwz0jnnBPa78EIz6dTvxRfNe2RaWmC/Aw6QTjjJrYJXCyQFBurYl4tdxaqorFB0hEnA6dTJhHa8acvhGj3ahPpkO7O1Ps8cP3x6waca3W20JDMptevTXZXlzNL89Pnqm9JXgwebY+K//S3478HhkNTjbBMKU7hSyvlZSj1S6j7evAd8e4j5+yzLDL6CpnIXSWufNZOGwmOkDodJkUlVQaM+c02v/Ugp9WjzPl2w0oTOxHSRIuIk+c9NKs3fVbt+zTY0p8t6M7EHvUmBQXBOl7PuINm90ZD7pC3vmfd7v+5nSz0nmHJkO2nU89KiK4I/PmlIiw+xVWz9UFpYdQ5+zBfm76OyVNr4mtXHla//+z/pww9NWMW//iUNHhwYKF5aakLGB7fEIVN4lDT6JWlejQsPsd2lUc8GVN14o9k/rbW9NaSmSvfeK/13Y4EkBX0d++saE/xWHXBZYz9nD37LLc21gt/iawS/VQXBlVeWq8RVonbRe3Z60KBBofevqanSuvUmhal/h8DzZv/yutzA4Lfu3aWLLzaT4/3GjpVOOy1w3QcdZEIT5s616u65J3DCU48e0tNP136fO+gg6fbbpakfmOOamsFv/vM6yZzb+XXrZs6XH3vM6utwSE8+ae6/WT9NP6X/JEl6ZP4jenzB4ypzm5S45xY9p9sOvU3l5d2qT9vi4hoXprJHie0qHfyotPTO4O0xVtjJ3XebYItgH6UL2D8c/Li0c4YJdrPrfqa5xhfbXZp/tlS8Qfr1ZhPK2e0Mc3y55T1zkuQ35mXp2zEmUK2msGgT9imZ4+6d0+oIkbzY7PcdYdKo5+oM4FCHQyRJj/30mLYUbFFUeJQ+XPWhHHIoISpB2c5s/fOHf+rF01+UYlKl4Y9Ky/5mfs7550qOCHPMpt0MQWurQO26rpW2Qdj3MceYSd1Op5m8n5Ehda2RB11ebo5tv1j7hd74/Q1FhEVoWKdhiomIUbuodvpy3Zd68/c3dePoG824D3nVhCl7yqWSTda1QpuJE63rrRMmmPP0UaPMtbWKCnMtvWNHMymzPi6Xec/6/ntzPerII6VevUwoRFiYmeTpdpuJ6/uNiFizv/ntz+Y5+LqvOT4OizbnlVUOP1y69FJzbLJqlTlXPv988/+LnTvNxPtzzjHhos3G4ZCG/9v8LZftlKYdZEIsY7sHBERecYX03PNmXG+8YcZ23XXmeo7v/9m76/i4qryP45/xJBP3tE3dXaBQrEWLFHdd3FncZYF98GVZYGGxZYHFWVyKlgLFW6gLdUvbuI3Lff44yaRpkzaFtgnl+369pp3M3Ln3zMyde/x3LDORd9q05sFLd3TXXAMff2zuX3edyfd7rtd8WldnJjk3tnn8sPoH/u/L/yPNk0apr5R9e+zLlWOu3KJ+kq1u7Wfw8xVQMxv6/tkEn3GlmXpe1GfaOAr25dgzR/D22+Yl77xjghJuyLIAWxqMehi+OcE86FsKizeIWG6zb/Ta3+Lkk+Ghh8y16oknTJ/e+sERGyebb3gtbU1jYLedO+/Mk4c1VeTf/+V9Jrw0gWlrphGOhflkyScAHN7vcB4+6OHEdv/35f/xxE9P8MmST7hizBW/+f2tb/ra6dSEagBYftnyRGC2cn85efflUReu4+c1P7Nz553bvM/bJt/Gm/PfZHTn0dy8183ke/O575v7OOrVo5h02qRE24asJxYyC0tU/GDaWdL6gSu1IXCKZdo3soZ3/AWX2ujII+GMM+A/DU1zJSUmn9pItxNMeXbtxy3vKLVpUbDHHjNlnvLmayfg8Zi8EEywov/+F/bee+Og1b16mf6utiipK0nUcfftuS/9cvslnhucP5ivVnzF9LXTOWHwCTgcJkj2/vubcQIbyspq2zHBtEl+9JEJqHvGGTB9Ouy3nwlysWIFTJxorqWHtBx7ukPIzTVt93/6kzm1//EPc2ssz4H5u63eXmAykvG9xnPUgKMSjz/8w8PMLp3N2/Pf3iECv62uW03cMh9QY6C3Ro2B4JbXNDQ822ym/WfSPmZ8ZDM2GHRDm49rWRYXvH8BvoiPHpk9eGLaE9SFTAT552Y8xylDTmH/Xvu3aV/l5aYM+sUXpq/5wQdhzBjzG7DbTRln9eo/7hpIHc0vv5ig/JZlro0zZjQfIyHbX9yKM3PdzMSiNP1z+5Pq3tRKWBv76KOmBYqOOML0rbbklltMvzuYba6+upUd/nQFLPiHCe693zcmALhvOZSZNkCsCPhXcuedxXz8sWmTOP10E+x6//1N/rVmDUyaBEOHmgCnjUIh0w4QaeiOcLkgOfl33F4oIpsWC4J/tRlvEQ+ZRWdtNtPG5fRCxiBuvtXDI4+Y4JTXXw/77GPK8C6X6XMrLTXlbQV+ExERka0mHjPtsja76bduYZ5LJNJUd7GsprpL4wI3IiIiv9YWNYOVl5dTXNx81Zjq6moWL17MnnvuSdoGyzQOHz6cqVOnblGCZs+ezYABA3Bu0EI3dOjQxPOtBX6bPXs2e64/on6D186ZM6fVwG+hUIjQekuk19bWblG6RWQLxEIw+3aoW2AmUHaaYBrn6haaVeFDZeDwUpJ2KWedl8LcuWbl0auvNoP4Gld5DgZNIXm//czfkViExVWL8Uf8iRUHe2f33niia+PACCtO04BRW8NEekfbJp6LiIgIsZgZgFNdbfLkjAyTT9tsDbFpLPO/2w0zZ5oOtrQ0M6i8cTsw2yUlQXHnCIQqmlZ/tnsaBuzaSOTZ7hwzkW1z4lH4fD8TxCNnNIx6BDL7Q81cE0hn3admgt6I+8FbvPn9SYcQCJgJHmvWmPNnyBBITTWNpI3nXDxuJqtp8JF0RDNnmok0K1aYSRvHHmuui+ufr8nJZgVo+f1YssR8tyUlZoDJqFFmMm1ysskfq6q2IGi5FYfvzzAB03LHwM5PgLerCaxVMwuWv2S2S+uHlT2KGetm8O6Cd6kN1bJz5535cvmX9Mnuw6H9DjWBlbqdADVzzISYb06EbidCWl8oOhBWvglVP5ugCsDPa37mril38ca8Nzhm4DGkudN4ZsYz7N9zf27Y8wb26LpH2z+UUQ+bIA3LnocPh5kADcmdIdYwot5mN+0AbZz0+O6CdzntrdOIxWMcNeAo+uf2Z0XNCh7+4WG+W/UdrxzzCsWZXduUtPvLLEIh+OADM9n5yy/NwNW0NNPOUFJiBh6fd17b325bLKtexlUfX8Xr815nZNFIzhx+Jvd/ez///PGfnD/qfG7f+/aNJsO3WWuTStvou1XfcfjLh5PsTGZE0Qgu/+hy4lacoQVDeW7Gc2R4MnjwwAex7fIfmH0rLHoUYj7IGgUpXc1grJUNo0WjHTjCkt0Bu78G06+BFa+aNqDc3cCdaQKLrDAjWfsOWsv//mcmU8ycCTvvbAacFhWZMkdFBSxYANfcvo4355tlit878T3GFDctRnLIi4fwwcIPeHza4/zz4H+2PY2uVNhvipkkt2y9mf3uLDMBu99l/Py9Oc6wgmHNXjok30SVaBwAvGuXXX/Fh9S6G280E90eeAB++skEgVvfQQfBxEUTAeiR2YNjBzXNzrQsi6szrmZFzQomLpzIRaMv2qppa4tILMKpb56KP+LnhMEnkOZJY1XtKo4deCw1wRpemPUCE/pO4ITsDFj1hpmg2vV4KBpvrlmr3jKBqGrmwJoPYZ9Pt/t7iMdNsJDKSjPwOTvbBEdorH+BqaN17bqVy8LZI00Q0ki1GbRtxczAS98ymHG9mcA55DbI2HjC97Y2apQJfPHFF2by+HPPmYAbqakm4FdFhRlgccwx2z1p8lsU7ge7vWQCoc29C355CFK6mQCMtfMAGyTlc+yx8PrrcMcdJshJ374moEpmpplQVFVlJur265cG+34BP19lrv/BdU1B1eweE8AnrR/BaJC35r/Fv3/+N9XBavbpvg9vLzCTxM4acRZ799gbe+Ok4owBsP/X8PkBTYExPLkm6E63LYgqa3fCuIkw/VoTnKzsK3NrlNYP8hr6PXudBc5UmHmDaddo5M6BfpdBlyPA4THp+vkqWDMRKqeaW+K9HgHJhVv4hfzO2V0w9l3TJ7XwkeYBrPLHwfD7mm1+9tkmmOm//mX+zsw0k10GDGi+28MOg4sugkceMX+PGdM8IBuYMuV775nJUiUNMXL79YN33wVbStOszw0D7Kz/d0Wggk5pnRJ/33Yb/PijmeSZlwfPPmvKJ1+v+BqAZGdys6DCNpuNMcVjeGv+W0xZMYXTh58OmOAYgwfDBReYwAqNDjoI7rwTKLjdlJWW/Ac+3R0yh5pynxU15UBsZhL/1lS/FJb91wSw6HcZdD7M/K6WPQ+lX5o8KCkfhv4ffH+mqVuMed7k1VYcSieb4Im+Zab9b/jdWy1pvkhTGXfDPkev29vidjsEbzcY8n8w41rzd+4Y2OXp5nW3HqeYgOXfnd4UDNPugt4XmqAkO4L8cVB4gGlPXvAP036d0tnUcZf8xwTiTO/P0ENO5/PPTTn5yy/NxLXOnU3Qxvp681s74QQz4Xyb6HwI9D6/KSBdWh8TtDe5eWQKp9NMQD/6aBNEJz0dXnnFXLOqZlcBkJGUseHeyfCYx6qCVW1OUuOk+PUDvQGkulNx2V1E4hFW1q7EHzH9AY2B3hqtHwhunW9duwR+e+cdM5G+tNS0+QwdavoywPwUYjETAK1xGNWVV5q26VNPNWURMOX2xx6DfsMrKP/EfCZ9sjcI/Nbw9+KqxURikWaBW+680+RNc+aYc+rf/255OMO//mUmUK5aBbvvDpdfvvE2Z58NX39t8g+A3r3h/ffNe2r8vtYP9AbmupfkTCIYDSa2aXTttWZ/X35p/r73XhNQIRaPcf1n1wNwzW7XcHj/wxOv+euXf+XDRR9y+xe389iEx3j2WROQ7s03TSCovfc2eVxj/1NFhck7O7x+l0NSEUy72Ix5AcBm6pXrBWBMSzNBuM4/H555punlZ59tAmQlJBfAmOdMMN/Gtpbup8DoJ00dtcthTWXmxU+amyOpob4WMeXGxt9/xiAYPxW+PQ2qfmo6Rs4uJihcYxDv5ELY/zv48lCo/NE85kiC/lebwHKNZeHuJ5sy6LenmIDDAI5k6H8VDL6ZhRULuefre7Db7Dww/gHSPWbm3b499uWiDy7i0amPcsaIM0wwhgFXgjvDlPvrl5iyBphjFR1o2jLlV+nXDz79FG6/3Uyo7tbNBEDp1Mn8vpYvN7+vKdPXcPY7JsD0n0f/mXU+U1e6ZPQl3PfNfVz24WWM7TbWBDfJHgX7TDbtVusFGcORDD3PgoHXctxw0wd8xx2m3LrzzqZtPD3dXBfjcXjjjabAb9XBatbWr8VusxO34hR4C8hKNtFQ1q6Fl14yQcAGDIADDzTvq3F4al2dycv+cPpebH7jc+8yi0eUftH0XGpv6G6C8j73nGk3efJJE/D1sfVi1no8TUHE2iIWjzFp6SSenfEsi6sWc1Dvg/ho8UcUpxdz+vDT2b/n/jjsDlPn3PNt04Zc9TMsfLRpJ45k6HIEbjd8/jncdBO8+qrJO6+80nyvkYhpo99llxYCv7XWBv7Lw7D0v2Z8wYBrILmLqfP7V5h6QTwE/a/YuoGT4jGz4E6kGlM3yjBlYJPAhpk+qaZNtw323df0V9x2G3z/vZnE3L075OSYQD9LlsAVV8DNf63jxkk38siPj9A5rTNX7XYVXyz/gpsm3cSLs17kiUOf2Optwm0WqTHlZCtuysnJncw1veJHk0f5lkLX4zn//JdZtMiUa/7+d/M779rV9KcFAmYMQO/esMcemPYVR7IJrFq/qOlYyZ1h8M0mn9iKhg0z18277jL/9+xpxiIUFJjzcuFCU877/PO27e+71Q2B3zo1D57WGKg9GA0yY+2MROC3A3sfSHFG07iVg/sczBM/PcEXy75oFhR+a5i8bDIAfXP6JoK+gSkHDsgdwLzyeUxeNrnNgd9em/Mat395O53TOjMobxB3fHUHALt22ZVvVn7Dhe9fyFOHPYVNY3Kbq5wKUy8yAXCH/p9po3Slm36IsinmOprSBfZ61/zGoj5TzrO7G4LkN46jssCVaYKDdmA2m2mrHTPG9L+tXNn0XHHxegG0bTbY6x2zIMj8+0mMFfPkm3aGnmcmXte/vwloc/DBTWWC/HwTUG7UqKb977KLyXNOOsmUHwCGDzdlkrYGYZu+djoADpuDAbnNGwqH5A9JBH5rNHKkab876SSYMqVp25NOgkcfpc369TN5ww03mPd6993m1sjjMfX7ju7UU813c889TdfRxqBvPXs2/742xR/x88lic928ePTFTOjbFAC/zFfGTaU38faCt7lt71YiG/2OrKhZkbi/fv4ATYHg1t+G7JGw75fwxYFmgVwweebop6BT2/PMV+a8wgcLP6BzWmeu2f2axOOZSZn8/bu/c9575zHrgll43V6C0SDTSqaxsHIhvbN7s6x6GXkpeezSZRcykzJxu007hsdj8tLVq01/u9/fPPDb8OFb/vn8UURiEZbXLCccCwPgcXjoltktMUcGTFl9Xvk8ZqydQef0zlT4K3A73OzSZRfyvfmmbLrwETPmyOk1ZXZnKgRWmfJbqBxsdnr3OJu7787l4YdNWe3UU5vaaOx2Mz54yRK49FLTbyJb7uefYdYs81n26weFhU1jqK2GakRuLmRkh3lh5gvc8/U9VAYqOWfkOby38D1W1a7iktGXcMnoS8jxpJp24Pqlpq06dzdTdq5fAtF6Uz9ypHDkYSdyxx0eHnsMXnjBtFPvuaepa4Bp81y1yiyauWqVyRtvu820ZY8YYerykUhTPnvlSQfC6nfMcZb+B/L3NnWheBhm3WzGWPS9hP6jdkvkX598snEgOYfDpOfMM02bRW2tWUxl5Mim8Q+RiLlODBli6g1lZab/v3NnU3+w25t/dt27a7ywSIfTWlvOnDtNu7bDY/p68/YwCwjXzjfXmMAa6H4K0ejhifVNnE5zczjM/y6X+d9mM/nl2wve5olpT7CkagmH9j2Ud395l97ZvTlv1HlM6Dthy4Llx2OmHzoeblikhPUmxdhNPupQcHMREZF2EfWb+kikGhxe08/cuJBGY1upO8c83haz/8/MHbBiZuH2lGLTxxRYZdpv42FiA27j/OuHMmmSqc/dcoupL3m9zesuI0easSHyOxKpN+dSLGTa3e1OEgvPYjUsoqcvtSOpDlbz/arvWedbR4/MHiyqXESfnD6MKhpFsivZlOWDaxsWx7DAmbZxf4oz1cwdaoO5c81coqoqs6h0586mLrJ+VSc727R9i2wNNstq+4zAtLQ0Tj31VB5dr9fp888/Z9999+Xyyy/n/vvvb7b9jTfeyD/+8Q98vrYPcu7bty89e/bkww8/bPb4mjVr6NSpE3feeSfXX399i691u92ceeaZPLb+SBXg22+/ZbfdduPFF1/kxBNbHhR26623clsLS1gUnVdEZiwTb8hrxmXYLOqT66n31NOpqhP5tfmUpZVRmlGKO+omw59BUiSJKm8V9Un1pIRSKKwuJDmSjM/jw+fxEXFGcEVd2C07QVcQV8xFSigFb9CLFc4gGMwiFvPgcIRxOv3YbKahoLGdwOEIkZdWTbonhMNmURd2E43bcdjiOOwWHofZvsyfTDDqpFlgqzZ4Z71Rk4e1tKzeBtttaputsV3fnCoG5lXidUVYWZtKfdiFyx4n2RVlcH4lwaiDiQu7sboubaN9bbi/eNxJaekI6uuLiUaT8XpX43bXY7PFgThgByzy83+mW0Yt/XOrKErzEbdshKIOYpaNdE+YuGVjcWUG75Z5WVKwBFfMRafKTtgaPuOYPcbq7NXYsNGnpA9JoVQqKwdTV1eM35/f8N0GsNniWJYNy3KSnz+N9PSlVFf3paamBz5fEfG4G5stltjO6QxSXPwpVVUD8PmKsCwbWVm/4HL5Gt6DBdiwLDupubNYXLiQgDtAfk0+znhTJ095WjkRZ4Tupd3J8jfvuW7tewg6g5Sll1HtrSY5nEyWL4uQM0Rtci1xe5zc2lxy6nNwWG0LTex1hSlK85PuCRON2wlFHcQtcDnipLnDhGIO5pbl4A8l4/d3IhxOIxpNxuEIYbNZDd+XyWyz8mbgSzK/L1fURVIkCbtlJ+AOEHaGSQonkRZMI88dpUt6PcmuKKW+ZAIRFzabhdsRw+uK4LRbrPOlUB92keKKYrdZBCIOYpYdu83CbrNwO+JYFtSG3FS5ApSnlePz+EiOJJPpy6Q2uRa/x48n4iG3Lpf0QHrivNjUuRmNJlNV1Y9gMBubLYbXuxaHI7Te+wSbLUZa2qo2fV8bam27Ptnm95Xqbvx9uXHZYyQ5YwwtKCcQdfLh4mI+S1lLfVI9hdWFZPozE6+v9FZSmlFKWiCNPmv7tOm9tjVtbd2uJrmG5XnLscftZPmycMVcWFj4PX6qUqvIqs+iuLyY8vRySrJKSA2lkhpITaTV7/ZT7a0mtzaX4opi7Ng3OmZb30Nb3kdbtOUz2dppa227UCiD0tJR+P0F2O1R0tOX4nAEGn6HFmDH4QgxvPtPDC8sIzMpxLyyLGpDHjzOKAVeP90y63Da48wuzeX1Sjcrc1eSHE4mr6ZpwkbEGWFN5ho8UQ991/TF5/GxKnsVNstGRiCDlFAKIZe55gRdQYqqisiry8VhA7ut8drXkCIbNF4PAcJxi5qUWqpSqwg7wySHk0mKJFGTXINls0gPpJNdn0265SA3JYjHGcUfcRGMmuuZyx7H7Yhht0F92MXqWJxVOasIuANk+jNJC6QRt8epSa6hNqWW7LpsOld1pmz17tTW9iQSSSUv72eSkiqw26OJ92xZdlKSyzik/1yK0vz4wi5+XptHKOogKzlImjtCnjdANG7j4xUF/FCwkLg9Tp81fUgLNuV5K3JWUJZeRqYvk4KaAn7p9Au2uI1BqwbhjjUFx1pQtCDxO+5dl8/IojK6pNdjAWW+ZCJxO3HLRt+capz2OHNKc/h2VdOEoM2dSz2zqhmQW0Vhqo8UVxSH3SIWt+GLuCj3JzF5aTELlu+Jz9eZWMxDevpSXK46bLZ4Qx5mx7LsZGXNx2aLU13dm5qa3vh8hUSjKcRiHmy2OC5XPampq+nefSLxuJOqqn5UV/cmEMglFksmFnNjt0dxu2vJyppP507fYmsoC5l/m65TjY/HLRvVNb2ore1OOJxGSspaPJ5q7PYY5joMYCc5eR0eT91mPxMTeMqN1ZAn2mzRht9Mc+ufD+vv79deDxvPhQx/Br3X9U48HnKGmNtlLhYW/Uv6syxvGQF3gM6VnSmsaZrsW++pZ0GnBdgtO4NXDMYVb+rkaj3/8lBX15VIJBW7PUpSUjkOR+ME2sbfoYXLVY/PZ/JzEwiuGrs90qyi63BE6Ja7gqJUHy5HnFW1qYRjDpz2OCmuKOmeEDag1JfCmvqmCZWbOjdtWBSm+shODuJ1RxuuE7bEc4Gok0UVGQzKr6RHVi0Om8XqOi/BqBOHLU6eN0Bxej2BqJPH53ZnbqcFAPRZ0wd3tOn3tTR/KfVJ9RRVFdGpulOzNLT2fS3PWU55ejmZvkx6lTatSBuxR5jddTaWzaJvSV8WFywm6ojSvbQ7Ob6mib8RR4SZXWcC0H91f7zhtn0mLaVtw+3WZK6hJKuElHAKA1Y3H7C4LHcZFWkVZPmysMftifs9S3s2225OlzkEXUG6VHShoLZpsHCrvxssZhfPJuwM062sG7n1TZPLapJrWFS4CEfcweDlQwj5uhAMZhOLeXC56nE6A0A8UV8CO97UlYTcAYLuIBFHBHvcjjPuJOQM4Yg7SIokkRROItUBIwpLKc6ox26zKPWlEI7ZsSwbvbJrcDtiLCjP4qU6i3WZ60gLpNF3bd9E2kKOEHOLze+rX0m/Nn8PdXXFVFYOJBDIxeEIkZRUjt3edK2Ix50UFn6P0xmkc1o9wwvLKEj1k+qO4LDFCUSdVPiTWFGTzverze84GnVTWTmI6ure+P2FxOMuHI4gKSnryM2dRVbWLw37dlBV1ZeKisH4/UXE407c7lrS05eTnz+VZT2/xefxbXQ+x21xpnebjmWz6LO2D+mBpmXStle5JOgMsrRgKSFniJy6nEQ+F3FEKE8rxxV10bO0Jzk4SXOHcdrj+CIuonFTnnfa47gdcWxAddBNtRWnPrkev9tPzB5LlDcsm4Un6iE1kEpqJIkDe62kMNVHTcjDjLW5hGKmzJDqDpOXEiAStzNpaTH+yOavm5YF4XAmfn8ekYhZhdPhCG5QtgpSnD+fooY8tTKQRCjmaKiPxEh2RrHbYJ0vmbyUAAPyqkh2RllUmUl92IXXHSHDE6Z/biWRuJ0vlnWhMpDE0IIyClP91IXd1IbcxC0bbkeMXlk1+CIuPljYjXJ/ymbfw5Z8r5Zlp7q6D1VVfQkE8hrydDd2ewSPp4bs7LkUFEylZ1YNfXOq6JTmw2mPE20ol3gcMWpDbqaW5LOwMqtNx2xr2ioqBlBT05tQKAuPpxKPp7qh/t10Lele/AX53gAprij+iJNAxIkFeBxxXI4YTrtFfdhFqS8l8d36fAVEIl7icQ/xuBObLYrL5cfrXcOnn/271bRumM4MT4iCVFNndtnNsWINbRO+iIul1Wms8dQRcAdIDifjijWdfyFXiJAzRFowjbRAWkPdx6JzWj05KSG8rjB2GwSiDqqDSayp81JFlIq0CmyWjZy6HOyWqRdZNovK1Epi9hhZvixSwiktJbtVDlucrhl1ZCaFSHFFCcfsVAaSWFWbSijWtvUoovYo6zLMKMK82rxmZdya5Brqk+pxR93k1eW1tosWWZaN+vpOhELZDeemC4cjgttdQ2rqasLhtIZyThoeT0VD+dCU32w2C8uy4/FU4fE0LR7RansUcdZlrCNuj2/0OdYm1VKXXIcr6iItkMb8LvMT5bbkcNMkjSX5S0zdtS6XbuXdtui9bk5peikRR4S0QBrpwabre8wWY23mWqD5Z5+bEqAw1YfXFcXliBGOOagLuSn1JVMRSIJ2aBtoaZtNbZeZZPJYrzuK2xEjErNTHzbvodyfnCgzRiLJ1Nd3JRJJIRpNwZRtfSQnl2PLWkR1aiU2bBRVFTVrE6nz1FGbUosz7qSgpqDFNGxO98xailJ9VAfdLKzMIho3v8s1mWuI2+Jk+jKblT0ASrJKsLB+1e91S4RCmVRX9yIWS8Lp9JOWtpLk5HKqvFX43X6SIknk1DcPYlORWkHQFSQllLJRe+T2EHQGqUgzE9KLqoqatf/UJdVRm1yLM+akoLYAGxY5KQEKU/0kO6N4nDEsy0YkbscXdlLuT2H+qmGUlY0kHE4jLW0FmZkLsdsjgNWQl9hwufwkJZkJ/3V1Xaiq6kddXTfC4XQsy4bbXYfXW0Jh4Xf0L1zG4PwKclKClPmSG/JqSHbFGJBbiS/i4u15fVi6rh+RiGkTMPWv8HrHBLCZ83O9Omhrv5vVWatZm7mW1GAq/db0a/bcL4W/UJdcR0FNAV0quwAWuSlBOqX5SHKa303cshGMOqkJullT721TWaiR22HaHvvmVJHvDWDDwh9xsc6XwuLKDOaU5VDg9TG0oILCVB/BqBN/xEnMspHhCeN1R6gMJPHGPFP3jcWc+HydCIWyiMWSEm0DTqeflJR1eL1r23SerEtfx+qc1aSEUpq1W4WdYdZkr8ET8dCnpA+Lixbjd/s3qldXeatYkr8EV9TFoFWDmrWV/9b2Q8uyE4s5AQem/hNvoa3BIhTKxOfrRCTixeWqw+OpaWjfMM+bc68et3vz7RsbarX90BliTpc5YIMBqwaQHGnKv1Zmr6Q0o5T0QDrdS7uzKmcVVd4qMn2ZpAXTsFk2047rrcIT9dC1vGuz61dWUpAeWTWkuKJEYnaqg0msrE1tdr6BaV+vqelBKJQB2HG760hNXUlSUvPgNKnuMP1yqvA4Y1QFPCytziAYdRInnug3SQ2mNqvz+z3+xPUr05/Z7HrvdUXol1tFJGZnfnkWkXjb+kda4nbE6J9bSZo7QiDqZGVNKmX+ja/lDlu8oU0/TEUgmSVVGYk8Yn1ZSUF6ZdfgsseoCiaxtCqdUMxJ1BZlYdFCAp4ABdUFJEWSEq+pSK2gLrmOoqoiXDEXK3JX4I66GbJySLN9r982sGF7wKbyaq8rzNCCcnpn15DqjpDsihKN26kLmTL11JIC1vm2bp1kfbkpAXpm1RC3bCytSqci0PqE2Lq6Yny+QrKz5zf7vWyouron0Wgq2dlz1vutNRePOykrG4rDEU1st34ZN78mv1k7XMQeoTSjtMXnwLTHVVQMJjPzl0Rb5YZ52fo2VWaOxdxUVfUhEkklPX0FXu+aZs/bbRbF6aY8n+qOEI3bqQx4WF238e9w63xfFtnJoUQbs8cRw2aziMTsBKIuqgIeVtam4bLHKEz1k5MSxOOI4WroG4/E7ASjTsr8yZTUpSb2mpvi58Dey8lNCVIXcjGvPJsfVhe2+NtpSbPvqza/Wf1rU891RDU1Pamp6UV9fSei0ZSG/MR8fk5ngK5dPyYlpazZa3plVeN1R5m5LofWxhukucP0zanCwsaC8kx8EXMdrUuqY2HRQhxxB/1W90v0V1tY/NLpF4KuIF3LuybOTcuCmppelJWNaOgrd+Lx1JCRsYiCgmm4XE3jTlo7l2K2GDO6z8DCou+avs36U/wuP/O6zANgyIohuGNuLMtOZWU/amr6UFfXhVgsqaGtu4L09CV06vQtAG5HlK4Z9aR7wiQ7Td0w1FAXWudLpjrYdD2NxVzU1XUjEMglHncmyiSpqSUt9hVsTX1zqkhyxphXtul8KRxOo6qqH5mZi/B4qgGoTqnG5/G1eL3Y1HOtKckswbJZLdddGp5L86dRl2KuZRvW+aO2KOsyW24PaKtx3VcxKK+CaNzOvPJsvllZRDRupySzhDVZa0gJpTCgpHkbeGN/WlF1EYUVXfH7CwiFMohGk3E6Aw1lcMOy7CQlVZKc3DwgWiiURk1NHyBOTs5cHI4wEUeE0nRzfS+oKWg2fiPsCFOWbn57BdUFOK3mbSaRSDKVlQPIylqA2936+CtTV+tNXt7PreZLYPKvcDiD7Ow5OJ3m/STqmv6G8VHr2VQ91LLslJUNJzm5jLS0lRu/nw3eq99tyn42y0ZRdVNdOhxOpb6+M5GIl2g0paH9sBavd3Wztpd43M7atWOoqBhMNJpMUlIleXk/kZs7O7FNiivCyKJSBuVVkuKKEIw6WVufwpyyHH6pyGRkUSkDcqtMf2hZDrUhNymuKF5XhIJUPzYsJi/rssmyQmvS3CH65lQDsLgqk+pgyxPALAtqa3sSCOSRlrYMr7fl6FXpnhADcitZVZvabEzU+nKSA/TIqsXjiBGKOSj1JbOqNpW41Tyfc9jiDGgYe7Wp/bkdMfrlVOFyxPilIov6cMu/vXSPea/RuI0F5dkEouZ7bix7uKIu8uuaj3AtTy0n5ArhDXmbjTux2yz651aSmRSiPuxiaVUGdQ3HDbqCVKdUU5dUh2U3142AJ0DUESUpnNRUt2jjmLiObHH+Yqq91eTU5ZBb19RPVpdUR0l2CcnhZPqX9KeqfAg1Nb0IhTJITi5tqPdFaeybjccdFBRMS7RlRqNu6uuLG8ZdebHZoiQlVZGaupJA2jrTNhlzkV/btu8LLPpkV5ObEqAu7GZhRWaLbb3RaHLiegPgdteQnr4Cl9uM+fAl+YjZY7gjbpIiSQRdQcLOMA7LgTfoJSmShA0bkUhKw7U4i1jM1TCWLo7DEcLlqoPib1mavxRnzMnQFUObnQtL85ZSmVpJdn029rid8vTyjfrSoflYisZxX52qOlFU3TyA6oyuM0y/bVn3Zm1ffn8uq1btjd9fhM0WJy1tBUVF32BPW83sYnN9GrhqYLP6cnVKNYsLFmOP2xm8crDpb06uJ7c2F+d6n2eV14xz6V624Rg/i97ZNeR7/YRjDlbXprKmPoWWymv19Z2or+9CPO4kKamK9PTFiev/5lhYVHorCbqDibE2jULOUGKMXE59TrPPvnNaPV3S67DZoMKfxPKadMKx5mUTywKfrzFtLhyOECkpaxvKTHHaomk8QIhkV5RwzEEsbp5JdUcIx+ysrE2j3N/02f/WukuSM0q3jDq87jC1IU+iz62xHyTJGSUYdTDJZ2N53nJcURdDVg5p9vmsf851rmpayNqMv+hOMJiNZdlxOk3/UkrKWipTKwi6g6SEU8jyNZ0LzfPdfPbuUkrv7OrE2Mv6sItUdxivK0q+10/csvH50s4MKaikOKOOcMzByhrTZ5OZFCInOUCnNB+BqJP//DyQXtk19MupIs8boDbkJhh1EIvbyE0JkuyKsqo2lQ8XdW9oUw1SmOpr1qYaijnwhV2srU+hqqHMHI0mU1/fmXA4jVgsiXjcicMRSrTnuN31iffntMcTY4fX+ZJZVp1B3Nq213yTviLC4Qyi0ZREf35a2qqNxvm0prH8lOHPIDWU2uy5xrJwhj+DmpQaAHLrcvFEm8oNm2o3+K2qUqrwezbTjh9OoWskhZyUEE57nLqQm0hDn7vDFifJafpUS30elqRUEbPHNnqvG74HeySFyspBiTHUYMYJ2WwxLMuOzRajV683ATsVFYOor+9CMJjTMLYomuibczoD9OnzGv1yquiXW012cpDqoCcx/rggNYDLHmNpdQaTljYPlrQ9xmTGbDEWFi3E5/FRWF1ISqiprasytZJqbzV5tXl0reiK3WaRl+In3xsg2WXa3QGicTuBiJPKQBL1YRfFGfV4HFFK6rwEoi7sNosUV6Rh/IhFddDD3BAsy1+GhUVOfU4iLwm4A1SmVpIeSKdbWTdijhjVKdXUJ9UTt8VJC6Ylxkskh5PJ9GeSEkxhfuf5BN1mzM/650lZWhkl2SWkhFLoX9IfGzaSnVGGFpTTL7eK7OQg0DDGsjaVeeXZLKtu6nsE055fVdWfcDiN5ORyMjIWY7dvfN3vnFZHl/R6akMefqnIJGa13I4TizmpqBgC2MjOnt1qHheNJlNePgSXq57s7HlbVD+v99RTk1KDPW6nqKZ5+SDRLtdCn2A8bsZLhEKZpKe3Xu5vy7kZjzupru5NMGjygOTkyoaxvM3f7+bO4VAog4qKwYlxktFoMjZbHI+nBq+3hP69PmCnTuvonF5PKOpgbX0KkbgDhy1Oj6xaMpNCrKxJ47EKZ6Ltv8/a5hFl53ae2+LYRACfr5C6umIsy4nXW0Ja2vI2r9W+fp5XWF3YrA8m6ApSkWr6ATP8GSzotACbZWPIyiHN2ut+Tdt2Y59Zfk0+xZXNryutvdff2icUcJnfLkCnqk7NyhF+lxkbDzQrR0BTG10w6mR+eVarv5vW3mtZWhlhZ5jUYCoZgaZJ0hYWazLXmHae+kxsNhvVKdU44g6SI8k4Yg7i9njTWJVAWqKeFo/bCQQK8PvziMU8DeOArYa8v4b09KVUVg5qOCdNHcftrmlotzR9rjZbjMLCH9v0Hhq/4w3HZFpYzOo6i4gjQvey7qRVdqO8fAg+n2mLSE4uX2/8lhlfl5Mzm9TUNRsdc8PjRhwR5nSZQ9wep29J32b54fr9ZD1Ke7AuYx1l6WV4g6ae5Yg7qEmpoTa5ltRQKp0qO+GKuvAl+fB7/LiiLpIjyVhYZhykPYI37MUb9BJ1RKlOqSZuiyfGDVk2i5AzZMqNoRQyAhmkOmN0SvOR6g4Tt+z4IyaPsNssspODhGMOFlZkJurhoVBmQ/txMrGYKb85nQGSkipJS1vRrKy+qXPd5yuisrIffn9RQ79l/Xrjssx4bPvQF1rsr47ZYswunk3UEaXXul6UpZdRm1y70e8w5Awxp3gOYPood87y0Se7miRnjFW1qfgjzoa5SZGG34aDN+f3pjLQVK9p7T3YsBiYV0nv7GoyksJU+JMIRh3ELRuFDeM4V9d5mVeWzciiUjKSwkxfm0ttyIPLHqMgNZAYC72wIoMvlvRp+CxMu7yZw7beYkXYcbmr8WUvS9S/UoNN51LYGaYmpQZH3EF+bT45njD5Xj9etxnTFo45sCzwOGNkJoUIxxzMWpeTaCMOBk0fcjSaTDSajN0eaxj7si6RP1kW+P1FBAK5Dd+/GePndtfj9a5JjH3I8IQSc7KSnNFm4wbW1nvxrdd/ZPKvXoRC2ViWDY+nivT0ZbhcASzLjs9XQCiU2TAGPdZwjliJsXvp6YsIhXIJh9OJx01brJlPBk1z52y4U1ezMm851SnVZPmyEvM/I84IlamV2Cwb3cq7NesvWP/73/D8razs1zAeJJ309CWkp6/A6fTTOOcwFnPhdtfgdtc3zBewN5Rb109/w7lki2KzmXSav8040Q1jYjVe9zZ3boZCaQ1zewoTbRCNcxMbz16n0487bybL85cTdoTJrs9O1Of9Hj+VqZWkBlPpVtaNtZlrzTwUfyZdy5sWXQ24AiwqXITdstN/5QCqVo+jrq6YaDSF7Ox5uN212GzRxDEty0Ze1hIO6T+f3JQgpb5k5pblEInZyfP6SfdEyEoKEonb+WBh92Ztl63P/7RTWTmA2tqeBIM5uN01DdeSeKJ+kJRUQX7+z236XlvapqXthhWU0Su7Bo8j1jA2wYnHEScjKUSvrBoCUSfPLChmaoEJUj5o5aBm9blVWasS482zfdksz13eYp/7kvwlVHmryKnLoXt5d5z2GIPzK+mfW5kYFxOL26gPuyjzpzBzXW6zsnV7z3X7LfvLTAqS7w2Q7gljt1mJer7DZhGMOlhdl2rG71k2AoEc/P6ChnlCHizLhsMRxuWqJy19KbVZKxNtmJ5I0/cQdAVbbbdq7T14XWF6ZdeS5IxS7k+iKpCEBXgbrnduRwx/xEVd2MWoolLyvQEqAklU+JOwMOOd++VW4bLHmbkuh/eqPCzPW05SJIns+qagIVFHlNL0UlLCKfRa26tNc3agsR+1N9XVvfH5iohGk4nHXQ1tpWE8nkp69XqTgrRahuRX0CW9Hpcj3tCWYyfFFcHCxpq6FD5a3L3Zvjc1X3Np/lIccQd5tU39gzF7jHUZ6/BEPPRe2xtPzLPRvjbcn90WZ69uq+mc5sMXcbGoMoNQ1EFhqp+s5BCd0uoJxxy8NrcnC5NqWJu5lpRQCumBdNxRN/VJ9dQm1+KIO+hc2RlvyEuVt4qKtArT5xhIwx11U+WtIuqIkunLJKc+B3vcTpW3imqvKTelB9KJ28z8AUfMQZYvi0x/JsUpQYYXlpOTEqDMl5Lo37HZLEYUlhGJ2/l6RSe+9dkpyTZtO+n+dFKDqQTdQWqSawg7wxRVF5Fbl0tF+TBqanoSDqfj9a7B7a5O5BON7fgZGUtYu3ZXgsEcnE4/2dlzG8qkTdd0my2O0xmgtHQkgUAebnctaWnLcTqDrD9O0en0M6r7DEZ3XofXHWH62jzK/Um47BZpnjAFXj9uR4zZpTl8HY2wKmeVGcdZv147ozNMWYYpq/Za24tgXTcqKgYSCORht0dITi7baL5LbsEPVOYtZl3mOlKDqaT703HEHYRcocRnXlxRTHI4mV+KfiHiiNC5sjOO9fqx12WuI+QM0b2sO86Yk0WFi3DGnRSXFyd+u3FbnJU5KxNzKmOlQ6msHEAwmENy8jpSUtY1zGNrmDto2UhJWUd+ZglJzig2IBB1ErdsOGwWDruF027aLyuDLhbmL6MmpYbculy8waa+0JqUmkRbTr+aInbtspaiNB91ITer61IJx+zkpQTI9wbISQlQHfTw4qz+bfp9hZwhytLLqPJWJebqR+1Rarw1hB1h8uryyKnLIeAOJN57hs/Mr406otSm1FLvqaegpoDCmkKCziC1KaZ/I26L4w158Xv82CwbyeFkMvwZG40pbu33Gg6nUl4+pOG7j5GauqpZecOybNjtUTIylra4v205Djwed7J69V74fIVYlp3c3FkN40ji65Wv7KSnLyM9yc+Q/HK6Z9YlYkLEGs6BcMzO2npzPSxOr2NwvhmnGo45CMVMG3hWcigRR+KrFZ1bTN/G12oblZX9qavrjt9fkGjPNONyzG+/sOhrfN2/SZQX1i/3J+a51+XStbxrm/Ivy7ITjSY1zGGNN/xOm64jDVsRTK5mUeEisEFhVSG2hvzXslmJuQK91/aGqp4N45zT8Hiq8Xiq1psnSkO53vRNRqMeLMuJwxFMzMFtPk801Kzdr9Xv1RanNL2UdZnrSA6Z89UddVObUkttci3uqNu0vVhuitPrSXZFqAok4Y+YttI0T5g0dxi3I0510MO88ubBulr7vuw2iwKv6WNKcUUIx0ydL25BqjtCKOZgWXU6VYEUfL4CwuFMwuHGuks0cU23LDtZmQvISKnB5YgTt2xEYnYsbDhscewN89/Nvi1GFJWTmxKkKuCh1JdMzLKT7gnjdUVIcsaoCCQxtaSgTe8h4AqwLnOdaVcIppLpyyTiiFCTUkPQHSSvJo+82jzSHBbJrhhgNbSlN8XMMGmGupBpi85KMud+ZSCJcMxOsiuG2xEjyWnGes6rTGdZVkmi/cUb8mKzbETt0UQ+3LW8a5tjl4RCaQQCBUQiKTidIVyu2obzqXGOnQ2HI0jvvBK6ZdaS5IyZtvKIE7fDzPvPTAphQUO/mBNXw3kXidsb2pashjgEJl5HOGanV3YNXleE+rCLikAysbjpW0xyRvG6ow3jIDLJSIrgccQIx+yJdgG3I47THsduswjHHIn+r82919K00kRsheLypvaNqCPKsvxl2Cwb/Ur6UezCzCP1+vFHnFQFPcQtG3abxaA8M6fg0yXFrKrdfFydmM3EuylPLyfDZ/pxbHEbEWeE6pRqYo4YXcu70t/uYs+uJWQkhZhblt0w9tKiwOtP9MOW+ZKZtCo/0dcBJMpWdcl1iRgfWb4s7JadsCNM1BElbovjjDmJ2+NYNgtH3IEr5sIZc7ZpnIeFRV1SHXXJdXiiHjwRD/a4nZgjRsAVSPRR5cRd9MisJ8UVoSpo+nCt9fpwPc4YgYiDWWXZhJ1hQq4QMXsMZ9yJzbIRcURwxB24o248EQ+xSBo+XyGRSGpDW05TPbhx3obbXY/HU7PZ76FxvqEpwztwufzYbI1z65vKLx53PSM7raVHZi0uR5ySulQCEQd2GxSk+umcVo8v4uK5GQPw+wuorDTxhiIRL253XUN+0zjXrYZu3T4mEvE21K17EAqZNDT2y7nddeTmziA04B1K00vJ8GfQa11Tm2rQFWReZzPWcuDqgazKXkVNSg15tXnN+kNqk2tZkbsCT8RD/9X9CbqDVHur8bv92C073qDXnCOW3YzF92WSEmlbuaQotZ49u5WQlRRiXnk2q2u9WNjITAqS19BfvbrWy4x1uYwoLKdrRl1DnS6ZaNyGhY0embVE4zamrcnn/UjQtNf605u16QfcAVblrMIdddNvdT8WdFpAyBVqNrYVTF/qsrxluKNuBq0cRKfUAEMLyilM9ROO2akPu4jFzXU93RNmba2Dcx9YRE1NDenpzfvLNrRFgd9GjRpFfX09CxYsSDx2/fXXc++99/Lqq69y9AbLBp1xxhl89dVXLFq0aMNdtapv37706tWLiRMnNnu8MfDbXXfdxXXXXdfia91uN2eddRb/alyGvUFj4LeXXnqJE044ocXXhkIhQqFQ4u/a2lqKi4v5eM7H3DP1HpZVL+PkISfz5E9Pslvxbtw67lYG5w9ObB+NR5m8bDLLq5eT7knHH/Gzd4+96ZrRtaXD/bG0FqW/rdstfNSs5G5zQKeDwZ0NgdUQqiQR1K7PBWa1sw33tcH+1q6Ff/zDrESTmmpW+srONlH/7XazgpTNBuN7PQE/nmdeNO5jKNrfHG/pM2Y1tbpFZiXTXf/DV8u/4tQ3T2Wdbx33H3A/q2pXcfeUu9mp0048f9Tz9M3py7hx8EXDAptffdWwKuEGAgEYO9aseJqWZlY03mMPs5JLo6oqEw30xx9h8WLw+cwqh1lZzVcticXMymihWIB7v76Xe76+h4P7HMyYLmO47Yvb2L3r7jww/gH65/ZveTnoljR8jo0rNIVjYbPaampBs9/CH5Ev7GNBxQIaL6e9snuRmZS5fQ7+W39fi58yvy8sKDrI/L6Ca80q1I2RrnufS2U0ypGvHMmXy79kbLex/GnYn3jypyf5dtW37N9zf1479rUWV3/fXupCdTw+7XFemPUCE/pMYNqaabgdbq7e7Wp277p7Yrvpa6dz46Qbmb52OpeMvoTnZz5PiiuFO/e9k/167rfxjlu5luyQWnmv69aZld6XLDErJA0bZq5RjdeceNysrrTTwBIo/9qssJJSDEl5gN2samI1BNfMGAzuTD5e/DHnvHsOdaE6HjzwQT5c/CEvznqRU4eeyoMHPphYwTkWj/Hx4o+ZtHQS/XP7s6BiAcMKhnHkgCNJcf26CezBaJCqgBn04HK4Nlq1fkt8t+o7Xp3zKp3TOlMRqCDJmcRpw06je2Z3AMJhswJWVZW5xqemmpVl7PbGwGBmxcrM9FhDJOlaszKM3d38N+tIgtQevP/L+xzxyhFE41HGdhtLnjePn9b8xJKqJfTL6cdXZ3xFnjePWz6/hb9++VfcDjf79tgXh93BtJJprKlfw27Fu/HZaZ+RtOKVptW1Rv8bMoeaFb4qfjQriYbKzTWh+MimN7yp38NXR5kVR9P6wM5PQPZOZsXdqp/h+4aVNsd9BEUHbPZzXbXK5M+zZpmVx++/3+Rp2dnmsGVlsGyZiYx/6KFmxd9Ro8yq4cOHmxXGwmGT51dXm1U7t5mtfY34jdf02lAtezy9B7NKZ9EtoxsD8gYQjUf5avlXhGIh7tjnDm7Y8wY+WfwJBzx/AOmedIYWDE28fkXNClbUrOCWvW7ZeOXLHfl6GKqAWbdA9UxIHwgF+5jo7ZU/NqzWFIekQuh3KW8teJvj/3c84ViYs0ecTWFqIY9Ne4xyfzl/GvYn/n3Yv81q5utr5fsq85Ux4vERrK5bTf/c/iQ5TSPPmro1rPOt45yR5/DEoU9w2EuH8e4v73L+qPP514Smes4b897g6FePJt2TTvnV5c1Xo2rr99XKdh8t+ogDXzgQl91FzXU1Jup9gyH/GsLs0tncs989DMwbyKEvHUq6J50fzv4hkYaVNSsZ9+w4bNhYcumSxHVxc2l76qenOOfdcyhKLWKnTjslHp9dOpul1Uu5fdzt3Dz25tbfz6+x/GWYfg34V8HoJyFrpPney7+FUJm5FexDsPMR7P/f/ZmyYgoF3gJ2K96NcCzMxEUTiVtx/rb/37hytyub77uV9xoIwFFHmXpBSgr861+mTJ+aavKIQAAqK2HUyBjJP50AK/9n8tYB15rrtSsNljwDvzxoVuI8tp7//tesqFlVZVbVPPBAs5JAMGhWGACzOuJnn5mVElc0LPqalWVWU62qMtfT88+HbiffzfWfXc/QgqG8d+J7iXR/tvQzznj7DLKTsym5oqT5quK/8ZzbEpFYhOdmPMffvv0bIwpH4HF6+HrF11wx5grOGH7GVl3tPCEeMWWcaF3DKtrrH6Mxr24+IHS7XTcrpkLFtxCugczBpjwfj4IVMdcvKw7548yqvmVTIHd32Pkxc05V/WxWvKn7xZRDBt1oVgHdUq2813nz4JBDzCqg/fub1W1GjoSMDJNXr15t6rT7ZV0KvzwE7ixTXsgeBVUzoOR9WPCAqZsMvAGG3bHV0rZ6NZxzDvz0k1nF9KabTLksJcVsFgiYcsSECRvvUmSTtsJv/8VZL3LKG6dgYXFwn4PJ8GTw1YqvWFW7itGdR/PZaZ+R6k7d/I46ii3NI35t+4ZIO6itNeW2+npTx3evNxfeskxZy+2GE04wK1k7HKa+O2qUqbtWVJiVvU86McbJPU6CdZMgtTcMvB6SO0H1dFNvD5ZBPATD7gJPTqvpaVUrv5spK6aw53/2xGV3sfqK1Yn2mNpQLZ3u70QoFmLynyYztvvYX3/MFo5L6Rfw9fFmZby0fqbN35MHNbNh+Ytmm73egS8PM/dHPAD9LzP3l/wHfMug9hezavmuT2952jbjtTmvcf775+OwOXjk4Ed4Y/4bvDz7ZY4ZeAyPHfIYOSk5zFw3k92f3p1AJMCg/EEUeAuoDlYzfe10LCw+OOkD9u+1f9s/k/a2FcrzN352I3dOuZN8b36z9rZFlYtw2p1MO3ea6Y8AZq2bxZM/PQlAXkoeCysXcsrQU9i/5/7Y2tpfIb9JXaiOyz68jKenP82EvhM4c/iZXDzxYgKRAA8f9DAnDz2ZNXVr6PqPrkTjUT4+5ePE92dhsfOTO1PqK+Wlo1/ihMEb9Lu2llevfB2+PdVcz/pdCV0Oh6R8sGLw0U4Q9TX/va+/r5b219IxN7edbFsd9fuacSPM/5tp71lfcifY9Tko3Hfbp6EDsCwYP96USVwuePll87d3vfhN5eWmXzqt5ThAv9o/vvsHl390OXabnbNHnE2SM4mnpz9NfbieC3a6gEcOfgSbzcbPP8MppzS1ZYFJa6Rh/Oill5p+/oRNnEv9/2n6lO4/4H6uGHNF4vFnpj/DGW+fQYG3gLVXreWbb+DUU5v6wCZMgF69TBvd0qWmf3/ZMpMO+Z0JrIHvToe1Hzd/3NsDxjzPUmcRfR7uQ8yK8dCBD5HmMSe+L+zjkomXYLfZWXDxAnpl99p439JuXn0VLr8cSko2fu78801bO0ufg6kXmrIFmHFElmXadgGG/p9pBwWz2m88ZMojVsOAc7sTbC5wbHmgQdn2QtEQMcsEREl2Ju9w9YdAJMBpb53G/+b+jyH5Q7hyzJW8OvdVPlj4AaM7j+btE97GaxVy882mbduy4OSTobDQjENoHDMWjZr2B/cf5DQORAL0eLAH63zruGT0JXTLaFo045bJt+CP+JlyxhSWVS/jlDdPISc5h9KrS7Hb7InXZ9+bTTAaZOLJE3lp9ks8N+M5jh14LK8e+2piX2vr11J0vwn0Mu3caYwsGkldHZx1Frz+umkbWp/LBVOmwEnf9WZx1WIePuhhLh59ceL5Sz64hH/++E8O6XMI7530HnErzn9n/JdbJt9Cv5x+7NVtL/7+7d85tN+h3D7udrplbt3FQP7QtlPdJRKLsNOTOzFz3Ux26bxLorwRi8f4fNnn5HvzmXvhXHJSfkV7X1vEghBryOcaF561OUw/pxWFJU9DzVxTN8oeCY4U02dOQ/+iJ89s/2VDZ9luL0G3E8w+l78EvuWm7TK5Ewz5y7Z5D7LDKC2F0aNh+XLo0gUmToRBg5r/zPx+M1Zs/HioqTFjp196yWy/vro6SCt/Dr77k3mgcTxapNa0P9UvhmCpGcM24OrmL25LH9NWuEbUhmo5/73zeWn2SxzQ6wD+PPrPXPbRZSyrXsbt427n2j2uTeRDW5M/4uepn57iqZ+eYnyv8SysXEh9uJ6rd7ua8b3Hb7R9JBYh3lAO3nCcxS8VvzD2mbGsrV/L7sW7M7xwOD+W/MgPq3+ga0ZXvjz9S5M3rXrLjA0MV5n+jYJx4Moy40jLvzHt+Mf5t/p73eFszf7PVs5Ny4LLLoN//tPcP/NMM/aysGFe05o15jd480U/w/z7oW4+dJoAmQ0BSiqnmRdaUcjdlR/tXRn91GhcdhevHPNK4hwq95fzp7f+hMPmYMmlS9ptHs1xrx3Ha3Nfo29OX/K9TQGOv1/1PU67k+nnT6dvTt/mL2rle7jw/Qv519R/cXCfg3n/pPcTj8etOKl3phKIBnjjuDc4csCR/G50oD73hQvhqqtgxgxzPl5wgRnzlpTUGITKjDHaKB5AK+9hWsk0dnpyJzwODzfvdXPieltSV8I/f/wn+d58lvx5CX86ycvrr5vXvPUW7Ldf87bSujrTRrj+Y5u69j8/83lOffNUPA4PozqNIsWVwura1SyoWEBuSi4/nP1DokxfHazm7flvUxGoIMOTQW2olgl9J9Anp3kQxd+FVj6TJ54wbTWWBRdfDH/7W/M5UWDqrsF4PTs9sRMLKhbQJ7sPXrf5wMt8ZayuW81RA47i9eNe5+c1P7PLU7vgtDsZ1WlUYh9r6tawuGox5448l8cPeRTm3wcVP4Ar05QPXJmmbBCtM2VcRzL0Ph+c6wX7b+17XfuZ6a+O+WHUP6H7KWaM4Mo3IFxuysOeXOh7KdTONX3fNge4c8z/NjtgmfJ4am9wt988mz+SKSum8MB3D2C32emX049JSydx+vDTOW3YaYkx2s1s4npogpWb61AkYur98bi5NrhcZgxk8pavG9F2rZybixfDa6+Zfo2cHFPOTk9vPrcnLQ123tnUP9+Y9wZP/PQEwwuGUxWsotxfziWjL2HfnqZ/LBgNcsTLR/DR4o/omtGV4wYex8ralbwy5xWSncm8fcLb7N9rf6ZPN/03VVWmjJ6X13weZjwOgwdDWkrQtM9H6oD4xmNtnWngbR5ItbX3+vTT5loSiZhrye23m3E4jWIxM14nI3PL5kRuUiwEc++CyqmQVACF+4Mrw4yxjdaba4kzDfpcwGnvnMN/Z/6XgXkDm5V5pqyYkmiPGpA3gK4PdKUuXMcd+9yR2C5uxbng/QvwR/x8cfoX7JWeCZPHmzlFxUdDjzPMGF+b3YyvqZ0Lvc6F0Y9v9nPbiPrSt761n5m+iMAqKD7WjLuO1INvacO47Rh0ngDZo5i5biaXTLyEmetmctu425i0dBKfLPmEG/a4gat2u2rjMe+tfF+Vlaa+PHUq5OebvHbsWDNnAMz1aulSGJD1CY4ph5ix7js9YvI9yzJl/MqpUPE9JBfBAd+1fNwWzpGlVUu58uMr+XDRh9y4543Mr5jP/+b+jyt2vYIb9rwhkX+3SdVM83uKBSGli5kHkQj20ZBXN9RB6kJ1vDHvDRZWLqRHZg+WVC1hfO/x7Nl1z436BkrqSij3m0WakpxJ9Mnu02L/QXWwGn/E1FFT3amke9abi774KVjxP4j5TL6fVGjmr/uWN3yvUehzMaT1wrIsvlrxFV8s+4Jumd1YXr2cIQVDOLjPwbgdbnw+uOcemD7dXKuOPBIKCprPJ4xE4IADYOVKM6a9ttbkLWlp5utovL7a7Waux+TJZlu3G/r1M+VUm63p2p+ebq7DZmK5H6L+hv4vE2wKm93MVXRngs3Ol8u/5ML3L6TMX8ad+9zJq3Nf5avlX3Hjnjdy9e5XY4u7OeYY+Pxzc4wnn4S+fc18F4fDjLOvqoKhQ02aS+pK+PdP/2ZJ9RJGFI7g21XfMqHPBI4ZeEziPC+pK+Gcd8/hg4UfcP6o89m5885c9uFl5Kbk8p/D/5MYo/jFsi846Y2TKPOVcc9+9xCKhbhp0k10Se/CK8e8wi5dduGHH8xcnDVrTLp69DDlzfXna/boAV3bWCWNxCLcNeUu/u/L/2Nk0Uiu2+M6rv30WtbUreFvB/yNc0eda+adLX8Z6haCt6uZe+ZIMtduMOdJSjHk79l855upfwWjQX5Y/UOiDywnOYdRnUY1azuKW3E+WfwJ7/7yLgPzBrKochFdM7py8pCTyfNu2aLpW9UWxiXY6HWtPb6ZfS1ebMpCNTXmOpiZ2VQWAvO7G1Y8DddX+5g2w4E3wMBrTb/xvL9B6WQzT8WdBUPvhKkXmBfu+wXk72XiSCx7Hiq+g/qlpv18p0fa9B7228/M2QL49FPYZ5+N31YkYsqTk5dN5sqPr6Q6WM0Vu17BY9MeIxqPct/+9zGh77aZxLK8ejkXfnAhHy36iOv2uA67zc5dU+7igF4H8OjBj277vqjNlEt8YR9vL3ibZdXLKEotYk39Gsb3Gt+sHviHtZlrSamvlElLJ+GwOQhEAxR4C9i7x964t+G4hx9X/8i939xLdbCa3Yt35635b3HswGO5cOcLE+PRt+Q97FA28V4f/O5Brvz4SlLdqdy9390srlzM3779G4Wphbx1/Fvs0mUXUwdY+Tqk9zdz9b3doW6ByYPqFkGkyswxTeu98TFbOe6sdbN44LsHWOdbx25dduODRR9w9ICjOXvk2U1lolCliS0QqTflBrsTU1azzC2psNk8hlJfKb6wGZuT7knfdn2efySBNTD9WqieAdk7N81zL5vSME80BsldeHnmNZx8sinz/OlP8PjjG7e9xePwxhtw2mmm7HbMMWbuZP/+ZttYzMRg8Puhc3c/458fz5QVUyhKLWKfHvtQG6rl3V/exYaNZ454htOGnUZVoIqDXjiI71d/z7CCYRzR/wh+WP0DExdNpHNaZz497dPEWPNG4VgYy7Kw2+zN579vaFPnsGWZOnnUZ8rlVuNiqHawu0yePuN6MwfVmQbjfzC/n/olUPYN1C80ZYL8vYl3nsD1n17Pvd/cS9eMrty5z51MXDSRF2a9wPDC4bx1/Ft0y+zG5GWT2e+5/XA5XPTL6UeKK4VANMCC8gWEYiE+OOkDxhf0hPca+hmG3AaDbzH3lz7fMN9lPrW+CBkHvLr1A7/deeed3HTTTZxzzjlcdNFFLFq0iDPPPBPLsigpKcHrbV5R69u3Lz179uTDDz9s6yEYM2YMsViMH374odnjc+bMYfDgwTz++OOce+65Lb62qKiIPffck1dffbXZ4++//z4TJkzgo48+4oADNh9wBEzgt4yMjMSH2OaTStpPGwv2bRKuNpMAyr4xFdvsUaYxweZsqqx3OgRydgZMR/0tn9/COt86ovEowwqGcd0e1+G0mxVxli+H554zDZ1+PwwZ0hQ4CZoq6889ZyrCkQj85S8wbpxpEHW5TAfSqlUmgE3eFtbHVtWuYl6ZiaiZkZTB6M6jt2wH8vvzayvOmxCOhTn33XN5dsaz7NtjXz5b+hnnjTqPfx78z8S5/ntR4a8gZsWwYWvfBo4/sLpQHQ//8DC1oVosy2Js97Ec3Ofg9k5Wh/ffGf/lT2/9iZ0778zf9v8bB75wIFlJWXxz1jfNOoz+9NafeG7Gc1y+6+Uc1PsgDnrhIHpm9eTbs75tXoGK+k1lIBYwExvAVMqcqZDcufmkhtYKzlYcPhgMtfMgbw/Y613TGFz5s2noBtNxkL+n6eTejE8+MQGL4nE47DAzSNrZwiXm3nvh2mvN/ZtvNp15vztbu5ETE7xtl6d2oTpYzZQzpvDfmf/lwe8f5PThp/Ofw/+T2O78987n8WmPc2DvA3nowIf478z/8tcv/8rwwuHNAni1mNY/QgPLJny46EOOeuUoemT1YK+ue/HYtMc4f9T5PHrIoy1PMNnE9/X1iq8Z9+w4clNymXn+TD5e/DGnvHkKwwuH8+1Z35LkTOKxqY9xwfsXkO/N55gBxyRe+0PJD0wtmcrRA47mf8f9r+VjtnLczW3nC/vIuieLSDzCvfvdS79cs5piOBbmuNeOw8Lix3N+ZEThCLr9oxur61a3uPsDeh3AR6d81Oa0WZbF2GfG8tWKrzhm4DGcPeJs3pz/Jo9Pe5wBuQOYfv70bdfoGPU1BPbyb3w9TOkCDg9VgSr2/M+ezCufx1vHv8Xr817n2RnPcuWYK/nbAX/beJ9t+B6qqkxAy1DI3Gy2pgm2xbY3sX99lNlwz7fMpHiAz/Y2A5VDpeBMZVrnpey6qxkMNWqUCfC2YTtAJGI6tvr1M8HgCgvh2WdNHaTR0qUmIFy/UWspfqCYaLzl1cr/PPrPPHjQg1v8XrdoO9k2QuVQv8z8Hw+a/NnmMB3lSfmm3ttWbcjDrrjc4oEHzP3HHoPzzmtlwxWvwk+XmaA2g26A3D1MWQLLBLQLrDaDINpQjvg1olET5C0UMr8Vm80MIE1P38aDs2THtJWuc4/88AgXT7yYfXrsw59H/5mjXz2a/rn9+fKML8lOzt78DjqS1j6TbVAWFumIjjvODLoFeOUV8/cmRQNmglQ81DyvdqWD61cGfdzE76bXQ71YUrWkxZd1y+jG0kuX/rqJ9K399qMBeL+vmURasK+ZlGd3mAlDpV/Czw2BWQ5dbDrY1n1uBkZ6cs1gWltDoO14xCwwULRBcLWtpKSuhP/78v8IRANE41HG9xrPKUNPabbNe7+8x+EvH07v7N58c+Y3HPnKkXy14isePfhRLtj5go132pHLwluhPB+NRxn3zDi+Xvk1Dx34EOfvdD67/ntXflrzE08f9jRnjDhjKydatob3fnmPdxa8g91mx+PwcM3u19A5vSkY9OEvH847C95p8bU5yTmsvmJ16wORNzyX3utvBp9k72w61QGWvWQWXIo3rLrb92IzkH3DfbW0v5aOubntZNvqiN/Xgofgp0tbf77/lTCihTadHdSFF5pJAPE43H23aYcvKDCDw+vrzUDxXr3MY1vbA98+wBUfX8HBfQ6mR2YPHvnxkWZB36qqzLGrqkzb2B13mEFHeXlmsO6kSWbCwinrZ8ebOJfOe/c8nvjpCfbruR+3jr018fjfv/s7b8x7g2MHHsvj+73KwIFmAFNuLnz/PfTcIK6/ZbW96iIdiGXBZ+Og7MuWn0/rCxMWcPIbJ/PirBdx2ByJBc5qgjXErBjHDzqel495efulWTbrgw9McMbGn3tGhpnIsXq1CQR3xBHw5tPT4cORgGUm5O38WNOCHW93Bf9KM8huyG3t9C5ENs+yLG6adBN3TrmTvbrtxVfLTZ/Zs0c822yhJmnu/m/u56pPrsKGLTEm7peKX6gKVrFvj3359LRPqQxUkn9fPjErxhH9j8DrMuNcq4JVfLDwA7wuLxXXVPD0z09z4QcX0j2zO0svXZo4xnu/vMehLx1KiiuFmutqsONkv/3MxDcwZYZddzV9fDNmmEUWP/4YPuVa7v3mXjKTMumU1imxv2XVy/BH/Pzn8P9w+vDTE4+HY2FKfaWACXCoAfLbwHasu0wtmcquT+2KzWbjjePeICs5i8NfPpzKQCWvHPMKxw3aXGNhB1C7wCya5ltmgsM5U8wYWjBjaHNGm5vIJkSjph76/PNmLPVpp5lrZna2GUNdV2fKdccfDw88AO++aya1n366mUDcOP6hpsZcX6+7DqieZQK7+Jab9nNnimk/tuIN49TGQdbQ5gn5rYHftnCM+n9+/g/PzngWr9tLOBbm9nG3M6Z4zOb30UHMK5vHuGfHEYlFeOigh7jw/QvJSMrgi9O/oGdWTwisM+39kVroejzs9qIZb+9fbRZxmXWzAr+11XYI/DZxogkODGaCV2Pf1W+x+9O7883Kb1p8bsMguttbub+cQY8OotRXytOHPc1uxbtxxCtHML98Pn8/4O9cPubyjV/UyvfQOHava0ZXll+2PPH4woqF9P2nmdS16JJFv6/g8R24zz0QMIHeIhGTRyQlmUUct2R8QWPfRk5yDiOLRgJmwdO4FW+2UMSaNbBokfnf7zftpo6GrsjkZBOEtFOn9fa9mfLhDZ/dwF1T7uKYgcfw0IEPMeqJUVQGKpn0p0nsVrzbr/g0fgda+Uxqa+HBB+Gbb0zevcsuJmBJ41jwaNQs0HnGGWbi8S5P7YLb4Wb6+dOZXz6fg184mJ5ZPZl27rREu92tk2/lti9uY6dOO/HS0S8xceFE/vzhn+me2Z1ZF8z69Qsobup7jQZMsCXfioaAT9GG8oZlyh7ZozZeLFZ+Xzrw9XB7CkVDHPnKkUxcNJHbxt3G8zOfZ3Xdat498V326bHPtk/AJn6HdXUwZ47pw6qpMY85HE0v6d/f1C3aQ4W/ggGPDKDMX8Zd+97F7sW7c82n1/Ddqu+4aOeL+OfB/wTgyo+u5O/f/R0wbT1g2n9iVoxdu+zKt2d9C18dBaveNBPUj6kxb7D0K7OwfbjaTPDvelzTJHLomH2z0qovl39JfbgegKEFQ+mS3qXlDVv5vkpKYLfdTJ26e3cTuHbYsOYvrasDr7sO+9zbYO2npn5WdKAJ2m/3mHHjoXLI2RU6HdTycTdxjsxYO4OKQAUAvbN7t1uQZ9l6IrEI7/7yLoFIAIDdu+5O98zuG21XXW3muwSDpqwOpk8/NdWU6RrL0G317PRn+X7199htdnKSc7h696s3KsuV+cq48IMLKakrIW7F6ZnVk38e9M+WAwltRbPWzeKl2S8B4LA5OGfUOVt+rm+DOd3yK/hXwdfHmbbtTgdD7wvB282U6WMBE7jZlWHathc+agJjxkKQObQpjgQN7YydDoGcts2z+f47i0ceMcH1U1ObYkF4POY35PebwOY7m7AUWJbF7NLZiXnug/IHbZd5+u/98h5Lq0wfWI+sHtss0JyItOyjRR9x/P+Op1NaJ1bVrqJPTh/ePuHt5mXEaAD8KyBUZq5P8bAp3zmSTKD7rA0Kgyr3/6GEQvDUUyYQ7sqVJm5Rly5N9eVYzASLr6uDa64xr7nuOrj11o0DxAWDpg22JljD3s/uzYx1M3jxqBf598//5pMln/DQgQ9xyS6XJLavD9cz4cUJfLXiK67b/Tr++eM/yU3J5dNTP6VHVo/t9yG0pG6RWfgssMr8bXcDdhMozuaA4qMa5qvCS7Ne4qx3zqJHVg/ml8/n2IHH8vThT5PiSkns7u/f/p0rP76SfXrsw8enfMyElybw4aIPuWOfO7hhzxvMRrXzYd0kqFts+ivdWU3zXawotXQmo/+xWz/wWyAQYNddd2XWrFmJyT6WZXHfffdx5ZVXNtt26tSpjB49usXnNuXcc8/lpZdeoqqqCud6UT5efvllTjzxRL7++mt2263lhu8DDjiAlStXMm/evGaP33333Vx//fWsXr2aTs1a31u3YeA3ke0lHIYFC0xHUl2dGcRuWSYSe34+7LmnKfSLtJeFFQuJW3Ecdge9s3tv/gUislX947t/cNsXt2G32fG6vHx4yocMzBvYbJtILMJBLxzEZ0s/I8WVgtfl5duzvv1tg0s2VfmL1JqVK8q/NROykwrA5jKVSStqAieNfqLNh5o82QQkmjrVDOQYNMgM9ovHTd6YlAQvvmgqJ2++abYrLIThw81gv0jErBbbt68ZOLjD2UzHytSSqYx9Ziweh4eqYBV7d9+bj075qFkwt/pwPUP/NZSl1Ut55ZhXuOD9C6gP1/PjOT8ytGDoxjtV5b+ZKSum8OEiE9y6U1onLtz5wtY33sz3dd/X93HNp9ewd/e9+WnNT1hYTDt3WiKPXVGzgm7/aH3VjH8f9m/OHHFmy8fcxHE3t90eT+/B1yu/bvFlmUmZlF9djsPu4JbPb+GvX/6V4vRirtvjOuJWnCs/vpJwLMxrx77GMQOPaf7izaRtfvl8hj02DI/Dw7RzpzHu2XGsqVvDF6d/wZ7d9txo++1tde1qdnt6N0rqSojGo5w85GT+e+R/f10wjM3xl8DHO5mAdJ0Ph50ehZT16rOReghXcuOdXbnzTvPQgw/Cn//c8u4uvhgeaVho5okn4JxzWj904wC4nTrtxPGDjqcyUMldU+4CYOb5MxlSMKT5CzSAQFpQW2vOs7ffNgP3zjzTBCdMTzf13pISE+T84osbXuBfBbW/mFVWoz5TjnB6wZMHWSObB6QV6Ui25kIE67nzqzt59EcTWDY3JZf3T3q/2cTA3w1d++UPrksXM2ENTCCTxpVWt6tN1En+8vlfuP3L20lzpyUC8k9cNJHaUC037nkj/7fP//22Y2543Jq58MEgc3/YPTCwoTfx+7PMc432eL152beDauzQK/AWsM63jktGX8JDBz3U8sYd+Xq4lSYzrqhZwfDHhhOMBjl+8PE8M/0ZTh5yMs8f9fxWTKxsT+8ueJfDXj4Mu83OHfvcgdPu5LGpj7G4ajGX7nIp/zjwHxu/qLVrzvJX4PvTzYC4/leb4OZJhea5UKm5BnQ9HpzJG++rpf21dMzNbSdb368pC2+v7ysWhDcLIVJjBnAMvRN6n2MGRX082gyM+oMFfgMzKHvmTNMXXVvb1A+dkmIGmx5yyJYvQNZWj099nMnLJwPQP6c/t4y9JdGmdtttZmBR4/1bbml5H81s4lx6adZLnPTGSa2+9JGDH6F31YWMH2/+PuooswiN7CBWvQVfHdn0d1KBaV+qmQNYkNYHJvzCrHWzGPrYUJKdyay8fCV2m50uD3TBH/Hz83k/M7xweDu9AWlJ376wcKG5f9FFcOedTQFAvvjCrJj+10NOh6XPmuASR5SYwXr1S6FqOvx4nhkQq8Bv8juxqnYVkVgEm81Gt4xu26Yfagfij/jp8WAPSn2lfHbaZ+zSeRe6/qMrlYFKvjz9y0Qf417/2YuvVnzV4j6O6H8Ebx7/Jj+v+ZmRT5jgEAXepoi4gWiA2lAte3bdky/P+JK33zZBJwE6d4b33jPjFcAMpP7vf2HgQLB3mcrOT+7c4jFddhfrrlq3zSeryQa2c13zmk+u4b5v7uOUoafQL6cfN39+c+J8E/kjCofNAtj19WZMGJix0Xl5zQORh0ImEI/PZyad2O0muGZBgfm/TbZm/vkHbXOaUzqHGybdQNyK47Q7uW//+5rGDK94Fb4+3tzf6z3ofIi5/79M098PJijOMTXbPd1/aK3kX+vWmaAoy5aZQFavvWYCR6xv1SrTr9VW/5v7P4597VjyvflMPWcqgWiAYY8NIxgN8s2Z37R7oMM3573JUa8exaC8QVyw0wVcPPFi9uy6J5NPn4zdZt/4Ba20bX+78lt2e9p8WE8f9nRiAvbMdTP527d/I82dRs11NSqzdyAz1s5gxOMjSHGlsPyy5fy89mf2/+/+FKUWsfjPi399UO3NlA8ty+KY147hjXlvUJRaxJr6NTx/5POcPPTkX/lO/jie/vlpznrnLHbtsivLq5dTGajk27O+ZUTRiMQ2kViEXZ7ahZ/X/sxThz7FX7/8KytqVjDpT5MY133crz+4+pj+WBSIpVWhaIhbJ99KZaASgJOGnMTY7mO33QG30Xi77e3FWS9y8hsnM7RgKP8Y/w/2eW4fitOLmXPhHNI8puKyqnYVPR/sScyK8cvFv9A9szs9HuzBytqVvHHcGxw54Ego+RC+Osz0pQ+8AXqeCd6uJuhMuMJMJE/raxZ4brQVg1bL70N9vQno/NNPpr/E6TRBGxwOM8/K5YKHHlpvwWvLgpjf1M+smAn+5sowC3SKiPxRBNZBzSwIljZcD6MmaJI7CzKHQeq2D1ATDJrg10lJTcGwRUR8YR+BqOkkyfBkNJv33WYq90sbfP89fPYZTJ9uAqrn5jZfnGHvveHss83fZb4yDn/5cEp9pVhYnDXirKYAZ+sJRAI88uMjhKIhbDYbfxr2p2aLjv9exK04cSsO0Grg1RNfP5GXZ7/M6M6j+WH1DxzZ/0heP+71NvcHbEnMsi0K/AZQX1/PAw88wHfffUd2djbHHnsshx122EbbPfHEE0ycOJF7772XPn36tHn/EydO5OCDD+bll1/m+OOPTzx+0EEHMXPmTFasWIGjlTDQ//rXv7jwwgv57rvv2GWXXQCIRqMMHz6c1NRUvvvuuzanQ4HfRERE5PcsFA0lVoJO86SRmZS55TvpIJW/WMwM5HO51uuI2EAkYoLC+f2mAyMrawdqEPsVHc1Lq5YmOl/75vRNdB6ub/KyyezzrFmJy8Lir3v/lZv2umnzaVCFf9O28PuyLIsrP76SJVVLADhzxJkc1q95/WrIv4Ywu3Q2e3Xbi9267Maa+jU8O+NZbNhYfcVqitKKWk/Drxys3hjQrSWH9TuMt094GzAT+3s8aBq7V16+kjmlczjg+QPI9+az6vJVGzc8tSFtjcfOTcml3F/O2SPO5snDnmz9fezIAmtgydNm5S3fUtOJb28IfmVzQO/zeWP2RRx9tHloU6vyHnIIfPCBuf/DD02rxLSkcXJ/p7ROrLx8JY9NfYyLPriInTvtzA/n/LDxCzSAQDYhHIaff4YVK8yk8kDA5NX5+TB4MPT6HS16LCJtpGu/SMLdd8P115v7F1wA997bfFGPQMAMzNtWAVaATQZ+W1y5mN4P98Zhc1ByZQl2m52i+4uIxqMsuHgBfXP6/rZjbnjceAQmDjWDUrNHwT6fg2uD+mosaAbX/E5MWTGFcCyMDRt7ddsLR2sDJDtyvXorpu2t+W9x46QbAchNyeW9E99rsU1Cfh9i8Rhd/9GVkroS3jvxPfbougeF9xcSjAaZdcEsBucP3vhFmwqAH6owK5tVToVwpVlMwuYAd7ZZVbXvn8Hh2Xhfre1vS7eTP5a1n8Ln+5v7g26Coeu1c70/EGrn/SEDv3VU++1nBhiBmawwYsSmtwc2+dsvqSuh899bH0w0+4LZ5NsGMWAAVFSYhWWmTTMTn2UH8MWhUPKeud/rXBj1kMlffroCFjyQCPwGcMiLh/DBwg+4Y587cNldXPPpNYzvNZ4PT/mwHd+AbGj69KbrwtCh5u8Wmx4+2gkqp0HGEDh4pnls4aMw9aKmbRT4TWSH9bdv/sbVn1zNAb0O4ODeB3PZR5exT499+Oy0zxLb3Pv1vVz76bUUpRZx8143A3D9Z9dTE6rhqUOf4qyRZxGLx0i/Ox1/xN/ica7e7Wru3f9eTjoJXnrJPPbii3Diia2nrceDPVhWvYxnj3iWEwafwO1f3M4dX93Bgb0PZOLJE7faZyBttJ37NQMREwRnYeVC3A43Ka4U5l44d+M+fhGR35uauTBxCFjxjdteZPtqY/5VXg5PPw2TJsGMGSZAROOCRaGQGcPxdctrhLYoFo/R++HeLKtexjsnvENJXQnnv38+u3Tehe/ObvucnW3p5DdO5sVZL2LDRrIrmZnnz2x98eRW2rbrw/Wk35WORctlgN2Kd+PrM7fgg5Pt4phXj+H1ea/zl7F/4asVXzFp6SQePPBB/rxLKyuqbiX+iJ+vlptg02meNHYr3m0zr5BGt3x+CzPWzQDg2IHHcsrQUzbaZnbpbEY9MYpILIKFtelFuTZFY1pEZCtq7GdIdadSH67nvRPf45C+hzTb5vS3TufZGc9y2S6XsXvX3Tn2tWPpl9OPuRfNbQpI61sOq9+Fsq/NwmnhanO9cmVASlcYcqvpU2+kPnIRERERERGRbcof8XPv1/cSjUdx2BxctdtVWzQvYpsGftseDjjgAKZOnco999xD7969eemll3jyySd5/vnnOflks+LJWWedxbPPPsvixYvp1s00XIRCIUaNGkVtbS133303+fn5PProo7z77rt8+umnjB3b9tUGFPhNRERERHZ0P635CV/Yh81mY9cuuzaPTK3BDR3GtZ9cy73f3MtRA47i9eNe57Gpj3HB+xcwonAEP53308Yv2AoToz9f+jn7PLcPSc4kFl2yCKfdyfjnxzNj3QweGP8Al+16WWLbg144iA8Xfci9+93LrNJZ/HfmfxOTHn5N2kLREFd/cjWhaAi7zc6d+96ple4347zz4IknzP199oHjjjMTVYNBmD8fysrMYM2/NoyzvesuuO661ve3/uT+j0/5mFsm38J3q77j8QmPc+6oc81GukaIiIiIbJZlwSOPmBVVFy4Erxf69YOMDBNkZP58eOwxOOOMrXzgLSir7f707nyz8hv+edA/cTlcnPfeeYzuPJrvz/5+6xx/wzJh9Wz49hSongGudCjYBzz5ZkXFugXgSIH9vvj1x+6oOtqgW5XnpY1u+OwG7ppyF8cPOp79eu7HOe+es+lrxKYCv20pBX6T32L69TDvbnP/sOXg7dr0nAK/dTiHHw7vvGPuf/op7LtvG160md9+34f7srByIVeNuYrD+x/O50s/55bJt5CXkkfp1aWJY516Kqxda9rOjj7aBKi322HZMpg8GWbONIvSyO/IG/kQKjMToCYsgsZ+j+nXwbx7mgV++2r5V+z1zF50SuuE0+5kRc0KPv/T54zrPq790i8b+etf4ZZbzP1bboHbWovbNvkgWPMhuHPgqDJznYjUm4CzjVwZ4M7Y5mkWke3PH/HT48EelPpKyUnOoSJQwRenf8Fe3fZKbDO3bC6DHh2Ew+ag/JpyakO1dPtHN2zYKLmyhMLUQgDGPjOWL5d/idflTSywt7puNQCvH/c6Rw04iowMs9iN02naeDY1vPTqj6/mb9/+jeMHHc/Lx7zMiMdHMH3t9ESwOdnO2qEOObt0diIAyJCCIezRdY/tclwRkW1u1l9g9u2ADbqfDIUHmEUewlVQPR08uTBwE4NTpN2FwyYAnKOVNW025+/f/p0rP76Sg3ofxJr6NUxfO52Xj36Z4wcfv3UT+ivVhmr5ec3PAOR58xiYN7D1jTfRtt37od4srlrc4ssu2OkCHj3k0d+cVtm65pTOYehjQ0lyJuGP+OmS3oVFlyzC4/Rs/sXSoc0pnUN1sBqAkUUjSXa1spq4iMh2srJmJc9MfwaAgtSCpjHW65lbNpfBjw4mzZNGv5x+/Fjy429vF1IfuYiIiIiIiEiHtiUxy5ybfLadvPHGG9x4443ccsstVFZW0r9/f1566SVOOOGExDaxWIxYLMb6ces8Hg+fffYZ11xzDZdccgl+v5/hw4czceLELQr6JiIiIiLyRzCyaGTrT6oTsMM4uM/B3PvNvUxaOolYPMYnSz4B4JA+h2zmlb/emOIxJDmTCEaDlNSVMCh/EHPK5gCwd/e9m217zshz+HDRh/z753+zqnYVAGePPPtXH9vj9Py6lRj/wB5/3AQLeecdmDoV7r3XBH1LTYUePeCII+CEE8x2paVw++1m0OaJJ0JREVRVwTffQH09nHQSOOwOTh92OndOuZPbv7yd71Z9h9fl5cTBJzYdVNcIERERkc2y2eDii82tstIEDikvh3gccnKgb18oLm7fNJ429DS+WfkNr8x5BZfDlXhsi7UWSGzDwaaZg+Gg6VAzFyp+BN8SiEdMYI5OB0HOLlt+7I6qrZ+JSAd21oizuHvK3by94O3ExLazR/z6Or/IdlM9w/zvymgK+rb8FZh6EUSq2y1Z0rLTTmsK/Pbgg7D33ib42vqiUXC62p63ju02loWVC6kOVrNH1z14Z4E5wPrBX/bbzwR4+/RTmDYN5s6Fr78Gjwc6d4arrzbBXOR3xLfcBH0D6HxEU9C3VuzZbU92L96dr1d+DcCuXXZV0LcOaMWKpvsjRmxiw15nm8Bv4QoTfGLwLeBKNTcA3wqw/cpoBiLS4aW4Urh292u5cdKN+CI+9u+5f7N8H2Bg3kB6ZvVkSdUSPlvyGZUBExhyp047JYK+AezaeVe+XP4l+/Xcj7dOeIvl1cvp/mB3AMZ0GUMwaIK+geln29yawscMPIa/ffs3Ji6ayKLKRUxfOx2n3ckR/Y/YWm9fOrjB+YMZnD+4vZMhIrL1DbkNCsfDqjeg4nuYdTNYMXBlmqDbeXttdhfSvtzu3/b6s0eeza2Tb2XiookAFKcXc/TAo7dCyraOdE86Y7v/9jlEwwqHsbhqMTZs2BraoeJWHIChBUN/8/5l6xuUP4iLdr6IycsmA3DlmCsV9G0HMSh/UHsnQUSkmeKMYm4ee/MmtxmYN5AJfSfw7i/v8mPJj3RK68Spw07d8oNpDIqIiIiIiIjIDqlDDlNNTU3lwQcf5MEHH2x1m2eeeYZnnnlmo8cLCgp49tlnt2HqREREREREtp/du+5OhieD6mA136/+nklLJwEmINy2kuRMYkyXMXy+7HO+WvEVdeE6ovEouSm5Gw1YO7TvoRR4C1hQsQAwkyr75vTdZmmTlu26q7ltytdfm6Ajn3wC11xjbuu75BIT+A3grJFncdeUu5iyYgoAxw06jjRP2jZIuYiIiMgfQ3Y2jBu3nQ62BQM5jx98PJd+eClTVkzBZrPhdrg5YfAJm3/hbzgmABkDzU3ahwb7Shv1yu7FuO7j+HzZ50wtmUqqO5UTh6wXFLwtg8th659zGtQumxOtM/8nFTQ9FguaYEDS4Rx1lAnC9umn8O67MGoUnHKKCb5WXg6TJkGvXnDfFvyux3Ufx1M/P5UI6PXNym8Sj6/P44FDDjE32QFUTmu6XzDO/B+PQumX4F/R4kuePPRJppZMBWBUp1HbOIHya8TjTfc3DArZTJcjoevxsOIVmH0rrHgZskaaYG+1c6HyJ5iwAFx9tnWSRaSdXDHmCq4Yc8Umt5nQZwIP/fAQHy3+KBH4bULfCc222bWL6XBrzB8a/y9OL6YorYhotGnbcHjz6dqlyy50zejKipoVXPnxlYBZaCsnJadN70u2AtUhRUS2nbzdzE3+kNI96Vy+6+W8Nvc1AC7a+SKcmwnC/ns0rGAYb8x7g3167MOnp31KJBbBe6eXSDzCsIJh7Z08aYUWnhURkY7knv3uSSxSMLxwOG7Hr4jAq7YLERERERERkR3SjtezIiIiIiIisgNx2p3s32t//jf3f9z51Z1UB6vJSc5hly67bNPj7t1976bAbyEzWXZst7GJlUsbuRwu/jL2L3y4+EMAzh91fvMdaSB9h9G7N3z4IdTUwJdfwuLFZkJKTg4MHWom1TbqmdWT04efzsx1MwE4f6fzW9mriIiIiPyeZSZlMqHvBF6f9zqWZXFwn4M18XhrUT1HdhCX7nIpdWHTLjC+13hS3anb7mBqQ5CtxeYy/1vrRQvKHAz9r2z6O3/cdk2StM5mg/ffh/vvh+efh+nTza1RcjLcd9+W7XNs97EAzC+fz5q6NYmALWO7jd06iZaOKbCm6b4n3/wfrYPP9231JQPyBjAgb8A2Tpj8FkVFTffnzYPDDmtlQ5sddn8Zup0Eq96E0smw+l1wJEFqT+h/BSQVbo8ki0gHdmi/Q3noh4f4cNGHiXrOoX0PbbZNY+C31XWrm5UjGh93OqFbN1i+HNatg2XLoHv3TR/36AFH88B3D/DOgncAOGbgMVvvTYmIiIi0o9v2vo3b9r6tvZOxTTUukjqnbA4ACyoWEIlHsGFjSMGQ9kyaiIiI/E6oL0JEREREREREWqPAbyIiIiIiIh3cIX0O4X9z/8f7C98HYHzv8dht9m16zH167MMtk29hyoop1IZqE4+15IKdL+CCnS/YpumRrScjAw49dPPbPX3409s+MSIiIiLS7u7a967EhOORRSPbOTUi0tEc3v9wDu9/eMtPtlcQNgV/k81JbogS5FsGUR84vZA9ytykQ3K74frrzW3VqqYFC/LyYOBA8/yW6JLehV5ZvVhctZiHvn+IUCxETnIOg/MHb5s3IB1DzN9036NgxjuKgw6CO+4w9997D669djMv6HKYuYmItGBst7GkudNYWbsSgM5pnRlRNKLZNkVpRRSnF7OydiVTS6YydU3zwG8AxxxjgtYCPPcc3HLLxseKRMDVEI/4mIHH8MB3DwDgsDk4sv+RW/mdySapDikiIiK/wbCCYQCsrV9Lhb+COaUmAFyv7F7bdqEUERERERERERERERHZ4W3bSAEiIiIiIiLymx3U+yBs2BJ/H9LnkOYb2GxNt7Y83gajO4/G6/JS7i9n8rLJAOzdfe8t3g+WtfmbiIiIiIi0mz45fThh8AmcMPgE+ub0be/kiMgfmdoQZGspaGjDsqJQ+mX7pkW2WJcuMHYs7L8/DB++5UHfGo3tNhaAf039FwB7ddsL269oJ5Xfk/WGQCUWTrGDO3u9W1a7pEx+vd12g06dzP0pU+Dvf4d4vOn5Zcvg0UfbJWki8jvkcrg4oNcBib836nNt0BjkbWrJVKaVTGv2GMDJJzd1v95+O/z1r1BeDqEQfPONCQz3xRdN+xvTZQyvHPMKLx39Eu+c+A553ryt/M5EREREZFvpntmddE86AHPK5jCnzAR+G1owtD2TJSIiIiIiIiIiIiIiOwAFfhMREREREengClILOHfUuRzU+yAO6n0Q43uN/3U72oIAcS6Hiz267gFA3IpTlFrEgLwBv/YtiIiIiIiIiIiIbB+F+zfdn3EDhKub/rYsWPIfqP1luydLtq9x3ccBUBOqafa37MCc3qb7oQrzvzsDjq5ouh3wffukTX41m80EVWp05ZUwcCCceKIJEtmnD3zySfulT0R+f24ZewtPTHiCJyY8wRVjrmhxm8Ygb6/OfZWqYBVuh5uRRSMTz48YAbfcYu7HYuZ+Xh4kJcHuu8PrrzePW22z2Thu0HGcMPgEDu5z8DZ7byIiIiKy9dlsNobkDwFgdunsROC3YQXD2jNZIiIiIiIiIiIiIiKyA3C2dwJERERERERk8x6b8FjrT64/c2Ar2rv73ny0+CNAEyNFREREREREROR3wtsNCg+AtR9D9XR4txd0OxGwYO2nUPcLHPhze6dStrGx3cc2/7vb2Fa2lB2Gt3vT/epZkLtruyVFtq6zzoKyMrj1VgiFYMECc2vk8bRb0kTkd2howVCGFgzd5DaNgd/ml88HTFCPJGdSs21uvRV694YHHoCffmr++p13Ns+JiIiIyI5hWMEwvl75NXNK5zC7dHbiMRERERERERERERERkd9Cgd9ERERERET+KLYwQNw5o85hTPEYALpndt8GCRIREREREREREdkGRj8Bn4yBwBoIV8LCR9o7RbKddc3oyoU7XUhNqAa3w73ZAC+yA8jZuel+5VTgnHZLimx9111nAsD9+9/w+edQXw+dO8P48XDyye2dOhHZ0YwsGonb4SYcCwNNgeA2dMop5jZzJixeDA4HDB4MPXtuz9SKiIiIyLY2rNAEeZu2ZhqLKxc3e0xEREREREREREREROTXslnWFs78/4Oora0lIyODmpoa0tPT2zs5IiIiIiIiIiIiIiIiIiIi0laBdTDvXlj0GMT85rHU3tDrHOh3GTjc7Zo8EdkG3ukJvqXgyoRDF4Enp+m5qB8qf4T8se2WPBER+f0Y/eRofiz5EYAXjnqBk4ac1M4pEhEREZFtxmYz/7cyteq7Vd8x5t9jsGHDwiLdk07NdTXbMYEiIiIiIiIiIiIiIvJ7sSUxy5zbKU0iIiIiIiIiIiIiIiIiIiIi20dyAYy8H4bdCcF14PQ2DwIlIjuevD1N4LdINUweD6P/DWl9oPQLmH4NdD1Wgd9ERKRN7tr3LuaXzwdg/577t3NqRERERKQ9Dckfgt1mJ27FARhaMLSdUyQiIiIiIiIiIiIiIjsCBX4TERERERERERERERERERGRHZPDA96u7Z0KEdke+l4Cy54z9yunwYfDN9jg2O2dIhER+Z3at+e+7Ntz3/ZOhoiIiIhsCzZb2x63LAC8bi+9snqxsHIhAMMKhm3L1ImIiIiIiIiIiIiIyB+Evb0TICIiIiIiIiIiIiIiIiIiIiIi8pvk7AS9zm3vVIiIiIiIiIjIDmZYYVOwNwV+ExERERERERERERGRrcHZ3gkQERERERERERERERERERERERH5zXZ6BLzdYM5fIRZserxgH+jxp/ZLl4iIiIiIiIj8bl055kr27bEvAAf1OaidUyMiIiIiIiIiIiIiIjsCm2VZVnsnoiOqra0lIyODmpoa0tPT2zs5IiIiIiIiIiIiIiIiIiIiIiLSFvVLoPQLsOKQMxoyh7R3ikRERERERESkI7DZ2radplqJiIiIiIiIiIiIiMgW2pKYZc7tlCYREREREREREREREREREREREZFtL7WnuYmIiIiIiIiIrE8B3UREREREREREREREpAOwt3cCRERERERERERERERERERERERERERERERERERERERERERERERERER2dAr8JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyjSnwm4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjINqbAbyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi25gCv4mIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIbGMK/CYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiso0p8JuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyDamwG8iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiItuYAr+JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGxjCvwmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrKNKfCbiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMg2psBvIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLbmAK/iYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhsYwr8JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyjTnbOwEdlWVZANTW1rZzSkRERERERERERERERERERERERERERERERERERERERERERERERESkI2qMVdYYu2xTFPitFXV1dQAUFxe3c0pEREREREREREREREREREREREREREREREREREREREREREREREREpCOrq6sjIyNjk9vYrLaEh/sDisfjlJSUkJaWhs1mo7a2luLiYlauXEl6enp7J09EREQ2oLxaRESkY1NeLSIi0rEprxYREenYlFeLiIh0bMqrRUREOjbl1SIiIh2b8moREZGOTXm1iIhIx6a8WkREpOOwLIu6ujo6deqE3W7f5LbO7ZSm3x273U6XLl02ejw9PV2FHRERkQ5MebWIiEjHprxaRESkY1NeLSIi0rEprxYREenYlFeLiIh0bMqrRUREOjbl1SIiIh2b8moREZGOTXm1iIhIx5CRkdGm7TYdFk5ERERERERERERERERERERERERERERERERERERERERERERERERERH4zBX4TEREREREREREREREREREREREREREREREREREREREREREREREREdnGFPitjTweD3/5y1/weDztnRQRERFpgfJqERGRjk15tYiISMemvFpERKRjU14tIiLSsSmvFhER6diUV4uIiHRsyqtFREQ6NuXVIiIiHZvyahERkd8nm2VZVnsnQkRERERERERERERERERERERERERERERERERERERERERERERERERkR2Zv7wSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOzoFPhNRERERERERERERERERERERERERERERERERERERERERERERERERGQbU+A3EREREREREREREREREREREREREREREREREREREREREREREREREZFtTIHfNqO+vp7LLruMTp06kZSUxPDhw3n55ZfbO1kiIiJ/OJMnT8Zms7V4++6775pt+9NPP7HffvuRmppKZmYmRx11FEuWLGmnlIuIiOx46urquOaaazjggAPIy8vDZrNx6623trjtluTLDz/8MP3798fj8dCjRw9uu+02IpHINnwnIiIiO6a25tWnn356i/Xs/v37t7hf5dUiIiJbx6RJkzjzzDPp378/Xq+Xzp07c/jhhzNt2rSNtlW9WkREZPtra16terWIiEj7mD59Oocccghdu3YlOTmZ7OxsxowZw/PPP7/RtqpXi4iIbH9tzatVrxYREekYnnrqKWw2G6mpqRs9p3q1iIhI+2str1a9WkRE5PfP2d4J6OiOOuoofvzxR+6++2769u3Liy++yIknnkg8Huekk05q7+SJiIj84dx5553svffezR4bPHhw4v78+fMZN24cw4cP59VXXyUYDHLLLbew5557Mn36dPLy8rZ3kkVERHY4FRUVPPHEEwwbNowjjjiCp556qsXttiRfvuOOO7j55pu57rrrOOCAA/jxxx+56aabWL16NU888cT2emsiIiI7hLbm1QDJyclMmjRpo8c2pLxaRERk6/nXv/5FRUUFl156KQMHDqSsrIz777+fXXfdlY8++oh99tkHUL1aRESkvbQ1rwbVq0VERNpDdXU1xcXFnHjiiXTu3Bmfz8cLL7zAqaeeyrJly7jpppsA1atFRETaS1vzalC9WkREpL2tXr2aq666ik6dOlFTU9PsOdWrRURE2t+m8mpQvVpEROT3zmZZltXeieioPvjgAw455JBEsLdGBxxwAHPmzGHFihU4HI52TKGIiMgfx+TJk9l777157bXXOOaYY1rd7rjjjuPzzz9n8eLFpKenA7B8+XL69OnD5Zdfzj333LO9kiwiIrLDamxKsNlslJeXk5eXx1/+8hduvfXWZtu1NV+uqKigS5cunHbaaTz++OOJ1995553cdNNNzJ49m4EDB26fNyciIrIDaGteffrpp/O///2P+vr6Te5PebWIiMjWVVpaSn5+frPH6uvr6d27N4MHD+bTTz8FVK8WERFpL23Nq1WvFhER6Vh23XVXSkpKWLFiBaB6tYiISEezYV6terWIiEj7O/TQQ7HZbGRnZ2+UL6teLSIi0v42lVerXi0iIvL7Z2/vBHRkb775JqmpqRx77LHNHj/jjDMoKSnh+++/b6eUiYiISEui0SjvvfceRx99dKJTAaBbt27svffevPnmm+2YOhERkR2HzWbDZrNtcpstyZc//PBDgsEgZ5xxRrN9nHHGGViWxVtvqjPkkQABAABJREFUvbVV0y8iIrKja0tevSWUV4uIiGxdGwaSAUhNTWXgwIGsXLkSUL1aRESkPbUlr94SyqtFRES2j9zcXJxOJ6B6tYiISEe0fl69JZRXi4iIbBvPP/88X3zxBY8++uhGz6leLSIi0v42lVdvCeXVIiIiHZcCv23C7NmzGTBgwEYdC0OHDk08LyIiItvXRRddhNPpJD09nfHjxzNlypTEc4sXLyYQCCTy6vUNHTqURYsWEQwGt2dyRURE/rC2JF9urF8PGTKk2XZFRUXk5uaq/i0iIrINBQIBCgsLcTgcdOnShYsvvpjKyspm2yivFhER2fZqamr46aefGDRoEKB6tYiISEezYV7dSPVqERGR9hOPx4lGo5SVlfHoo4/y0Ucfce211wKqV4uIiHQEm8qrG6leLSIi0j5KS0u57LLLuPvuu+nSpctGz6teLSIi0r42l1c3Ur1aRETk923Ll0r5A6moqKBnz54bPZ6dnZ14XkRERLaPjIwMLr30UsaNG0dOTg6LFi3ivvvuY9y4cbz//vuMHz8+kTc35tXry87OxrIsqqqqKCoq2t7JFxER+cPZkny5oqICj8eD1+ttcVvVv0VERLaNYcOGMWzYMAYPHgzAF198wQMPPMBnn33Gjz/+SGpqKoDyahERke3goosuwufzceONNwKqV4uIiHQ0G+bVoHq1iIhIe7vwwgt5/PHHAXC73Tz00EOcd955gOrVIiIiHcGm8mpQvVpERKQ9XXjhhfTr148LLrigxedVrxYREWlfm8urQfVqERGRHYECv22GzWb7Vc+JiIjI1jVixAhGjBiR+HvPPffkyCOPZMiQIVxzzTWMHz8+8ZzybxERkY6jrfmy8m8REZHt7/LLL2/29/7778+IESM45phjePLJJ5s9r7xaRERk27n55pt54YUXePjhhxk1alSz51SvFhERaX+t5dWqV4uIiLSvG264gbPPPpvS0lLeffddLr74Ynw+H1dddVViG9WrRURE2s/m8mrVq/+fvfsOj6Ja3Dj+brIppCeUQGih9ypFUYoFFMWC1wZYUCw/r72LoOK1gVfseu+1giJYAAsWBBQQRar0EgIkAdIgCel9d39/nGQ3SwgkISEBvp/n2SfT52zJzJyZOe8AAFA35s2bpwULFmjDhg3H3Y9SrwYA4OSr7L6aejUAAKc+j7ouQH3WsGHDoybUpqWlSTp6Wj0AADh5QkJCNGrUKG3evFl5eXlq2LChJFW4/7ZYLAoJCTnJpQQA4MxUlf1yw4YNlZ+fr9zc3KNOS/0bAICTZ/To0fL399eqVaucw9hXAwBQe5577jm98MILevHFF3Xvvfc6h1OvBgCgfqhoX10R6tUAAJw8rVq1Ur9+/XTppZfqP//5j+68805NnDhRhw4dol4NAEA9cKx9dUWoVwMAULuys7N1zz336L777lNERITS09OVnp6uwsJCSVJ6erpycnKoVwMAUEcqu6+uCPVqAABOLQS/HUOPHj20Y8cOFRcXuw3fsmWLJKl79+51USwAAFCGw+GQZFLl27VrpwYNGjj31WVt2bJF7du3l6+v78kuIgAAZ6Sq7Jd79OjhHF5WUlKSUlJSqH8DAHCSORwOeXi4Lh+wrwYAoHY899xzmjJliqZMmaKnnnrKbRz1agAA6t6x9tXHQr0aAIC6MWDAABUXF2vv3r3UqwEAqIfK7quPhXo1AAC1JyUlRcnJyZo+fbpCQ0Odrzlz5ignJ0ehoaEaN24c9WoAAOpIZffVx0K9GgCAUwfBb8cwevRoZWdna968eW7DZ86cqYiICA0cOLCOSgYAACTp8OHD+uGHH9S7d2/5+vrKarXq8ssv1/z585WVleWcbt++fVq6dKmuvvrqOiwtAABnlqrsly+55BL5+vpqxowZbsuYMWOGLBaLrrrqqpNUagAAMHfuXOXm5urss892DmNfDQBAzXv++ec1ZcoUTZ48Wc8++2y58dSrAQCoW8fbV1eEejUAAHVn6dKl8vDwUNu2balXAwBQD5XdV1eEejUAALWradOmWrp0abnXxRdfLF9fXy1dulQvvPAC9WoAAOpIZffVFaFeDQDAqcVa1wWoz0aOHKnhw4fr7rvvVmZmptq3b685c+Zo4cKFmjVrljw9Peu6iAAAnDHGjh2rVq1aqV+/fmrUqJGio6M1ffp0JScnu51weO6559S/f3+NGjVKTz75pPLz8/XMM8+oUaNGeuSRR+ruDQAAcJr5+eeflZOT47yYv337ds2dO1eSdOmll8rPz6/S++WwsDBNnjxZTz/9tMLCwjRixAitXbtWU6ZM0e23366uXbvWyXsEAOBUdrx99aFDhzR27FjdcMMNat++vSwWi5YvX6433nhD3bp10+233+5cFvtqAABq1vTp0/XMM8/okksu0WWXXaZVq1a5jS+98Y56NQAAdaMy++q4uDjq1QAA1JE777xTQUFBGjBggMLDw5WSkqKvv/5aX375pR577DE1btxYEvVqAADqSmX21dSrAQCoG76+vho2bFi54TNmzJCnp6fbOOrVAACcfJXdV1OvBgDg9GBxOByOui5EfZadna1Jkybpq6++Ulpamjp37qyJEyfqhhtuqOuiAQBwRpk6daq+/PJLxcTEKDs7W2FhYTrvvPM0ceJE9e/f323a9evX64knntBff/0lq9WqCy64QK+++qratWtXR6UHAOD0ExkZqbi4uKOOi4mJUWRkpKSq7Zffeustvfvuu4qNjVXTpk116623atKkSfLy8qrNtwIAwGnpePvq4OBgTZgwQRs2bFBycrJsNptat26t0aNH66mnnlJwcHC5+dhXAwBQM4YNG6bly5dXOL7sJXzq1QAAnHyV2VcfPnyYejUAAHXkk08+0SeffKIdO3YoPT1dAQEB6tWrl26//XbdeOONbtNSrwYA4OSrzL6aejUAAPXL+PHjNXfuXGVnZ7sNp14NAED9cOS+mno1AACnB4LfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCWedR1AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgdEfwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUMoLfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCWEfwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALWM4DcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqGUEvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABALSP4DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqGcFvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFDLCH4DAAAAAAAAAAAAAAAAAKACsbGxslgsGj9+fJXms1gsGjZsWK2UCQAAAAAAAAAAAAAAAABwaiL4DQAAAAAAAAAAAAAAAABQb5UGr5V9eXt7q2XLlho7dqw2b95cJ+UaNmyYLBZLnawbAAAAAAAAAAAAAAAAAHBqstZ1AQAAAAAAAAAAAAAAAAAAOJ527drpxhtvlCRlZ2dr1apVmjNnjubPn6/ffvtNgwYNqpX1Nm/eXDt27FBwcHCV5tuxY4f8/PxqpUwAAAAAAAAAAAAAAAAAgFMTwW8AAAAAAAAAAAAAAAAAgHqvffv2mjJlituwyZMn68UXX9SkSZO0dOnSWlmvl5eXOnfuXOX5qjMPAAAAAAAAAAAAAAAAAOD05lHXBQAAAAAAAAAAAAAAAAAAoDruu+8+SdLatWslScXFxXr99dfVq1cvNWjQQMHBwTr//PP1448/lpvXbrfrww8/1IABAxQWFiY/Pz9FRkbqqquu0u+//+6cLjY2VhaLRePHj3cOs1gsWr58ubO79HXkNMOGDSu33tTUVD300ENq06aNfHx81KRJE11//fXavn17uWnHjx8vi8Wi2NhYvffee+rSpYt8fX3VunVrPffcc7Lb7dX52AAAAAAAAAAAAAAAAAAAdcRa1wUAAAAAAAAAAAAAAAAAAKA6LBaLs9vhcOj666/X/Pnz1bFjR91zzz3KycnRV199pVGjRunNN9/U/fff75x+4sSJeuWVV9SuXTuNHTtWgYGBio+P14oVK/Tbb79pyJAhFa732Wef1YwZMxQXF6dnn33WObx3797HLG9qaqrOPvts7d69W8OGDdMNN9yg2NhYzZ07Vz/++KMWL16sc845p9x8jz32mJYtW6ZRo0ZpxIgR+vbbbzVlyhQVFhbqxRdfrMInBgAAAAAAAAAAAAAAAACoSwS/AQAAAAAAAAAAAAAAAABOSW+99ZYkqX///po1a5bmz5+voUOHatGiRfL29pYkTZo0SWeddZYeffRRXX755WrTpo0k6cMPP1Tz5s21efNm+fn5OZfpcDh0+PDhY653ypQpWrZsmeLi4jRlypRKl/fxxx/X7t27NXHiRL300kvO4ePHj9cll1yiW265RTt37pSHh4fbfOvXr9fmzZvVrFkzSdLTTz+tDh066O2339azzz7rfK8AAAAAAAAAAAAAAAAAgPrN4/iTAAAAAAAAAAAAAAAAAABQt3bv3q0pU6ZoypQpevTRR3XeeefpxRdflK+vr1566SXNmDFDkvTKK6+4BaG1aNFCDz30kIqKivT555+7LdPb21tWq/vzUy0Wi8LCwmq8/IWFhZozZ44aNmyoyZMnu427+OKLdfHFFys6OlorV64sN+/TTz/tDH2TpEaNGunKK69UVlaWoqKiarysAAAAAAAAAAAAAAAAAIDaQfAbAAAAAAAAAAAAAAAAAKDe27Nnj5577jk999xzeuuttxQXF6exY8dqzZo1Ouecc7RhwwY1aNBAAwYMKDfvsGHDJEkbN250DrvuuusUExOj7t276+mnn9aSJUuUk5NTa+XfuXOn8vLyNGDAAPn5+VWqjKX69u1bbliLFi0kSenp6TVZTAAAAAAAAAAAAAAAAABALSL4DQAAAAAAAAAAAAAAAABQ71188cVyOBxyOBwqLCzU/v379fnnn6tHjx6SpMzMTIWHhx913qZNm0qSMjIynMPeeustvfLKK/Ly8tILL7yg4cOHq1GjRrrllluUkpJS4+XPzMyUpCqVsVRwcHC5YVarVZJks9lqqogAAAAAAAAAAAAAAAAAgFpG8BsAAAAAAAAAAAAAAAAA4JQXFBSk5OTko44rHR4UFOQc5uXlpccee0zbtm1TfHy8Zs+ercGDB+vTTz/VuHHjaqV8ZctSmTICAAAAAAAAAAAAAAAAAE4vBL8BAAAAAAAAAAAAAAAAAE55ffr0UV5entasWVNu3PLlyyVJvXv3Puq8ERERGjNmjBYuXKgOHTpoyZIlysvLO+b6PD09JUk2m61S5evcubN8fX21du1a5ebmVrmMAAAAAAAAAAAAAAAAAIBTH8FvAAAAAAAAAAAAAAAAAIBT3i233CJJmjhxooqKipzD4+Pj9dprr8lqtWrcuHGSpIKCAv32229yOBxuy8jJyVFWVpa8vLycwW4VCQsLkyQdOHCgUuXz9vbWmDFjlJKSopdfftlt3JIlS/Tzzz+rffv2Ovfccyu1PAAAAAAAAAAAAAAAAADAqcda1wUAAAAAAAAAAAAAAAAAAOBE3XTTTZo/f76+++479ezZU6NGjVJOTo6++uorpaamavr06Wrbtq0kKS8vTxdeeKHatm2rgQMHqlWrVsrOztYPP/ygpKQkPfHEE/L29j7m+i644ALNnTtX1157rS699FL5+vqqR48euuyyyyqcZ9q0aVq+fLleeOEFrVy5UgMHDlRsbKzmzp0rPz8/ffLJJ/Lw4HmuAAAAAAAAAAAAAAAAAHC6IvgNAAAAAAAAAAAAAAAAAHDKs1gsmjt3rt58803NnDlTb7/9try9vdW3b189/PDDuuKKK5zT+vv7a9q0afr111+1YsUKHTx4UKGhoercubOmTZum66+//rjru+OOOxQbG6svvvhCL774ooqLi3XLLbccM/itcePGWr16tZ5//nl99913WrFihYKDg3XllVfq2WefVffu3WvkswAAAAAAAAAAAAAAAAAA1E8Wh8PhqOtCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDpzKOuCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApzuC3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACglhH8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1jOA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhlBL8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQC0j+A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAahnBbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQywh+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBaRvAbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQygt8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJYR/AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtYzgNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoZQS/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAtI/gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoZwW8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUMsIfgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAWkbwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUsnoZ/Jadna0HH3xQERER8vX1Ve/evfXFF19UeTmTJ0+WxWJR9+7da6GUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA51rouwNFcffXVWrt2raZOnaqOHTtq9uzZGjNmjOx2u8aOHVupZWzcuFGvvvqqwsPDq1UGu92uhIQEBQYGymKxVGsZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5fDodDWVlZioiIkIeHxzGntTgcDsdJKlel/PTTT7rsssucYW+lRowYoW3btmnfvn3y9PQ85jKKi4vVv39/DRkyRJs2bVJKSoq2bt1apXIcOHBALVu2rNZ7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHDm2L9/v1q0aHHMaawnqSyV9s033yggIEDXXnut2/Bbb71VY8eO1erVqzVo0KBjLmPq1KlKS0vTiy++qFGjRlWrHIGBgZLMhxgUFFStZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4fWVmZqply5bO7LJjqXfBb1u3blWXLl1ktboXrWfPns7xxwp+2759u1544QXNnz9fAQEB1S6HxWKRJAUFBRH8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBCpdllx1Lvgt9SU1PVtm3bcsPDwsKc4ytit9t122236eqrr9all15apfUWFBSooKDA2Z+ZmVml+QEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgIh51XYCjOVZi3bHGvfbaa4qOjtYbb7xR5XW+/PLLCg4Odr5atmxZ5WUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwNHUu+C3hg0bKjU1tdzwtLQ0SVJYWNhR59u3b5+eeeYZPfvss/L29lZ6errS09NVXFwsu92u9PR05eXlVbjeiRMnKiMjw/nav39/zbwhAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGe8ehf81qNHD+3YsUPFxcVuw7ds2SJJ6t69+1Hn27t3r/Ly8vTAAw8oNDTU+frzzz+1Y8cOhYaGauLEiRWu18fHR0FBQW4vAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgJ1rouwJFGjx6tDz74QPPmzdP111/vHD5z5kxFRERo4MCBR52vd+/eWrp0abnhDz74oDIyMvTJJ5+oRYsWtVZuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhIvQt+GzlypIYPH667775bmZmZat++vebMmaOFCxdq1qxZ8vT0lCRNmDBBM2fO1J49e9S6dWuFhIRo2LBh5ZYXEhKi4uLio44DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJOh3gW/SdL8+fM1adIkPfPMM0pLS1Pnzp01Z84c3XDDDc5pbDabbDabHA5HHZYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI7P4iA57agyMzMVHBysjIwMBQUF1XVxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQzVcks8zhJZQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAMxbBbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQywh+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBaRvAbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQygt8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJYR/AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtYzgNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoZQS/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAtI/jtDBYZGSmLxaIZM2Ycd9oZM2bIYrEc87Vw4cJy802ZMuW481ksFg0bNkySNH78+EpNf+QrNja2Zj8cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAZZ67oAOLU0adJEHTp0OOq40NDQCucLCgpSjx49KhxfOq5jx44699xzy41ft26dCgoK1KFDBzVp0qTceF9f3+MVHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKgzBL+hSkaOHKkZM2ZUeb4+ffpo2bJlx53uqaee0lNPPVVueGRkpOLi4vTUU09p/PjxVV4/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUJc86roAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHC6I/gNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqZta4LgFPLpk2bNHbsWCUlJSkoKEh9+vTRjTfeqHbt2tV10QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIB6i+A3VMnGjRu1ceNGZ/93332n559/Xs8995wmTZpUdwUDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6jGPui4ATg0hISG677779Oeffyo5OVn5+fnasGGDbrrpJtlsNk2ePFnvvPNOhfMvX75cFoulwtcbb7xx8t4MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcJJZ67oAODVcddVVuuqqq9yG9e7dW59++qkaNmyoN954Q5MnT9Ytt9yiwMDAcvMHBQWpR48eFS6/efPmNV1kAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoN4g+A0n7LnnntN//vMfZWRk6LffftOVV15Zbpo+ffpo2bJlJ79wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQD3gUdcFwKkvKChI3bp1kyTt3r27jksDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1D8Ev6FGeHl5SZKKi4vruCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA/UPwG06YzWZTVFSUJKlFixZ1XBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg/iH4DSfso48+Unp6ujw9PTVs2LC6Lg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ7xD8huPKzMzUmDFjtGbNGrfhNptNH3zwgR544AFJ0oQJE9S8efO6KCIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQr1nrugCoe/fdd58effTRCsd/++23+uKLL/TFF18oJCREbdq0kdVqVXR0tNLT0yVJI0eO1JtvvlnhMjZs2KDzzjuvwvGBgYH6+eefq/0eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgPqM4DcoOztb2dnZFY738fHRK6+8opUrV2rr1q3as2eP8vLy1LBhQ1122WW6+eabde2118pisVS4jMzMTP35558Vjg8ODj6h9wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUZxaHw+Go6YUWFBTI09NTVuupmyuXmZmp4OBgZWRkKCgoqK6LAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCeqUpmmUd1V/LHH3/oX//6l9LT053DUlNTNXLkSAUEBCgoKEiTJk2q7uIBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4LRR7eC36dOna+bMmQoJCXEOe+SRR/TLL7+obdu2CgkJ0dSpUzV37tyaKCcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnLKqHfy2ceNGDR482Nmfm5urr776SiNGjFBUVJSioqLUqlUrvffeezVSUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4VVU7+O3gwYNq3ry5s/+vv/5Sfn6+br31VklSYGCgRo0apZ07d554KQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgFFbt4DdfX19lZWU5+5cvXy6LxaKhQ4c6hwUEBOjw4cMnVkIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOMVZqztj+/bttXDhQhUUFMjDw0NffvmlunbtqqZNmzqn2bdvn5o0aVIjBQUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAU5VHdWe84447tHv3bnXo0EFdunTR7t27NX78eLdpVq9era5du55oGQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADglFbt4LcJEyboscceU25urtLT03XXXXfpwQcfdI5funSp9u7dqwsvvLDKy87OztaDDz6oiIgI+fr6qnfv3vriiy+OO9/8+fM1ZswYtW/fXg0aNFBkZKTGjRun6OjoKpcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGqKxeFwOGpjwYWFhcrLy5O/v7+sVmuV5h0xYoTWrl2rqVOnqmPHjpo9e7Y+/PBDff755xo7dmyF8w0cOFBNmzbVVVddpbZt22r//v166aWXtH//fq1atUrdunWrdBkyMzMVHBysjIwMBQUFVan8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5/Vcksq7Xgt+r66aefdNlll2n27NkaM2aMc/iIESO0bds27du3T56enked9+DBg2rSpInbsISEBEVGRurmm2/Whx9+WOlyEPwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FiqklnmcaIr++abb3TdddepZ8+eat++vXP4zp079corryg+Pr7KywsICNC1117rNvzWW29VQkKCVq9eXeG8R4a+SVJERIRatGih/fv3V6kcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBTrNWd0W63a8yYMZo7d64kqUGDBsrLy3OODw0N1aRJk2Sz2TRx4sRKL3fr1q3q0qWLrFb3ovXs2dM5ftCgQZVe3t69exUXF6errrrqmNMVFBSooKDA2Z+ZmVnpdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAsXhUd8bXX39dX3/9te666y4dPnxYjz76qNv48PBwDR48WD/++GOVlpuamqqwsLByw0uHpaamVnpZxcXFmjBhggICAvTQQw8dc9qXX35ZwcHBzlfLli2rVG4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqEi1g99mzJihfv366b333lNQUJAsFku5adq3b6+YmJgqL/toy6rMuLIcDocmTJigFStW6NNPPz1ukNvEiROVkZHhfO3fv79KZQYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAilirO+Pu3bt1zz33HHOahg0bKjU1tUrLrWietLQ0SVJYWNhxl+FwOHT77bdr1qxZmjlzpq688srjzuPj4yMfH58qlRUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKsOjujM2aNBAmZmZx5wmLi5OISEhVVpujx49tGPHDhUXF7sN37JliySpe/fux5y/NPTtk08+0Ycffqgbb7yxSusHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJpW7eC3Pn366JdfflFBQcFRx6elpWnhwoU6++yzq7Tc0aNHKzs7W/PmzXMbPnPmTEVERGjgwIEVzutwOHTHHXfok08+0f/+9z/deuutVVo3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSGage/3X///dq/f7+uueYaxcfHu43bs2ePRo8erYyMDN1///1VWu7IkSM1fPhw3X333frggw+0dOlS3XnnnVq4cKFeeeUVeXp6SpImTJggq9WquLg4tzJ99NFHuvXWW9WjRw+tWrXK+dqwYUN13yoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnBBrdWe88sor9eSTT2rq1Klq1aqV/P39JUlNmjRRamqqHA6Hnn76aV1wwQVVXvb8+fM1adIkPfPMM0pLS1Pnzp01Z84c3XDDDc5pbDabbDabHA6Hc9iCBQskSR9//LE+/vhjt2W2bt1asbGx1XinAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBiLI6yyWnVsHjxYr3zzjtavXq10tLSFBQUpIEDB+r+++/XxRdfXFPlPOkyMzMVHBysjIwMBQUF1XVxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQzVckss1Z3Jfv27ZO3t7eGDx+u4cOHV3cxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHDa86jujG3atNGkSZNqsiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcFqyVnfGsLAwhYWF1WRZAAAAAAAAAAAAAAAA6qWsgizZHXZZLBYF+QTVdXEAAAAAAAAAAAAAAAAAAAAAnIKqHfw2ePBgrVq1qibLAgAAAAAAAAAAAAAAUC91fKejkrKTFOQTpIwnM+q6OAAAAAAAAAAAAAAAAAAAAABOQR7VnfHll1/W1q1b9dxzz6m4uLgmywQAAAAAAAAAAAAAAFBv2Ow2Hcw5KEnKLMhUblFuHZcIAAAAAAAAAAAAAAAAAAAAwKnIWt0Zp02bpu7du+tf//qX3n//ffXq1Uvh4eGyWCxu01ksFn300UcnXFAAAAAAAAAAAAAAAIC6cCj3kOwOu7M/KTtJbUPb1mGJAAAAAAAAAAAAAAAAAAAAAJyKqh38NmPGDGd3YmKiEhMTjzodwW8AAAAAAAAAAAAAAOBUlpSdVK6f4DeccY54GGSFHI7aLQcAAAAAAAAAAAAAAAAAAMAprNrBbzExMTVZDgAAAAAAAAAAAAAAgJOjMgFWZcKrErPcH4Z3ZD9wuvhu53e65dtbJEmPDXpMk4ZMquMSAQAAAAAAAAAAAAAAAAAAnF6qHfzWunXrmiwHAAAAAAAAAAAAAABAvZSUnXTM/qoGyQF1ISND+vRTadMmqUsX6bbbpNBQ92li02OVUZAhSdp7eG8dlBJVlZAgzZghxcRIAwZIN98s+fjUdakAAAAAAAAAAAAAAAAAAEBFqh38BgAAAAAAAAAAAAAAcCY4bvBbZVQmHK4qCJJDFaSkSEOHStu3u4a9+aa0cKHUtatr2IHMA67urANC/bZzpzRkiHTokOn/8EPpf/8z32ujRnVbNgAAAAAAAAAAAAAAAAAAcHQeJ7qA2bNna8SIEWrSpIl8fHzUuHFjjRgxQrNnz66J8gEAAAAAAAAAAAAAANSpxOzEY/YD9VlRkTRypHvomyTt3y9dfbX7sLJhb2VD4FD/HDwoXXSRK/St1Pr10p131k2ZAAAAAAAAAAAAAAAAAADA8VU7+M1ut+vaa6/VTTfdpCVLlignJ0cRERHKzc3VkiVLdNNNN+kf//iH7HZ7TZYXAAAAAAAAAAAAAADgpErKTpIkNWzQ0K0fOBXMnCmtW3f0ccnJ7v3xmfFH7Ub9M3WqFF/BV3Tk9woAAAAAAAAAAAAAAAAAAOqPage/vf3225o3b56GDBmiv/76Szk5OYqJiVFOTo5WrVqloUOH6ttvv9Xbb79dk+UFAAAAAAAAAAAAAAA4qUqD3nqE93DrB+o7h0N65ZXKT38g84CzO6MgQ9mF2e4LK/s63nDUmowM6T//qetSAAAAAAAAAAAAAAAAAACA6qh28NuMGTPUqVMnLV68WAMHDnQbN2DAAC1atEidOnXSJ598csKFBAAAAAAAAAAAAAAAqDEVhVRVMDwxO1GS1KNJD7d+oF7IjpU2PCqtGi9FvSUVZjhHbdokRUe7JrVYpMsuk/r0Kb8Yh8Oh+Kx4t2HxmfHlJ8RJkZcnvf66dPfd0ksvSQdcmXz64QcpP9/V7+cnXXml1L79yS8nAAAAAAAAAAAAAAAAAACommoHv0VFRenyyy+X1Wo96nir1apRo0Zp165d1S4cAAAAAAAAAAAAAABAXUvKTpIk9QzvKUlKzk6W3WF3TVDFIDmgxiQvk37pJ+2cLsXMlP5+QPqxs5SyWpK0YIH75B9+aELD1q+X3nzTfVxKbooKbYWSpGCfYEnSgcwDwskXFSUNHCg9/LD03/9KkyZJnTtLc+ea8T/84JrW11f66Sfp22+lHTuke+6pkyIDAAAAAAAAAAAAAAAAAIBKqnbwm7e3t3Jyco45TU5Ojry9vau7CgAAAAAAAAAAAAAAgDqVXZit7MJsSVKPJj0kSTaHTSm5KVVbUNkQuLJBcEcOr+x0QPoWaelwqTDVfXh+krTxMUnS9u2uwddcI912m+m2WKT775f++U/X+NKQN1+rrzo36uw2rLru/uFudX23q7q+21V7D+89oWWdKWJipP79pS1b3Ifn5Li+v23bXMOfeEIaOtR0W63SW29J559f++VcsUL697/N+vbsqf31AQAAAAAAAAAAAAAAAABwuqh28FufPn301VdfKSEh4ajjExMT9dVXX6lv377VLhwAAAAAAAAAAAAAAEBdSspOcnZ3adxFHhaPcsOBGmOxHP9VatNEyVF8zMVFRbm6x48vP/6ZZ1zdpSFvEYERigiMkCTFZ8VX951IkpbFLdOOlB3mdWjHCS3rTPHww1JW1tHHORyS3S5FR7uG3XKL+zQeHtLkybVXvsxM6fbbpSFDpMcflx54QOrYUZo40ZQNAAAAAAAAAAAAAAAAAAAcW7WD3x555BGlpqaqX79+mj59utatW6f9+/dr3bp1evXVV3XWWWcpLS1NDz/8cE2WFwAAAAAAAAAAAAAA4KQpDXjz9/JXkE+QGvk1chsO1InceCnhJ1e/NUBqMlTyaeQc5HBIu3aZbotFGjas/GJ8fFzdpSFvEYERahbQTJIrDK46bHab9qTtcfbvSt1V4bSTfp2kuxbcpXt/ulcOh6Pa6zzVxcRI337rPqxvX6l1a1f//v1Sfr7pbtPGvI7k61s75SsokAYPlj76yH243S5NnSqtWlU76wUAAAAAAAAAAAAAAAAA4HRire6Mo0aN0uuvv67HHntMjz/+uNs4h8Mhq9WqV199VaNGjTrhQgIAAAAAAAAAAAAAUJvWrZM+/VRKS5M6dJBuvvnoYTo48yRmJUqSmvg3cf49mHPQORyoE/HfSSoJSPNrIQ1bKAV3k4rzpI2PS+mblJgo5eSYSZo3l/z9j73I0pC3iMAIRQRGmNWUhMFVR1xGnIrsRc7+6LToo05XaCvUKytfUbG9WJI0echkNQ1oWu31nspmz3Z1W60mYO3mm02w2iefSI895grzk8z+qirsdqmoyD3wrypeeUXavLl68wIAAAAAAAAAAAAAAAAAAKPawW+S9MADD+iKK67QrFmztHHjRmVmZiooKEh9+vTR2LFj1bZt25oqJwAAAAAAAAAAAAAANS4z0wTpfPCB5HC4hr/4ovT229Jdd9Vd2SRTpnnzpGnTpNhYqVEj6aqrpEcflRo2rNuynSmSspMkSeEB4eavf7i2aqtzOFAn0re4uvu+YULfJMnaQDrrLSlujltAWGTk8RdZGvLWLKCZM/itNAyuOnal7jpmf6ndabudoW+StP3Q9jM2+G39elf3//2fCX2TJA8PacIEqUEDVfl7lcz+47HHpAULpIICqX176e67pfvvNwFzlZGXJ731lqvfYjFlCg01+6m9eyu3HAAAAAAAAAAAAAAAAAAAznQnFPwmSW3atNHTTz9dE2UBAAAAAAAAAAAAAOCkcThMqM5335UfV1Qkfftt3Qa/ZWRIo0dLS5e6hqWkSFOnSp99Jh2ofh4TqsAZ/OZfEvxWEgBH8BtqRdkESovl6MMlKXOH+esVLEVc7j7OYpEix+rwBteg1q2Pv+rSkLeIwAg1C2zmNqw6olOjJUl+Xn7KLcpVdFr0Uafbfmh7uf4L2lxQ7fWeyjZvdnXfcUf58WPHSi+84OqvTPDbZ5+ZZRUUuIbt3i098oiUlCS98krlyrZsmdkHSeYn9sMP0qWXmv5//Uu65ZbKLQcAAAAAAAAAAAAAAAAAgDPdCQe/AQAAAAAAAAAAAABwKlqwwD30zctLat/eBKplZZWf3maTvvzShN/k5Uldu0pjxlQueKc6br/dPfStrISE2lknykvMTpQkNfFvYv76NXEbDtSJjJKwtNDekqf3USfJz3d1h4Udf5Flg98iAiMkSQdzDqrQVijvCtZxLLtSd0mSzo88Xz9G/6h9GfuUV5SnBl4N3KY7WvDbmSg7W9qzx3QHBko9ehx9uqp8r9u2mX1JYeHRxx+5r3tr9VvakGQSA58//3m1CGrhHLd+vWu6G25whb5Jkq+vCZjLyDh2eQAAAAAAAAAAAAAAAAAAgORR3Rlfe+01NWrUSAkV3E2ekJCgxo0b66233qp24QAAAAAAAAAAAAAAqC1vvunq7tJF2rBB2r5dOnhQmjpV8vR0jV+6VOreXRo3TvrgA2nWLOmpp6QOHUx3TVu5Upo719Xftq306qvSc89JHTvW/PpQsaTsJElSuH+4+RsQ7jYcqBSL5fivyipIlQoOme6A9hVOlpfn6vbxOf5i4zPjJZngt2YBzZzDE7KqlzQZnRYtSRraeqi8PLwkSbvTdpebrjTorXlgc7f+M83Wra7uTp0q/kmUDX473vf67LOu0DeLRbr/fhNgOnmyFBpafvq317ytGRtnaMbGGfpz359u4/7+29V9ww3l5/X2lho3PnZ5AAAAAAAAAAAAAAAAAADACQS/ff311+rZs6ciIiKOOj4iIkK9e/fWF198Ue3CAQAAAAAAAAAAAABQG4qKTLhaqS++kLp1M92+vtITT0jTp5v+TZukUaOknTvLL6e4WNqypXplWJewTiv3r9Ta+LXlxs2e7eo+5xxp82bpkUekZ54x3bffXr11ouqcwW8lgW+lAXB1HvxWk0FiR3LYpZz9UuZOqSir5sqMmlGQ6uoOaFfhZFX5CWQWZCqr0HzXEYERaujX0BnWVhoIV1W7UndJkjo27KjIkEhJrjC4snak7JAkXdHpCrf+M83Bg67umgj4zM+XFixw9X/xhQk8ve466fnnzb6kdL8nSYfzDrsF861LWOe2vPXrXd29ep14+QAAAAAAAAAAAAAAAAAAOFNVO/ht165d6t69+zGn6datm6Kjy9+wCQAAAAAAAAAAAABAXdq40YTiSNLAgVLPnuWn6dTJ/L3vPik313QHBUkvvWTCdKZOlZo3r976swqyNPDDgTr343M18MOBysjPcBu/YoWr+9VXJX9/V7+Pj/S//1Vvvai6xOxESVKRrUi7Unep0FboNvy04rBLMZ9KP/eUvm8l/dhFmhssLT5XSvi5rkuHUrZ8V7d3sKt7xdXSD52dL1/LYeeogoJjL/JA5gFnd7OAZvKweKhZYLNy4yqroLhAcRlxkqR2Ye3ULswE1JWGwZUqthcrKiVKkiv47WDOQaXkplR5nae60v2MJIWFVTydr6+r+1jf67p1UqHZXKlfPxP4VlaLFtK997r6/078233+RFfwW1GRtG+f6fb3l1q2rHi9AAAAAAAAAAAAAAAAAADg2Kod/Jabmyv/sneWH4Wvr6+ys7OruwoAAAAAAAAAAHAUY+eNVed3OqvzO5217eC2ui4OAACnpJUrXd39+1c83YEDrhA2Hx/pr7+kiROlUaOkJ56Qtm+XLrig6uv/68BfsjvskiSHHFq531Wg9HRpyxbTHRwsnXNO+fktlqqvE1Vns9t0MOegJOnhRQ+r0zud9H8//p8kKbMgU7lFucea/dSz9m5p1S1SRtljTIeUslLa8e86K9ZpweFwfx1teGXZC13dFi9Xd06slBXlfPn6FDtHpaYee5HxmfGSJD8vPwX5BEkyAXBS9YLf9h7e69zGtQ1tq3ahRw9+izkcowKbSS8b3Gqwc907Du2o8jpPdWVD3Ly9K56ubPDbsb7XP/5wdQ8ffvz1r0swQW+tg1tLktYnrHd+hzk5rumaNZM8qn3HGQAAAAAAAAAAAAAAAAAAqPZteK1bt9bKsnfCH8Vff/2lFi1aVHcVAAAAAAAAAACcOfISpW0vSz/3kuY1lL5tIS29WIp+TyrOc06WW5SreTvmKSo1SlGpUVq0Z1EdFhoAgFPX/v2u7p49K55u8WJX99ixUteu7uODgqSLL676+lfErXDv3+fq37zZlQHVty8hb3UpJTfFGXx0NMnZySexNEeoKDCsOkFikpTwk7TnfdNtDZC6PCGd+7XU+1UptG/NlBk1w6NMKpijqMLJwkJdv924uGMvsjTczeFw6JZvb9HN39ys/ZlmQxmfFV/lIpYGvDUNaCo/Lz+1DW0rSYpOi3abbvuh7ZKkFkEt5O/tr04NO7kNP5P4+Li6Cwsrni4szNUdG1vxdJs2ubr7VuJfeF2iCX4b032MrB5WZRVmKTrVfF/5+UcvJwAAAAAAqB2FtkIt3rNYi/cs1vqE9cee2F4k5SaY681228kpIAAAAAAAAAAAOCHW6s44atQovf766/r444912223lRv/4Ycf6o8//tADDzxwQgUEAAAAAAAAAOC0d+hPafllUlGG+/C8eClpkRQ2QGrYT5L0x74/VGhzpQAsiVmih8556GSWFgCA00J2tqs7NLTi6X77zdU9bFjNrb806G1A8wFaE7/GLfgtM9M1XevWNbdOVF1iduJxx7cJbXOSSlPLYj4zfy0e0gW/SQ37u8Z1flhKOfbDAXESefq6ugsPVzhZxw6uULhjBYRJruC3vOI8fbb5s6OOq4rSgLd2oe3c/pYGwpUqDXjr2LCj8+/ahLVnZPCbn5+rOzW14uk6dnR1H+t7Lbsvadny+Otfl2CC385ucba6NOqiLQe3aF3COnVq1KnSoXQAAAAAcDJkZUmLFkl790p2u6nzDB5cuboPcKpYGrNUl3x+iSSpsV9jJT6SKE8PT/eJ0rdKu96U9n3tus7s6Ss1Hiz1fNH9/B4AAAAAAAAAAKhXqh389sQTT+iLL77QHXfcoVmzZmn48OFq3ry54uPjtWjRIv3++++KiIjQxIkTa7K8AAAAAAAAAACcGiyWyk1XnCf9cY25Gd/DW+ryuNTyH2Zc6lppz//cJl+yd4kkqX9Ef61NWKvlsctVZCuSl6dXTZYeAIDTXmV31QfK5B316lUz6y4oLtCqA6skSQ+f/bBumHeD1sSvUX5xvnytvioocE3r7V0z60T1JGUnndD4U4bdJiX9YrqbXFC+UajFIjU+9+SXC0fn29jVnR3j6j5nlnRwmbTuHklS03C7AgJM0GVCgvkbEHD0RcZnxVe4uuoEv5UGvLULa+f292DOQWXkZyjYN1iStCNlhySpU8NObn9Lh59JwsNd3bt2VTxd2eC3Y01XNqDN6zjVxZTcFMWmx0qS+jTro95NezuD38b1HCd/f9e0ycmSw1H5/SiqwWE3jfcLDprzBP6tJb9WfOgAAAA44x06JD3wgDRv3tFDqWfNksaNc/Xn5kqrVklJSZKnp3nAQu/ekq9v+XmB+ub7qO+d3YdyD2l1/GoNajnINUHyMmn5SMmWb/obREjeoeZcUdJiqenFBL8BAAAAAAAAAFCPVTv4rXHjxlq6dKluvPFGLVu2TMuWLZPFYpHD4ZAkDRgwQLNmzVLjxo2PsyQAAAAAAAAAAM5gCT9L+SWBIX3flDr8n2tcaG+p3QTJXuQcVBr89s/+/9Qjix5RWl6aVsev1nmtzqvaeivTYLzknL9kGtCsXStt3mwaygQGmsCBgQOlBg2qtmoAQC1w2KWUlVLiQunwJsmWZxp5BXWRIi6VGp1d1yWsd8qGH6WkVDxdbq6ru2zwzYlYl7BOBbYCBXgH6OouVyvYJ1gZBRlaE79GQ1oPcVtPdnbNrFMyu/a9e6WlS6Xdu6WCAiksTOrRQ7rgAikoqObWdbo4Y4LfsndLhYdNd5MhruG2fLdjQnn6EjxUH3iHSr7hUn6ylL3HNTy4q5SX4Oy1WKROnaT1683XuHSpdPnl7ovKzZX8/I4d7nasULiKRKdFS5LWxK/RmHljVFBc4DauX0Q/SdL2Q9sllQl+a9TJbfiZpFs38505HFJUVMXhai1amDpYXp4UFyft2SO1a+c+TW6u+34uK+vY616fsF6SFOobqpZBLdWnaR99tvkzrUtcJ8mEkDZrJiUmSpmZJkiwefMTebc4qsIMacsz0r4vzf93WX4tpGELpeBudVM2AAAAoLbZbdLh9SbMqiBF8vCS/FtJYQOk0N7KzbNo2DBpe0l1ccAAE/LWqJEUGyt9842Unm7GbdsmPfGEtGSJ3B6wIJnze3/+WXMPeABqg8Ph0IJdCyRJ7cPaa3fabn0f9b0r+M3hkNbcYc7deYdKg76Qmg43JxLsRVLCT5LFsw7fAQAAAAAAAAAAOJ5qB79JUocOHbR69WqtW7dOa9asUXp6ukJCQjRgwAD169evpsoIAAAAAAAAAEC99H3U9xo3f5wkqXOjzlpz+xpZSlvmlw3IkFwt9o8c/tfNJeOtUuTY8iuxeEiePpKklNwUbUjaIEk6P/J8DW41WN9Ffacle5dUPfitkrKzpccfl2bMMMECR+rRw4TBlbrvp/v0/t/vS5L+2e+fev2S12ulXABQp4qySsI4HJJ3mHnVdhBSUZaUuUMqzpWsfpJfS8m3qVlvQZr0x9XSweVmWt9wya+VlBcvHfhGSvxJunhd7ZbvFNS6tau77L7sSGVD2I4XnFNZK/atkCQNaD5AXp5eGthioBbtWaQVcSs0pPUQNWnimnbbtppZ5+bN0oQJ0royP4WwMPOeioqkm2+WZs6smXWdThKzEk9o/CmjKMPV7dvU1b1ooJRe5h/kynjJL+LklQsVC+pi9kWHN5gGvR5eR52sY0cT/CZJH39cPvjt6ael6dOPHe6WkJUgu8MuD4tHpYu3K3WXJGlnyk7tTNlZbly/iH6yO+zakbJDkvTvlf/W+3+/r5zCHEmmPBn5GQr2Da70Ok91AQEmwG33blMP27RJ6t27/HQeHlKHDq591yefSC+84Bpvs0lTpkhNy/wrb9smDR1a8brXJZidQ59mfWSxWNS7qVnx34l/y2a3ydPDU2edJf3wg5l+82aC36pq3TppzhxpxQppxw4pP98VqH799dJDDxRLSy+S0taZ8wBtbpEanyd5NpAyo6T476SC1Lp+GzjT5cab32hhuuThbY4JQnqaoAkAAIDjSEtzPYjA319q21YKCSkZmbREWn2blLvf9Ht4SR4+UnHJExEuXK5Z3w5xhr5df700e7apH5WaONEEVW/ZIg0aZOpVVqv0z39K559vHniwe7cJiMvMPFnvGsdVxQdVnSk2JW/S/sz98vPy07NDn9VN39ykBbsWaOpFU80EKX+ZBzlIUrfJUrMRrpk9vKQWV578QgMAAAAAAAAAgCo5oeC3Uv369VO/fv1UXFysLVu2SJKKiork5XX0m0oBAAAAAAAAADgdvL7qdWUXZsvD4qF1Cev0W8xvurDthVVbSO4B89e/teQVZLoTfpK2POOaptUYqcsjWhqzVJLUOri1Woe01tDWQ53Bb1OGTanaess2kijbqKLMcIdDGj1aWrLE9N9xh/TggyaMoLDQBBGsXOma9XDeYX288WMV2YrkkEMfbvhQU4ZNOaPCGgCcxopzpB2vSAe+ldK3SCqzHfVuKPWeJrWbUPPr3feVtOPf0uG/JYfdfZxfK+nKOGnTEyb0zeIpnTNLanW9a9teeFhKWVXz5ToNDBrk6l69uuLpygbEbdwo9elz/GUfOGBehw6ZfWZYmNSpkxRRkpdVGvx2TotznH8X7VnkHN6zp2kAm5Njwnry8qQGDary7twdPiwNG2b++vtLr78ujRsn+flJxcXS339L+/dXf/mns6TsJEkmpG/K0CnO4dP+nKblccud4095Hj6u7qL0OisGqiC4q3RwmQnti18gtbz6qJN17+7q/vZb6d13pXvukex2ado0EwY3fbp0IPNAhasqthfrYM5BNQ1oWuE0ZWUXZishK6HC8dGp0ZKkfRn7lFuUK8kEvR0ZPrcjZYfObnF2pdZ5uujVywQRSNL770vvvec+fsYMafx4872WBr/9+9/S4MHSxRebAIV//lPauVP6v/+T/vtfM8264+S/rkt0TfDppk91OO+wJCm3KFc7U3aqW5Nu6tvXFfw2b540cqT7Mmw2EybqDG440zgcJpTClid5BTsD3CXpxRelyZNNd8uW0n33Sa1amfC3jRulxYulh/4x3wRqSVL/98sfV/Z4TnIU1175i7KlrCgp/6B5H9ZAc54isIPkUSO3GOJUtv8badNE8xuRTP3H4ikVHJRkkS7bLgV1rtMiAjiN2QrNvqgKIcQA6o+MDOnll00dorSuU9bVV0vzPt0nLb9MshdKYf2l/v+VQnub//u8ZClxoeTbVB9/7JrvscfcQ98kczo0OFh65hkT+iZJs2aZkLhSI0aYOlNt5Yjt2iUtWmQC2OPizHnBwECpTRsTxH5kPQqq1PXK00YVQu6+j/peknRBmwt0WYfL5GHx0PZD27U7bbfah7WXDq1wzRNxqflbnCvFf+8a7hUiRVxSQ4UHAAAAAAAAAAA1rUp3ZcXExGjp0qU677zz1LFjR7dxP/zwgyZMmKCUlBRJUmhoqN577z1dd911VS5Udna2Jk+erK+++kppaWnq3LmznnzySd1www3HnffgwYN6/PHH9cMPPyg3N1e9evXSCy+8oAsvrGJDOwAAAAAAAAAAjmFT0iYti12mIJ8g3T/gfr2w4gW9ufrNqge/eXibv0UZrmEFaVLaeld/o/MkSUv2mgS2oZFD3f6uOrBKmQWZCvIJqt6bqcCSJa7Qt4svNsEDpXx8pPPOM69SH234SLlFuRrZfqRsDpsW7VmkTzZ+ogfPfrBGywUAZdlsUmamaUQXFHSUcKzsvSZEoyBVKsqSPH0l33ApuJsU0v2oyyzHYZeWXiyl/GlCDvr/Two/X/IOlQoOSanrXOGdNSnmU2nVLaa7wz1Sp4dMAIfDJmVFSweXSoUZZjpJirxJal1yTdVeZBqJefpL4Rea7so0LDuDlA1X+/tvE/42cKD7NOvXSxdeaIJ2JOnXX6Vbbz368oqLpbfflj75RNqyxSy7c2fTuDMlxYTwfP659I9rbPpz35+SpKjUKD2//HntSNkhSVq5f6VsdpusVk+dfbZZX3GxNHu2NOGI/JfERKlZM1d/cnayNiVvkiQ1D2yubk26Oce98YYJfZOkiRNNmGspq1UaMMC8UF5idqIkqWvjrhrZwdU696fon7Q8brlz/CnPv5VpUO2wm+1mqf7vS8m/SZufqruy4ehCerq6198nBXUy+7bibLfJLr9cmjTJ1X/vvabBfWKi2S6FhEj5xflKyTX3+ywct1BDWg+RJB3OP6zmrzWXZILhKhv8tjvtKK35y9iVtkuStP3Q9mNOt/3Q9jMu+O2ss8z3I5n6V58+Zptts0n/+Y8JDxs/3nyvs2eb6QoLpSuvlIYMkXbsMMGjgwa519Xmz5dee618KNv+/SaIbF2CCRz7LeY3/Rbzm9s06xLWqVuTbjrrLNewmTOl22+Xzi75emw289u66Sb3YNXTXmG6FP0faf9cKXO7ZCuQrAGSLUfyaSx1fkSbCh/TMyW57j17mvB0f3/3xdjtklbONT0e3lKbkuO/3AQptUyAr3+kFNa3amUsSJMOb5QK06TiLMmj5Fg4qLPkFyFlx5hAr/jvJXuBFNRN8mlotiWZUVLTC6XB35Rfri3fHG96+kkenlUrE04th/6Q/igJF428Ser9itSgZH9QlC0d+l3yDqu78qF+cDiklJXSgW+kjG1SQYoJHvEKkvxaSq2ukVpV/V5inIEcDhPwFPu5lPKHCSS15Zm6im9TEwg15Nu6LiWASiooMPWSrVtNSNsLL0g33ig1b27Gbd9u6jCKetOEvknS4PmSXwvXQhqES23N8fGBMnnlXbsefZ35+Sb0XJIaN5auuebo09X0aVKHwwQ8v/uu6e/fX7riCik83Jx73L5dWrCA4LczXhVC7kqD30a2H6nQBqE6u8XZWrl/pRZELdBD5zxk9o+lPHzN34JUaeUY1/CQ3gS/AQAAAAAAAABQj1Up+O2DDz7QtGnTtHfvXrfhu3fv1nXXXaf8/Hy1bt1afn5+2rlzp8aNG6cOHTqoT2UeeV7G1VdfrbVr12rq1Knq2LGjZs+erTFjxshut2vs2LEVzldQUKALL7xQ6enpevPNN9WkSRO9++67uuSSS7RkyRINHTq0SuUAAAAAAAAATgsOh2m4WZghOYolzwaSd4hpKAOcSQrTTWPVjK2muzjbNKj2aSgFdpRaXStJ2rNH+v13adMmE5CSmWnuvQ8NlSIjpYcfNo2031z9piTppp436b6B92nan9P0w64fFJ0arQ4NO1S+XCE9paRfTIPInH0mdKPFVdLle6VlI6WsKOekS2JMCttnmz7TnC1z5JBpCGBz2PR73O8a1XFUlZ4WfzwbNri6L7jg2NMW24v19pq3JUl3nXWXM/jtrdVv6b4B98mThuAAKsvhkHL3m0ZKxZlmmDVIahAh+TaR3WHR7NmmAd8ff0h5eVK7dlJAgJSRYV7TpknXX7RWWnO7lL5ZCu4uNbvYBHAUZUoZW6TYz6ShP1SuTPELTOibJPV7x4SrOexS9h7J4ik1GihZqnTptXK2PGv+NjxbOutts43PiZPyD5UMP8cEcpQ2jAwss//57QKz3yt16XYpuEvNl/FUYbeZwDwPL+e+0mqVBg+WFi40k1x/vQnRGTRISkuTpk41DVM//ti1mC+/lB58UOrXzzXs4EHpzz+ltWull182wx5+WHr+ecnPzzVdTo75vW49uFUZBSbwde72uZq7fa5zmqzCLG1K3qS+zfpq6FAT/CZJjz8utWnj2h+vWmXCdaKjS96ew64b5t2gZbHLZJFFQT5B2vbPbWoeZAKbtm1zlePcc0/okzzjJGUnSZLC/cPdhjfxb+I2/pTnHSqFDTABQ/u+kvpMl6x+ZvtWeLiuS3fKKCgwQY9ZWaaxuY+PaWjesGEtZG82v1Ja90+zP8pLkH7pLwV2MuFTZXTvbkIod+50DVu61H1RCVkJzu42oW3UwMukqPpafeXj6aMCW4EOZB5Qv4h+qoxdqSbYzc/LTw+f/bBz+Or41Vq8d7Fz/I5DJvTS6mFViG+Ic7rMgkwV2gqd488kY8eaoD6Hw4Sp3Xmn9OabZr+UmGiOdyTpssvMPiY31/QXFEiLF7svKzLShLrt32+Oj66/XvrsM6lJE7M/mjbN7MOeeSVJBzIPqCLrEtbplt636PzzTchuZqYJJR06VHr0USksTJozx4Sl3nRT7Xwu9ZKtQPp1qDnWDOosDftFanSOOdawF0lZu6SiTM17qyTYTebzOTL0TTIhGLLnmx5PP3N8KUmpq6U//uGasN0d0oD3y81/VOlbTSjkod9N6FL4heZY2F4k5caZIJ3zF0nLL5Myd5hAgKEL3EM2HHYpt+S3kb5F2v2+lLxEyk824TvWAHNuxV4gdXlcan9X5T8/h8MEjR5eb8LpijLNuUqvYFOG8PNNYDPq3vap5q93qDTwY8nDKuXGSxkl+xuLl3mYgW8T5yyHD5vtVmam2ZYFBEhNm5YPn0QVFaRI8T9Ih1ZIeYlSUbr5P/UKkhq0kDrdL4X2lmS285s2SUlJruMSPz8TPtOzp9kX1BiHwwSWx35mytLtaanxeeYaRFFWSZ21qAZXiNPa9qkmdNpilXpNNedffJua+nxOjHR4w/GXAaDe+PBDc25NMqFoZUPJrVYTjta/v6TlJdfBfBq5jkfjf5BWl3n6QuRNatLkNcXHm96YmKOHvxWV2eU0aCB5nqRLU7NmuULfxo0zdS+ewWHqon/8YR64kZxs+ouKzPFhRIR0ww1Sr151Xcr6Jz4zXusTzQPCErIS9P769+XvZSqTC3aVBL/5R7pmyNolBUSa468+r0n757muZwAAAAAAAAAAgHqrSq0P/vjjD/Xq1UutW7d2G/7mm28qPz9f99xzj95+2zTqmj9/vq655hq98847+uijjyq9jp9++kmLFy92hr1J0vnnn6+4uDg99thjuv766+VZwRW4jz76SFu3btXKlSt1zjnnOOft1auXHn/8ca1evboqbxcAAAAAAACokqIi06CqqEjy9jYNOT3qMlst5jPT2OrwBim4hxTY3oS+FedIBQel5ldI7W6v+fUWpEhpG0wQSnG2edq0xdM0+vJtKrWq4NHqx1pkcYF2pphW6g28Gqhjw441XWqc7na9LW141DQi7vyo1HSE5BNmGozlJUo5sbLZpP/7P9MQxdNTeuwxacwYqXlz05+SIu3YYRpsH8w5qM+3fC5JGtRykJKyk3Ruq3O1LHaZ3l7ztt4a+Vbly9bqOmnnv033pqekcz6TvALMy8PbOVnM4RjtPWwezOKQQ0VHNJj8de+vJvitCk+LP5527Vzdf/997Gm/2/md9mXsU5BPkJoHNZfD4VCgd6Bi0mP0w64fdGXnK6u8fgBnmIJU6e+HpMSfJWug1HyUCXuzWE3oUPZeqeuTeuRfvfTGG2aWF180gSPers2lbDYpJ6tIWnal2caHX2iCODw8paxo9wCjokxzjHI8ea5AHPmXXCu15Us/djX7Ejkkv1bSVfsq914ru00uSDF/fcNd2/Sot6Q9H0jFWaZ/4AxX6EbZBtBdJ5nGXdteKLfY7MJsbUraJMmE8vRpVrUHeZ0S4hdIsbNNmIhvU/Py9DXBJLaCkmPh2/Tww67gt7g4E4rWuLEJqrDZpEsuMSEVI0ZIixaZoJvzzpPuv1/q0cMEqn3wgXT77dL//meWY7GY36bvEVkl/v7m9cWaFccs+oq4FerbrK/uuMMEyeXlmfJceKF01llSdrYUFeW+m393zbtaFrtMwyKHaWT7kXpiyRO6fcHt+mnsT7JYLOrc2TXt6tXSsGEn/hGfKSoKfgsPCHcbf1poPsoEvxWmmfCOvm9KfhGuMKIzUfZeKfEX6fBGE67i6WcCbxwOSQ6p9VgVhF6ol16SfvhB2r7dBEr26CEFBpowroQEqUMHafLkGi5bg6ZSxOVS/Hem35YnpW8sN5nFIj35pDR+fMWLKhv61SygWZl5LYoIjFBMeoziM+MrXbToVJNK2alhJz1/wfPO4V9u/VKL9y5WdGq0HA6Hth8yoUFXdb5KX1/7tXO6B35+QG+teUvbU9xD7M4ErVtL//iHNNeVCeoW3lkqMFC6917plVcqXpbFYsJKH3nE9C9aZH6LHTqY4NDMTFMHXp9gGpN7e3rrmq6uczZRKVFan7he6xLXOdd5113Sv0uqr4WF0ksvVf+9OhymHNu2SfHxroBUq1UKDpbatjUBd3WiMgkN++ab0DdJ6vmS1GSI6d74pCuU18NLDRue45zl4MFjLK/h2eb4pSjdbHPC+khNLzLhvStvcK1LMkFK6ZulrN3mmLA4t+TcW4A5bmx6sQl0y90nNR4inb9Y8vSWcva7jiElEx6VWRKw2OFuV8jGmruk/DL7t26TpF/Pl2y5Uvu7pT7/lqxlEuzsxSb4q7LS/jbvKStaihgltRgthXSX5CEVppp9UUgvsw+qSTUYlH9GKc4xf0v3gZJ08Hdp46MmBNBhk7o8oT2BUzVlinmYQna2NHKkCaD09TXbm7g46Y47pIsuqqs3copL2yD9NszUYdvcKvWeJgW0lTx8paLD5v/JK8j5OS9daoI5b7lF6tLFhO7l5ZkA6ZQUE7JSYw79bq5DSFLvV6X2d5juPR+7H0c6HNp/wKJffpE2bzbBpAEBpj7v4WHqWu3bu4cC4QzjsEtbp5julv+QupQcxOybKx0uc3I6tLcJXa0Mtv0nhd1h17c7v1V+sfmfv7jdxWro17COS4X64NAhV3fEsQ7tAtqavwUpUl6y1CBcCuokdX1KinrDHNcWZ+vGG10PLHrnHem998ovytfXhMmtXSvt22f+9u9fM+/n2aXPauammZLMeaHvb/jeeX7ojzLP37jkkhMPfcvIMNcrV6401yabNzcPqPLyMput/HzpoYfMOYj6av586eabTV1v+HDpgQdMML2fnwmm3buXTXBFftjlemDNiytedBv3e9zvOpx3WKEtrpTWepv6585XTf3RK1Dq/JA5n0XwGwAAAAAAAAAA9V6Vgt9iYmI07Ch3gC9cuFDe3t56qczdfFdffbUGDx6sFSuOfdP6kb755hsFBATo2muvdRt+6623auzYsVq9erUGDRpU4bydOnVyhr5JktVq1Y033qinnnpK8fHxat68eZXKUxcKC6UDB8yTerOzzY3AxcXmQp2/v7m5pVWrui4lUAMKM6S8A+bJvfYCcyOoh9U0QPcNlwLba8sWafly82Q2i8VcuPbyMjd7lT4R+d576/ZtAADqMYddSltvnjaeF28a8Xp4m4YPDpvkKDYBCz6N6rqkKMthNw0LbfllGsb4mAYkXkEmqKPSy3KYm98LyxxvWDzN8YZ3iHnhlJOSYupMKSmmvlRYaI4VfX2loCDp7LPrOGQJqEBhofTLL9Kff5oGTi1amPAAT0/zG7bbpYYNzY2vqCdyE0xDktx95tjB08/shxwOcxzR+DztSemqadPMDePFxSaIoVUrs00qKpLS06Xu3U2D3UqxFUqpq01gWkFKyb7PU5KlpAwNpDY3Vm5Z++dJq0p+UOd+bcLW7DYp6rWSCTpJZUKjimxFen3V64pKiZKHxUMRgRF64rwn5Ofld/Tll96tfuTd2Ovvl3a9Yxqg93nd3GAsmcafhYelnH2msWDZxqHHcTDnoEZ/OVrrEtbp/Mjz9cueX/T0kKc1ZdgUeVTl2KCMwkJzk3lhofnurFbz1PeAAPYjpyW7zQQJOWxS67FSz5LggZ2vSclLnf8LOw4O04cfdpck9eljglbKatbMBDhI0uvL/6tCmzleHTd/nNt0n2z8RM+f/7yCfYMrV76ws0woUfKvUtznJqyh+ZXmeDgn1jnZrzG/SpIiAiP0xsVvOIcv3rtYH/z9gZbELKnc+qrgqqukXr2kTZukr74yn8t995lGGZIJsVi+3ATkvbn6TUlSZkGm+n/g3ormjdVvEPwGnIC0NGnrVlMXysw0jaJLn5Nkt5vwjvPOc01fXGwadBcWmuAqLy/zf+vjUzflr7T190txs80xzxVxktVPSt8qxXxqxvu1lLKitWRJL+cs11/vHvommc8mKNAmFWWbAd6hJvRNkhJ+kpJ/k+K/N/0XLneFdBxL8yuljY+Z45idr0nnzDLlu6FI2vKstPVfZrojj40qOmYqzpESF5r3V5RhQjY8vEuON+1m39TmZqnNeCn6HSlpkZTyl9ToHKnvdKnnv6SvA0resK8J4Nj5b2n/XGn7NKnjvVLEJeaY64jgt/jMeF0+53LtTNmpi9pepAW7FujJc5/Uixe+WO1jq3onfoH0+xWm++zPzDG03Sbt+Z9rGov5TVx0kXTjjdKsWa5RZRullnrrLWngQNPosqDAFXpT1tCh0vffm6/7p5+kq68uP43DIa3YZ66hj+0xVm9e8qZz3COLHtGnmz7Vin0r9MDZD6hpUxPoc999rvnXry+/zOjUaD2x5AlJ0p1971Tb0LaKCIzQwt0L9dGGj3R739v10EOmQWxGhgmla9bM7L+9vMx2ZMsWU1e94pIM83+Sud2EyPg1P+K3WSi1v6tKx/OnusTsREmuoLdSpUFwyTnJsjvsp8f/T4d7pd3/lXIPmO3JgW8kn8Ym1KWs3AQTypMTa34XpXVXh90cc4d0lxqfd9RVnFISF0u/X2a2yb1flTreI8lDOlTSmttRJDmK9fjjZhshSf/9rwnGOml6vWj2J/aC8uP8WjjPgY8bJ73/vmkwfqQWLVzBb4HegQr0CXQbXxr8VjYc7nh2pe2SJLUPa+82vF2YSZbOKMjQodxDzmC3zg3dgzs6NeokSc5guDPN9OnSkiXmvNKRyp6zePxxU0+LjS0/XYuS/K577pG+/FJas8b0Z2aW35esSzDBbr3Ce+nzqz93Dl8QtUBXfHGFNiZtVLG9WFYPq555xoTSxcQc/33Y7DbnNtTqYVXTgKbOcdu2mfNlUVHm3NlLL5n6dnCwOX5NSztOSFptq0ygevpW1zXHw39LLUeb4UGdpMRF0r4vJM8Guu22aZo2zdwH9vbb0jnnmLp26WJzcsx3MmTgndL2l02Y75/XSWe9ZY79/I+4SWzr89K25yVPf6nPdKnJMMnDy4TBFaVLuftNCFRhqpm+QYQJfZNMmZJ+lZJ+Mf2Dv5O8gs3xaPKvUrs7TMFaXS8lLZZ2TDXTNR1uQt8kqdW15jjAlm/C4PLiTUiyXyvpir3OYtoddtkd5sYeD4uH+37y7wdNSJVfS2noAjMsaYm050PXNId+l1rXZDKVajQo/1SQnW3O2xw+bOqGRUXmbTdoYALBOlb2uRptJ0gHl5nvOvo9U/eIHGNeP3Q036XMufG4ODNLQoI53kQNip1lrntLUu+pkm8T89mvvdt1bb3RIP3flA+1eLGZ7MsvT1Lgs08jV30hr8zxQmGaOW4qCan9Zc/duvIqU5+69FITZnPk7+Ro+z5UQVGWCfXM3mO6vcPMvspiMfdKeAVKkeOOv5xa5HCYemlurtkulT1vFRxkkTWgvamPZu0yoe2ePua8jjVQ2vyUWUijQVJwl8qtrA63/TsO7dBTv5ky5xTmaGT7kXrg7AdOTt2xovNRZayNX6v9mfslSS2CWmhA8wHVWlVBcYHGfzdeX2z9Qnf0vUNzts5R88DmWnjjQkWGRFZrmTh93HKLOYeWmyu9+640erQ5l11WUpLUtOMD5jjDYZNWjpEGfiQFdjABVvu+MNfrJd12m/T66+Y8+X/+Y+YdN848xCE21gSNjRghPfec2ddIZp2vvGL2iUFB0u7dZrqrr5Z69y5TkONsI6b9MU3/+v1fuqzDZZrQZ4Ku+foaDf9suJaNX6awBmG69lpT75akjz4yy/c74jJ7QUHlz9Gfd565JmCxmMDU7t0rN199MmmSqe9I5rOJjHSNa9asCsejR7A77DqUY07genp4qpHf6Xfv5/e7zPWLvs36qle463rINzu/UXp+un7e/bPG9hhrjtV3/8fU35acJ0XeaPaZaWurve7k7GS9/MfLyinMkc1h0+BWgzW+93hZTjTNEPVeZqYJ5j90yIRLlt6T6eNjtp99+pjjNlRfbq6UnGz+FhSYY2Fvb7O/aNbM3K9Ukw4eNOeD9+0zx+ANG5rvsPQ+RQ8P81CjmrRli3lY0vbtZl29e5vfj6dnye3cRSYo/qyzana9AE4hxblSTpx58Igtz9T9LRbTVsQrSAo7S5u3+erTT00AstUq9exptpGenmb7VVwsXXml1K2bWaTD4XBei7DIoqYBTTl2AQAAlVOUJRUcMsck9qIyxyWBkm9TZWRatGyZOad46JAUHm6utVosrjrOP/5xnIdeAABwHFUKfktJSVHLli3dhqWnp2vPnj0aPHiwAgPdb/7s3bu31q1bV6UCbd26VV26dJHV6l60nj17OsdXFPy2detWDT7KY4tK5922bVu9D3579VXp2WfNidynnpImTJAaNTInc4uLzcl0i0WmMUhOnFSYbm7MsPqXCcAouVkhuGvVQjGAk6U4R1p8nmnAGnGZ1PMFybeDaRyQvd/clGYv1DavV9T7rCDZ7dKgQebp0/5HtCGp8v03dpu5SdaWZxrpO2xmuMVTsnhJPmHmhlgApwa7zdwoWpxd0qDFo2RHaZHkMDcwNGh6nIUcsbzSJ6K7bSM8XNsIT99aeCNyNZhz2MzGzWJxbZtKG6Wi6v5+UNr1tglpuXSLeTpo1h7TSPbw32af5NPYNFBAlSUkmAYqUVHmYtrIkebJoqWH8g6HuTGgSRPp00/NUzpbtzY3pgUGmnGlNxAEB0v9Q/4r7Zwu5SdKZ71tbuArzJDSN5uLe4VpUuRNUrMRxy+cvUj64xoT4hHSQ+r+jOTbVErfZBot5u43/3O9pxH8dwo5eFA691xzwrRdO+nzz82NIX5+5reUmyulptZ1KY/N4TA3tcTEmJtpwsOlkBBX8Jdkbujp1s2ERuH08v33UmnO/fjx0gsvlL+p12aT2fZlbDUXEKwBpjGDpcx5EoddCmxvLiagypKSpH/9yzQu9fc3QSENG7r2X5LZN13a4xvpj5KUhnNmSa3HmLrkge+knBjT6L0gVV9821UffGAme/pp6bHHzH6u7LKysytZOIdd+rmHaczS+Dxp6M+SV4BpGJW5y+wTHcVSwwFSkLkL2u6wK6sgS5JksVgU6B3oumml4UApqIuUuUOKmWH2eQFtzfA9H0qxn5mGnx3u1ubkzRr/7XhtTNqoJ897UqG+oZr02yTN2TpHn1z5ic5tdW7lP+S8BEkOcwzm19K80tab46/1JYkVnj6Vbly09eBWXT7ncsWmx+ofXf6hIa2HKDotWs///ryiUqM048oZauDVwH2mChq0zJ1rbuyPjpYuu0y67jrz/Xt7m/+/rCyzXa6pp77XK5Vo5HNMhRmmcWdRpjl34ukrU/cqqX95eJnjt/rKw1Pq/W9p4+MmvGLr86ZhdNMRUnB3adnFkqRuQx7QM89018svS+vWme316NHmJlur1QTPbt8ujb2pQO+tfU+SNPXCqRrS2hUYNOH7CdqRskMfb/hYD53zUOXKZ7FI534lrbrJBK1kbDMvZ/l9pJAeWrLBtNq8sM2Furabqx7TNrStPvj7A209uFVJ2UlujelPlKen9OOPpjHNokXSk0+ac9fNmpmbvQ8dkjp3ljoN+1sr9q2Qp8VTP4/72RkWkVmQqZGfj9Sy2GXalLRJvZr2cl/Bif42T3UOh5S6RsrcaYJDAtqZ8/0Oh8y5frsJ2wk7y73REU5PFTQs++gj6Y47zKC775amTXM/3nA4TH3ov/81jaZjYkyI1QUXmMb8Vqu5xpSVZerlpTe/1kttb5MSfjTBE5snm3M23qEmRGPVrVJWlNTuDs2adY2uucbUDy+80ATsdO1qzk9kZppzFf36+eqiQXNMEO7+uSYErNlIc/zTeLAr+K2y/CKkc2ZLa243yzv4u9RooAnKSFlV9fe6/n5p78eSV4h02Q5zHjNzpzlvlbzMBGv4NjXXUPIOSAe+lRYPMseC/pHmpqOyej5v6hAxM6RNT5qXd5grGMDiKXl4aWPSRo2aPUrxWfG6tuu1OrvF2dpycIum/jlVew7v0cyrZpY/tjoVhfQ0xyZZ0dKBeVJAG/O5BXY2n3vc5+a30PYWWSym4WGrVuZabWGhazH+/q5w7k6dpMWLTQjb6tXuq2vQQBowwNQHbr3V7Duvucb8Pvv0Mf+zKSkm1OXeex1aEW+C34a2HurWMHFo66HO4DeHwyGLxaJ77jF1x6eeMsso65ZbTKjO+O/GK684T/0j+uuzzZ9JknqG91RSdpIe+uUhXdT2IkU2jNRvv5nybd5s5r3tNnPurrTR/c03S1eEjje/N78W0iWbzHnxw5ultHUmgNBRLAW0l1pcUbPfWT2VXZit7EJTqSsNeivVxL+JJKnYXqzU3FQ19m980stX47yDpWG/SCvHmWu5Dps5N1uq+RVS9l7p15L7Mnq/InV+1OzDYmaZ7VVOrKtee6rzCTPb+YIUKTfOvDffcLOf2vuhOXYP6qxx43Zo3jzTMPL99809Ht27mwZtBQXmXHpxsTSkEjmjVRbcTbrgN2nFVWY/UCrsLFPH8AqSZI4HfvzRHB9s2OCarH176ZtvpG+S4yWZkLcjlQ6Lz4qvdLGiU00IULvQdm7Dy/bvStnlDHYrDXor1bGhOe8Rmx6rnMIc+XufOWGTktknrV9vzluUDWkLDpY++8zV37ChCYgbPNiEipU691zpfyVZpz4+0oIFZh/16afu6wkLM42j3k0093b1adrHbXyfZqY/vzhf2w9tV8/wngoIMA1G77zTLLesW281jTbtDrvmbZ+nZ5Y9I1+rr67vdr3eWv2WeoT30Avnv6D+zfsrJ8eEUUlmPxkebh6S4etrjm+9vU+BamJId6nfu9KGR03QbupqE0RTGqRWIjBQWrjQfD5//20CIBo3llq2NA2po6Olvn2lVasaScN+llaOlbJ3S8svLb9Or2CzLbIXST5+UmA7c644fYtp2L/+AbOvPutt6ZzPpVXjTVCGvVBqdonZhzezuoLfvEPMdGsmSPu+kjJ2SE0vNMeRmTtc6211gwn+2j9P+usmqeP95r60Xi9Ju/8n7fvSeW09pzBH/133X7226jUNixymBtYG+mHXD7pvwH26d8C9JiS/2yTpz+vN9br190stRksNmkldn5KWXyLlJZr6cU0Hv1VGZeve9fgHunmzORaNjjYPS5o+3dQFGzRw1R8zM6uwwMix5prFzunSuntMEHZQSeBSzj7nZA89JD3xhNn3TZxoji0jI83/dVaWqau2a1c+7AWV1OUxE+iRsUVaMVpq/3+mntPrJWnjE9LhDZJfCz31lLRxo7kW8sQT5nsprS/n5poG/4GBZt9RFRn5GdqdttvZ3y6snUJ8Q0xPcDfprHfM9nDrv8w2qdE5pr5b5h6bJk3M9q/0ocjbtpljlOBgc6yUkmKuB/frd8Kf1ikjOdkcmx06ZP5XIiLMX4vFvGw287lV6kHRtkITxpifZM5/DP7WBH8mLTF148MbJDnMeYWcOCk7xpx3DIg0AfwOm5wPIfIONf/nldkmFqSa+mJ+suTd0FyL8rCaZUnO65qvvROi998324KHHjIh7KGhJgyisNBsJyIiLOo0aI705zWmvD/3klpcZc6P2HLc11uDgW6pqeb45sABU562bc35gLL3tPj7V/6cmsPh0Htr39Ojix9VkE+QXr/4dX0X9Z0eXvSwfoz+UTOvmqnmQXV3L3tcepweW/yY5u+Yr/sH3i8Pi4feWPWGRncZrVeHv6rWIa0rvayM/AyN/nK0lsYuVaeGndQyqKXOjzxfC3Yt0KCPBunncT+XvyYAcyyXsd11TdWnsbkOVNpaUHZT98xLMMdoObEmiLdBC/M/mhMr5/WDRoOkhvV3w9mmjalz3nWXCWbr3Nk8WKFFC3PMsG2bqUOvWtVOOm+utPp26eBSaUHbkvBKq1RQkgjt4aOQEPMwoltvlX7/vaQ++437Oi+91NzDNmeOdP/9pq4+7iiXpYcPr/z7eG/te3ry1ydl9bDK08NTc3fMVcugltpycItGfj5SS25aoosuCtR//mPO4S1bZt7jRReZuk5urrm+2LRp+fJWZPRoE3Rhs0kzZ5r7Glq2NPuJ7GzXwwYrtY+orLT10o5/m/M6La4y11Alc85aDhMi2nCgCQCuhPfeMw+eSE4298r8858m7M3f32z39+41x4YVNA0qx+Fw6Puo7/Xssmdld9g1pvsYvbv2XXVr0k3Pn/98tQMs65ucwhz9utc8DOzFC17UJe0vcY4rthfrs82facGuBSb4re9rJgA4dqb5nlL+cl9YkHvQ/vF8te0r/fPHf8rmsOn1i1/XrzG/6rbvb9PX27/WB5d/4Lb/yi7MVlRKlBwy+97Wwa2d50dzc821re3bTQPoiy4y/+tWq2tTZ7OZY9IjH+yDGuawm3ObRVmSPb/k/jOL64uweCrT0U5Dh5p6RLNmZvvZvbsrhCw/3wT01+NqcL334ovmwTxJSdKUKWY/FRbmfizs5WU+88N5h/XZ5s+0eO9iDW87XH/u/1ORwZG686w7zUM1inPNtjp9k9SguRQ+zLSXyNxZ0kbKJnkFaUvuXerV10sOh9nOLlzofn1ZMt/ppk3SJ59Ie/aYOvyQIa6gttJj4aAgaWCPA+a+hvyD5iEFpftplbmvIbibHnkk0BlG/vPPZn9b+jAzyfzvFxWpyux2M5/dbl6SWa7V6n7vbU3IzTXHLWlp5vsJCXG/x9PhMHXb8PCKluAuP9/UgbOyzPIaNCi/PWzf/jTZHuYlm3vLirPNfa+epR9cadueAMm/8vUNnIY2TzYPsfNsYB4IEtbPbFcOb5Qy15pj/+Ic3X77CK0tybFdudLUIco+FKc0/M3hcGjJ3iWavHSy0vLSdHuf2/X+3+8r3D9cL1zwgi5oc0Hly1aYIaWsNPUw7xBzL4GltH1pyXbOr6W5bwTAqSEvueQBGZnmmrkzg6FkvySLudYH4NTgcJjjhsIUUy/y9C3Jgij5n3Y4zDlVn7DKLe/vR8x9llY/6ax3zXFq7j4pa7e5L6owTcUdJ6p3/+6KjTXtFjdvNtc6yxXNZpNS1roe9O7X8oh2FnZznT+wffmZz3DLl5v2Pfv2mYfU9+1r6sZlr5NFRJRcn7EVmLb/tvySNvh2mXMcHua34BtOrg5qTH6++V2mpprukBBTby89/2C3m/OdTSvRZKew0JwbWr/ePChl7FhzDq40nL/sudIjz93gzGFxOCp/+jUwMFA33XST3nvvPeewpUuX6sILL9RDDz2k6dOnu00/adIkvfHGG8rJyTlyURXq2LGj2rZtq4ULF7oNT0xMVEREhF566SVNnDjxqPN6e3vrtttu03//+1+34X/99ZcGDRqk2bNna8yYo19oKigoUEGB6wnImZmZatmypV5f+roGtBugZgGuRwvGpMcoOjVa7cPaa2jkUG1K2qRNyZsU7h+uVsGt5Oflp4SsBO3L2Cc/Lz+d0/IchfuHy+awyWa3ySGH84ltpU829bR4ytPDU4UFHvrrL9MgJTnZnAgMDHTfQXXoIA1s+bM5UStJTc43lY7CNPPK3GkuADe92DRozE+SZDE3P3j6uNLwi7PMjRshPasXYnOyGuRlRZsDJVu+Odix+pW8hzwzzsNHCj/f3AB4HEVF5oRpaYPrkBDXRlFy5ew08k+W0taYSl1QZ7OzdzjM51uUbj4/n0babvPVirgVCvEN0cgOI2UpuVml0Fao76O+V5G9SFd0ukJNA5rq0CHTACkx0WyU7XbXU0v8/MyNds2bm5u+9+41J/Xz8syJKIvFTBsUJA0daroLC828Pj7uJ8JLN/BePsWKTtulbQe3ycvTS80DmyvEN0S703brcP5htQ5ure5NupsbKiup9Gm8pQ1NSjcfFoul/NN5SwtT6sjfSdZu6dCf5kDYO8ycFLNYzWeeFW36O9yjQxnBWrHCdeK89CkzHh7mM3Q4pHvutSuvKE95xXmy2W3y8vSSh8VDBcUF8rB4yNfqqwZeDWTN2CYl/mxOxjUZahqsOGwlN+rvM7+p0L7mxKHDJslczHJV5uU6EPSwKjnnkHak7NDBnIMK9Q1VZEikDmQeUEpuikJ8Q9S5UWe1CGpRqadEFBaa//nsbPPegoJcJ/NLeXqam51qVGkKdWkDbXlIKvlgHcWSLHJ4NtAf+1dq+6HtigyJdDZikaTknGTFpcepR3gPDWpZySvvNWzv4b1aFrtM/l7+zifES1JeUZ52pOxQRGCEhrcdrr8T/9bm5M1qGdxSLYNcIaapeamKSolSZEikhrcbfnKeqHkKKT0hXvYC2ZE/aYtF8rTYTPCaw2b+ly0lGyaHTVLJzB7eSs5N08r9K5VTlKPWwa3VNKCpCmwF2p+xXwlZCeoR3kN9mvZRen66dqbsVFJ2koJ8ghQZEqn4rHil5aUpxDdEnRp2Ugv/RrLEzjI3gzdoKjU61+wjcuPNtjo/WbJ4ytF6nDKKC3Q477Byi3Ll5eklX6uvMgsy5e3prSCfIIX6hsonb79pzFaQYm5OCWhn9qN5yebkfXG2FNBOB/y7aNGeRfLx9FG3Jq47+opsRdqUvEmB3oG6tMOlSkkI1P795v+6SRP3UB+Hw3ymTRrbFJjxvWnM7+Fttj/ewVJBmlScadZrsSon4irNifpRdoddozuPdms8turAKm1K2qTmQc3Vo0kPLdy9UN6e3rqp102yerjSS37Z/Yti02PVtXFXDW492ISfZe81T3q3+puLEhYPs6+zWM2T6EN6VP7H4rCbG9JKT4ra8s1xh1eI5NdCxf7dtGGzjxISzDYvMtL9GKf0M+nQwWz/srLMjUvx8Wa/mZfn2he2aGH2m5KZbutW1/69oMBUoEJDzU1CnTsWmf1NxjbT4MmnsfmsLR7m/Xv6SE3O1/aUwYqONk+PbtHCFf5S+lQgh8PspyuzHc7Pl3791dysWlwsdelivv/SG0Ilc0w3YEDNXmj+Pe537Ti0Q5Ehkbq4/cXO4TmFOZqzdY7z97Ni3wodyjmk/s37q2+zvs7pErMS9X3U9/Ly9NLYHmPlaz3+8WFhoTnBsnOn+fzbtDGfUdkL/h4e5sbsZcvMjQFFReZ7PmrwW690E9SWvdeM8GtRsk3xMDcKy1ISznFh5T6UrN0mKCf3gOTb2PU06+IccyztFWyC5EpOyMmnkTne9PA2x9BFGVLhYcnDW/nhI7Q0dpkOZB5Qx4YdFdrA/Bjyi/MVnRothxy6oM0FR20UdzQbEjdoTfwaNfFvYv4ny3xfi/culofFQ//o8g99H/W9cotyNTRyqDo3ct2IlV2Yrc83fy5JurbbtQprUMkTk1UoW0O/hrqm6zVu45bFLlNUSpTahraVn5efth7cqlbBrTSyw0i36T7f/LmyC7M1uPVgdW3c9bjrdDgc+mLrF8osyCw3T1x6nBbuXigfq4/G9Rin/XFeWrXK3HTtcJgTHZ6e5vdU+rSM624oUmzmbu1M2anUvFQFegcq2DdYcelxCvQJVNvQturcqLNCfIJKju9KLtyo7D9lyfGfxUOJ2claGrtUdoddHcI6yM/LPJI3JTdFu9N2q1VwKw2NHFqp/5uiIhP+tXev6R4wwLWNKH0PdntJ8Jt3yc2+OXFm2+oodu1jrX7mN9tkaMlnaP4X9+wxjXVycszNno0bm+1Q6zL3SuzaZdaflmZuUgkIMDeC9uwpLU/4UQcyD6hneE+d0/Ic5zz5xfn6bNNnsjvsuqrzVQoPqORdK9VRQT0iryhPm5M3Kyo1So38GqlNSBt5WDy09/BeHco9pA5hHdQzvKf87Tnm+MCWL/k2kTx8zTGJvdDUgx0OKSBSdu8wFduLZbPbZHfYZfWwylbSMM3D4iEvDy95WjzMMY69SKYeUHJhoLS+UPo78WxQ6RPE8fHmRoSYGPNdlQ3MtNnMeYBxl26UDi4326DGg03jCluuOc7J2lUS/DXQfP9FWeZ3bPUzvw+HXZLdHOvLYupWBYekzChzjOTTSPIsuXBpLzBhYtYGUviFkk/DE/nm3CQmmid4pqebk5ktW7qf5HQ4zE1MTcJyS95DsfkcPbzKvIeStAWvIFPGGmK3m+9g61ZzErZ5c1PG0m1J6Q1il13qMPuLtHVmX+LTsOS79jTfhb3ANHqJHKuYGNNoc/du02C1QQNXXd3hMDeejKhEbqkk870nLzXHVfZCc/xisZru7L2ST5jsrccqOi9P6xPXa3/GfgX7BqtdaDttP7RdhbZCtQ9rr7MizlLLoJayOGwmcC11tZRXsn9z2M2NVL6NpaAuivHrptf+ek0eFg/d0P0G+VjNTVc2u01fb/9aWQVZumfAPere5IgL3BWdG3I4zPFX2jpT5tL/PYuH+a36hpuwgLI3clXwv59VkKV/Lf+XMgsyNb73eLUNbesc933U91qXsE4DWwzUbX1uq1TZsrOlP/+U89ivZcvyxyXNm5sbLHfuNNO0amX+N319Xb+RoiIzTVgld8HJ2cmKSY/RoZxDsv4/e/cdX2V5/3/8fUZysk8mWYS99wbFgSi4QMGqKFrFOn5Va9XWUSoqfB1VW6vVVq21jlZFKa460IogIops2ZskkEBC9jrn5KzfH1cGkQBhhAR4PX3k4eE+97jOuq/9uax2JUclK7c8V1aLVcmRyeoY11Een0f/3fRfWS1WXdf/urrPQZK+3/m9VuetVnpMusZ1G9e0i/7UAd6T/Mp8rdqzSnsr9yolKkWd4zuroKpAu8p2ye1zq39yf3WL6yzbzndNh2RonJlEYgszdZbqIpNXWR1mEmhLB9U91AQvT6EJ1FO6zvze/DWdv45EKbKjmQTtiFdpqbR4sRnkWlxcvyBHXJzJVweev04vr3rOTIi64NkGn9d/N/1Xn27+VO1j2+v3Z/6+8fQdrE21bKOZyOPONwN0Y/tJaRdIoXF64KsHVFBVoCt7X6lzO9WXi/0Bv3712a8UCAZ029DbGk6kauqktybsl51t6gCrV5vyRnS0qXuNHi2tcL2n/237n7omdNU9p9/T4LinFj2lbUXbdEGXCzSx58TDf0+Oktvn1ocbP1SZp0xD04YqxhFT91xtsLxh6cNMUANflZncXpldE2i+uiYgvM3kSZEdpTjz/lZVme/Inj2mfurxmDwgKcmUrVJrmqy9XjNQfvdu833yek39tn17qV/fgMKLP61p169pr7dHmfKMZ6+ZdG8Ll7fj7Vqxsa327DF1zfbtG04+rC1Hdu/ecLDjgdS2J6RFp2l89/ENnvt08z5lwoT25v3wlppBjfYok2/73aYdVxYTVMTZ8/A/mLKNUuEyE/AuLNVMTvvpPSRQU6+vHRARnirFDpDCG5ZHs7PNfbuoyNzrw8LM+9+nT9MHXM9aN0vFrmKNaDtiv8mI/1zxT/kCPo3pPEal7lItzV2qlKgUpUWn1fULFFQVKKs0S72Teuu0jNOOrJ3xAL/DQMB8h3780dSFIiLM/aj28/f7Tf41dKjq2tOrqkweFhnZsI+pW7djG/jN5XVp1rpZ8vg9GtNpzH7tVtuKtql7YncNTBmojzd/LI/Po6HpQxVqqx+5vmL3ClV5qzSm0xgzsdRXaQKpFS2r6Zcpr/8N1gZti+unYNC0Hy1caH6HxcWmrSImxuTxF11k2irkr5b2fmMmrXkKTdnEFmG+TzE9FWxztna7y7S9eLsKqwoVHhKu5Mhk7SzbqWAwqJSoFHWK66SEiJrysq/KpK9gUU0fnLWmXNXDpO2n/VUHus8F/FLh92ZCvCvXtFvUtltVZps2u5TzpMTahrAtNXnYWlPet0eZydnxQ6S4wfWLR1TlmEBEZevNPSw0wUzCTx6tMotDM76eoYrqCt006CZ1iO1Ql5wPNn6g5bnLdVrGabq+//XyBXzyBXx1/ZoWWeQL+GSxWGS32mW32g/ve15dbO5prhzzHgY85nO1RZgBV438to9awGe+R4VLTHtxXVk40pSznT2l9Ib3wM2bzaSmwkJzT73ySnNf31cwKH3xhWnvcrlMvfvyy029olZentln1y4zgb+62rQ5dusmnXFumf6w7F5J0v1n3N+gjJtVkqXHFz4uSXpyzJP1gRRkyqavvmp+40lJ0iWXmAFPK3ev1EvLXlJ4SLieGvNUg9/Xi0tf1Ko9qzSy3Uhd1/+6uvRv3CjNn2/qMG63Kdf27Wsm4MTHek2bWul68x0PrVk0yWI15b4Qp5R2kRQ34Gg/oYZvau0gPKnx+6HFYu4JRStNO35ku5r6ksXcJ6qL6/uT4/qZYwI19SFXjvn9W0NMn3lMTykyo0ESDnQPLnIVaepcMz5h2lnTlOGsPy6vIk8PzX9IkjR91HSlRu/z+z/cMtihykJN2a8J1/R4TP01P9/cNwMB0zbVoYP5DoSE7HP87jkmEGXAY4KIp15YF4Rc5Vukvd+ZYGi2SBO03GI3n42vXApP17LIoVqeu1xtItvsVwacv2O+NhduVuf4zjqv03kNntu82Qx0crtNXnb66aaM1RS+gE+vrnxVwWBQ47uPb9BeW1hVqNnrZ0uSru13rSJDI1VYaK6Xm2vyTrfb5K+RkeY3fe65ksVfc98vXlH/+oLBmva5JHOPTR8nr9eUk5ctM+crLzf3iLAwc64zzjB9/Y1+Zkf5uUoygTt2/MuUYZNGSmnjagJuNFRZKc2aZQKM9Owp/fznpn1w9vrZ+nLbl+oS30X3jry3wTFvr3lbCzIXqFdSL9054s4mvYb7v7xfJe4SXd33ao3qMKrBc3d8doeq/dWa3Hey3l7ztiTpntPvUdeE+khA+ZX5enDeg5Kkh0c93OS29wbce02gKluElDy6rn1pQeYCbSzYuF9/iiR9ue1LbS/eru6J3fdL9+7dpk3B5TLBzXo10vS9Z4+0ZIkJXGOxmLJo//6mrFZYVajs0mwVugoVDAaVFJmkvIo8hdhClBiRqIyYjLq+h1oej5kovXmz+T1cc03j5duCAunNN00eMWyYmVBf93vexw8/SJ98Yuq4ffqYfM7plKbNm6a9lXt1Re8rGvwmg8Ggfj3n16r2V+umQTdpaPrQfZ6T3n9f+v578z0fP960gVX7q/Xayte0YvcKDW87vMF4q7X5a7W1aKsm9JigC7pcII/HoqVLTbCH2j5Bv9+0q4WHm/6kKVNMHWjLFhPYoLjY/Fa93voJsd26Sf07bjT3Jr/b9HHaIkydv7qkJqCGRYrpZcobvor69jGLrWZQcE0bsiw1baj7zLQ81O/Q55J2f27qOO48U8cJjTNBZ+MGS/ED6w7dtEn69ltTjnW5TL26a1dTr+5UWyQI+MwEsz1fmrzPFm7uw0lnmsALFospVxUtMwHivOUybdVW08YR1qb+nu33mN9B8cqasnDFPmXhHma8lT3SXDPvK7PwhGuPmQwe4jSvIX6IFDfQXLcy26Sraqc5nwKSPcb06cUN0O6wTvrb0r+p1F2qczqeo5CahRf9Qb8WZC6Qw+7QrUNu3afc/31Nub+4frGB0DgT1CR5lMpDU7SzbKfyK/Pl9rmVHJmsEneJfAGf4sLjlBGToTaRbRqOyzmG7SAN9jvSvLopHcLBoN5e87bKPeX79ZPlVeTpw40fyma16dp+1yrMHqbsbNPHkJ9vvke1gYvDw02+PnasCbCwYoXJkyIjTfmxdhxSIGB+P+MnVCu3PFc5ZTmq9FYqNixWVotVRa4iRYREKC06TWnRafX9X649pm5VuKymXhVeU/YaaIJ82RwqLTV54apVpo5eVmZ+11FRZtDzxIlBrXJ/qPzKfA1OG1wX6FMyQUOX5S5TUmSSJvSYoNwcq7ZtM+cJCWnY517bDpLQfYO+yfpGkaGRurbftQ3e1tr+845xHRVqC63r4xzTuWGUl082f6Kcshz1S+6nnPIcFVYV7teXLkn/+vFfcnldGtVhVIOApVVVpl6am2vS17GjqZ97LCV6d+27kqSr+lzVYIxedmm25myZI5vVpok9Juq9De/JIouu7H1lg/3m7ZinLYVb1DWhq5moGgyY3+neheZ+U10syWJ+rxEZJqBX/CB5vaYNYelSkzeVlZl7Z0SEyUfGjDEBqg/91QxqU+EmfZP1jXaV7VI7ZzsNSBmg1XmrlVWSpZSoFJ3V/iz1TOpp6oe+Kmn3F+Z+6Mk399UQp+kLiO0vJQyX12fR8uWm3LRrl2nHcbnqP+PevU1gmyar7Ttz55t2JEvtwBwT7ECxA/Yv+x8tv8fUl6qy6+/BFru5Zs19eE0wTt/t/E7OMKeu6tMwiOXnWz9XVkmWerfprejiM/T99+b33KmT+XM4Gt5SkpKklPRqVVRXqMpbJX/Ar4iQCFX7q+UP+uWwORQVGqWIkAhZqotNwKTyraYNz5Fo3hO/2/R1hcZJ7SbVLNC7wzwf08OMnSnfZhbpq9pp8ooe95pAg569po/MkWTO5S0z93C/27SH2CJMXuPOM99BR6IZh1mZbT4bv0dKGKqiqCv07bfm/lVRsX+7lc9nyle9etW88MIlNW0v+eaa9ggT2MLZx5R37RH1b+pR3vt37TJ15F27TNmoZ8/6tNXu2mjgtwPc+z/a+JE+2/KZuiZ0bRCsJ78yX++ufVfx4fGaeuZU/bDrB20v3q5uCd0atA3klOdoTd4apUWn6eJuFx9dO+NP0rajeIf+8sNfJEnju42vG1vmC/j0yeZPFFRQvx7+a3Wy+02bld9jgr2GxprfmK+qprzjVzCmp17c8Kl+3POjRrYbqUu7X1p3nU2Fm/TPFf9UjCNG00dNV3VlpNxukydERDQct12bzLCw+rqUVB8M5acvJSm2zNxnqkvMdzMktuZLVGn+Al5THoppGFz6ePAFfPpw44cqrCrUkLQhDcbabizYWF/XaNNNyv3EBLt19jZlLovVlGdduyVvsWm/aHuZKaNVZZv+1fCagEt+l+nH9lVKcYO0N3G0vsn6RpXeSnWK66TEiET5A37llucqsyRTXRO6akTbEbJZbKryVtWNtQ4PCZfH51FQQTlsDkWGRsphc2hB1oK6fHPfsSG7y3crsyRTvdv01hlpg01+5Ck073dUJ1M2qF3Et7q4Znz/KPPe+EzetGSJqd+43aZ80KmTqSvX1a/8bil/obR3gRlDaQs3+UjiCFMu3ef3sGOHCUa9fbv5bmVkmHPtOybP5zP1oHnzTHudzWb6V846y9TrGhTVDnSPKNulR795VBZZNOOcGQ0+178t+ZtW563WWe3P0jX9THS5qipTHlq+3NRhqqtNub9DB2nUKHOPaaqCApOfr1lj6kLl5fVlq+Rk0ybZoUPTzrV1q6kzlpaaNnSns+GYhkBAGjao0oxVqO3/iWxfE7DFWjP+Ml+K7q7Fjl4H7GN6d+27KnGX6PSM09U3uW9dueSHH8xnUFpq3pOoKFNXHjfOBLupc4DPwev36o0f39DSnKUakjakQQCyDXs3aHPhZo3vPl7D04frg40fyCKLJved3CCQfG17VJf4Lg36WQ+mts+sT5s++y2Wd7B+pSY5wGvdVLBJf/7+z5KkZy94tsFCLd9kfaO3Vr8lZ5hTT415qv74qhwTkLtih6lXRXU2YywPI/Db3O1z9Z91/1GGM0MXda0PRF7sKtZ/1v9HTodT9428T8XuYn2T9Y12FO9Q25i2Gpw2WBv2btCOkh2KDYvVWe3PUu/Evvp2oU3r15t27c6dG47LCQbN7/PMM833onYcW0hIw++mZPY/7bT909uYr7Z/pa1FW+vLz/v46XjGXbvMfSQvz7S/2O31abNaTZtkWhOao346PnfffrIlOUu0cvdKpUan6vzO52tJzhJtKtykds52ahvTVnarvW4sSYwjRme0O0NOh1OlnlKVuEvk9XvrxilWeasUagtVbFisnGFOWWSpu6f7Aj6F2cPk9XsVCAYUagtVREiEwu1hZiGjsg019+RzzSKjngKTj1ZlmXJs2sXK2puu77835SGfr37y6b5jMi+/3OTjTZGfb9py8vPN+xsVVT+u2O83+bwlo378+77jYPwBv95c/abcPrfO63SeVuetrqtDDkmrD3bq8rr079X/VjAY1MSeE9UmxGH60Nz5Nf2K0Sbf8Feb8os90vwuQmIaS3JD3rKatpQCU76tLQt79taUT8tN/hc3QCr+0YzFj2hnykzBgMkLvaWmvSW6i0rVS99+a77rpaVmnPr+ZeGgKuN+0Dtr31F8eLwGpAyQ0+GU2+fWpsJNWr93vcZ0GqNLuo1XSNH3pm7oc5lFkOxRpv7lKTDbQ6KkHr/VrrwYffed6Uuvnc9QW76qHd995ZVmDMjWreb+3KXL/uOoYmKk4d1+NH1H1UUmT3YkmPehapfpkwz6pTbnKJB6sVasqF8c2eutH9cgmc//kktMG0FZmXne6TTjCn8a1Ck01ASP27y5fqxtYmJ9u6ffb8oUQ4Z5tb5wjdbkrVFCRILaO9srMjRSO4p3KKc8R6lRqRqcNrjJ46wXLTJlluJiE3Sgffv6oGzBYH09rbLS/GYqK83r2TdgXu1riI+XPvpI2rnTpLc2APa+cwoCAXOfbErgt4ICk6+WlJjrtWtXPyaztr0kNFQKjzP36mJ3sTrHdVZSZJKCwaB2V+zW9uLtau9sr5HtRmpjwUYtzTFjH/bNy8o95fp+1/eKCo3ShO4TFfSGy+Mxaa2dw/jTbMxhq5Rt59umLTaynamP20Klikzz3XTvMXXmrrfVjMM9uNJSM75z717zmaemmmvXfk+Cwfqxz8dMwG/mkrrzzLjj2rKQO8/cN917JGuoiuLP1OwtZt7z5L6TFRUaVXeKpTlLtWL3CqVEpahrQlctzFqoqNCourJirf3yLL/HjPGt3G5+W363uYfV9qXH9DTv64niQG2l3grThlC+xfQ/hqWaviyLzdxPbQ4pZYx8cSO1dKnp087Kqh9vbLfXlyMmTPRrpfddLchcoH7J/dQxrmPdZbYVbdPa/LUa3XG0ruh9RcN69YHaEKp2mXYtV64pQ0VkmHt6+RYzZslbaoK1tJtk+sx9lfXtIsFAzRj1mr6HiHSVWMK1Nn+tskuzFR8ery7xXVTkKlJOWY4CwYB6t+mtrvFdZbPuU/A5gEDA1Alyc007Wlpafd6679yD7p1dslVuNPfqkJiafn57/Xcq4KlpL2vaPLHCqkIt2rlIxa5idYjtoNToVPkCPu0q26Xs0mx1S+imYenDmjR/QpJZbK4qW1LQ9AHYwmryzHKz3eqQN2Ws5u5cop1lO9UjsYeiQ+sjX2SWZKqgqkCnZ5yuzvGdtTRnaYOyVYg1RLsrdmtH8Q7FhcdpZMZIOcOcKnYVq9hdLI/Po8jQSAWCAbl9bjlsDsWFxykuLE42f1VNOSLPlI/2XbC9fLMZy5MwVLuD4VqTv0aFVYVKjkpW57jO2lW2S7srdstutatfcj9lRHXUokUWFRaaz6ZfP/P9/Wnbdm1e6PGY7bXf8Z+yWuv7Aux2k0//dL+QEMkZurtmvHZlzRi/yPoxft4y875HdtKyklwtz12utOg09Uyqr6CWuku1fPdyxYXF6ZLul2j3Loe2b6/Pc2JjG851DgSkLt18WpK3QNuKt6lzXOe6fs5gMKis0iwVuYo0MmOk0mPS9eHGD1Xtr9bIjJENvjNLc5eqxF2iUR1Gyelwas7WObLIooGpA+vG5AWCAa3YvUI2q00Xd71Y/ooE7d5t6t9Op/k97PueBINSTHRQ0aUfmHurLcy0K9giTfunp9B8rrYwBTKu1Bd7Nim7NFs9k3o2qPNnl2ZrR/GO+nmY/mqZObKW+jk9NfEhzHZrw/7Fg6jyVmlH8Q5llWbJ6/cqPSZdHp9He6v2KjIkUh3jOqq9s738Qb8KqgpU6i5Vtb9asWGxqvRWKhAMKCIkQgnhCXI6nKrwVmhv5V6VecoUCAYUFx6nEneJLLIo2hGtxIhEOR3OJs1z93hM2aW8vH4+e20ZsvY7bLXuP5bqePF6TblKOsg8Z5tMWbxsY/093O+u2cFu6gphyaad2VNkyrOu3aZd0RpS36Zuc9T0lQ4+rDTu3GnysOLi+v7v8HBTlh08OKiFe00/2ZC0IeqX3K/uuK1FW/VN1jdyhjl1Ra8rmpRH+HymrF9dbT6X0ND6OnXdGhOSyoN79OnmT2W32huMbQ0EA/p+5/fyBXy6uNvF8pemaPt28/nXzpPYd9xBMGh+d4GAuT/UjtWsLaftWwSIjm4YQPlAAsGAskuztaVwi8o8ZUqMSFRCRIIySzJV7a9WRkyGuiZ0Vay3QMr52NS/Ek4zZbWg3+Th7t3m/hfZ3ixm0BSuPNMGWZFpPuuwlJo+JqsZsxwSJbW9TJWh/fXtt6bOtGePeU9qy8R19eUJlUr1f2S+b44k06ZuCzNztTz5NWNBI6Qe90neIpNWW7gpR1isNYHMvDX9TBFSRNMWjqmortDWoq3KLMmU1WJVh9gOKveUK68yTxEhEeoS30UdnO1lD7hMOUzB+nlnAZ/q5mxZLFJIvBRw1fxWLDWB9exmv6C/Zj6jVT57jFbWxNVJi05T25i2CrOHqbCqsC4dI9uNVNuYtk16DXv2mH7W7GzzHerc2bQ97DvmOTVV6pM039RJg34ztzgsuWY8SKlUscXcj9uMrpl3V1PeiOxg2kN8lWb8Q3Wp+Y0nDK8Jkl/z75BY81prg6n7XGZ7RDtTPq8uMfeNkNiaz6vKvE/+mrJVE8fPr8tfp2+zv1V8eHyDucRun1tfbf9KFotFE3tMVJy/xJRB6/L0CPM5BDz1bTxtzm7S98Tr9+rrzK+1o2SHusZ3reuHDgaD2lGyQ6XuUp3Z/kx1c2bUjOutNK/VVtOmGqh5nUGfFBKjYkukFmQtULGrWF3iu9QteJxXmadtRduUGp2qs9qfpWAwqMySTOWU56jaX6306HSVekpVWV0pZ5hTHWI7KD06vUn3uWAwqGp/tdw+t7wBryyyKMQWIo/PI4vFIofNoTB7mOwWqyxBr/kuWKyqC1ZfN29YkizyW+wqcZeo2F0st8+tcHu4rBarKr2Vctgcig2LVVx4nJYtsev77829vF8/05fx0zmRTQ38JplxesuXm3JdmzbmuH3bI/1+6czT3Yr2LjNlUluk+YytIea763fVBVn3xI7SunXm9+PxmL6CfdteAgHT59a9u6lPbd9uxkNbrfsHVkxNlcpjF9XNEd+3X7PEXaLZ62fLYrHo8l6Xa/GuxcoqyVKvpF4N8q9dZbv0bfa3coY5dVmPy7S3aq+2FG1RYVWhnGFOpUWnKbs0W1XeKlNXju/a9AWWXXtMn7GvwvT7haWYz9RbYvqhaudcxvWv6Zveus9iQjVzgP0uUzZ29tHSsmKt2L1CadFpDcbllHpKtSx3meLC4jSu2zj9d9N/VeIu0RntzmgQR2RTwSZ9nfm1YhwxmtT7SlnL1pu+9YC3PpaXZO4xrlyVVQXl7DNFpaWliok5eJvkYQV+Gzx4sCoqKrRp06a6bVOnTtVTTz2lWbNm6Wc/+1mD/W+44QYtXLhQW7dubeol1K1bN3Xu3Flz5sxpsL028Nsf/vAH/e53v2v02NDQUN1444168cUXG2yvDfw2c+ZMXXXVVY0eO336dM2YMWO/7X0m91FmRqaClqBSi1O1K2GXHF6HuuzpotSS1LrKg8/iU0lkibx2r0J8IfLavYpxxSjSE7nfOWH896dL/zbikvHj1T2hWKnRlQoGpZzyKHl8NoWH+BRiDchiCZqBkYXx8gXqG2H2Pfcl48c3dupDCrX5FWY31zE/EosCQZlwEBapotquar9dubG5Wt92vTwhHnXZ00XuELeyE7PlrHKqz84+iq+M18qVd2nXLtN5NGjQH5WcvFR2u7vuWj5fuIJBafHiR1RS0k02m0sjRkxXTMyOuv2CQauqq6Nlt1fJZju8JU7cIW55bV5ZghZZZFG4J1xWHcFgEDQqYAnIbXerNj6cw+eQLXjowsbxVPubONLfgySVhpcqJz5HrlCXEssSVRBToAhPhNKL0hXjbkIHWDPy2DzaE7tHRVFFSixPVEVYhfxWv9KK0xRXGVd3ry6JKNHOhJ0qCy9TcmmyCqILFOoLVUZhhhLLE+v2q3Us7iVoXIWjQqURpXL4HKq2VcvutyuuMk4hgYadOEEF5bF76n5fIf6QVvH78tg9yo3LVZ4zT4nliXKHuOUKdSm9KF3JpcnNksb8mHyt6LhCAUtAKSUpivJEKc+Zp9KIUsVWxmrItiEK84VpXdt12p68XeGecLUpayNL0KLSiFIVRxYrtjJWw7cO13lt8/XzfhsVH+7Wy8v7aEtRrEKsAXWILVf72DLFh7u1eFeqvs6sr2Af7PdwSfftuqrPZklBfbSxs7YWOeULWJUU6dKvh/8oSXpo/nCt2tNGh+JyJWjVqjtVUNBP4eF71bXrLMXEZCokpKqmMSRKHk+soqN3adWqX6u4uLsiI3PVqdPHiorKlt3uVjBok8fjlGRVSsoPx+T9Px6aeq8+0H4+q0+r269WTnyOIjwRyijIkDvUrV3xuyRJ/bP6K704XZWhlVrSZYmqHFWKq4xTXEWcqhxVynPmyRK0aPD2wWpT3qbRazYlfScip8OjaEe17NaAXF67/MF9y0lBVfttKvOYSldZWJnynfmyBq0K84apNLxUCRUJSihPaPS3f7DPNTc2VxvTN8od4laXPV1UElmivNg8pRanqkdOD0V5orQpdZM2p22Ws9Kp9nvb1x1bFF2kXQm7FF8er5GbGw4qa+rndaD9ysLLtKDXAlmCFo1eO1rh1WbwWNAS1Fd9vpI71K0BOwYoqTxJC3sslDvEreTS+oGefqtfBTEFiq2I1embT2/wvhwsbSXhJVrSdYl8Vp8SyhMU5Y6Sy+HS3pi9kqSh24YqsbzlAskELAEVRRWpKKpIUa4oeUI8ClqCSipLUrQ7er/9j/Z3kxFTrqfGfKvIUJ9mreuiDzZ0VqU3VCMzctU+tkw9Eovl8dn0yIIRWr/+Bu3adY683kilpX2n2NhNCg2tUCBgl9udoGDQou7d39bWrVcoK2usXK5kRUbmKC5uk0JCKuT3O1RRka7Y2K1qN/gvWtR9kQKWgBIqEmStqWdVhlWqPLxc7fPbq9/Ofg3SerTfucMVsARMec/il0UWWYIWRbmjWkUZoXUKanTHXWobUyGX16b1e+Pl9tmVFOlSRIhPdmtA/oBFi3amye1rpMe4EU2pz4+7eILc7nj5fJEKBGyy26tkte5bl7XIZvPK4Sg5spcFHEeBgE3BoFWSpW7RAIslIIvF16DDuKn3uUBtcGypQftMUEGt6LhCufG5iq2MlcNb39tZGF2ooIIauWmknC5ng/Mdizq/JHltXlU6KmUJWhSwBBTqC1VEdcR+deXDcbh5xMlY1sSxcSzKGz6rT1mJWdrRZoccPofiKuK0K2GXEsoT1CmvkxIqE3R6Rq7uHrFSDntAf/puoJblmnLu0LQ89U8pUHp0hXaUxOjpBefrxx9/paKiXgoLK1C7dl8qKmqXbDa3AoFQud0JCgsrUnz8eq1de4vy8gYrGLSpTZvlio7eKZvNLZ8vUhUV6UpP/0ZpaYuO8Tu2/3vy0/ejLKy+3D8oc5BsflOW8lv9WtlxpQKWgM7acJb6hFjVMa5MDptP2aXRqvKGyGH3K9zukyRZLEFtK3Kq0hu63zUbu64k9Uoq1I0D16lrQmmD7f6AtCY/UU9+O0Run00/779RYztnKSrUt9851uXHa+pXI5WZeYG2b79ElZVtFRm5S4mJaxQaWqZAIERVVW1ksQQ0ePCfmvSerM5Yraw2WUouSdawbcPqthdHFOvbnt/KErRozOoxcvgccoW4tDtutyocFUqsSFRRZJEcPodSi1MV5YnST7XmevWx+H1VOiq1NmOt8p35SixLVEpJijanbpbf6le33d3UKb+TrEGrvDavdsbvVHZitiI9kQrzhik/Jl9pxWlqX9BeEdVNnC3SjIIKKmAJKKigLLJQzzhMB/p9/b/Ba3RBlywVuRx6+vtB2lkarZSoSnVNKNGl3bfLbg3onbXd9eX2dvudq7HzNXbNQ+2H5tUSn5dFQVktQVksQdWW1QNBS82vN6gre2/RhV0zFR/uUWZJtHaXm377gal7FWb36921XfXWmqZPfDzRVVUla+3am7R37wBZLAG1abNckZG5stm8qq6OUnl5e3Xt+q4SE9cds2sWRBXo++7fyxqwaszqMQr1m/JCUKad0eVwqV9WP7UvMO2e+fkDtHnzVSoubhhNy26vUp8+Lykj4+u6bQf7Ln3f9XsVxBSoU14n9cypH1y3NXmrNqVvkrPSqaErL9Py5fepuLiHIiJ2q1evVxUTkym7vUqS5PdHyOWKV3z8hmO6gAuOjabcS5IjK/X4ud8pKdKMtyhxh+rZxQO1YncbbUnZoo3pGxVdFa1RG0Y1OG5BzwUqiyhT95zu6rbHBCMKBOzatu1Sbdlypfz++snWSUnLNWDA8woLK9KuXWdp8+arVFlp+tZsNrfs9ipVV8coGLRr2LDpSk5ecSzfhlPGrl1nae3aX8rrjVK7dl+oU6ePFB5eKKu1WsGgTV5vpAKBEDmjdis2zKMwu1+BoFTttyn4k8VeilxhCgQZK4PWqSCqQD90/UG2gE3xFfGyBWwKWAIqiSyRO9Stfln9lJrbW99++ydVVqYpImK3Bg/+oyIjc2S3u2WxBOXzhaq6Olbh4QWyWAKHvmgL8dq82pS6SZltMhXpjlSn/E7a3ma7KsMq1WFvB3XL7Sa54rV16+WqrEyRzeZRevpC2e2VNWW/2vKfRTFtVmte73mqDqlW191dFVZdP2FsY/pGee1ejdg8Qq5Ql37s8KPCqsN03prz6ieMWQL6ov8X8tl8GrJ1iPKd+cpOyt6vbaAqtEpf9f1KkjRq3ShFu6NVWZms9et/ofz8QQoEGs5csdncOu30qVo58h+qDKtUn+w+6ri3fvLpmow1ymyTWXedPc49WtlhpQLWgNKL0hXpidTOhJ2qdFQqtSRV/TP77zee5mTWlH4oSfri/9rp/C7ZKnGH6oGvTtfOsiilRlWqQ2y5TsvYrRBrQPMz22pJTv2I+6Otu3SILdWT5y1SeIhfM9d00wcbO8vts+v0jFxlxFSoc3yJqrwh+uOSPvqm1zeqclQpvShddr/pgwsqqJ2JO2X323XWhrNaRVsIWk5QQeXE5WhbyjZV26uVUZih3LhcSVLnvM5qW9i2hdumgrJbAwqxmrq3pfb+K8kfsMjjt0lH0Yd0vDWlL+pYtFv4rD5lJmVqe/J2ObwOpZSkKCspq27uQVpx2lH1vR1IUEGVh5erOKJYYd4wee1mzHhCeYLCfE2chL+P4shi7UzYKVeIS0llScp35ivKE6W2hW0VWxVbt1+I1a9QW0BWS8D0ocrk1IGgRdV+m6r9tK8eyrHsJz3Qd7i6OlI7d45RVVUb2WweJSWtkt1e1aBsJUmxsU2b8+Oxe7Swx0K5Ql1KLk2WJWiO91v92uvcq5iqGI3cNFL2QNPGoBxrWQlZWtNujewBu1KLU+XwOZTnzFNZeJkSKhI0ZNuQunaqWgf6HDanbK5rTzpr41l12z02j77s/6WClqDO2HiG4irjmv+FHSOtqW/e5UrUli2Xq6oqRaGhZUpLW6iQkNpyf62A4uM3NTjuQK+hOKJY3/b4VraATV32dKm733rsHu1I3qGw6jCNWjdKq5f+Xrm5ZoLtoEF/VGrqd7Ja/fVXDNgVCFhlt1fvd83GrpvnzNOKjisUVFApJSmKqI5QQXSBSiJLFO2K1rCtwxTuDa9LS1FkkYLWoOx+u6rt1YqtjG20f7G1O9B7sndvP61efbuqqpLVps0Kdev2rhyOElksXgWDVvn9JqBkuHOHlnZeqoKYAjkrnYqviFfQElSeM08uh0sd8zuq987eKowq1OJui2X325VUVj8p1BXqUnFUsdKL0jUkc6BuHrRWXRNKVOxyaO72DLl8IUqPrpAzzKPECLeq/Va9tbp7k/q1w+w+dYwtU4yjWhXVISr1hCoQtCjUVlvXDqrME6oi17FbyBRHL6CAysPL5bV5ZQuadpVoV/R+9/xarel++FMH+m4GAna5XEnyeiMVDNoUElIhq9WnfSexW61ehYUVSZLKw8pVFFUkh9chv9VfNy5437poQVSBtqZsVXFksdoXtFdRVJGqHFXqmN9RHfZ2UIi/edsjDvRaXa4ElZR0UXV1jEJDKxQenlczl7L+tdpsLkVEFDR6viMt96dGVSo2zC2rRSr1hMrrr21PNiVdX8CqQle41qev17aUbYp0RyrGFSNL0CKfzafCqEJZghadvvl0RXgi9HXvr+UOdat9fns5fKb9KKigtqVsM+WIDWdoUlqpfjFwnezWoP62tJ82FsQpIsSnfskFGtdthxIj3Pp8azu9sLQ+OB996SeOgAJyOVwK1vwX6g+t+y5ITR+PXVTUQx5PggIBq6Kidtf0aQb2CepjVVRUzhG1Cx/qd1PpqFRxRLFC/aHyWX2yBC2Kr4xv8DoOxaKgeiQWKSnSLa/forzKCFX7bQq3+2SzmjYHX8CqbcWx8geloqiiunlQziqn9sbsVWxVrNKL0hvcwzw2j4qjihWwBGQP2OW1eRVbFXvYc/rPbJejASl7ZbcGtDA7XRXVIXI6PIoP9ygq1CurJagFWenaU2HO67V65Qp11b44ObyOBu+Hzxcqrzda/po8yNy/Gn5eYWGFPyn3Hj+FUYXa3ma7CqML1bawrYqiiuS3+tUxv6NpjwqEKjd3pCorUxQIhCohYa1CQipqxk0HawKhWhUdvUs2W7VKw0u1J3aP/Fa/nFVOFUYXylnlVEpJSt374rF7tCNph7KSskzcBXekdiXsUkppijrt6aRYV6wkqdpWrZz4HOXE5yiuIk5BS1ClEaVKL0pXenF6s+RLQZkyaFZSltwhbrUpbaPdcbvlrDJzuBIrjnwOU1PyJb/Fr2DNd8EasDLv/xjoEFuqR0d/rxiHVzPXdNOcre1V5nHozHY56ppQol5JRary2vXxpk66/4xlsluD+uuSfpq3I0N2a0B92xSoY1yZkiOrtLsiUrPXd21w/gN9rtnZ52njxmvl8cQrPX2BUlO/U1hYgWw2r3w+h9zuBEVH75QjdpvWZazTroRdinRHqnNeZ2UlZqk0slQpxSnqs7NPXR3yp9ds7LpNVRVSpcw2mcpOzFZimZlLvzdmr9oVtFOH/A6K8B77/oqmxhGp5bf45bPWjE2W5YBleezPa/XW3UtsAVuz9y14rV4VRRXJa/fK4XXIFeqSs8ppysYnUL/BsdDUfs1Lxo9XfnS+NqVvUll4mTrldVJFWIXyYvOUVpSm7rndFVkdqV5JhWobU6FgUMoqjZHLa1dkqFdhdp+sFkkKam1+YoO290PdI2rz6oAloBhXjAqjCxVbGavkkmQ5/E0v05mrB01dM7pIod5QBawB+a1+Mxe4kfat2nKwZH7Xp9r3ozm4XPEqKBggtztOoaEVio7OlM3mqStbBoNmvmZZWTtt2TJJVVVt1KbNCrVr92VNmc5f10YXEuJSlHO7Nqdu1taUrbL77eqyp4vKIsqUE5+jSHekBmQOUHxlvPwWv7Ylb9PWlK0K8Yeo6+6uyk7MVmlEqdoVtFOP3B4NysRBBeXdJyZSiD/kgJ//wb7DNktAYXa/QmyBml5KNRgPVlFt1+W9tmpy381y+2z6vwXDtH5vguLC3OoYV6Y+bQoVG+bR0pxkLdqZpoKoAm1P3q6iqCJlFGaoMKpQPptPHfM7KqMwQ/aAXVWhVVrRcYWKI4sVVxmn1OJU7Yndo+KoYsVUxWjwjsFK9IdqZLvdSopwKb8yXDvLouX1W5UaXSmbJSiLRSqssOiJ15cf+8Bvjz/+uKZNm6abb75Zt99+u7Zu3apf/OIXCgaDys3NVWRkwwpRt27d1KlTJ33++edNvYROO+00+f1+LVmypMH2devWqU+fPvr73/+uW265pdFjU1NTdeaZZ2rWrFkNtn/66acaN26cvvjiC40dO7bRYz0ejzweT92/y8rKlJGRodLSUkVHRyunPEfBYFA2q+3IVhLGSc3ldemlZS+poKpAgWBA3RO767r+19VFPa6oUF1E3717TRTOiIj6yMk+nzRihInaPHdu/comHTrUR1iujfx76aWNr+AMADj5bS3aqgnvTFBuea4m9pioV1e9qpsH3ay/XvRXhe6zKsQjCx7RQ18/pMt7Xa5zO56r2z69Ted0PEcfXfVRgxWFFAyY1Vz87poV7GVWIrFFmFXHmrKyTcAvvR9vVgBpO1E6832zPesdqXhV/X6dbzSrih3CihXSBReY/PK006S//92smFsbbdrnk3bvlj74QLrzTrPtt7+V/vjHpi2W3qo0NcEHWhX+AMX4vy75q377v9/q7PZn68e8H5UQnqD3rnyvwWosJe4SXT7rci3IWqCpZ0zVS8teUlRolD6Z/EmDSNWNprXp1Qc0gS/g0wcbPlCZp0yS1C+5n4amD6173u1zq9ffemlHyQ71adNH/ZL7Kb8yX3O3z5XNYtPyW5bvv2LoUa5mLUmjXh+lBVkLGj0sOTJZ2XdnK9QWqhW7V+jM185UiDVE3934nbJLs3Xx2xcrPTpdS25eopSon4StP0TadhTv0AVvXaDd5bv19Nin9eD8B2W1WDXnmjlHtjLqia5ohVltvSpHCk+R7NH19+aAT4rppidfPUO1sdFnzJAeeqjxUz31lHT//ebxvfeafx/IouxFGvPvMYoLj9OSm5bo78v/rke+eUQ/6/kzzbpilqnnNOUexv0CwKngGN8PXV6Xzn79bC3NXarnLnhOV/S+Qme8eoa2F2/Xe1e+p4k9Jx5FYlsA5Ugcjab+vg7zdxgIBlTqNgHHQmwhDevJfo+0e45UtNysJhrd2ayqZqlpoA16paQzNXFKL334oTnk88+l889v/LJnnWVWIpOk7783bcDH3UHqkFM+nKI3fnxDDptDneI6SZK2F2+Xx+/RNX2v0ZuXvXl012zsuoXLpLlnmJXH7JFSxuWmvaBoubTrA7PP+G3S+ielbS+b8m/XO6R2V5hV0zf/Tdr8F8kepXf85br6anPINddI//53E6vaB3hPftj1g0b8c4TsVrsGpQ6q255Xkaes0iyN6zZOH1/dtA76A16zkeu2uIOl7TB/X59s/kRfbf9KdqtdIbYQ3T70dqXHNG31QZygmtq+VbhM2v66WUk1pocU1bFmNTWrpIBZ7azLrZJ9n0Frx6B9A8fRMbyXHBOb/iKtuEuSRTr7UyntQrNyqTtP+voCqWKr1OO30sA/HepMJ4Vg0KzguGWLWSly/Xqp66Gb64/BdYPq8nwXbS/ers5xnRUZasaT+AI+rd+7XuH2cO25Z49iHDH6z3+kq64yK05Kpi89JcX0B7hcpj/g2Wf3OflBvnMfb/pYl7xzyQHT9caENzSh43X6/e+lTz81KxXfeqvUt69ZmVgyq6vn5kp33FHfP4FW5FD3/spsU+as2vmT42zSWf/Vl64QjX1zrOxWu8qnltetKu/1exX1hyhV+6s155o5uqDLBQoGpfHjzXelMTNmmHEd119v/n3mmdLf/ma+T5JZ4XrRIik9XerW7ehe9qkqL0964w1pyRKzIvrQoWbV3NoV3H0+8xlccuCfPXDC+HjTx7ps1mXqEt9F30z5Rtd/eL3mbJ2jp857SveOvFeSuad89ZUZW5aYWD+2zGIx+ajXK914o1nBubVbv3e9Zq6ZWffvq/pc1WC15KZ6fdXruuGjG2SRRdf1v052q12fbflMuyt268reV+rdy99VibtEyX9KVrW/Whd1vUgRIWbySqm7VF9u/1JOh1N59+Rp3o55uuht8/zUM6bWXWNN/hrNWjdL3RK6adOvNikzUxo2zIxrkKQrrpDGjpViY02Za/Zs6YknpPXRf9FdX9xlhrDvk38FgqbQ8/k1n+v8LqZhaVvRNv1s1s+UXZqt4W2Ha+72uXryvCf1m9N+c9jvySkj4JUKfzArd1cXS46EmtXba8IOBbymTcm+z2SlY1HXLNssFS2TqnaZVe/tUT/pw+0uJY7QstxlGvnqSPkDfr112VuKD4/XlbOvNKujXzFbP+vVcKFtnNp2FO9QIBiQxWJRh9gOdWOPcRSO5UCyI2i3cPvc2lSwSUEFZbfa1Tupd4O8AKhziLGArdWavDU6/dXTFQwGtfCGhSp2F+v8N89XQniClt68VBnOjBZN3/wd8/WzWT9TYkSiLuxyoZ5b8px+MeAXemncSwqxNRIo4ACfw+bCzer+1+6SpEm9J9Xdn3dX7NbXmV+rQ2wH7bhzR7O+lqN2pONUT1C/+eI3embxM0qJStGdw+9UlbdKjy18TIFgQB9O+lCX9rhUwaC0YYOpV+3ZY9oYwsLq5+z4/dLpp0vt2+9z4kOUI9fkrdH4mePl8rl0ff/r9afv/qQJPSbo3xP/XdcuelI4jPZ+n08qKDBzqbxe8+/a9zouzvx5fB5d/d7V+mDjB3r0nEe1On+1Zq2bpRmjZuihs+sHQj73w3O68/M71Tuptz6++mPNWjdLv/vqd+qf3F/f3fhdXR3vqF7PSfIbAI5UXkWe3D6zkEpKVIoc9sOb/H8quvm/N+uVla/o1iG3atpZ0zTsH8NU5CrS/37+P53R7gxJ0udbP9eFb10oq8Wqx0Y/phhHjP5vwf8przJPD571oP7vnP+T9syVfvydVLJW6vJLKfE0KSTGzO/xVUiuPVLbS6XoLvUXb219swBOSB6fR/6gCYAcbg8/Lu0WHp9Hxe7iums6w5yHOAI4AgG/tPszae+3Zt5sdHeTt+7bju/sJbU5y/QtlG2SXLvNmFaLzfzVBspPGCZFNq2N49zRQc2bZx7Pmyedc04jSQvUj0GZu32u/rb0b4oOjVapp1RT+k85LvMEfAGfqv1mHnGoLVR2a8sE7gdOZQuzFqrEXSJJ6pbQTd0Tux/+SSj34zD4fGYMZm0bnd0uORzSvuHBlucu1++++p0iQiKUX5mvMzLO0P+d838KD2kYjDSnLEdvrn6zrhx5cdeLW8e8b1eeVLHNjBEO+mry/ZpxA9Ywqc3ZUkj9vKHK6kp5AyYwXYwjZr++WV/Ap4fnP6ynvntKp7U9Td/t/E53j7hbj5/7eON9DI0oKyuT0+k89oHfXC6XRowYoTVr1tQV4oPBoP74xz/qt7/9bYN9ly1bpmHDhjX63MHccsstmjlzpoqLi2W31xcW3nnnHV199dVatGiRTj/99EaPHTt2rHbu3KkNGzY02P7EE09o6tSpysnJUVpa04K2Hc6bCAAAcLxUVFdoWe4ySVJESISGpQ9rdL+Xlr2kz7Z8JklqG9NWz5z/zNF1wB2sc6hkjbTxaalgsRkwGzdQCnGawnF1sWQJkUa82uRLuVxmQvy6ddKuXWZSjNVq/iwWM3j9ttuk+fOlL76Q1qwxFY6MDFPhsFrNv7t2rQ9ydEI7goE3eyr2qNxTLsl8/j+tXEmm4jFzzUx5/B5ZZNEl3S9RUmT9anhU/luPDzd+qInvTlSnuE7acPsG/fKTX+q1Va/p9qG3668X/XX/A47BYPUPNnygy2ZdJrvVrmfOf0Z2q12PL3xcO8t26uGzH9b0UdMb7PuzWT9T/5T+2l2+W5XeSn17w7eNV9ibkLaCqgL9+fs/yxfwySKLbht6m9rHtm90X0irVknnnisVFUmDBkkvvGAmvtV2BpSXSzt3moBw771nts2ZY4JsHsx/N/1Xl717mdJj0pVdmq2z25+tL679gsEcAHAc7C7frWGvDFNBVYFGtB2hrzO/1uOjH9fUM6ce+uDWhkGyOEllZ0u//KUZnBEfb4I89OwpRUWZOm1OjtSunfTSS9KCmnjKixaZCQLH3UEmDO0s3aluf+0mX8CnjbdvlNViVfe/dpfVYtXGX21Uh9gOR3fNxq678DIT4M3qkC5cZQJASVLefGneaPP4vIXSV+eYdoWuv5KGPG+2u3ZL216R1jwk2aP0zK5y/aZm7vPvfy899thhpq+R96THX3toU+EmOR1OxYfHK6igMksyJUmzLp+lK3pf0cSLqHXXq1tz2oBaBH7D0fjqHCn/ayminXRpltm26yMzaaJWp19IPe9tkeQdb8GgmaS4c6cJDLN9uwlCdTzULlQTYg1Rv+R+ksyE2fLq8rpAs263lJoqlZSYYx56SLrnHik62vQPvPeeCQD3m31jnhzktx8IBtTt+W7aVrxNV/W5Sud1PE/f7fxOr656tcGiFrU8nvoAc263OXVkpAmmExfXTG8Mjs6h7v2Lb5B2vN74sTE9VTx6keKfipck3Xv6vUqONCvvFVQV6IlFT0iS9t67V4kRiXrlFenmmw+clBkzzCJGubkmWfn55rsDAEdq5pqZuvaDa+V0OFXsLtYDZz6gR0c/2tLJatWCwaDOfO1MLdq5SM9d8JzGdh6rPi/2UZg9TBtv31gXkPySmZfo482NB3SfMmCKXrv0NVX7q5X4VKLKq8sb3e/e0+/VU2Oe0i9/ae7/kvT00z8pp9SorpZcgVK1faatKqordH3/69WnTR/Nz5yvz7Z8pm4J3bTx9o0NJtN5fB7tKtslSYoMjdx/kS0cveNc13x28bO6+4u7NabTGHWN76oXlr2gW4fcqhcufuGIzwkAQGvx8aaPNeHdCeqd1FtlnjLlVeZp/vXzNaJtS6yEtL+tRVv1TdY3kqT48HhN6DHhwDsfpO9o0N8HaeWelY0edt/p9+nJMU8ebVJxDFV5q9T3xb7aXrxdc66Zo4VZC/X4t4/ril5XaNYVsw7vZIfZn5Zfma8vt30pyYzvntBjAkE/m8Af8GvGghnaUWKCKJ7T4Rz9YuAv9tvv+g+v179+/Jeu63+d3t/wvkJtoVp28zJ1jOt4vJMMAJLM/WvS7El6b8N7So5MVpGrSB9e9aEu6npRg/1u/OhGvbrqVd0x7A6NzBipq967Sv2S+2nZzcsaThYP+CXXLrNQpd8lyWIWTguJM4uH7zsJnT5yAABaHa9X+uQTaelSE2zc4TALBtWGSvF4zFjjM85o0WQCAIDjpNkCv0lSRUWFnnnmGS1evFjx8fG64oordEkjy6a+/PLLmjNnjp566il1PYzloufMmaOLLrpI77zzjiZNmlS3/cILL9Tq1auVnZ0tm83W6LEvvviibrvtNi1evFjDhw+XJPl8Pg0YMEBRUVFavHhxk9NB4DcAAHDKO9JJwL4qyV9lAr6FRDfsZAJwRC548wJ9se0L3TzoZv1z5T8VHx6vzb/arLjwRmYeHoPB6v6AX12e76LMkkx9MOkD9Uvupy7PdVGILURZd2XtN8lg5pqZWpu/VpJ0bqdzNbrj6MavcyB0Oh+VwkLpv/+VvvvOTNytqKgPhBkWZgLDXX656SDIyzNBSB55RDrtNDN5tbJS2rzZfAxjx9afd23+WhW7zIpKA1IGKNoR3UKvEABOPavzVmvmmpmSzCqqd464s4VTBKAxXq+0fr0pY5WXm0Ah4eFSmzYmEFwgIN19txnM4Xab4Ls9e5pAIqWl0saN0s9/Ll155TFO2GGUwe/937360/d/0vX9r5fdatc/V/5Tdw2/S89c8Myxuf6+ZX1vmfR+klmVuNON0vBXzPacT6W9C6UNNRNjBv1FWlFz3zt7jpRWE7X43TCzqqIk2aPkv6xct9wivf66uczVV0ujR0tJSWZydWamKes+/HDTk/6HhX/Q7+f9Xud0OEfzrp+n+Tvma/S/RisuLE67f7ubQMhAczuSNgQGtaMxG/4orbpPkkU650sp5dyGzwf8kgKStWkr750M1q2T/t//M4uuxMWZtqIuXaSICNO2tG6d9OtfH/tAtdml2er4l44KBoPKvjtbbSLbKPXpVBW5ijT353N1bqdzNXu2dEVNbNXLLqtfvOBo/GXxX3TXF3dpZMZIffuLb+sCvfx0UQucoA527/cUSB+mmzJnY6K7SuM2q/NznbW9eHuju7R3tlfmXZmSpE6dpB1mzqk6dDBBfvr3l5YskX73O2nSJOnxx80g7bAwUy+wsyA2gKNUUFUgr98ri8VC4K8mWp23WoP+PkixYbEamDpQc7fP1VPnPaV7R9YH+p25ZqYmvz9ZqVGpWn7LcvkCPvV+obfKq8v1xbVfaGxn00k2afYkzVo3SwNSBujKXleqylulRxea4HuLfrFIp7U9XVFRUlWVKUvt3Wv+fyC3fXqbXlz2om4YcINevfRVjXx1pL7b+Z2eu+A53TH8jmZ9X9CIFggyPuGdCfpo00eSpP7J/fXDTT/QxgQAOGm8veZtrdi9QpI0qsMojes2roVTdIQOEvjtqUVP6f6596t/cn+9d+V7KvOUacg/higQDGjFLSs0MHXgcU4sDuWr7V/pvH+fp3bOdtpTsUdRoVHacPsGtYls09JJw1Fw+9y68b83qrCqUJIJzH1up3MPcRQANK9qf7W2FW2TZIL4t3O222+fUnep+rzYR7nluYoLi1Opp1RLblpy+GUIxuMDAAAAAHDCaNbAb8fD2LFjtWzZMj355JPq0qWLZs6cqX/84x968803dc0110iSbrzxRr3xxhvatm2b2rdvL0nyeDwaPHiwysrK9MQTT6hNmzZ64YUX9PHHH2vu3Lk6++yzm5wGAr8BAAAAaC02F25W3xf7qtpvJqu9PO5l3Tz45sZ3PkaD1f/03Z9075f36oIuF2hA8gA9segJXdvvWv174r+P5CWgFSgvlz7+WPriCxMgrqjIBMKIijLB4G64oX6SLQAAAI4dv19avVras0cqLjZByZxOUwbr3dsEiGgpxa5idX6us8o8ZbJYLIoMidS2X29TQkTCkZ/0QHWNkrXSnL7m8cCnpR6/MY+/GCYVLa3fb+hL0tJfmscjZ0ntagqpuz6Sgn7z2BoipY+XZMq18+ZJmzaZx+XlJgBfSooJdjxqVNOTvqtsl9o/a/qcdt29S9O/nq6XV7ysXw7+pV4c92LTTwSgeTGoHYcS8EurH5C2vSxVF0vxQ02wJ4tdcuVIxSuk0fOkuAEtndLjrqjIBH/LzzflEr/frDDcsaMJ+nawoCVHasy/x9QFX+me2F2XvnOp2jvba8edO2SxWHTttdJbb5l933nHBNI6WuWecrV9pq3KPGX6bPJnGj9zvGxWm7LvylZyVPLRXwAt62Bt29vfkH6YUv/v8HQpPK2+vFkT+K02qE9jftbzZ5p95Wxt2SJ161ZzmnAT9LlDh/r9KirMYhwffCC99JLZ9uST0n33NTxfMFgfJBoA0HzunHOnnlvynCSpV1Ivrfp/qxRiqw/0W1ldqTZ/aqMqb5WW37JchVWFGvvmWLWJbKPc3+TKZjWLEdcGiOsc11lbf71Vn2z+RONnjldKVIpyfpOjao+17p6ekSFlZx88Xev3rlfvF3orIiRCc38+V6e/erqiQ6OV85scFl1qCQcrRzRTXdMf8MvjN4sZhNpCZbcSJRYAgFbnIIHfskqy1OEvHWS1WJX7m1zN2zFPk9+frG4J3bTpV5uOc0LRVI8seETLdy+XJF3X/zpd1vOyFk4RAOBUtih7UYOg8Nf0u6aFUwQAAAAAAJrT4cQsa5UjCN5//3098MADeuihh1RUVKQePXpo5syZuuqqq+r28fv98vv92jduncPh0FdffaX77rtPd9xxh6qqqjRgwADNmTPnsIK+AQAAAEBrUjtQrMpbJUnqkdij4Q4HGoR+FCuR3zToJk3/err+t+1/+mHXD5KkO4ffeVjnQOsSHS1Nnmz+AAAAcPzYbNLAw1yo93iJC4/TM+c/ow83fShJGt9t/NEFfTsY2z4R7momu0qS+v6f5Cmo/3fKWGn1NLNt81+lthNMoLe2l9bv46usexgfL11++bFJYtuYthrdcbTmbp+rt9a8pfc2vCdJun7A9cfmAgCODYK64VCsNmnAE1K/R6SC76WqHKm6QJJVCmsjxfSQnL1bOpUtIj5euvji43vNGwbcoLnb5+rttW+re0J3SdL1/a+XpabtMje3ft9evY7NNaMd0bphwA36yw9/0eT3J8sf9OuaPtcQ9O1E1tQ28D1f1P87bqA0er4U6pSW3S5teaHuqSGpQzRr3SwlhCfo2n7XSpLeWvOWCqoKNCRtiCRp0aL6U115ZcOgb5JZUGPsWGn4cCkrS5ozR7r/fhPIcPhwE+w5J0f69lvp+eelSy8VAKAZPX3+05o+arokKcwe1iDomyRFhkZqfLfxenfdu3pv/XsqchVJki7veXld0DdJurjbxQq1hWpb8TZtKtikz7Z8Jsm0mVgtVoWFSe3bm3t/To4J/Nau3YHT1Supl87teK6+2vGVJs02EW6v638dQd+Op2boSz8cNqtNEdZmiLAMAACOi/ax7TWi7Qgt3rVYH278UF/t+EqSNKn3MVi9AM3mwbMfbOkkAABQZ2S7kRrZbmRLJwMAAAAAALRClmCQkfGNOZzoeQAAAABwQjjMVcpv/eRWvbT8JUnSaW1P03c3ftdcKQMAAABwImtKXSPgl/7bQaraKSWeJo05SP1i2z+lJTdLCkrRXaW2P5PCUyTXHmnvN1Jsf2noCwc+/ij8+8d/67oPr1OMI0ZlnrK6QNwAAODIuLwupT6dqlJPqUJtofL6vdr2623qGNdRknTBBdIXNbG6li6Vhgw5NtfdVrRN3f7aTYFgQJK0/JblGpQ66NicHMdfU9u25wyUSlaZf1+0XnL2NI9X/U7a8KQpW47brPk75mv0v0YrMiRSZVPLZJFFziecKq8u15c//1LndTpPN98svfKKOfzll6Wbbz745Zctk77+WlqyRCqoiWucnCwNGCBNmWIeAwBa1kcbP9KEdyeoe0J3lXpKtadijxbesFBntDujwX7nv3m+/rftf3p67NN6fsnzyizJ1KeTP9VFXS+SJD3zjPSb35h9x4+X3nhDiourP37bNik0VMrIMP/+cOOHmvjuxLrnN9y+Yf+FvtB8DrOPHAAAnIJqywsHKBM8u/hZ3f3F3Tqr/VlasXuFKqortP629eqZ1PM4JhIAAAAAAAAAAJwIDidmmf04pQkAAAAA0NIOc8D6o6Mf1bX9rpUkZTgzmiNFAAAAAE4GTa1rdJwirXtEKvheWnmf1Ot+yZFggsIVLJL2LpR6PyB1vlGK6ixtfUna8z9pwxPmeItViukpJTXfSsiX9bxMt312m8o8ZZKk6/tf32zXAgDgVBAeEq5JvSfp5RUvq9pfrVEdRtUFfZOkXr3qA799++2xC/zWOb6z1t22TtX+atksNvVu0/vYnBgto6nlzYpt5v9xA+uDvjVicNpgWWRRpbdSWwq3yGa1qby6XJI0JM18CTdvrt9/4MBDX3rIkGP3/QUANI8Lu16o2LBYbSo0Ad4zYjI0MmP/NoYJ3Sfof9v+p78u+asySzIVHRqtczueW/f8rbdKX34pzZkjffyx1LmzyQPi4qQtW6RVq0z5pjbw2yXdL9GbE99UUEFFh0YT9O14I6gbAAD4qQMFhv3p9ppyxJW9r9Rv//dbfZP1jSSpb5u+BH0DAAAAAAAAAABHjcBvAAAAAIBGJUQkaGS75guoAAAAAOAU02uqlD9f2vuttPGP0qZnpLAkqbpY8rulxNNN4DdJSh5l/oIByVMoBX1SaIJkC23WJEaGRurlcS9ra9FWSdINA25o1usBAHAqeOjshzSu2zhJUvfE7g2emzRJeuYZ8/iVV6Rf/lIKC2t4fFGRFB9/+NclqMopxr1X8pngbUo686C7xjhi1DWhqzYXbtbKPStlt5rhU53jOis2LFaSVF5ev39KSnMkGABwvIXaQjWxx0S9tuo1SdKk3pNkaSTox6U9LtXtn92uHSU7JEkXdLlADruj7vmwMOnTT6V33pHee88EgfvyS/NcmzbSFVdI3fcp8lgtVl3T75rme2EAAABoVmnRaTqz3ZlakLVAknRVn6taOEUAAAAAAAAAAOBkQOA3AAAAAAAAAAAAND97uDR6npT5tpQ1UypcLHkKJEeSFD9E6vSL/Y+xWE1wuOPo6r5XH9frAQBwskuPSVd6THqjzw0fLg0aJK1YIa1bJ51xhnTffVLXrlJmpvTWW1JGRn1wOOCAKrbVP47seMjdh6QN0ebCzVq1Z1Vd4LchaUPqnvf56ve12Y5ZKgEALey5C5/TjFEzJJlFsBqTFp2moelDtSRniSRpYo+J++1jsUhXX23+JKmyUrJapfDw5kk3AAAAjqFg8LAP+dfEfym3PFeS1DOx57FOEQAAAAAAAAAAOAUR+A0AAAAAAAAAAADHhzVE6nS9+QMAAJA0a5Z03nkm0Nvy5dKkSQ2fv/POFkkWTjQV2+sfR7Yz//dXS9nvSqXr9tt9SOoQvb3mba3cs1Ih1hCzbZ/Ab5GR9fuWlUmpqc2SagDAcRYVGqWo0KhD7vfJ1Z+ozFMmScpwZhxy/33zDQAAAJx82jnbqZ2zXUsnAwAAAAAAAAAAnEQI/AYAAAAAAAAAAAAAAIAW0bmztHKl9MYb0j//Ka1ZY7bHxUnnny/deGPLpg8nCG9p/eOI2sBvldLi6xrdvTbI26o9q2S32htsk6SUlPp9162Tunc/tskFALRuSZFJSopMaulkAAAAAAAAAAAAAAAA4CRlbekEAAAAAAAAAAAAAAAA4NQVGyvdeae0erVUXS2VlUlFRdLMmVLfvi2dOpwQ/J76xyHRh9x9UOogWS1W5VfmK7c8VxZZNDh1cN3zI0bU77tixbFMKAAAAAAAAAAAAAAAAAAAONUR+A0AAAAAAAAAAAAAAACtQkiIFH3ouF1AQ4F9Ar9ZQw+5e2RopHok9qj7d7eEbop21H/xRo6s3/fddyWfb/9z7N17RCkFAAAAAAAAAAAAAAAAAACnOAK/AQAAAAAAAAAAAAAAADhxWfYZAhX0N+mQIWlDGn0sSUOGSA6Hebx1q/TrX0vV1ebffr/06KPSSy8dVYoBAAAAAAAAAAAAAAAAAMApyt7SCQAAAAAAAAAAAAAAAACAI2Z11D8O1ERos0VKw16p3x7ibHDImE5jtGrPqrrH+woLk6ZMkf7+d/PvF1+UvvxS6tlTWrFCysmRZsw4xq8BAAAAAAAAAAAAAAAAAACcEgj8BgAAAAAAAAAAAAAAAODEZQurf+wpqNkWKnW+8YCHXNvvWl3b79oDPv/ww9IHH0j5+ebfW7eaPwAAAAAAAAAAAAAAAAAAgKNhbekEAAAAAAAAAAAAAAAAAMARcyTVP67MOianTE2VPv5Y6tmzkcs5pEGDjsllAAAAAAAAAAAAAAAAAADAKcbe0gkAAAAAAAAAAAAAAAAAgCMW3aX+8TEK/CZJw4ZJP/4oPf+89L//SS6XNHiwdPvtUufOx+wyAAAAAAAAAAAAAAAAAADgFELgNwAAAAAAAAAAAAAAAAAnrqh9orCVbTimpw4JkX7zG/MHAAAAAAAAAAAAAAAAAABwtKwtnQAAAAAAAAAAAAAAAAAAOGL2CCk81TzO+0oK+Pffp3zb8U0TAAAAAAAAAAAAAAAAAABAIwj8BgAAAAAAAAAAAAAAAODEFtXF/N+dJ2W93fC5zJn7bwMAAAAAAAAAAAAAAAAAAGgBBH4DAAAAAAAAAAAAAAAAcGKLG1j/eOkt0q4PJdduaf2T0uLrJAVbKmUAAAAAAAAAAAAAAAAAAAB17C2dAAAAAAAAAAAAAAAAAAA4KmnjpM3Pmcd+t7RwYsumBwAAAAAAAAAAAAAAAAAAoBHWlk4AAAAAAAAAAAAAAAAAAByV5FFSeGpLpwIAAAAAAAAAAAAAAAAAAOCgCPwGAAAAAAAAAAAAAAAA4MRmDZG6/7alUwEAAAAAAAAAAAAAAAAAAHBQBH4DAAAAAAAAAAAAAAAAcOLrfqfU/ur9tzsSpXZXHv/0AAAAAAAAAAAAAAAAAAAA/ASB3wAAAAAAAAAAAAAAAACc+Kx26bQ3pS6/lKwhksUqpV0sjV0qxfRo6dQBAAAAAAAAAAAAAAAAAADI3tIJAAAAAAAAAAAAAAAAAIBjwmKVhr4oDXrW/NvmaNHkAAAAAAAAAAAAAAAAAAAA7IvAbwAAAAAAAAAAAAAAAABOLgR8AwAAAAAAAAAAAAAAAAAArZC1pRMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACc7Ar8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDMj8BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDMCvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAM7O3dAJaq2AwKEkqKytr4ZQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaI1qY5XVxi47GAK/HUB5ebkkKSMjo4VTAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKA1Ky8vl9PpPOg+lmBTwsOdggKBgHJzcxUdHS2LxaKysjJlZGRo586diomJaenkAQCAnyCvBgCgdSOvBgCgdSOvBgCgdSOvBgCgdSOvBgCgdSOvBgCgdSOvBgCgdSOvBgCgdSOvBgCg9QgGgyovL1daWpqsVutB97UfpzSdcKxWq9q2bbvf9piYGAo7AAC0YuTVAAC0buTVAAC0buTVAAC0buTVAAC0buTVAAC0buTVAAC0buTVAAC0buTVAAC0buTVAAC0Dk6ns0n7HTwsHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgqBH4DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaGYHfmsjhcOjhhx+Ww+Fo6aQAAIBGkFcDANC6kVcDANC6kVcDANC6kVcDANC6kVcDANC6kVcDANC6kVcDANC6kVcDANC6kVcDAHBisgSDwWBLJwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATmbWlk4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJzsCPwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2MwG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MwI/AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzYzAb4dQUVGhu+66S2lpaQoLC9OAAQP0zjvvtHSyAAA45Xz99deyWCyN/i1evLjBvitWrNB5552nqKgoxcbG6rLLLtP27dtbKOUAAJx8ysvLdd9992ns2LFKSkqSxWLR9OnTG933cPLl559/Xj169JDD4VDHjh01Y8YMeb3eZnwlAACcnJqaV0+ZMqXRenaPHj0aPS95NQAAx8a8efP0i1/8Qj169FBkZKTS09N16aWXavny5fvtS70aAIDjr6l5NfVqAABaxqpVq3TxxRerXbt2Cg8PV3x8vE477TS9+eab++1LvRoAgOOvqXk19WoAAFqHV155RRaLRVFRUfs9R70aAICWd6C8mno1AAAnPntLJ6C1u+yyy7R06VI98cQT6tatm95++21dffXVCgQCmjx5cksnDwCAU87jjz+uc845p8G2Pn361D3euHGjRo0apQEDBmjWrFlyu9166KGHdOaZZ2rVqlVKSko63kkGAOCkU1hYqJdffln9+/fXhAkT9MorrzS63+Hky4899pgefPBB/e53v9PYsWO1dOlSTZs2TTk5OXr55ZeP10sDAOCk0NS8WpLCw8M1b968/bb9FHk1AADHzosvvqjCwkLdeeed6tWrl/bu3aunn35aI0aM0BdffKHRo0dLol4NAEBLaWpeLVGvBgCgJZSUlCgjI0NXX3210tPTVVlZqbfeeks///nPlZmZqWnTpkmiXg0AQEtpal4tUa8GAKCl5eTk6J577lFaWppKS0sbPEe9GgCAlnewvFqiXg0AwInOEgwGgy2diNbqs88+08UXX1wX7K3W2LFjtW7dOmVnZ8tms7VgCgEAOHV8/fXXOuecc/Sf//xHl19++QH3u/LKKzV//nxt27ZNMTExkqSsrCx17dpVd999t5588snjlWQAAE5atU0JFotFBQUFSkpK0sMPP6zp06c32K+p+XJhYaHatm2r6667Tn//+9/rjn/88cc1bdo0rV27Vr169To+Lw4AgJNAU/PqKVOmaPbs2aqoqDjo+cirAQA4tvLz89WmTZsG2yoqKtSlSxf16dNHc+fOlUS9GgCAltLUvJp6NQAArcuIESOUm5ur7OxsSdSrAQBobX6aV1OvBgCg5Y0fP14Wi0Xx8fH75cvUqwEAaHkHy6upVwMAcOKztnQCWrMPPvhAUVFRuuKKKxpsv+GGG5Sbm6sffvihhVIGAAAa4/P59Mknn+hnP/tZXaeCJLVv317nnHOOPvjggxZMHQAAJw+LxSKLxXLQfQ4nX/7888/ldrt1ww03NDjHDTfcoGAwqA8//PCYph8AgJNdU/Lqw0FeDQDAsfXTQDKSFBUVpV69emnnzp2SqFcDANCSmpJXHw7yagAAjo/ExETZ7XZJ1KsBAGiN9s2rDwd5NQAAzePNN9/UggUL9MILL+z3HPVqAABa3sHy6sNBXg0AQOtF4LeDWLt2rXr27Llfx0K/fv3qngcAAMfX7bffLrvdrpiYGJ1//vn69ttv657btm2bXC5XXV69r379+mnr1q1yu93HM7kAAJyyDidfrq1f9+3bt8F+qampSkxMpP4NAEAzcrlcSklJkc1mU9u2bfWrX/1KRUVFDfYhrwYAoPmVlpZqxYoV6t27tyTq1QAAtDY/zatrUa8GAKDlBAIB+Xw+7d27Vy+88IK++OIL3X///ZKoVwMA0BocLK+uRb0aAICWkZ+fr7vuuktPPPGE2rZtu9/z1KsBAGhZh8qra1GvBgDgxHb4S6WcQgoLC9WpU6f9tsfHx9c9DwAAjg+n06k777xTo0aNUkJCgrZu3ao//vGPGjVqlD799FOdf/75dXlzbV69r/j4eAWDQRUXFys1NfV4Jx8AgFPO4eTLhYWFcjgcioyMbHRf6t8AADSP/v37q3///urTp48kacGCBXrmmWf01VdfaenSpYqKipIk8moAAI6D22+/XZWVlXrggQckUa8GAKC1+WleLVGvBgCgpd122236+9//LkkKDQ3Vc889p//3//6fJOrVAAC0BgfLqyXq1QAAtKTbbrtN3bt316233tro89SrAQBoWYfKqyXq1QAAnAwI/HYIFovliJ4DAADH1sCBAzVw4MC6f5955pmaOHGi+vbtq/vuu0/nn39+3XPk3wAAtB5NzZfJvwEAOP7uvvvuBv8eM2aMBg4cqMsvv1z/+Mc/GjxPXg0AQPN58MEH9dZbb+n555/X4MGDGzxHvRoAgJZ3oLyaejUAAC3r97//vW666Sbl5+fr448/1q9+9StVVlbqnnvuqduHejUAAC3nUHk19WoAAFrGe++9p48//lgrV648ZD5KvRoAgOOvqXk19WoAAE581pZOQGuWkJDQaITaoqIiSY1HqwcAAMdPbGysxo0bp9WrV8vlcikhIUGSDph/WywWxcbGHudUAgBwajqcfDkhIUFut1tVVVWN7kv9GwCA42fixImKjIzU4sWL67aRVwMA0HxmzJihRx99VI899ph+9atf1W2nXg0AQOtwoLz6QKhXAwBw/LRr105DhgzRRRddpBdffFG33HKLpk6dqr1791KvBgCgFThYXn0g1KsBAGheFRUVuv3223XHHXcoLS1NJSUlKikpUXV1tSSppKRElZWV1KsBAGghTc2rD4R6NQAAJxYCvx1E3759tWHDBvl8vgbb16xZI0nq06dPSyQLAADsIxgMSjJR5Tt37qzw8PC6vHpfa9asUZcuXRQWFna8kwgAwCnpcPLlvn371m3f1549e1RQUED9GwCA4ywYDMpqre8+IK8GAKB5zJgxQ9OnT9f06dP1+9//vsFz1KsBAGh5B8urD4Z6NQAALWPYsGHy+Xzavn079WoAAFqhffPqg6FeDQBA8ykoKFBeXp6efvppxcXF1f3NnDlTlZWViouL0zXXXEO9GgCAFtLUvPpgqFcDAHDiIPDbQUycOFEVFRV67733Gmx/4403lJaWpuHDh7dQygAAgCQVFxfrk08+0YABAxQWFia73a7x48fr/fffV3l5ed1+2dnZmj9/vi677LIWTC0AAKeWw8mXL7jgAoWFhen1119vcI7XX39dFotFEyZMOE6pBgAAs2fPVlVVlUaMGFG3jbwaAIBj75FHHtH06dM1bdo0Pfzww/s9T70aAICWdai8+kCoVwMA0HLmz58vq9WqTp06Ua8GAKAV2jevPhDq1QAANK+UlBTNnz9/v7/zzz9fYWFhmj9/vh599FHq1QAAtJCm5tUHQr0aAIATi72lE9CaXXjhhRozZoxuvfVWlZWVqUuXLpo5c6Y+//xzvfnmm7LZbC2dRAAAThmTJ09Wu3btNGTIECUmJmrLli16+umnlZeX16DBYcaMGRo6dKjGjRun3/3ud3K73XrooYeUmJio3/72ty33AgAAOMnMmTNHlZWVdZ3569ev1+zZsyVJF110kSIiIpqcL8fHx2vatGl68MEHFR8fr7Fjx2rp0qWaPn26brrpJvXq1atFXiMAACeyQ+XVe/fu1eTJk3XVVVepS5cuslgsWrBggZ599ln17t1bN910U925yKsBADi2nn76aT300EO64IILdPHFF2vx4sUNnq8deEe9GgCAltGUvDorK4t6NQAALeSWW25RTEyMhg0bpuTkZBUUFOg///mP3n33Xd17771KSkqSRL0aAICW0pS8mno1AAAtIywsTKNGjdpv++uvvy6bzdbgOerVAAAcf03Nq6lXAwBwcrAEg8FgSyeiNauoqNADDzygWbNmqaioSD169NDUqVN11VVXtXTSAAA4pTzxxBN69913tWPHDlVUVCg+Pl5nnHGGpk6dqqFDhzbYd/ny5br//vv1/fffy263a/To0frTn/6kzp07t1DqAQA4+XTo0EFZWVmNPrdjxw516NBB0uHly88995z+9re/KTMzUykpKbrhhhv0wAMPKCQkpDlfCgAAJ6VD5dVOp1M33nijVq5cqby8PPn9frVv314TJ07U73//ezmdzv2OI68GAODYGDVqlBYsWHDA5/ftwqdeDQDA8deUvLq4uJh6NQAALeS1117Ta6+9pg0bNqikpERRUVHq37+/brrpJl177bUN9qVeDQDA8deUvJp6NQAArcuUKVM0e/ZsVVRUNNhOvRoAgNbhp3k19WoAAE4OBH4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGZmbekEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDJjsBvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDMCPwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2MwG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MwI/AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzYzAbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQzAj8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNjMBvAAAAAAAAAAAAAAAAAAAcQGZmpiwWi6ZMmXJYx1ksFo0aNapZ0gQAAAAAAAAAAAAAAAAAODER+A0AAAAAAAAAAAAAAAAA0GrVBl7b9y80NFQZGRmaPHmyVq9e3SLpGjVqlCwWS4tcGwAAAAAAAAAAAAAAAABwYrK3dAIAAAAAAAAAAAAAAAAAADiUzp0769prr5UkVVRUaPHixZo5c6bef/99zZs3T6effnqzXDc9PV0bNmyQ0+k8rOM2bNigiIiIZkkTAAAAAAAAAAAAAAAAAODEROA3AAAAAAAAAAAAAAAAAECr16VLF02fPr3BtmnTpumxxx7TAw88oPnz5zfLdUNCQtSjR4/DPu5IjgEAAAAAAAAAAAAAAAAAnNysLZ0AAAAAAAAAAAAAAAAAAACOxB133CFJWrp0qSTJ5/PpmWeeUf/+/RUeHi6n06lzzjlHn3766X7HBgIBvfLKKxo2bJji4+MVERGhDh06aMKECfrmm2/q9svMzJTFYtGUKVPqtlksFi1YsKDuce3fT/cZNWrUftctLCzU3XffrY4dO8rhcKhNmzaaNGmS1q9fv9++U6ZMkcViUWZmpl544QX17NlTYWFhat++vWbMmKFAIHAkbxsAAAAAAAAAAAAAAAAAoIXYWzoBAAAAAAAAAAAAAAAAAAAcCYvFUvc4GAxq0qRJev/999WtWzfdfvvtqqys1KxZszRu3Dj95S9/0a9//eu6/adOnaqnnnpKnTt31uTJkxUdHa2cnBwtXLhQ8+bN01lnnXXA6z788MN6/fXXlZWVpYcffrhu+4ABAw6a3sLCQo0YMUJbt27VqFGjdNVVVykzM1OzZ8/Wp59+qi+//FKnnXbafsfde++9+vrrrzVu3DiNHTtWH374oaZPn67q6mo99thjh/GOAQAAAAAAAAAAAAAAAABaEoHfAAAAAAAAAAAAAAAAAAAnpOeee06SNHToUL355pt6//33dfbZZ+t///ufQkNDJUkPPPCABg8erHvuuUfjx49Xx44dJUmvvPKK0tPTtXr1akVERNSdMxgMqri4+KDXnT59ur7++mtlZWVp+vTpTU7vfffdp61bt2rq1Kl6/PHH67ZPmTJFF1xwga6//npt3LhRVqu1wXHLly/X6tWrlZqaKkl68MEH1bVrVz3//PN6+OGH614rAAAAAAAAAAAAAAAAAKB1sx56FwAAAAAAAAAAAAAAAAAAWtbWrVs1ffp0TZ8+Xffcc4/OOOMMPfbYYwoLC9Pjjz+u119/XZL01FNPNQiE1rZtW919993yer166623GpwzNDRUdnvD9VMtFovi4+OPefqrq6s1c+ZMJSQkaNq0aQ2eO//883X++edry5Yt+u677/Y79sEHH6wL+iZJiYmJuvTSS1VeXq5NmzYd87QCAAAAAAAAAAAAAAAAAJoHgd8AAAAAAAAAAAAAAAAAAK3etm3bNGPGDM2YMUPPPfecsrKyNHnyZC1ZskSnnXaaVq5cqfDwcA0bNmy/Y0eNGiVJWrVqVd22K6+8Ujt27FCfPn304IMPau7cuaqsrGy29G/cuFEul0vDhg1TREREk9JYa9CgQftta9u2rSSppKTkWCYTAAAAAAAAAAAAAAAAANCMCPwGAAAAAAAAAAAAAAAAAGj1zj//fAWDQQWDQVVXV2vnzp1666231LdvX0lSWVmZkpOTGz02JSVFklRaWlq37bnnntNTTz2lkJAQPfrooxozZowSExN1/fXXq6Cg4Jinv6ysTJIOK421nE7nftvsdrskye/3H6skAgAAAAAAAAAAAAAAAACaGYHfAAAAAAAAAAAAAAAAAAAnvJiYGOXl5TX6XO32mJiYum0hISG69957tW7dOuXk5Ojtt9/WmWeeqX/961+65pprmiV9+6alKWkEAAAAAAAAAAAAAAAAAJxcCPwGAAAAAAAAAAAAAAAAADjhDRw4UC6XS0uWLNnvuQULFkiSBgwY0OixaWlpuvrqq/X555+ra9eumjt3rlwu10GvZ7PZJEl+v79J6evRo4fCwsK0dOlSVVVVHXYaAQAAAAAAAAAAAAAAAAAnPgK/AQAAAAAAAAAAAAAAAABOeNdff70kaerUqfJ6vXXbc3Jy9Oc//1l2u13XXHONJMnj8WjevHkKBoMNzlFZWany8nKFhITUBXY7kPj4eEnSrl27mpS+0NBQXX311SooKNAf/vCHBs/NnTtXc+bMUZcuXTRy5MgmnQ8AAAAAAAAAAAAAAAAAcOKxt3QCAAAAAAAAAAAAAAAAAAA4Wj//+c/1/vvv66OPPlK/fv00btw4VVZWatasWSosLNTTTz+tTp06SZJcLpfOPfdcderUScOHD1e7du1UUVGhTz75RHv27NH999+v0NDQg15v9OjRmj17tq644gpddNFFCgsLU9++fXXxxRcf8Jgnn3xSCxYs0KOPPqrvvvtOw4cPV2ZmpmbPnq2IiAi99tprslpZzxUAAAAAAAAAAAAAAAAATlYEfgMAAAAAAAAAAAAAAAAAnPAsFotmz56tv/zlL3rjjTf0/PPPKzQ0VIMGDdJvfvMbXXLJJXX7RkZG6sknn9RXX32lhQsXKj8/X3FxcerRo4eefPJJTZo06ZDXu/nmm5WZmal33nlHjz32mHw+n66//vqDBn5LSkrSDz/8oEceeUQfffSRFi5cKKfTqUsvvVQPP/yw+vTpc0zeCwAAAAAAAAAAAAAAAABA62QJBoPBlk4EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJzMrC2dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA42RH4DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaGYHfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCZEfgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoZgd8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJkR+A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmhmB3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgmRH4DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaGYHfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCZEfgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoZgd8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJkR+A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmhmB3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgmRH4DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaGYHfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKCZEfgNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJoZgd8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJm1ysBvFRUVuuuuu5SWlqawsDANGDBA77zzzmGfZ9q0abJYLOrTp08zpBIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmsbe0glozGWXXaalS5fqiSeeULdu3fT222/r6quvViAQ0OTJk5t0jlWrVulPf/qTkpOTjygNgUBAubm5io6OlsViOaJzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADh5BYNBlZeXKy0tTVar9aD7WoLBYPA4patJPvvsM1188cV1wd5qjR07VuvWrVN2drZsNttBz+Hz+TR06FCdddZZ+vHHH1VQUKC1a9ceVjp27dqljIyMI3oNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE4dO3fuVNu2bQ+6j/04paXJPvjgA0VFRemKK65osP2GG27Q5MmT9cMPP+j0008/6DmeeOIJFRUV6bHHHtO4ceOOKB3R0dGSzJsYExNzROcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcPIqKytTRkZGXeyyg2l1gd/Wrl2rnj17ym5vmLR+/frVPX+wwG/r16/Xo48+qvfff19RUVFHnA6LxSJJiomJIfAbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAOqjV12MK0u8FthYaE6deq03/b4+Pi65w8kEAjoF7/4hS677DJddNFFh3Vdj8cjj8dT9++ysrLDOh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsTa0glozMEi1h3suT//+c/asmWLnn322cO+5h/+8Ac5nc66v4yMjMM+BwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0ptUFfktISFBhYeF+24uKiiRJ8fHxjR6XnZ2thx56SA8//LBCQ0NVUlKikpIS+Xw+BQIBlZSUyOVyHfC6U6dOVWlpad3fzp07j80LAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHDKa3WB3/r27asNGzbI5/M12L5mzRpJUp8+fRo9bvv27XK5XLrzzjsVFxdX97do0SJt2LBBcXFxmjp16gGv63A4FBMT0+APAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4Fe0sn4KcmTpyof/zjH3rvvfc0adKkuu1vvPGG0tLSNHz48EaPGzBggObPn7/f9rvuukulpaV67bXX1LZt22ZLNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcSKsL/HbhhRdqzJgxuvXWW1VWVqYuXbpo5syZ+vzzz/Xmm2/KZrNJkm688Ua98cYb2rZtm9q3b6/Y2FiNGjVqv/PFxsbK5/M1+hwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA+tLvCbJL3//vt64IEH9NBDD6moqEg9evTQzJkzddVVV9Xt4/f75ff7FQwGWzClAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBoliCR0xpVVlYmp9Op0tJSxcTEtHRyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQyhxOzzHqc0gQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApywCvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMyPwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MwK/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzI/AbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQzAr8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDMj8BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDMCvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMyPw2ymsQ4cOslgsev311w+57+uvvy6LxXLQv88//3y/46ZPny6LxaJRo0ZJkjIzMw95nsb+pkyZcmxfPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAc2Vs6ATixtGnTRl27dm30ubi4uEMeHxYWppEjR+63PT8/X1u2bJHD4dCQIUP2e75bt26Hn1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACglSDwGw7LhRdeqNdff/2Ij09JSdG333673/bXX39dN9xwwwGfBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5k1pZOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACc7Aj8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNzN7SCcCJ5ccff9TkyZO1Z88excTEaODAgbr22mvVuXPnlk4aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GoR+A2HZdWqVVq1alXdvz/66CM98sgjmjFjhh544IGWSxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQillbOgE4McTGxuqOO+7QokWLlJeXJ7fbrZUrV+rnP/+5/H6/pk2bpr/+9a8tnUwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgVbK3dAJwYpgwYYImTJjQYNuAAQP0r3/9SwkJCXr22Wc1bdo0XX/99YqOjm6ZRAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtlLWlE4AT34wZM+RwOFRaWqp58+a1dHIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAVofAbzhqMTEx6t27tyRp69atLZwaAAAAAAAAAAD+P3v3HWZFdbhx/Hvr3u19l92FpYM0sSBW7KLGGhW7RmJM/dmSmFhjSaJGY2JJTIw9UaxRYxcVxIYoCkjvbQu7bG93b53fH2dvYwu7CFJ8P8+zz86dmTtzbps5c2bOOyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiux4Fv8l24XK5AAgGgzu5JCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiK7HgW/yTcWCoVYvnw5AP3799/JpRERERERERERERERERERERERERERERERERERERERERERERERERHZ9Sj4Tb6xRx99lIaGBhwOB0ceeeTOLo6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjILkfBb7JVTU1NnHfeeXz++ecJ40OhEA8//DBXXnklAJdeeiklJSU7o4giIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiuzTnzi6A7HyXX345v/71r7ud/sorr/Dss8/y7LPPkpWVxeDBg3E6naxcuZKGhgYATjzxRO67775vqcQiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiuxcFvwktLS20tLR0Oz0pKYm77rqLTz/9lEWLFrF69Wq8Xi+5ubmcdNJJXHzxxUyZMgWbzfYtllpERERERERERERERERERERERERERERERERERERERERERERERERk92GzLMva3gv1+Xw4HA6czt03V66pqYnMzEwaGxvJyMjY2cURERERERERERERERERERERERERERERERERERERERERERERERERkV1MXzLL7Nu6ko8//pjbbruNhoaG6Lja2lpOPPFE0tLSyMjI4IYbbtjWxYuIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7DG2Ofjtnnvu4cknnyQrKys67le/+hXvvPMOQ4YMISsrizvvvJMXX3xxe5RTRERERERERERERERERERERERERERERERERERERERERERERERERGS3tc3Bb/Pnz2fSpEnRx21tbTz//PNMnjyZ5cuXs3z5ckpLS3nwwQe3S0FFRERERERERERERERERERERERERERERERERERERERERERERERERHZX2xz8Vl1dTUlJSfTx7NmzaW9vZ+rUqQCkp6dz8skns2zZsm9eShERERERERERERERERERERERERERERERERERERERERERERERERGR3dg2B795PB6am5ujj2fNmoXNZuOII46IjktLS6O+vv6blVBEREREREREREREREREREREREREREREREREREREREREREREREREZDfn3NYnDhs2jLfffhufz4fdbue5555j9OjR9OvXLzrPhg0bKCgo2C4FFRERERERERERERERERERERERERERERERERERERERERERERERERHZXdm39YmXXXYZq1atYvjw4YwaNYpVq1ZxySWXJMwzZ84cRo8e/U3LKCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyW9vm4LdLL72Ua665hra2NhoaGvjJT37CVVddFZ0+c+ZM1qxZwzHHHNPnZbe0tHDVVVdRXFyMx+Nhn3324dlnn93q81566SXOO+88hg0bRnJyMoMGDeKCCy5g5cqVfS6DiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMj2YrMsy9oRC/b7/Xi9XlJTU3E6nX167uTJk/niiy+48847GTFiBNOmTeORRx7h6aef5vzzz+/2eQceeCD9+vXj9NNPZ8iQIWzcuJHbb7+djRs38tlnnzFmzJhel6GpqYnMzEwaGxvJyMjoU/lFREREREREREREREREREREREREREREREREREREREREREREREREZM/Xl8yyHRb8tq3efPNNTjrpJKZNm8Z5550XHT958mQWL17Mhg0bcDgcXT63urqagoKChHEVFRUMGjSIiy++mEceeaTX5VDwm4iIiIiIiIiIiIiIiIiIiETUtNUQCoew2+zkp+bv7OKIiIiIiIiIiIiIiIiIiIiIiIiIiIjILqIvmWX2b7qyl19+mbPPPpu9996bYcOGRccvW7aMu+66i/Ly8j4vLy0tjSlTpiSMnzp1KhUVFcyZM6fb524Z+gZQXFxM//792bhxY5/KISIiIiIiIiIiIiIiIiIiIhKxzz/3od89/Rj5t5E7uygiIiIiIiIiIiIiIiIiIiIiIiIiIiKym3Ju6xPD4TDnnXceL774IgDJycl4vd7o9OzsbG644QZCoRDXXXddr5e7aNEiRo0ahdOZWLS99947Ov2QQw7p9fLWrFnD+vXrOf3003ucz+fz4fP5oo+bmpp6vQ4RERERERERERERERERERHZs9V56wBoaG8gbIWx277xvfZERERERERERERERERERERERERERETkO2abr0L+61//ygsvvMBPfvIT6uvr+fWvf50wvbCwkEmTJvHGG2/0abm1tbXk5OR0Gh8ZV1tb2+tlBYNBLr30UtLS0rj66qt7nPeOO+4gMzMz+jdgwIA+lVtERERERERERERERERERET2TO3BdrxBczM8C4vG9sadXCIRERERERERERERERERERERERERERHZHW1z8NsTTzzBhAkTePDBB8nIyMBms3WaZ9iwYaxdu7bPy+5qWb2ZFs+yLC699FI++ugj/v3vf281yO26666jsbEx+rdx48Y+lVlERERERERERERERERERET2TPXe+oTHdd66nVQSERERERERERERERERERERERERERER2Z1tc/DbqlWrOPzww3ucJzc3l9ra2j4tt7vn1NWZi6ZzcnK2ugzLsvjRj37EU089xRNPPMFpp5221eckJSWRkZGR8CciIiIiIiIiIiIiIiIiIiKyZdCbgt9ERERERERERERERERERERERERERERkW2xz8FtycjJNTU09zrN+/XqysrL6tNxx48axdOlSgsFgwviFCxcCMHbs2B6fHwl9e/zxx3nkkUe48MIL+7R+ERERERERERERERERERER2cPZbFv/i1PfXt/jYxEREREREREREREREREREREREREREZHe2Obgt3333Zd33nkHn8/X5fS6ujrefvttDjrooD4t9/vf/z4tLS3897//TRj/5JNPUlxczIEHHtjtcy3L4rLLLuPxxx/noYceYurUqX1at4iIiIiIiIiIiIiIiIiIiMiW6rx1PT4WERERERERERERERERERERERERERER6Y1tDn674oor2LhxI2eddRbl5eUJ01avXs33v/99GhsbueKKK/q03BNPPJHjjjuOn/3sZzz88MPMnDmTH//4x7z99tvcddddOBwOAC699FKcTifr169PKNOjjz7K1KlTGTduHJ999ln0b968edv6UkVEREREREREREREREREROQ7rN5b3+NjERERERERERERERERERERERERERERkd5wbusTTzvtNK699lruvPNOSktLSU1NBaCgoIDa2losy+Kmm27i6KOP7vOyX3rpJW644QZ+97vfUVdXx1577cUzzzzDueeeG50nFAoRCoWwLCs67rXXXgPgscce47HHHktY5sCBA1m3bt02vFIRERERERERERERERERERH5Lqvz1vX4eLuy2Xo3X9z1EiIiIiIiIiIiIiIiIiIiIiIiIiIiIrJ7sFnWN7sS+N133+Vvf/sbc+bMoa6ujoyMDA488ECuuOIKjj/++O1Vzm9dU1MTmZmZNDY2kpGRsbOLIyIiIiIiIiIiIiIiIiIiIttLb8LV4i6nuGnGTfzhoz9EH//yoF9yz/H39G1525uC30RERERERERERERERERERERERERERHYJfcksc27rSjZs2IDb7ea4447juOOO29bFiIiIiIiIiIiIiIiIiIiIiOzS6tvre3wsIrIzhULQ2gq6t6WIiIiIiIiIiIiIiIiIiIiIiIjIrs++rU8cPHgwN9xww/Ysi4iIiIiIiIiIiIiIiIiIiMgup85bB0CKKyXhsYjIzvbCCzBoEGRmwsSJsHTpzi6RiIiIiIiIiIiIiIiIiIiIiIiIiPRkm4PfcnJyyMnJ2Z5lEREREREREREREREREREREdnl1LfXAzA4a3DCYxGRnenzz+GCC6CszDz+4gs48sjYYxERERERERERERERERERERERERHZ9Wxz8NukSZP47LPPtmdZRERERERERERERERERERERHY8y4r99WJ8nbcOgMHZgxMei4jsLM3NcPbZEAgkjq+uhquv3jllEhEREREREREREREREREREREREZGt2+bgtzvuuINFixZx6623EgwGt2eZRERERERERERERERERERERHYZ0eC3LAW/iciu4amnYP36rqdVVHy7ZRERERERERERERERERERERERERGR3nNu6xP/9Kc/MXbsWG677Tb+9a9/MX78eAoLC7HZbAnz2Ww2Hn300W9cUBEREREREREREREREREREZGdod5bD8SC3yKP91iWBZs/gvYqyJ8Eyf12dolEZAv/+tfOLoGIiIiIiIiIiIiIiIiIiIiIiIiIbIttDn574oknosOVlZVUVlZ2OZ+C30RERERERERERERERERERGR3FbbC1LeboLdBWYMA8Aa9tAfb8Tg923+FlpX4OHIDvi3H7yjhAHx4KlS+bR7bk2Dfu2HE5d/O+mWnsrb4nm15A0jZNaxdC/Pn7+xSiIiIiIiIiIiIiIiIiIiIiIiIiMi22Obgt7Vr127PcoiIiIiIiIiIiIiIiIiIiIjscpp9zYStMACDswdHx9d76ylKLzIP4sOy4oOyegpr+7YD3Xpr/m9ioW8AYR98eQXYPTDssp1XLvlWvLDkBc558RwAbph0A384+g87uUTSlZkzEx+npsKZZ8IXX8DSpTunTCIiIiIiIiIiIiIiIiIiIiIiIiLSO9sc/DZw4MDtWQ4RERERERERERERERERERHpRigEVVWQnw8u184uzXdLnbcuOjwwc2DC+Gjw256ifgEsv7fraeufUfDbbm7VKrjnHpg/H0aNgt/+FkaOTJynvKk8Ntxcjuw8s2bBjTfCV1+Zz+vWW+Gkk2LT4j3+OEyZAj4fnHUW1NV1Xp6IiIiIiIiIiIiIiIiIiIiIiIiI7BrsO7sAIiIiIiIiIiIiIiIiIiIi0r1nnoHBg6GkBHJz4fbbIRze2aX67ogEv9ltdrI8WaS70xPG71FW/n1nl0B2kFWr4LDD4J//hM8+M0FhEybABx8kzhcf9hYfAgeAzda7P/nGPvkETjwRPv4Y2trgyy/h5JPhscfM9FWrYvOedZYJfQNISoInnzQhoTtSTQ1ceSWMGAEHHgiPPAKWtWPXKSIiIiIiIiIiIiIiIiIiIiIiIrKn+MbBb9OmTWPy5MkUFBSQlJREfn4+kydPZtq0adujfCIiIiIiIiIiIiIiIiIiIt9Zzz8PF14IGzeax83NcMMN8LOf7dxyfZfUt9cDkOXJwmazkeXJShi/xwiHYON/d3YpZAdobYXjjoOqqsTxLS1m+xKvrKmsy2H59tTWmpA3r7fztKuvNv/Xr4+N2/IzzMmBa6/dceWrrzffp/vvh5Ur4fPP4bLLzJ/C30RERERERERERERERERERERERES2bpuD38LhMFOmTOGiiy7ivffeo7W1leLiYtra2njvvfe46KKLOPPMMwnrNuMiIiIiIiIiIiIiIiIiIrKHWL4cbr3VhO+8/vqODbnZuBEuugi6Ou3+8MM7br2SqM5bB0C2J9v8T85OGL/HqJ8H/rjXlLEXjPs95E/aeWWS7eIf/4B167qe1tqa+Li8ubzLYfn2/PWv0NDQ9bRwGAIBqKiIjTviiM7zHXTQDikaAOeeC/Pndx7/6KMmBE5EREREREREREREREREREREREREerbNwW8PPPAA//3vfzn88MOZPXs2ra2trF27ltbWVj777DOOOOIIXnnlFR544IHtWV4REREREREREREREREREZGd4o034IAD4JZb4N574ZRT4PTTwevdMev74x/B798xy5beq/fWA5DlyUr4Hxm/x6j5JDacXARHToexN8IxH8DwX+ysUsk3FA7Dfff1fv7ypljYW5OviWZf8w4olXQnGISHHup5nvLyWOjosGGQlbXDixU1YwZMn9799FDo2yuLiIiIiIiIiIiIiIiIiIiIiIiIyO5qm4PfnnjiCUaOHMm7777LgQcemDBt4sSJTJ8+nZEjR/L4449/40KKiIiIiIiIiIiIiIiIiIjsTM8+a4LemrfIQHr1Vbjrru2/Pq8Xnn56+y9X+q7OWwd0Dn6LjN9jtKyNDY++AVIHmGGbHfa7D3In7pxyyTfy+edQVhZ77HbDD38IJ5zQeV7LsihvLk8Yt+Vj2bE+/hhqamKPMzPhjjvgyishKcmMW78+Nn3AgG+3fH//+7e7PhEREREREREREREREREREREREZE90TYHvy1fvpxTTjkFp9PZ5XSn08nJJ5/MihUrtrlwIiIiIiIiIiIiIiIiIiIiO1tLC1x9NVhW19Pb2rb/OqdPN+uN2Gcf+Ppr+OADmKj8rW9VJOAtOznb/PdkJ4zfY7Suiw0PODNxmt0BY2/6VosjfdCyBub9Gj67BJbdC/766KS33orNZrebEMtHHzXjn37ajIuoaavBH/IDkJGUAUB5k4Lfvk3vvhsb9njgzTfh2mvh3nthxgxISYENG2LzFBV9e2VraTHliXA44E9/gscfh333/fbKISIiIiIiIiIiIiIiIiIiIiIiIrK76zq1rRfcbjetra09ztPa2orb7d7WVYiIiIiIiIiIiIiIiIiIiHwr3n0X7rsPqqpg7FgT9Lb33mbaM8/Apk3bf50N7Q2ErTB2m50sT1bCtNmzY8P9+pkguPx88/i99+CII7Z/eaRr9e0mRCsrKcv87/isIuP3GK3rzf+0IZDcr/N0Z+q3W57vKptt6/PEp1BWvA2zz48Le3sSltwOh70IBYezdGls1vPPh+9/P/HxunWxx+XNJuTN4/SwV95efF7+eXRcp/XGl7W7VEzg042fUtZUBsBJw08i1a3vUU+WL48N/+AHcMghsceHHAK33w6VlbFxxcW9X/bKlfDii9DQAAccAKedBi5X758/eza0t8ceP/kkXHCBGT7nHDjxxN4vS0REREREREREREREREREREREROS7zL71Wbq277778vzzz1NRUdHl9MrKSp5//nn222+/bS6ciIiIiIiIiIiIiIiIiIjIjuTzmZC3yZPhjTdg7lx44gnYbz8TagPw1FOJz7nlFpgzB/7wB9jWe6FZlsWAvw4g965cSv5SQtgKJ0yPD//56U9joW8A6emxssmOV+etA2KBb5H/kfE7jc229b++aF1n/qcO3u5FlR2k9guY9b240LcOvs3w9Y2ACfuKuPDCzou45prYcCSgrSitiOL04oRx2+o37/6Gc148h3NePIeF1Qu/0bK+C+I/r3PO6Tz9hz9MDF/r10VG45YsC/7xDxg/Hq6/Hu66C6ZMgf33hzVrEue9ccaNHPnEkRz5xJGsrV+bMC1+v7T//iY4MCI5GZ5+GjIzt14eERERERERERERERERERERERERke+6bQ5++9WvfkVtbS0TJkzgnnvuYe7cuWzcuJG5c+fy5z//mf3335+6ujp++ctfbsHkaQAAAQAASURBVM/yioiIiIiIiIiIiIiIiIiIbDc33QT33tt5fCgEzz4LgQB8+mls/G23wc03w8SJcMMN8MorYN+GM++bWjbR4m8BoC3QRkVz4k3X4gN2Tj218/PHjev7OmXb1LebUK3s5Gzz35OdMH6P4G+EQIMZTi7ZqUWRPph/DWB1O9myYMUKM2y3w6RJnedxuWLD5U3lABSnF1OUVpQwblutqF3R5bB0Fg7Hgt/sdjj44M7z2Gzg98cep6Vtfbm/+x38/Ofg9SaOX7gQ7r47cdyry19l1vpZzFo/q1NQX/x+6cwzO2dLlpTAmDFbL4+IiIiIiIiIiIiIiIiIiIiIiIjId51zW5948skn89e//pVrrrmG3/zmNwnTLMvC6XTy5z//mZNPPvkbF1JERERERERERERERERERGR7W7UK7rmn53lWroRg0Aynp8OvfpU4/cQTYfTovq97ee3yxMc1y+mf0R8woXOrVpnxDodC3na2Om8dAFmerIT/kfF7BF91bDil/84rh/Re0wqonhV7nNIf+k2Guq+gYT4AFRXQ1mYml5RASkrPiyxrKgOgKL0oFvzWvO3Bb/Xeeja3bY4+7in47fUVr9Psa8ZpdzJlzJRtXufurKIiFs5WUgIeT9fzxQe/xQf3dWXpUrjjjt6tP2yFWVm3Mvp4ec1yGBmbviLu4zvooN4tU0REREREREREREREREREREREREQ62+bgN4Arr7ySU089laeeeor58+fT1NRERkYG++67L+effz5DhgzZXuUUERERERERERERERERERHZrv7xDwiHY4+nTIGLLoIlS+Duu824JUti0ydP7jo4aeDAvq97ywCkFbUrOGbIMQCsWweBgBk/YAA4v9GZffmmIgFv2Z5s8z85O2H8HiHkiw17CmPDVniLGW1gs30rRZKtKH8tNpy1Dxz1DngKwLJg1T9gw/OsjGV49Wo7FQl5K04rpji9OGHctogPEYPug99C4RBnv3A23qBJPasbUhf9nX2XRAI/oefPKxJGCiYctCf33WfCRCMOOQSOOQa++ALefjtx3g2NG2gPtkcfdwoojXs4eHDP6xURERERERERERERERERERERERGR7n3jy8MHDx7MTTfdtD3KIiIiIiIiIiIiIiIiIiIi8q15663Y8GWXwUMPmUyrU06Bc86B229PDH4bN277rXt5zRaBOnEBOxs3xsYrXGfnq/fWA3DzBzdz35z7aPQ1AtDQ3kDYCmO32XdOwSwrNhwfxhY/vrfCccFvjqTY8Nv7QsPXscenlUNKcd+XL70LzLOs3n+ujYtiw/vfb0LfIs8Z/nPI3o/6j2Kz9CX4rSi9iKL0IgDKmsq2/sRubBn0tmWQWMTahrXR0DeAxZsXc1jpYdu83t1VU1NsuKfPy+WKDceHwG3JsuDFF2OPL7oIHnssFiY6bRp8+mlsek/7pXAYNmwwww4H9O/f/XpFREREREREREREREREREREREREpGc76epjERERERERERERERERERGRnae1FZZ3ZNo4HPD73ydmLA0aBH/5S2Lw27Bh22/9K+pMIFJpZql5HBeQ1N4em69YGVs7lT/kpzXQCsDKupXMKZ/DspplAIStME2+pp6evvsI+2PDNlf388muo3Gx+Z9cDPldhKTlHZSwLcnJ2foiIyFvxenFFKWZ4LeqlioCocA2FTGyXRtbMBaAlbUrCVvhTvMtql7U4+PvivjPKyur+/mS4rIZ/f7u59u4EWprzXBKCtx/fyz0DeD88+Haa2OPI0FvmUmZ5nFcEFx7eyx7sKgocTkiIiIiIiIiIiIiIiIiIiIiIiIi0jfbHPz2l7/8hby8PCoqKrqcXlFRQX5+Pvfff/82F05ERERERERERERERERERGRH+PprCHfkDx18MBQWdp4nLQ3q6mKPhwzp3bIXLIALLoAxY2DUKBOu88EHifNEAnWOH3q8eVybGLAT4fH0bp2yY9R767/R9N2GzRH3oHMwl+xirDA0daRSZu2dmFoZJ35bEh8W1p3ypnIAitKKKE43qZMWFptaNm1TMSPBb5OHTAbAG/RG1xFPwW9G/Ofldnc/X/y0xsbu5/vqq9jwCSd0HSbXv39sOLJfmjzUfF6b2zZHt3HxZUtJ6X6dIiIiIiIiIiIiIiIiIiIiIiIiIrJ12xz89sILL7D33ntT3M3txYuLi9lnn3149tlnt7lwIiIiIiIiIiIiIiIiIiIiO8K8ebHhMWO6n8/rjQ13FZoTLxiEqVNhn31g2jRYsgSWLYNnnoGjjoJXXzXzBUIB1tSvAeCEYScAsK5hHb6gz0wPxJbpdPbyBckOUeet+0bTdxv2uFSwcKD7+eJZFlS+AwtvhgXXw5onoL16hxRPtuCthGCrGU4f0e1sltX7Rbb4W2j0mRSx4vRi8lPzcXQEApY1lW1TMSPBb+P7jacgtSBhXLxI0Fv/jP4Jj79r4vP7evrs4oPXKiu7ny8++G38+K2vPxJAesiAQ0h3pyeM8/tj87lcW1+WiIiIiIiIiIiIiIiIiIiIiIiIiHRvm4PfVqxYwdixY3ucZ8yYMaxcuXJbVyEiIiIiIiIiIiIiIiIiIrJDrF8fGx41qvv5fL7YsNvd8zJvugmeeCJxnMMRG25pMf/X1K8hZIUAOGbwMdhtdsJWmNX1qwFIisvgig/bkW/fdyf4Le7LHWjc+vx182D6AfDBCbDoNlhyB8yZCv/rD6sf23Hl3J1ZVuJfV+N7K9AUG04dGBtuWgH1X0f/PO5gdFL8tqwr5U3l0eGi9CLsNjuFaYVmWnN5d0/rlmVZ0ZC3YTnDGJYzDOg5+O37e30/+tjqy/uxh/B4YsM9bfv7948NV1R0P1/8JVujR299/ZGQt+E5w6Of1/IaMy5+/xfoZTakbAchP1jhnV0KERERERER2ZVZYah4G5b8CZbcBWX/g0DLzi6ViIiIiIiIiIiIiIhsxTbfG7ytrY3U1NQe5/F4PLS06ISBiIiIiIiIiIiIiIiIiIjsWtraYsOFhd3P53LFhoPB7ucrL4c//zn2+Ic/hNtvh/x8+OoruPHG2LRI8FH/jP5kejIZkDGA9Y3rWVG7gtH5oxPCf1pbe/mCZIeob6//RtN3G6702LA3Lklq7z9C9SxYFvfl9lbCzOPAX9t5OeEANHy948opRsgbG3bGXbvz6blQPy/60GOvBvIBaGjoeZGRcLckRxLZnmwAitOLqWiuSAiF663KlkpaA2YDNjR7KEOzh/Lpxk87Bb/5Q/5o4NgZo87ggc8foNZbS1VrFf3S+vV5vbuz+G1/bRc/r4iBcVl/PQW/xV+yVVLS87pb/C2UNZUBsaC+eZvmRT+b+LLF7z9lB/BWwap/wOqHzfbY5oDMcVB6Noy4HFxpO7uEIiIiIiI7XW0tPPMMLF0KoRAMGwYnnwx77ZU4XyAAM2fCunXgdMKYMTBhQuKNGkR2VStrV3LUk0cBMLZgLG9f+HbnmSrehq+ugublieOdaXDIM1By8o4vqIiIiIiIiIiIiIiIbJNtDn4bOHAgn376aY/zzJ49m/7xt5kVERERERERERERERERERHZBbS3x4aTkrqfLzk5NtzTfc/efjsWDHf88fDII2CzmccTJsCbb0JNjXkcCdIZmj0UMCE76xvXs7zGjI+/B9uGDb16OX0SCsGmTeD1mtC79PStP+e7qs5b942m7zY8RWBzghVMDH4rOdmMjw9+W/T7WOhb4TEw/k5IGwKNi2Hl37/dcn9nWXHDtm7nysoMR4fXr+95iZFwN5fDxa2zbgWg3muCDSOBYH0RCXhLdaVSkFoQ3d6tqFvRab5gOIjdZufg/geTl5JHTVsNi6oXfeeC37KzY8M9fV6lpbHhtWu7n88blw/Y034OYp+X3WZncPZghuUMA0gIfrPZwLKgstLs75zbfNWZdKtxCbx/FPiqY+OsEDTMN3/5h0LB4TurdCIiIiIiO53PB1dfDY8+Cn5/4rRrroGnn4bzzzeBb7fdBg8/DFVVifOVlsJ778Hw4d9euUW2xftr348G9Ve2VFLvrSc7Oa7xoGY2fHSquREDgN0FjhQINEKwBZqWK/hNRERERERERERERGQXZt/WJ5588sl8/PHHPPbYY11Of+SRR/j444855ZRTtrlwIiIiIiIiIiIiIiIiIiIi30jrRtj0HlRON8FU4RCQGIKzZUfRePGhaD0F8bzzTmz4sstioW8RdjsUFJjhSMBOJFgn8j8yfujQ2PN6CvXpq2XL4PLLoaQE+vc3HVwzMmCffeCll7bfevYk35ngN7sDUjpu7NdW3v18lgXlr5rh9OFwxBuQOwGScqBgEhz6LIy5fseX97vO4YkNh9q7nW34sGB0eN26nhcZCXdr8bdw66xbuXXWrayuXw0Q7WTcF/HbOZvN1mk7F7GoehEAQ7KHkORMYlTeqITx3yXxoQM9fV6FheB2m+HKSijrIpcvHI7NA7Fg0u5EgkcHZg7E7XDHgt86xtvtMHCgmTcUgo0be16edM2yYMkSePxxeOABE0qxbJkZj2XB7AtjoW/9jodDnoFDn4eRV4M7u8dlbxcta2DDi7DuaVN38u0h+zgRERER2SNYFkydCv/4R6wt74gj4NxzYd99zeP6enM8NGUK/OEPsdC3IUNg3DhznLRhg7khguwibLat/31HzVg7IzoctsJ8uP7DxBnm/ToW+jbuNjijDs5qgFPXwajfgMONiIiIiIiIiIiIiIjsurb53qu//e1vefbZZ7nssst46qmnOO644ygpKaG8vJzp06fz4YcfUlxczHXXXbc9yysiIiIiIiIiIiIiIiIisvOEA7D5Y2heBYTBUwS5B0By0c4umWyp/DVYcgfUzE4c786G/e4jJeWi6Kjq6u4XM2JEbHjVqu7nmx23mkMP7bloy2tNkE4kWGdo9tCE8YWFJnCuudl0UG1thdTUnpe5Ne++C6edBl6veZyaasLfNm2CBQvgf/+DM874ZuvYE9V767/R9N1K6kBoXQeNiyAcBHsXl5Q0rwRvRwhY6bngSOo8j6dghxZTAEfcBsEbF8qWcwBYYWhYAEBJcYjkZPO7LyuD9nbweOhST+Fu3yT4bWjO0IT/a+vX4g/5cXd0Po4EvEUC30bljeKjDR/tlsFvVVXw3ntQ3vF2DRwIhx1mwjZ7o6DAhHE2NZltc0sLpKV1ns9uhwEDYLXJ5eOdd+DSSxPnefbZxP1GTU3P695yvzQ8x6TQrapbRSgcwmF3MHJkLJBuzRoYPLh3r0uM//zHBE+sWNF52plnwosPfw3188yIwZfAgY/FAg5Kp8CYGyHcQ1LtN7FpBnx9HdR+vsUEG+z1S9j3zztmvbL7scLQtAx8m8HugbQh4Mnf2aUSERGR74h58+CZZ8xwTg5Mnw777x+bPncuNDbCK6+Ydi6AoiJ47jlzbGazmeOshx6ClJQdX17LMiF0DseOX5fsecJWmJnrZgKwb799mbdpHjPWzuC0vU4zM7RXx9q9B10IY2+KPTl1IOzzp+gNUEREREREREREREREZNe0zcFv+fn5zJw5kwsvvJAPPviADz74AJvNhmVZAEycOJGnnnqK/Hxd2CMiIiIiIiIiIiIislWtG6D8VaiaAb4asCeZC/PzD4XSc8D5LfRCERGR7oUDsPAWWPkgBBo6T9/3HhOMIbuGdU/D7AvNsDMdSk4FT6EJtap6DxoXUVoam33p0u4XNXp0bHj58u7nq+/I/3K7oV+/nosXCUQKhALMKZtDIBxIGG+zwciRpsMqmFC5Y49NXIZlxfJgANY3rGf66ukAjMofxWGlh0Wn+Xxw/vmx0Le77oKf/9yEAoXD8MknsHhxz2X+rqrz1gFw9OCjeeK0J6Ljf/HmL3htxWvR6XuElIHmf7AF6r6AvIM7z9MU92OJn96yJm4mO6QN2hEllIiU/mB3mX1Tc1wi5cSHYNN7MPM4wASEDR8OX39tfusff9x5WxIMgtPZc7hbWVNZn4sY2Z75Q35eWfZK9LcSskKsrV/LyLyRACzebDY+e+XtlfA/Mn538PXX8H//Bx991PX06dPhOPORYFkWb658k7AVxuP0cNzQ46Lz2Wzm8/ryS/N41iw46aTEZQUC4HJBaWks+O2hh+AHPzCfI8CiRfDwwzB+fOx5y5bB977X/WuIBL/1S+tHZXMlaW6TOOcL+VjfuJ4h2UMYOdKEzAF89hkcc8xW35rvDsuCxsXQshqsICTlQ+ZYSMoB4N574eqrzaypqTBlCuyzDzQ0wAcfdIQFlv8vtryRVyXu5CG6rL6VKwwVb0HF62a7HmwFVxZk7AXFJ0HpWVA1Ez6YDFYInGkw4ExIGwrtm6ByOjTFVX5C7Wb+yregZS1ggacfZO8L/b8PKcV9L6PsHvyNsOgW2PA8eCsSp2WMhiPfhtQBO6VoIiIisgcJ+WDzJ1A904Ra2V2QUmraH/IOYdq0WILaDTckhr4BTJhg/sff2OCBB2DSpNjjtDT41a923EtYsgSefNIcOy1ebI6509PN8dlPfgIXXrjj1r3b6uh/BCQeB8WP/w5aWLWQmrYaPE4PVx90NRe/cjHvr30/NkPldKDjPRpwZtcLsSt1UERERERERERERERkV7bNwW8Aw4cPZ86cOcydO5fPP/+choYGsrKymDhxIhMiZ85ERERERERERERERKRnK/4G835pghvsLkgdAnY31HwKax6FzHGQG2t3v3/O/axvWA/AlQddSWlmaXdLFhGR7eWrq2Hl381w8UlQeq4JEmvbCJvegUDzzi2fxIRDsOA6M5w+Eo77GJLyYtODbdCyhv3aYqMWLep+cWPGxIanTzfhSXZ74jytrZ3zWbrT5GtiU8smAH73we/43Qe/i07b3LaZem892cnZCcFvzz/fOazp+efhnHNij+/65C4enPsgAIOzBrPqilXYbaagL78MNTVmvnPPhWuuiT3PbjcdYOM7wUpMfbtJ9CtKK2JAZizQpDi9OGH6HiF1YGx45T+7Dn4LtsSGk3Jjw68NjQ27c+HMmu1fPomxO832rXFRYhhfF0aMMMFkANOmdd6W3Hsv/PrXPYe7lTeVY1kWtt5u6IgFv72+4nVeX/F6p2mR4LdF1WYD7LQ7+bz8c6yOTsuLqhf1eZ07w6pVZvvZ1AQOB/z0pyZgLTsb1qwx21+fLzb/pxs/5eRnTo4+XvLzJYzKHxV9HB/89vTTnYPf7r4brr/e7JtmzjTjvvgCbr4Z/vhHs84zz4S8PNhvv9jzthbuubzGhHv95+v/8J+v/9NpWiT4LeKFF0w54j+edevM+7D33j2va48SDsKS22HVQ53DsADG3EjLkN9z883mYVoafP45jIp95Nx8M2zYAGzo+KE60yFrnBn2boK6L2MzpwyA7F6+wYEm+PA0qP7APE4ugfRhJvxtw7NQ9b4Jflt0qwl9S8qD4+cm7gssC5o7gt8aFsFHp5twOwB3jgm4q/7QtFt4K2D8H3tXNtm9hHww4yion2ceD5gCeQeZ9qvGxeYmBoFGQMFvIiIi0r1w2NxQYflyaG83YWjDhpljILsdqHwHPvsBtFeZJ9jd5gZJwY4212NmMX364dHlnXxy53UAhELwxhtmODm55wDs7e3RR024Wyhkjg+POgoGD4bGRnNTh+eeU/Cb9N6MtTMAOKj/QRwzxCSvL968mKqWKgrTCqFtfWzm7H3Nf38DLP5DbHxysW5WIyIiIiIiIiIiIiKyC/tGwW8REyZMYMKECQSDQRYuXAhAIBDA5XJtj8WLiIiIiIiIiIiIiOy56hfAl5eb4eKT4cBHwVNgHocDsOl9SO4XnX113WquevuqaCACwD3H3/NtllhE5LvHuwlW/8sMl54Lhz6TOH3oD03Y2I7QVgGrH4bNH0HDQgi1gSMFUgdAzkQ44MHYvME2qP8KmldD2A/ONEgthazx4ErbMeXbFVXPNIF8YDq2xYe+AThTIGsse+9tAmssy3S+3LwZ8vMTZ21rg732ij0uKzMhPmeeGRu3erXpuJmTAy0t4PdDZSUUFXVdvEgYUndW1K7gwP4HJqz33/+GSy6BQw4xjxctgp//PBb81upv5amFTwGQk5zD2oa1vLfmPSYPnQzAW2/FlhVfdtm6Om8dANme7ITxWZ6shOl7hEjQEMC6f0PegTD0x1D3eWy8wxMb9u9BoXe7o8wxseC35tWQPrTL2eK3Jf/5D0yZAieeaB6//DLceacJfitvKu92Vb6QjzpvHbkpud3OEy8YDrK6fnW30yPbwbZAG6vrzHx3fHwHd3x8R3SeFn8LGxo3MDBrYJfL2FXceacJOwP4299M8FvEwQfDBReY/UzEQ18+BEC6O51mfzP/+vJf/PWEv0anxweCPfccnHUWnHGGefz88/CnP5nAtaOPNuuLuP12eOopKC83IQNbBr+9/XYsfCCezwdut9Xjvml57XJOHH5iQvDbggXw+OPwwx+axy0tJlj0L3/pdjF7pi+vgFX/MMPDfgalZ5tgYF81bP4EbE6efz72HTn33MTPOKK0FFjTah44U6EjuJWa2fDxGbEZh14GE//Vu7ItuTMW+jbxYRjyw9hyg14zrXU9VM8y4wZdnBj6BqailLEXWGH4ZIoJffMUwqHPQcERZh7LMuF0gabelUt2Pxuej4W+TXwYhv4ocfp+9wPhb71YIiIisnvYvBluvNEczzQ0mHFuNwSDJgzumGPgvVfL4MNTTXtm9n6mzpu9r6m/ejdBxRvgKaS2Nrbc0m7uh9TYaNrmAEpKTPjbt6GiAn7xC3PcVVgI77+feDMJy4IVPTcJyndBb8LtOxoRZqwzwW+Hlx5OcXoxQ7OHsrp+NTPXzeTcseeac8hbCjTDsrhzxln7KPhNRERERERERERERGQXZt/6LDFr167lscceY0UXZ51ef/11SkpKoiFwRUVFPP/889tUqJaWFq666iqKi4vxeDzss88+PPvss716bnV1NZdccgl5eXmkpKRw8MEH8/77729TOUREREREREREREREtpnN1ru/lR299W12OPjfsdA3ALsLik+AlP7RUffPuR8Li2OHHAvAw189TJNPHaxFRHaoyrdiHamGXmr+h0NQ8Wbsr3pW77f9vVX3Jbw5ChbdAu1VMOYGOGQaHPBPGDAFWtea+bxV8Mk58GIGvDcJlv4J1k+DFffCrJNgxlHb893Y9TWvjA3nTDD/Q35495DY34enkpZGNMQmGIRbbkkM59m4EX71K0hLS+yoecklMHOmmfejj+Coo0yn0oMPjs3z8cfdF295zfIei7+81kw/7rjYOJ/PBDXdfTdcd50JgKuPy9x6bvFzNPmaOKD4AK6YeAUA//oyFgzT3Bybd8twO+lZJNgtEvQWEQmC26OC3wq32FbM/QU8nwQLb46Ni6uX0rI2NnzkdBhy6Y4tnyTKjNswLbiu2wDSE06IDQeDJkTsyitjgWKhEARCATa1bALgvhPu45MffsInP/yEN85/I/rcsqayXhdtXcM6guFgt9MjIWNLNy9NCLTe0qLqRb1e585gWSacDUxwwQ9+0PV8kV1/bVstzy8211I9cuojADyx4Am8AW903kgoH5gQhHPPhcsug5NPNmGf4Y5spSOO6Fyl2LDBfJ4Re+0Fno6sxooKeOihxPlXrDCBceXN5bQGWrt9nZH91sEHQ0pKbPxll5l959//DhMnwpw53S5i99Ob+lzr+lgw8PBfmDDewiMhc5QJRRtzPYz+DatWxRY7YUIP63Rlmv++zRD5/ThTIW0Y2JP6Vv5wCFZ2BNIVnWiCumxxlwk6k6H4RGhdFxuXE5cUOOsUeGuf2F/ZK9C0zEwbf0cs9A3Me5E7Afod3bcyyu5j/TTz35UV29f7aqDuK/PXuAh8td0+XbYzfyNs/C8s+yssuAHmXwdL7oINL3b5OYRCUFdngkEbGxOPd7a7puWw+I/wyXkw41hz3DXzBPj8x+aYWWRb7dAvrmwvbYE2mn3NNPuasfSZSQefzxy7/OtfJgz5zjuhqgra2820r7+GqVOBFQ+Y0DeAw16EnP1j9dfkfqY9NmMkaXH3tajrpjkmPuituXn7bkKe/vpphtw3hCH3DeGEp04gbMXCbx96yLwmgCuuSGxLBFNtjg/T/q6orYVHHjHtDxMmwMCB0K+fOV49+WT48MOdXcJvmWXF/noYHwwHmbXOhHRPGjgp4f+MtSYQjqS4cP62jjB/ZzL0PwPShuy41yAiIiIiIiIiIiIiItuNsy8zP/zww/zpT39izZo1CeNXrVrF2WefTXt7OwMHDiQlJYVly5ZxwQUXMHz4cPbdd98+FeqMM87giy++4M4772TEiBFMmzaN8847j3A4zPnnn9/t83w+H8cccwwNDQ3cd999FBQU8Pe//50TTjiB9957jyOOOKLb54qIiIiIiIiIiIiI9NWsdbO4b859APRL68cDJz6Aw+4wE7e8aD/SK3/L8e93dI5O7g9uEyDChufhi5/F5hn2Exh/Ow3tDTw671EA/jL5L1z1zlXMWDuDR756hF8e3Mc7tvfyrvKWBV99BR98AMuXm06izc0m2KCgwHTw/9GPYk8JhoP4Q6aDjtvhxmnv06kIEZHtq2UdbJoODQvAXw/BFhOckZQP2ePN9rU3gnFhKJFQjrDPhKpFpJT2ftvfW19eCYEmSB0Mx80GV1ri9NG/Ncv+9DyongkpA+DItyFzdGweK5wYzvRd4Ijr4RkNP7BMIFywFUJeSC4G4PjjYVlHjsmDD5r93IUXwtKlpjPqfh0ZKOedBzfeaIZbWuDoo02YTnt7bFXHHx8LAHroIROqFL+7DYWgujoWeJTsTKYkoyQ6vaK5grZAW3T6xIkwYIAJoAPTQfY3v4ktL37ZkZC3H4z/Ad8b/j1umXUL/1v+Pza1bKJfWj9KYqthyRLT6VZ6p77dJOxlJ2cnjI8EwUWm7xGS8iDnAKj7IjYurhMzANn7miCiYCusfwaG/9SMLzoO6ud9e2UV6HccLPydGd74AsxqhJJToOx/CbMdfLDpVL3J5LrR3g7335+4qE0tm6IBbEcPPpqxBWMBCFthHDYHIStEeXM54/uN71XRItsxu83O+MLYcza1bKKypZIVdWb61oLdFlUv4qQRJ/U4z85kWeDtyGzzeGIha93594J/4wv5OHzg4UwZPYXfF/yeRdWLeGHJC1w8/mLAdIQvLTUhbgCBgOkkv6WcHBPq99Zb3a/P6YRjjoE3OvL7/u//zPdg8mT44gv4/e9NmFx8IGl+SiwdtDXQSlugLRpImpJiOuZH7gMaDsOtt/b8mndb8XW3+B1u/PgNz4PVkbRXFJfY98k5EOpIfLC7SU+P3Th18+Ye1pl3MGx4ziyzdg7kHwpFk+GUlTD9IDMuwt9o6n61X4C/1jy2O8GdC2mDofRcCDSYeTP2Sixb/DZi/7iNQXtc4fz10LbB/IfEUN2sjt90sA1eGxobn1ICx8/t4QVuwVcDFW9Dzacm7C7QCNhNu0jqIBh1DSTl9H55suMEGs1/T37s91D2P/g8rjFo1G9hnzsB8z2fO9f8b2w0oaMZGVBSAgcdBFlZ327x9xhW2ITyrnkUbA4T6JE5xhz7+DbD2idMQM6AM3jnHZg2DWbMMOE6gwZBZqZpz6uvh9/+Fn7Zx2bErZr/W1h6l7mJxfBfQOnZ5vccaILm5dCyZuvLEAETfrr+WSh/FermQqjNfK9sDsAGmWPhiNd6v7xetoHvKO+veZ9ar2mXOHrw0eSl5O2wde3M17qqbhXj/zmetkAbAI+e+ig/3PeHO2Rdsnt5/HHTxgbw85+bfVCE0wnjxpk/Zi02I5PyTH0WoPJd+OqK2BMGTOHgg29jhTmc5L334OKLO68zORlGjzbtX1VVZv2jR3eeD+jT76bZ18w1715DZUslw3KG8c7qd/jPgv/wg31MAnh5eewpo0ZtfbHfBV99ZY5JGxpM4Nv118MBB5i6YX29Cf4LdZ1h3yPLsqLbVofN0anNbk8wt2IuzX5zJ4+fvv5T3A43m9vMMdv7a983M+XHNfBumg75h5jf0KT/wtzLYzceExERERERERERERGRXVafelt9/PHHjB8/noEDByaMv++++2hvb+cXv/gFDzzwAAAvvfQSZ511Fn/729949NFHe72ON998k3fffTca9gZw1FFHsX79eq655hrOOeccHA5Hl8999NFHWbRoEZ9++ikHd9xO/aijjmL8+PH85je/Yc4edWtZERERERERERER+SYCAWhrA7/fBFilp4PdvrNLJbuaYDDWkT8lBeKbp2vaajj/pfOpaqni4AEH8/KylylOL+bGw2/s20pSBpj/7ZUmQMOZCukjTSfJVf80nTeDpsPUw18+TGuglUmlkxhXOI6fT/g5M9bO4L4593HFgVf0LWStFx3ZGxvhpJPgk09MR4wbb4SjjoK8PNMZo7w8FkYD0Opv5YgnjuDLyi8BmFgykQ9+8AHJrrgAHhGRrQn5oWW1CRgItgA2s21MyoPUgabDb28s+oMJxHEkw5gbYfAPTBiGFYC2cmhd3/syZcUF3dR+DrkHmAC5o943HezX/acvrxDCAVj7b9j0LjR8DZ5+4EwxHZmtMITa4cBHof4rM3/OhFjo27zfwJrHYsva+/cm+ANgyNRY6NuSOxNDOsb9HlKK+1bO3VXhUYANsKDiNRNI5UiCMzbDot/HgpIwnU7vvz+2+3v6afO3pUsugT/8ITHoLX4YTACP223ql++/bwLkbr8diorg88/NfvTHP4blbhOgc/aYs3ni9Ceiz7/s1ct4ZN4j0YAdmw0uvzwx7K0rCzYtYE65ORc+Kn8UTb4mxuSPYfHmxTw+73Gum3Qd558Pf+vo6/foo3DZZaaDbbxAAFy9/Hl9l9R56wDI9iR2Io10Ko1M32MM/VFi8NuW7G4oOAoqXofNH8Ly+2D4/4HdAey4wATpQu6B5rihuSO0a9N087cFux2uuMJ0sO5OeXOsh3pxemxfYbfZKUovoqypjPKm8q6e2qVI8NvwnOF89ZOvouMfn/c4P3z1h9HpkeC38YXj+c2hsY3dI189wsx1M1m0uedguJ3NbjchnbNnm3DOOXNMqFFXLMvin1/+E4CjBx3NyrqVHDfkOBZVL+Kfc/8ZDX6z2czn9etfb339P/lJz8FvYMLeIsFvlmXC3n7/+8R5IvudwVmDWXNlLJgn8nlFpoPZLz3/PL3ynwX/4ep3rgYg2ZXMG+e/wd6Fe0enL1tmljV3rgm6KyqCpCTzvgaDJmi8q9C7XYYrKzbsq4kN2xzQutbU8RzJnHpq7Pf37LNw7bWd98GACW786iozvPBmOPKtruu9Za/C7PNN+8Gwn5rwp+Qi8wG3V0HjIlN3dmWZ8LfmFbHnDphiwm+X32sepw01dWxfDZT/D0Zeab6Ex30MG/8LH59l5kuOS5BtWQM5+4HNCYMvgc0fQc0nZv/QW5XvwkenmTDeYT+DkVeZthGbHdqroXEJEN7aUvpuJ4f/7EyWZeqoDkc337+eZI6BmtkmTNpXC0m5UHgMHPZfE0TWbpJFv/jCbJfmzYPBg+GCC2DYMBO+0tgIM2dCaipMmrT9X993wqp/mj+Ao98xxzyhdmgri83jSOaRR0xdH8zxyH33mbDQiEAA6rZ39bV2rgl9A9j7Dhj1KzNc9YE5Hs/axzy2LNp9Nj75BObPN22KLS3g85nvZlYWjB8PU6du5/LJ7uXzH8HaJ83+6eCnzfYmcqOVkK9jH9EHvQlz3UH+t+x/nP7c6RSkFlDdWs1Rg45i+kXTd9yNUrp6rT28zsXVi1lZZ9qNhucMZ0zBmG1abSgc4pJXLqEt0Ma1h17LXz/7K1e/czXHDjmW0szSbVqm7Dniw9AGD+5hRk8/899fB4FmcKWDp8AEnm943tRz2zdx/vnw5JNm1jvvhFNPTQyVbWoy+5cLL4zVwW+5xdTD488BV1ebc1xFfdhG3PHxHVS2VDJl9BQun3g5hz9xONe9fx1njDqD9KT0hLC32bPh+9/v6Z3pnZYWE462ZImpT7W0mHKnpJjjpRNOgOJduLn3pz81oW8Ar73WEfIXZ8KEbVvuX2b/hV+/+2scNgcWFm+e/ybHDzv+G5V1VzNj7Yzo8Or61QnT1tSvYV3DOgZljYOU/qY+uOJvMOhCSB/2jdftD/m5Zvo1VLVWAXD+uPM5deSpfV5OKASffWaO+VesMCHEgYA5HnG5zHf3+uvN91lERERERERERERE5LuqT2eP165dy5FHHtlp/Ntvv43b7eb222+PjjvjjDOYNGkSH330UZ8K9PLLL5OWlsaUKVMSxk+dOpXzzz+fOXPmcMghh3T73JEjR0ZD3wCcTicXXngh119/PeXl5ZTE38pcRERERERERETkuyDYai6SD7UDYbC5THCIK9N0qNyu6/LCpnegYZEJq/IUmPXZbGCFIByEsX0MxQLeXPkmzy1+DgCPw8NNR9xE/4z+fVpGVRXccQd8+inU1sIRR5hOBikppnNZQ4O54Pyii/pcPNkdhPwmmKJpKXg3gSvDdFK22c130+HBGv5/vPSSCXtZsgT69zedDbOzTYeQlhYTAnfzzZCZaTH1f1OpaK7gd4f/jssPvJwxD47hlg9u4ahBR3Fo6aG9L9vwn8G6f5sQoLm/gAkPQvZ481f2ivktAYFQgPs/vx+ABVULGHTvIEJWCIANjRt4aelLnD3m7O3akfmxx0zoG5hgnGuuSZw+dGhsOGyFufiVi/my8ktuPuJmQuEQf/joD/zglR/w7FnPYt/e25ttYFlW9D2zYcNh7/pGMyK7qkAAWlvNfivSQSYlxYSX9uanv8ur+xK+vMIEDpWcZjr2eQoAuwkTqJ4FA86imaG8+CIsXAhlZVBaCpmZpqN4OGyCQr43uZWJ628yyx10AYy5zgwvvRtq424WlXdQLCitJ/mHQeZYE6Sx8GbIGAX9jjZ/1R/0/bXO/TmsfsQEchz/hemQ1VYGjUs7ZrBM3S3/cFO3qvkkFrIw/OdQchK8f6SZ1ZFs6nWBRlMHsyzzhUgbZjpFRoI99vo1sAv3BNyeUgdC0QlQ+RasfBBSBppQPHeWeZ/ijBgBV10Ff/1rz4ssKTEhPH/4Q/fzFBXBb38bC9SZNs38xfvxj2OBSMNyEjviRR5HpgP84hcmsG3Dhs7rc3fkq/zry39Fxx3z72MS5nn4q4f57WG/5aCD7Bx0kOls9+WXcOyxcPXVMHIkVFbC66+bes6DD9KRDFIL3koTyBLymTqTw2O+a6mDYx3vv23hILSug9YNEIwc41imbM50U39Kyttuq7Msi3pvPQBZnqyEaZHHbYE2fEEfSc6k7bbenWrg+bD4D9C2sfO0AWeacKHR15rgNzAhRcv/aoKE6ud/myXd5fj9UFFhOprH76tTU6FfP8jN3c4rtNlM+OcnZ3cz3R4NYvq//4O//z2x032ExwNlTSY0JsmR1CnksCjNBL9F5umN7rZzQ3PMAURFcwUt/pZosNvhAw/n/HHnR+db37DeBL9V79rBb2C2+6efboanToUnnjBhcDab+R689RYMHAgNWR9E35dbZt3CLbNuiS5jdtlsvq76OhqK9tOfwgMPwPouMmqT4zK1Tz4Zjj4aZszoPF/k0qnjjzfzvf56969heY0JdhueOzxhfOTzq2iuoNnXTHpSOocdBqecYjrtdyUSIDpj7Qx++OoP6Z/Rn79/7++c8dwZfO/p7/HZjz6jf0Z/Zs0yZfP54JhjzGuIDyYCM22XVng0pA0xQWhL7oCiyWYbecg00+n+y8sBGDPGBDK8/TYsXgxnngk33GDaGxoa4IMP4OOP4YEHhkDxSVDxBlS9D6+PhIHnmjaLplj4HvN+adr6cg+EA/5hxm38r/mLyBwNw34CS/9klrf23zDoIig9y+wrI/VDuwsGT4Vld5s67VdXwsirIaUUfHHJUEUnmPA3bzl8faMJJU4bBPvcYerGNZ8kvDWWZfHS0peioYEDMwdy/rjzsUUOWhbdauoYqYPggAfNuIq3YdWD8UuBwdu5kW4nhv98m4JBePhhs/1ZuRJGj4YhQ8yxYyQAzuMxISgRlmURtkzYns1mS2zDGdZx7GIF4bMfwEFPmM8/bRAsuDYa/HbaaaZeabOZELjtvt/7rmuNq5ulj+gYt8GEZDUtNQGO/Y7j2WdjIbA/+1nnbavLBYWF27lsViA27IzbUa37DzQsMMf6wFcjwpx0MmzaBPvvD3/5C+y7L6Slme9mTY35Dsk3FA6Y9gVfjTleCgfM8ZsjxbSxpMbd+Dvkg0AThH3mWMvuMqH0zoydc8xnhWHdU2a432SzbwX4+ndQ/qopJ8CEf0DhkbHnfcNtumWZcMpPPoHVq019q6goFpQZCplwmksv7f0yl9cs56KXLyLVlcqHl3zIbR/exrSF07juveu4e/LdfS7j9vb+mvc59dlT6Z/RH7vNzvqG9bx63qscO+TYPi/r/jn388nGTzh0wKH88Zg/kuZO48aZN/KjV3/EOxe+E9v/y3fSWWeZmyKEw+ZY6Uc/MjcZihcMgnPYT2HNo2Y78OXl5neePR72v9/chKPdBFAdfbQJC5s7F5Yuhb32gh/+0BxzL19uAt5uu80cm/3lL2bf8sILpk508cWmPvTVV/DMMyYgu6iod69jTf0a/jL7LwAcM/gYguFg9KYLd3x8B7cfczuXXQZ//CPU15vj7wMPhDPOiG2iampMm9zxvcwnu+028975fKYN78wzTfuk223OV5aVmXrdriwprqkscpOtb+q15a9xzbvXMDJ3JNPOnMbRTx7N2S+ezexLZzM6vxft/LuJSPDb4QMP55D+sb5Tj8x7hJq2GmauncnUfafCiKtg/q9NW+6bY0wwuDsTyntoBOhBKBzigpcu4MUlL/Lrg3/Nqyte5eVlL/P6ea9z3NDjEuZt9jUzbeE0guEgAKeMPCUa+FlfD8cdZ77zubkm1P3oo2O/f68X1q7dhlBqEdktVFebGz5s3GjOa/v95nobm82c0z78cHNuV0SkO83Npm1z6VJT7y0oMO1H8deDnH46jB27s0sqIiIiIiIi8s31qam8pqaGAQMGJIxraGhg9erVTJo0ifT09IRp++yzD3Pnzu1TgRYtWsSoUaNwbtGKv/fee0endxf8tmjRIiZ1cUvIyHMXL16s4DeRXUk4YDrXBL3m4kAr3HHxucvcfdideEF5OGwuogmFTKO/02ka7URERES61L4ZmpaZC5odHnM3WCKdFMJgT4LcA3ZmCUVERDqzLHOs7K83HTitYKyTit0JzjRI6+l26HEal5rOmnVzoeRU8+fOgZpPIew360kbAiMujz5lTf0a6rymU2e6O50RuSNiHTJ62zHj7Qlmndn7wbEfmU5C1R+aDl6t683rqfsKcvfv1fsRCAW4ccaN3PXpXZy+1+lcdeBVXPzKxby07CX+8/3/cMKwE3pdtjuutLjvPjP897+bECv5jrAseHu8qR/mHw6Hv2ouet/0fkedsRp8taxfvJYLLhiMzwfDh8Orr3Z/l/EH5vyN11eYi+ZfWPICryx/hWA4SMgKcf5L5zP/J/PJTs7u+slbyjsIxtwEi38Pa5+E8tcgc4xpK2teFp3txSUvUtZURkFqAT+b8LPo+Hmb5vHq8le5Z/Y9TBk9Bdt27Mh89tnm97J6Nfz736ZT5lFHmTC8cNgEW6xda4IUr3//el5a+hJJjiSqWqqwsHA73Lyw5AVGzBzBH47+w3YNpeurTzZ8wtXvXE2dt46jBh3FtEXTuHzi5Vw/6XoykuJ6GlmW2U6GA6aDPRbYHKbd0p60h6RryS6pm9/re+/Bn/5kQs7239/8Lvv1M52mQiFz0Wt6ugnMqKszF9M3NZmLXSOhUJFF9u/f+85sO8Wax0xdxZ4E+90LKSXQuBjWTTMBXr4a8Nfzvcvv5OOPzVM++8x0ouvESgH7D8x2tex/UPw9KDgKhl4GeYfAe4eZ+UZc0buy2Wxw8NMw6wQThjXzGFO3SsqH1rV9f61J+eZ/2G86ZKcNgWAbtFfCvF+b0M/R18P+98GMY0zIxtv7mMCO1IHgjwsvcySbzpCfXQxlL8GHp0L/74OnsNO5lu+UiQ/DzMnQtMR0fpv/6y1miP3mIp0oH3wwcQ673XRQjbj1VrP/i7sfGgCDBsXqljffDJs3w0MPdb1Ly8iwWLGu5+C3lbUrCVth7DY7KSnw7rumI0xVVWxepxMefxxa/a08tdB0jL/liFsYmTcSMIGsP37tx6xtWMt7a95j8tDJvPSSCeT44guYNcv8xbv4Ykx4y4q/mYDc/e8zoRKBzeZ9DLaZ3+Hwn5q6yvbSvhlWPwwNCyFlAGTvY77XfhO4hhUy4Yi+Wvjix2b8Af8ygTtYUPm2CTTw1ZqOwIPO72ltfdLsb46Gxm5Zt4sPgqtvr6dfWr/ttt6dypUGhz4P7x9u6kMR+YfBxEfN9jD/ULOdnvcr8/m0rjd/EVnjvvVi70z//S/87nemA8q558IPfmD2txkZZn/c1ATt7TsoAGfAWTDu97DwpsTxjhQ46ElINt/L9HSYPt1sS2prY7N5PKbz/bImkwhXnF7cKZihON2EhpY3d5Ea142tBVyC2dZFgt1G5Y1KmG9Uvnm8dPNSguEgTvuu2xP41FNNKOjNN5sOjQcdZI6XcnJM50a/H155BZ5Z/RAAxw89ngvGXRB9/sNfPcxHGz7iobkP8feT/g6YsMDp0+Gww8w+JcLjMcdlEQ6HCS7fZ5/EfcQhh8RCSG22WMDCK68klt3jMaFwD3SEcw3LTvy84oPgVtSuYP9i05bz1FMweTLMmZMwO//3fyaEYVH1Is547oxoGMIH6z5gr7y9WFC1gJOmncRHUz8iOTkDt9vsf9vaTABafDiRZZnfTn5+T+/+TmZ3woGPw4enQfNyeG2YqWd6CqIhRxH/+Q98//sm4O3VV81fvGh99sDHTP2lYYGpYy65I3FGTz8T6Db/NyZsc/Uj0P90E5icMxFeH25CcfIOgTHXQ81sE4L/2Q9g4e8gdUg0NCNq3K3QMB82vQsrHjB/nV6rCw76N3x8hnmtb4yErPEmlLh+XsKs9d56fvrGT3lxyYvcduRtZCRlMPV/U3lm0TM8euqjFKYVwvBfmHp/6zpY8icT1FwwCXL2h3f2N+GjmX3Yl+zItobIsnejcLg334zVTadMMQEo9m6y+C3L4plFz3Dte9cyOHswGUkZzCmbw++P+j2X7nep2f7m7Avj/2RC3iregFeKzXcJC5pXRpd18cXm2NWy4O67TRkGDDBvYShk2o9SUkx4kmyDUb+GjS9Ay2pzzDf6OsjYCw581NxIYtO7gLnxybHHmm3oT35ijmEmTDD1kpYWE3zjcpl9TF8EQgHWN8bqewMzB+JydKR95h0MQ39ktknzfwP+BlN3HHElbHg2uk3ctClWDykpgb33NnUUMN+TgoLOYUDSByE/fPx9qJxuwkHH/s4cX9V/Bd4KE/AW8prPasH1Zjucc4DZBicVmPM6oTYznzsLxty4/W8ctDU2u2knX3SLuSHKir+bUNTRvzXHeW901BmDLdt1tX/7G1zR0Tz0y1/Cn//cza6ll+3CLb5mznj+DJr9zfTP6M9v3vsNzb5mAP48+89MLJnIlDFTtrKUHeeNFW9w5vNnErJCXD7xcmzYuPqdqzl52sm8ePaLnDzi5M5PsqyOtnJMW3nHe7G8ZjnXz7gegCWbl1B8TzFhK4zT7uTdNe/y8FcP8+P9f/xtvbTdh3eTCTlrXGyCcDPHmeBMfwPQ8V5njDL1yg3PQ/Mqc0OKtEGmvSbs6ziPETDb4PShPa9vJxo/Hu691/y2Fi6EYcNMgNmAAeY4eeFC07793nsTYOwt5ve/9kmoeBOy9javt+Hr6PKcTnNcc+qpJsAtctOvLfXrZ4LdTjvN7H/mzzd/2+qad6/BF/JRmlnKQ1+aYzu3w43dZuee2ffwo/1+xJDsIfz3v6ZdoLratCkWFpp2w6YmE0z3ve/1PvjtjTfM8ZLNZt6zQw5J3AwNH27qWLuyf/3LnLeorDQB4ldfbeolmZkmGGzBAhPWceKJvVve11Vfc/5L52NhUZJRwkNzH2JQ1iAWVC3glGdOYc6P5pCXsv1uCLGztAfb+WSjCde+5pBrErbLG5o2MG3hNGasm2GC30ZeZX4j6/5tzjVseDZxYam9T1aKtCe/uORFitOLKUov4rghx/H3L/7O6c+dzrsXvcshA0w/rg/Xf8glr1yChcW9x9/L3Z/ezfUzrueBEx/gor0vwuu1RQN909Jg1KjEel5ysrm5mPqB7Bq8XhOW+dln5pjhpJNMfd0Vub+jZdo4Tz21+2snZPtr8bdEA9rT3GnbfJM9r9fsh9razOcY6YvlcsUCj7enCy807ZVgglbPOsu0lUbaBurrFfooIkA4ZNogrGDcsabL3MzI4eHAA20s7bhfXiTwuTv+kJ9nFz3LO6vfiYYznzjsRM4Zc06s7aovLMu0n4T9W1wz5ga7Z+fdHE1ERES2v0CLCdMPNCdmXNBxc9T0YZSV21m0yFy34XSac1nxx8uhEOy3n2nvEhER2VZ9ai5zOp00NDQkjJs3z1y8NWHChE7zp6Wl9blAtbW1DBkypNP4nI6r+2rjr0Dt4rk5W96isJfP9fl8+OJuFdvU1ASYC01HJY8ixRVroW7yNVHZXInT7mRg1kDWNawjbIUpSS/B7Yj1oKlurabF30J2cjZ5KXk0+5pp8jVhYZHiSsFhc0QbY9OT0slIymDZEifvvWcu/iwuNg0TKSmxE3XhsGlEH5nzCdR8BqFWcyGdO8t0Bg62mguqbQ5zx55Qm7lgz2YznTvsHvOckN9c/GB3mefH32lxVxQOmgv4Q20dne3C5jVFGk2Scsxr6QWvFxobY3cGdrtjF7dZllls9K6WwTaz3rAvriHJaTocuTKo9rdR760n1Z1K/4z+CetZU7+GQChAv7R+ZHpMjS0QMJ2u2tvNsGWZil5KirmANXLnY78/cb5IOVNTISvLXADV1mbGZ2Z2fg3hMKSkhihrKsMX8pHlycJhizUsNfmaCIaDFKUXkebu3e80EArQGmil1d9KyArhcXoIhUMEwgHcDjdp7jRSXCm9O6EQ8sPSO2Hzx+ai1P6nmQ5ObWXQXm0uErW7qO//e/7xaCbz5pnXdMwx5sRCpFIcCJiTD2ecGaYt0EZboI1gOIjL7sJms+EL+nDanSS7kklxpeAMtZmOI2EfuDLN98cKd3Ti7PhCJHVcbe+vN987V4b5boU7GhNDXlNx9xRSH/CxuW0zHqeHVFcqNpsNy7LwBr20BdrISc7p9QnkcNh85l6v+QyTk813I/76Ubt9B1T+I4ECwRbzPticRDs6hf1gdxFOymNVYxmWZTEgc0DC9rDV30pZUxl2m51hOcN2yt0Zy5rKaPW3kpOcQ35q7KrvsBVmVd2qaLk3tWzq9JsE8Aa8bGjcgM1mY2j2UBxqhO1Se7vZdnq95ncXDsdO+mVkdFyEH/k+BZrjGrkxF7zbPeDOpLytgRZ/C1meLHNBd4f4z6s0s5Rab230c81Jju3bWwOtVDZX4nK4GJw1GFugoSMMI2zCJGyO2O862Ao2B+GUAVS1bqbZ30y6Ox2P0wNAyArR7GsmbIUpSi8ixenp+D10LM+eFLuAMdgKhMGZzuYQ1HnrSHGlMCBzQMJrWFO/hlA4RP+M/qS6UwFzYVJTk9m2BzsyOxwO05EiP7+j8204sEWwRzh2csDhwWtPZUNTGTabjWE5wxK2tY3tjWxq2YTL4SInOYeqlipcDhdDshPrU9Wt1Z33WeFg3B1+/bF9qzMVXFnms+uLcMB0rAt5O+4Y7ARHR5Cnw01jo7koIBAw27nI9hxijR1ZWbFx8fvNyN2+IvvM+LtB+v3mRHBkPqfTXByckwP2YIOpC4XaTTnsSea7aQVMOS0LPIU0+3NobjbPT05O3LdGpKTE9tVb09Bg7lIWDJqyut2d+253UW39RjY0bsAb8JKbkttp/7OqbhWhcIii9CKqWqoIW2GK04tJT4oFN4fCIVbVrQJgUNYgkpxJbE1Dg7kr6nLTH4gDDjAn6B2O2Gdqs8HIkfDOO7BunbmQZ+xYU6+JvMfhsNnH7TOu3fwOwsGO+mlcSFs4CFjm++nwbP0NCYdMx5SGBeZCyP5nmvHNK8xFzQ0LzXbDUwDJxebiyVBbx06347tvhcyf3Y3XlcuGxg3YbXaGZA9J2F+UN5V3uW3rSU+fV6QeWZhWSHVrNZZlJWxXwHTCiHSc23L//E1tbt3c5XYOErclNmzdvu6eXl9XLMtiZd3KLl+rL+hjXcM6AErTh7JsiZPNm83vq6TE/DYjdwOM1IUHDwlT3baJFn9LwrY/GA7S7DcXVBelFZHs9EB0XxKK2/bbOrb9FrjS2RQI0tjeSEZSBkXpRQnlXlW3irAV7lTurWlrM/uILfetdrvZZhQXx13cFmqP+4527KPcmaaumvA+xvY7Xq9ZTk5OrMNE/HxNTbEOpykpsX3S2vq1+EN+ClILOnVmjnQ633L78W2p99ZT3VpNkjOJQVmDEqZFvnN5KXnkupPNPj0cNNsMu8t8vuFArLOyO4vytvrod7ggtSC6LG/QG63jDs4ajMNmj31PwpHbJcdt1O0u8BT16mR+WxuUl5vPyeEw28zIviWyn3C5IDe7o24Q8pqLGRxJsXUGGjHfzUyzPQy2mdfnSDb1B8Kx+hA28z1xJJlQiGBL7CLw+B2T3d3RZrANFzn0gs+XuK92ueL21fH7W19drIw2h+mg7M7ueP07htdryubzmbqH3W723RkZccdf/kbTySW+jmtzmHI50yjfnMWCBeYO3ZmZJkwlKSnxeC4z01y8vlWWBUvvhuoPTMDbwPMgpb8JFvFtNvs1wBpxFaQNxiLW2dCGrdNjkouxFZ9kOuzY3aZeFGgyv436leb421dLQ3sDr694nddWvIZlWUwqnYTH6WHmupm0B9v53vDvcerIUynYsnNjd50em1eacJbGRfDVVZA62OxfrbBpC0jKjdXFtlzWFstr9bdy+VuX88nGT7hx0o2UZpayonYFN066kXfXvMtVb1/FdYddxw96WbZ7QjBpEsyebTpAzp5tLvyP1F8CAdMB4aKLzPyRNprIdyQcNvVNj8d02E/qxdczfl82NGdoQmf1tkAbGxs3YrPZKEgpoKq1CqfdydCcxA4aDe0N3db1v6n4ukd8cAWYTt3R/bPl6+hMZTNBEDaH+V2E/GYfZbNDcn+Iax/dpdhscMizsOE5E/S28CZTXrvT7Gsr34GkPAbt3cSiRSa4YckSOOccGDLEfOZOpzlB294Ol/5yAw9/9TAjc0fy3FnPRUMJAH71zq+YvmY6d396N7cfc3sPhdrC3reZkJ6y/0LVTHO85kw14/IPgwFTeP2tXzEidwQ/2vdHXHPoNdGnbmrZxPKa5TS0N7C0Zul2vaN9SYnpePPmmyYc5uGHTefd1lbznuTnw6GHQmDAe7y87GUOHXAoD538UPSY4vKJl/Pj13/MC0te4OjBR3N0b7cl26KbbUmLv4W7PrmL5xc/z7FDjmVC8QQ8Tg975e3F26vf5qRpJ/H7o37PkTn9YOU/TGervEMge7xpL2srM53R/fUmPHrYTwCzb29sNN+JSJ3O4TDbhuxsc/wTEQyaeZubzXBqqnnvEi5qDvnNRQSh9o7jalfc/tBNOGyW0dZmtk+R+mOkLgy9vzP2ppZNNLY3kp6UHg3yiKhorqDZ10ymJ5N+SWlm32HF163CHfWrjrqRK9McX/VFOAT+jn2/Fexoc8809dx40fqBH3MxpdO8J64MwvZkGhrM/jwQML/T+OP2SPt7VlbvitTT9jByXF2YVkhViwlJKM0sJdkVO7cSDAdZXbca6P1xdW+NHGk6bRcWms+7ocH8jxwzhELm+/bKK6ZDf3U1HH20CWSMZ1mxcyPbS/y+bHjO8IQ24vj9V25yLptaNnW5n0v4zu13H+QdZjofz7nUBL85Usz22p0LySWQOYaXXzadBhYtMgFcI0aYOlykfhkIwAkn2DjowMdh0IVQ8ZbpLLz4D+a3ZndBv+MhfTjhlIFUNVeyrmEdNW012G128lPzqWyuxO1wU5hWyKCsQWR7srFl7w3fWwIb/2s6ILeuM/vEfseZTtWlfei0u/cfTWjVpndNoMfiP5g6vt0FmaPN+ZP8SZAxEk5aCuufNaEdFW+ZOrMzzYT95BwABYdDchHkTjT7utrPYMV9ZlviyoDScyFnAiFPERsb1rGqbhU1bTW4HW7yU/LZ0LgBj9ND/4z+DM8djg0b1a3VuB1uBmcPTih2VUsVDe0NpLnTKMnYhhtu+Rsh2NxxvOM05XNn75jO5CklcPxcqHjNvH/Nq8x6UgeafWvpudFZPR4TdHrSSaYzanW1acP65S/NxVkRdjv88Y8moODhh83v8eij4brrzLYfzG/zH/+AK680+8z5883vb9994bLLYOi4GkrWmfduy332qPxRjMgdAZh2mEiQ2IgR8NFHcOedJrRt2DD47W9NSMzrK2bSL60fI3NHcsPhNyTUN+dWzOWNlW8wffV0Jg+dTFGRqQPPmmW2F/Pmmf1KUZHZn0+dCmR+3+yLmleZNrRAI2Az+4Gyl83xZ/Pq7Rv8ZoU7zgFHQsY6tiVtG03drXWN6Qg94e8mfKB+HtR9bvYRDo/Zj1R/aMJ8u2o79FaZ750jueP4t/dt3y3+luhnEt9+AJCfkh+d1upv7eur/tYFArG6RCAQ6xzscJh2ocLCuMDQvIPg8DfM9incDiWnmaDM+OsKRl4JJafAkjuh9gvz+8ocDQOmQMnJtAXaom0sQ7KHJJzbWNewDl/Q12UbVEsL0X18aqopV287gfa0Pw6EAqypXwPA4OzBCdd2QCw41eMxx4lOJ3HXKbSbdgCHB7B1fF+D0TbFgw/O4Yc/hK+/Nu/twoVQVharq4VCva+n9ZnNBmNvhKyxsPw+87vIO9h0/E1LPH4cPRo+/NCE8sybZx5ff73Zpi36NMiI3BHs02+fTqsYXziepTVL+9S5MGyFGZE7gn377ZswviitiLEFY/GH/KxvXE+KK6XL9Y4tGBv9fZU3lTMwa2Cv1x0rRMgEqtpckBxrw+6pLlzZXEmTr6lTWzCYY6DqavN55uTEzvPYbHDDDaZz/6uvmvMh5eVm/OTJph1i/MRmbnxlMSNyR3DT4TdxaOmh0eXmpuRS9U4Vn1d8jj/kj34347f9X35pOklff71pt4jXr5/Zrt92m+kAdeyxJogwOe7nmpsLL71kAuD+/W/zG5swAX7zGxMWcO9/QozIHRENdosoTC1k78K9aQ+2U9UaCwvLyIC33zb7uTffNO/FZZeZY+jWQAtXv3M1hWmF3HvCvRxYYhLNpu4zlScXPMnLy17mhvdv4P4T72fZMhuvvGJe36WXmt9fUpL5zQcCphP4X/+a+HpbW03529rMaywoSAw7BrpoZ+w4X2l3mTaMkI/oDYJszljnrUj7sSuj9/uKgsPh5OWw4QXY9A60rIX2TSZop/gk8wfk5cEHH5jP9KWXTGfq1lbz3u23H1wQyQL0FJj6S9nLsPpR8JaZ8mTva9oK8zuSmgqOMnWcjf814alBr3l9+Yea337uQeZ5R88wQV3lr5rgn/Yqc43V0B9D0WRTh3UkwRFvQdV7sO5ps/+3gqbunXcglJ5jjtX6HQ0nLTfBUxVvmv20t8KULWcC9D+dVXWr+OnrP6WmrYa7j7s7+n2++7i7eXrh05z1wlk8+L0HGTfoPBP0WvaKaS8se8Uce9pdkDYMCo+FfscRCAVo9jfTFmjDsixS3an4gj6C4SBuh5v0pHRzjmw7BuBvs2/YvpHQDhd3vil+3xa//2psNPut+H26y2XO+ZxyCnzyCbz1ljmPe/bZJnDE5TL7pnDY/NZ+9MsybphxA/Mq53HR3hcxtmAsNpuNCUUTePirh3l3zbvcccwdJgRy9G+g5CQTPrPpPbN/dKbBwPOh4EgoPYs77zRBc9Onw+efm+915HyVzWa2V9dea9GStLLLa5Dijy8j10VE6i+Rc+/xNwtNTgZXRi01bTV4nJ5O+4qathpq22pJdiXjtDtjx51bhPXGn+ttC7R1e56sp3YDv9+Eyjgc5hyfzWYCO9Y3mKC0YTnDEs4vR65VAuiX1o9NLZuw2+wJgZtgrk3Z3Lo5dm7sxK/NDSMq3oCVfzfnDbCZNvchP4TikzhggAnZe/NNmDHDhFvX15vtZlqaOVcxdepWv5KAORc6b9M8Xlv+GguqFlCYWshhpYfx6cZPqWypZGzBWE4ZcQr7F++P/YB/mTJseN7UzTe8YNpz3Jlm+5W9L9/byxzHv/qqOU464wzTPhb5bgaDpnx/+lPvypcg0BQLNrM5zU3h3Dk7Nrgseq1PizmmcSSbdTqTezznHn9cXZRWQigUd/8fe+fNmN0OQctPq7+V9mA7YSuMx+khEA4QtsK47C5SXCmkuFKwDfu5OXZqrzJBbq3rAMvUZzdNN+UDKDoenB3ne301Zt/o8EDbBhPU5842deFgc8d5c1vcNRyWOT8Z9pvX7Eo357FC3o7zl8lmnrDPrBcL3DlsaihgwwZT38/MNMfQkbZRu938vjMzIWvczSa8v+wVqHjdBEBFjueKTjDh5Jnbr/0bTFBlYSF8+qkJR/zFL2LHBJH6fFERXNrLtu0/zbiJYDjIzyb8jFuOvCU6fnnNci577TLu/ORODh1wKK2B1i6vNYicV9oR1zN+Xv45175/LeP7jeemw2+K7ldePudlfv/h77n2vWvJS8njIGcLbHzRBJQVHm3anUJec11Y0zLAwhp8CXd88i9KM0u5ZPwlXDfpuuh6Pt34KVP/N5V/ffkvvj/yTNrrc2loMPutnBxT79vyu56ba74LkbfTZov9xb/FieeXazvO43c0etrN+VvcWd9+cCFmv72mfg2WZXU67kw415fkNr+7kA+wmbJaIfObbVxs6lnpI81xna/GnDcAoteyNC2B2s/NdZotq2nb6xoqmyux2WxkJGWY88Qd5Wn0NZLsTKY4vRhv0EtVSxUOu4M0dxouu4uwFaY10Bq95jnHk8OaBnMNZElGScI15vH9JxLaeKPb4I56ti3u5t92J5dfbgLYXnnFtEvNmWOOYdLTTZ3/nHM6ljPuZhNqvPG/UDXD1DUdyWabkHeIaW/AnLf64guzn3viCXM+Lxg0xzannALnnWcWN3Gi2Se+8gpMm2auW3M6YcwYU2c5NHZY1qOFVQtZVL2I0fmjef/i9xPqEle/fTVvrnqTf879J3cddxdHHQUrVsDrr5tjw8WLTZ0tJ8cEsp7fh3sVzJplyv755ybYOyXFHIu5XLG2/ssvN6+zL3q8RsJV3tHuvRbShppjC5vD7FfaN5s+KBmjqMw6uNtj542NG6Pfp1Gj8lm1yrwXb74JM2fC88+b82rZ2ebz3/I8Rnda/a38evqvKU4v5rrDruPwgYdHpz05/0meXfws1713HfdMvofKlsou61a1bd3XHbvT0zVw6xvW0x5sN9cqpWy/tP/F1YspzTQNSYeVJqb1njjsROZWzKWsqcyMsDvg4Cdh+M9g+b3QtNRcG5I5BgacGT0m7Y1/zv0nH2/8mCmjp3DNIeY89KTSSRw35Diuff9arn7nal6c8iLvrH6He2bfw8SSiRw64FDKmso4d+y57F+7P3/86I8s3byUW468hYULk3j5ZXPM/4tfmN985Jx7OGz2r3/5i/mdRNpRhg41ddZInShy7nXs2N69hkifguzk7E5tuZHPKz81P3pdejhs+uV4vaZOb1nmN5aaan63vWmTjNT7e7q+22l30j+jP+sb12PDxsCsgQnt+GVNZdHr3twON19WfslXlV9R01bDoKxBhK0wGxs3kp+az35F+7Ff0X6kuFIIhoMEw0GAaF+hkBXCbrPjtDtxYMdW9a65MaMVNMfhrgxzHWKwxWxn7W5cJedRWFgQbR+O7H+/qXDYbG9aW2PHrpFz6ZmZ0ExFt8dpkfbj/NR8GtobendNizt1K9fjJ5tjp77UEYKt5v2K9CezrLhrxtJN+5Gv1qzLnW36SxA2+8SwL9q/oaImm3XrTF04O9ucv46/ZtBcQ21RY61k+urpzK2YS9gKc+iAQ1lYvZD69npG5o5k8tDJTCjcG+e6J0293Zli2nZcGaZO7q83n6srk835v+XOP6eycKHZxp95ZuyaNssyn0l7u/ltbtxo9leR600j+5r46xnzs5rN8q2QOa6wu2PXDETq/a50bropg1GjTDvlG2/ErhuP1POCQXNeLSUldo1F5Jgwvt4X+b94MV1eLxxZXjgMAweFqGgxfedyknM6/Q772nfuq69MG15FBQwebK4ZSk5ODHYoLTXXCi5ZYq4rGz7ctP9FXkukbIMGmX364sXmWpH99zfzxfcVC4fh4IMT23N7ErlOuKXFfIaRY8pI3560NLCnmvaELfd58f1dSjJKqG2r7XJfFn9Nd6T9xudL7E+05TmmfoUWLmco8fpKbOY3YVnmO4LNtP/1YSMTCJhtSeS6kHA4Vn/JzNxBAfKB5o7rReN/+/aO61WSaLWnUdZcgc1mi57HiIjv25OZlNlt3aPLvj1g2nkj1yvbHN9O+8aO0F1baeV0WPeUueld/++bNoyQ1xz3NC4225NBF/D220fxzDNmW3L99eb8SGqq+e1EtmGnnhZmres17ptzH+lJ6RxeejhjC8bisrt4fvHzPDH/Ca488EpOGnFS4vmt7tqPm1d19D1ZCPmHmJse25PM8VnrevDXmD7YQ39s6sXhoGlLifTXtUJEb/LsSKYdG1UtVYSsEGnuNDxOjzn+8rfSGmgl25NNbkpun4M929tj17MGTTWApCTz24/2Twq1x85vWh0z2Rwdx8yp5pi5FyLtq1u2b4XCIXPsi9kH97ofi2XF9Q/3x20nrI59tpNQUgFrmzZG20uS485NV7dW09DeQHpSOoWphVQ0V+ANeslMyoyG/IWtMI3tjYC5sVWSM4kWfwut/lYC4QAepwfLsvCH/LgcLlJdqaS6U7GHfB19D3wdAX+RC9AsUxew2SEpj5AjBV/InKOItMtF6mNOu5MkZxIOm5O6OtMeGw6b767L1fmrl5xs9iWRPnAZGV3XP1NTzWcdOX8euWYwfnnp6Wb/Eutz4o31v4+wucCdxYa2+lifi7htf6RNA8x5drfDndDnJFKfi1yPl5wMuXkhNjSvjX5e8d+FyHYuzZ1GRlIGFc0VOOyOTjcNi5y3zUjKwOVwdfmdg871+VDIlCvSRzFStkhfnNxcSHXWmG26zR7Xlzxofr8hLwAhVw6rmzZG+7PGXwvYqR3ECnf0m427ljHyHba7Oq5HSTwO6U6k7d/j9ESP/8DU5yN5FQMyBtDib6HOW0eqO5Xc5Njn5Q/5o9ebD8wcSGuglc2tm3HanaS6U6PfzdZAK/6Qn7yUvE516e4EAuY4yecz38nI9jci8v1L7X3Xqe0qEDC/h8g1u1v2/7SsLa4x8dfH+jpjdbRbpZh+s5G2Oyts9kXBtth1S5H2LVdmn6+L7+pY0+k02+rsbChr6fp6mWZfMxXNFbF+072oM4VCsWMuu91sb+K3JZHfBc72aFvClu0bNW01APTP6E/9Zg/r15v6ZlZWYu6FZZm/jAyzjauuNq8xL69zv75Ie29v6rihcIgNjRsIhAPkp+QnBLfWe+tpC7SZbZbDgtq55txYcpHpHwMd/cE7PuOUAeZGY72x5klzvb4VgoEXQtpgsw311UDdF2CFCA+8hKefnsBXX5m68MUXx96LhI8nHID6xab9zJEU65sVbO1oB241+5fsfU1dL+SNHadii51PCQfM81P6dy5vF3xBH9Wt1fhD/mjGR6S9N3LuMy8lz/TOjW94j4ivp9s6zv9saYvz8GHLYn3H5xVpx4hoaG+g1d/a676kYM4bvvkmrF9vzsOMGdP5+1RUBGP3aovt3xyejjb1MLHrPGzmuhAr0HG+wGbe40jbe+S6dzDXIzcuNNd12D2QUmzmDTSbzyFyTir7AAjUx67VdXQcGEbOkVlBs61IKe7hFcb0dD1S5Br1aH/NkL/juCASltyxX7c5zet35/Zq2xQMB1lbvxYLiwEZAxL2c5HzldFrp0K+WD0iEn6MraM+aa4dbbWnUN5cjsPmSGh7s7CifaBLM0vxhXxsatmE2+EmMynWLyBkhajz1pHkSKJ/Rv9enf+yLItmfzO1bbW0BlqxYSM9KZ3G9kYcdgfp7nRyknNIcSZjo+OzjgQ4dpQuVt+0E+7Id2rxtxAMB/E4PdhtdtoCbThs5txJmjuNBfMdTJ8OGzaYY/uRI03bZny75cCBZvzWhELw3HOmnbShwdxQtKjI7BsibQihEEw6zCI9qdZ87jZHrJ+oFTDfzVC7+Q6kDYout6HB1Ifir6WItPfH959oajLb9shxhNNp9uXZ2VDljbXpx+e0QKwvcUlGCVUtVdE2loyk2MG4P+Rnbf1abDYbg7MG09DeQH17PamuVJJdydiwRbdNkfa+3tZLCHo7Mn/85vjY7jafZ9Brrmm1Qua3H7kuMNBifjthv6nz2Wxx+/5M1jdv6rIdJBQOsbp+dfQ7vLGb+mF8W3D0HK4V7ugT0xrLwYrkqgR6f/2QzbJ6f7XR/vvvT0tLC8sjyQ7Addddx1133cXzzz/PmWeemTD/1KlT+eijj1i1alWvCzRixAiGDh3KW2+9lTC+srKS4uJi7rjjDq699toun+t2u7n00kv5xz/+kTB+9uzZHHLIITzzzDOce+65XT73lltu4dZbb+00fuClA6kqrCLZn0xhYyEV2RUEHUFKaksYWDOQ5EAyAXuAhtQG6lPrsWHD4/fQnNxMWnsa2a3ZpLWnRU+iAoRtYcKYO2/YsOGwtt9J+R3t1dde2+o8p55ySpfP2XJ8d8vecr5TR67hoP6VBMN2PljXn5o2D1keP1keH0OyzYH4MwtHUtWa0mlZWy4vGHTT2DiMYDAFuz1AamoFdrupiMfXVUb1W8cl+yxlUFYTn2woZvHmHNqDTkrSWxiY1UxuspeF1Xk8t3QIFdkVrCtYR7urnZK6EvxOP9WZ1WS0ZTB482AKGgtYvuxCNmyYjM+XzciRT1NY+DlOpxebLYRlOQkGPbhcTSxdOpWamr0JhTyMG/cg6ellOBzt2GwW4bCTQCCFjIwNuFym44Bl2bAsG+YAMfICzA7Ibg9jYdHuaqctqQ172I4z7KTd1Y4n4CHFl7Jbffd2VSFbiHZ3OwFHAHfAjd/pxxF2kBxIxhnufaeRUMiJz5dNKOTGbg/jdLZis4W2aM+2cLnaEp73TX9fY/JrKE5vI2TZWFGbRXvQQaoriMcZJMtjLoZZVJ1HuauVpSVLaUxpJLc5l+L6YspzyqlLqyO7NZu9yvci05vZab09lWVrerst8Tv8rCtYx/q89biCLkprSmlIbWBzxmYyvBkM2zSM/OZ8vC4v6/PWU5ZbhivkoriumOrMatqS2ihqKGJg9UDSfeldrrOr9e5punutLS3FrFx5Nk1Ng0hOrqGo6BM8njrs9mDHCSk3NluIo8bM4LSRa8hL8TJrfX82NKZht0F+ipfSzGZS3QFmb+zHRxUFlOWUsSFvAwFngOK6YpqTm2lIaaCgqYDSmlJyWnMIE6YxpZG6tDq8bi+Z3kxaPC04Qg5yWnLIas3CjYO8FC9JjhCBsJ1Wv4uwZSPJGcRuM9WbsGWnzmuCUgL2AO3udgAcIQcBZ4CkYBJJgSRT2Xf7KE5vI8kZpLo1hfagE7vNItkZwGm3sNssGn1J1HqTqEuroyqzKvob8Dv9eF1e8pvy6dfYj/T2dNasOYUNG47D681jwIAZ5OQsxe1uxmYLEA678fszyMlewU8O/oB9+m2msd3NrPUl1Hk95Kd4yUluZ1BWM4GwnUe+GsUXeWtZVbSKrJYs8przcFgO2p3tVGVVEbaF2X/t/mS1ZvHlkC+pzqymsKGQdK/5TvudfipyKnAFXRy46kBO6dfIBeOWkZvSzj++2JuVdZkkOcIMyW5kTEEtGUl+5m/K56Wlw7b6HQG4cO+lHFZaSdiCN1YMZlNLCiUZrQzIaOb4YeZi5RveP5g56/YiFDKVXLe7CZstuEVbgY1g0MPSpZdQVzcKh8PHoEFvkpq6CYfDdCYPBpMJBpPJylrJ8uXnU18/AofDR0nJLFJSqnA4fFiWg0AgDYejnf79P+zVb8DvTyUYTMaynDid7R31g0jjBYANh8PP62+8vNVlnXzSaXi9+YRCHsDC7W7CbjcdRmw2q6O9w47b3ZzwvG+6TW9KbuKLoV/gd/gpaigixZeCZbOoS6ujJqOGATUDGLdhHJVZlcwfPJ8UXwr5TfnYLBvYzPNr02sZXDWYMWVjEuqve/L20GUPsW/RZtLdfhrak9jYlE4obCPT4yPJESLFFSQQdvB1VS7NSS1syt5EdUY1ScEkkv3J1KXVkdWaRb+GfuQ252In8eRbd59XVUYVXwz7gqRAEoOqB0XH+1w+1hauJc2bxqHLD+XzYZ9Tn1bP8Mrh7FURu11VTVoNs0fOxh62c9zXx+EOxRprevt5dTdfRVYFXw79EmfQyeSvJyfUGT8a+RENaQ0MrxhOpjeTuUPnkuRPYr+1+0W/MwFHgC+HfAnA4UsPJ709tn/tqWwVWRXMHzSfpEAShY2FuINuAo4AmzM305rUypiNYxhUM4i+SNj2hx0EHAGSAkkkBc22P8vjozi9hSRHiMqWVNqDDhw2i2RXEJc9jN1mUd/uYXO7i8qsSjbmbaTF00K/hn60udtoSmmioLGA0tpSslsTO39091rDYTsbNx5Dc3MpYCc/fx7JyTXR7Y5lOQiFkuiXs4Kp+y1i36LNNPtcfLyhmFqvh5xkH+MKajigpJrGdjcXvnQ869efSEXFoTQ1DSEtbSOZmWtwOr1Ylh2fLwu3u4nRox9n7dqTqKo6kPr64aSkbCY9fT1Op5dQyE17ey75+QtwHXw3CwcuJM2bxpDqWMfQ1qRWVvdbTZo3jUnLJiXUdb/pd663woTZlLWJdQXraEkyn4PdslOZXUmyP5nB1YMpqi/q9DvsaXkNqQ3UptfSmtRKZlsmrUmmETC3OZfcllySwk4OK60gP6WN1oCLZTU5eAMOsjx+kl0BcpJ9BMM2Zm8sIhCO/Va+6WtNd/vJTm7HaQ/T0O4hELLjsIdJcoQ75rBo8rnxBnsX1HZw/woGZLbQHnSwuDqX1oCLjCQ/Ka4g+SlewhbMLiuiLdD34LfuXmtj4yBWrjyH+vq9SEqqo6RkFsnJm3E4/B376lScznZO3Pd/nDV6FYOymvhofQmr6jKx2SDb087pe60hPSnA01+P5LnFI7a6zt6WzevNYd68X9HYOASPp45Ro/6Nx7MZh8P8DkOhJAKBVPYe/Cmn77WGovRWvq7KY0VtFoGQg8K0NgpT28j0+FjXkMH01b27IHhb2lRk51mz5hRWrToTny+HwYNfpajo045joQChkBu/Pwu3u4G0tMroc7r7zllYfDb8s2idLLc51kBckVNBdWY1AzcPpH9tfz7Z6xOwYPKCySSFYgEFCwcsZF3BOvIb8zlo1UEJZf2m9ciNORuZP2g+qb5U+tfFThS2JLVQnltOblMuB646kExXCI8zRNgCX9BB2LJht1lx12nZaN1iO9LX3+u2vgbZM+3K282qqv1YvfoMWlpKyMlZSmHhXJKSGrDbg4TDdkKhZDyeWlJSNrFy5RRqa8fR1lZITs4SUlKqcTh8BIPJeL15DBn8Bted8G8OLNlEW8DFGysHsbk1mcHZTQzMbOKoweUAXPHm0Xy6dDI+XxY2W5js7GW4XC0dJTLHrpblICWlKuFYu7vfTaTe7w64OWbhMTgtU78L2UK8P+59fC4f+63Zj5L6voc6df/btzh15FqOGrSRjCQ/n2wsprI5lZBlozSzmVNHrsUXtPO7mQdx2f6LGZjZzIy1/XlvzQBa/C7GFdYyIKOFwdmN+IIObnzvKLzeQkKhJByOdtzuxo7j7461WWC3h6Pt6Vt7Txb1X8TawrXkNeWx/5rYxR+NKY18NuIzHCEHRy86mjnD59CU0sTI8pGM2BSro5RllzFvyDySAkkcu/BY7FasXrorH1d/07pVmDBfD/yajXkbyWvKI8ObYa6lsJv6e8ARYMKaCeQ35VORXcHKfitNu2B9MR6/x7QTOgIMqR7CoM2D+tSuLjtO0B7sup3R5ac8u5ykYBITV01MOOaH7n9fw3IaOG/scobnNrCyNovltdm0+k29Yeq+S7DbLP7xxTjeXTOw07K6Wl5X69zafLJj7YqfV35KG2ePWcm+RZspSPVGxwdCNtY1ZPDikuHMLivqYQl7lo0bj6SubiyBQAqFhV+QmlqBw+HvOF9t2qPS0spwu1u2vrA+aHO1UZteS116HR6/B0fYQbOnmezWbHKbc6Pn5srKjqCi4jDq6sYAYTIy1nW0WyXh9ebRv/8sRox4Lrrcno6/3h33Lj63j/HrxlNaG7tIujKzkrnD5uIMOZm8wLR71taOZt2671FXN4b29tixmt3uJytrJYcccgM2WxjZtWx9W2Jx1KAyLhq/jLwU0z5c0+bhvTUDeGnpMBbnrGfJgCWktqdy9OKjE545c/RMWpJbGF02mqFVQ2lpKWLNmtOprR1LS0sxEGsDdLmaGDPmMQYMmLEjXqbEqaw8mLKyI6mrMyEvmZmrcblao23bWVkr+MHk2zh7zEoGZDbz8YZiVtdlAjYyknycOXoVae4g/16wFy8uGd7zymSX1emmF3uYNQVrWDxgMRltGeQ3xS6mbUxppCajhtLNpYxecwDz5/2S6uoJOJ1tjBw5jczMNR3HvWGCwRTa23PIz5+HwxHceS9mK2rTalk0YBE+l4/8pnzymvKoyahhc8Zm3EE3YzeMJbN+YPR6ALs9QP/+s0hOrupox4dw2EkwmIx95P/4fPjn2MN2jl9wfMIx5WfDPmNz5mYGVw/GHrazut9qcppzOHRFYsrLB6M/oDm5mVFlo9icsZmajBoGVw1mbFksXSJsC/PWPm8Rtoc5YNUB9Gs0oQQtLSWsWXMKZWVHEgqZaxddrib69/+AQaOf4IMJr2DZLA5Zfgi5LbG6xvrc9Xw96Gs8fg9HLT6KT0d8SmNqI6WbS0n2xy4c3pi3kTZ3G/uv2Z/iht51GtgTdXesOSirifPHLWNEbgMbGtNZujmHFr8Lmw0u3HsZDluYR74ay1urBnVaVlfL62qdW85nt4WZMnoVhwyoJM3tZ055Pza3JuMPOdivqJoDSqopb0rlrA/HRduTjl14bPR8voXFjDEzaPO0MW79uD6f//42uR1B8lPaSXIGafG78QZMB48UVyA6T3vQSaNvx93AaU+3OX0z8wfNB6Cw0bS/tCa1UpVVRcARYO/1e3f67asdxFzzOnXfpQzMbOKVZUNZvDmXsGVjfOFmxhbUUpzeyvLabP7wYWIaVm/OMW2P9o2GlAZW9VtFbVotWa1ZFDYWRrfn/ev6M7hqMCmB7Xdzx4gwYdrd7ficPtxBNyF7iLA9TLI/maRg7HdqYeF3+vE7/bhCLoL2IHbLTlIgKXp9kNflpTynnPKcciybRX5TPtUZ1TjDTorriimpK6E0Kcz/TVzA8JwGvqgo5MP1JTT73OxfXMXQ7EZG5tXTHnTyo1eP3e6vdU+zPc9/dn+NRC7z5l0dvUZir72e6rhWyY/NFrlGIo38/Pm9Wk+zp5lPRn5C2BZm0OZB5vpDIGQPsa5gHR6/h0OXH0pyoJcJNttR2BZmQekCyvLKyGvKI6s1C5tlw+fyUZldiSPs4IDVB5DVlpXwvO4+hwUDF7AhbwOFDYVMXB3brlhYvD3+bYLOYKfzabv6tnpPPuceaf/z+D2M2Ri7cUnAGWBh6UIcIQdHLD2CdfN/RmXloXi9eYwa9SSZmatwuVqx20OEQi6CwVRSUytJTq6JLqOn9sjlxctZ2W8lWa2dr+8O2UPsv2Z/8pvz8Tl91KaZtlJX0IU76KYpuYnMtkxyW3I79Tvb1XX3ntTWjubrr39Ba2sxubkLGTbsJVJSKrHbQx0dWZMJhZJwFS7g86Gf05bURnFdMSl+s39sTGmkKquKgoYC9lu7H1WZVcwbPI9UXyoldbHfWmtSK+W55eQ15XHgqgO4ZO+V7F9UTZPPzcx1/anzesjruB5/cFYTgbCdx+aNoaE9aauvoSithQv3Xs7ArCa+rspjYVUe7UEHJRkt9EtrIze5nXUNGTy3eAR2m4XdFu7ouxD7/CJBAIGQHWs3+lx7kvhagS1elz9k7zTu22Jh4XV5Td85y44zZPrOJQeSu+07t6ttD3tzjcwxR/+IjRuPxevNx+OpIy9vQUefDHOdRDjswmYLkZG5lsaURqozqqlPqyejLYOQI0Sbu4285jwKGgtI86XR6m5lYelC6tLqyG3Jpai+iLakNiqyK/A7/YwqH8WAzaWUbTyWhoYRhEJJFBZ+Ee2zEbvm2U1aWhkul7fnF7CV1524LRnD0qUX09g4lOzsZZSWTu+4/jQQvf7Ubg+Ql7ewy+Vt6zH/8UM3UJrZTKPPzYJNebT43WQn+0h3+ylMayMQsvPWmhJmDZlLXXod/Wv6k+aLhQqW5ZTRktzC+HXjyW7NZtaoWQAcuOpAkgId2x8bfD70c7xJXsavG8+Y5n5cuPcyxverwbJg/qb86LbqhGHryEjy87/lQ/n3gthNSXfFc7PStYAjEO1rGrKFzPFXMCnhmqKI7j6vQCCZuXOvpbFxGA6HnzFj/hX9HZrAejeBQCp7DZjLZfsvZERuA4uqc5lbUUCz382AjGb6pbXRL62V8uY0HvlqbJfr3fI7YmHRkNJAdWY1DakNZLZl4nf68Tl90W1Jqr93yU82LCaWbCIvpZ3WgJOVtVn4Qw4yPX48ziCZSX5Clo2vKgtoIWT6QKWbuliqL5XGlEZS21PJa8kj8//Zu/M4u+b7f+CvO5kkk30RCZFIEARB1BK0CGqnitq7WLu3qO1rpy21VkurrVLRn6LWqqql1tp3JXaRTSyRyZ5Mlpm5vz+uTDKyTSKTmfB8etzH3HPO55zzvmNyP/dz77mvz7ROdd8VmFk+M1Utq9Ki2CJltWWZVT4rFbMrUjG7YoGvq+Z8zvDpbZ0rSv/O53xvsLq2kPKy2pSX1aaQpKyQVFa1TnXt/P3JfOcoJrNnd0hNTasUi4WUl89MoVB6v37ea23Ly6entrZVamvLUyyWpVCorXs+n7fiWbM6ZezYzTJrVse0bj0+nTu//cn30uceq1CoyUa93s7GPT5ORXlN/vdRt4yvqkirFjXp2Hp2urWtSqsWNXl17EoZNq11RnUblVHdRqVQLGS18atlQvsJmdR2UrpP6p6+H/dNp2ld89pr38mHH26Z2bPbZY01/vXJ91OmpaysNjU1rTNzZsd07/5i0qYylR0qM67DuBQLxbSf0T4T205Mu5nt0m1yt3SZ1iWFFPJB5w/y9qpvZ1b5rKwycZW0m9Euo1YelVnls7LG2DXSd2zflBXLMrLbyAxbZVha1LZI78reKRaKea/re6kt1Kbfh/2yeuXq+fjDzfLBB1/OrFmd0rXrq+nc+Z1Pvotdm2KxLDU1rdOmTWXath2bpPQappBiPp11VEzpe6eT2kzKO6u8k487fpzO0zpn1QmrZnS30ZnWelpWnbBq1vporaySltlhjdFZqe2MvDe5fd6q7JyZ1aXvFHRoNTudK2Zm0szW+e/I+tdaLqpfmlIxJZXtKzOx3cR0qOqQ6hbVmdlyZrpO7ZqVpqxUN6ae3mp6JrWdlOmtpqf9jPaZ0WpGiimm0/RO6VjVse51zpz3fGa3mJ3ymvJUt6hOeU153XenGqr03c62qa0tXddVeu9g3msmSsGu5eUNm322odcBN6TdXnvunfHj+2f27A4pFguffB+q9JpkbhBfIWt0ey/HbfVC1ug8KQ8O751HR/XM1Fkts8kqH6dP5ylZs8ukTJ9dnhuHrpPvbjo0q7afnv/3cv/878NuKSZZd6WJWWelCVm5XVXendApf3mx/sSYC/v/+sYbh+a99wZnxoxu6d//r+nS5c20bDk9hUJ1amtbprq6bdq0+Sit2n+Yyg6V+bjjx6lqWZUu07pkUttJaVnTsu5zs5a1S/69nsWpKdRkWutpmdZ6WlpVt0ohhcwsn5l2M9ul3cx2jZ43sajXJbWpzdSKqZnSpvRd29azW2da62lpM6tNOlZ1TEX1AiYBXQGVl9WmY+uZadWiNjOrW2RWTYsUP1mflP6CZ9WUzfc9scW9xq0uq86s8lkpK5altlCbQrGw0Ncby0JtajOtYlomt5mcpPT/a3rr6Wkzq006VHVIRXXFUudINDetWlSnZVnpOabmk9/nvMlMNcWy3HbHXQ061u5775aR3UZmePfhKSuWZfVxq9d9JtR2Ztv0+7Bfekzqka+uMTqb9hyb2mIhT4xeNZXT26RD61np2HpW+naenEKKufOtNTO2Abk6SSmDY1yHcansUJmk9NpqYtuJaT+jfbpNKb1/ulLFrGyy6sdp32p2Rk7skA+ntk2hUHqN1Lbl7LQpr8m46W3yZmWXzC6bnSltpmRa62mpmF2R2kJtZpXPSocZHdJ+Rvu6z+ury6ozrfW0urH57BazU1uoTbuZ7dJmVptm8R5Y8ZP/ktLrw6auqaxQm84VM9O6RW1m15Zlxiff2WrVYm4/XF1byPvj1s4rr3wvEyasl44d382aa/4z7dp9kBYtZqRYLMvs2e1SW9sq1dUVGTZsv0yZ0jurrPJMVl31sU++7zL7k3yjNikvn57WPf6XV3q/knEdx9VlyFS1qsr7Xd7PjFYzsu6YdbPGx2tkSsWUvNr71UxqOyldp3ZNz/E9U9mhMmM7jU3LmpZZ/731031yKRCwulCdGa1mpKasJi2rW9Z9JlUxu2KR79Eknx6nF1NRXp3ystrUFgupqS0r9frzZFnOqinLtn3ezzc3eiOdK2bmupf75+3KzmlRVptV2k/PgO6V6dR6Zu5/d/X85/2VMqzHsLy30ntpM6tN+ozrU+qTO5Qyadb+YO10m9otY7qMyf/6/C8VsyvSfVL3tK5unZnlMzO209hUtarKRiM3yoBp3XPqNs9mnZUm5rn3u+eON9fMx9PaZM0uk9Ozw9Sss9LEVM2syY5nfpxJkyal42KS65co+O28887L6aefnqOPPjo/+tGP8s477+SII45IsVjM+++/n3afiuhdZ511suaaa+aee+5p6Cmy1VZbpaamJs8880y99a+++moGDBiQP/3pT/nud7+7wH1XXXXVbLPNNrnpppvqrb/rrruy55575t57783OO++8wH1nzpyZmTPnvtCcPHlyevfunUmTJqW8TXleHftqiimmRaFFNuqxUb3EWJqJhsz4sLQzuRbnJL7mk4T7+Z9QXvv4tUyompAkWa3jaqVZNucxcmRpNqJxn3z+07p1/RTOjTYqpRe/8EKp3fTppZmJ553xo6Ym2XbbeRL4YWEaOgPKEv6beGj4Q7n19VvToVWHTJ01NQdscEC26bPNUhS47FXNrspdb9+VGdUzUiwWs2GPDRc4I/3smtl58cMXU1Nbk0KhkAHdBzR49h6WrWHjh6WquvThTu+OvdOpomHhgSuiObPKVFfPTemfMyvakrjltVty2D8OS/9u/XPslsfmh3f9MGt1XSu3H3h7Xb9TU1uTn97901zx3BX50eY/yvZ9t8+htx2aDXtsmDsPvrM0K1qxWJrZb+qw0kxjLTt9MntSi7np5d22rD/TxKJmRn/j16VZm6unl2YJbL/GJzNgTC8lnac26X9ig1LEx44tzVD52GOl39c++5RmymrXrnTaqVNLadirrJIcfXRp1uyvfz058cTSrFpt2pT6ywkTSrM3NHSmv2ahobPAL6Ld+KrxOeiWg/LQiIfy651/nbvevisPDn8wl+5yaX60xY/q2v377X/nGzd9I30698l937wvx957bG57/bacM/icnLndmQs/Z0Pqo75F/P/68/N/znf/9d2s2n7V/G3fv+WlD1/Kz+77WVZtv2qePPLJ9OncJ1e9cFWOvvPo9GjXI19b92t1+77wwQt5/oPnc+AGB+bGb9y44HMu5LyLaze7ZnZ6/rpnxk0fl33X2zertCt9caG6tjpXvnBlCilk2E+HZY0ua+SAmw/Iza/dnM4VnetmUr3rrbtSU6zJzwf/PGdsd8YS1fbax69ln7/vk/FV43PhVy/MOY+ck9m1s3PL/rdkq95bLfyxLEcTZ0xM1exS/9WlTZdUlDfSG8gTXk4e3qU0g8Q6xyTrHpO0Wa00E/ucmbST/PrO7+f440u7nHpqcu65Cz7cz36WXHpp6f5ll5Vm/V2Yo/95dK568aqss9I6OfUrp+bVj1/NRU9clI6tO+bZo5+db4a6z/o3tzTeHPdmPpr2UZJk5bYrZ72V11vMHixvDz6YnHxyaYy7007Jd79bmumyomLurBJlZck2Xc9Nhv68NBPFoKuTLpuWZpWd/Ebp54wPk1V3T7pstEzre/315KWXkg8+KNXUvXtpdqN5x9+fmt+AL6CZM0uvT+fMkDhn1tDy8tLfTd++pRlO6izieW7stLHZ5E+b5P0p72f/9ffPVr22yh1v3pFHRj6STVfdNI8f8XhatmiZ7hd1T2VVZa7Y/Yrssc7c2be/+tev5u3xb+d3u/2u3uu6euf9DM+tFz1+UU66/6Ssu9K6uX6/63Pzqzfn/MfPzyarbJJHDnukNHPQ0ljY76SR3reApjRnxuY5MzklpdmaX3ihdP/VV5P111/Izm9cmoy5ozRb1qq7JG16lsbnNTM+mSmsXdLvBwt8X3qxFvIcUSwWM/BPA/PyRy+ndYvWdTPIFlPMjOoZ2WDlDfLyD15e4pll653z0+et+iC5a73SDHtrHZVs9sfSYxr+/0rb5uj3vdJsSxNfTmZ8VJotvbxt5s6+VVuama/LwCWvZxHGT6/MWpetlYkzJi5w+5wx83UvX5dv3f6ttG/VPmt0XqNu+5gpYzK+anx+uf0vc9q2py28hub23LaMXs+f8eAZ+eWjv8xBAw7KyV8+Obv9bbfUFmvz70P+nU17bjrPrsX8++1/Z9iEYSkrlKVT607Zf4P9G29sxVKrqa3Jcfcel8ufuTzf3/T7+fLqX84RdxyRQb0G5fYDb1/wrIwLe11y7xalmTA7rpfs9krp3/5HDycf/qc0Q2KxWHpfscfg+Y+1oOMt6JyLa8ey19DPZhvzM9yFmT4muXvjZFZl0mmDZP3Tks6fvFn8yJ7J9FFJ/+OTTS5etudlqfzqV6X3tZLSewnnnVd/RuakNB5rOe8lGov4t3/M3cfksmcuy6DVBuXoLx1dt/6GoTfkgeEP5FsbfSt/3eev+eMfkx/+sLT7uusmxxyTrLde6f2BN99M/vWv5JZb6s9ezQriqcOT4UMWvG2lLTN60E3p85s+KaaY3+32u7oZPCfNmJTv3/X9JMnwY4Zn0si+2Wqr0izVa6yRXHzx3Os1xo9PXnyxdN3Httsup8f1BXXVVaXPBJPSe4xXXFF/lvLkk+7mf6ckb1xYmp19q7+VZvKePTGZ9Goye3JS9WGy6q7L/H1GWJYueeKSnPCfEzJotUG59YBbc/L9J+dvr/wthw88PFd/7eoUPun/Zs1KKitLszLPnl26FQqlvrJt29L7lkt6LcLyVlNbk98/+/sMeWlINl5l4/zvw//l2xt/Oz/e4scpL1uCiTZra9Lz1z0zdtrYfGfj72StLmslKb2/8Yv//iLVtdV5+qinM3ba2Ox1w16pKK/IpP+bVDf7/MQZE9P1gq4pppgnjngid79zd37x319ky15b5skjn6w7z3PvP5fN/7x5kuTjEz9Ot7bdcs89pesZZsxYcG333ZecOWqrPPXeUzl9m9PrfW767du/nb+/+vccPvDw/GXvv2TstLHZ+uqtM2zCsPxi+19khzV2yKG3HZoRE0fksl0vy08GLeKDvc+jhv4B37dVMu7JpMPayR5vlGZvH/vf5P1/l2bVLtYmq+9fer9tQcdemrHm6NuTx/Yt3f/KrUnvT+6/9H+lz3Crp5bey9r0N9n2mm3z6KhHF/je2+qdVs/bP3m77m+RL66JMybmJ3f/JH8f+vd8e+Nv5/pXrs+Oa+6YP+/159I1Xsxv1oRk5N9L7x+Xt0s69k9aVHxy3VsxKVYnK22RdFy3/n4N+TxtGb7PNGz8sDz5XqkvaVFokd3W3i2dKzp/pmM2hSkzp6SYYsoKZfWvs62dnYy8sfSeX2110nmjpLx96bk4KV1/2H6tZOWtm6bw5mxZf07awPfe/ve/0mdWH36YdOiQ9Ogx9xqJ2trS7RvfaNgpk9K1aztcu0Nm187OHQfdkYkzJubgWw9O93bd8+jhj2bNLmsu/iCN6MLHL8wpD5ySvdbZKwcPODiH33F41l95/dxx0B1ZreMCJj1ayHPE7a/fnn1v2jcdW3fMmz9+s65Pf/GDF7Pr33ZNeVl5Pj7x4xXy3/fn1Q/+9YP88fk/ZuW2K+foLx2dquqq/Oap36SYYm7Y74YcNOCgjBmTPPJIMmJE6fqgvn1L14C0aDH3M9/NNy+tr7OYPuLW127NYXcclnVWWic/2/Jn+eG/f5i+nfvmHwf+I2t0WWO+9iusBj7nzJyZjB5d+u7UtGlzP0efc4hVVy29Fzt55uQcetuh+ffb/87FO12coWOH5i8v/SUnf/nknLfjeXX/5n7/zO/z47t/nLW7rp2b9785N716U8577Lxs3nPzPPidB5f+uyA+Y4Ikyc2v3pxzHjkn6628Xl77+LVs3nPzXLTTRVm53cqL33lpLOFnh1VVpdvs2aXn7RYtSt/Fad/+U58dLUcTqibky3/5cl4f93r+78v/l6+t+7Uc+c8j8/q413P2dmfnrMFnJUn+7/7/ywWPX5CyQlk2WLkUGjNi4ohMmTUl26y+TR457JEUnjw0GXlD0qJtst+E0nduJvwvGfbnZPKbSc20ZLWvJ+ufNLcAn6V/4YwZM/f1fE1N6Zrn8vLS/+JisfTdq732WsC/idqaJMXSmLm5v2nMclVbrM0LH7yQWTWzkiTrrrRu3Wemn1ZdPfc7kUnpb2/Od+OX1D3v3JM3x5XGVh1ad8gBGxyQti3rB+TPrJ6Z61+5Ph9P/zjFYjE9O/TMQQMOavRMh3cnvJtHRpQCO8sKZdlt7d3SvV33xexFs1SsLX12MOGl0mcFbVcvvY9Y+CSouFiTtF8z6fql0ndWJr+VzByXtOqclLWa+/7WnPe82vdt0GnHjUsef7yUJVFVlfTuXRprzvm3Ul2dfOlLpe/JAl9cs2tm55537snkmaXgvH5d+2VQr0FLfqCmuCaTZqW2tvTdzGnT5o6Xy8pK4+UOHUpZRbfdlrz2WqnthhsmnTrN/a7LnPdFv/KV0vFufe3WnPHQGVlnpXXyVuVbGdB9QH6z62/Ss0P9Sar+9da/8qfn/5ReHXpl5KSR2WudvfLdTb+bFkvzPZdlrXp66XPE2lmlzwtTSArlpe+sVqxc18ePrxqf216/LbNrZqe2WJstVtsim6+2eb1Dvfbxa9nvpv0ybvq4nDP4nPz8kZ+nQ+sOufWAW7NRj0+uPSsWS9+BmflxUj0tKc4uvQ4plCVlFZk8u0M69dxg2Qe/VVVVZcstt8wrr7xSdyFRsVjMRRddlOPnfNP8E88991y22GKLBW5blO9+97u54YYbMmHChJTPcwXtjTfemIMPPjiPP/54tt56wR8C7rzzzhk9enRef/31euvPP//8nHLKKRkzZkx69mzYzIeTJ09Op06dGvRLBABYXl756JXc+vqtSZK2Ldvmx1v8eL43OZPSh9z3D78/hRSyavtVc9HOFy2wXYM19EOf2urSxay1M0sfDrRo16DAt4Wpri6FbMycWRpQtG1bGnjMKWPkyGTYsNKbYzNmlNq1bFn6IG/ttZOBA5f61M3XYi5ErKmtyZXPX5lx00tpszussUO+vPqX52v32KjH8p1/fCeFFDKjekZO+cop84eIfPqcizgvC7GY/1+nP3h6zn303OzTf5889d5TmTJrSv572H+zyaqbJCldQLnqJatm2uxpKSuU1V3IUl1b+tTkvm/el53W2mnB51zEeRfX7rh7jstvnv7NAnfbvu/2efA7DyYphdhscMUGGV81Ps8e/WxeHftqvv2Pb2fgKgPz7NHPzv/FjAbUNnnm5Ax5aUiqa6tTSCGHbHhIerTvsfDH8XlWOzuZ+Erpg/tZlaU3H4o1pbDOlp2Srptl2IRNst9+yf/+l6y1VnL66ckmm5TeiKmuLn3AO3ly8tZbyXHHlQ577LGlL9RWfCpXYdq0UtDmzOqZ2W7Idnl6zNP5055/ymVPX5bXPn4t/zjoH3MDCJvzl7tpVmbNSkaNKn0ZdsaM0vKcvrpXr9LFxKmeXvrQbNrw0htdNVVJCqULWVp1SXrskJQv/5mgYYktpp97bNRj2f7a7bNK+1Vyy/63ZMe/7piWLVrmhe++UHeh77du/1aue/m6hZ5i+DHD55tsYFkEvyXJCfedkEuevCR7rL1HHhj+QFbrsFoeP+Lxz9YPex3JF9xFFyWnnFL6YOxHPyqFFfTtWxrbTp1a+jJBly6f+tJAMncikoVMQrJEFvEccdvrt2W/m/ZL+1btc+sBt6aQQva7ab9MmTUlN33jpuy/wf6f7ZwLOm/VB8l7dySThpbC4it6zL24sHZ20rZXKfS4iVz8xMU58T8nZtBqg/Lgdx7Mf4b9J1//+9fTs0PPvP2Tt9O2ZdtU11Znjd+ukfcmv5ft+26fzXpulnfGv5Pb37g9bVu2zejjRqdrm0/N3tKcnw8XVdsSvp7/43N/zNUvXp0WhRZp27JtrvraVU3+5S4+uz8//+c8PPLhJEmvDr3y8+1/ntblrRfceGHPOVUfJW//vvRF0JqqpMO6SYvWn3wht6YUfLnJJUnL9vMfa0HHW9A5F9eOL5bnfpS8fUXpPZSvjU7a9EimDEs+fjR5+bSk6n3Bb83IQQclf/976f4ddyRf+9qi2ydZ5L/9J0Y/kS//Zf73xOf418H/yhZd9shaayVTppS+ZDh0qMnXPjfG3Jn8d54/onZ9ktbdSl+SKlaXgmH2fCtbXV0K4lmQzXtunmeOfiY775z85z+ldY89lnx54X9WNKJzzy29750k55yTnLmA+YvqzKwsjTWmDi8F79RUJSkrBUm3XinpuecnodLQfJ3/2Pk55YFT0r9b/7wx7o18a6NvZcjXhyxdMPsXxLH3HJvfPv3bBW5bZ6V18uaP38ykGZPS9cKuqS3WZsc1dqy7dmLSzEn578j/pm3Ltpl48sTc/+792f363VNRXpEztp0b1PbShy/l5tduztpd185bP3krY8cm/fuXJqRLSuH/P/pR6QLqZ58thVbeeGPyRMtzcvYjZy+09r9/4+85YIMDkiTvjH8nW1+9dWbVzMoOa+yQ29+4PSdufWIu3OnCZfOL+jyaPqY0UWHlU6WxZacBn4QOFUoXc9fMKI01W3Weu8+yGGu+e23y3m3JlLeSThuWJlVsUVEa29bOSroPTvoenIeGP5Qd/rpDWpa1zK0H3Jp2rdrl0NsOzYdTP8wf9/hjvrfZ95bFb4HPiY+mfpSaYk3pOq8OqzZ1OZ8PSxOu5X0mWCJPjH4iO/+/nbNyu5Uzbda0JMkjhz3SbCZvvOutu3LnW3cmSbq26ZrTtz194dfQLuS97Skzp6TbRd3qwhA+bZvVt8l/D//vMquZz65qdlU2//PmefXjV3PrAbfm0ZGP5jdP/yaHDTws1+x9zZIdbAk/Jxs6dmhufvXmJEmblm3yky1+knat2i3ZOb+Aaou1uezpyzJ60ugkyda9t85+688/W+fPH/l5znr4rGzfd/s8PvrxrNVlrTx6+KMLDShZKNczAsvIyIkjs9XVW2XyzMnZu//euf6V63PUJkflz1/7c12b6bOnZ/3fr5+Rk0bm34f8OwNXGZi1L187s2pm5cXvvZgNum+QTHo9efa7ybinklW+Wnofu6JHUlaezJqUTB+Z9Dkk6dBv7smX4XUeAAAAwPymzpqam1+9OTXFmpQVyrLfevulU0WnBu+/JJllSxT8liRTp07NpZdemqeeeipdu3bN/vvvn68t4MrbK6+8MnfffXcuvPDCrL322g0+/t13353dd989N954Yw488MC69bvttltefvnljBo1Ki0+PXXrJ/7whz/khz/8YZ566qkMGlRKtqyurs7AgQPTvn37PPXUgi/aXBDBbwDAF54PfWC5OPe/52b05NJFK/uvv392XHPHetuPuOOIXPPSNTn6S0fnyr2uzM2v3pwDbjkgfTr1yfBjhteFctdZBherDx07NBv+YcO0LGuZ9372XrpUdMl6v18vwyYMy//b5//lmxt9s67t9a9cn0NvOzRfWvVLGTN5TCqrKvPMUc/UhdctVW0ssXfeSZ5/vjRT5uTJpRliWrVKVlop2XjjZMcdkwcfTP75z+Spp0ohXN27z53Za9as5MADk5/+tLQ8ZvKYbPbnzfLR1I9STDFnbntmztn+nKZ7gAArggb0cxc+fmFOvv/klJeVp7q2Ov848B/Zu//eddtvHHpjDr714CSpu+h8ds3szK6dnQ1W3iBDfzh04ef9jH1rsVjMn57/UybOmJgkOXCDA5du5mnjCKjngw9KIREvvphUVpbCRWbPLoWgrrJK8s1vJhts0IgFLOI5olgsZpM/bZL/ffS/DNl7SFqUtci3bv9WNuy+Yf73/f/NP9ZY0nMu5LzN2czqmen/+/4ZMXFE7v3mvTnjoTPyzJhnctVeV+XILx1Z1+6ixy/KSfeflMF9B+eh7zxUN2770eY/yu92/938B25uvxPP1TSWZfS6pN6xFnQ8f8MszgODk7GPJO36Jl8bXlr33j9LoW9zrHFYsl7DJ7Cj8UyYkBxxRHLXXaXZwQ85pDSpS8eOpZkn3323NNHL0UfPs9MiniOKxWL6/KZPRk8enYMHHJxtVt8mz3/wfK5+8ep0qeiSj074KA/e3zK77lpq/41vJDff3OgPk+XlwR2Tj0oTl2Tj85P1TizNovnSycnrF9YFv/36yV/n+PuOT5eKLvnpoNKbopc/c3nGV43PhV+9MCd++cQMHpw8UprUPc88k2y++YJPSeMqFpMLLkiuu640C+3mmydbbJF07lyaEGrUqNLY6je/aepKYdl55aNXMrNmZgopZOAqA5vHzMjN2HPvP5fN/7x5ygplue+b96Vj64456s6j8vJHL+fng3+eM7YrBbht8qdN8tKHLy3wGDuusWPu//b9mVA1IStduFKKWfB44jsbfydDvj4kl12WHPNJbv2uu5Zex5TNk803blzps7oPyp7JoKsWPEN7i0KLfHzix+nSpkvduufffz43Dr0xSdKjfY8cv9XxS//+zBdVbXWp719YWGJjhIwXa0vnXcCkiIOHDM4jIx/JpbtcmnVXWje7X797+nTqk7d/8nZatmi56OMCwArgtY9fy7sT3k2SrL/y+ivuZDCLeG97x7/umAeHP7jA3c7f8fyc/JWTG7MylsLQsUOz+Z83T0V5RSbPnJx+Xfvl+e8+n/at2i9+Z5q1m169KROqSgnce66zZ1bruFoTVwR80f3vw//l6hevTpJ0qeiSM7Y7Y75J0+9888587cavpX+3/tl01U3zt1f+lpO/fHLO/+r59Q9WXZVMfj2ZNSGpnpKkkJR3KAXOd1y3NOHVHM3tGhQAAACgnkYNflsedt555zz33HO54IIL0q9fv9xwww3585//nOuuuy6HHnpokuTII4/Mtddem2HDhqVPnz5JkpkzZ2bTTTfN5MmTc/7556d79+654oorcuedd+b+++/Pdttt1+AaBL8BAADNweOjHs9XrvlKOld0zofHf5gDbjkg/3zznzl7u7Nz1uCz5t9hGV2svvmfN89z7z+XP+35pwxcZWAGXTUonVp3ygfHf5A2LdvUa/vt27+dJ0Y/kSQ5fODhOW3beb5E68vYAHxRNKAPLhaLGTp2aIoppnWL1lm327r1tk+cMTErX7Ryqmur8/L3X86GPTbM12/8eu54846ctPVJuWCnCxZ+Xv0psBT+8cY/ss/f98l63dZLeVl5Xhn7Sm7Z/5YFzqK+SJ+j1/1zwq27t+uesdPGZsPuG+al77+Usnm+MDxpxqT0vrR3psyakv8e9t/sct0umVkzM2/9+K2s1XWt+Q/qols+rxoaQNDQv/vP0XMJTeylU5LXzy+FPez+atKxf1NXRANMn548+WTy3nvJxImlsJS2bZNevUohT716N/w54oT7TsglT16SAzY4IH//xt/zg3/9IH98/o85YuARuXrvq/POO8m66ya1tcl66yWvvJIsZP5BViQ1s5JbOyc1VUm3rZOdHp+77aX/S16/oC74bdSkUen7m75Jkvd+9l5aFFqk5697prZYm+HHDE/fzn3z5JPJttsm1dXJgAHJ736XfOUrpb+V6urS301NTbLZZk3yaL+Qxo9PRo4sPUdMn55UVJRC3/r1S1q3burqgKa03u/Xyxvj3sj/2+f/ZZe1dsmql6yammJN3v3pu3WTWxx7z7H57dO/TbuW7dKva78kyRvj3sjMmpn1AuLW//36eX3c6ws8zx/3+GO+t9n3st12yX//W1r36KOl/mFBaou16XFxj4ybPi6/3/332XmtnfOn5/6Ui5+8OFv12ipPHPnEsv1FsHiNEfy2CA+PeDjbX7t9enfsnT6d++SxUY/lyj2vzNGbHr34nQGA5WcRn7nPCY8ftNqgPHbEY5k0Y1J6XNwjNcWaus/0aX4eHvFw3qp8K0mybZ9t07+b94gBaDpzrv9Lkj6d+uS1H71WNylsg/ksHQAAAFYYS5JZVr7IrU3ktttuy2mnnZYzzzwz48ePT//+/XPDDTfkoIMOqmtTU1OTmpqazJtb17p16zzwwAM56aST8pOf/CTTp0/PwIEDc/fddy9R6BsAAEBz8eXVv5z+3frnjXFv5K//+2vufvvulBXKcvgmhzfqeY8YeESee/+5XPfydXl17KtJkoMGHDRf6FuS/HWfvy78QD5EBuDzbGEXVC3kS2GFQmGRF353ruicrXtvnf+O/G/uG3Zf1lt5vTw04qEkpdmKAZa1r/f/er606pfywgcvJEk27rFx9l1v3yU/0Ofodf/BAw7Oza/dnOEThmfV9qvmop0uqhf6liSdKjrlqC8dlUufujT73bRfqqqrsk//fRYc+gafZ8v63/7n6LmEJrb+ycl7tyZT3k7u3y5Z+4dJ5w2TslbJ1HeTjx5MNj4v6bR+U1fKPNq2TXbccRENluA54sANDswlT16Su9++O1Wzq+q+THPggAOTlEKivv/95IorktdfTw48MDnzzKR//1Ko19tvJ//6V3LccQLhVijjnyuFviVJ30MX2XT1Tqtni9W2yNNjns4/3/xnysvKU1uszWY9N0vfzn2TJFttVQojPP/8UrjP4MFJWVnSsWMydWpp6P/b3wp+W566di3dAD7tmxt+M6c/dHpuevWmTJs1LTXFmmzde+u60LekFPbw26d/m46tO+al77+U6trqdD6/c2bWzMy2fbata7dVr63y+rjX89U1v5rTtjktk2dOzt437p0k2br31klK/UOStGuXbLnlwusqK5RlpzV3yg1Db8jblW/nh5v/MK9+XPrcdbd+uy3j3wLN0eC+gzO47+A8POLhjJ48On07981hAw9r6rIAgCWw+9q75/j7js9z7z+XqbOm5tFRj6amWJPeHXsLfWvG5rwOA4DmYMjXh+TtyreTJKt2WHXJQ98Sn6UDAADA51SzDH5r3759fvvb3+a3v/3tQtsMGTIkQ4YMmW99jx49cu211zZidQAAAMvXEQOPyEn3n5Sf3fezzK6dnZ3X2jmrd1q9Uc958IYH52f3/SyPjXosr4x9pVTHJkc06jkBYIXTCBdU7bn2nqXgt3fvy6BegzJ55uR0qehS96XCBoXNNVJtwOfTkL2H5JkxzyRJNl9t8xQaMkvw51ihUMjtB96+2HbHDDomlz19WT6e/nGS5Pitjv/0gRZ2grn3PVcDNI5WnZNdnk/e/kPy4X3JG5ck1VOSQoukTc+kyyZJqy5NXSWNaPPVNs+aXdbMuxPezbmPnpsPpn6Qbm27ZYc1dqhrc9llyeqrJ5dfntx6a+k2p5suFpM2bZJjj22a+llKk4bOvd/xk2DHWZOSuweUfn7K/uvvn6fHPJ073rwjLcta1q2b12abJbfcUrr/3nvJhx8mNTVJly5J375Jq1aN8UAAWFKHbnRoznjojNw37L58NO2jJKUwuHlt22fbFFLIB1M/yPAJwzO+anymzZ6W1i1aZ1CvQXXttu69df7y0l/y4dQPM7jv4Dw4/MEkScfWHbNB9w0yfXoye3apbbduSflirsDdtd+uuWHoDXlg+AOZXTM7/x3537r1fDH8YY8/1P1/37jHxmnZomUTVwQALIn+3frXvc/04PAH88C7DyQpBcIBADRE54rO2Xy1zZu6DAAAAKAZapbBbwAAAMz17Y2/nVMfPDVTZ01Nkhy5yZH1GzQ0UGAJggc6V3TOPv33yQ1Db8jEGROzwcobZIvVtljahwAANNAe6+yRk+4/KY+OfDR3vHFHktKXAFuUtSg1EBIELGMb9tgwG/bYsKnLWOH06dwnb/z4jcysnpmyQlnWW3m9+g08XwM0rZYdkvVPKt2SpFibFMqatiaWqwPWPyDnP35+Lnz8wiTJfuvtl/KyuZfItGiRnHxy6TZ8ePLii8mUKUlFRdKnTzJw4OKDXGhmZk+ee7+ixyd3apPp7y2w+TfW/0ZO+M8JeXD4g2lRKI25Px38Nq9evUo3AJqfvp375iurfyWPjno0z4x5Jq1atMqBAw6s16Zb225Zb+X18trHr+WJ0U9kfNX4JMkWq22RivKKunZb9d4qSfLax69l6qypeXbMs0mSQasNSlmhLBUVpY9Wi8XSa4fF2bXfrimkkKFjh+aON+/ItNnTsnLblbNZz82W0aNnsRrhs/Ql0b9b//Tv1n+J9wMAmo/d++2e3z37u/xn2H/ywHDBbwAAAAAAwLLhMlUAAIBmrkf7Hrn9wNtTOb0ySbL3unsvl/Oeus2p2bB7KQBi3pnuAYDGs/7K62eNzmtk+MThueK5K5Ike6y9RxNXBcCC9Ovar6lLAKChhL594Rw44MCc//j5mV07u7S8wYELbbvGGqUbK7p5QlnmhPwVypPOG89d365P3d0+nftki9W2yDNjnkmSbLrqplmjiz8EgBXVtzf+dp4Y/USS0vupXdt0na/Ndn22mxv8NmN83bp5rddtvXSu6JyJMybmhQ9eyLPvl4LftupVCoQrK0vWWy957bVk/PjSz/XXX3hd3dt1zyarbpIXPnghZz50ZpJkp7V2SmFhIWM0HSH+APDF0ZDA16Tu9cHua5eC325+7eZUVlWmdYvW2XGNHRu5SAAAAAAA4PNO8BsAAMAKYM919lz4xoZehL6EF6sP6D4gA7oPWKJ9AIDPbo+198jvnv1dps+enhaFFtlt7d2auiQAAIAVysBVBubs7c7OtNnTUl5Wnu36brf4nVixteo09/600UmHtZOWHZLdXlroLt/f9Psp+yQY8shNjmzkAgFoTEd96agc9aWjFtlm2z7b5g/P/SGPj348E2ZMqFs3r0KhkC17bZl73rknz4x5Zm7wW++t6trss08p8C1Jrr46ueSS+c81bVrSrl3p/q5r7ZoXPnghr497vW6Z5UigGwDwGW2/xvZpU94mlVWlSVu367td2rVq18RVAQAAAAAAKzrTWgMAAAAANCPzBr5u2WvLdG3TtQmrAQAAWDGdNfisXLjThTlvx/Pqwr34HOvypbn3xz/ToF0O3+TwPHnkk3nyyCcXGxYEwIpvuz6lINiXP3o5oyaNSnlZebbuvfV87bbqVQp5u/OtOzNq0qgUUgqDm+Pgg5OyT15aXHppcsIJyciRycSJyX/+k+y4Y/LEE3OPt2u/uUFvhRSyS79dlv2DAwCg4YrFht0+UVFekR3W2KFueY+192iKqgEAAAAAgM+ZQrFoOrsFmTx5cjp16pRJkyalY8eOTV0OAAAAAPAFMrtmdpKkrFCWFmUtmrgaAAAAaOaKtcmtXZPZk5IumyS7PJd8OvBv5rikdbemqQ+AZmHty9fOO+PfSZIMWm1Qnjrqqfna3P/u/dnp/+1Ut7z+yuvn1R++Wq/NL36RnHnmws9z333JTp8corq2Omc9dFZqi7Xp2qZrTvzyiZ/9gQAAsFx9OPXDfDT1oyTJWl3XSvtW7Zu4IgAAAAAAoDlaksyy8uVUEwAAAAAADdSyRcumLgEAAABWHIWypPvgZMwdyYQXk6ePTDa5JGndNZn6bjL0F0n7NZMBZzR1pQA0oe36bFcX/LZdn+0W2GbQaoNSVihLbbE2SbJ1r63na3PGGUmvXsmFFyZvvFF/2wYbJGuuOXe5vKw85+547rJ5AAAANIlV2q+SVdqv0tRlAAAAAAAAnyOC3wAAAAAAAAAAgBXb+icnY/6ZpJgMH5KMvD4p75DMqixt3/CcpqwOgGbgxK1PzFfX/GqSZMteWy6wTYfWHbLByhvklbGvJEm26r3VAtsdfnjp9thjydtvJy1aJBttlAwc2CilAwAAAAAAAADwOSL4DQAAAAAAAAAAWLF12yrZ6BfJy6eXlmtnzQ19S5KCy6QAvujW7bZu1u227mLbnbrNqXnxgxeTJDuvtfMi237lK6UbAAAAAAAAAAA0VKFYLBabuojmaPLkyenUqVMmTZqUjh07NnU5AAAAAAAAAADA4ox7OvnfKcm4x5MUk04bJmt8J1n7B0lZy6auDgAAAAAAAAAAAPgcWpLMMlPZAgAAAAAAAAAAnw/dBiU7PpgUi0mh0NTVAAAAAAAAAAAAANRT1tQFAAAAAAAAAAAALFNC3wAAAAAAAAAAAIBmSPAbAAAAAAAAAAAAAAAAAAAAAAAAQCMT/AYAAAAAAAAAAAAAAAAAAAAAAADQyAS/AQAAAAAAAAAAAAAAAAAAAAAAADQywW8AAAAAAAAAAAAAAAAAAAAAAAAAjUzwGwAAAAAAAAAAAAAAAAAAAAAAAEAjE/wGAAAAAAAAAAAAAAAAAAAAAAAA0MgEvwEAAAAAAAAAAAAAAAAAAAAAAAA0MsFvAAAAAAAAAAAAAAAAAAAAAAAAAI1M8BsAAAAAAAAAAAAAAAAAAAAAAABAIxP8BgAAAAAAAAAAAAAAAAAAAAAAANDIBL8BAAAAAAAAAAAAAAAAAAAAAAAANDLBbwAAAAAAAAAAAAAAAAAAAAAAAACNTPAbAAAAAAAAAAAAAAAAAAAAAAAAQCMT/AYAAAAAAAAAAAAAAAAAAAAAAADQyAS/AQAAAAAAAAAAAAAAAAAAAAAAADQywW8AAAAAAAAAAAAAAAAAAAAAAAAAjay8qQtororFYpJk8uTJTVwJAAAAAAAAAAAAAAAAAAAAAAAA0BzNySqbk122KILfFmLKlClJkt69ezdxJQAAAAAAAAAAAAAAAAAAAAAAAEBzNmXKlHTq1GmRbQrFhsTDfQHV1tbm/fffT4cOHVIoFDJ58uT07t07o0ePTseOHZu6PADgU/TVANC86asBoHnTVwNA86avBoDmTV8NAM2bvhoAmjd9NQA0b/pqAGje9NUA0HwUi8VMmTIlPXv2TFlZ2SLbli+nmlY4ZWVl6dWr13zrO3bs6MUOADRj+moAaN701QDQvOmrAaB501cDQPOmrwaA5k1fDQDNm74aAJo3fTUANG/6agBoHjp16tSgdouOhQMAAAAAAAAAAAAAAAAAAAAAAADgMxP8BgAAAAAAAAAAAAAAAAAAAAAAANDIBL81UOvWrXPWWWeldevWTV0KALAA+moAaN701QDQvOmrAaB501cDQPOmrwaA5k1fDQDNm74aAJo3fTUANG/6agBYMRWKxWKxqYsAAAAAAAAAAAAAAAAAAAAAAAAA+Dwra+oCAAAAAAAAAAAAAAAAAAAAAAAAAD7vBL8BAAAAAAAAAAAAAAAAAAAAAAAANDLBbwAAAAAAAAAAAAAAAAAAAAAAAACNTPAbAAAAAAAAAAAAAAAAAAAAAAAAQCMT/LYYU6dOzbHHHpuePXumoqIiAwcOzI033tjUZQHAF87DDz+cQqGwwNtTTz1Vr+0LL7yQr371q2nfvn06d+6cfffdN++++24TVQ4Anz9TpkzJSSedlJ133jkrr7xyCoVCzj777AW2XZJ++fLLL0///v3TunXrrLHGGjnnnHMye/bsRnwkAPD51NC++rDDDlvgOLt///4LPK6+GgCWjQcffDBHHHFE+vfvn3bt2mW11VbL3nvvneeff36+tsbVALD8NbSvNq4GgKbx0ksvZY899sjqq6+eNm3apGvXrtlqq61y3XXXzdfWuBoAlr+G9tXG1QDQPFx11VUpFApp3779fNuMqwGg6S2srzauBoAVX3lTF9Dc7bvvvnn22Wdz/vnnZ5111sn111+fgw8+OLW1tTnkkEOaujwA+MI577zzsv3229dbN2DAgLr7b7zxRgYPHpyBAwfmpptuyowZM3LmmWdmm222yUsvvZSVV155eZcMAJ87lZWVufLKK7Pxxhvn61//eq666qoFtluSfvncc8/NGWeckf/7v//LzjvvnGeffTann356xowZkyuvvHJ5PTQA+FxoaF+dJG3atMmDDz4437pP01cDwLLzhz/8IZWVlTnmmGOy/vrr5+OPP84ll1ySLbfcMvfee2922GGHJMbVANBUGtpXJ8bVANAUJk6cmN69e+fggw/OaqutlmnTpuVvf/tbvvWtb2XEiBE5/fTTkxhXA0BTaWhfnRhXA0BTGzNmTE444YT07NkzkyZNqrfNuBoAmt6i+urEuBoAVnSFYrFYbOoimqt///vf2WOPPerC3ubYeeed8+qrr2bUqFFp0aJFE1YIAF8cDz/8cLbffvvcfPPN+cY3vrHQdgcccEAeeuihDBs2LB07dkySjBw5MmuvvXaOO+64XHDBBcurZAD43JrzVkKhUMi4ceOy8sor56yzzsrZZ59dr11D++XKysr06tUr3/72t/OnP/2pbv/zzjsvp59+eoYOHZr1119/+Tw4APgcaGhffdhhh+WWW27J1KlTF3k8fTUALFtjx45N9+7d662bOnVq+vXrlwEDBuT+++9PYlwNAE2loX21cTUANC9bbrll3n///YwaNSqJcTUANDef7quNqwGg6e21114pFArp2rXrfP2ycTUANL1F9dXG1QCw4itr6gKas9tvvz3t27fP/vvvX2/94Ycfnvfffz9PP/10E1UGACxIdXV1/vWvf2W//far+1AhSfr06ZPtt98+t99+exNWBwCfH4VCIYVCYZFtlqRfvueeezJjxowcfvjh9Y5x+OGHp1gs5h//+McyrR8APu8a0lcvCX01ACxbnw6SSZL27dtn/fXXz+jRo5MYVwNAU2pIX70k9NUAsHx069Yt5eXlSYyrAaA5mrevXhL6agBoHNddd10eeeSRXHHFFfNtM64GgKa3qL56SeirAaD5Evy2CEOHDs1666033wcLG220Ud12AGD5+tGPfpTy8vJ07Ngxu+yySx577LG6bcOGDUtVVVVdXz2vjTbaKO+8805mzJixPMsFgC+sJemX54yvN9xww3rtVl111XTr1s34GwAaUVVVVVZZZZW0aNEivXr1yo9//OOMHz++Xht9NQA0vkmTJuWFF17IBhtskMS4GgCam0/31XMYVwNA06mtrU11dXU+/vjjXHHFFbn33ntz8sknJzGuBoDmYFF99RzG1QDQNMaOHZtjjz02559/fnr16jXfduNqAGhai+ur5zCuBoAV25JPlfIFUllZmTXXXHO+9V27dq3bDgAsH506dcoxxxyTwYMHZ6WVVso777yTiy66KIMHD85dd92VXXbZpa5vntNXz6tr164pFouZMGFCVl111eVdPgB84SxJv1xZWZnWrVunXbt2C2xr/A0AjWPjjTfOxhtvnAEDBiRJHnnkkVx66aV54IEH8uyzz6Z9+/ZJoq8GgOXgRz/6UaZNm5bTTjstiXE1ADQ3n+6rE+NqAGhqP/zhD/OnP/0pSdKqVatcdtll+d73vpfEuBoAmoNF9dWJcTUANKUf/vCHWXfddfODH/xggduNqwGgaS2ur06MqwHg80Dw22IUCoWl2gYALFubbLJJNtlkk7rlbbbZJvvss0823HDDnHTSSdlll13qtum/AaD5aGi/rP8GgOXvuOOOq7e80047ZZNNNsk3vvGN/PnPf663XV8NAI3njDPOyN/+9rdcfvnl2XTTTettM64GgKa3sL7auBoAmtapp56ao446KmPHjs2dd96ZH//4x5k2bVpOOOGEujbG1QDQdBbXVxtXA0DTuPXWW3PnnXfmxRdfXGw/alwNAMtfQ/tq42oAWPGVNXUBzdlKK620wITa8ePHJ1lwWj0AsPx07tw5e+65Z15++eVUVVVlpZVWSpKF9t+FQiGdO3dezlUCwBfTkvTLK620UmbMmJHp06cvsK3xNwAsP/vss0/atWuXp556qm6dvhoAGs8555yTX/7ylzn33HPz4x//uG69cTUANA8L66sXxrgaAJaf1VdfPZtttll23333/OEPf8h3v/vdnHLKKfn444+NqwGgGVhUX70wxtUA0LimTp2aH/3oR/nJT36Snj17ZuLEiZk4cWJmzZqVJJk4cWKmTZtmXA0ATaShffXCGFcDwIpF8NsibLjhhnn99ddTXV1db/0rr7ySJBkwYEBTlAUAzKNYLCYppcqvtdZaadOmTV1fPa9XXnkl/fr1S0VFxfIuEQC+kJakX95www3r1s/rww8/zLhx44y/AWA5KxaLKSub+/GBvhoAGsc555yTs88+O2effXZOPfXUetuMqwGg6S2qr14U42oAaBpbbLFFqqur8+677xpXA0AzNG9fvSjG1QDQeMaNG5ePPvool1xySbp06VJ3u+GGGzJt2rR06dIlhx56qHE1ADSRhvbVi2JcDQArDsFvi7DPPvtk6tSpufXWW+utv/baa9OzZ88MGjSoiSoDAJJkwoQJ+de//pWBAwemoqIi5eXl2WuvvXLbbbdlypQpde1GjRqVhx56KPvuu28TVgsAXyxL0i/vuuuuqaioyJAhQ+odY8iQISkUCvn617++nKoGAG655ZZMnz49W265Zd06fTUALHu/+MUvcvbZZ+f000/PWWedNd9242oAaFqL66sXxrgaAJrOQw89lLKysqy55prG1QDQDM3bVy+McTUANK5VVlklDz300Hy3XXbZJRUVFXnooYfyy1/+0rgaAJpIQ/vqhTGuBoAVS3lTF9Cc7bbbbtlpp53ygx/8IJMnT06/fv1yww035J577sl1112XFi1aNHWJAPCFccghh2T11VfPZpttlm7duuXtt9/OJZdcko8++qjeGw7nnHNONt988+y55575v//7v8yYMSNnnnlmunXrluOPP77pHgAAfM7cfffdmTZtWt2H+a+99lpuueWWJMnuu++etm3bNrhf7tq1a04//fScccYZ6dq1a3beeec8++yzOfvss3PUUUdl/fXXb5LHCAArssX11R9//HEOOeSQHHTQQenXr18KhUIeeeSR/OY3v8kGG2yQo446qu5Y+moAWLYuueSSnHnmmdl1112zxx575Kmnnqq3fc6Fd8bVANA0GtJXjxw50rgaAJrId7/73XTs2DFbbLFFevTokXHjxuXmm2/O3//+95x44olZeeWVkxhXA0BTaUhfbVwNAE2joqIigwcPnm/9kCFD0qJFi3rbjKsBYPlraF9tXA0Anw+FYrFYbOoimrOpU6fmtNNOy0033ZTx48enf//+OeWUU3LQQQc1dWkA8IVy/vnn5+9//3uGDx+eqVOnpmvXrvnKV76SU045JZtvvnm9ts8//3xOPvnkPPnkkykvL88OO+yQiy++OGuttVYTVQ8Anz99+/bNyJEjF7ht+PDh6du3b5Il65cvu+yy/P73v8+IESOyyiqr5PDDD89pp52Wli1bNuZDAYDPpcX11Z06dcqRRx6ZF198MR999FFqamrSp0+f7LPPPjn11FPTqVOn+fbTVwPAsjF48OA88sgjC90+70f4xtUAsPw1pK+eMGGCcTUANJFrrrkm11xzTV5//fVMnDgx7du3z8Ybb5yjjjoq3/zmN+u1Na4GgOWvIX21cTUANC+HHXZYbrnllkydOrXeeuNqAGgePt1XG1cDwOeD4DcAAAAAAAAAAAAAAAAAAAAAAACARlbW1AUAAAAAAAAAAAAAAAAAAAAAAAAAfN4JfgMAAAAAAAAAAAAAAAAAAAAAAABoZILfAAAAAAAAAAAAAAAAAAAAAAAAABqZ4DcAAAAAAAAAAAAAAAAAAAAAAACARib4DQAAAAAAAAAAAAAAAAAAAAAAAKCRCX4DAAAAAAAAAAAAAAAAAAAAAAAAaGSC3wAAAAAAAAAAAAAAAAAAAAAAAAAameA3AAAAAAAAAAAAWIgRI0akUCjksMMOW6L9CoVCBg8e3Cg1AQAAAAAAAAAAsGIS/AYAAAAAAAAAAECzNSd4bd5bq1at0rt37xxyyCF5+eWXm6SuwYMHp1AoNMm5AQAAAAAAAAAAWDGVN3UBAAAAAAAAAAAAsDhrrbVWvvnNbyZJpk6dmqeeeio33HBDbrvttjz44IPZeuutG+W8q622Wl5//fV06tRpifZ7/fXX07Zt20apCQAAAAAAAAAAgBWT4DcAAAAAAAAAAACavX79+uXss8+ut+7000/Pueeem9NOOy0PPfRQo5y3ZcuW6d+//xLvtzT7AAAAAAAAAAAA8PlW1tQFAAAAAAAAAAAAwNL4yU9+kiR59tlnkyTV1dW59NJLs/HGG6dNmzbp1KlTtt9++9x1113z7VtbW5urrroqW2yxRbp27Zq2bdumb9+++frXv57//ve/de1GjBiRQqGQww47rG5doVDII488Und/zu3TbQYPHjzfeSsrK3PcccdljTXWSOvWrdO9e/cceOCBee211+Zre9hhh6VQKGTEiBG54oorst5666WioiJ9+vTJOeeck9ra2qX5tQEAAAAAAAAAANBEypu6AAAAAAAAAAAAAFgahUKh7n6xWMyBBx6Y2267Leuss05+9KMfZdq0abnpppuy55575re//W1++tOf1rU/5ZRTcuGFF2attdbKIYcckg4dOmTMmDF59NFH8+CDD2bbbbdd6HnPOuusDBkyJCNHjsxZZ51Vt37gwIGLrLeysjJbbrll3nnnnQwePDgHHXRQRowYkVtuuSV33XVX/vOf/2Srrbaab78TTzwxDz/8cPbcc8/svPPO+cc//pGzzz47s2bNyrnnnrsEvzEAAAAAAAAAAACakuA3AAAAAAAAAAAAVkiXXXZZkmTzzTfPddddl9tuuy3bbbdd7rvvvrRq1SpJctppp2XTTTfNCSeckL322itrrLFGkuSqq67Kaqutlpdffjlt27atO2axWMyECRMWed6zzz47Dz/8cEaOHJmzzz67wfWedNJJeeedd3LKKafkvPPOq1t/2GGHZdddd813vvOdvPHGGykrK6u33/PPP5+XX345q666apLkjDPOyNprr53LL788Z511Vt1jBQAAAAAAAAAAoHkrW3wTAAAAAAAAAAAAaFrvvPNOzj777Jx99tk54YQT8pWvfCXnnntuKioqct5552XIkCFJkgsvvLBeEFqvXr1y3HHHZfbs2fnb3/5W75itWrVKeXn9+VMLhUK6du26zOufNWtWbrjhhqy00ko5/fTT623bZZddsssuu+Ttt9/OE088Md++Z5xxRl3oW5J069Yte++9d6ZMmZI333xzmdcKAAAAAAAAAABA4xD8BgAAAAAAAAAAQLM3bNiwnHPOOTnnnHNy2WWXZeTIkTnkkEPyzDPPZKuttsqLL76YNm3aZIsttphv38GDBydJXnrppbp1BxxwQIYPH54BAwbkjDPOyP33359p06Y1Wv1vvPFGqqqqssUWW6Rt27YNqnGOL33pS/Ot69WrV5Jk4sSJy7JMAAAAAAAAAAAAGpHgNwAAAAAAAAAAAJq9XXbZJcViMcViMbNmzcro0aPzt7/9LRtuuGGSZPLkyenRo8cC911llVWSJJMmTapbd9lll+XCCy9My5Yt88tf/jI77bRTunXrlu985zsZN27cMq9/8uTJSbJENc7RqVOn+daVl5cnSWpqapZViQAAAAAAAAAAADQywW8AAAAAAAAAAACs8Dp27JiPPvpogdvmrO/YsWPdupYtW+bEE0/Mq6++mjFjxuT666/PNttsk7/+9a859NBDG6W+eWtpSI0AAAAAAAAAAAB8vgh+AwAAAAAAAAAAYIW3ySabpKqqKs8888x82x555JEkycCBAxe4b8+ePXPwwQfnnnvuydprr537778/VVVVizxfixYtkiQ1NTUNqq9///6pqKjIs88+m+nTpy9xjQAAAAAAAAAAAKz4BL8BAAAAAAAAAACwwvvOd76TJDnllFMye/bsuvVjxozJr3/965SXl+fQQw9NksycOTMPPvhgisVivWNMmzYtU6ZMScuWLeuC3Rama9euSZL33nuvQfW1atUqBx98cMaNG5df/epX9bbdf//9ufvuu9OvX798+ctfbtDxAAAAAAAAAAAAWPGUN3UBAAAAAAAAAAAA8Fl961vfym233ZY77rgjG220Ufbcc89MmzYtN910UyorK3PJJZdkzTXXTJJUVVVlxx13zJprrplBgwZl9dVXz9SpU/Ovf/0rH374YU4++eS0atVqkefbYYcdcsstt2T//ffP7rvvnoqKimy44YbZY489FrrPBRdckEceeSS//OUv88QTT2TQoEEZMWJEbrnllrRt2zbXXHNNysrM5woAAAAAAAAAAPB5JfgNAAAAAAAAAACAFV6hUMgtt9yS3/72t7n22mtz+eWXp1WrVvnSl76Un/3sZ/na175W17Zdu3a54IIL8sADD+TRRx/N2LFj06VLl/Tv3z8XXHBBDjzwwMWe7+ijj86IESNy44035txzz011dXW+853vLDL4beWVV87TTz+dX/ziF7njjjvy6KOPplOnTtl7771z1llnZcCAAcvkdwEAAAAAAAAAAEDzVCgWi8WmLgIAAAAAAAAAAAAAAAAAAAAAAADg86ysqQsAAAAAAAAAAAAAAAAAAAAAAAAA+LwT/AYAAAAAAAAAAAAAAAAAAAAAAADQyAS/AQAAAAAAAAAAAAAAAAAAAAAAADQywW8AAAAAAAAAAAAAAAAAAAAAAAAAjUzwGwAAAAAAAAAAAAAAAAAAAAAAAEAjE/wGAAAAAAAAAAAAAAAAAAAAAAAA0MgEvwEAAAAAAAAAAAAAAAAAAAAAAAA0MsFvAAAAAAAAAAAAAAAAAAAAAAAAAI1M8BsAAAAAAAAAAAAAAAAAAAAAAABAIxP8BgAAAAAAAAAAAAAAAAAAAAAAANDIBL8BAAAAAAAAAAAAAAAAAAAAAAAANDLBbwAAAAAAAAAAAAAAAAAAAAAAAACNTPAbAAAAAAAAAAAAAAAAAAAAAAAAQCMT/AYAAAAAAAAAAAAAAAAAAAAAAADQyAS/AQAAAAAAAAAAAAAAAAAAAAAAADQywW8AAAAAAAAAAAAAAAAAAAAAAAAAjUzwGwAAAAAAAAAAAAAAAAAAAAAAAEAjE/wGAAAAAAAAAAAAAAAAAAAAAAAA0MiaZfDb1KlTc+yxx6Znz56pqKjIwIEDc+ONNy7xcU4//fQUCoUMGDCgEaoEAAAAAAAAAAAAAAAAAAAAAAAAaJjypi5gQfbdd988++yzOf/887POOuvk+uuvz8EHH5za2toccsghDTrGSy+9lIsvvjg9evRYqhpqa2vz/vvvp0OHDikUCkt1DAAAAAAAAAAAAAAAAAAAAAAAAODzq1gsZsqUKenZs2fKysoW2bZQLBaLy6muBvn3v/+dPfbYoy7sbY6dd945r776akaNGpUWLVos8hjV1dXZfPPNs+222+Z///tfxo0bl6FDhy5RHe+991569+69VI8BAAAAAAAAAAAAAAAAAAAAAAAA+OIYPXp0evXqtcg25cuplga7/fbb0759++y///711h9++OE55JBD8vTTT2frrbde5DHOP//8jB8/Pueee2723HPPpaqjQ4cOSUq/xI4dOy7VMQAAAAAAAAAAAAAAAAAAAAAAAIDPr8mTJ6d379512WWL0uyC34YOHZr11lsv5eX1S9too43qti8q+O21117LL3/5y9x2221p3759g887c+bMzJw5s255ypQpSZKOHTsKfgMAAAAAAAAAAAAAAAAAAAAAAAAWqlAoLLZN2XKoY4lUVlama9eu862fs66ysnKh+9bW1uaII47Ivvvum913332JzvurX/0qnTp1qrv17t17yQoHAAAAAAAAAAAAAAAAAAAAAAAAWIhmF/yWLDqxblHbfv3rX+ftt9/Ob37zmyU+5ymnnJJJkybV3UaPHr3ExwAAAAAAAAAAAAAAAAAAAAAAAABYkPKmLuDTVlpppVRWVs63fvz48UmSrl27LnC/UaNG5cwzz8z555+fVq1aZeLEiUmS6urq1NbWZuLEiWndunXatGmzwP1bt26d1q1bL5sHAQAAAAAAAAAAAAAAAAAAAAAAADCPsqYu4NM23HDDvP7666murq63/pVXXkmSDBgwYIH7vfvuu6mqqsoxxxyTLl261N0ef/zxvP766+nSpUtOOeWURq8fAAAAAAAAAAAAAAAAAAAAAAAA4NPKm7qAT9tnn33y5z//ObfeemsOPPDAuvXXXnttevbsmUGDBi1wv4EDB+ahhx6ab/2xxx6bSZMm5ZprrkmvXr0arW4AAAAAAAAAAAAAAAAAAAAAAACAhWl2wW+77bZbdtppp/zgBz/I5MmT069fv9xwww255557ct1116VFixZJkiOPPDLXXntthg0blj59+qRz584ZPHjwfMfr3LlzqqurF7gNAAAAAAAAAAAAAAAAAAAAAAAAYHlodsFvSXLbbbfltNNOy5lnnpnx48enf//+ueGGG3LQQQfVtampqUlNTU2KxWITVgoAAAAAAAAAAAAAAAAAAAAAAACweIWi5LQFmjx5cjp16pRJkyalY8eOTV0OAAAAAAAAAAAAAAAAAAAAAAAA0MwsSWZZ2XKqCQAAAAAAAAAAAAAAAAAAAAAAAOALS/AbAAAAAAAAAAAAAAAAAAAAAAAAQCMT/AYAAAAAAAAAAAAAAAAAAAAAAADQyAS/AQAAAAAAAAAAAAAAAAAAAAAAADQywW8AAAAAAAAAAAAAAAAAAAAAAAAAjUzwGwAAAAAAAAAAAAAAAAAAAAAAAEAjE/wGAAAAAAAAAAAAAAAAAAAAAAAA0MgEv32B9e3bN4VCIUOGDFmi/f7zn/9kv/32S8+ePdO6deusssoqGTx4cC666KL52p599tkpFAoZPHhwkmTEiBEpFApLfDvssMM++wMGAAAAAAAAAAAAAAAAAAAAAACAJlLe1AWw4igWi/nhD3+YP/7xj0mSXr16ZeONN87HH3+cxx9/PEOHDs2JJ564yGNUVFTky1/+8nzrx44dm7fffjutW7fOZpttNt/2ddZZZ9k8CAAAAAAAAAAAAAAAAAAAAAAAAGgCgt9osNNOOy1//OMfM2DAgPzlL3/J5ptvXrdt8uTJeeSRRxZ7jFVWWSWPPfbYfOuHDBmSww8/fKHbAQAAAAAAAAAAAAAAAAAAAAAAYEUm+I0GGTp0aC688MKsvPLKeeCBB9K9e/d62zt27Ji99tqriaoDAAAAAAAAAAAAAAAAAAAAAACA5q2sqQtgxfC73/0uNTU1OeaYY+YLfQMAAAAAAAAAAAAAAAAAAAAAAAAWrbypC2DFcOeddyZJ9txzz7zwwgu5+uqr89Zbb6Vt27YZNGhQjjrqKIFwAAAAAAAAAAAAAAAAAAAAAAAAsBCC31isDz/8MO+//34KhUIeeuihnHDCCampqanb/s9//jMXXHBBbr311nz1q19twkoBAAAAAAAAAAAAAAAAAAAAAACgeSpr6gJo/j744IMkSaFQyPHHH58tttgiL7zwQmbOnJlXX301O+20UyZPnpz99tsvo0ePbuJqAQAAAAAAAAAAAAAAAAAAAAAAoPkR/MZiTZs2LUlSW1ub9u3b56677somm2ySVq1aZf31188dd9yRnj17ZvLkyfnNb37TtMUCAAAAAAAAAAAAAAAAAAAAAABAMyT4jcWqqKiou//tb387Xbp0qbe9TZs2+f73v58kueeee5ZrbQAAAAAAAAAAAAAAAAAAAAAAALAiEPzGYs0b9Na/f/8FtllvvfWSJCNGjFgeJQEAAAAAAAAAAAAAAAAAAAAAAMAKRfAbi9W3b9+0bt06Sep+ftqc9TU1NcutLgAAAAAAAAAAAAAAAAAAAAAAAFhRCH5jsVq0aJHNN988SfLuu+8usM2c9autttpyqwsAAAAAAAAAAAAAAAAAAAAAAABWFILfaJADDjggSXLDDTdk9uzZ822/9tprkyQ77LDDcq0LAAAAAAAAAAAAAAAAAAAAAAAAVgSC32iQo446Kr17986IESNyzDHHZNasWUmSmpqanHbaaXnxxRfTqlWrHHfccU1cKQAAAAAAAAAAAAAAAAAAAAAAADQ/gt/IT37yk3Tr1m2ht6FDh6ZNmza57bbb0rFjx/zhD3/IKquski222CKrrrpqzjvvvLRo0SJXXnll1l9//aZ+OAAAAAAAAAAAAAAAAAAAAAAAANDsCH4jU6dOTWVl5UJv1dXVSZLNNtssL7/8co466qi0a9cuL730UpJk3333zRNPPJHvfOc7TfgoAAAAAAAAAAAAAAAAAAAAAAAAoPkqFIvFYlMX0RxNnjw5nTp1yqRJk9KxY8emLgcAAAAAAAAAAAAAAAAAAAAAAABoZpYks6ysMQqYOXNmqqurG+PQAAAAAAAAAAAAAAAAAAAAAAAAACucpQ5+e+yxx/Lzn/88EydOrFtXWVmZ3XbbLe3bt0/Hjh1z2mmnLYsaAQAAAAAAAAAAAAAAAAAAAAAAAFZoSx38dskll+Taa69N586d69Ydf/zxuffee7Pmmmumc+fOOf/883PLLbcsizoBAAAAAAAAAAAAAAAAAAAAAAAAVlhLHfz20ksvZZtttqlbnj59em666absvPPOefPNN/Pmm29m9dVXzxVXXLFMCgUAAAAAAAAAAAAAAAAAAAAAAABYUS118NvYsWOz2mqr1S0/+eSTmTFjRg4//PAkSYcOHbLnnnvmjTfe+OxVAgAAAAAAAAAAAAAAAAAAAAAAAKzAljr4raKiIlOmTKlbfuSRR1IoFLLddtvVrWvfvn0mTJjw2SoEAAAAAAAAAAAAAAAAAAAAAAAAWMGVL+2O/fr1yz333JOZM2emrKwsf//737P++utnlVVWqWszatSodO/efZkUCgAAAAAAAAAAAAAAAAAAAAAAALCiKlvaHY8++ui88847WXvttbPeeuvlnXfeyWGHHVavzdNPP531119/iY89derUHHvssenZs2cqKioycODA3HjjjYvd77bbbsvBBx+cfv36pU2bNunbt28OPfTQvP3220tcAwAAAAAAAAAAAAAAAAAAAAAAAMCystTBb0ceeWROPPHETJ8+PRMnTsz3vve9HHvssXXbH3roobz77rvZcccdl/jY++67b6699tqcddZZufvuu7P55pvn4IMPzvXXX7/I/S644IJMnz49p512Wu6555788pe/zIsvvpgvfelLefXVV5e4DgAAAAAAAAAAAAAAAAAAAAAAAIBloVAsFouNceBZs2alqqoq7dq1S3l5eYP3+/e//5099tgj119/fQ4++OC69TvvvHNeffXVjBo1Ki1atFjgvmPHjk337t3rrXv//ffTt2/ffPvb385VV13V4DomT56cTp06ZdKkSenYsWOD9wMAAAAAAAAAAAAAAAAAAAAAAAC+GJYks6yssYpo1apVOnXqtEShb0ly++23p3379tl///3rrT/88MPz/vvv5+mnn17ovp8OfUuSnj17plevXhk9evQS1QEAAAAAAAAAAAAAAAAAAAAAAACwrHzm4Lfbb789BxxwQDbaaKP069evbv0bb7yRCy+8MGPGjFmi4w0dOjTrrbfefIFxG220Ud32JfHuu+9m5MiR2WCDDZZoPwAAAAAAAAAAAAAAAAAAAAAAAIBlpXzxTRastrY2Bx98cG655ZYkSZs2bVJVVVW3vUuXLjnttNNSU1OTU045pcHHrayszJprrjnf+q5du9Ztb6jq6uoceeSRad++fY477rhFtp05c2ZmzpxZtzx58uQGnwcAAAAAAAAA+Hz7/TO/z8QZE9OuVbscu+WxTV0OAAAAAAAAAAAAALACKlvaHS+99NLcfPPN+d73vpcJEybkhBNOqLe9R48e2WabbXLXXXct8bELhcJSbZtXsVjMkUcemUcffTR//etf07t370W2/9WvfpVOnTrV3RbXHgAAAAAAAAD44jjr4bNy+kOn59QHTm3qUgDqTJuWnHZasvvuydVXJ8ViU1cEAAAAAAAAAAAALMpSB78NGTIkm222Wa644op07NhxgYFs/fr1y/Dhw5fouCuttFIqKyvnWz9+/PgkSdeuXRd7jGKxmKOOOirXXXddhgwZkr333nux+5xyyimZNGlS3W306NFLVDcAAAAAAAAA8PlUW6zNhBkTkiRV1VWpml3VxBUBJLW1ya67Juedl9x9d3LUUcmZZzZ1VQAAAAAAAAAAAMCiLHXw2zvvvJNtt912kW0WFuK2KBtuuGFef/31VFdX11v/yiuvJEkGDBiwyP3nhL5dc801ueqqq/LNb36zQedt3bp1OnbsWO8GAAAAAAAAADBpxqTUFmvrlsdXjW/CagBKrrkmeeyx+ut++cvk8cebph4AAAAAAAAAAABg8ZY6+K1NmzaZPHnyItuMHDkynTt3XqLj7rPPPpk6dWpuvfXWeuuvvfba9OzZM4MGDVrovsViMUcffXSuueaa/OlPf8rhhx++ROcGAAAAAAAAAPi0Twe9CX4DmtrEiclJJy1427nnLtdSAAAAAAAAAAAAgCVQvrQ7brLJJrn33nszc+bMtG7der7t48ePzz333JNtt912iY672267ZaeddsoPfvCDTJ48Of369csNN9yQe+65J9ddd11atGiRJDnyyCNz7bXXZtiwYenTp0+S5Kc//WmuvvrqHHHEEdlwww3z1FNP1R23devW2WSTTZb24QIAAAAAAAAAnxeFwuLbFIt1dyurKutt+vQywPL2j38k4xeSQTlp0nItBQAAAAAAAAAAAFgCZUu7409/+tOMHj063/jGNzJmzJh624YNG5Z99tknkyZNyk9/+tMlPvZtt92Wb33rWznzzDOz66675umnn84NN9yQQw89tK5NTU1NampqUpznQus777wzSfKXv/wlW221Vb3bPvvss5SPFAAAAAAAAAD4IqucXrnIZYBlbcKE5Gc/SzbaKDn66GTs2Prbb765aeoCAAAAAAAAAAAAPptCcd7ktCV06qmn5vzzz0+hUEi7du0ybdq0rLTSSqmsrEyxWMwZZ5yRc845Z1nWu9xMnjw5nTp1yqRJk9KxY8emLgcAAAAAAAAAWFYKhcW3medyir+9/Ld88/Zv1i1fueeVOXrToxujMoDU1iZf/Wry0ENz162/fvLYY0mXLklVVdKpUzJ79oL333rr5PHHl0+tAAAAAAAAAAAAwJJllpV9lhOdd955uffee7Pnnnumbdu2adGiRWpra7Prrrvm7rvvXmFD3wAAAAAAAAAA5qisqlzkcgqFxd8AGui3v60f+pYkr72W/OxnpfsvvbTw0DcAAAAAAAAAAACgeStf2h1HjRqVVq1aZaeddspOO+20LGsCAAAAAAAAAGg2xleNX+Rygyzr8LdicdkeD2gWJk5MTj11wdtuuSW55prk6afrr19tteT005N7703+8Y/GrhAAAAAAAAAAAAD4LMqWdsc11lgjp5122rKsBQAAAAAAAACg2amcXrnIZYBl5e9/T2bMWHSb55+vv/z73yff/35y663JPvs0Xm0AAAAAAAAAAADAZ7fUwW9du3ZN165dl2UtAAAAAAAAAADNzvgZ45Mkbcrb1FsGWNb+9rfFtxk1au79HXdM9t67dL+sLLn88qSionFqAwAAAAAAAAAAAD67pQ5+22abbfLUU08ty1oAAAAAAAAAAJqdyumVSZI1u6xZbxlgWZo+PXnyycW3++CDuff326/+ttVWSw45ZNnWBQAAAAAAAAAAACw7Sx389qtf/SpDhw7NOeeck+rq6mVZEwAAAAAAAABA4ykW594asH581fgkyVpd16q3DLAsPf10Mu9lWG3aJJdckvz4x0mhMHf9vMFv2247/3EEvwEAAAAAAAAAAEDzVb60O15wwQUZMGBAfv7zn+fKK6/MxhtvnB49eqQw71WGSQqFQq6++urPXCgAAAAAAAAAfFFVVyfvv5+sskrSqlVTV/PFU1lVmSRZq8ta9ZYBlqUnn6y/fPHFyQ9/WLq/zjrJqacmU6eWbknSunWy7rrzH6dNm8atc9y4Ui233ZastFJy3HHJ975XP5wOAAAAAAAAAAAAWLClDn4bMmRI3f0PPvggH8w7lew8BL8BAAAAAAAAwNK7/fbkmGOS0aOTDh2Ss88uhewI2Fl+xleNT5Ks2WXNuuVisTjf5HjQnNXWJvfdlzz/fLLBBsleeyUtWjR1Vcxr5Mi59zfaKPnBD+Yu//jHyV13JfNeorXWWkn5Ul/9tXRmzEj23jt54onScmVlqc5hw5KLLlq+tQAAAAAAAAAAAMCKaKkv/Rs+fPiyrAMAAAAAAAAA+JSHHkoOPDCZPbu0PGVKcvzxyaRJyTnnNG1tXxTVtdWZOGNikrnBb7NqZmXa7Glp36p9qVGxOHeHecPg5l3/aXPaLarNkrSDRZg9uxTWdffdc9dtvXVyxx1Jt25NVxf1vffe3Pv77Vf/6aRQSM44o37wW/fuy6+2OX7yk7mhb/O6+OLkm99MNt54+dcEAAAAAAAAAAAAK5KlDn7r06fPsqwDAAAAAAAAAJjHpEml4J85oW/z+sUvBL8tL3NC35K5wW9JMr5q/NzgN2jGisXkyCPrh74lpfCuAw9MHnigaepifvMGv22zzfzbv/zl5O9/n7u88soNP/bEiclttyWTJyc77JBstNGS1zd8eHLNNQvfPm3akh8TAAAAAAAAAAAAvmiWOvgNAAAAAAAAAL5o/ve/ZMiQUoDOzjuXQpPKyhrnXFdckUyY0DjHpuEqp1fW3e/TqU9aFFqkpliTyumVWb3T6k1YGTTMQw8l/+//LXjbCy8s31pYtHmD3zbZZMFtPvxw7v2GBr+98EKy446lvmuOn/0sueii+n3YhKoJqaquSpJ0b9c95WX1Ly374x+TmpqGnRMAAAAAAAAAAABYsM98+fn111+fnXfeOd27d0/r1q2z8sorZ+edd87111+/LOoDAAAAAAAAgGbhX/9Kvvzl5De/KYW/HXJIstdeyYwZy/5cxWLypz8t++Oy5MZXjU+SVJRXpE3LNulc0bneemjuzj+/qSugIaqqkvGfPK20b5907rzgdlOnzr3fkOC3N99Mdtqpfuhbkvz618mll9Zf963bv5XVfr1aVvv1ahk6duh8x/rHP+ovd+yY9Oix+BoAAAAAAAAAAACAuZY6+K22tjb7779/vvWtb+X+++/PtGnT0rNnz0yfPj33339/vvWtb2W//fZLbW3tsqwXAAAAAAAAABrF1KnJsGHJrFnzb7v99mTvvZNp0+qv//e/k4suWva1vPJKMnLk3OXy8uTHP04OPjgpFJb9+Vi4yqrKJEmXii6ln2261FsPzdnYsckDDzS8/Wsfv5ZTHzg1pz5wah54dwl25DMbM2bu/VVWWXi72bPn3l9ppcUf98QT5wbKfdo779RfHjlpbsczcuLI+dq+9dbc5fXWS0aMSD74ILnsssXXAQAAAAAAAAAAAJQsdfDb5ZdfnltvvTXbbrttnnzyyUybNi3Dhw/PtGnT8tRTT2W77bbLP/7xj1x++eXLsl4AAAAAAAAAWKaqq5Pjj086dEj69Ut69kx++9ukWCxtnzkz+dnPkoXNezZ16tKd97bXb8t1L1+XW1+7db5t991Xf/maa5LLL0+uvz755z9LQXAsH+OrSolJcwLf5gTAzVkPzdm//lX/uWvHHUthcC+8kGyxxfztHx7xcH712K/yq8d+lZtfu3n5FUree2/u/YYGv7VuvehjvvxycuedDTt/sVisF/Y2bwhcUgoknaOsLLnjjqRLl1IY6U9+kpx8csPOAwAAAAAAAAAAAF90S30p+JAhQ7LuuuvmP//5T8o/dUX5Fltskfvuuy8bbbRRrrnmmhxzzDGfuVAAAAAAAAAAWNYmTEj22Sd55JG56york2OPLf38+c+T229PRoxYtuetLdbm4FsPzqyaWSkvK8+M/jPSoqxF3fa33prbdtddk29+c+7ynnsm//d/y7YeFq5yemWSuYFvcwLg5qyH5uy55+beX2ON0vNZhw7Jyisn996b7LJL/fbDJwyfe3/i8LD8zBsi2qPHwtvNG/y2uBDQG2+sv7zSSsnmmyfPPlvq4+Y1ccbETJk1pW553hC4JHn33bn3v/rVZO216+9/5pmlUEGWkdlTkylvJS07Je3XLCXsAQAAAAAAAAAA8LlQtrQ7vvnmm9lrr73mC32bo7y8PHvuuWfemvdqdAAAAAAAAABoRk49tX7o27yefbb089PBOfvum1x9dfKNbyz9ecdMHpNZNbOSJNW11Rk9eXS97e+8M/f+IYfMv/8ppyz9uVky46vGJ0m6tula7+ec9bBMFQqLvy2Bt9+ee/8HPyiFvs3RuXNyxRX1288b9jZi4oglr5+lNmvW3PsrrbTwdtXVc+8vLvjtjjvm3l911eTJJ5O77y71MTvuWL/tyEkjF7k8bNjc+58ODEyStm2Tvn0XXQ8N9MF9yT/7JPdumvyrX3LPJsnHjzd1VQAAAAAAAAAAACwjSx381qpVq0ybNm2RbaZNm5ZWrVot7SkAAAAAAAAAoNGMGJFceeWi29TWJvffP3f5wAOTm25Kjjgiufnm5Je/XLpzvzvh3UUuzxv8Nnjw/Pu3abN052XJVVZVJkm6tOlS+lnRpd76z6Xa6uTjJ5IxdyXTRi6+Pc3WvMFve+01//ZNN62//Ongt9pibSNVxqfNG/y2qMutyua52qt2Ef97Zs1K3nxz7vLvf5+svXbpfufOye231w9qGzmx4cFvAwcu/Lx8Ru9cmTy8azJrnnDRif9LHtw+mfRa09UFAAAAAAAAAADAMrPUwW+bbLJJbrrpprz//vsL3P7BBx/kpptuype+9KWlLg4AAAAAAAAAGsuQIfVDczbbLLnssuTII5Py8tK6995L5syJ1qJFcvHFpZ9znHpqsuuuS37uYROG1V8eP3d5xozSeZOkoiLp1WvJj8+yM76qFL4zJ/Btzs856z93pg5PHtg2uf/LyX/3TP7ZN3lkr2T6gq8PoYEKhcXfltak15IXjkueOix5/aKk6oMkycyZyahRpSZt2iTrrrv4Q42YOKLu/qyaWflgygdLXxdLZN7gt5YtF95u3m2zZy+83bvvJjU1pftduyZf+1r97R06JMceO3d5TtBbh1YdSssTFx78tvrqCz8vn8H0McmLP0tSnH9b7exk5rjlXhIAAAAAAAAAAADL3lIHvx1//PGprKzMZpttlksuuSTPPfdcRo8eneeeey4XX3xxNt1004wfPz4/+9nPlmW9AAAAAAAAALBM/Pvfc+9/5SvJww8nP/lJctVVyV13Ja1aJW+8MbfN1lvPH8JWKCTbb7/k5353wrsLXR4+PCl+kvmy+uqfLQ+Kz66yqjLJPMFvbbrUW99kGiNIbPIbyT0Dk3FP1l///r+Sp49YJmWzDBWLyZuXJfdumrz5m2T4tclLJyV39kuGX5d33537XNKnz+L/JCbPnFwXaNiqRaskyfCJwxvxATCv4jxZX4v6f9XQ4Lc335x7f/Dg+qGlc7RuPff+nKC3LXttmST5ePrHmT57el1tI+fJgRNI2kje+WNSPa2pqwAAAAAAAAAAAKCRLXXw25577plLL70048aNy0knnZRBgwalb9++GTRoUE466aSMGzcuF198cfbcc89lWS8AAAAAAAAAfGa1tcmrr85dvvjipF27ucs775z88pfJ66/PXbfFFsvu/MMmDEuStGvZrt5yknz44dx2q6++7M7J0pkThNW1Tdd6P+es/1x57sfJ7MkL3lY7a/nWwuKNuC554ZikZkb99TXTk2FXZsSIuasa8lwyfEIp5K11i9bZqMdG9dbR+Fq1mnt/UYFu87abNGnh7eYNflt77cWff+SkUrLboNUGpZBS8tyoSaOSJDNnJtXVpXYrr5xUVCz+eCyFkdfPvd9jx2Sfj5L9/j975x1eRZX+8c/cnt4DIYQkhN4EpQgCFizYe111dV117bpWVnf1Z9e1997XLnZBuoDSpXfSKCG9J7fP/P54b8mFJASkqefzPPe5c2fOnHPmzswp7znv99TCIY+BZjlg2VIoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKxd7lN80Iu+mmmzjttNP44IMPWLZsGfX19cTHxzNkyBAuuugiunfvvrfyqVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFArFXqOwEJqbZTsnp3VRt4ED4aWXwr93Zwjc44GtW0VgLjcXzObI4wU1BQCM7jaaH/N/DP0GEdgJ0qlTx9NU7BuqmqsASIpKkm9HUsT+Pwy1q6Bsevh3fB/ofBzULIeK2QcuX382DCO8rWmt7wfwe2DZHe1G1dQU3s7K2nXShbUi8tYtoRs5iTksLlkc2qfY93RU+M1uD29XVLQdbsOG8HZu7q7TDwq/5SblkhGXQUlDCcW1xfRJ7RNRLyUk7DouxR7grobGQFsguhsc+T2YAze73x2Q0H//iL8ZBhg6mMy7DqtQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUij3iN88Gy83N5d///vfeyItCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFPuFVavC20OGROortWTz5vB2R4TfPB54/XV44AEoK5N9qalwww1w551hwZ786nwAjso5ih/zfyS/Jj8Uh8sVjs/h6MjVKPYl1c5qAF5a9BLfrP+G0sbS0H7DMNDaenh+b2z9KrydMR5Gfw6WmMCxryH/jQOSrT8MOwq3BZ+bHfd3lG3fgEueRUw2GPxf6Hq6CPit/A8QKSIZG7vrKAtrROQtOzGbbvHdZF9L4beOPut7ek1/cloKv9XVtR0uLS283Z7wW8s4cnJ2nX5xrQi/ZcVnkRWfJcJvATG4lvVSy3wq9hy/fwdR2LrV4e28v4dF34Jknrxv363mElg+AbZ8Dn4nxOZB9oXQ9zawxu+7dBUKhUKhUCgUin3M9u0ijG2xwODBEBNzoHOkUCgUCoVCoVAoFAqFQqFQKBQKhUKhUIDpQGdAoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFIr9zeoW+io9e7YdzukMb3fp0n6czc0wdixcf31Y9A2gshLuvRe++EJ+17nqqHJWASL8BlDrqqXGWQOA1xs+1/Kbl3NT/BY8fg8NngYA5m2dx2drPmPO5jkA+A0/9e76A5c5wwh/OrJ/V9QuC28f9kJY9A1EUGzYy3ucVcU+oGJOeHvoi9D7RojJFnGo436BrmdEiHVZrbuOMijy1i2+G9mJ2bKvprC9UxR7kZZCny3rkB3JyAhvtyf81rL+SkhoP+1mbzMVzRJZVkIWXeO7AmExOKXlt3coLoarr4bERKnfMzLgmmtg61Yihd/SRrcewb4SGi2fDd/3gqL3wN8MGNC4CVY/AAv+tm/SVCgUCoVCoVAo9gLtmT+KiuCKKyArC446CkaPlsUZbroJGhv3Zy4VCoVCoVAoFAqFQqFQKBQKhUKhUCgUip3ZY+G3p556itTUVEpKSlo9XlJSQlpaGs8999weZ06hUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUin1BdXV4Oy+v7XAthXNaivK0xl13wYIF4d+aBnb7zuEKagoAsJgsHJZxGDazDYD8mnwAbLZwWJ+v/TQV+5agGF9bVDur2z3+u6JmmXwnDoa4Vl6K6K77MzeKXVGzVL5tSZBzaeQxsx36/BOzObyrI8JdQeG37MRsuiV0i9in2Pe0FBctLW07XEeF31oK/7WsV1pjc93m0HbX+K5kxWcBUFwnwm8t67+W4qSKjvP++yI0+9prUFcn+0pL4ZVX4PzzgbpV4cBxvfZu4n4PlM2CLROhcj743eFjvmb45QLwNbVxrjvyt2FIXGsehdUPwZYvwNuwd/OrUCgUCoVCoVC0g67DV1+JkFt0tPR3hgyBp54K94NWroTBg+Gtt8DvD5/rcsFzz8HSpQci5wrFPsTnhPp18vF7DnRuFAqFQqFQKBQKhUKhUCgUCoVCoVB0gD1eG/yzzz5j0KBBdGljSfMuXbowePBgPv74Y2688cY9zqBCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFHubloJuiYlth2vpHGpqZ2m17dvh5ZfDvy+8EJ59FlJTYfFiuPXW8LGgwFtWfBZWs5XshGw2Vm8kvzqfoV2GRojFtRTuUex/qpxVuzyem5S7n3KzD/E2QKM8lyT0P7B5UewaQw8L9SUPA3Prql4txbrc7laDRFBYExB+S8gmOyEbgK31W/H6vVjN1t+SY0UH6NpCW7Gjwm9FRaLDpWk7h2sp/Kfr7addXCsCb4mORGJtsWQlRAq/tayXGhvbj0uxMytXwuWXR7YpOnWCmhrweAL7XeVywBwFUa3Px9ttDB02vQJrHoHmreH91kToexv0vxsK3gbndtkfnQWHPQepo0QsYO1/I+OrWQGLr4HKXyL3W2Lh8Hch66y9k2+FQqFQKBQKhaINGhvhlFPgp58i9y9bJh+7Ha6+Gi6+OCy4DDBqFMTFwfz5kfsVit89nlpY/wxseA48gQUszA7IPB0OeRhiux/I3CkUCoVCoVAoFAqFQqFQKBQKhUKhaId2pqW3z4YNGxgwYEC7Yfr378/GjRv3NAmFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKPYJHk9429qOnlFL4aSW5+zIjBng88n2iBHwwQeQliZiPMOGwfTpcMQRcrygpgAgJBiWk5gTsb9lmu2J/yj2PdXO6t90/HeDc1t4O6HvgcuHomM0bwNfg2wn9GszWEuxrqr2NQwxDIPC2oDwW2I23RK6AaAbOlvqtwQDRX7CJ7e+fzf4dv23fLzqYz5b/RnGHsbxeyc+HmJjZbu6um3hz5QUsFjC4bZv3zmMYeye8F9Q4C0rPiviOygIZ7eHxeVKS8Hr3fX1KMLce29Y9K1/f1i0SP7H2lp47TVISAD8AUVaa0KLP3safN8//Fl57+4lvPxuWHxdpOgbgLcWNr0aSGNqYKcGR34PXc8ARzqkj4Wx30D/f8lh53aYeezOom8AvkaoXrJ7eVMoFAqFQqFQKPaAm26KFH3r2ROOOUZscEGmTIEVK2Q7Kgp+/BF+/hkmT4aSErjllv2bZ4Vin+FtgOlHw6r/C4u+AfhdsPkT2PLlgcubQqFQKBQKhUKhUCgUCoVCoVAoFIpdYtnTE5ubm4mJiWk3jMPhoFEt86pQKBQKhUKhUCgUCoVCoVAoFAqFQqFQKP5I6F5wlYGhg6MzmG0HOkeK9tC9IlZi+CGqC5hFCcnW4ra1J+gWFRXerq1tO9zMmeHtq68G0w7LsFmtkJ0t2/nV+QDkJOTId0D4Lb9G9nfuHD6vuLjtNBX7nqrm9tWydnX8d4OvObxtTw1vz7sUGjeFf4/5GhwtvKkVB4ag6BtATE54e8sX4K4M/UxJuASIBnZdllQ0V9DsleegW0I3kqOSibHG0ORtorCmkO5J3fdS5nem1lXLGZ+cgW7oAGy8YSM9knvss/QOVjQNMjNh/Xr5vWoVDB26cziTSeqJrQEtrwUL4MwzI8PMnh1Zf+1KRDQo8JaVIIJvXeO7ArCtYRtevxer2UpWFmzeLKJy27ZBTs7uXuGfE68Xpga01cxm+PJLEacAuUdXXglnnw0sD6jpmVqo0XoboH5N+LezFZW/tqhZAWsfC8Rpgx7/gM7HgatcBADq18rNDAq5pY+FxIGRcWgapI6U7VX/B+4K2U4dCQP+D2KyoXYFbHi24/lSKBQKhUKhUCj2kOJieOst2dY0eOUV+PvfpY/k88Ebb4hodbD9DTBhAhx/fPh3dDQ89VR48YZ9QUUFfPwxzJsHjY3Sfxs7Fs46S9JXKDqKT/exqnwVAHG2OPKS8yIDrLofapfJtj0Vel4Ljk5Q/SsUf7R/M6tQKBQKhUKhUCgUCoVCoVAoFAqFYrfZY+G37OxsfvmllRU8WzBv3jy6du26p0koFAqFQqFQKBQKhUKhUCgUCoVCoVAoFArFwUNjIax/Gor+B55q2adZIO0IGPgApI85sPlTRNJYBOuehOIPW9wvs4iVDHyAqKijQkHbE3RLSgpvFxbCqFGth5s7N7x9+OHtZ62gtgAIC74FvwtqZH9urjiwGgZs2QK6vrOQ3G/BMMTx1OWCxEQRpVO0TpVzF8Jvuzj+u0FvoX6otXggapeLqE8onHf/5UnRNi2F+swt1L1WPwQ1S0M/eww7hY4KvxXWFAKgodE1viuaptEtoRtrK9dSWFu4t3LeKrOKZoVE3wCmFUz7Qwu/barehG7oWE1WcpNyI4517RoWfps3b2fht4IC6N4dMjLCwm+TJkUKv3k88PLLEiZI4S5uYXFdQPgtXoTfggJwuqGzrWEbOYk55OWJ8BtI3aSE3wLoPtg+CQrfkzJT90B0FqSOhrwrmL+sB8F1U0ePDou+tSQ5mZAwbUR5/FvY8jlgyPbh70L2BeFjeX+D8jnQWBAWc0se1nZchgFbv5bt2Dw4ejpYAmVPfC/IOlviUigUCoVCoVAo9iGTJoW3//pXuOqq8G+LBf7xD7GhHXJIeP9ZZ7Uel2WPvWjaxu+Hu+6CZ57ZWVju9ddh4kT5KBQd5efNP3PUu0cBkBmXyZZbtqBpmhw0dOmHAkRlwAlLIapT+OSB90OT6qcpFAqFQqFQKBQKhUKhUCgUCoVCcTCzx1PDTznlFObOnctbwWWTduCNN95g7ty5nHrqqXucOYVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoTgoqFsDPw6FDc+LiJg5ChydAR3Kf4Ltk/dt+oYhwnM1y0VYQ4kvtU/9OrlfG18I36+oLoABFXNh+yRSU8PBN21qO6o+fcLbBe34ylUEdFM0DXr3bj97+dX5wM7Cb/k1st9uh27dJKzbHRba+a2sXQu33CKiQfHxkJ4OMTEwciR89dXeSeOPRrWz+jcd/91gdoS3dfeBy4eiY5haiPMZvjaDZXT2Ey26b5SUgNPZdpRBcbc4exzfrv+WL9Z8gcUknvBBUbh9xfSC6QBEWyWz0wun79P0DiSb6zbT8/me9H6hN71e6EWtqzbieMv1Nb/9dufzH3tMvrt0Ce97//3I+umZZ0SYrWX9VVTUfr6Cwm/vr3ifzk905tBXDw0fq5VjeXnh8CtXth/fnwZfE8w8DmafJkJrDRuhqVjaGmsfhbWPs2BBOHhb4rFAWMTRUyMO/L+V0inyHZ0F3c7f+Xj6GHCXh3/H9w1vF38Cm14Pf6qXgqtUjuVeGhZ9C6JpEJfHbuOqgE2vwuzTYcpImDEOFv0Dtnyh2roKhUKhkPqwsQBqVoiwu+4/0DlSKBT7A1c5FL4Pax6H9c/Ctm/BLbaXH34IB2spft0SXYdVq2Q7Lg769m093L7gP/+BJ54Q0Te7XcTpnnpKxOD69wevauIqdpPvN34f2t7WsI0VZS0WZ6hZHu7T9bwuUvQNILoLpI3eD7lUKBQKhUKhUCgUCoVCoVAoFAqFQrGn7PFaRXfeeScff/wxV155JR988AHHHXccmZmZbNu2jSlTpjB79my6dOnChAkT9mZ+FQqFQqFQKBQKhUKhUCgUCoVCofhj0lgIWyZC2TRwV4DJAbG5Mik/52KwxBzoHCoUCsWfm8XXi4CYZoHDnoXcy0X0wlsfEKdoW3jnN+GuhFUPwNaJ0Lw1vN8cBZ2Pg7FfR4Y3dBHR0F1gTQRbwr7J18HO4hvAUwWaGQ59Frr/LXC/GmDrl+B3MmBAOPiGDW1H1VI4Z+3atsM1N8u3wwGmdpZg8/q9bK4TJbebJt/EndPuxOVzAbClbgsevweb2UaPHlAsWjvMmgWXXRYZT2MjxMa2nc6OTJwIF14IHo/8zswUAbiyMpg/H778Es44o+Px/Vmoaq4CIM4WR+/UsKLfpupN1LpqQ8d/97Rsazq3h7fj+4GvGRrbUUdU7H8s0eFtd9vig5oGPXrAihWiHzp3Lhx3XGQYnw8slrC4W727nnM+OyciTFAUbk8Y/MpgVpaLStikv0zi+LzjdwozrXAaANcMvYYn5z3JjMIZ+HU/ZpN5j9M9WPly7ZehbZ/u47sN33HxoItD+7KywmGnTZPy/6ij5PfMmfDRR/DqqzBoEHwdaAK4XPCPf8DHH8OkSfDvf8PQoZEipMuXt5+voLhbs7eZZm9z5LG6nYXfpk+Ha6+NjMPng8pK6Ny5/bT+UCz/F5TPku1u50GvmyCmm4i/bf0aDD81NeHg2dntxBUVUPPTPdLmi+kGmafA2bUwcxxUL+l4vnQfVC+S7bQxUhi0hq/FvTa3EHNbcTc05od/H/ZieDu1PfW63WDLlzD/EhHPa0nZDBGDO2kNJOxHlQ6FQqFQHDw4S2H1g9J3d5aE91tiIfNUGPXhgcubQqH4TRgGlJeLDS0hAZKSWjRVm0tg0VWwfdLOQsiaBY6bx/r1Q0O7hg9vPY36+vB2p07t2+h2lw1VG3h50csADEgfwBWHXhGR7tNPy3ZUFMybB4ccEj734Ydh6dK9l5c/FG31V1piGPs+HwchQeG3lKgUqpxVfL/xew7pHHiwKueGA6YfeQByp1AoFAqFQqFQKBQKhUKhUCgUCoXit7LHwm9paWnMnDmTiy++mFmzZjFr1iw0TcMIDKoMHz6cDz74gLS0tL2WWYVCoVAoFAqFQqFQKBQKhUKhUCj+kGx4EX69GQyfCNTEZIPJDpsXQ9EHkHQYpAzdZTQKhUKh2Ec0bw2LevS4Gnq2UDqxxkP3y/dNuq4KmDICmgKCO5mnQsJAEQSpXgLbfwyHrVkO656E0ingKgvvd3SG3L/C4Ef3TR4PRpzboWy6bOf9HXpdFz5mjYPcSwEY0GK0fMkS8R9szc+wbwvNkalTwyJJLampgZgYEd9xuVoPE2Rz3Wb8hl/Oc9VEHDMwKKotoldKL3r0EGEdgA8+2Fn47f774fHHw7+Xbl/KBys+AOCwLodx0cCLQsfq6uCvfxXRN7td4jvrrLDza2EhLFvWen7/7FQ7RVTr2O7HMvH8iaH9l3x5CR+s+IBqV9uiW78rorPBZAXdC/XrwvuP+AhKJsNPJx64vCl2JqoLoAFG5P0a95OUf3PODO3q2VOE30CEwXYUfnv+ebjllvbF3fZU+G156XKWl4UVx95f8f5Owm9b67eyrlKu4Z8j/8lLi16i2lnNstJlHNblsD1K92Dmi7VfANA3tS9rK9fyxdovIoTfDmtxyYYBl14qwp2FhSLuFvR1HzEiMt6pUyElJXJfS+G3efOgogJ2nMa1YQPk5nnZ1rCtzTwHReFaCr99950INqSnh/c9/7zk608j/OZ3Q+F7sp1+NIz6ONyQiO4KaUeAoWN83sH4EvqHtxs2iPCbySoivtpuTvHz1ofFMqJbqAkuuEKENIIMuK/FObXtxxfEEbjBvmb4rIVoaHQ3OL24Y/lr2gK/XCBt2tgecOjT0PlYMPzSpi3+H5hsHYtLsf8xdLn/JhuY1X1SKBR7meYSmDoiIHyvQebpkNBP6t3qhbB98oHOoUKh2AN+/BHeekvErCsqwvvT0+GKK+DhB70w81ioXytjZD2vg05Hizhx3RrY/Cn4m2loCJ+bmNh6WuYW+uG63nqYPeWlRS/x7IJnAVkg4IIBFxBjkzbx55+D0ynhLrwwUvQNpKtw6KF7Nz+KPzZFtUWsqViDWTNz1+i7uH3q7Xy/8Xv+NeZfEqDlQgAxufLtLIWZLewu8X1g9Kf7L9MKhUKhUCgUCoVCoVAoFAqFQqFQKHaLPRZ+A+jZsycLFixg8eLFLFy4kNraWhITExk+fDhDhyoHNIVCoVAoFAqFQqFQKBQKhUKhUCh2Sd1qWHK9bHc6Fg5/F6K7yG+/W5zZHOkRp6wsWxkSihnaZSjR1uj9mWOFQqH481E6HQgorXQ9Q74NHZqKwmE0C8Rmdyy+oGrLrtjwfFj0bew3IvzWkqbNgfzNEFEm3SOiGwPuFRFRbwNUL5LPn4mW9yvzDPk2DGgsCIfRzGRn5xAbC42NsG0bzJkDY8dGRjV/vjhqappEUVkJH30El1wSDrN6tTh3du4MVVUSbu1aGDiw9ewV1BS0fqDF8V4pvSIEe6ZPh1dfhauvlt+ffAJPPRUp/PbgnAeZuFaEyZIcSZze+/SQ8+k778h1gggHnXNOZJq5ufJR7EyVswqQ/7QlyY5kOd5ctd/ztE8w2yC+L9SugNpluw7fsBG2fgUVc0WUwdDBngxxvSHnYkgbta9z/OfGEgNxvaBhPdStCu+3xoElNiJor17h7Q8+kPLrqKPk948/wiOPdED4rWbPhN/eX/E+AGOzxzK7eDYT107k5ZNfJtYWzuP0AlG47JfWjy5xXRiVNYrphdOZVjDtdyX81tgIv/4KS5dKXaFpIrI2YACMHAkOB5Q1ljF381wAnj/xeY59/1gmb5pMk6cpVF6PHh0Z75YtMGxY+Hds4K8bPnzXeercGeLjob4e/H544gl47LHw8Tlz4NNP4dYHtqEbbSsiFNeJmFe/fuF9Hg+cey5MmSKCot9/D3fcAT/9tOt8/WGomBsWS8v5S+vqsZopQpBi69Z24msp/FY+S4TQ2kP3iT2hdiX4GsHsEFHIxENkO4i/ObztqRGB3CCWFsJtLYWD+94BFXNEiB5EgC6Ir4Xaxp5S8Ja0WwGO+ASSWyhgpI1SdcjBiLsK1j8LpVOhZokIxQLYUyHpUDj8HYjKOKBZVCh+79TVSTti2zYREk9MFAHfPn3Cgt1/CtY/FRZ9O3rKzvVhUwdFRoO0Vj/vSEdtNAqFYo+4915ZvAAgMxP+/W+xQTU3Sx/q11+BrV+L6BvA0Jegx1XhCLqcBH1uBcNPTIvma2Oj9LN2JDZWxN/8figpkb6LbS9o1Xr8ntCCC51jO1PaWMrEtRO55BAxEi5ZEg57zDG/Pb0/FS3L4Zbl9p+8fP5h4w8AjOg6gnP6ncPtU29n/tb5VDVXkRKdEvlf+V3yrXuhbmV4v9ZCCVGhUCgUCoVCoVAoFAqFQqFQKBQKxUHHbxJ+CzJ06FCGDh2Kz+dj5UoZKPB6vVit1l2cqVAoFAqFQqFQKBQKhUKhUCgUCsWfnA0vBjY0GPW/SJE3sx26nh4RvKyxjMPfPJxmrzhvP3zMw0wYM2E/ZVahUCj+pARFPQDsgXLa74Jv88L7o7vt7IwWdL5qy0mteStsnwKu7eCuFEcsezrE94aME6DoPQmXOjIs+uZ3hYUWbEng98Cy20Q8IzYPxi8V4Z+W6L7dvuTfNd668HawXtU98F2P8P6oLmhnbGPgQJg3T3bdcgtMnQrJoufFp5/Ce+/Bd9+J2M3q1bL/H/8QR9WjjxbRnAsuECGlsWPDYX75pW3ht/ya/Hazn18tx084IXL/tdeKEF1lpeSppW9fUW0RX637CpvZRv+0/iwtXcr/Vv6Pqw4TR9ngNQKceGK7ySt2oNpZDUBSVKTwW/B38PgfgsRBIvzWsBGqFkHKsNbDbXgRfr1RxN5ShkOXk6U8cldC9RLY9rUS7dkfJA0W4bfa5XLP4nq2Guy440TcDcTh/bTT4LbbRIDqrbcgLlBltCfuVtZURrO3ebcEp/26nw9XfgjAPWPu4XbX7SwvW86Xa78MOcYDTCucBsBR2UfJd85RIvxWOI07R9/Z4fQOFC4XTJgAL78MbjekpopgaGwslJbCsmUi1nn66fDVuq8wMBjaZSjH5B5D96TuFNQUMGnTJM7pJ4qcqanQv3+4PmmLtDQYNAhWrGg7jKbB4YeLOBuIWGhqKlx0EUybBjfeKNvFte0LqLQUfsvKEjE6gNmz5VqTkqR++tPhKg9vx7RQT/0sFnwBsTVzFEOHNoUOtayPdyK+b3g7/03oe+fObToA3Q9rHoF1T0ibx5YCsblAQOTWUwNnVYn4m98VEM8JkHWuiHNtfEl+R2VK+e2pgfIWqn09rgJ7Slj4zdEpfKx5m3ybrDDkadg+CUqntHNhrVAmgo9Edw2LvtWvg8oWf1DiIEj+/Yg//qFxVcCPh8qzFJUJgx6GhAFgssgzVzZTBKeV8Nv+oX6diO82FUk5ZOhgS4a4HpB9EcTmhISov/kG8vOl/9DUJGKg3buLCHRHBER3C8OArV+KcE/1YnBuA8MH1gSIyYHul0Pe3/dyon8MJk8WEaTFi+V3t26QkiJCcIWF8M9/injrn4bCd+W707iw6JvfFbZr2FJk27RXpr8rFIp9zLp18OCDst27t5R1sZFa5fj9wAJZyADNInUGSBu1YVM4oD2NvLwcNgV2LVrUuo3LbBbx7Pnzpb+2bFk79d5uiEN+u/5bqpxV9EzuyQ3Db+DGyTfy1rK3Qv1btzt8SrRaqymCujqYMQM2b5Z2idstAqd5eWJfTU/fZRR/Sr7f+D0Ax3c/npzEHHom92Rj9UZ+zP+RiwZeBPa0cGBnCcTlgTUWet0E5TPFxqdQKBQKhUKhUCgUCoVCoVAoFAqF4qBmt9aBKyws5K233mLDhg07Hfvuu+/IzMwMicBlZGTw6aef7lGmGhsbufnmm+nSpQsOh4PBgwfz8ccfd+jc8vJyLrvsMlJTU4mOjmbkyJFMnz59j/KhUCgUCoVCoVAoFAqFQqFQKBQKxR6jaR371K+T8NFdw+I0276F7/uFP6sfCUX7yNxHaPY2c2x3cXx7/JfHqXXV7vPLKS+HuXPh++/h44/hyy9F7KasbJ8nrVAodsDvF6dt3x9dy0v3gbsK3NV7R7jM75G4fE1tC7G1ha2F4JOzRL41E6QfDTHZu58XTx38dDJ8nQVL/ylOjLZk+TQXw5qHoakYnKUSPrpFGktvhc/jw59Nr0HNUjnW7fywQEjRh7Dmcfmse0r+yz8LEfcrIE6CBp2OiRRmQQSQgvz6KxxxBNx7L5xxBpx/fsD5FDjvvHC45mYYN04cVY88ErZvl/1HHx0O8+KLIrDUkqYmWL8eCmoKAMiMy+QvA/8S+mTFZwHh4337igNkEF2Hd94R0bcdeWnRS+iGzjn9zuG2UbcB8NyC5zB291lX7ESVU96d5KjkiP1JjqSI438Ikg4Nby/4m5RDAHoL7+WmzVJuGTrkXQnHzYdB90OfW+CQh+DoyXDIo/s3339WWt6vhVeBp1a2d3jvx4wRYa4gDQ1Szr3+eriM8+t+NtdtBuDaodfy7PhneXb8szx0zEOh84pqi3YrezMKZ7C9cTspUSkcnXs05/WXgvT9Fe+HwhiGwbQCEX4raSzh4TkPs6FK5iTNKZ6D0+vcrTQPBHffDc88I47rd94J27aJqNpXX4nQQHW1CIMCTFwnYgan9DwFTdM4pecpsn/txIg4W9Y57XHuubsOc845kb/vuAO6doXLLoP6etkXFHZLjU5l4w0bQ597j7wXIPRsaBqcempkfOvX/0FF3zrSl28pyuYqDW/H9Qo44BuAwRFHQFSUHJozR8QOdqSxEbAlQEL/cHzTj4LqpVC5IFK8bcNzsPLf4K2H4a/DmWVwwiI4YbEIvp24EiyxkBZ48MpmhIXoci6E3je3uE6TCAyDCL81tiEAmToKCIhibPtavk1W6HMzpB7ezh/ZBnqgkWSOCe8r/0nqnuBny8TWz1Xsf1Y/JM+gZoZjZ0Pf26DLeBFk6nEVHPERxPcKBTcMERdduhRmzpQyceFCKCnZ/W6YogW6D+acCd/3hdUPg2aFjBOh27mQOFDsi3Urqa+Xfkn//nDPPSJ4c+KJcOWV8u3ziVDOXmfh32Hu2bDlU8i5CI76UUTJx3wNeVfJ8/NHwTCgdqX0sxffAL/8BeaeA/Mvg+V3R4pY7oI5c+Ckk0QI6dBDRSCpuFj6pvn50o644op9dykHHbpPxKQBYnPC+xf9Az6PC3+2T+5YXQ1yv4KflrS1X7FHeP1ebpx0I5d/fTmXf305G6s2HugsKQ4SPvlE7FkgddGOom8gQm2hRRxsidLOBBGXnTI8/FnzcITQ27fftp3ucceFt999d+fjPh/U1rJbZcTby94G4C8D/8L5A87HrJmZVTQrZMfLygqf3p5A92/h91Zs1dfLghlpaXD22SJK6/FAQoLUcW++KX1nxc40e5uZUTgDgMO7Hk69u56x2dLHCwrCkX5k+ITtk+TblgSHPRPuDyoUCoVCoVAoFAqFQqFQKBQKhUKhOKjZrSXPXn/9dR577DEKCgoi9m/atInzzjsPl8tFdnY20dHRrFu3jr/85S/07NmTIUOG7FamzjrrLBYtWsSjjz5Kr169+PDDD7nwwgvRdZ2LLrqozfPcbjfjxo2jtraWZ599lvT0dF588UXGjx/PtGnTOPLII9s8V6FQKBQKhUKhUCgUCoVCoVD8eWhqkhXFm5rEOdtmg5QUWVHctFvLZSgU7bCj90VLZ7OWzA149bsrxLnNZJGJ+UmDoeQHcXhxibralrotvLz4ZcyamddOeY3bpt7GxLUTefKXJ3ngmAf2ySW88IKI16xfD4cdBkcdBamp4hhTUiLCEe+/v8uoFArFb+DHH+HTT0VUo64OcnIgPl7qMJcLRo2C//5XwjY2wqpVUs81NoojVVSUOFf17y/fBy2GDpteha1fQ/UiiO4mopgmC3hqwNsg4hbJh+46LgDndlj/jIhdNBVDfG8pX3WvlK3WRDjqh47F1fk4ROzCgK1fiNCB2QHjZsDKe2HV/bt3rcvvkjLe7BBn+NhcyZfeQilMs0J0FjRugsYWDrNdTpa8r3m4/TQ2fwzlc8BbK78zTwV7yu7l8/dK52NFyMTQRTQk81Qw2+CY6bDqAVj5n1DQSy6Bf/87LKS4bh3c38rtvOQSeOCBSMHF5ubIMEcfDQ6HvJcrV8Ipp4gYUGamiKfedRdMmAD5lnwAxvcYzxunvRE6/5rvruGVJa+QXyPHNQ2uuQZuu639y23yNPH6r68DcPVhVzM8czgpUSmsrljNjMIZjOs+jpEjxdkWYNIkOOGEXf+NCqHaWQ2Ehd6CJEUlRRz/Q9DtPFh2Oxh+qFsFPwyA+D6yHaRyXrisyr4w3MadMS4cxhoPY77cf/k+CPD5YPVqEbkJtpFdLrDbpe08cqQIS+5Vup0r9QkGlM+CSQMhZQRURqpwWSwiGPLEE21HVdJQglf3AnDNsGsYkD4AEEG4e2fdi0/3UVhTSL+0fh3OXlDg7dCMQ/llyy9kxGYAML1wOiUNJXSJ68KaijWUNopg1lfrvuKrdV+Fznf73fyy5RfGdR+3U9wHC8H+Esi9fuABsFojw0RHy6fGWRNy2p5SMIWV5StDgmvfbfgOt8+N3WIH4NJLRZxvV5x3HvznP607/gdfzXPOkXokKPLWGsW1ko/shGx6JPcI7R/SWeZ7ba7bjGEYaJrGP/4BL72067z97mn5pwb/zB33e2rBZJMyseQ7EToCGP8rbHgBltwAyLNxzDEiou7xyD15/33o3VvEF7/8Et57T0QQyP4LrPiXxFPzK/zYSrt344vynTIc8v4u26UzoHxmOEyXk6Hz8VA6Rdq9ax+HAfdGXkuQ9GOkXYoBs0+F4W9C8mFh8U+QNmTSEMnT5k+h1w2S/p6S0B+qFkBTgQgz25Mlz0dNgfmXRgrpKQ481QGVsJhciO0u25s/hWV3hcP0+Afbk+7g7rul/1pdLULJPXtKf7S2FjZtguuvjxReVuwGm16BrV/J9pHfitCH3xN+X7LOBrODO2+Bn36SXS+/LCI7+5yqhVDwlmwPelgEgQHKZ0s/N7qr/DYM0DQMA0pLYcsWsVs4nVJ/JiZCt27QufN+yPOeontF5G3bNxCVCX3vkPLREgu+emjIB1d5h6N75JFw1fLkk1I3tCQxUT6/CwxDbNieGvA1yj5LjIih2lNbr4N2xGSBqAyx5zS0sIN0PUPiWPdkZHpB2qqrFfuNB2Y/wPMLn6d/Wn9WV6xmbcVa5v5tLhbTbrkpKP6AtHw9gwJwrRLbU77dleAsg6hOUr4Of10ET5tEoPjkk+HmmyXo66/D8cfL4g0gr/8XX0ibe/x46Z+B1Ic5OXDTTTIevGaNbP/nPyKU3hFKGkqYtEmEtYKLMh3R7QhmF8/mnWXvcP/R93PeeXDffRL+ww/FDmi3R8bj9weE7jqAywUffADTp8OSJVJXpqTIt67L2MDDD8uY3cHKtdeG7ZHvvit93T89HakPDYOZhTNx+VwAjP/f+IjDkzdNxq/7Mcf3lfaIc5ssDtPj6j1bpGYHfLqP26fcTmmTtDMvGXQJJ/U86TfHq1AoFAqFQqFQKBQKhUKhUCgUCoViZ3ZrRHXu3LkccsghZGdHDgg8++yzuFwurrvuOp5//nkAJk6cyDnnnMMLL7zAm2++2eE0fvjhB6ZOnRoSewM4+uijKS4u5vbbb+f888/H3MaI15tvvsmqVav45ZdfGDlyZOjcQw45hDvuuIMFCxbszuUqFAqFQqFQKBQKhUKhUCgUij8QZWVw990wc6Y4PJ99tjgfxsSIE0BpKWRnw9VXH+icKn5P1LnqWFu5FoBYW2xIIGG3yP0rbPkM/C5Y8wj0vwfSRsvnh0FQtzIU9IHZD+DxexjTbQzbGrZxVPZRTFw7kWcWPMONI24kLWYPFZ3acI778EO48UbZvuwyeOutXfsk+HQfXr+IRljNVuXcpVD8Rl5/Ha66Sravugqef14c1Fri88G8eXDDDfDrrzB4sDhR9eghTvZOp4g3+nxw7LH7/RI6zop/i5iZZoETFkPSISIE0bAhHMYa37G4dC9MGyuiaWmj4dQCsMZC/QZxQgYRNvLWdyzOqAzoNA7KpolDe3x/EdqwxIDPufvXGhRRcnQW0TeA4o9h2R3gLhfBsn7/grwrYPkEqF4Che9B7qXQ5SRx8g8Kv9lTIXkoVC8Wsbd+d8o1jf0GKn6BaXtbaeh3gCNdxE62T4ai9yBhgDh1LD+KAACG7klEQVS+WWLAF6nWlpkpzp5PPtlGXAFyc+Hvf4dXXmk7TGoq/POf4nQJMHWqCC7uSEGNLLSWm5gbsT8nMSfiOEjb9LHHoKJi53iCgsX/W/k/al21ADw852E0TcOkycHnFj7HuO7juOwyuOceEVZ45RVxbD3zzHAchYWwbJnsi0D3ge4GTGC2i6DewYC3EXwN0n7CAJNdnntLbMccKHeDquYqAJKjkiP2B4Xgapw14mxp6qDn7sFMdCbkXAKF78hvX6OULS2J6x7erl0BnY6W7a5nQelU2PY12P4kIpMBFiyAc88V8ZKhQ+HOO+Xdj4uTvub27eLcvdeJzRWxvs0BL+rmrfJphVtvFbGuHQUrQV6ZwtrC0O/shPCcILPJTFZ8FoW1hRTVFnU4a02eJiaunQjA1IKpTC2YGjqmGzofrvyQ20bdxvTC6QBEW6NDZSDA1vqt1LvrmV44/aAWftM0yMqC/Hxxut+2TQQFWuPbDd/i00U99Jctv0Qca/A0MK1gGif3OhmQOK64AlqbbjV4cHi7Vy9pH7766s7hgutqJiVJ3RQUIGiNoABdVkJWxP7gb5fPRXlTOZ1iOzFwIJx+Onz9detxWf5M3T9boojLbvkCij8S4cW8K8ESLfVnC+69F374QbrbixbBgAGQlwfl5VBTAyNGBAL2uBrW/TfcXm0Neyo05oO7CnQ/mMygu0SIbtPL0sZ1dBIhulX3SVm+6v+kjE4bC/VrI+PL+7u0Kz3VULcaph7eero9/gGLrhKhu6kjoevZ0kYu+W6noC6fi+u+v45lZcswaSZ6JvfktVNfI9YWG06z4C1psy+5AUa8KcJQ0V3l/9tXdFBk4Y+Crou9s7xchEPcbhEaiY6WxS+6BrS4mr3NXP715SwpWYLFZCE3KZcPz/owJHJL0mCo/AWai6F5m7QXkofB4Mfl/rlKwVPN+PGwYoWcsnKlPOeKvUhTUXg7vq98N26EOWeBs0Te9c7HUVg4JRSsT5/9lLeWfayW/et1T0L9ulCfvv4kndvvEMFLp1NsjYMHQ0KC9FM2bIDZs3ctfB1Ot0lECKt/Bdd2EU43Bfosuk/Kq4H/B7aEvXWlsPlzEX0DESPqcqJs/3prOIwlBrqe3qHoWorzl3ZA83JZ6TIu/OJCfLoPp9fJ5YMv5/6j70fby32g3aJ5G/x6i4jux+aIkKcjQ0TcvPXSPs25mCb7obz3HixeDAUFMhaTkiLlkmGA1ytCTeO7XwGrH4Tyn0TIPessEX5LGRkp/KY4aJi3ZR4PzXmItOg0Zl02i8u/vpzvNnzHw3Me5j9H/mfXEfzZ8XukDPc7xR5osoE1DsxRe92+cSC46KLwQgqvvSb9l4QdimWPB2zd/wYbnpUdS66Hw9+TPm/s3yH/jZDwW48eIqT8+ecS55lnwuGHi3Do8uViA3/hBbjwQilTJk+WMuaOO+Chh8RWHixv/7Mbj+f7y99HN0S5bvTboyOOvbPsHe498l769jUzZgzMmSN12sknSz/gkEOkPfbNN7Jgy1tvdSzN00+HKYFq/ZtvZIGJHYfyvN6OX8OBYHELk9LRRx+4fBxUdFC49PuN37cZRbWzmvlb53NEtyOkD7rqPvBUwQ/9Ifcy6atu7+CCNztlz+Da76/l9V9f57LBlzElfwrfrP+GWX+dxbDMYXsUp+L3SVBgUtNExPIPUCUp9iNut7T5i4vDC6T4/fIsJSTIYoOdOh3oXCoUCoVCoVAoFAqFQqFQKBQHB7s13a6wsJCjWlkWaPLkydhsNh4OzmAHzjrrLMaMGcOcOXN2K0NffvklsbGxnHvuuRH7L7/8ci666CIWLFjAqFGj2jy3d+/eIdE3AIvFwsUXX8y//vUvtm3bRmZm5m7lR6FQKBQKhUKhUCgUCoVCofhd4m2AwndFJMQSDYmHgDkatIAYgeGF+H6QMnTvp+2uFoc/b504VxmGzATVLJKH5CF7P80OcM89Yafp99+Hiy8+INlQHEgMQxwCfQ3iXGz4AU1ETMzRu+0EOLNwJpd+dSlRlihO7nkyzy54liuGXMHT458OOzN3hC4nQpdTxFl65X9g+yRIHi5Ois3FoWCbqjfx1lLxCFletpyTPxRRAJvZRqOnkUfnPsqTJ+xd57fsbBGY8nhEzKCmBpIjNU9wu2WSLsBX677i2u+vJTM+E8MwKG0s5eWTX+bU3qfu1XwpFH8mXK7wtsMhDrE7YjaLmMeSJfL7qaeglSG9g5+A8xyaBiarbLsrxHl408viLJx3JaXdXmPOHCgqEue2nBxx2gsKWPl8MGiAQU8joLKjWcJtoNoVIlqw/mn5Pe4nSB/bsfwNewmmjhZhtqW3wLLbwOyQumV36XsHVMwV5/1lE6DPLZB7CeRcDN/mhZwZ6XGNCMLVLof5f4WNL0NCP2lnBdE0GPIEzDwBGgvEwSvnUnF6r12++3n7o3DYCzBttLRLl90Gy+9s837dd5/Uc199tXM0xxwT3n7iCRH1+fbbyDDR0XDWWeG4li6FSZNaz5bJZJBfnQ8QIXIEkJskQnAFNQUYhoGmacTGirjOMcdElgcgAnOGYfDcgucAGNplaEhwdVjmMH7Y+APfrv+WgpoCuid15913xeHW7RYn2cxM6N5dnE/XrxfByDMP+1Qcapu3iphNbB6ghZ2Q/S7odQM49lBstjV0P1QtELFbT11A9CVG2kKGAYYPYnuAv1naStWLRewqbYy04VzbJV/uKhEh67z3FC6dXifOgLhjSPwkQFAIzsCgzl23kzDc75bBj0HVQqhfs/OxrmdAxonQ7XwRG1t+l5RHncbJfx8UtfyT8dlnIvoGcMkl8n61pHv3nc/Zaxz6NNT8Cg0bdz7W6Viwy7vaubPk87TTdhahu/deKKyReifJkUScPS7ieHZiNoW1hRHicLviy3Vf0uRtIi06jQmjJ4T2L9i2gE9Wf8L7K97ntlG3Ma1gGgCXDrqUl095ORTu/p/u595Z9zKtYBoPj3t4p/gPJl59FU46SfpMxx0ntoehQ0X4r7QUfvkFRo+GiZtECO/cfudy04ibQuc/NOchJm2axMS1E0PCbwBPPw0zZogwZ5D4eBFLaMkjj4iATnl5eN8RR4SFgwEmTBCH++920OeKipKy/z+bAsJv8TsIv7X4XVxXTKdY8ch86y0YNUrqjpacdx4MC/iBG4bBjMIZ/FT8Ew6LA6/fy/kDzqdP6v5SIdpPDHkKKueDcxv8erOUi9ZEcJVFBBs2DJ57ToTVDUPaqzv+fwDYk2H4GzDvLwFx0xY4OkPvm8FVDjOPE4Hjn8+TdmTiIWLny38tYOtARNmGvSpxgbSBKyNFBzE7xBYy4m2Ye7bUuTsSnSUCJN3/JvaKrV9Ku33LZ5HhAoJtNc4azvjkDOYUz+H1U18nwZHARV9cxIaqDXx/0ffyHKUcLgIF+a9D8YdQ8j2kjpJrbireOQ97iw6KLPze2bgRrrtOBLR69oTbbxeRlIQEudSGBmnTdu0qArenfnQqC7Yt4K3T3iI1OpWzPz2bMW+PYfLFk+ka3xX63S1iV+5ymH4U9L1d+iRRnSPSzcwMC79t2iQiqDv+zT4fWK3777/4Q9HrBnlnvPWw4HI45DERgDt5nZQFWz4H4MEHYdYsafNfdRU8+6zUQ9HR0p9Ys0aOtZhi+9tJPxI6HycCk8v/BdYE6HQUjPkSNr4kAoHA//4XrsduugmeeaaN+DqqKjF9HJRNh5hsOHGlCCVVzoPS6aC5xeZbuwLSx/zWKwyTMhQscWJf3vK5XLslGrqeJiKgm14VEeRB9wOwsWojE6ZPoMZVQ7w9nkZPIw8d8xDDM4cD0qebPFnq8X/8Q76PPVYE0erqRMTIYhFho1lFszj949NJdCQy49IZPDP/GR6c86DYX095WfqCNcuh8mdwlkr5bUsK20PQpf8UFKvrCL4msVu4K6WM1iyBfpoOaBDfC1Y/FKgTNDh6k4jNNGyEja+IUKmvAUqSOPOfhzI1oAU8c2Y7div3zfLf1q+TuiltNMT3kfpPcdDR6Gnkki8vQTd0UqNTueXHW3D5pA1z/0/3M77H+NDzrmhBQ760GyvniXhwlxOl7AjaNzw1kDgI4nrDhufEvpcyQsp9ky0sEmf4IGM8JB68aqs9eojw24QJ0j7o2VP6zd27iwjokiVS9k2fPgh63SjXu+VzKcuSh4mNuHZlRJyvvirtneUBs+f8+fJpiabBu+/C2LHhdnddnXxahukIhmHw9rK3ATijzxn0S+0XOvbMgmfYUr+FGYUzOC7vON5/XwTOCgth+nT5tOSUUzqWJkBtbTifaWk751fTDv521YMPilA+wOWXw3//K0J4JpO0C9eskXquX7/24/mzYRgGP2wU4bZnx8vYc5Dx/xvP3M1z+WHjDyL81u9OWaymYq7U2xtfjIzM7NittB+e8zCv//o6XeO7cnbfs8lNzOXeWfdyykenMO+KeXRP2n0jl98vIr8+n3yCz67DIR8lKHbg8XjEvjR9OlRWSlmVkyO2LU2T/oPHI+V37G5MgVCEaW6WhbuKi6V8T02VBSqD45p+P/TuLYs8AMwonMGbS98kPTqdksYSjs09lsuHXP6bF9wzDElL0yTtffH+3XqrLD7U3CwLLh17rIjP22xS91dWSlmgUCgU7bFundRLmzeLTSs3V8YzguLxPp8IQGdnS9vpq3Vf8cXaL+gc25mypjLO6XsOp/U+7cAK5SsUCoVCofhDYRjSN/Z6pS1iGGLXcjgOfhudQqFQKA5+dsvqV1lZSVZW5CS/2tpa8vPzGTNmDHFxkZM/Bw8ezOKWS/V0gFWrVtG3b18sOywBO2jQoNDxtoTfVq1axZgxO0/SCJ67evXqNoXf3G43brc79Lu+vn638r23KC6W1ZyamiAjQ1agstsjDboOByQ5SsFbKzvtaTKhQvcEHGkDLYaoDJm0oXsBHQhaZncwWpjt++8CFQqQFTU3fyIrBduSZEKnLRFcFeCtkVUgTTaqEy7h2RdjWLxYDP2nnw5duoSdSD0emZB26qliqGv0NFLtrMZqtmIxWWjyNJHoSCTBkYCppWOIocsn4n3QAEMmCbgqwg5TjrTAe+SRlfUMv4RzdFLvjkKhUCj+9FRXyyS51atlMG3cuPAAPYgxy+uFQw+VSXput7RlExNl4E3Twn4UZrNMZNhrGLqs/ly7HCyx4ixiS5TJkZ5aaN4sbejsC2S/QqFQ/B5xV4pDPEjfymSR/pbuCTv32VNV3+X3hGGIk2PtcjDZIXWk3FtPrThzNRcDJsg6C+wpuH1uqp3VeHUvMdYYGjwNRFujSXIkYTVbxeF0+49QswQ6HQfWeHE8LflehBJql0FsHv7xy/l1+69MLZjKr9t/pUdyD+xmO6sqVjEgbQDH5R3HiMwREmdLghNjdnSMXP4vKHhLHA8G3i+OCa4yEY7YPkkE6QbeB2lH7BzXDvEZhiFOoRu/56fin7Cb7fRP68/cLXPJis/i+LzjOSHvhJ0EGNri6afFtjBzpjg8fvKJTJyMiZG2SnW1tF2uuaaD90zx+8EwYMXdUPiOvF99boO4XvJsOrdB+U/gd+Ie+BKvfNSXhQvF7nTKKZCVFZ507vPJBNWRo908NO8enpz3JKO7jeaEvBOIs8fx90P/zlfrvmJm0Uw+OOsDDu96eMfyp5nEETL/dRH3qZwrDj8gdqjOJ0D2+dw36z78hp8LBlzAR2d/FDp9/tb5jHxzJC8uepF/jvwnmfEt7OC/0ZF59GgRKnjjDZgzR/6PPn1kMrLPJxNzu3WDNz4q44ZJNzBx7URO6HECJ/c8WRwTNv3AmZ+cyTn9zuG5E58jPSZ9t/OgOIDULBNhAL9LHMvsqdLW8NZD8xYZf0gdBXF5Bzqnf2huuEHqr08/FVGqTz+FQYPEad/tlvdw+HCp1x5/XN7V88+X1dLz8qTP7nRCVZWIvVxwwYG+onYY9CBEd4GtX8PUUVJWR3URO723Qca+YvN45x348EMZV7vhBvkvEhJkEo3XG3DgM9lE1G3dk+II/nUWJA0OtK+q5XhMDlgTcfvc5Nfks7FqIx6/h4y4DDbXbSYlKoWeKT3JTsjGbDJDXE8YvwTWPyd1irtCnKlsySI01WM3GhGZp8K42VL2F7wJax8VB2yQ9nziIZB0iAhxHPczrH8GNn8GVfPlgyb5yRgv72FMluRt3dPS5loTEMnRTOIg3Wmc/H9/JuLy4ITF4jBa8I4IVQTvV6dx0OMfoaCxsfDFF/IOPfCA1Pe5uXD//ZFiwTExIq5z223w8sthwYSXXxanRZDn8PvvJb5//1smpoPUnzffDMecUkXDkw1AWOgtSFAIrsnbRHlTeUhgZ+RIef9vvlniS08Xx8krr4TpBTNYXbEah8XBjxf/GCE+Nu69ccwonMELC1/gqROe4qyzRJTu9dflOoqKRPTDapXJ8WeeSUAkNyDyZo6SfoS7QsQIN70idjdHJ+h13V67VTRskLZa7UrIOhsSB0q6ZTNESKxuNTgyRJDMHC2icH4X+JqlH9xYIOVGY76IA+xF4bdqZ3Voe0dht5b9kKrmqj+O8JsjHU5YCItvgKJ35Z7H9YY+/4S8v0u5MvIDEc3c/DmseQRW3ivnamYpczLGH9hr2Fs0bISV90H1IhEaTD9Snr/6DfJOOLdD4iAeffQhunUTwceHH4YPPhCn5bg4KSeqqkQIbMKEXaa4+0RlwAm/wpIbw/crtoeIw/S8VuxFAU46CT7+GO68EwoKZE7KI4/AX/8K980SdbHsxOydkshOkH27I/z2wYoPADiv/3ncMvKW0P7i2mI+Wf0JK8pWsKRkCbOKZgFwVM5REecfmX0kAItLFlPjrOlwv/9AMG6cCA688ALMnQtXXBEW1zOb5VkYMqKRH/N/BOCywZeJc3aAiwZexKRNk/h6/de8qr8acuCMi5Oy+u9/F9G2Xr1kTKZv38j0k5Ik3OWXw4YNcPzx8gy2nHZls4nw3403ihC+yyVCZC+/LG3G4sUitNUtoVtE3KnRqTgsDlw+F8W1xSHRjuRk+OEHERSaPl36zDfcAA89BGDww8ZJPDj7QbbUb2Fc7jhO7HEi7y5/lxcWvcC43HHcPeZuBnYauPduwoEkplugvfG8tA+dJeAvFdGj9LEilhbg+utF5OaBB+Dzz0HXpW1x6qnwf//XIs6ssyB6jgg5NRVK3Zd9IRzysJTRCf3g+AWw7imomAPTWsyVsyZK2zAx0DDJuUja1KvuE5sgyLhZ5+Ogz62QEhBi6XoanLhcypKygDpFdBbkXCIiX5Yo2XfEp1D0P1h9v9S/IG3qbudD39sori3mxP+dyMbqjVx92NWsrxKVjasPu5o3l77JyDdHMukvk+id2ltE6dKPlHZa+Qxpw4IIOHU+HnL+smf3ZG8LurVlAz2ISUgQh/Ht26V/tH692HBiYsLCb36/lMnj/zeeTdWbuOrQq1hRJqptVx12Veh+/Xjxj/RL6wcnLoO1/4XSKbDo6nBi1nhIPxrSj+KLL0SIZcoUKQtvukn6pNHR0kerqZH29kknHZj/5XdPTLbU+RtfFAHGyYMBAzSrzIeL6w3pRzK0P6xcCW+/Dd98I3aA4KINbrfU///5T8eF38qbypleMJ3ZxbOpddcyrMswlmxfQqw1lrHZYxnXfRydYzvDmK+l77XtG5h/SaR4ZXRXSB7O1eeB2SL11mefwcKFMHiwCJv6/WKfT0qCJ3Z839p6D6uXSFu0+lf4+XxIGSbloDlK+sSaRcqyvSn8FtcTjvsFNr4g4y9fdoKYXLDGSrloT4WUw6l31/Pg7Ad5dsGzDO0ylPP6nUeMLYZPVn/CmLfHcOGAC3lk3CNkZmawahU8/7wIvk6YIO9OkKws6Vd+seYLLpp4EZlxmZzR5wxeXPQiVrOVs/uezRtL36CiuYKPznyPqHVPQPlsue6gYHfNcuknlf4o7XVHZxFId1dKfuN6Sl3jqZK+oKcGTA6xnyy8QvprOZdA9kXSFq5eIn20pgKIypR+miUGymbCj8Ok3ezoJHVHzdKAgNUhvPgiPPqotGuuvlqEkYK296Dd6oQTYPz4FDhuvgj2b/lchGwq5obtGxnjIXnvLmi0caP0k1evFhHLceNEZCnorBWc6zJ69F5N9g/BLZNvIb8mn1N6ncIdo+4I7T8652junnE3F0+8mKVXLyXGtjcnBP0BCC6WZbICeniMv7EAymfJe5Y4WIS+mzeLLT5tjLyXhl/GeLd9K/trlsKo/x3Y69kFd90l4tRvvy39h6eeCh/LyYHLLgv8OPQZacsWvgOl06ROAen3pp8pNgmkP7JggfRt/vtf6QeBvL+XXhq25aWnw7JlMr71yCNQUiL7Bw0SG1sb7ig7MW/rPNZXrcesmXnl5FdC9jqAoroiPlz5IW8ve5vj8o4jO1vE7N55B957T9IH6ZONGrV7Y9BTpkg/c8YMOPFEGYsLCl4E21b/93/SB9xrNBZCwdtiD0k9HBIGgtkm4/zNW8WuHt8Pcju2uto554Tv1Q8/wIgR0g+KjRUhsIwMEalVwm+RrKlYQ3Gd9NNP6XVKRBk6Pk+E377f+D0PjXtIhN2OnioLeax5VMa9QWxD2RdA71taS6JV3lv+HvfMvIceyT245fBb2Fy3mdToVCaMnsAjcx/hxP+dyC9/+4WkqCS21W+joKaAGlcNXeO7UtZYhtVspXtSd7ITsvG6rdx6q9jKGhulfTNwoNg6TCbxlSorgwsvlP6CIpJqZzX51fkU1RaRFpOGYRhUOavIScyhR3IPEh2JezU9n0/Klfp6aZfZ7dKvDAq/NTdLmfOnwlUOJZOk3RzXS9rMJpuMlbirxNcoKkP6adunSFs6eThEB+ZpuKsCNiInJA7k1feG8+abImD0j3+IMGpiotjvfD7ppwMsKVnCv2b8iyUlSxibPZaRWSOZUzyHR39+lCfmPcFDxzzE2b1PRyufKbZpa7zYiSyx4l/obZR2vslKmXEU99xrY/ZsaddefLHUu0HbQHNzeCGL6dNljndKiryr8fHhhch8Ptnu6OImRx0ldfOqVVKHeb3heeUul/T7xo2TNnZ9vcTftas8d5oW2f2z2aReraqSsqN3b8lbS9E6r1fG0femttOGDdKvbmqS/6zlnKFgmkFx9fp6+d25c/gagvkHuYYpUyROv1/qwvR0uSeaJvWi2y3XFvSTUyj+0Gz9Sha6a94stoa4nlJWOkukb+N3Qo9r+OCDE/nmGyk3b79d7EXx8VJuut1hQefpBdOZMH0C2xq2MS53HCMyR/D1+q+55vtrePTnR3lk3CM7jT+1aT9uyJfFCOvXQeoRMrfEZA/3ydyVMobd/Yqwr3ZwMWRMwQjly2QVO4ZCoVAoFL8z/H7pJ7Sc7xDUN2np/1leLv0Yjwc6dWq9PR8dvZcF0dzVMofM1yRj9IFFEPHUykKifjfYUyCuR8fiK3xfxr29dTIWH5Mt2+5K8bMx/Oi97+C+5w7jiy9kMchrroEhQ6RtYjZLH7qiAsaf4KNL7AaZx2aJCetSeBtlDE/3iD04trtSwN+BbdtkcYjmZukrZWVJP6rls2S1yn++SwxD+sr+Jvm/bYlyH/zugLaIH9Bk7mjDBnmWLLFhPR5fQ0BLxCXtubheqk13kGAYBg2eBiqaKvDpPhIcCdQ4a4i2RpMWk0a0de8bGFetkjlg1dVix+ndW8o1s1n68h6P2Ha6dNl1XH6/LDS9erWcN2pU2I4QXCTF5ZL5xcpW+udFM4yOz0qKi4vjkksu4aWXXgrtmzlzJuPGjeOWW27hySefjAh/991388wzz9DU1PFV7nv16kX37t2ZPHlyxP7t27fTpUsXHn74YSa0MRvWZrPxt7/9jVdeeSVi/7x58xg1ahQffvghF154Yavn3nffffxfxCw6oeuVXXHGO4lzxpHSkEJFfAWNjkYSmhPIrM4koTmBRkcjddF1uKwuLLoFu9dOo6MRq99KjCuGBGcCVp8Vt9WN2+rGZ/Jh0S1ohobX7MVsmLF77di9dsyGGV03oet2/H4L0vEPCFKhATpmswub1YXD4sesGRiAbmiBRpOG3eJHN8DpNWM1G1hMOrqh4fGbMQwwmwxMmoFZk1X3mrwWdCNc8XzTYon60049tc17FQzXXpi9EW5EZil906qxmHQ2VCXR6LESa/MSbfWSHuPE6zfxY343qp1Ru7wGXbfQ2JiJxxOLpoHdXovJFBTGA9DQNIP+XfI5r/8G0qKdzN+awdrKJHRDo2t8I51jm4mzedhSH8dn+ZmUx5dTGVeJ1+IlqSkJn8lHQ1QDDq+DtLo00hrS2FpwMuXlh+F2J9G16yxiY7e1SNeEYUBMTCmlpYdTXd0Pjyee9PTFREVVYjL5CN5/XTeRnLyWqqqBNDZ2RdetJCRswmZrBPxomoFhaBiGmaS0ZdTGVlMVV0WzrRmb34bD66Auqg6bz0ZSUxKpDan8+OWUdu9LkJNPOwmPxYPX4sWv+bH6reiajm7SMetmbD4bNp8NbUdhwXYwaToOix+LScekgYaBgYZf1/DpGi6fBQN5tnXdht9vwzBMGIYZMDCZ/JhMXkyWZrxmL4ZmYNbNoTwYGOgmubdWvxWHycBu9mPSDFw+M35Dw6SBWTMwaRLOq5vw6SbsZj8Wk7xffj0sDhd+vyw0o+O2uvFavOjo2Pw2vGZvKD27147Nb+vQf6HrFpzONHy+KMDAam3AZPJFNE41zcBur4s477e+X/3TKumRXIfVrFNYE0+z10KU1Y/D4iM12oVP1/h5S2fW2Wsp6FSAyTCR0pBCYnMiNTE1VMVVAZBXlkd6XXrE/d9fZUltdC3ru6zHZXWRVp9GUlMSHrOHqvgqamJq6FbRjdyKXGpiasjvlI/P7COlIYWUxhTqouuoiq3CZ/bRvbw7GTUZv+kaOnIde4v20mx5rC3aO6flMZcrmZKSI2hqysBs9pCQkI/V2ogWeGcMQ8NicdM3awl906pIdHjYWh9Lg9uGSdOJsfmIt3swawb5NQmsbrRRllBGVVwVfpOf1IZUmm3NNNubifZEk16XTkpDCj6zjwZHAy6bC13TifJE4bLKpFC7106sK5Zor4NOMS5ibF78ukajx4rfMGE1SbliM+v4dBMlDTH4NB2/yY+u6WhoaIYW2jbpJsy6mRiLn06xThwWHw1uK26/eEPYzP5Q2VHntrHNbaYqroqa2BrcFjfxzni8Fi8uq4soTxQpDSkkNyZTXjKK8vLDcDrTSE5eR3T0dsxmL5qmiw6lYSY5aT2XDp3H4M4VNHutzNvSmRqXnZQoN4kON13jG/DpJt5c0Yt56RspSygjozaDaHeg9a5BRZy0Tfps60NqYyq/5v5Kk72J7IpsLP6wR8fWlK34zD4GbR7EMdFwTO4WOsU0M2dzFyqbo4i2+shJrKd3Sg1Ws868LZ35Ym3PDj1zZ/XdRL+0ajx+Ewu2dqbRYyUzvpH0GCcD0qtwei28unggi/NH4nR2wu+3ERtbgsUiz5KIf2kYhkZUVAWbN4+nrq47um4hJWU1dnstmhawGKGhaX4SEzewefPx1NfnYDJ5SU5ei9XaEHo2wYTNVsfA3J/pnlRHjM3L9oYYmrwWzJqBwyLPpqZBYU0Ca7ceQn19Lh5PHNHR23E4atE0XyA+DcMwER1dit0eFgdur71RXd0blysFwzATE1OKxeIE9FBdDSbi44tafQ/3tDysia5hTdc1+Mw+Otd2JsYdg67p1MTUUJ5QTpeaLvQq6UVVXBXruqzD5reRVpdGlCcKr8VLdWw1NTE15Jbnkluei4mOtw8NQ8Pvt6HrwbraBBhomh+z2YfZ7AzU5VYMw4TJpAf+j7DhT9N0ou3NRFu9WEw6bp8Fn25C06Q9azFJwGavBZev4/rVJk0P1Os6ZlPL9gb4dBMev4kucc3E2T14/GYa3FKW2M0+rGYpSzx+E5vqYihPKKckuQSfyUdSUxJRnijKE8rxmr2k16eTUZ1BtDeyd93W/SpIK2BTxibim+Ppv7V/aL/L6mJ59nI0Q+PwjYezLGcZTY4mepX0IqcyJxSuwdHAvF7z0AyN0etGE+XddVt4R9oKV5pQyorsFdh8NsasHYPZMIeOLeq+iJpYeU5iXDGsylpFtCea/lv6h+pQn8nHiuwV6JrOsPxhJDgTOpS37Ynb2dh5I1a/ldSGVGJdsTTbmqmMq8Rpd5JXmkdmVRZuV3KgzWQK1Emy/F+EUc9RR11UHTUxNbhsLqx+KzavjcaoRqw+KwnOBBIbE8m0+xmYXkVSlJtt9THUue1oQIzNS7zdg9WkU1Qbz+qaOBodjTTbmvGZffLemL34zX5sPhsxrhii3dER701bGAa4XKl4vdEYhgWrtRGTyYOmteyaa6TFVfDXwavpltBAfk0CS0rSqXfbyEpoJCXKRafYZho9Vl5dOJwtW46mtrY3Xm80CQkFgXIzWFdLeZievpTNm4+jrq47Hk88cXHF2GwNofLVMMzExxfh7P85GzI2kOBMoFtl2MnPZXWxqfMmojxRDNs0DLs/PMtkb7eZ2myXWFwUpheyPWk7SU1J0v40NMoTyqmOraZTbSe6l3cn3m+T/rLJwO0zoRuarFIZ6AdrmrTnay0uKhIqqI2uxWv2ktyUTIOjAb/JT6wrlrT6NJKbEslLqic5yoVuaFQ2R+HVTTgsPmxmnWirF59uZk1FEj7dvMtr0HUzXm8cfr8VTTMwm12hexC23+t0jq8hL6mOOLuX0sZoGj02zJqOw+Ijzu7FpBlsrotje0MMdosfsyb9/mDf3gAcgb6Ly2fBbvYRbZV0mr1mdMOE2aRj1gysZh3dgBqnA7+x+0bptq7V57OzZcux1Nb2xOVKIj6+GJutDpMp+MyZiIqqoH/eVE7sUUxuUh0+3cSWujh8ugkDOLxrKX5dY9KmHGYVdd1lmh3Pm43i4hOpre2Fz+cItDdqAu2SYL/axJiBX3NqrwK6xDWxuCSdzXVxaBr0TK6lW0IDCQ43+dWJvLJoMD5fNLpuCfVTw20S6c9Lnejt8DVI/aVjMfl3qr/8hgmnz4xH8+M3+TEZJkwt7p1f82NoBhbdEtFHNms6NrMfm1neA+l3m/HpZnwmHz6TDw1tp769x+xB16Tvb9V3b/TNFGh3mTUds0n+W59uwu0349M79rzp6HgsHgBsPltEWdsy33bfns1+03Uzfr8Dv9+K2ezFYmkOlcmVlf2pqDiU2toeeL2xmM2egD1H/p/u3b+iU6clobjauq9ui5vZfWdjaAYjNo6IqBu3J25nZbeVWH1W+mzrw8rslZh1M8esOibiPhSmFbIxYyOxrlhGbYj0Qvit7ciFeQupjakltzyXnqXhPoDT6mRun7kYGIzacDjnd6uif3oVuqGxsiyFRo+NpCgXcTYvnWKbcXotfLiyFw2ePa8j9oadsSNpmgM2KbNJx6S1fDZNofJc7FEW/H5HizautFtNJi+atRGfRd5ru88ecb/2xrNpNfmJtvpw+cyh/ilIfQhg8VuwGJHt4uAxq98a0Ybb2wRtdT5fNCZT+L3xmryhcmlHm9hvKUvgt5f9BgaNjkbqo+pxWV2YdbHJNzmasPgtxLhjpG2e4OTUXgV0jm3m5y1d2Fofg0mD7kl1dEtoINbmZWNVIu8v78e2bWOpqelLY2NXbLa6HdpgZpKT15KZORufL4pt28ZQU9OHurpcPJ54AGy2RmJjt5KXN5HemSs5JncLPZJr0TSoaIrCp5uIsvronlRHVbODlxcOYXn+OBobMyPswpKm1DeGYSYlZWVE27Kt92Zb0jZWZ63G4XEwev3oUF2io/Nz759x2p3029qPrtVdMWkGNrMfq8mPKdCuCo5L+HUtUK7vui0UZFCnSo7IKiEnsZ4Ehweb2Y/Ta6HK6aCoNp6PVvbCbDI4MnsbgzpVkh7TjNWs4/GbMWkG9W4bRbXxvLW0f8B2NYqamr40NXXGMEyBOtcADNLSltO790cR6bf1n8zvMZ/66HrySvPIKw8L2fk1PzP7z0Q36QwpHMKqrFV4LV4GFg8koy4solUbVcvCngvRDI0j1xwZ8R7sbfuh9MMd+P12TCYPFotzhz6FoOsWfD47um7FbPYE3tfIML+5bWXysabrGkoTSulc25k4VxwAfpOf8oRyXFYXfbf1JaUhhaK0IrambCWxKZG0+jQsfgsVCRVUxVaR3JhMj7IexLgjnUCD5aFuaDR7La22Wf1+C7puQ9ctAbuDH7PZFdH+CvxzRFn82C1+PH4TTm9gDAIDj8WDQbgN1fL6gmWb1W+NKO81DGJs3lDedlp4aTcxazqxNi8+3URTO/HZzT7sFj/NXkvEu7fjtUZbfVhMOk0Bu6nsNWhwNFAbU4vL5sKkm4jyRNEQ1YDFbyHWFUtiUyJuq5uFPRZiMkwMzR+KzRd+npflLKMhqmEnWwW0/X4NTK9kbPY20mKcrK1IpsrpwG72E2PzMjZ7G26fmc/X9GDe1i47xdVafK2luatwu3O/DEPD54tq9Z1piYzp2rBYXG0HAnw+B6AFbITtt3HbOyZ5A683Bqu1KZS39toeoWOGFtGXD8YlZYktYJ/Q2RGryS91gFn6nW6fGbffzI7/3968XxaT2POsZsmPT5dxbo8/OG4umDUdu0X6OAAevwmXz4JuSBiTZnBEVgmHZpTTM6WWaKsPj99MZbODTdWJzCzsSnFdfJt5DfJb7tfBhtudwLZtR1Jb25P6+my8XilzbbZ64uK20Lv3R8TEbI84x2LyYzUZONuxyZo1sZHI3ANr6B6UJJawqtsq7F47Y9aOifh/gv2Q7mXd6VEmky6dzmS2bz+C8vJDaWrqgq5bsNtrSUzcRHb2jyQkFITOb9P2gs5P/X7Ca/EyqHgQnes6h45VxVaxpPsSTLqJo9YchUW34HYnsnXrWGpq+tDQkI3PF4XJ5CUqqoLExE307ftuoI6VOkTszPLM6YaG1y99XN3Y8V014fM50HVbRJt5X9OR+yX50/B6oyPKkvba8+0dawu3xS11azt9F7PfjN8stiKb3xZh3zAwcFvcrR7raJlzfv8NjMnehtdv4pctXfhqXXe8upl1GevYnLaZ5IZkhhZGiob8mvsrlXGVZFVm0bdEFNbq63PYvv1wqqoG0NzcCcMwYbfXkpBQQE7ODyQkRAri+f0WfL5owMBma0LT9A6XJTv2L0HKa58vepf1UrCNGKxv2sLvt6LrFqzWcLj27ld7xwC83mjMZnfI7tfetfo1f2hOhc3rwNCtLcaU9FauzwjF6/fbKC0dTmnp4dTVdcfvt2Oz1ZOUtIGsrGkkJW0EDEZ23c6wzHJ6pdSE+tXlTdFsqEpkZmEWFc1RjO5WwqBOlXRLaMDrl7EiTYMYq5fypmg+Wd2TotqEHTPTAQxirDJm0V57DqQd4fMF6/Sd6+Ag0VZvqN3aFlEWL3aLjstnbncMzWLy47D4afJY243PZvZh1oJlSVvhjFA7vWWaHbENtHbMYvITY/WJ3bOFHaTB3kBpUilVsVVY/VbS6tOoj66n0d5ItDuajNoMUhpSDuo6uKPzN1ZlraIkqYROtZ3oXBuuv+qi6yhKLyKxKZFDNoyiOP9samvzMAwznTotCsx9azm3zEynTksC+8J2HF23BsYm9EB/yYPPvGf3yxYYc3D7TO0+J/KcR2MYZiyWZsxmLwYGa7quYVvyNjrVdSKxMTEUvjamlrLEMrpUd6FP8RDKy4bR1NQFwzARH1/Y4n0J2kFMkD2HJd2XYPabGbtuLFZ/2O60JHcJVXFVZFdkYzJMFKYXktiUyPD84RH5/LnXzzIeu70XVbFVVMVV0a2yG31K+oTC+DU/s/rPwm/yM6RwCGkNafh8dkpKxlJd3Ze6urzAfEQDu72WuLhiuvd9j0WHTcRv8nNYwWGkNKaE4tuSsoW1mWuJdkczbNMwVmSvoDamlq5VXSP6X6WJpThtTgZsGRDRrkH+AWJtHgy0dt9raffbQ3WE2expNVyr57aoj3e0ObYs03esv0yaToxVjjl91jbHA6TNZEfX7WiaD4uludV+SUcIzguwW/z4A/MOva30mfe2jSbY1zRpRkQ/vb2+WHvvl2GYAuPIZiyWJsxmeZdD9bFuwaKHy8m27pFJM7CbfYH2q4Ff1/DqZly+YH/OCI0ZmTSZTxxEbH6RtgmbWcZGZd6GxOfxt9Y/lHijLH4MZJzS49/5PkjZZMXvd6Dr5oDdqnX7lozL+mn2tv0s7S2kPSW2tOC4gKYF5764d3p/2rO9rs1cS4w7hk51YYEot8XNlpQtJDclM7B4ILP7ydjRoYWHktqQGgpX76hnfq/5AIxdMxaHz7FTmq2l25G81UfV82vur+iaTm55Llqg/2ZoBkVpRWhoDCkcwumdGhiVVUKUxc/Ugm7UuWwkONx0inHSJ7UaA41pBV2ZVSoC6DuWES2fTbPXzpbCU6mp6YPXG0tq6nIcjqrA/FgjMI/OQnLyarZsOZa6ujwMw0Rq6nLs9rrAeHpwDj0M7jmNE3sUkZNYz9b6WDbXxaMbkBbjpG9qNUlRblaXp/Dqkkih4b01xtReOAOD6thqyhLKaHDIPPKE5oTQXMmkxiQ614VtqBAeF7aZ/WgaeP0yFrxjP1PmQ8p7axgy1zloB/GavDRENdDkaMJr8hLticZr9uIz+7D5bMQ544h1xWJoBj6z2DsNzcDsN6ObdAwMzIYZi19soxXxFRSlFeE1y7z4tPo0yuPLqY2pxe61k1OZQ2pDKr1TajiiWwm5ifU0ey3Uu234dBOp0U4SHW62N8bw1LxDI65D6qUo/H5bu/WSxSS2BvcO42St4fM5QuVmW32mYL9K0/xYAs9mR+mQ7a2NMUG/34bP52jT9gYdHyfVdXOgbWVq879rc7zaHc/69X8JzAN2kZU1s8U84GDbClJTVwM7j6UCofFUj99EaXQtS3OWYvVbZXw5UHzrJp0NGaLEN7RgKPHOSNub3IeogE01XM91BCOQiIERrnrCRYPo4aJRH1XPgh4L0NAYs3ZMRBm6Mmsl25O207m2M4M2D2r1v9vxPvya8yuV8ZVkVWXRd1ukEvvc3nNptjfTu6Q32ZXZO8XVWnwdoWU7q2X+d3VM+qTewLh32+9NW9faVnuj5TGzbsbQDBn3NcyYW9Tzuklvdd6Jrpvw+6PQdfEBEUdwPyaTB683iuLikwPzgH2kpi7HZqtrMa9Yxuc7d17UoWvY0HkDRelFJDUmMaxgWGi/z+Rjdt/Z+Mw+Di08FAqPYvv2UTQ1dSE6upS4uC2BOVwyX1jXzaSkrCI2dvtOae6Yrs/kY2GPhTTaG8kry4so47cmb6UyvpJuld3IK82jML2QLSlbpGxtSMPqs1IRX0FlXCUJzQn0LO1JtFvKcA0Nqy9yXN1rkT5VsN/jtgT8WDQdq98amidv0S0B3x4rDrMesrV7/SYMNDSMFm1Abad6JzzuZkNsMx4sFtdObbW2/pO6uu4UF59AU1MG0dGlpKauDJTR0paU+YxN+LN+ZnnOcix+CznlORHzTws6FWDz2Tis4DC2JW+jKL2IlIYUcipyQuk02ZtY12UdDq+DwzcO59weMrasGxq/bk+n1mUnKcpFgt1DZnwjHr+Zd5f1pc7d0TktBlaTjEO0bDMbhhbwz5N3TcPAavZjb9G2NgiWm9Jubtk3EducDV03YxhmTCYfJpMbk9mNx9p6/2tnW6mGzaxjNfkD/oHBuWXh9nxzC3tScMw47ItFYDxV2rjh9rktcNwUmOtuBOwIXmmvY4hYWYtHIeRpFdofrowNw4TfH5w7bg7Ho+mh/qBhmEPju8GrDcZsNktYyZfYNMOpyvuqaToWaz0uuzM0v9esmzHrZtxWN2bdTJQniihP1E5lW3t1cHAMUPoGGkG/P2lr6IF3woeu2wP3UgvU9UaojSvXIHbTyPhazrM30DQfVmvkGEJbz6bXG0VjYzc8nhhMJh8OR01gLlv4XJPJiyWmjJrYGmqja/FYPOJTYNJxWp04vA6SmpJIbEqkPrqedV3W4TV7SWtII7EpEY/FQ2VcJbUxtWRXZJNdlkPl9jHU1vbE44knMXE9Dkd14J4FfSJNJCWtw2pt6T/cssLekV37bNXV5VBUdBINDdlERVWQnv4rNls9muaX91C3YbU2hNovHbmvu0rTrOmcP2ADgzpVUueyM29rBrUuG6nRLpIcbjLjG/HpJl5Zkcf03CW4LW76betHrCs2FEdBekGo7E9pSGFp7lIsfgtj146NeAaD8/FzynPoV96Dcblb6JtWTVq0k9LG6MDYk0bP5Fp8uolZRZlMLdj99sbetoPsrfhMmk5UoL0pvtFawNZgEv/nFs+IlJvW0PtoMvkwm12YzN42x5Has1t1JG+OwLxssylc9nt1U2jeUlu+qcExRK/fhMtvFr9bTQcNNEMLtWU1Q/zYdrRrt/X/+v02CgpOpa6uB36/nbS0X3E4atC0SF/iwT2mc07/9WTGNbG6IpmNVYn4dBN906rJiG0mNdpJWVM0z8wf0mq6O95Tn8lHo6ORJnsTXrOXKE8UfrP8tzafjVhXLDGumA7a5w16p9SQHuNENzTKmqLx+E1EW8XuE2vz4vGbWV6WQoW9kcq4SprsTZgNMzGuGGqja7H6rSQ0J5DSmILD66DB0UBddB1uixub34bFb6HZ3ozVbyXWGUtCcwImw0SzrRmn3YnPJH1kQzPwmr1Y/BaiPdFEe6LpGttMt4QGHBYfpY0xNHst2Mw6drOPeLsXA9hQlUiV04Gu6RH30tCMUH/EZJjA0HC5UkK2cekPRpbVoAXKtF2PHzc0ZFFUdBJ1dbk4HDWkpf0asJf4ABO6bsViaeK0IZM5Lm8LsTYvkzZmU9oYE/K/z0msx6QZLC5JZ1pVLFtStlAdW02MK4bOtZ2pixG/G4vfQtfqrqTXZrBh7SWB8TgH2dmTAmMRYRuNYWgkJG6kIWE75fHlNDoasegW4pxxVMdWY/FbSGxOJL0uHbvPzpaULWxO3Uy0O5q0+jTsXjtliWXURdeRWp9KTkUOJsNEQXoBZYllJDcmk16XjqEZlMeXUxNbQ0ZNBrnluTSWDqW8fCjNzZ2Ii9tMXNxmzOZgX9/AMMzExm4lMX4LZs0IzZkn0BYO+pXohswzKUkspaBTARa/hZTGFLHlxFZRHVuNyTCRV5pHriuR0d1KyIxvosZpZ3NdHB6/mZRoJzFWH7E2L9VOB1MLIhfZauv98pq81MbUUh9VH6qrfWYfbos7ZE9KaE4I+frVR9XjNXuJd8bjtDnxm/xEuaNIbkomvjkeXdPxWcRGAWDWzfgD7Suzbsbqt+7UFmoLXbfgciXi99vFn8/SHBpzCtfhOjZbpG7I/pgHbhgmqqoG0NTUCb/fQWzs1p3sG6CRnb6Os/uvJzuhns11cWyoSsLtNzMgvYoucU1kxDZR5XTwxq/9ObFHMV3jG1lTkczW+lhMmkH3pDp6JNcRb/ewajfsjGVlh1FaOoLm5s4kJBQQG7sVs9kTar8YhpnExA3409ZRmlhKbUwtVp+VlMYUamJqcFvdxDfH07m2M4nNiR2qv6Rd1HLM3d+ibGlRn1qdlMeXUx5fjsfiIak5CQyoianB5rORXp9OWn0aJndswDdUw2z2BcqaSANMcGzb7w+259tvC+/yvmLQZG+iwdEgbXjDjM1ro9neHCqr45xx2Py2kD+MxRSeW2AYWihdn27eab7Mrp45mafmC2mv0Ea7JDgPyDDM6Hq4X2UyeTGbXRJPoA0BWqh/FOwn6ob0v1OiXERZfbh9Fpw++f+sZh2rScek6bj9FiqboyLy2F5d3WxvxmmTes7hdYTmu1r9VqLd0UR5HFi0necfht6YwP+4Y3+uLQwMnFYnzfZmPBaPzKv1WXHZZG6+w+Mgxh3DpK8n7zKu4DXtrKsjKQUxm91YA3aJQE+1hT8ygT3gNzQsLXREdIMW9g4Du0XHr0Oz14oBIX9j6c9KnKZQHSH6O1EWH1azgdevhfzcLIFnRcPAb5ho9kbab9q6X032JgrSC6iKqyKpKYlOtZ1wW9xUJIg+QFZlFt0qu3F+72KGdK7Ab2hM3pRNjdNOSqBP0iPQP/h+Y07EnJb23q/6qHpqY2pptjVjNsxEucPzheNccSQ1JZGCiZ4pdcTb3dS67NS57BhAjNVHlNWL1aRT5YxiXW0s9VH1NDga8FqkfahrorVi89mId8YT54xDQzSUQtovwbGIgA6M1Sf1UofKOaTtFhxbbdnuD7a3xZ5pCthmwB+493JPjdCzoxsabl3DbXXjsrrwmX1Y/JZQfs26GYfXgcPrwBQ4P+wTH7aXhMcOW5un3s61BOwkbdkG7LZm0mKacFh8+HSZ4+4P2IDMmozT+nQTBeV5bNp0NvX12Tgc1WRk/BLop/tCNh5NE9vF1q1H09iYSXR0GYmJGwNzz8I+x1FRlZC5gHWZ6/BYPKTXpZPgTMBn8lEVVyVz6Kqy6FHag6q4KtZnrMeiW0itF99vt9VNZVwlDVENdC/rTrfKbugmHY/ZE5oTaPFb8Jl9YIBFt8j9N1ovq3d8hoNjRRaTgcdvCo0VB/trGuDxmzk0o5xjcqUt/P3GHCqbo4gJtIXzkkWbZ+G2TkyqdpDfOZ9mWzPJjcmk1afRZG+iMr4Sp81JTnkOmdWZbMzYyJbULaTVi60kSF10HeUJ5XSt6sqIyu5cOmg9mfGNbKpOZFlpKm6fmbzkOtKinXSObaay0cQp92+nrq6O+Pj25yrvlvDbYYcdRmNjI+vXrw/tmzBhAo8//jiffvopZ599dkT4yy+/nDlz5rBp06aOJkGvXr3Iy8tj0qRJEfuDwm+PPPIId911V6vn2mw2rrjiCl5++eWI/UHht48++ogLLrig1XPdbjdud3ggr76+nqysLOrq6vBYPCwvXY6BgUkzMazLMOLsca3Go/gD4XeBs1QUevXgsyEFqCjr5oraawCn14nLJxOUY2wx2MzhSTlNTaI4W1oq2ykpojhrNgcnsUDPnrKq1dy5suLq0KGiTGu1htU/fT44+mhZrUyhaJeOqj7vxorEuqEzce1EJm+aTG5iLkW1RZzc62RO73062gFWmTYMg4lrJ/LiohcZkD6A9VXryUvK419j/kXX+K4RYafkT+HLtV/SLaEbRbVFHJVzFOf2Pze0crpi/1Hvrsfjl8knCfYErOa9KeH+O8TnlBVqQurhJlEGN0eFVlB/YeEL3D71do7KOYrrh13PVd9dRawtlo/O/ohDM2SSVIO7gcu+voyJayfyr9H/YlTWKC6aeBGdYjox8fyJDEgfIMrlJZNk9V1Hhqz0a7KIMrmhS/opI0RdPkh7K6NXL4HKX0Q5P66HrC6qBSZ3Gn7ZzujY0pLbtoVX+HU44JRTRPnfYgmvbGU2y+qVTzwBK1ZAdrasCp6RIef4/VLfpqbKasAHLXtaVrezqrzH7+HpeU/z0JyHOLnXySzdvpRoazTPnfgco7uFlx6uddVy/0/388avb3B+//P5dsO3jOg6giePf5Ieya2sbNDe/f8TsrV+K1vrtwIQbY1mYPrAtuvCNu6XYRic8ckZfLP+G7rEdeHMPmfS4GngveXvAfDpOZ9ybv9zeWreU9w65VZ6JPfgqkOvCp0/q3gWP2z8gfE9xjPpL5F9pw7frzbC+XU/fV7sw6bqTRyRdQRJUUmh/ZM2TSLKEkXhTYV0iu3ErT/eylPznyLeHs8Nw2/A6XXyzIJn0A2dt09/m8sGX7ZbeXN6nby06CU+Wf0JR2YfyezNsxmfN55/jvwnCY49cbL6A+CpCaxA4gqvEKaZZRUxeyqTZyZz+eXS1zjrLLjnHikXo6KkPKyvl5VTX301vGrys8/CDTfsXAzpuqwU8OjcR5kwfQJZ8Vm8dPJLzCqaxZPznqRXSi9mXDqDzPjMyBN/4zO3u2yp28JLi17C6XNiMVkwaSauHXYtOYk5exynbugEzSNm074Tyvkz8eyzsko2wG23wUMPST+4JT4fWOafC1s+B1sKnJoPtgSoXSkreDu3g+GFzsdB5sm7TjQ8u6pdKsoN7r1X+uAmE5x9tvS/gyuaulyyEuelFzVD2Qxo2CRtpehuYLYH2kyGtHPi+0Bszm7/P4qDnwkTpF0KcN99cOutsvJ4ELdb2pwRNpp2yrkRb4xg4baF/Hvsv7lrdNi2eeW3V/Lhyg+5ZNAl3DbqNg555RAAim8upltCeALA5V9fzjvL3uGcfufw2bmfRWa2nfZhR8K9u+xdLvv6MjJiM7h++PWh/YtKFvHVuq8Y2XUkv1zxS/tx7yrNHdPdB3aLXaap+H2zv+6r3w1VC6CpCHSfrOJlssmKXYYB6BDfhytu6Mpbb8kpH3wAf/lL69GtXQvHHCNttbQ0Wc1+2DBZIb2yEn79FUYNb2RcQ1exQ3e7AEZ9KNdb8C5UL5QVwgFGfw5Jh+z+NbXx7uuGzog3RrC4ZDGJjsSQbcyv+6lx1XBoxqEs/PvCPWsbtXe/Fl8HG18CSxwMfhQ6HQv2ZKn7fwks3HPcfPj5XFkxt8spcNizstJd/ToofA/WPAKWWBZmN3DssbJy4IgR8PrrsgJ5EI9HVtnLy4vMQlv/SbB/My53HNMunRbaP7t4Nke+cyQWk4XqO6q57ofreH/F+5zT7xyeHf9sKNxT857iyXlPMqbbGGZfPrvj/8mBpr28daS8DpzzzrJ3uGnyTQzuPJhLB13KbVNvo19aP949490IW0NZYxkvLHyB8qZyEh2JNHgauHbYtWKzUhxUBPuGGhon9jwRk2bily2/UO2s5vi845n0l0mYdlzRsK12yYYXofBt6eP2+Ies3O2th+atsuKmuxr63SkrZ+4YV2vxtZbmrsIp9i0H2/3yu2HmcVAxR2wo3c6DhAGS/prHwFMFfW6FIU/suzwcZMyaBaedJvVmXh7ccovUmzExUFYGixbJ8SFDdhlVh/HpPnq/0JuCmgJGZY0i0ZEY2j8lfwox1hgKbyokLSaNjz6Cv/9dVnAF6NpVPhUVkJ8v7ahnnmkReTvP0tXfXs1rv77G0TlHc92w60L731vxHt+s/4Zz+53Lp+d+yjffwEUXhccTLr0UevUSW8HGjfDjj7BkiYxPKA4ydlWW6H5YdDUUvBm5P/EQOHoK766bxGVfX0ZqdCoVt1dEBMl4MoPSxlLePO1N/jbkb9x1Fzz+uCQTGwujR8uqq2Vl8Msv8M9/wn/+sw+uURHB+vUyZthy+llMjJQZhgFnnAFffu6Gn06BsmmABl1OlLLf0GHTy7Ja84D/yOrcJT9AbB4c+Z3Y96qXiE1yweUS+ejPIevs1rKiOEAYhsGm6k34dHEs6ZbQjRhbzC7O+n3h9Xs557Nz+Gb9N4zIHMFNI27iy3Vf8tmazxjUaRAz/zqTRHsyX38t9oSaGhgwQMoks1nqLxHSkLHzHe3xBxOGYfCfmf/hwTkPckTWEbx08ktc/8P1zNk8h3+N/hcPHvPgbs1DGvfeOGYUziA7IZt4e3iy7MrylcTb49l0wybKmsoY+PJANDQ+OOsDYqzy/FQ2V/L3b/+OSTNRfHMx36z/hut+uI7cxNwIm+isollc+MWFxNniKL+9nPz1Dk44QeY3xMXBX/8Khx4qdUVJCcyZI+2XTxqu58VFL9IvrR+HZRwWim9m0Uy21m/lhRNf4Lrh1+H1e7lz2p08Pf9prhhyBRcOuJCLJl5EnC2Oz879jCEZe7GR9mdH9SEVe5N2xmd+3vwz5352LgCfnPMJby59k3eXv8uNw2/kieOfwGq2Muz1YSwuWcx9R97HvUfdGzr31cWv8o/v/0FWfBabb9ncepptpNuRvOVX53PqR6eyqXoTr5zyCmbNzJXfXklech7fXvit2PI8NVC1GJwlMj5qTwvMBQMIjJOmHhGa07Y3qKmBF1+Uek7Xxbaeni59MpNJ9gGcc8xSWPso1K6QceTEQdL3byoC3SPzKtKPgi7jO/yf7BRmV+E6gE/3UdFUIUJJmplOsZ12fdJBxtLtS/mp+CeiLFG4fC7GdR8XtuOWz4EZR0l7+7DnoVdgjHH53VC3CqoWgiVa5gAo2qejY72/kS1bYMMGqKoS34TERGlHBsW1DAOOPLLj8X2/4XvO/vRsTJqJV095lQZPAzdOupFYWyyTL57M4V0P32fXsitO/vBkftj4A71Teke8e/O2zMNv+Fl5zUr6pfWLPKmN+3DXtLt47OfHGN1tNHMunxPa7/Q6iX0kFt3QmXbJNMZ1H7dzXK3Ed1Cwn565jlBbC++8A8uXyzy3UaNkTDX4bAbnC5922g4ntnEN1c5qejzXgxpXDX1T+4b6FY2eRjbXbWZs9lh+uuwn7r8fPvpI7I4TJsDw4ZCUJO+G2w3V1dLf6t69lTRbSXdr/VbGvj2WwtpCLh98OcfkHsNjPz/GqvJVXDTwIt4/8/3QeMr2hu08Ne8ptjdup1NMJ8qayrh++PUH9J3ZY9r4T+rqYOpUseN4PGJzTUiQ+lzT5F4nJcHhh8t7efrHp+P0OfngzA/Ir8nntim3cUjnQ/juwu/IjM9EN3TO++w8vlj7Bb1SenHN0GtYXb6aN5a+QZIjiTmXz6F/ev/IvOl+aa8Yfhnr1yzQ2rj3wf6+KhT7Ad3Q+WTVJ7y0+CWGdB7CqvJV9ErpxT1j79nJF2uf0IH30OOR8tnnC89ztlplnrR5X0z3NQzwNYCvOeDbowfKEitYYsAay6JtizjynSNx+pxcNPAichNz+XzN56yvWs8xuccw+S+TsZqtjHxzJPO3zqdHcg/ibOKLbGCwrHQZiY5E8m/MJ3nlnZD/hvgNnb4F7ClQtxoKP4CK2eCphm7nw8D7dut/261wioMar1faTAsXil/AEUeI71TQxypoFz79VC+22tnQsEHqwOhuYHYE+vOGPMsx2RDf+0BfkmIP8fmkTPT75WMyyXPgcMg2rvKwP7xmDpRdpvD7nzgoZMtp9DQyu3g2Xr+IC/dN7Uvv1PCzUVkpcx8rKiTdlBRJK+jn7vfLPMiW86q9fhE+MWmmVuccevweJq6dSFFtEdHWaDQ0zut/3k42k6LaIl5e9DK6oeM3/DgsDq4ddu0+rZd8uo9PV3/KjMIZ5CbmUlxXzBl9zuCkniftXkT7cm60ouN4G6H4fzL+a42HhIFipzICImSGH2JyxW+28D2oXwtxvaV8NFnFd8swpB2QMgwSOzav8X8fGHz5JRQWim2zb9/I9orXK/3PnoE12g3DYFvDNnRDR0OjS1yX/eLL1ORposkrwn0x1pg/3JirQnGwU1RbxHvL38NqstLgaaBbQjcuGXRJ+F00DJlX664AX6OUS8HxGSPgU5oybLfmdyv+mLjdYodzOqW9FmwfWq0yh2HrVrGBrl8v80qGDYP4+EC7EQmflSU+GH7dz9vL3uaJX57giKwjWFm+koy4DB4Z90iELd3pdfL8wud5b/l7HNv9WGYVzeLI7CO5Z+w9pMWktZHT/YBhQFMxuLbL3HRztPiBBuQiMfyQNET69IhN8sOVH9IpthPb6rcxJGMIlx5yKQ5LeLGVFxe+yC0/3sKQjCG8furrXPv9tczfOp//Hvdfbhl5iwRqLIT69TKuakuS9kZQ0NDwU++JJqHbiL0v/Pbwww9zzz33cOWVV3LdddexadMm/va3v2EYBiUlJcTERFbuvXr1onv37kye3DFVToCRI0fi9/tZuHBhxP7Vq1czYMAAXn31Va666qpWz83IyGDMmDF8+umnEfu///57TjnlFH788UeOP75joiP19fUkJCR06E9UKBQKhUKh2F+sLFvJN+u/ASDKGsXVh13dqoHlyV+eZPbm2Zg1M2nRaTx+3OO7L5r0O+r86boYsL3esOH6AGtSHlAMwwitcrmTA25H+R3d/4OadiZKNbgbGPnmSNZUrOGrC77igxUf8Nmaz7hnzD08cMwDANQ4a8h8KhOnz9lq9N9c8A2n9t5h1Ym9MJj7zrJ3uPzry7GYLPzz8H9i0ky8s/wdShtLuXnEzTw9/mlABvzP+uQsvl7/NQ8e/SCrKlbx8aqPuXvM3Tx4zIO7laZizzEMKC6GoiKZeOZySZlosYjzW06OOO0uWSIT5fLzpbxMTg4PIvh8MHgwnHii/H52/rPc/OPNjOk2hsUli+me1J1pl06jc2znPc+ouv9/OjZulOcuP18cy1tOHPb5ZNDq7DM8sO0bqF0uQm9RXQICO2ZAF2f9XjdECtLuA/x+MXqaTGC3/7nbEQph/Hhx8geYOROOOqoDJ7VTzj029zHumt76YhYAX57/JSf1PImYh2Pw6T4m/2UyJ/QIqxgf/sbhLNi2YCfnn4h091D4zeVzkfV0FpXNlZg0U6j9GHSk/eDMD/jLoDZUrXaFKvsVe4uD7FnauFGcAH7+Wdpb550nE/+joqQdVlYmgirPPScLfYAIjg4f3kaE65+FDc/JoE/elYFJVrEyccRdJQIFfW7Zs8y2U0YsLlnMiDdG4LA4WPD3BZg1M8NeH0azt5l5V8xjRNcRvy3NHdNtyIfvAgJgA/9PRBcAfrkYquZDY8ABbOhLsPha2R7zJXQ9Q7aX3CyisAAmB49Pe5I775Sf990H9+5QPO4yfzv8J5M2TuKkD0/CYXFwXv/zQvvXV65nwbYFISHMb9d/y2kf7+hhEub5E5+PENKMSLOVdP9IbK7bzJxicXyKtkZzep/T99wuoTjgGIbBKR+dwg8bf+ChYx7i6JyjGfP2GDrHdmbp1UtbH6TvSLvE5wTdJW19NJlUaomVyaatxbWr+P4k79dBSUfthwfCzrjuaVj6T9keNwvSjxTHb78TfhwODev/dMJvWVkymcdslu/Ov8HEszu8tfQtrvjmCqwmK7ePuh2TZuK1X1+jvKmcO4+4k0ePfZTNm6FHD7FXpaXJhKNxLXxlCwvDE2NDtPPuL9i6gMPfbNtRctJfJjE8eTy9eomzc1oaLF0KmZltnqI42NhV2b/mMVjeRh+80zjWDHyO/i+JM+jmmzeTlZAFQGljKRlPZgCw4h8r2PrrQE4KzOUfPRomTpTnJYjHI+I+OTm/9YIU7WEY0K8frFsnv2+5RQT3unYV4bcZM2D1arjzzBdhSaAd3rIfAfB1NjRvlj5I8cfi9JRyuNQRZjtU/xrujwCkjoJoVSgo9j8ev4fTPz6dyZsmc83Qa3hz6ZvkJeXx02U/HdhJsvuId5e9y13T7yLBnkCtq5ZHj31050WlOsDS7Us57DURVXv3jHdJi0njmu+voai2iIePeZgJYyYAMPS1oSzZvqTVOI7PO54fL/6R0sZSMp8SYYHWuHDAhXx49ocMHy7CudC+zae4tpgez/fAp/sYmz2WzrGd2Vi1kaWlS0mPSafopiKirGHRpK/WfcUPG39AQyPBkcDdY+7+8y6OtTdRcx8U+4pd2EHKGsu4e8bdNHmb0A2dM/ucyQUDwouX3zL5Fp5Z8AzDM4dz28jbQvvfXPomP+b/GCpzWk2znXQ7Qp2rjiu+uYINVRsA6JHcg7dPf/v3W+boATEGkzX8H+2Jo62yM3Ucbz0svBq2ToT4vtDjahFXNkeJc6yrFOypIsis+MMyrWAap398OtkJ2TR4GnB6nUy5ZEpoEeMDxbLSZRz66qEYGNx75L2kx6TzyuJXWFm+kksGXcJ7Z76380ltlOkfr/qYC7+4UNqsd9WG9i8uWcyw14cBUHVHFclRLVaMU2XJ3mc3yvSn5z3NP6f8k8y4TN49412qnFVc+MWFGIbBoisXcViXsCCzrougRXOzzLczDBHRjosTYYsIMaFd3NfCmkLGvjOWOlcdlwy6hJcWv8RZfc/ik3M+UYvT74LCmkLO/vRs6tx1NHoaGdl1JB+c9QGxtrCKiNvnZvz/xjOraBaPjnuUlxe/TFlTGVMvmRqxKLZCoVDsT75Y8wXnfnYuAzsN5L4j7+Ocz86hV0ov5l0xL7QY0pziOYx9ZywmzcSbp71Jgj2BGyffyNb6rTw67lHuHH2niLwtuRmq5kH60SJwbU8TwUpPHTi3Qs4lEBdecG9vLfCnUCgUCoVCoVAoFAqFonXmFM/h/tn3Y9JM+HU/E0ZPiFwEZhfsjmbZbgm/OZ1ODj/8cFauXBla/cQwDP773/9y6623RoRdvHgxw4cPb/VYe1x11VV89NFH1NTUYGmxdPLHH3/MhRdeyM8//8yoUaNaPff4449ny5YtrF27NmL/o48+yoQJE9i2bRtdunTpUD6U8JtCoVAoFAqFQqHYbXZz4mh+dT7D3xhOo6cRj9/DGX3OYOJ5EyNWsf/b13/j7WVvc8WQK3j1lFf5fM3nXPDFBeQk5pB/Y/7OTvR7wTHap/vo80If8mvy+fzczxnUaRB9XuyD3Wyn4KaCCPGvZm8zx753LKsrVmMYBqf1Po33z3w/fA1qAPl3y/yt86lx1gAwouuIyEmKCoVC8QenoQEefBCmTBHH4sMPl1WIY2KgsVHENi+9FC6+uMVJ7dStm6o30fN5WaIrMy4Th8VBg6eB8qZyYqwxVNxeQZQ1in4v9mNt5VouGHABY7qNCZ1/17S7aPA08Pm5n3N2v7MjM/sbhd+C8T/282Oc0ecMvjz/SyZvmsyJ/zuRTjGd2HzLZmxmW/txKxR/YmpqRHy3qUlERO12Edjt3FlETouKJFxZGaSn7yIyTy00FckKXX6XiKFaE0QYdXdEUHejDX7t99fy8uKXuWboNVhMFp5f+DxXHnolr536WsfTay/9lmWOp06E39yV0PVMGP2FhPXUiBhPEFsyLLgCit4DR2fofbOI4VnjZDXGpkKwp+LPPJc775RVbWtq4IwzYORI+f+DIhx+Pzz0UBv526E8bPI0kfRYEt6WeWnBv8f+m/uPvh+3z02nJzpR566jX1o/usR1ocZZw5LtSzBpJrbespWMuIyO/ScKxUFOtbOaIa8OYXvDdjrFdqK0sZSZf53ZthNNR9slHUFNVlf8FqYfA+UzZRXz04tlX8G7sOCycJg/kfCb3y+rNTY3Q3S01Ju2/dTE9+k+er/Qm4KaAiaeN5FeKb0Y+PJAYmwxFN5USGp0KrfcAs88I+Gfew5uuKEDEe+ibg32ra489ErO6HMG0wum89T8p8iMy2TzLZuZNtXECQGt7bPPhs8//82XqtiftHf/fU74ppu0OVsjrif6yetIeDSBRk8jVpM1Yv6TV/cSbY2m/q56TjrRzJQpctrs2TBmTOtRKvYt338Pp5wi2yefDN9910bAqaOh8meI7Q6nBkTcCt+HFf+SBScMvwi/5V0Fax6BshngqRYBOHuKHHeVg79ZBOEUigOEy+fimfnP4Pa50TSNKw+9cuc+pmInLv3yUt5f8T63HH4LJ/U8iePeP46s+Cw23LAhtCrzCwtf4IZJN9ApphMvnfwShmFw2deX0ehp5MOzPuTCgRcCcNQ7R/FT8U9kxGbQO7U3uqEzu3g2ABPPm8jJeWdit0u6KSkiFNGRvF0/7HqeP+l5jn//eKYWTI0QpVMoFL8T9kRIrB2+WPMF53x2TpvHXzzpRa4ddm3beVC2j72DsjP9NnQv1K0RoTdfI/g9YHZIGzuuF0TtJ+V5xQFjfeV6imqLAOid2pucxJwDmp8gF3x+AZ+s/oQ7Rt3BjSNupPtz3TEMg/XXryc3KXfnE9qwba+vXE+fF/sAMDZ7LGZNlMAqmytZWb6SrPgsNt+yufW4WolPse/x+r30e6kfm6o38fUFXzOneA5PzHuCiwddzPtnvr97ke1mHbG+cj1vL3sbgFhbLHcccYeaa7EXqXfX87ev/0aNS+Yz3jTiJk7r3fZiXQqFQrE/ePznx/m/n/4PDY1ERyKzL59N96TuEWFO//h0vln/DfcdeR9HdDuiVbsVIGLWTZtFZNnfJPvMMTJfyNE5sl5S7Q2FQqFQKBQKhUKhUCgOavaZ8BtAY2MjTz/9NPPnzyc5OZlzzz2X007b2Vj62muvMWnSJB5//HF69uzZ4fgnTZrESSedxMcff8z5558f2n/iiSeyYsUKNm/ejDli6ZQwL7/8Mtdeey3z589nxIgRAPh8PgYPHkxsbCzz58/vcD6U8JtCoVAoFAqFQqHYH1Q1V9HgaQAgIzYDu8UecXxJyRKGvj6UOFsc22/dztmfns2P+T/yyLhHuGv0XTtHuBeE3wDeWfYOl399OcMzhzO402Be+/U1bh5xM0+Pf3q3rk+hUCgUit87breIOtXViZBQbKwIOkVH7xBwF3XroJcHsbJ8Ja+d8hpXHnYlt025jSfnPck5/c7hs3M/A+C8z87jszWftZmXddeto3dq79bT/Q3Cb8W1xeQ9l4emaWy5ZQvX/3A9X6z9gnvG3MMDxzzQfrwKhaJNPvgALrlEtk88EZ59VsTggqxfLyvF9+jR+vn7g1pXLb1f6E1VcxWaJhNR11+/fvdFfzvq+FA+GxZdDfXrIL4fdB4H9lTwNUNjPqDB6E8lvHM7lM0UMTxPDehusMTKhNb0IyHpkFC069dDQQHU1ooIn90OaWnQrx9kZ7eR11bKw7Fvj2XO5jl0T+rOwPSBeHUvP2z8AYBZf53FkTlHAmGn7WuHXsuLJ7/IE788we1Tb2dMtzHMvnx2+/+PmnSr+J2xomwFU/OnAtArpRen9j41fHAvOzwrR1vFXmPuebDlM7DEwFlVYLaLAKlzaziMLRWiOh24PO5nXnoJrrtOtk89Fe6/HwYMAIsF6uth0SLIy4OcnL2f9ttL3+Zv3/yNEZkj6JXSi/dXvM9dR9zFI8c+AsC4cTBjhoRdvhwGDepApLuoW//783+5Y9odHJ1zNDP+OoOzPz2biWsnMmH0BB4e9zBFRdC7t/TxevSAlSvB4dgpGsXBSnv3f8uXMPes8G+TVdqQHnEIJa4nnLKBI985MiTisyNHZB3B3L/N5dBDYelS2bd5M2Rl7cVrUHSY66+HF1+U7ffeC/exdiIo/BaTA6cVyr661dIHCZI8DFKGhn/rPnGi8zXKs2JLEpEKhULxu2NL3RZ6v9AbA4OeyT1ZWb6S9854j0sOCRca1c5qujzZBbffzdrr1lLtrOaIt44g0ZHI9lu3hxxtX1z4ItdPup7DMg5j8VWL+WXLLxzx1hHE2mL5//buPE7Lut4f/+seBhgWGRkWAVkUUBFBQHFLVFwxl9xyTRPN7Lgd8+QSCgKP1KN2rJOeY7/K883KpYxwTzuhSJaaHJcHmqCSgobJpqxCCMzvjzsGR3ZluAd4Ph+P+zHXfK7PdV3vm3Le87nve17XzCtmpqK8IgMGJH/6U/G86woHfW3ma+l1e680a9Qsj3/l8Qz46YC0aNwi73zznVRWVNblPwtQz01fMD3tbllzKNbL33g5fdr1qT3odUaA9fLm7DfT8/aeqSivyPE9js9dE+7KBf0vyO1H3776A9bw3tHy6uVp8e8tsvDjhas97Eu7fCkPnvbgxiydjWD0xNE56b6TskurXfLO3GIw3+sXv55OlV7cAWDTmzRrUnrd3ivNGzVPt6puefHvL+bO4+7M2X3P3rATeS8dAAAANhsbkllWtqEnb968eYYNG5ZHH300v/jFL1Yb+pYk559/fu6///4NCn1LigFvhx9+eC644IL85Cc/ydixY3P++efn8ccfz80331wT+va1r30t5eXlmTp1as2x5557bnbbbbecfPLJueeeezJmzJiccsopef3113PTTTdt6FMFAACoc62atsoO2+6QHbbdYZXQtyTZs8Oe2Xv7vTN/yfzc8uwt+f1bv0/jBo1z3h7n1WldZ+5+Zrq17Jbnpz2f/3npf1JRXpEr97+yTq8JAPVR48ZJ+/ZJjx7FAIKuXVcT+rYeTtr1pCTJw288XOvrivEk6dW21xqPryivSPequkmH6rJtlxyz8zFZunxpbv7TzXno9YdSXlaef+n/L3VyPdhanHlm8sgjxTCTp59Odt452XbbYhBZ8+ZJ794rgyRKZduKbXPPifdkyIAh+fb+3849J96z4aFvSfHDo+t6JEnbA5OjJyZH/SXZ7ZqkebckZcUwt84nJ31uWHnOJu2THc5Idrs66ffdZM9bi/t3+dea0Lek+NnWHj2So45Kzjgj+frXk69+tRi2t0ro2zoc1vWwJEn3qu554LQHMmTAkCRJs4bNsl+n/Wrmndzz5CTJQ288lOrq6jww6YEkySm7nbJhF4TNwO7b7Z5vfeFb+dYXvlU79C1Zv//2N+TD5RvzXGzdel6VpJAsXZg8e2by0bSkUWVSuVvStEuy4K0kW9f/ny68MPn975MTT0xefjnp1y9p1Chp0iSprEzOPTeZObNurn1Wn7PSrWW3/Hnan3PXhLvSvFHzXP6Fy2v2t2y5cu60aWs5UaGw8rGO8bP6nJXysvKMmzour818rSbI9Zy+5yQpBtyNGFGcO3lycsghyahRxQC4V19NHnwwueCCZNmyz/HEKY1pn/hj6+bdk2PfKgZA7nBmrWn92/fPmvTvUNw3YMDKsYce2qhVsgEWLVq5Xbm2fKQd/xnutHBKMuXefx6wW7LTBcXHjoOTbXvXPqasPGlclTTrXFx/CH2DzVanyk65bN/Lsnjp4rwy45Xs0X6PnLl77Z/9VU2qatY097xyT+555Z4kyam7nVoT+pYkJ/U8KWWFsrzw9xfyt3l/y4OTir3l2J2PrZn3//5fsuOOxfmDBhV/l/qv/0p+9rPkhhuKr1GMG1fc37NNzxzX47gsWLIgx//q+CTJhf0vFPoGZLvm29W873PxXhfn0TMezbADhyVJKhtXpvd2vdd2OABrsVOrnXJ2n7OzYMmC3DXhrjQpb1LzM3ZDlBXKsvt2a75LQb92/T5PmdSRE3c9MQd1OSiTP5icJcuW5Fv7fUvoGwAl06N1j3yt39cy9x9z8+LfX8zu2+1e62YF68176QAAALBFKi91AaszevToXHPNNbn22mvzwQcfpEePHrn33ntz2mmn1cxZtmxZli1blupPvCjRuHHjPPHEE7nyyitzySWX5KOPPkrfvn3z2GOP5aCDDirFUwEAAPjcLux/YZ6f9nxGjhuZ5dXLc/JuJ6d109YbfqI13e1rNXeFLi8rz82H35w7XrwjSXLojoem/TbtN/yaAECS4oeLR4wbkTFvjcmE6RPyxuw30rhB4xy909E1c9YW/LZr613ToKzB+l9wffp+UtP7L9rrojz4+oP5/nPfT1IMpNu+xfbrfz1gtY4+uvhYvjx5661k1qzidqtWxT8QbtSo1BUmh3Y9NId2PXTTXrSyZ/GxKWzAz8NDdzw0w58anmfefSZLly/NuCnFv9I+oMsBadRg5f9Yg7oPSmXjyvxt3t/y2OTH8uzfnk1ZoaxWmCcAJVS1Z3LA/cmL30zeHVV8NKpKyhomi2ckqU6+OCFp0q7UlW5Shx1WfCTJ3LnJnDnFdtiqVdKsWd1dt7ysPN8b9L3cNeGuJMXXGVs1bVWz/5xzkt/8prj9ve8lhx+elH/qkyyLFiVNNuAPVto1b5cvdv9iHn7j4Zw5+swsXro4AzoPyE6tVt64cMiQpH//5Cc/SZ59Njn55JXHV1QU97EZmjNh5fYBo5OmHYvbTWqvb1eEu3Vq0SlvXfpWkmTn23bO23Pertl39dXJz39e/O/lqquSBQuSE05I2rVLZsxIxo5NWrRITj217p/W1qznJ5YNf/xjsob7kyZdz02mPZK890jy7BnJ5P+vGBhdaJDMfyOZ8YfkyBeTbTbsBqbA5uM7h3wnQw8cmiRp2KBhCqt5PWBwn8EZ9dqo3PPKPZm/ZH5xrO/gWnPaNW+XAZ0H5A9T/5CHXn8oD75eDH5bEQKfFMP9J05MRo9O/vSn5MUXk2eeScrKkrZtizcQ6dZt5TmHDBiSByY9kFkfzUpFeUW+ue83N+6TBzZb+3faP5M/mJyly5fmqJ2Oyvhp45Mk+3XaL2WFDb63OwCfcN0h12Wf7fdJUrwR2mf93Fu/dv3y7N+eTY/WPXJm72K48MhxI/Px8o/Tt13fjVUuG9lTg58qdQkAUOM/j/zPfHvAt5MUb9BovQcAAACsUKiuFue+OvPmzUtlZWXmzp2bFi1alLocAABgK7Z46eJ0/F7HzF40O0ny7Neezb4d9105YU1BBp9UXb3+8wCADbeaINVP2/m2nfPmB2/m4B0OztgpY3PMzsfk4dMfrtn/xuw3sst/7ZIkeebcZ9K6aesMHTs09/3lvpy1+1n5+Qk/X/N1P2cPr66uzl4/2St//fCvSZIHTn0gB+3gZhrA1mXp8qWpuqkq85fMz3Nfey7Dxg7L79/6fb57+Hdz+RcurzX3q/d/Nb+Y8It0bdk1b334Vg7ofED+cM4fVn/i9egRANSReW8ks59LlnyYlDUqhkC13CNpKuS4Pjn66OS3vy1u9+iRnHlmsv32ycyZyZgxyW67FUPhNsT9E+/PifedWPP9/3zpf3Juv3PXOP/DD4vBXo0bJ61bF4NbqKfW9rvVr7dJli5Iqvong8avHH/528nEm4qhX8e8kckfTM5OtxUDwGZfOTsNCg3S8qaWqU51Jl00Kbu0Lq7NX3stueSS5KmnigHOn3bjjcVQOOrO7NlJp07FAMiWLZOnny7+TFhh+fJkwoSkb99/Drz32+S9x5JZzxR/9jdonDTtkrTaO9n1yqRh81I8DaCeWLZ8WTp9v1P+vuDvSZIerXtk4kUTV5n3X8//Vy557JLs3GrnvDH7jTRv1Dwzr5iZivKKz3ztuYvnpjrVKS8rT/NGfhYBRXe8eEe+/vDX07dd37z0jZfyxbu/mMcnP57rDr4u1xx4zaoHeJ0RoG6s5T33n7zwk5z/yPnp1bZXXrnglby/4P20v6UYIjfl0inpsm2XTVkpAAAAAABQz21IZln5WvcCAABQchXlFfn7t/6e5dXFvyxrXN74s53IB38BoKRO3PXE3PSnmzJ2ytji9z1OrLW/e1X3VJRXZPHSxfl4+cfZqdVOeX/B+0mSXm171WlthUIh/3f+/9XpNQDqu/Ky8hzY5cA8+uajGfPWmDzz7jNJksO6HrbK3FN2OyW/mPCLvPXhWzXfA1APtdi5+KBee+CBYrDbz36WTJyYDB26cl9FRfKlL234OY/Z+ZgcuuOh+ejjj1JeVr7OXt2yZfHBZuyj94qhb0nSdu1B5t2rumfbim0zZ/GcvPT3l1JeVp7qVKdF4xbZudXKnxk9eyZPPJF88EEyblwydWqydGnStm2y5561A8ioG61aJddfn/zbvxUDGvv2TY48Mtlll2Io3JNPJnvskdx//z8P6HBU8QGwGg3KGuTCvS7MnS/fmSS5aK+LVjvvpF1PyqWPX5o3Zr+RpPh7xecJfUuSyorKz3U8sGUa0HlAkuSV6a9k4ZKFeX7a80mS/TvvX8qyAPiEfu37JUlen/V6lixbklemv5IkaVnRUugbAAAAAADwuQh+AwAA2Aw0bNBwzTsFugFAaay48/faxj/Rp0/a9aTc9KebkhTDhY7rcVytw8oKZdm19a556f2XMmnWpBzY5cBMmjUpSd0HvwFQdFjXw/Lom4/m9v+7PQs/Xpg2Tdukz3Z9Vpl3RLcj0rpp68xdPDdlhbKctOtJtSdsYI8AgK1Zw4bJVVcVH1OnJm++mSxZUgzX6tWrGP62weds0DBjvjpm4xdL/bXgzZXbzbuuc3r/Dv0z5q0xefn9l1NeVvz41J7t90xhNb/HVVUlJ5yw0SplA112WdKtWzEg8o9/TB55pPhIij8f9tijtPUBm5ehBw7N0AOHrnVO+23aZ/9O++fpd55Okpzc8+RNURqwFerRukdaN22dWR/Nyi9f/WU+WPRBGpY1zD7b71Pq0gD4p15te6W8rDwfL/84k2ZNyiszisFvfdv1LW1hAAAAAADAZk/wGwAAAADAJrDX9ntl9Cmjs7x6ebZpvE2qmlStMqdX21556f2XMnHmxHyw6IPMWDijZhyAunfojocmSd6b/16S5OAdD15t+EejBo0y84qZm7Q2ANgadOlSfMAGW/D2yu1mOxS/Lv0o+b8Lkw9eWGV6//bF4LeX3n+pJvitf4f+m6BQPosvfan4mDUrmTAhWbQoadMm6d07adKk1NUBW6KnBj+VZcuXJVnHDboAPqcvdPpCHnr9ofzgzz9IkuzRfo80aegXHID6oqK8Ij1a98irM17NK9NfqQl+69euX4krAwAAAAAANneC3wAAAAAANpETdj1hrftXBLxNnDUxE2dOTJK0aNwinSs713ltACS9t+ud7Zptl+kLpydJDtvxsM92ourqjVgVAADrtHTByu0mHYtfl/8jeftnq52+1/Z7JUmt4Le9OuxVpyXy+bVunRxySKmrALYGZYWylDUoK3UZwFZgQKcBeej1h2qChPbvtH/tCau5KcUq416LBKhT/dr1y6szXs2E6RPyyvTiz+u+7fqWtigAAAAAAGCzJ/gNAAAAAOCzqIM/pKkV/DarGPy2W5vdNvp1AFizEQNH5NUZryZJvrjTF0tcDQAA62XZ4pXb5U3WOb1/h/5JktdnvZ6yQlmtMQAA2FQGdB6w1u8BKL2+7frmFxN+kZenv5zXZr6WJOnXvl+JqwIAAAAAADZ3gt8AAAAAAOqJFcFv7859N+Onja81liQpFFZ/4KfH6yCUDmBr8S/9/6XUJQAAsKGql67cLqz741CdKzunbbO2mbFwRpZVL0vrpq2zY8sd67BAAABY1Z4d9kxFeUUWLy0GGe/fef/aE7zfA1By/doVQ96emvJUlixbkoryivRo3aPEVQEAAAAAAJs7wW8AAAAAAPVE58rOadG4Reb9Y14eeuOhJJ8KfgMAAABWVdZ45fbyJcWvhfKk5R4rx5t1qXVI/w7989s3f5sk2bP9nnVdIQAArKJRg0Z57mvPZdHSRSkvK0/bZm1LXRLAlm8Db7bWt13fJMmSZcXXG3q17ZXyMn+KBQAAAAAAfD7ebQAAAAAAqEd2a7Nbnv3bs3l/wftJBL8BAACwlVufP8h+479Xbn88v/i14TbJkS+s8bT9268Mfuvfof/nrRIAAD6TPu36lLoEANaiZZOW6VLZJVPnTk2S9GvXr8QVAQAAAAAAWwLBbwAAAAAA9Uivtr3y7N+erfV9jX/eVRwAAAD4hIYtV24vnJK0WneQ26X7XprjexyfJOlc2blu6gIAAAA2e33b9a0Jfuvbrm9piwEAAAAAALYIgt8AAAAAAOqRTwa9tWnaJm2btS1hNQAAALAZ2Kb7yu2Fb6/XIVVNqlLVpKqOCgIAAADqpc9ws7XL9r0sAzoPSJIctdNRG7siAAAAAABgKyT4DQAAAACgHvlk8NsntwEAAGCrtD5/kL1k7srteZPqrhYAAABgq3PQDgfloB0OKnUZAAAAAADAFkTwGwAAAABAPbJfx/3yxFefSJK0b96+xNUAAADAZqBRZVKxXbJ4evL33yXVy5NCWe05C99JmnUuTX0AAAAAAAAAAAAA/yT4DQAAAACgHmnSsEkO2fGQUpcBAAAAm5dtdi4Gvy2alrz9i6Tr2Sv3vX1XsvDtpNew0tUHAAAAAAAAAAAAkKRs3VMAAAAAAAAAAADqsVb7rNwe//Vk8o+T2f+XvHRF8uezk1SXrDQAAAAAAAAAAACAFcpLXQAAAAAAAAAAAMDn0umkZNJ/FLeXf5yM/0Zp6wEAAAAAAAAAAABYjbJSFwAAAAAAAAAAAPC5tNon2bZvqasAAAAAAAAAAAAAWCvBbwAAAAAAAAAAwOatUEj63pgUGqx+f4Omm7YeAAAAAAAAAAAAgNUQ/AYAAAAAAAAAAGz+2g9KBoxOGjSpPd751GTnfy1NTQAAAAAAAAAAAACfUF7qAgAAAAAAAAAAADaKjl9KDv1DMvXepHpZsv0xSbvDSl0VAAAAAAAAAAAAQBLBbwAAAAAAAAAAwJakVf/iAwAAAAAAAAAAAKCeKSt1AQAAAAAAAAAAAAAAAAAAAAAAAABbOsFvAAAAAAAAAAAAAAAAAAAAAAAAAHVM8BsAAAAAAAAAAAAAAAAAAAAAAABAHRP8BgAAAAAAAAAAAAAAAAAAAAAAAFDHBL8BAAAAAAAAAAAAAAAAAAAAAAAA1DHBbwAAAAAAAAAAAAAAAAAAAAAAAAB1TPAbAAAAAAAAAAAAAAAAAAAAAAAAQB0rL3UB9VV1dXWSZN68eSWuBAAAAAAAAAAAAAAAAAAAAAAAAKiPVmSVrcguWxvBb2swf/78JEmnTp1KXAkAAAAAAAAAAAAAAAAAAAAAAABQn82fPz+VlZVrnVOoXp94uK3Q8uXL895772WbbbZJoVDIvHnz0qlTp7z77rtp0aJFqcsDAD5FrwaA+k2vBoD6Ta8GgPpNrwaA+k2vBoD6Ta8GgPpNrwaA+k2vBoD6Ta8GgPqjuro68+fPT4cOHVJWVrbWueWbqKbNTllZWTp27LjKeIsWLfyyAwD1mF4NAPWbXg0A9ZteDQD1m14NAPWbXg0A9ZteDQD1m14NAPWbXg0A9ZteDQD1Q2Vl5XrNW3ssHAAAAAAAAAAAAAAAAAAAAAAAAACfm+A3AAAAAAAAAAAAAAAAAAAAAAAAgDom+G09NW7cOMOHD0/jxo1LXQoAsBp6NQDUb3o1ANRvejUA1G96NQDUb3o1ANRvejUA1G96NQDUb3o1ANRvejUAbJ4K1dXV1aUuAgAAAAAAAAAAAAAAAAAAAAAAAGBLVlbqAgAAAAAAAAAAAAAAAAAAAAAAAAC2dILfAAAAAAAAAAAAAAAAAAAAAAAAAOqY4DcAAAAAAAAAAAAAAAAAAAAAAACAOib4bR0WLFiQb37zm+nQoUMqKirSt2/f/PKXvyx1WQCw1XnqqadSKBRW+3juuedqzX3xxRdz2GGHpXnz5tl2221z4okn5q233ipR5QCw5Zk/f36uvPLKHHHEEWnTpk0KhUJGjBix2rkb0pdvu+229OjRI40bN86OO+6YkSNH5uOPP67DZwIAW6b17dWDBw9e7Tq7R48eqz2vXg0AG8eTTz6Zc889Nz169EizZs2y/fbb57jjjssLL7ywylzragDY9Na3V1tXA0BpvPzyyzn66KPTuXPnNGnSJFVVVdlvv/1y1113rTLXuhoANr317dXW1QBQP9xxxx0pFApp3rz5KvusqwGg9NbUq62rAWDzV17qAuq7E088MePHj8+NN96YnXfeOffcc09OP/30LF++PGeccUapywOArc4NN9yQgw8+uNZYr169arYnTZqUgQMHpm/fvrnvvvuyePHiXHvttTnggAPy8ssvp02bNpu6ZADY4syePTs//vGP06dPnxx//PG54447VjtvQ/ry9ddfn2HDhuXb3/52jjjiiIwfPz5Dhw7NtGnT8uMf/3hTPTUA2CKsb69OkiZNmuTJJ59cZezT9GoA2Hh++MMfZvbs2bn00kvTs2fPzJw5M7fcckv23Xff/O53v8shhxySxLoaAEplfXt1Yl0NAKUwZ86cdOrUKaeffnq23377LFy4MHfffXfOOuusTJkyJUOHDk1iXQ0ApbK+vTqxrgaAUps2bVouv/zydOjQIXPnzq21z7oaAEpvbb06sa4GgM1dobq6urrURdRXv/3tb3P00UfXhL2tcMQRR+Qvf/lL3nnnnTRo0KCEFQLA1uOpp57KwQcfnF//+tf58pe/vMZ5p5xySsaOHZu//vWvadGiRZJk6tSp2WmnnXLZZZflpptu2lQlA8AWa8VLCYVCIbNmzUqbNm0yfPjwjBgxota89e3Ls2fPTseOHfPVr341P/rRj2qOv+GGGzJ06NC8+uqr6dmz56Z5cgCwBVjfXj148OCMGjUqCxYsWOv59GoA2LhmzJiRtm3b1hpbsGBBunfvnl69emXMmDFJrKsBoFTWt1dbVwNA/bLvvvvmvffeyzvvvJPEuhoA6ptP92rragAovWOPPTaFQiFVVVWr9GXragAovbX1autqANj8lZW6gPrs/vvvT/PmzXPyySfXGj/nnHPy3nvv5c9//nOJKgMAVmfp0qV55JFHctJJJ9W8qZAkXbp0ycEHH5z777+/hNUBwJajUCikUCisdc6G9OXHH388ixcvzjnnnFPrHOecc06qq6vzwAMPbNT6AWBLtz69ekPo1QCwcX06SCZJmjdvnp49e+bdd99NYl0NAKW0Pr16Q+jVALBptG7dOuXl5UmsqwGgPvpkr94QejUA1I277ror48aNy+23377KPutqACi9tfXqDaFXA0D9JfhtLV599dXsuuuuq7yxsPvuu9fsBwA2rYsuuijl5eVp0aJFBg0alD/+8Y81+/76179m0aJFNb36k3bfffdMnjw5ixcv3pTlAsBWa0P68or1de/evWvNa9++fVq3bm39DQB1aNGiRWnXrl0aNGiQjh075uKLL84HH3xQa45eDQB1b+7cuXnxxRez2267JbGuBoD65tO9egXragAoneXLl2fp0qWZOXNmbr/99vzud7/LVVddlcS6GgDqg7X16hWsqwGgNGbMmJFvfvObufHGG9OxY8dV9ltXA0BpratXr2BdDQCbtw2/VcpWZPbs2enatesq41VVVTX7AYBNo7KyMpdeemkGDhyYVq1aZfLkyfnud7+bgQMH5tFHH82gQYNqevOKXv1JVVVVqa6uzocffpj27dtv6vIBYKuzIX159uzZady4cZo1a7baudbfAFA3+vTpkz59+qRXr15JknHjxuX73/9+nnjiiYwfPz7NmzdPEr0aADaBiy66KAsXLsw111yTxLoaAOqbT/fqxLoaAErtwgsvzI9+9KMkSaNGjXLrrbfmG9/4RhLragCoD9bWqxPragAopQsvvDC77LJLLrjggtXut64GgNJaV69OrKsBYEsg+G0dCoXCZ9oHAGxc/fr1S79+/Wq+P+CAA3LCCSekd+/eufLKKzNo0KCaffo3ANQf69uX9W8A2PQuu+yyWt8ffvjh6devX7785S/nJz/5Sa39ejUA1J1hw4bl7rvvzm233ZY999yz1j7ragAovTX1autqACitq6++Ouedd15mzJiRhx9+OBdffHEWLlyYyy+/vGaOdTUAlM66erV1NQCUxm9+85s8/PDDeemll9bZR62rAWDTW99ebV0NAJu/slIXUJ+1atVqtQm1H3zwQZLVp9UDAJvOtttum2OOOSYTJkzIokWL0qpVqyRZY/8uFArZdtttN3GVALB12pC+3KpVqyxevDgfffTRaudafwPApnPCCSekWbNmee6552rG9GoAqDsjR47Mddddl+uvvz4XX3xxzbh1NQDUD2vq1WtiXQ0Am07nzp3Tv3//HHXUUfnhD3+Y888/P0OGDMnMmTOtqwGgHlhbr14T62oAqFsLFizIRRddlEsuuSQdOnTInDlzMmfOnCxZsiRJMmfOnCxcuNC6GgBKZH179ZpYVwPA5kXw21r07t07EydOzNKlS2uNv/LKK0mSXr16laIsAOATqqurkxRT5bt165YmTZrU9OpPeuWVV9K9e/dUVFRs6hIBYKu0IX25d+/eNeOf9P7772fWrFnW3wCwiVVXV6esbOXbB3o1ANSNkSNHZsSIERkxYkSuvvrqWvusqwGg9NbWq9fGuhoASmPvvffO0qVL89Zbb1lXA0A99MlevTbW1QBQd2bNmpXp06fnlltuScuWLWse9957bxYuXJiWLVvmK1/5inU1AJTI+vbqtbGuBoDNh+C3tTjhhBOyYMGC/OY3v6k1/rOf/SwdOnTIPvvsU6LKAIAk+fDDD/PII4+kb9++qaioSHl5eY499tiMHj068+fPr5n3zjvvZOzYsTnxxBNLWC0AbF02pC8feeSRqaioyJ133lnrHHfeeWcKhUKOP/74TVQ1ADBq1Kh89NFH2XfffWvG9GoA2Pi+853vZMSIERk6dGiGDx++yn7ragAorXX16jWxrgaA0hk7dmzKysrStWtX62oAqIc+2avXxLoaAOpWu3btMnbs2FUegwYNSkVFRcaOHZvrrrvOuhoASmR9e/WaWFcDwOalvNQF1Gdf/OIXc/jhh+eCCy7IvHnz0r1799x77715/PHHc9ddd6VBgwalLhEAthpnnHFGOnfunP79+6d169Z58803c8stt2T69Om1XnAYOXJk9tprrxxzzDH59re/ncWLF+faa69N69at861vfat0TwAAtjCPPfZYFi5cWPNm/muvvZZRo0YlSY466qg0bdp0vftyVVVVhg4dmmHDhqWqqipHHHFExo8fnxEjRuS8885Lz549S/IcAWBztq5ePXPmzJxxxhk57bTT0r179xQKhYwbNy7/+Z//md122y3nnXdezbn0agDYuG655ZZce+21OfLII3P00Ufnueeeq7V/xQfvrKsBoDTWp1dPnTrVuhoASuT8889PixYtsvfee2e77bbLrFmz8utf/zq/+tWvcsUVV6RNmzZJrKsBoFTWp1dbVwNAaVRUVGTgwIGrjN95551p0KBBrX3W1QCw6a1vr7auBoAtQ6G6urq61EXUZwsWLMg111yT++67Lx988EF69OiRIUOG5LTTTit1aQCwVbnxxhvzq1/9Km+//XYWLFiQqqqqDBgwIEOGDMlee+1Va+4LL7yQq666Ks8++2zKy8tzyCGH5D/+4z/SrVu3ElUPAFueHXbYIVOnTl3tvrfffjs77LBDkg3ry7feemv++7//O1OmTEm7du1yzjnn5JprrknDhg3r8qkAwBZpXb26srIyX/va1/LSSy9l+vTpWbZsWbp06ZITTjghV199dSorK1c5Tq8GgI1j4MCBGTdu3Br3f/ItfOtqANj01qdXf/jhh9bVAFAiP/3pT/PTn/40EydOzJw5c9K8efP06dMn5513Xs4888xac62rAWDTW59ebV0NAPXL4MGDM2rUqCxYsKDWuHU1ANQPn+7V1tUAsGUQ/AYAAAAAAAAAAAAAAAAAAAAAAABQx8pKXQAAAAAAAAAAAAAAAAAAAAAAAADAlk7wGwAAAAAAAAAAAAAAAAAAAAAAAEAdE/wGAAAAAAAAAAAAAAAAAAAAAAAAUMcEvwEAAAAAAAAAAAAAAAAAAAAAAADUMcFvAAAAAAAAAAAAAAAAAAAAAAAAAHVM8BsAAAAAAAAAAAAAAAAAAAAAAABAHRP8BgAAAAAAAAAAAAAAAAAAAAAAAFDHBL8BAAAAAAAAAAAAAAAAAAAAAAAA1DHBbwAAAAAAAAAAALAGU6ZMSaFQyODBgzfouEKhkIEDB9ZJTQAAAAAAAAAAAGyeBL8BAAAAAAAAAABQb60IXvvko1GjRunUqVPOOOOMTJgwoSR1DRw4MIVCoSTXBgAAAAAAAAAAYPNUXuoCAAAAAAAAAAAAYF26deuWM888M0myYMGCPPfcc7n33nszevToPPnkk/nCF75QJ9fdfvvtM3HixFRWVm7QcRMnTkzTpk3rpCYAAAAAAAAAAAA2T4LfAAAAAAAAAAAAqPe6d++eESNG1BobOnRorr/++lxzzTUZO3ZsnVy3YcOG6dGjxwYf91mOAQAAAAAAAAAAYMtWVuoCAAAAAAAAAAAA4LO45JJLkiTjx49PkixdujTf//7306dPnzRp0iSVlZU5+OCD8+ijj65y7PLly3PHHXdk7733TlVVVZo2bZoddtghxx9/fP7whz/UzJsyZUoKhUIGDx5cM1YoFDJu3Lia7RWPT88ZOHDgKtedPXt2Lrvssuy4445p3Lhx2rZtm1NPPTWvvfbaKnMHDx6cQqGQKVOm5Pbbb8+uu+6aioqKdOnSJSNHjszy5cs/yz8bAAAAAAAAAAAAJVJe6gIAAAAAAAAAAADgsygUCjXb1dXVOfXUUzN69OjsvPPOueiii7Jw4cLcd999OeaYY/KDH/wg//qv/1ozf8iQIbn55pvTrVu3nHHGGdlmm20ybdq0PP3003nyySdz4IEHrvG6w4cPz5133pmpU6dm+PDhNeN9+/Zda72zZ8/Ovvvum8mTJ2fgwIE57bTTMmXKlIwaNSqPPvpofv/732e//fZb5bgrrrgiTz31VI455pgcccQReeCBBzJixIgsWbIk119//Qb8iwEAAAAAAAAAAFBKgt8AAAAAAAAAAADYLN16661Jkr322it33XVXRo8enYMOOij/+7//m0aNGiVJrrnmmuy55565/PLLc+yxx2bHHXdMktxxxx3ZfvvtM2HChDRt2rTmnNXV1fnwww/Xet0RI0bkqaeeytSpUzNixIj1rvfKK6/M5MmTM2TIkNxwww0144MHD86RRx6Zs88+O5MmTUpZWVmt41544YVMmDAh7du3T5IMGzYsO+20U2677bYMHz685rkCAAAAAAAAAABQv5WtewoAAAAAAAAAAACU1uTJkzNixIiMGDEil19+eQYMGJDrr78+FRUVueGGG3LnnXcmSW6++eZaQWgdO3bMZZddlo8//jh33313rXM2atQo5eW1759aKBRSVVW10etfsmRJ7r333rRq1SpDhw6ttW/QoEEZNGhQ3nzzzTzzzDOrHDts2LCa0Lckad26dY477rjMnz8/r7/++kavFQAAAAAAAAAAgLoh+A0AAAAAAAAAAIB6769//WtGjhyZkSNH5tZbb83UqVNzxhln5Pnnn89+++2Xl156KU2aNMnee++9yrEDBw5Mkrz88ss1Y6ecckrefvvt9OrVK8OGDcuYMWOycOHCOqt/0qRJWbRoUfbee+80bdp0vWpcYY899lhlrGPHjkmSOXPmbMwyAQAAAAAAAAAAqEOC3wAAAAAAAAAAAKj3Bg0alOrq6lRXV2fJkiV59913c/fdd6d3795Jknnz5mW77bZb7bHt2rVLksydO7dm7NZbb83NN9+chg0b5rrrrsvhhx+e1q1b5+yzz86sWbM2ev3z5s1Lkg2qcYXKyspVxsrLy5Mky5Yt21glAgAAAAAAAAAAUMcEvwEAAAAAAAAAALDZa9GiRaZPn77afSvGW7RoUTPWsGHDXHHFFfnLX/6SadOm5Z577skBBxyQn//85/nKV75SJ/V9spb1qREAAAAAAAAAAIAti+A3AAAAAAAAAAAANnv9+vXLokWL8vzzz6+yb9y4cUmSvn37rvbYDh065PTTT8/jjz+enXbaKWPGjMmiRYvWer0GDRokSZYtW7Ze9fXo0SMVFRUZP358Pvroow2uEQAAAAAAAAAAgM2f4DcAAAAAAAAAAAA2e2effXaSZMiQIfn4449rxqdNm5bvfe97KS8vz1e+8pUkyT/+8Y88+eSTqa6urnWOhQsXZv78+WnYsGFNsNuaVFVVJUn+9re/rVd9jRo1yumnn55Zs2bl3//932vtGzNmTB577LF07949+++//3qdDwAAAAAAAAAAgM1PeakLAAAAAAAAAAAAgM/rrLPOyujRo/Pggw9m9913zzHHHJOFCxfmvvvuy+zZs3PLLbeka9euSZJFixbl0EMPTdeuXbPPPvukc+fOWbBgQR555JG8//77ueqqq9KoUaO1Xu+QQw7JqFGjcvLJJ+eoo45KRUVFevfunaOPPnqNx9x0000ZN25crrvuujzzzDPZZ599MmXKlIwaNSpNmzbNT3/605SVuZ8rAAAAAAAAAADAlkrwGwAAAAAAAAAAAJu9QqGQUaNG5Qc/+EF+9rOf5bbbbkujRo2yxx575N/+7d/ypS99qWZus2bNctNNN+WJJ57I008/nRkzZqRly5bp0aNHbrrpppx66qnrvN7Xv/71TJkyJb/85S9z/fXXZ+nSpTn77LPXGvzWpk2b/PnPf853vvOdPPjgg3n66adTWVmZ4447LsOHD0+vXr02yr8FAAAAAAAAAAAA9VOhurq6utRFAAAAAAAAAAAAAAAAAAAAAAAAAGzJykpdAAAAAAAAAAAAAAAAAAAAAAAAAMCWTvAbAAAAAAAAAAAAAAAAAAAAAAAAQB0T/AYAAAAAAAAAAAAAAAAAAAAAAABQxwS/AQAAAAAAAAAAAAAAAAAAAAAAANQxwW8AAAAAAAAAAAAAAAAAAAAAAAAAdUzwGwAAAAAAAAAAAAAAAAAAAAAAAEAdE/wGAAAAAAAAAAAAAAAAAAAAAAAAUMcEvwEAAAAAAAAAAAAAAAAAAAAAAADUMcFvAAAAAAAAAAAAAAAAAAAAAAAAAHVM8BsAAAAAAAAAAAAAAAAAAAAAAABAHRP8BgAAAAAAAAAAAAAAAAAAAAAAAFDHBL8BAAAAAAAAAAAAAAAAAAAAAAAA1LH/H+jQQlOYBy+DAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAE34AAAMVCAYAAACG7OJGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wb5eHH8a+8Hcczew8SIGQQZgIBEkag7F1GKYVSStmjwK/sFlpWGWW3BUpCmWGPEkggrEASMkgge09nek/Zlu73x2Pp7mxJlh3JTpzPm5defu65R3ePg6x77qTnex7LsiwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOImoa07AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtHcFvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBnBL8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJwR/AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcUbwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADEGcFvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBnBL8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJwltXUH2hu/36/8/HxlZmbK4/G0dXcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxIllWSorK1PPnj2VkJAQsS3BbzGWn5+vPn36tHU3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALSSDRs2qHfv3hHbEPwWY5mZmZLMP35WVlYb9wYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAvJSWlqpPnz7BDLJICH6LMY/HI0nKysoi+A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYAwQyyCJJaIV+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAejeA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIgzgt8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIM4IfgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAOCP4DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADijOA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIizdhX8Vl5erhtuuEE9e/ZUWlqaRo4cqTfeeKPJ57377ru64IILNGjQIKWnp6t///761a9+pRUrVrRCrwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0d0lt3YFYOuusszR79mw9+OCD2nvvvfXaa6/pggsukN/v14UXXhj2eQ899JC6d++uO+64QwMHDtSGDRt0//3368ADD9TMmTM1dOjQVvwtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQ3HsuyrLbuRCx88sknOvnkk4NhbwHHH3+8Fi1apPXr1ysxMTHkc7dt26auXbu66vLz89W/f39dfPHFeuGFF6LuR2lpqbKzs1VSUqKsrKyW/TIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdnnNyR5LaKU+xd17772njh076txzz3XVX3rppcrPz9esWbPCPrdh6Jsk9ezZU71799aGDRti3lcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe5Z2E/y2cOFCDRkyRElJSa76ESNGBNc3x+rVq7Vu3ToNHTo0Yjuv16vS0lLXAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACc2k3wW0FBgfLy8hrVB+oKCgqi3lZdXZ0uu+wydezYUTfeeGPEtg888ICys7ODjz59+jSv4wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADavXYT/CZJHo+nReucLMvSZZddpm+//VYvv/xyk0Fut912m0pKSoKPDRs2NKvPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANq/pLbuQKx06tRJBQUFjeoLCwslSXl5eU1uw7Is/e53v9Mrr7yiiRMn6vTTT2/yOampqUpNTW1+hwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsMRLaugOxMnz4cC1ZskR1dXWu+p9//lmSNGzYsIjPD4S+vfTSS3rhhRd00UUXxa2vu7v+/fvL4/FowoQJTbZdvny5HnjgAR1//PHq3r27kpOTlZeXp6OPPlovvfSS/H7/Tvdn5cqVuvPOOzV+/HgNGDBAGRkZSk9P1957762rrrpKq1atCvm8CRMmyOPxqH///sE6j8fT7Me4ceN2+ncAAAAAAAAAAAChbdsmbdjQ1r0AAAAAAAAAAAAAAAAAAAAAAAAAdl5SW3cgVs4880w9//zzeuedd3TeeecF6ydOnKiePXtq1KhRYZ9rWZYuv/xyvfTSS/rXv/6lSy+9tDW63O75fD7ts88+weXevXtr5MiRWr9+vb766it99dVXeuONN/TBBx8oLS2txfv56quv9Le//U0ej0ddu3bVPvvso4qKCq1du1bPPfecJkyYoPfee08nnHBCk9saM2ZMo7qSkhItXLgw7Prhw4e3uO8AAAAAAAAAACC86dOlk06SvF7pxRcl7tsDAAAAAAAAAAAAAAAAAAAAAACA3Vm7CX478cQTNX78eF155ZUqLS3VoEGD9Prrr+vTTz/VK6+8osTEREnSZZddpokTJ2rVqlXq16+fJOm6667Tiy++qN/+9rcaPny4Zs6cGdxuamqqDjjggDb5nXZ3lmUpJydH11xzjS699FINHDgwuG7SpEm65JJLNGXKFN1555165JFHWryfESNG6NVXX9X48ePVpUuXYP2OHTt07bXX6o033tBFF12k9evXKz09PeK2pk+f3qjuq6++0tFHHx12PQAAAAAAAAAAiL3qaun006WyMrP8+99Lxx4r9ejRtv0CAAAAAAAAAAAAAAAAAAAAAAAAWiqhrTsQS++++65+/etf6+6779YvfvELzZo1S6+//rp+9atfBdv4fD75fD5ZlhWs++ijjyRJ//nPf3TYYYe5HmeeeWar/x7tRWJiolavXq377rvPFfomSb/85S91zz33SDL/7n6/v8X7OfTQQ3XhhRe6Qt8kqXPnzpo4caJyc3O1Y8cOQtsAAAAAAAAAANhFWJb0xBPS2WdLixaFbvPee1Jhob1cVSU98EDr9A8AAAAAAAAAAAAAAAAAAAAAAACIh3YV/NaxY0c98cQT2rx5s7xerxYsWKDzzz/f1WbChAmyLEv9+/cP1q1du1aWZYV8rF27tnV/iXbE4/EoNzc37Prjjz9eklRUVKTt27fHpQ8pKSkaMGCAJKmysjIu+wAAAAAAGPPmSS+9JNXUtHVPAAAAsKu7/37phhukd9+VjjpK2rKlcZsXXmhc9/LLUnV13LsHAAAAAAAAAAAAAAAAAAAAAAAAxEW7Cn7D7qXaMTMrPT09LvsoLCzUsmXLlJiYqP333z8u+wAAAACA9m7uXOn//k9atix8m48+kg4/XPrtb6Vjj5Vqa1uvfwAAANi9VFRIDz9sLxcWSvfd526zerU0bVrj55aUSJ98Et/+AQAAAAAAAAAAAAAAAAAAAAAAAPFC8BvazKRJkyRJw4YNU1ZWVky3XVRUpGnTpumkk05SRUWFbrrpJvXv3z+m+wAAAACAPcG330pjx5pgjoMOkpYubdymtlb6wx8kr9csT58uPf986/YTAAAAu4833pBKS911L7xgAuAC3nsv/PNXrYpPvwAAAAAAAAAAAAAAAAAAAAAAAIB4I/gNbWLhwoV69tlnJUm33nprTLZZXFwsj8cjj8ejvLw8HXvssdq+fbsmTJighx9+OCb7AAAAAIA9ze23SxUVplxRId10U+M2H30k5ee76+67zwTCtcSd0+7Uxe9drMs/vLxlGwAAAMAu7V//alxXU2MC4QJ++KH1+gMAAAAAAAAAAAAAAAAAAAAAAAC0FoLf0OqKi4t19tlnq6amRieddJJ+/etfx2S7SUlJGjNmjMaMGaNBgwYpOTlZa9as0auvvqp169bFZB8AAAAAsCf56Sdp+nR33eTJ0pw57rrnnmv83C1bpE8+adl+31z0pv7703/14o8vyrKslm0EAAAAu6TFi6XZs0Ov+/pruxyuDQAAAAAAAAAAAAAAAAAAAAAAALA7I/gNrcrr9eqMM87Q8uXLNXToUL3yyisx23bHjh01ffp0TZ8+XStWrNDmzZt11VVXaerUqRo9erSKi4tjti8AAAAA2BM8+2zo+pdessurV0uffx663QcftGy/Zd4ySZIlSxW1FS3bCAAAAHZJDYOFnQKZvzt2SGvWtE5/AAAAAAAAAAAAAAAAAAAAAAAAgNZE8BtaTV1dnc477zx9/fXX6t+/v6ZMmaLc3Ny47a9Tp056+umndcopp2jLli16+umn47YvAAAAAE3weJp+YJdSXS2Fy+r+4gu7/OWX4bdRU9OyfZfVlNllb1mElgAAANjdzJzZdJsff4x/PwAAAAAAAAAAAAAAAAAAAAAAAIC2QPAbWoVlWbr00kv1wQcfqEePHvr888/Vs2fPVtn3ySefLEmaN29eq+wPAAAAANqDefOkiorQ6yzLLkcT3NEcPr9PlbWVwWVnCBwAAAB2f7NmNd1m1ar49wMAAAAAAAAAAAAAAAAAAAAAAABoCwS/oVVcc801euWVV9SpUydNnTpVe+21V6vtu66uzvUTAAAAANC0aAPdYh38Vl5T7lou8xL8BgB7hG3fSqv+I9WUtHVPAMRRebm0ZEnT7Vavjn9fAAAAAAAAAAAAAAAAAAAAAAAAgLZA8Bvi7o477tCzzz6rzMxMffrppxo6dGir7v/999+XJI0cObJV9wsAAAAAu7MZM5puU14uLVoU2/2W1ZRFXAYAtENrX5WmjZN+uEz6fIzkLWjrHgGIk1WrJMuKrp1TdrZ0xhlx6RIAAAAAAAAAAAAAAAAAAAAAAADQqgh+Q1w99thjuv/++5Wenq6PP/5YBx98cMz3cd111+nLL7+Uz+dz1a9bt06/+c1v9MUXXyg9PV2XXXZZzPcNAAAAAO3V7NlNt1m+PLrgjuYo85ZFXAYAtDP+Wmn+LZLlN8sli6R5N7ZtnwDEzcqV0bVbvdq9/Mor0nvvSXfdFfs+AQAAtLrSpdLih6XihW3dEwAAAAAAAAAAAAAAAAAAALSBpLbuAHZf1157rW6++eaw6999993g+szMTN1+++1h27799tvq3r17i/rx4Ycf6qmnnlJ6eroGDRqktLQ05efna/PmzfL7/crMzNRrr72mfv36tWj7AAAAALCnqa6W1q9vul20wR3NUVZTFnEZANDObHhHqtrsrlv7X2m//5Oyh7ZNnwDEzapV7mWPRzr1VGnyZKm21q5fs8Yu9+ghnXiiKd9+u/T00/HvJwAAQNwUzpWmHSPVlkoL75GO/EDqcXzotpYl+WukxNTW7SMAAAAAAAAAAAAAAAAAAADiiuA3tFh5ebnKy8vDrs/KypJlWZKkbdu2adu2bWHbVldXt7gfTz75pD755BPNmDFD+fn5Ki4uVkZGhg488EAdf/zxuuqqq9SrV68Wbx8AAABABB5P023qzwuw+1i1Krr/baGC38aNk77+uuX/28u8ZRGXAQDtzPInQ9cve1I69F+t2xcAcdcw+O3OO6V775U+/FA6/XRTV1cnlZTYbc4+W0pMNOW0NOlXv2qdvgIAAMTFwr+Y0DdJ8lVLMy+WTlospea521VskL49QypZKA36g3TAo1ICX/EBAESprkJa94aUM0LqdEhb9wYAAAAAAAAAAAAAAABAA3wrFM22du3aqNtarRDwcNppp+m0005r9vMuueQSXXLJJU22GzduXKv8HgAAAACwq2gY6JaQYEI5PvlEmjMnfLs77pD++lfpv/+VLr64ZfsuqymLuAwAaEcq86UdM0KvK1/dun0B0CpWN/jTvvxy8/O006RjjjHl0lJ3m0B9wHnnSTPCvHUAAADs0spWSJs+dtdVbzWB2MP/7K7/4XdS0TxTXv6klJLbuA0AAKHUlkqfj5WK55vlAx6V9r2pTbsEAAAAAAAAAAAAAAAAwC2hrTsAAAAAAEBD1XXV+nDZh/pw2Yeakz+n6ScgplascC9ff730l79I06ZJ/frZ9atW2WWPR7rqKlP+9a+lww9v2b7LvGURlxvatk16/nlp4cKW7Q8A0IZ2fN/WPQDQygoK7PKRR0p9+tjLV1xhfhYXu58zYoR7edQoKSsrLt0DAACIr2VPSgpx07nlT7uXixZIW6a46xb9VSpbJQAAmrTyeTv0TZLm3yJt5zocAAAAAAAAAAAAAAAAsCsh+A0AAAAAsMvJL8vX6W+crtPfOF33fn1vW3dnj7N+vXv5N78xPzMzpRtvtOudwR1HHy317GkvB4I7mquspizistOCBdL++0u//710wAHSpEkt2ycAoI0Q/AbscZyhbkcf7V532mlShw5SSYld16GDNGCAu11ysjRuXLx6CAAAEEf5H4WurylwLy99tHEbyyctfST2fQIAtC++GmnZ4+46yy8tuK1t+gMAAAAAAAAAAAAAAAAgpKR4bNTr9SoxMVFJSXHZPNqxc889V5s3b46q7UknnaTbb789zj0CAAAA0BaKq4tDltE6Cgvt8r77SiNG2Mu/+Y300kumXFRk1x97rHsbZ58tff118/dd5i2LuOx0443Sli2mXFcn/e530ujRUt++zd8vADRl61Zp6lTp8MOlgQPbujftRMGstu4BgFbmDH7bf3/3urQ0aexYd5t+/aSEELcw2nvvePTOVl4u3XSTed8/91zp/vslPvICAAA7pWKDVLGu6XZ1VdL6N0OvK5wT2z4BANqf9W9KVZsa12//Rir+WcoZ3vp9AgAAAAAAAAAAAAAAANBIi6epTJ8+XdOmTdN1112nnJwcSVJBQYEuuugiff7550pOTtaNN96ov/3tb7HqK/YAs2fP1rp1UXzZWdKgQYPi3BsAAAAAbYXgt7blDHQbPVryeOzlnBzp6KMbtxs50r2NjAzpqKOav++ymrKIywFffCF9+WWD55ZJDzwgPfdc8/cLAJHMmiWdeqq0fbsJJnr7benkk9u6V+1A6dK27gGAVuT3u0PdhoeYa3788dIPP9jLffqE3pZzfBoPv/mN9O67pvz3v0u1tdLjj8d3nwAAoJ3bPj26dgWzJH9NfPsCAGi/Nn0Ufl1Ncat1AwAAAAAAAAAAAAAAAEBkCS194qOPPqqJEycGQ98k6Y9//KM+++wzDRw4UDk5OXrwwQf19ttvx6Kf2EOsXbtWlmVF9ZgwYUJbdxcAAABAtCzLfkRRT/Bb23IGuh1wQOP1J50keb1SVZVdFyq444QTmr/vMq8JekvwmEsW4YLf/vKX0M//z39MqAgAxIrfL111lQl9k6Tqaumii6RNm9q2X7s9b4FUU9jWvQDQisrK3MP+vn0bt+nVyx0OFy74LZ5mzbJD3wL+8Q9p7tzW7wsAAGhHCmdH1277N/HtBwCg/bIsjiMAAAAAAAAAAAAAAADAbqLFwW/z58/XkUceGVyurKzUpEmTdPzxx2vZsmVatmyZ+vbtq2effTYmHQUAAAAA7DkIfmtbzuC3ffdtvP6oo9yBHMnJJqSjoe7dm7/vQNBb14yuZtnbOPht2zbp229DP7+mpnG+IADsjEmTpHnz3HXFxdL997dJd9qPshXu5ezh0tjJUufD2qY/AOLOOX7s0UNKTQ3drqTELnfpEtcuNWJZ0p/+FHrd3/7Wun0BAADtTNny6Npt/z6+/QAAtF9ly6XqrW3dCwAAAAAAAAAAAAAAAABRaHHw27Zt29TLMat7xowZqq6u1qWXXipJyszM1CmnnKKlS5fufC8BAAAAAG1mecFyvb/0fb2/9H1tLW+dCSMl1XbaQ1lNmXx+X6vsF4Yz+K1//8brU1PdwR19+kgJLb7C4BYIfuvesbtr2enzz2OzLwBoimVJd98det3LL7duX9qdspXu5UOelXr+woS/pbUgORTALs85xuzTJ3w75zgzMzNu3Qlp+XLpq69Cr1u2rFW7AgAA2pvSBoOJtG5SQnKIdktapz8AgPancF7TbQAAAAAAAAAAAAAAAADsElo8LTstLU1lZfbk66+//loej0djx44N1nXs2FFFzpk8AAAAAIDdzssLXtaZb56pM988U9+u/7ZV9llcXexaLvWWtsp+YUKOnKfyffuGbuds07t37PZf5m0Q/OZtHPw2ZUrs9gcAkSxeLK1YEXpdXV3r9mV3dO0n12rMf8ZozH/GyFvnda+s3mKXs/aTOo8x5ZRsacgtrddJAK3GGeiWlxddu9YOfps8uXX3BwDYfby75F1d88k1uuaTa7SmaE1bdwe7G1+NVOF43eQdIp26Wjrueyk5y66vq5Aq17d+/wAA7UMZN+gFAAAAAAAAAAAAAAAAdhctDn4bNGiQPv30U3m9XtXW1urNN9/Ufvvtp+7duwfbrF+/Xl27do1JRwEAAAAAbaOwqjBkOZ4aBr81XEb8VFdLNTWmnJsrpaWFbhdtcEcoW7dK27eHXldW0yD4raZx8NucOc3bHwC01CefNNHA44nusYeavmG6vt/wvb7f8L2KqhvcIKTGsdzrVPe/016/l5IyWqeTAFpNtIFuJSV2OSsrfLt4IPgNABDO5BWT9czsZ/TM7Ge0ojBMOjQQTuUGyfLZy/v9n5TUQep0sDTsL3Z9WYPXVufDpTO2SPvd1jr9BADs3kobBL91OULqPr5t+gIAAAAAAAAAAAAAAAAgohYHv11++eVauXKlBg8erCFDhmjlypW65JJLXG1mzZql/fbbb2f7CAAAAABoQxGD3yzLfkRTH6Vib7F7meC3VlPkyOHJzo6uXaTgDifLkm67TerVS+raVbrmGsnvd7cp89YHv2V0dy0HeL3S0gZzlwAgXqZMaese7N4ijiGcwW+dDnGvS+4o9Totjj0D0Bac48dIgW7RBsTFmt8vffdd6+0PALB7Kaxu/RsjoB2pKbDLKZ3c5zuDrpBS62+o2DD4bcRfpfRu0oi/Sd2Pj38/AQC7N2fwW2oXadyn0rjPpAG/abs+AQAAAAAAAAAAAAAAAAipxcFvl112mW655RZVVlaquLhYV1xxhW644Ybg+i+//FKrV6/WscceG4t+AgAAAADaSMTQljhpGPRG8FvriTaQI9p2Tm+8IT34oOTzmeVnnpHuvdfdpqymPvitowl+q6qrUp2/Lrh+yRL7+ZKUlCRNmiQ9+aSUmBhdPwAgGpYlzZ3b1r3YvTnHDQWVBe6VzuC37OGNn9znzDj1CkBbcQa6RRo/lpTY5dYMflu1SqqoaL39AVHxeJp+AGgVbXF9DO2I1/Ga6XK4lJBsLyelS/0vqm+33a7vNFrqOs6UPR4TAgcAQCSVG+zykFulpAxzDDngMSk5yg9yAAAAAAAAAAAAAAAAALSKFge/eTwePfTQQ9qxY4d27NihZ599VomOGdZjxoxRUVGRKwwu3srLy3XDDTeoZ8+eSktL08iRI/XGG280+byNGzfqhhtu0NixY5WTkyOPx6MJEybEv8MAAAAAsBsoqraDWYqqiiK0jJ2S6hL3srckTEvEmjPQLTs7fLtogzsCSkqkm25qXH///dKKFfZymdcEv/XI7BGsK68pD5Z//tn9/N/+Vjr3XOnaa6W/Mv8VQAxt3Oh+T5TM+x0hk9Gp8dW43r8bhWMEg988Uka/xhtIyY1f5wC0Cef4MVKgW21tdO1ibcEC93JamnTHHdKRR7ZeHwAAuy6C37BTnMHXeYc0Xt//V+anMyCux/HugM9Oh0idDo1P/wAAuz+/T6optpcH/tYup+ZJg69u9S4BAAAAAAAAAAAAAAAACK/FwW9NSUlJUXZ2tpKSkuK1i0bOOussTZw4Uffcc48mT56sQw45RBdccIFee+21iM9buXKlXn31VaWkpOikk05qpd4CAAAAwO7BNbG1unUmthZXF0dcRvw4Q44iBbpF2y7gySelLVsa19fWSpMn28ul3lJJUveO3RvVSVJ+vt02KUm66y57+brrpO720wBgp8yf714eONC8jy1fLvXq1SZd2q00DMNoFI5RW38g6dBLSkxtpV4BaEsVFXY50vjR57PL0Qa/WZb0+uvS6NHSaac1DnGLRsPn3HijCRaeOlU67LDmbw8A0L4UVBaELANRqXGcD2Xt03h97gGN2+WFCHnr/+vY9gsA0H7UlkiyTDlriAl7cxrwm1bvEgAAAAAAAAAAAAAAAIDwdjr47b333tMvf/lLjRgxQoMGDQrWL126VA8//LA2bdq0s7uIyieffKKpU6fq2Wef1RVXXKGjjz5azz//vMaPH69bbrlFPudMoQaOOuoobd++XVOnTtVNN93UKv0FAAAAgN2FK/itYWhLnASC3tKT0l3LiL9SO2MtYiBHdXV07QLeeqvpNt46r2r9tZKkbhndgvVl3rJgeft2u/0hh0i9e9vLHTpIv2HuEoAYWbrUvfy3v0np6SYA7p//bJs+NZvH0/QjTpoMfqupD35L7Rq3PgDYtdTV2eVI40dnu4yM6Lb90kvShRdKs2ZJH30kHXGE9OOPzevfunV2OTdXuvVWU05NlR57rHnbAgC0P21xYwS0IzWOOyhkDGy8PnBu5gqI27dxu06jYtsvAED7UeMIps0d2Xh91j5SzohW6w4AAAAAAAAAAAAAAACAyFoc/Ob3+3XeeefpnHPO0TvvvKPVq1drzZo1wfW5ubm644479PLLL8eko01577331LFjR5177rmu+ksvvVT5+fmaNWtW2OcmJOx0/h0AAAAAtEs+v88VutbawW99svu4lhF/tbV2OdpAjqaC35Yvl37+uel9l9XYAW9ZqVnKSM5oVO8MfhszpvE2Lrqo6f0AQDS2brXL/ftLv/ylvXzyySZ8EuFFHfyWnN1KPQLQ1pz35+nYMbp2iYlNb3fjRunGG9115eVmXOgc2zbFOc489VQpJ8deHj3ahMkBAPZMVbVVqqqrCi631vUxtCPOQLcOvZtu50mSMvo1Xh/H8G4AwG7O6zjWdBwUuk0K1+EAAAAAAAAAAAAAAACAXUWLE88ef/xxvfXWW7riiitUVFSkm2++2bW+W7duOvLII/W///1vpzsZjYULF2rIkCFKSkpy1Y8YMSK4Ph68Xq9KS0tdDwAAAABoLxoGrrXGxFa/5Vep15xb9cki+K21OYM2MjOjaxcpuEOSpk2Lbt9lXjvgrWNKR3VM6dio3hnIMXx4420MGyaR7w4gFrZts8tHH+1+b/F4pN/+tvX7tDuJGPxmWXbwGxNOgT2Gc/yYkhJdu2iC3/70JynURzOLF0szZkTfP+f7/lFHNV5/8cXRbwsA0L4UVRe5luN+fczjafqB3UuN4zWUkhO+XSC0J72HlJAUvh0AAA05Q0Y7Dmy7fgAAAAAAAAAAAAAAAACISounQk+YMEEHH3ywnn32WWVlZckT4svFgwYN0po1a3aqg9EqKChQXl5eo/pAXUFBQVz2+8ADDyg7Ozv46NOnT1z2AwAAAABtoeHE1qKqojAtY6fMWyZLliSpb3ZfSVKJtyT8EwrmSDN/K837o1TeOueg7ZkzaCM9PXy7ujq7nNTEPNQffmhcFyqcrazGDnjLSMmwg99qQge/7b136P0x/xlALDjfb0aPbrz+nHNary+7o0bBb9WO5bpyyao/4CQT/AbsKZzjx0iBbtG2k6SyMundd8Ovt6zo+ia53/dHjmy8/vDDo98WAKB9iRhqDEQjEMaTkColpjXdLjkn7l0CALQzzuC31C5t1w8AAAAAAAAAAAAAAAAAUWlx8NvKlSt11FFHRWzTqVOnuAWuhRIqfC6adTvjtttuU0lJSfCxYcOGuOwHAIBWU/STNOPX0vcXSpuntnVvAABtrOFE1oraCnnrvHHdZ3F1cbAcCH5z1rls+1aacqi05iVp2WPS5OHStm/i2r/2LtqgDWdAXFOBHA2D3/75T6m0VLruOnd9mdcEvGUkZyjBk2AHv3nt4LcdO+z2/ftH3i8A7Ixt2+zyfvs1Xt+xo0yikPMREK5+DxIxHKOm2C4T/AbsMaIdPzZnnPnBB1JVVXT791t+3TzlZt085WY9Nesp1zrLcr/v77NP4+cTLozdgWVZuvCdC/XLt36pm6fc3NbdAdoNgt/asS2fS1MOkz4ZJi26X/LXxmc/wUC3Js5/Au1ScuLTDwBA++V1fEdzVz+ObHhH+vwo6euT+U4KAAAAAAAAAAAAAAAA9lhJLX1ienq6SktLI7ZZt26dcnJyWrqLZgkXMldYaL4Ym5eXF5f9pqamKjU1NS7bBgCg1ZUuk6aOlnz1M2bXvS6NfFgackujppWV0sSJ0rp10i9+IY0b17pdBQC0jsBE1u4du2tL+RZJUlF1kbp37B63fQZC3pITktU1o6urzqW2XJp1iSRHoE5dhTT9bOnEn6X0+PWxPYs2aCPagLi6OmnJEnt53Djp9783wRmPPy7NnWuvK6sxAW+BwLdg8FuNHfy2fbvdPk6n+gAgyR0AtPfebdeP3VVgDNEhuYMqayvd4Rh+R4hsclYr9wxA3G37Vlr6iCSPNPC3Uu/TJEU/zvT77XJTYWuffx59t4qqivTojEclSXt32lvXjro2uK68XPLWvzV16VIf7gm0oooK6fXXzTXXs8+WevWqX+EMkHX+QYQJli2vKdfrC1+XJPXM7KlHjn8kTj0G2o8NJRs0a9MsSdLI7iM1KG9QozaBsWxKYopqfDUqrCqUZVlxu/kcWknxQhM4468xyz/dIRXOkY54W/K0+B6KodUUmZ+Rgngsi+A3AEDL1TiuvbXVcaToJ2nJg+azur7nS/3Ob3xiv/F9afo59nL+J9LBz0mD/9CqXQUAAAAAAAAAAAAAAADaWou/rXrAAQfos88+k9frDbm+sLBQn376qUaPHt3izjXH8OHDtWTJEtU5Z55L+vnnnyVJw4YNa5V+AACw2/LXSjN+bYe+Bcy/tdFdlktLpYMPlq66SnroIenoo6Xbb2/FvgIAWk1gYmuvzF5KSkhy1cVLIOQtOy1b2anZrjqXFU9L5asb13t3SFumxK+D7Vy0gW7RBnds3eoO77j9dnueT0KC9PDD9royb5jgt/r6qioTiCBJGRlSSkrk3wUAWsqy7OA3j0fq3Llt+7M7CowXBuQMcC1LkizHQSQ5uzW7BSDedsySph0tbfpQ2vSB9O3p0s9/keQePyZE+HTKObZ0jiND+f5793K/ftJBB4Vuu7Viq10u3+pa5wz77NQp8j6BWFu/Xho8WLr8cun6603g7Keftmxbztf5topt8ltN/BEB0OSVk3XuW+fq3LfO1RsL3wjZpuHYts5fp/Ka8lbrI+Ig8JlYIPQtYON70vKnYr+/wGdvkc5/6ipMv5pqBwBAKM7gt7Y4jpStlD4fY24uuOlDacaF0pyr3aHVVVulHy5v/Ny510qF81qvrwAAAAAAAAAAAAAAAMAuoMXBb9ddd502bNigc845R5s2bXKtW7Vqlc4880yVlJTouuuu2+lORuPMM89UeXm53nnnHVf9xIkT1bNnT40aNapV+gEAwG5rwztS4ezQ6xzhOZYl/fa30pIl7iYPPCC98koc+wcAaBOBia256bnKTct11cVLIOQtKzVL2Wlhgt8sS1rzclz7saeKNpDDGcIRCHILZcsWu5yeLh15pHv9YYeZQFlJKqsJE/xWX799u/28vLzw+wSAnVVaKtXUz//PzY38fojQAuOFgbkDXcuSJMuZMprmqLcaPwDsPmrLpBm/coc7StLCP0ubPna9l0YKdHMGv/l84dtt3y6tWGEvd+0qzZ0rzZkjPfJI4/bOsLcSb4mq66qDywS/oa14vdI550ibN9t1lZXS2WdLy5Y1f3vO13mdv05FVUUx6CXQvm0p3xKy7FRQWSBJGpA7wK6rKohvxxBfmz6WiueHXlf0Y8u366+TiuabG1M0rJciB/H4HTddTM5peR8AAHum2jK73NrHEX+dNOMiqa5BMO7K56TVL9nLK55ufIyUzLXCgh/i20cAAAAAAAAAAAAAAABgF5PU0ieefvrp+tOf/qQHH3xQffv2VUZGhiSpa9euKigokGVZuuuuu3TMMcfErLORnHjiiRo/fryuvPJKlZaWatCgQXr99df16aef6pVXXlFi/Uyhyy67TBMnTtSqVavUr1+/4PPffvttSdLq1aslSXPmzFHHjmaC+TnnnNMqvwMAAG0qyvCcDz+UGuSsBk2aJF10kbsuP1+aONGexDhs2E72EwDQqgIhLTlpOcpJy9H2yu2tFvyWnZqt7NQwwW+lS8wDIZWWSp9+KmVnS8ceKyU14+zfGcgRKW/Huc1IgRzOAIP995fS0tzrPR4T/iZJZV538FtmaqarvtDx0iP4DUA8OQOAWvX9JlKSZoBlRd/O+UbufE4rBKo1DH4r9Zaq1ler5MRkye84cHgcCU+T95dKfraXz9wqpXWNe18BxMiaiVL5qtDrCmYqKemU4GKk4Ldox5nLl7uXn3rKDm276Sbpiy/c67dWbHUtb6vYpr7ZfSURMIy289hj0uwQ9+KorJTefFO6++7mba/h63xrxVZ16kCaIRBJNMFvgbFt14yuykjOUEVthQqrCtU/p39rdBHxsDYON5Qo+kmafqZUvlryJEh7XS4d+ISUmGoH4yalh3++3xGQnRIhIK6lKvOl9ZOklByp95nx2QcAoO0EbrTgSZSSMlp335s+kgpmhV634ztpr99Kll9a+9/W7RcAAAAAAAAAAAAAAACwC2tx8Jsk3X///Tr66KP19NNPa9asWaqurpbf79cvfvELXXfddTrhhBNi1c+ovPvuu7rjjjt09913q7CwUPvuu69ef/11nX/++cE2Pp9PPp9PVoPJjeeee65r+ZlnntEzzzwjSY3aAgDQ7tSWSVumRNX02Wej3+zs2dLYsVJVlVm+7z7pmWekP/yhBX0EALSJoqoiSVJuWq5y03NddfFS4i2RJGWnZSsrNUuSCYvxW34leOpTybZ/G9c+7M6mTZPOPNOEv0nSkCHSRx9Je+0V3fOjDdpITIyunTP4bfjw0G0CWURlNe7gt47JHV31NTX2c3Jzw+8TAHaWMwCoE1kpLRIIxxiQMyBYV1xdrC4ZXeyJqJI7+A3A7m31SxFXRzt+dLaLFBCXn2+Xc3PNGDjA4zHXocrL7bqt5Q0Cscq3BoPfCBhGW6irk557LrbbDPU636/LfrHdCdDONCf4LTctVzlpOcHgN+ymfDXS5k9ju82aEmn62Sb0TTLhNiv/JVVvlY54xxHG47jw9tPd0krHgWD4X+1yguPOCVVbJL/XXk7vKSUkN69/O2ZI046RfNVmef4tpl9dj2redgAAu65AgGhSRnQ3jYilNZGvB0iSiuZLFevi3hUAAAAAAAAAAAAAAABgd9Hi4Lf169crJSVF48eP1/jx42PZpxbr2LGjnnjiCT3xxBNh20yYMEETJkxoVE+4GwBgj7ZjhmQ1mHGbnC3VlriqNm+WpkSXD6cNG6TTTrND3yQzWfeqq6RBg6TjjtvJPgMAWkVhtZnEmpOWo5y0HFMX54mtxdXFkqTs1Gxlp2VLkvyWX+U15cEgOG3/zv2k0ROl7GHS/FulrV/EtX+7siVLpLPPtkPfAnXHHy/NmRNdWFq0gRzRBsQ5g9/69Yu87zKvCXjLTM2UZAfABYLf6hw5QdnZkbcFADujutouEwDUMoHxQv+c/q46E/zmOHAQ/Aa0DxUbpKJ5EZu0JPjNGfzb0KZNdvnoo6XkBvknBx0klZXZyw3DfJzLtbV2Pe/7aC1ffmmuocbS1oqtEZeBPUI0QSeO7wZEFfxWbQe/5abnalPZpvheH3N+d8H5+/CdhtgommsHoElSYrqUvZ9UtMAdUt0cP90ula9sXL/xfanoRzuMx3n+U1cheXfYyz7HB2rOdt/90n0TjJOXSVl7R9+3qq3S9HPcv7N3h/T1KdIJs6WsfaLfFgBg1xW43uYMGd32rbTgT/Zyr9Ol/W6N7X7rqqTNnzXdbvt093JShpSSK1VujG1/0L5FG2rIuBkAAAAAAAAAAAAAAOwGElr6xAEDBuiOO+6IZV8AAEBbcX3J1iONnSydXSSNmuCaXDJ1auOn9usnJYQYUdx5p7QlxBwpy5JmztzpHgMAYsBb59WW8i3aUr5F5TXlIdsEJrHmpuUqNy3XVRcvgeC3rNQsZadmN6o3Cz/Z5SG3SgMulvIOlMZ+LOUeEHH77fm7/pddJhUXN65fvVqaOze6bbQkkCPa4LcuXSLvOxDwFgh8Cwa/1QfCOQM5UlIibwsAdoYzaDInp8260To8nugezRQYL3Tu0DkY3BocQ1h+Zwd29jcAsCvY/o17Ob2n1H28lGAP2pzBwc5xXUPOduWhT1MkuYPfDjoodJvMTLscKRDL2R8ChtFaPguRjZCVtXPb3Fq+NeIygMaiCn6rsm+M0FrXxxBHrhtKeKSjPpJOmCONnyGltCABtrZUWjMx/HrL7wjjiRB87TxPSmjxPRwbW/w3qSq/cX1dmbkxFACgfbBChIzWFEo7vrcf5ativ9+CWZLfkdqekmeuByR2cLdzficlOUv6xQLptPXSwc/Evk8AAAAAAAAAAAAAAADAbqDFwW95eXnKy2vBl14BAECb2LHDhLGNGSOde670jXM+btkyu7zvTVLPX5iJ/QN/I+3/QHDV55+7t/mPf0hr10qLF0sDBtj1mzZJr70Wj98CABBLn6z4RD0e7aEej/bQn7/6c8g2weC39NYPfstOzVZmamajeklSVX3KgydRGnKLXZ+YJo36jxqGyNTUSDffLHXuLGVkSOecI23cGJ/+t5XvvpNmxGCupjNoo6YmunbV1eHbtSj4LblB8Ft9vTOIKTHCPFkA2FnO95u0tLbrx+6qzl+nEm+JpDDhGM4QAytCemgrKC01oeXtORgWaBXOAJWUXOm46dLRU0yASnKOJPf4LVKgm7NdWVn4ds7gt333bbqLjYLfHIFYzvf9pBjmrACRNLzW+uGHJsh70qSWB11HCjgE0JhlWa6wt4raipA3R3BdH0vf9YLfvlzzpS55/xJd8v4l+nLNl23dnV1f+Uq7vM/1UvdjTbnTwdJhrzR/exvfl+oqmmgUCHWLEHztPDeKFBDXHHUVkUPpAADtRyD4ranw0FjfAMIZ6JaQKh091VwP+MWPUnove13ZCrt84BNS5l5mX4Ovkvb9Y/P2CQAAAAAAAAAAAAAAALQDLQ5+O/LIIzVz5sxY9gUAAMRJYaF07LHS3/4mff+99Pbb0rhx0jOBmydXOpJvBl3hfvI+N0rZQyVJixbZ1aecIl13XX2TfaR33rEnxr7zjnvCLABg17ShdEPIslNgEmtOWo5y0nJMXXUrBb+lZSspIUkZyRmuevm8kneHKXc6VErt7N5A7kip58nBxbo66aKLpEcflQoKpKoqc6w69FATYNpeTIzRHM5ogzac7UpLw7fbvt0uNxn85q0PfktpEPzmbRz8RiAHgHiqrbXLvN80nzOsNWQ4hjPEoI2C36qrpQsukLKzpR49zLhgwYI26QrQPpSvtssjH5E61t8hIO9AafQESdGPH52Bm5HGo/n5drlbt6a7GAh669LBDEqdgVi876O11dW5r7Xecot06qkm9+Dcc6XHHmvZdgOv6+4du5vlcoLfgEjKaspUVVflqnMGwQUEg9/Scu3rY7tQ8Ns3677RxAUTNXHBRH2z7pumn7Cnq3Skxw64xL2u54lSr9Obt70tDZI8M/qZh5OnfoAR8fzHEbQTq2TqLV9ItREGXgCA9sOKImQ0HpzXA4beaa4DSFLW3tIRb0ue+q+nBm7olJQh9T3PvY1hf5bSe8S9qwAAAAAAAAAAAAAAAMCupMXBbw888IAWLlyov/zlL6oj2QUAgF2WZUmnny799FPj+muvlbZulf0l24x+UuZgd8OEJKn/ryVJ69bZ1Vde6b7Z8wEHSL/7nSn/73/uTVxwgfT669LJJwsAsAvZULIhZNmpqKpIkpnYGghtCdTFS4m3RJKUnZptfqaZnyXVpl5VjoSHvENDbyQ1L1h86CHprbcaN9m8WXrhhZ3v767AsqSPP3bXnX++dPvtUteuzduWM+giUiBHcnJ07bxeu9xk8FtNmOC3+nq/327raeW5SwD2LG0WNGlZ9iOa+l2UMwQjZDiGx/GP2gbBbwUF0nHHSW+8YdfNmSMdeaQ0f36rdwdoHyrrzycSkqW+57rX9T5d6nGi0tPtqkjjx5wcuxwp+G2TI7MlquC3+kCsoV2HupYld/CbM6AOiJf8fPd445pr3Ov/8AdpxIjmbzcQ9Da0S+PXOYDGAn8zCZ4Ede7Q2VXnFAx+S89VblqDUONdQDQ3d4BD4GZIyTlSTog3295nNG97276yy12OlE5eJp26Whpxv10fCL+OdP7jcXx9J1bnSVsbhNIN+oN0wONSx4Gx2T4AYNcRVchoHFQ5bjLY/yL3us6jTciqzyt56+8S1PlwKSnd3S65o9Tr1Lh2EwAAAAAAAAAAAAAAANjVtHja4kMPPaRhw4bp3nvv1b///W/tv//+6tatmzwNZl57PB69+OKLO91RAADQMh9+KE2fHnqdZUm1NX6psn6mbO6BoRsmJKq83EyOl0zwwbhxjZudeKLZpnN/J5wgvfyyec5550kXX9ziXwUAEGNNTQq1LCs4iTUnLadxaEucFFcXS5KyUrMkmQC4/LL8YL0r+C1zUORtFUt//3vs+7irWbrUBNkF/OY30ksvmXC0q6+WRo2KflsZGXY5UiBHVpZdjhTI4QzRyM6OvO8yb5jgt/p6Z/iSr/VzggDsQXb5oElnAJyzg7tIMFxgrJCamKr05PTG4RgeR6qSv7bh0+Pu6qul775rXF9WJk2ZIo0c2epdAnZ/gYneuQdKyZmN13cZE3Wgm7NdpPHoli12uamwY8uytK1imyQTiPXV2q9cwT675Hs92jXnDTaGDpX69nWvT0w0N/NorkDQ235d9tMXa74g+A3t2rRp0g8/SLm50tlnS507N38bW8rNwaRzh87qltFNOyp3BOsCanw1Kq8pl1R/Y4T6sW1BVcHO/QIxtL5kfcgywgjcDCn3gNCDgOYMDOqqHAG4KdKYt6TEVLM89DbHuijCeOIR/LZjhl3e6/fSwc+a32/gpdLnR8ZmHwCAXUM0x5p4CBzrOvSROvZvvL7LGKl8jb0c7jspnhbfvxgAAAAAAAAAAAAAAADYLbU4+G3ChAnB8ubNm7XZOcPcgeA3AADa1hNPRF6fULtdsurMQoe+Yds5JyMOGyZ16NC4jcdjQmcqK+26v//dDmnxeKRnn5XeeivKzrfQzJnSLbdIq1dLgwdLN98snXJKfPcJALsjZ9hbflm+6vx1SkqwTxMraitUWx/Gkpue2zi0JU4CAW/ZaSYlLBAAZwe/bbIbp3WPuK1Jk6SSklj3cNezcqVd7tBBevJJe45qz57Sf/8r1dVFt63cXLscKWgj2nY1NXY5OTnyvstqwgS/1ZTJsiwlJdkTb6P9fQCgJQia3DmBsUJuujlYNBpDOMYbqitv1b4tXCi9+War7hJo/2pLzUOSckaEbRbt+DHagLjqavMzLU3KDJE151RcXawanxmY7tdlP0lyBWLxvo/WtnatXQ4X1N3cQMLK2spgONXQLkMlyRVwCLQXtbXm+r/zs4//+z9pwgTpjDPUrJDkQMhbt4xu6taxm37e9nOj4DfndbDc9NzgGDfe18eao6mbO8DB55W82025Q++d316l49+750lSejf3+pEPSt5CO/zaX6OwnAHZVowufFWsNT8TUqT9H7D/JlKypSPekgrnxWY/AIC252mD4DfLso+FOfuHb1e50S536BPfPqF9azimD4xtdpEbogAAAAAAAAAAAAAAADRHi4Pf1qxZ03QjAADQprZtk77+2l5OTpbuuENKTJSeeUbaskVK9Dq+ZJsePjzHORmxX7/w+1y1yi4PHiwNH+5en5kp/frX0fW/uSzLBMvdeKOZ/CVJ+fnm3+Dee6W77orPfgFgd7W+ZH2w7Lf8yi/LV99sOwTUOYE1Jy1HOWk5jerjIRj8lmqC3wIBcMHgt0pn8FuDyZQNvP22e/nGG6XTT5c+/FB6/PFY9HbX4Dz+nnSSlJXlXj9unFRREd22nEEbsQh+CxyTpSiC37wm2ePOL+/U37//u6rqqiRJdf46eX1eJSenBdsSyAEgnpwBQO0+aDIOk+UCY4XA2CEQjlFQVVC/D8c/cK3jIJLWVarKk2riN9aYOLFxXUZG9MdJACE4x+fpPcM2i3acmZ1tl8MFv1mW/f6cnd10QJYz5G1I5yGmzhGI5Ryntvv3fbS+ugrJkywlpgSrnNda+/ePzW6cr+mhXeuD3yq2yrIseZqbIheNaLbJ5HvEmN8vnXqq9Nln7vqSEumcc8znAV27Rr+9QMhb14yu6prR1VUX4Ap+S8tttetj0bIsy3WNb33J+vj93bcHVfl2uYnrilGptP/t1XVc4/XJWeYROAeqjTAI8iTYZV/VzvetrkLy7qjv21gpNc+9PmsfKaP/zu8HALBrCBxrfN7I7ZoRktuk2lJzvJEiXg9w3dApwndSAOycW6bcosKqQnVI7qCnTnqqrbsDAAAAAAAAAAAAAACa0OLgt36REl8AAMAuYdo0MxEq4I03pLPOMuXf/lY64ggpsWaz3SAt/Jds162zy716hd/n6tV2+cgjQ7dpKvSlpT76SLrmmtDrJk4k+A0AnOr8dcovMxMdPfLIkqUNJRvCBr/lpuUGQ1uKq4vl8/uUmJAY835ZlqWS6hJJUlaqSS8LBMAFg99qi+0nRJig6fdL06fby1deKT36qJnHMnastNdeZkKw05sL39SG0g2SpGsPvVapSak79fu0Fufxd9y40G0yMqLbVrSBbtEGdzjHIgkJ4dtJUlmNSfbYUr6l0UTrMm+ZkpLs4DcCegDEk/OcxRlgiegExhC5abmun8GxRXKm3bjOcRA55nMp/xPp65Pj1re33rLLWVnSlCnSoYdKU6dKF1wQt90C7VvlBruc3iNsM+c4M1ygmxTdOLM54cKSHYiVl56nnplmMnpRdZFqfDVKSUxxBX7yvo+YqVgvfX+htOM7E+bTbbw08iEpd3/XtdaeEfIRmiMQcJielK7+Of0lSTW+GpV4S4JBVcDu7tVXG4e+Bfh8kreJnJOGXMFvHSIHv6Umpio9Ob3x2LaBJ2Y+oXUl5o/8oeMeUnJinD4QqVdUXaTK2srgcmVtpYqqi5SXnhfhWXuwasf/3wifiUWtwvGGnj00fLuE+tdBbYldl3uA1PeX0vpJgUb2Ome7WPSt8+Gh2yTuHtc+AQBR8NR/ZuerlPx1UkKLvxYaWsU6qXqrlDlYSqk/wXddD4hwXK2K7jspAFqu1lerf8z6h+r85o4GDxz3gDqmdGzjXgEAAAAAAAAAAAAAgEiamHINAAB2Z0uX2uXjjrND3yQzofC116REVdmVEcJzNju+ixtpMuKqVXZ5r72a0dmd5PdLN93UevsDgN3d5rLN8lsmkWtIlyGSFAw8CwhMYM1IzlByYnJwYqslSyXeGEw+DKGitkI+yydJyk4zgW+BALjgPv2OJIbUzmG3tXGjVFV/mEtKku65x4S+BVx5pXRyg1yZu768S7dMvUW3TL1Fq4tWa1diWdKECdIZZ0gnnCDde69UUGDWOY+/e++9c/uJNvjN2a4kwsvBGaJRVxe+nWVZKq8pD7u+rKbMFepRVBR+W1HzeKJ7ANjjON+7ysO/NSGMYPBbfWhsIGzGDn7LsRvXxHZM8dPWn/Tg9Af14PQHNTd/rmtdQYE71HziRGnUKPNWf/zx0iefuP/fA4iSd4ddjjCB2xnoFmks52znvB7lVFNjl6MKfqsPxOrSoYu6ZnQN1m+r2NZoG5HGwEDUtn8vfXqgCX2TJMsvbflMmjpaKpitTZvsppFustEcgYDDrhld1aVDl0b1wO7OsqSHH47tNl3Bb/XHhy0VoYPfAmPbwM/CqkJZltVomw9//7Aen/m4Hp/5uNYWr41th0NYX7JektQhuYMykjNcdQjBV22XI3wmFrVKx791eoQ39MA5UK1joDHgIumwV+xlZwib8zzpkH9Jh77Q/L45g98y+jf/+QCA3UuifeOcYIBo9lBp5N+lDn1DPycadRXSzEulD/tLU0ZJ73aRZvxa8hZEfT0g5sdfAI2sL1kfDH2TpFWFqyK0BgAAAAAAAAAAAAAAu4Kdnsb22muvacKECZo/f75KSkqUlZWlAw44QJdccokuvPDCWPQRAAC00LJldvm88xqvHz1a0lrnTNlM89OypFX/tusTO6i6+tfBxR49wu9ztSMjp0+f5vV3Z0yb5g69ycqSzj9fWr9e+vTT1usHAOwuAiFvuWm52it3Ly3evlgbStzBb0VVJo0hENYS+BlYl5eeF/N+FVcXB8vZqdmun8F1fsexKyGl/okLpS/G2vVdx2lZ9TvBxcMPl7o1mEvi8UiHHWYv1/pqtaZ4TXB5ReGKYCheW9u8WbrsMmnyZLtuyhTp6adNnfMYGPH4G0WIWabPUkKCCVUtKJB8PikxsXE7ZyDHli2N1wc4QzQiBb9V1lYGwwhDKfOWKSPDXi4sDL8tANhZzvcu3m+aLxiOkdY4HEOSlJAkJWVKdWVSXWwTlt5b8p7+/PWfJZmxw0E9Dwquc54j9+0rnXaa+7mjRkmDB8e0O8CewTk+T+satplz/LhxY/jNZWfb5Q0bwrdrDmcgVk5ajpISklTnr9PW8q3qndVbKSl2W973sdN8XmnWJVJNQYh11VL5Knm9hwSrIl1rbY5gwGFGF6UmpSorNUul3lJtrdiqfTrvE5udAG1o/nxp4UJ7ecQI6dVXzTWLv/9deuml5m8zEPLmCn4rDx38FrguFhjj1vhqVFlbqYwU+2JFeU258svyg8vLC5ZrcKf4DjAD1/N6Z/WWRx4tK1imDSUbNLL7yLjud7flvKFEkuNC0+KHJV/9HSQ8HmnY3dFtr8IZ/Bbhrkkp9XdQqI0QfJ2QIiWmm37UFtv12UOkmhbcAcEZ/BYplA4A0D6kOO7WU1sipXaSMgdJQ26WNrzjDiuNVm2ZNPVwqcQxCLN80tpXzHFm6J12fYTrAa7rBkkdzc+aImnVf+z69J5S/wua30cAkqSVhSsbLe/fff826g0AAAAAAAAAAAAAAIhGi4Pf/H6/zjvvPL377ruyLEvp6enq2bOntm3bps8//1xffPGF3nnnHb311ltKSEiIZZ8BAECUnJPancE2Ls5JLp5AuoElzf6DXZ/WXV6vHfzWoUP4fTqDX1oz+O3dd+1y587SF1+YiV+SCX675ZbW6wsA7A4Ck0J7ZfVSr0wz8S8QBhcQDG2pD2vJTst2rdtLe8W8X87gtyv/d6VSk1K1aNsi9zrnsSuh/thl+aQaR0JDXZnrOHjwwU3ve23xWted0JcXLG9m7+Ojrk4680xp1qzG67ZvNwFw+fac4p0+/iYkmFCOwkKz782bpd69G7fLdcwhWh9hvpAzPMnrDd+urKYsYr/KasrUu4u9TCAHgHhyhhMVhMhsQWSNgt/SGgS/SWYyal2ZVBtd8NuPm3/Uqa+fKkk6Ze9T9M9T/hmy3bKCZSHLkrR0qV0+4QRzzGsoL/a5tkD75xqfp5qfvmrpf44Q5fReyj14enBx0yYz1kwK8SmV8z040jgzoLa26TbOQCyPx6MuHbpoc/nmYL3zb5/3fey0DW9LZSsiNnGeGzkDrneGM+BQkrp06GKC3+rrgd3dd9/Z5a5dpa++sq9NvPiiOzg0WoGQt24Z3dStYzdXXUC4UOPAOmfwW8OwhRWFkd8LYmF9iTlY9srsJY/HBL8F6hCC64YSjotWSx6yry16EqMPfqsrNz8TO0jJWeHbpdQPNmpLJcsvecJ8hyYlV6qqihwQFy3vNrvcgeA3AGj3UhwntjUxOI5I0sL73KFvTjVFoa8HSNLkkea6n2SCTXuf5WhXf/z17pDm32zXdx5D8BuwE0IFvwEAAAAAAAAAAAAAgF1bi4PfnnrqKb3zzjsaO3asHnzwQY0aNSq47ocfftCf/vQnvf/++3rqqad0/fXXx6SzAAAgepYlLXfk1fTvH6ah68u44YcGNY65MCkp4fdbXW2Xu3eP2MWgykrpmWekOXOkxETpqKOkiy+OHDDX0IIFdvmuu+zQN0n6xS+k9PTotwUAe4JAyFuvzF7qlRU5+C0nLUeSlJSQpMyUTJXVlLmDW2LIGfz2vxX/C73O8jtqPWG35Qx+GzCg6X03DHrbVYLfJk4MHfrmFDj+ZmbGJjQgN9cOVlu3rnHwm2W5g9+KiqSyMrN/p5oad/BbYaHUK8w80zJvE8Fv3jLl9jZjBZ/P7NPvDx3aAwA7qwtBkzul4RgiEI5RXF0sn9+nxIREE2hQud5MEo3CT1t/0qayTZKk7zZ8F7bd0h1LQ5Yld/DbkCECUK+iQnrqKWn2bDO2OvJI6dJLG4/twgoVoGJZUsVaRyNLWY4sFL9f2rix8fWqggJ38NuGDSb7pOF1nTlz7HI0wW+BEJ+uHeoDsTJM8Fugnvd9xNSa/9rlzMHSYa9Kad2kta9KC++R5L7W6jxn2hnBgMMO5gXdNaOrVhWtCtbHnGW5lz2e0PVAjCx0ZI5ccYX7uoTHIz38sAkVbQ5nYGIgNHFr+VZZliVP/Wu64Y0RAmPcwLo+2XYCf1tcWwpcz+ud1TvY54bX+OBgOV4knhZ/XcYWGAelZNvvg6VLpU0f2W1yDzTnP6YDJiwuXEhcSp5Uld90YI8n/DXRoAV32OW0rvX99Um+Ssd2EqWkZnwYBwDYdaU6gt9qi3d+e3UV0krHjRcSUqTckVL5ahPaJoUPVK1Ya4eYJqTE/vgLoBGC3wAAAAAAAAAAAAAA2P20+Js0EyZM0D777KOpU6cqKcm9mUMPPVRTpkzRiBEj9NJLLxH8BiDI5zMT57KzIwdHAdh527ebibuS1LVrhBAYT6Jdtnxht+d3ZOxEmk/i9drltLSm+/nxx9LVV0vr19t1r78uPfCA9OWX0sCBTW/DsqSffzblhATpwgsbtxk7tuntAHusyk3Skr9L5SvNBLTu46W+50mJqU0/F7utDSWO4LfMXq66gMDE1m0V2/TAtw+EXBdrzuC3sOsSHANJq1ZS6IGl89gSNgDVYUXhiojLbeWJJ+xyRob05JPSIYdI33wj3XmnOUYHwi6aE5oaiXPy9IoV0pgx7vULFkj772+HsEkmaO/gg93tvvvO3aft28Pvs6ymieC3mjIlJEidOknbtpnfu6zMnFu0GEEFAMLo3NkuEwDUfIFxwpbyLZqyaorWFa+TJFmyVOItUV56npSSYxpXbjDvu00EFyzevjhYXrZjmer8dUpqEF7ut/xaVmAnv64qXKVaX62SE83EU2fwWzTnmu2C5ZdWvSiteMZMys3oL/U5Rxp0hZQU34T0L7+U/vc/qbzcBO2df77UrVtcd4kW+Ogj6aqrTAhbwNtvSw89JH31lTR4cDRbcY6dwv8tJyZKWVlSaalZXrSo8Th96lTpiCPsZb9fWrJEOvBAu66wUJo7V0pKMgE/paVNv40EA7Ey7EAsyRH409W9faDFLEsqqE/uTuwgHfOV1KGnWR56m9RplFRb4rrWGqsw68DrPPD6DrzeA69zYHfnDH47+eTG65OTmxek6Lf8rr+bwN9Orb9WRdVFZswqqaCyQJLk8/s0J3+OLMtSoidRPsungqoC1zZXFJhrSQmeBPktf+NrS9GEdTXzmsT6EnMBrFdmr2DwW6AOITjDZiJ8Jha1QOCN83pl0QJp/q328t7XucN4qrdFDn6TpNroArIj8jk+sEuo/8CudLE02XHnpG7HSsd8vvP7AgC0ukbnwSmOY01N8c7vIH+yVFf/uU16D+moj6S8g8zxZcnfpQ1vKdrrAe7jbzOTegFEZVXRKknSPp320bKCZcFlAAAAAAAAAAAAAACw62rxVIJly5bp1FNPbRT6FpCUlKRTTjlFy5fH/y7WAHZ9W7ZI11xjQh+6dpUyM6XTT5d++qmtewa0X4HQN0nq2zdCQ+dkFH/4L9k6wxoD4TKh1Dhu6tzUJKuZM6WzznIH8wSsX2+CZqKxbp0JfpHM5H1nSAOAJqz4p/S/faTlT0j5/5PWviLN/I00eXhsJgWgdXk8TT/qbSitD37L6qVeWb1cdQGB0JblBct1+7Tbdfu024PhXLtM8Js//EGpqsou9+7d9L6XF5jz1wO6H+Babktbt9rhppIJT/ntb6Xhw01w6syZUp5jLk+TE5wty35EqHcGv82f33gzkyebl1NOjl3344+NN/npp1L37nZdxOA3bxPBb/Xru3Sx67ZsifgUAAgtiuNlSor9XlhV5T6moGmBccILP76gE145Qb//+PeN1iml/h+4tlSqLW5ym4u2LwqWa/21Wlm4slGbTaWbVFlbKUlKTkhWrb9Wa4rX2Pt2DF8GDIj2t9mN1ZRIU8dIs38vFS+QqjZJO76TfrxR+uqEuO129WrppJOkY46RHn1U+te/pBtuMP/mkybFbbdogVmzpLPPdoe+BeTnR39dJtrxueQeZy5Y4F5XWyt98UXjYN+G48ypU00gXGp9VnlVlfs6WCjBgLdAIFaH+kCsQCCcY4y5Y0fkbQERVeXbx7W+v7RD3wK6HyP1Oi3qa63NEXidB17fDV/n7c3CbQt1wTsX6IJ3LtDzc59v6+4gzizLHfw2ZMjOb7OwqlB19Z+JdM3oGvybkUyAcbBdtRlEfrbqMx3y/CE69IVD5asPDGt4fWx5obmWdEjPQ8xyK1xbcl3jywx9jW9PVFoqPf649PvfS9deK735Zv3nVwmOi2dWDN6Ag5+rNfHVm2THIKh8Tfh2gYC4qvwmx1VN8js+sEto8T0hAQC7kMJC6f/+T+rRw3we1L+/dNNN9Z+9OIPfqkKc6DdXkeNkfOSjJvRNMjcOG3andMCj7uNqpONWM64bAGiZwPXyYwcc61oGAAAAAAAAAAAAAAC7rhYHv6WkpKiiiZk0FRUVSnHOXACwR/r2W2nQIOmZZ+xAqJoa6cMPpV/8om37BrRn1dV2OSMjQkPnl3Hrwh/bA5NpJXe4W0POTFifL3w7yzKTbZwTG0ePlk47zT0JOBrOCV9779285wJ7tM1TpDlXhv7bL1sh1Za0fp/QaoKTQjPtSaHbKrbJW+cNtimqLgr7/EjrdkZJdfjXXYm3RJZluY9dEQIKncfC9PSm972i0CRbHL/X8ZKk/LJ8ldeUN/3EOJo71y4fdZQ0dqx7/T77mCC4AL8/Nvt1HoudfZCkujoT/Ca5g99mz3a3mztX2rTJTEAKiBj8VtNE8FtN4+C3aLPmLUtauVL64QcTLtsw9w4AQuna1S6vXdtm3dglPTbjMY2bME7jJozTjA0zGq2PFBAbXOcMPiht+g09EPzmkQmyXbRtUaM2ywqWSZL6ZPXRwNyBpm7HsuB659igueedu6U5V0sFM0Ovq45PempxsXTCCfZYwamqSvrqq7jsFi1gWdJ117mvy4wZI515ZgsC9V0TuL3h28k9fpw+3b3u88+lkhKpY0cpwfHp1ccfu9u9/LL52a2bXbe1iVyrQPBVIPgt8DNQ37GjlJZm2u7YYd9gAGi2EseFyq5HhW6TkOgKfvNG/rOJWlOv8/bmyzVf6o2Fb+iNhW9owoIJbd0dxNn27eYYIZlxelbWzm/TGe7WNaOrMlIylJGc0WhdVGPbeisKzLWl8QPHS5I2lGxQVW18U6TXl5g76/TO6q3eWb1ddXuqp582Nwm66Sbp+efN8vnnm8DAHYWON+AIn4lFLbF+e1b4GytJsoOvJalidYR29aE9ll+q2Mn/j55Eu2zF6KIhAKDNfPmlCdV/+GFzUxyfz9wg7/HHzXcsXMFvZat2fofF9XfyTMqQ+pzVeH334xpcD4jwJZIov5MCxMO5b52r9L+lK/1v6Zq+fnrTT9gN+fw+rSoyf/fHDjTBbxtK438uAgAAAAAAAAAAAAAAdk6Lg98OOOAATZo0Sfn5+SHXb968WZMmTdKBBx7Y4s4B2P0VF0tnny05cyKdk/ZiFUwBoDHnhMHk5PDtlJjmeNI2u9zzZClzn+CiM/htm6NZQ852kSYtzpljHgEvvSR9/730wQfShg3uEJum7NhhlwcNiv55wB7NsqT5t9rLad2koXdJQ/5P6sgf0p5gQ0l98FtWL/XK6hWs31i6MVhuzsTWWCmuLg67rs5fp8raSimpo11ZXT+BPaOfNOZNqfPhwVXOoFJnMGk4ywtM6MyRfY9UaqI5oLX13dCdx8rx40O3SUmRPCYDJ2I4a3M4w3BmzHAHaXz8sb3sbPfee+7gkOefNz+dwW+RxhBl3iaC37yNg9+WLm3crqTEPs/w+6U335QOPFAaPFgaNUrq108aPlx6//2IuwMAV/BbqPebPTlE8q3Fb+nrdV/r63Vfa9qaaa51fssfMSA2OIZwBh8UzYu4v4qaCq0tXitJOryPOdYv3r64UbulO8z/qEF5gzS402BXneQOfnOeu7ZLpcukda/Zy/0ukMa8JR3wqJQZv8T0++83YasBo0dL119vxjGB8Qp2DT/+aEJxAyZONDfwePddE5R75ZXN2Jhzore3IGLTPMc89KlTpQJH88D40eNxh7pNniyVlpryunXSp5+aci/7NCZi8JtlWdpabhp06dDF9TNQ7/G4x5nLlqkRrmXvAao2S3NvkD7oJ72TJ00eKS24XapqRlhmsSP4zXFttSHncShSQHZzBF/nGaFf5+3NvC32+GH+lvny+SPchQS7vXJHLn+/frHZZiDcLSM5QxkpJvCtW8durnVS866PBa4tje0/VkkJSbJkBQMY4sHn92lT6SZJ9Td3qL/Gt6l00x77N/Hcc+amQwUhhiSrV0sFJY7PxKod7499fyl1GtX8HQbGQZHCbiQp1TEICgTphOIM7SltfM4TZFn2I1x9guNg01T/AAC7tK1bpbPOss+NG6qulvtYUxbipLa5Sn42P7P2kxLDXEhzXg+oiXA9INR3UpI6Sn3OMZ/vAXH03frvVF1Xreq6av2w6Yemn7Ab2lS2STU+M94b22+sEjzmy5lrite0ZbcAAAAAAAAAAAAAAEATWhz89sc//lEFBQU6+OCD9eijj2rOnDnasGGD5syZo0ceeUQHHXSQCgsLddNNN8WyvwB2M089ZU9aysoywU41NVJhofSPf0gdO0Z8OoCdkOL4jq0zhKWRNMdM2sAkF0+CNPZjacBvgqucE3M3bQq/OeekxcIImUDffmuXf/Ur6ZJL7EngGRnSCy+YCeLRqHLcpNYZQAMggrIVUvECU84aIp28RBpxrzTyQenkxdJ+t4d82vbt0uzZ0ty57gmX2EVEM+FPkrfOq60V5j2/V2YvZadmq0NyB0nm7t8Bu1rwW3B9ek+7IjBBJCXHTNDs0De4ynlMingslFRVW6X1JeslSYM7DdbA3IGS7Am7bWWeIwdn2LDQbTwe+3ctLo5NIIUzrM3nk954w5Qty4zjA/r0scs7dkhTppjy5s3Sq6823tbKCDl6pd4wM5YarHcGcvwQYn7Gu+/aL/c//EE6/3xp/nx3m0WLpHvvjbg7AO1ZlMdLZ/DbggWNNzMvclZZu1Xjq9GPm38MLv+Q734zLvWWym+FPxiFDH7bPj3iPpfsWCLJhHIcM+AYSdKi7YsatVu2w0xqHZw3WINyTZjxsgJ7oqvzZgRtGtxXVyHVlsW3E/n/k1S//aF3SIe/JvU9R9r3JunEn6SBv4v5Ln0+O7hLkv78Z+m778zYYcoUafp0qXv3mO8WLeS8LnPBBdLFF9vXZdLTpWeekY44IsqNOQNKquuDchLTpLN2SPve7Grav79drquzx4yzZ5ubAQTstZdd9nqlBx4w56AXX2yPd6MNfiv1lsrrM3cnePXnV3XntDv17XrzDxA4L5Lc7/s//qhGvvkm/D7QDuR/Kn00UFr+hFS5XqopMtdNFj8gfXde9NtxhghlDg7bzHkNM8w9tpqluq5aJd4SSdLEBRN146c3avLKyZLcr/P2ZG7+3GC5srbSdcxH++P8DCAjIzbbDIS75aXnqaiqSEVVRcpNy3Wtk6K/PlZYVaiCKhN4sk+nfdQv24SYrChYYT8hynORaG0u3yyfZQLeemf1Vu+s3pIkn+XT5vLNzdpWe7B1q3Sr414nffqYsei//21uVCZJdYmOAanzPfuQ56S9WjBGDgTe1BRKEc6DXOc/BRECR6JtF41E5weFJdE9x1sgLX9a+vEW6ee/SJs+lnzVTT8PABBXDz5oPv+RpOxs6V//Mp/JLFokXXdd/TUv57l5weydu+7kq5Yq1ply1r7h2zmPW87A7FNXSSMfsZfTQhx/03tIR7wldTu25f0EmrCpdJNrXDw7f3Yb9iZ+Ajcyy0vPU6cOnYLnBW19gzMAAAAAAAAAAAAAABBZUkufeMopp+jxxx/XLbfcolud356VZFmWkpKS9Mgjj+iUU07Z6U4C2H1NnmyXn3lGuugiU87Nla6/Xjr55LbpF7AnSE+3y85JUY0bOmbJOr+M20A/x42WI01GzMmxyxs3SqNGhW433TGv//zzG6/3eMyXlqNRU2OXk5Ojew6wx9sxwy4P/4v7i/kJydL+f3NNCPjmG+nxx6WPPjKBDpKUlCSdeqr09NNST0cOF3Z9m8rsBM9eWb3k8XjUK7OXVhSu0IaSXT/4rVcHx7GrOvwE9rQ0u1xREXm/q4pWSZISPAnqn9Nfe+XtpSU7lrR58NuOHXZ5n33Ct8vOlqqrTXjG1q3usLWWGNwgn+Chh6QxY6RJk6Svv5b23tvUDxrkbnfttea4fPfd9r+5sy+hgpMkE+ZRVlMWsU+B9c7gt2++Me9JiYl23csvm0CQSZPc4TMjR0onnmgCLN9/P+KuAECSOwAoVNjPhAnSQQe1Wnd2GQu3LQwGKEnSD5t+kGVZ8tQnRjU1RgiuT+1kV258X6otlZKzQj5n8fbFkqS9O+2tIZ2HuOqcAoEvgzsNDobaOkNgnGOD6tbOLqirkFb/R1r2pFReP+EurZvU61Rpv9ukjgNju78dM83PxDRpiPv6vRJTpf1ubfycnfTTT/Yk5H33le66yx22d/jh4a8RoPU5r8ucFyLTyuMxN/KISofedjkQ/ObxmL/zpA6ups5AN8mEs6xbJ/3nP+4A44ED3X188EHpkUfMeDfAGfy2LELekzP06sUfX3SvKw8d/PbNN9Lll7u38/LL0rhx4feD3Vj1dun78+1gm5Q8KWeEVLHWPOQO8llRsELXf3q9JOmgHgfpvmPus1f6HBdiU3LMz+Kfpenn2vXdxql//38GFyPdZCNa2yq2BcuTFk1yrdtavtV1rG4PqmqrgmOBXpm9tKlsk+bmz9V+XfZr454hXgLXIyX3+GJnBMLdNpRuUN7DeSHXSdFfHwsEvKUmpqpXVi/tlbeXVhWtiuu1pcB1vERPorpmdJXH41FSQpLq/HXaULIhGPiwp/jgA/tmJfvtJ82aZd+E7PLLTRhxSrbjQnaE64pRS+1sfvprTWhaWhep95nS2UXS50dKJQvNemcYT+EcqWSRlD208fac7TZ9JA2/107nba4kx2CuKl/K6Cd16CMd9pq04mlpx/f2essv/Xy3tPRxyVfp3k5ad+mEOZLzmiwAoFV9/LFd/u9/zeezktSpk/TEE/U3v0lMlxJSJb9XqimQiuZJeS28eFnn+FCtg+MOQJunmGNKQOcxdrna8V2T1E5SsuNOoFF+rgfEWiDoLcGTIL/l1+xN7TP4bVWh+Zx7QM4ASdLA3IFaX7I+WA8AAAAAAAAAAAAAAHZNO/W16Ouvv17Lli3Tn//8Z51xxhk65phjdMYZZ+jee+/V0qVLdeONN8aqnwB2Q2Vl0g/1NyLPzpYuuKBxm0GDZL6sHs0DQLM4g982bozUsLvkqR8SVIVPdOvfP7rtDXTMVd+wIXy7mTPt8s6GJaSk2GVnCBzQnlVUSNOmSe+8I33xhVRQ0MwNFDj+CLsdE7pN/fF3wgQzuf39992TLOvqpPfeM3eTx+4lMCk0OSFZnTuYyYm9ssykiw2lbRz85i2OvL66WEp3TNCsWB+2bQdHxkSkY5Kk4CTcPll9lJKYor1y93LVtxVnYF2k4I0BA+zy+vD/JFFrGOi2ebN0yCHS3/8eud2aNdJZZ0kLF9p1zuC3JUvcYXaSOXZ/8IFU5jXBbgf1OEirr1sdfJyz3zmS7OA3ZyDHtm3Sq6/ay999J331lSk/+aRdf/PN0ty50v33mzC41aulX/860r9AEyxLqqsyk2IBtFvO95vvvnO/v27ZIr3+euv3aVfwwyZzsWdUr1HyyKMt5VtcobJRB79lOA5evkpp+VPm/XXTh42es2ibGXDu23lf7dt5X0km0K3OX+dqt3THUknSoLxBGpQ3yFUnuYPftrbmHNPaMumLcdLc6+zQN8lMdF31grTujdjvs6A+6Dln/7CBerEWOAZL0imnhA5lcYa1om3NmmWXdzrE0hn8FuGmAlLj4DevV3rsMTs0MGBgiCzEOvefvCv4bd680PsrL3eHuzVUUFWgWl+tJHfA8Icfus+zv/nG/W+GdmbV81JtiSn3v0g6bY107JfSqaulY76Usoa4mn+68lNNXjlZk1dO1tOzn5bP77hYYtXaZU/9/bd81VLZMvtRudF1rTUWwW+RXudVdVUqrynf+Z3sQhZsXSCf5VN2arZOHmzuMDR389w27hXiyfl5R6wCfJ3hbuHW1fpqVeotDdvOFfxWaILfBuQOUIInIXhtKVAfD+tLzElKz8yeSkxIVIInQT0ze7rW7Uk+/9wu//nPduhbwPHHS4P3TbXD2ipj8Abcoa9dDnzGlphiwj89jvswdmgQwrfk7+7nBKR3t8vFC6TNn5myrwUv/IwQfUvJkfpfIGX0d7ddeJ+06G926FtqFymlPqy7eot9nAQAtLr166WV9ZeTBg4011waGjlS5nPdNMcFzcUP2mXL1/ApkdU5QkATHQOxpY9Isy61H3WVJmxOcge/NeS8GWEsjr9AlAJBb8fvdbwkcyOweH3G3ZZWFpo3iYG55oJaIAAuUA8AAAAAAAAAAAAAAHZNSU03iWzAgAG66667YtEXAO3MrFl2OMyoUUzsBFpb165mMlRVlZSfbyZDOSe5ByUkS2ndpKrNZhJJGP362eWffpL8/tCTuJ0TcyMFzwQmz2ZluQNhWsIZ7FNUtHPbciouNkFXb78tLV9uJhj37Ssde6x0+eVS9+5NbQGIvdWrpbvuMiFJzkCohATpl79sRgBJ6RLzs0Mfc9f1MNaulf7wB5PBIUkXXSRdfbUJdZ07V3r88Rb9GmhjgXA3v+XXEf85QpIdihIIhavx1aiitiL0BhS/4LeS6siTCEu8JVL6/nZFUZiEB7nD0NaujbzfQMDbXnlmUm7cJ+dGGWxs7W9F9ZS99rJDVdevN+PvnTF4cOzaOY/zliV9/LF0ySV23euvSyUlUlm2CXbr3KGzBuTa//O6Z5gDbiAYbu+93du/5x7p/POlykrpiitMXUGB/e/Rtav017+6xy2ZmVKLsuo3TzEBPfkfS74qKSFFyh4m9T5TGnq7HaYLoF3o08cu19RId99tAnEtS7r9dvdYbE8SCH47su+RKvWWasmOJfph0w/qnWWCDKIOfstscBD56U4TvFOxrtFzFu9YLEnap9M+2ruTORDU+Gq0qnCV9um8jySpoqYiOMYZnDdYHZLNieKOyh0qqCxQpw6d1NORHbt6tXTooc34xSOYNUt64w1p8mRp+3ZzLj58uAlDvewyKeHnu6XCOaZxzghpnxuktO5SySJp9X9i0wknX41UWZ/YnrN/5LYxNH++XT7kkFbbLVooEMabkeEOUGuR5GwpKUOqq5BKF0ds2jA4OJyGAXGhOP+mp00z16Kd16DnzzfjzO1dIic9bq/crp6ZPV1BXKWl0gMPSI88YsaZf/xjdP3GbmpLfVJQSifpkH9JSfUXGz0eqds4qetYV/Mv1nwRLBdXF+vHLT/q4J4Hm4pA6IEk+WtN+E8IzmutC8Jfko3a1orIr/OtFVuVmZq58zvaRczNNyFv+3ffXwf0OMDUhQt+K10ubXzXBEwkpEiZg6Tu481P7DacwW/btsVmm9EEvxVXF0fchnPsG7y2lOu+thTPmwoExr8VtRX6/Ue/N+WaCte6PYVlmfFAwNFHR2ic3kvy7jCfiVnWzt2AzBn8VrlRyg0z/k7JNYFz3vpB2NpXpeQcaesX7naZDS58LbjNXG/6+Z7m9y3DcbCJFLJTUyQt/pspp3aWRr8s9fiFWS5ZJC36a/P3DQCImW+/tctjxjRx2MocLFXWjwE2vCNt+p8J9Qxcl4pWgvMrpRFugOPxmHDT8lVSSYTrAc7gtwjfSQFqa813dN58U/r6a3N9JjfX3LTg0kulc85p3vZm59cHvw08Xj9v/VmbyjZpTv6cYBBce7GyyAS8BQLfgsFvRQS/AQAAAAAAAAAAAACwK9vp4DcACGf7dru8774RGlqWeznwLcWG9QCaJSHBhLH89JNZXrs2wt9iei8T/Fa62Ew6Se3cqEmXLnaQXGmpmZB4wAHuNsuXuyfm/vBD6N35fCY4QXKHtkVjxw4T5pKWZiYmJyWZvgWsjNH3Fr//XjrzzMaTyNasMV8w7dixhYExwE5YutR8ob+wfj5hbq40erRUXm5C2L75phkbqys3P9McCYarX5IW/sVe3vdmvf7ONfJ6zeLvfic9/7y9esgQE7ZUXt6iXwdtKBDu5rN8mrFxhntd/aTQoqrISZpF1TFM2nQITKi9+pCr9dsDfhusH//f8SqsKjTrkztKyVlSbam0fboJNwkxmX6ffezymjWR97uiwAS8BSfn5oWYnBvNJNAYj2Gdx8lIf2vO4++cOdK55+7cfnNzpbw8+/0mnGiCO/Ly7DGEZIKTzjnHHEuLiqTbbpP+9Cc72K1jSkfX8wPLZTVm/YgR7u2vXWv+X5eU2AGw06aZkFrJTPRNTdXO+/keaeG99nJShuSvMeGDRfOkIbdIibHY0W7EXydt+9qEKJQskaw6Kb2HlHeo1O88M+Frd1BXJW393ARCyC+l9ZA6HSpl7d3kU8Px+cxrsq7O/A0k7SJX4CprK4N/a1mpWUpPTm/iGXu2/RvM13/5Zal/f3PO8eqrYYK1w4k2SGA3uBYSCH47sMeB2ly+ORj8dtaQsyQ1I/gto5/kSTLvHQEhQt8kadG2RZKkfTvvq4yUDPXJ6qMNpRu0aPuiYPBb4JjtkUd75e2lpIQkJSckq9Zfq2UFy3R4h8Nd58RNjQ2i4fdL114rPfts43WbNkmffipdeIFPGWv+ayqzh0njZ0pJ9X97PU80IXBhfu8Wq3MMGpzn99+eKeX/z14+7jupU+wS2koc+b29Y3gI2LRJ+ugjaepUacsWKSXFjEGOO86ct6eEzlSKDV+1VFNsjvHJOTsXCrILsSx7bNahQwx+LY9HSu8tlS2TCmabsKuE5JBNow1+axj2G4ozsK6gwAQMn366WbYsExB8003S1vImArHKt6pnZs9G7/tPPWWO6dOnmzH2fvtF13fsZuqqpB3fmXK3o+3QNyfHH4nP79NXa7+SJA3MHajVRas1bc00O/gt0fF873apQ/0L1ZMoWb7gKmfQ4MyZoW/asWpVdCGIUnSv80F57SfoLBDytn+3/bV/N/PH++PmH+Xz+5SYUJ8AWbVVmnGRGeuHcty3UpcjWqO7iIGuXc15VV2dGcfV1krJoQ81UYsUmBhYV1BVEHEbzvWBmwc0vLYUt5sKSFpfYu6+U1hVqOfnPR9y3Z6iosK+4VDfvlLnxh9z2Tr0MqEz3u1S6VIpe0jLd5zhCH4rmif1Ojl828y97eA3q05a/kTjNh33MkFvVv2FreL50lcntKxvzlC64p/Ct9v8mRm/SdKB/zDnKQE5w6Qxb9j9AQC0uq2OIUuT56WZ+0hbA0molvTNKS3baaLjunFtaeS2geC30qWSt1BKzWvcJildSsmTagql7d+ZzxYSdpGL5thlFBdLJ50kzXB8dO3xmL+BTz4x58jNCX6zLEtz8k3o4YE9DtSBPQ7UprJNmr1pdvsLfiusD36rv7FW4GegHgAAAAAAAAAAAAAA7JoSWvrExx57TJ07d1Z+fn7I9fn5+erSpYuefPLJFncOwO4tMHlQauZkaAAx4wy8CRfCJsm+w7Lll9a9EbKJxyP162cvv/aae31RkfTgg+7JiLNmmaA2J8syd6UOhF8EAqUi2bJFuvlm80XmLl1MgF3//lJmpnTiie5Jw8uXh91M1IqKpJNPtkPfrr9eWrjQ/C6zZ0u33tr8wDogFv74RzuE6YYbpPx88yXnb74xfyf33CPzxxrNw18/2dgZtFFbZkInAo/aEr39tr366qsb9ykpScrJidMvjLgJhLtFWucMbfnvmf/VJxd+ok8u/ET3jrs3uN6KQzhNIPht3877Br+Ef2CPA5WXnudar/Se5mdtibThrZDbch4HZ8wI2SRoeaE5gJR4S/TWore0ZPsSSeb3LKiMPMm3RSzL/QhTn+eYH7MiwjzhgQPt8uTJjXODSkvNsaw5Ro5suk3v3k1MpJV5yznwQHt5wwYTJPn229Kxx0qbN5v6QLBbZmqm6/nB4Lf6sKquXc3Dae1aO/QtsI/m/B5NKphjh77lHSIdP0s6p0w6t1IaP0Pqf1EMdhI7tbVSZWWY/ChftZnQ+/M90rybpJ/ulta8LFU0c0K4d4f0+ZHSl8dJK56Vtn1pAjPWT5Lm3ywteTgmv0tc+WuleX+U3u0sfXOa6ff8W6WZv5b+t4+06P5mbc6ypHfeMcGLnTtLnTpJ3bqZceNhh0lffhmn36MZbvj0BnV/tLu6P9pdt31xW1t3Z5c3dKgJ1A6wLOkvfzGhb3uqMm+ZFm9fLMmeLCfZYXCSPYbo3rG7Xjj1heAjMJkuOMZISJI6DmhynxU1FVpbvFaSgiFvgZ+BvkjSsoJlkqQ+2X2UlpSmpIQkDcw1B8hlO8w6Z/Dbjz82sWPLL236nzT7D9LkA6SP95Y+O1j6/iJp7euSpOees0PfBgyQ3npLKiszkxSnTJFOO01KKJwh1dSPJfa63A59C0hIkjKjTPVpiUCAg2Qm1fpr7Yes6M4dolTnOLVITNz5rluW9MAD5vz/yiuld981Ie3ffCO98IIJoY40Pmoxv09a+W/pi2OktzpK7/eQ3skzj29Ol6q2xGGnrcvjsYNxo7kuE5VA4GtdmbR5SthmOTnusWs4I0Y0HegzeLB7+eqrzd+fJP3rX9KHH5pypGAf5/qGwW81NdI//mFC39COVW82gc6SlOs4cdnyuRnbBh51FZKkeZvnqcRbosyUTF19iLlQ8sWaL+znZfSxy2X1b1KdDpHOr5N6nxVc5bzOWllpv14DfvpJev316H+NaF/n7YUz+G14t+HyyKOK2go7vN2ypG/PsEPf+pwrHfaqNGaSNPROE6zkq2mbzqNFUlLs6zw+n7kOsLO2lIc/pgfWOa+PPX7C43r6xKf19IlP6zf7/6bR+sDrb0vFFr284GUt2LIguK1SbxOBKS0UzTU+p81lm7V0x1It3bFU1XXVcelTWykrs8tNXq9Od6THrv3vzu3YGa62JfwYSJIJfmtKYqqU0X+nuhSU1lVKqB/0bfsyfND45k/NT0+C1DNMQJCnxV8tAgDspMpKu5ze1H08siLdlbMZkjpKCfVJ++Wr7Pph90gjH3G3TQ+k/1vmJjHhBI6/NQXmMwqggeuusz/PPfpoU66rM59xfvihdEQzc7tXFa0K3shsZPeROqC7ubPl7PzZsex2m7MsS6sKzd/pE7Oe0FEvHaUHpz8oSVpXvE61vtpITwcAAAAAAAAAAAAAAG2oxbdOfOuttzRixAj17Nkz5PqePXtq5MiReuONN3Tddde1uIMAdl8dO9pl55ftY+G52c8Fv4j1h4P/oEN7HRrbHQDthDPw5p13pIsvdq//6ScTRtEt05GctuB2qceJZuJ5tXtC4KBB0tKlpvzEE9LZZ0ujR5uJsJdcYuaM9O1rwhH8fvMlzKeeMuEIAS++aAKqsrOlggIT0lJUJOXmhv4dFi2Sxo2zA+SOOUY65BAz0WvhQumzz0ywRna2VFIirV5tAtsaBsI0x3//a08UvvpqM8k3oFMn6eCDw8+PAeJl40bp0/r5V336SI884g5TyMyUfv97SVdEucHk+gO1d3vYJpYl/fyzvf0RI5rdbeyiIk4KLWkc/HbmvmcqIyVDkpSdlq27v7pbNb4aVdZWButjJRDslp2a7aoPLAeD37L2lUrrD0pzrpG6HCGldJLKlgWf4zwOzpkjrVljQlkCfD7zd3Xyyfbk3EmLJmnSokmufa8oXKFOHTq53/ydIShxPCiMHCn973+mvGiR6WsozuDVn382AVPHHGPX/elP0llnScOGRb/vww6Tpk2L3MbjMWOBjz+O3O7QQ6XvvrOX33zTPJwCwW8dkzu66gNBcIH1kgnlmDo1/P6qHXOXm5wIFY21L9cXPNIR79hhDp4kqfNo82hDlmXCcN5914ThbNxo6tPTzXv3//2fdOaZklb+S/rxZqmu3DTwJJhgI0nyJJowimjNvlIqmCnJI424Txr4OzOhuHqrmTDsj1WKTBzNu0la8bQp9z7DBPildZcqN5iJZ1b0/x6WJf3mN2YcKZmw4osvNmPtzZulL74wochHH20/Z/6W+aqoMQEih/U5TAktnETt90vz50vTp5v3iYoKcz4+aJB5HwgEL1bXVbve3177+TX9ffzflZzoSNXx10nr35I2Tzb/f2tLpcR0M+m882FmYl9iaov6uTtKTzdBYYsXN922SQ2PFYHjyG52YjFv8zxZstQxpaMGdxqsA8vNC2xO/hz5Lb8SPAnBMUTf7L667MDLgs/dVLZJU1ZNcY0xlHuAHYoTxtIdS2XJ/Dt9s+4bzcmfEwypWLR9kaudJK0vWa+0v5o7EHh9Xtc6Z/DbZ5+ZibPOUG/LMueZw4dUSN+eKW2pP9ik95IyB0m+Kmnje9K2L2X1u0BPPWU/9+OPTVh5wPjx5qEVP9uVXcaYn74aaYtjgmtSR6mb4w1iZyU5xmfO8b4nQZJHUnxed1lZdrlhCHxLvP66dPvtpjxggLm+MG6c+dtcvtyEMMb8ZhOWX5p+trTpA7Oce6B5/0tIlUoXm+ND9VYpvXuMd9z6cnKkrVvN5NkdO5oO822SM6Bk3vVS1yOl5CwTOtvA6NHm+k0kaWlmHDN3bvg23bqZELnAtjZtkkaNknr0kL7+2m4XKdjHuX7AAHPuG+tr2XuKbRXbNOCJAarx1SgpIUmrr1utHpk92rpbTatzpCg43z8X3C4VOiaDn7ZOSsoIhrwd0fcIHd3fvHd/u+5beeu8Sk1KlbKH2s8pWy51GxdytxkZ5rUaCMK+8UZp7Fjzui4qMuGW558f/a+xtbyJ4LcG67113uC1gcyUTHXr2C36nbWx6rpqLdpmxgAju49Ux5SOGpQ3SCsKV2je5nka0mWItGNG/fmKpGF3S8MdF6j7nmvGtSHen7BrGzbMnPNI5uYyDQNAJTOeiza3NtLxYXvFdtX564Jj16SEJF0/6np56jf+4bIPNXHBxOB6y7K0osCMa0NdW1pZuDIYmhxL60vCh7g3XGdZlo55+Zjg2PjJXzypa0ddG/M+tRXn9R/nzclCynS8eJb83VwT6HSoVLmpBTvuYa6pWD5p+3Sp4AezrVByhke3zeyhUnkTg6VoeBKkjL7mnKt8tTm/6XF843aV9deKMwZKKfXXZHfMlNY5Eki7j5d6hQmFAwDEVYbjNKW8vInG2fs10SBKCUlS1hCpeIFU6rjzXpcx5nqxk/PGDgvukHqebI6PDcfbmYOkkvrrZHP+IHVeIKXkSlWbG+1+61ZzU4Xp003gb22t+Z7G0KHSL3/pvgaH9mHbNumN+ntUdusmffSR/drPzJROPdU8mmP2JnNOPzB3oLLTsnVAj90s+C2aExvL0taKraqoNZ81Ld2xVEu1NLjaZ/m0rmSdBuUNCrcFAAAAAAAAAAAAAADQhloc/LZ8+XL96le/ithm6NChevXVV1u6CwC7ud697fKCBbHbblFVkW6eerMqa82ErIKqAn1w/gex2wHQjjgDbz76yITABMImCgulCy+sD5LqfLikR82KujJp6mip415SwSzX9saNs4NdamulM84wX6z9+msTInfqqSaQbfhw++/+vvukIUNM29dek666Srr7bumgg8yXdSXpxx/d4TRON99sTxh/+WXp1792ry8sNF/0HD7cfPHXsqRXXpFuusnd7rPPpBNOsJfXl6wPTsTau9Pe6pPdJ7jurbfsdpdeGrpfzu9Y+vw+3Tzl5uCXKR867iHlpodJsgNaaPp0E+wiSSed5A59c4k2VGTGb8xEtOpt5ov3iWnSoCukARdL/9tXqt4qn8+j2vobQGdkmFDHmKoprg+YtKTkXBMYFO3MTOyUQLhbKEXVRSqvKXdNbO2QbCei5KbZ72+FVYUxDX6zLMsOfktrEPyW1iD4rfPh0sb3Tbm2WPpokJSQIvnsSfvdu5sAktJS8ydw883SpEn238+dd5ryEceWaFvFtrD9Wl6wXKN7t02w18EH2+WvvpJuvTV0u2HDzO/i85nl884zk6D79ZPuv1967jkT/NYchx0WXbtogt9GjWp6O2Xe+uC3FHfwW2A5sF4y45lIwW+ZmXY5FsEzweCfvIPt0Leqre4wnfSeUmpeDHbWPH6/dO65JvRNMmOi3/3OhEgUFJjAvZkzpTNHTZZm/8E06nW6tP8DZqKz5TeTrTa+F/1OKzfZ7QddIQ29w16X3l0aeEkLf5laqXihVDxfqi2TEpJNEFvOMKnjoOiPEdG0q9omrXrelPv+UhrTIImw3/nNCuT63//s0LexY6UPPjDBxAF1dWayWsC64nU6+N8Hy2eZP9r3z3tfp+97etT7C/j5ZzM+Doy9+/UzATi1teb97oUX7ODmj5Z9pBJviYZ3Ha7qumqtKFyhKaum6OS96xMla8ulr443IRnySD1PsoNLSpdIy5+ShtyyRwW/SdKRR8Yo+K2d+GHTD5JMyEqCJ0Eju4+UZMI5l+1YpiFdhgTHEM4xg3PZFfzWabS03h2K0dDi7fb/gOs/vT7sumUFdvhrIPCt4bq997brSkulxx4z44GAZ5814YnDPY/Z7/0HPS0NvrI+NE1m7Lz1Sy1ZIi2r3+XBB0eYcFpXYZeT6o9xdWXSN6fZ9VlDpJNj+EJLTJU69DEBDhVr7PqjPpBKFkmfOJJgYxhsO8gxf3DevPCBtdGwLOmhh+zl9993B1Hvu6+53hBzW6baoW9D75CG3+f+d/EWmsnP7cDBB9sBw3Pnuq+ZtEjnw6TVL5py+Spp2jFSzv7S2safEY0aZa4RNeWQQyIHv0nS4Ye7Q+SWLzcPp60V5iB81pCzdN2h9o2Krvj4Ci0rWBYMxEpIkI44Qpo8uem+obEX5r0QvGZf56/T8/Oe191j727jXkUhXFhmGIHgt6P6HaUR3UYoKzVLpd5Szdw4U2P7j3UHv22ZIg36fdhtjR1rT2zPz5eOO8483n1XWh8+yymkwOv8lL1P0W1H3Basv/qTqzV/y/zg+oCnf3haN0+9WZI0IGeAll+7XEnxen+LcrJ6tH7a+lNwHF1dV625+XPVM7OnVhSu0NzNc/WrEb+S1gfG9x5p0JWNN5KQJCV0bFyPNmVZlm6Zekvw9Xrf0fepf07/4Pphw+wQ+RdfNNfunS+vzz4zbXr1anpftb5a7ag0Fwx+f+DvNSDXBJbsqNyhR2c8KkuWtldsd41tPY6dBca21XXVqqqtUom3xBVY39DyguVxCX6LdI2v4bqv132tpTuWKiUxRTW+Gv1z7j91zaHXuH6v3VlmpgmOra42N39oGPLs0vlwu2zVSdOOlTL3lormNX/HCUlS9jATjCNJ354lHfWRGfNXrA2/30g6j5E2fdT8voSSPcwO255xkTT+Oym1iwknDfDXNn5eyWJp+ZP2clIGwW+ITvV2c81t29dS0XxzA4rENHOOmnugdOi/zDU/AFFzjm1++qmJxp1GuW/4sjNyhpvjW9lS83lyWpg773V2fJjk3WaOq12PktY2OPHvfLj9uULlRmnycBP8VrLI1ewf/5Buu80c09PSpDFjpJ49zfdCnn7avqYXNcsyYf47ZkplKyV/jblBWsYA0/esfZreBuJu8mQFv5dw1lnuwMOWCgS8BcbhgZ/5ZfnKL8tXz8yeMT9fbQsrC1c2uZ7gNwAAAAAAAAAAAAAAdk0t/gZ/ZWWlMpr4hkVaWprKm7zVJID26uCDzRexKirMBL3ycqljDObRvPjji6qsrdTYfmM1O3+2Plr2EV9SQvOVLJJWT5S2fi5Vb6mfuJtiAjuyh0pHvN0uwofGjbPLlmWC2R55xExkfeQRaUX9XA91HuN+oneHeTQwfrx7eetW6amnGu/3pJPs8AnLki64oHGbI46wg98++ih08NvKlfXBdDLhcRdd1LhNXn2+yv77m2AsSfrrX01AwyGHmOV33pHuussObLAsS+e/fb5mbJwhSTq8z+Gafun04AQnZ0BM//6N99nQW4vf0j9m/SO43L1jd9179L1NPxG64dMb9OXaLyWZCXZXH3p1G/do11VpZ1kpJycGG+x8mLT2ZfPl9s1TpN6nmYCIxNRgqEVSkhUMzSooaGKyXLSqNkuL/ipt/lQqX232lZQp1ZaaIIwDHpUGXb7zvx8iWl9iZpAfN/A49c/uL0mq9lXrlZ9ekWQmhoad2OoItiysKnQFZ+6s6rpq1dZPNMxObRD8Vr9cUl1iKhpOlLTqJF+dq8rjMceX9983y+++awJLTz1V+vBD6b33pDvukFYUrlAkywuWR1wfT87gt88+M5N6nKEnW7aYQLjzzzfH1q+/NvU7dphjpzMMrrlGR5l1F01A3PjxUlKSCb8KJzBBOmzwm2MC9fHHS7ffHn5bw4fb5e+/b7p/Taqtf92ldbHrlj8pLb7fXj70BWmvy2Kws+Z580079O2ss0yAbcOgzro6SV/Xp+d06CONecNMuAzIO8g8orXje6k+aEE9TrTrFz8sqX5CWUKatO8N0W3PsqQlD0mLHzT/1um9zITrhCSpYp2ZjHzy0thOwNoyRfLXB0MN+E19P/zSJkeKYWKa1OP4qDb3zDN2+Z573KFvknn9Oyfo/WPmP+SzfBqQM0Britfo4e8fbnbwW1WVdNpp0tq1Umqq+X9/yin2aYzP5w5hf/mnlyVJ5w87X1W1Vfrrt3/Vyz+9bAe/LX/KDn0b95nUo8Hgv67SnDPtYU46SfrXv9q6F7uOH/JN8Nu8zfM08ImB7nWbfnAHvzUIw85Jy5HUIPitc4SDjSdRSkzTou2LwjZZumOp6vx1SkpI0tIdSyO2k8xY9uCDpTlzTP1dd9njhXfflR59VHrwQUkrnjUNuh4t7d3gHCUxTep5ogpW2VV9+4b/NZScZZerNpv3Mk+C1HGg5C2wjzGx1mm0CX7bPt3sJ7VTfPbjMG6cHcb25Zfm37eltm+3JzPvvbd7/BNXqyeYnwmp0rB7zAukrtL9/6mdBL8dcYQd/Pbxx6GD3+rqzDEsKl2OdC8XzjWPEA6PMvNkzBjpn/8MvS4w3jnuOHMDgEgCwW77d9vfBHPV65/T3wS/OQKxTjyR4LeWqPPX6Z9zzP+su466S/d9c5/+Nfdfuu2I25ScuIsHe6T3lBLTJV+VCS0MOPJdaetX0kz7LhTeOq+mrzcXIMf2G6vEhEQd0fcIfbLiE01bM828vlI7S2ndTND9xvel4p9NYEII48fbwW+StHChebRE4HU8tMtQHd7H/iMbmDvQBL+V269zb51Xj800SQk9M3tqTfEavbXoLV0wPMRF3F3Q3Hz7veWIl45wr9tcv64q3/xMyTHh1JK5/vX9hXbj/hdKBz0p7Dqmrp6qR2c8GlxOTUzVC6e9EFweOdJu+/335gYz995rDtfTpplrPtH+DTlvAHDdqOs0tKsJbQwEv0nSlvItYce2Da+PrS5arUgCN6GJparaKm2vNIGVR/U7KjjeLq4u1jfrvtH2yu2qqq1SenK6JOm5Oc9Jkm45/Bb958f/aPH2xfp2/bc6qt9RMe9bW0hMNOObzz83Y5hZs+wbITWSd5A5v/XXmOW68paFvgV0O8YOfqvaJH0WJuQv90Azzgxcj2goEIbV5YjQ6wOa8/llt2PskB3vdunjvRsHAgXOFao2mWs0Ho+U0U/qfZa05TN3mDUQSdkKaeoY81rLHCzt93/mZg7ym7ClrdPqrynu4uNDYBcz1j6N1Xffmeu+YW8Qlpwp5R4Q9ny8WbLrz2Msv7lWNvzPodt1PlySR1J9OFbpEvNoqEuD76RU5dvj9nrffivdeKMpH3ig9MknUrdu9nqfz4RmR61shTkHKJxjrul1HWduNlO5QdrwjvmM+vgZzdgg4qWoyC47bzS7MwLBbx8s/UBZD2TJkh3gNnvT7BbdjKdVRXnDjmiC3wAAAAAAAAAAAAAAwK4poekmofXr10/fNzF7esaMGeodq29iRKG8vFw33HCDevbsqbS0NI0cOVJvOGdMRLBt2zZdcskl6ty5szp06KDDDjtMX3zxRZx7DLRvKSnmC/aS5PWGvuPqxx83roukzl+np34wKVO3jrlVFwy7QJYsPTmLyTloho0fSpNHSEv/LuWMlI54Rzp1pXTSIunQf0udDm3rHsZM797uybQVFdKVV0pXXOEIfZOk9G5R/d7Dh5sJ100544ym2xzhmLfy3HNmEk6AZUmPP26+yBswcGDkuSznnGOXi4rMhPOLLpKOOsqsq6mx13+47EPN2DhDQzoP0X5d9tP3G77XR8s/Cq7v3Nluu3Zt5N/D5/fpL1//RZL04LEPyiOP/jHzH+4wgz2RzytV5ksli6XihVL5WqmuytVk5saZemLWE9pavlVLdyzVbV/cpi3lW9qmv7uBPo5srZ9/jsEGnXdfX/6U5A+dDBWYHFdbayZQNmVj6UZd8dEVuuKjK3T95OtVVev4/15bbib9rHjWfJF+/AzplzXSOcXSL6ulY7+S8sJMikPMVNRUqKjafHv+nrH36PnTntfzpz2vl05/SQn1oX8bSjcE24QLbZEUbBMrxdXFwXJ2mjs1KSvVhKYUe+vbdBolpXZtcpvO44NkQl0uvdSEvgUEgt2SE5I1otuI4KNzB3NAaCoYLp569TLHQEny+00gx9SpUnGxCa8bPVpas8asD3X8bWnomyR16hQ6AERyjweOOkrq2TN0u6Fm3rTy8iJMtq1X5jXBbpmpma76QPBbeU25/PWTUg84QOrSRWGNGSNl1efsTJ8urV/fuE11deT+uAReaxWODeWMkPq1fTDCq6/a5WuuaRz6JtUHthTVT0DOO8gOfVvyqPTZwfZj82fR7dQ5OdgZfvPTHdKC28xj0X3R/xJrJprn1JZIh/xbOn29dOw06egp0inLpDO3msC6aFmW/QhX73Mcn5Lr32/8ddK3p9uPH6IP8tu82S43NV4urCrU8/OelyS9d9576prRVd9v+F7frf8u6v1JJugtMFa95BITaukcLycmmslxkgk1mLzCpNicN/Q8nTfsPElmwlPwvXfda+Znzv526NuOWdLSf5jHyn9LJS1MItmNHXOMub4B44dNJvitsrZSa4rXaE3xmkbrCqoKJJnwWKfAmKKwqlBW4O8z90D7b7ChXqdKyVlavH1x2P7U+Gq0umi1/JbfFdTqqf8vYFXRKtX6TLjseee5t3Hnnea8+ZFHzNtDorwmIF6Ssva1G864WJrUIfjomvhDcNXqSDkfnRzhdjvq/85TcqVTV0l7/T7CE3dSIFTP8pmw0p3h8UT1GD3a/nv58kszZnEqKpJeey26Xfodh5rk1swE8NaHwKR3t4M3Nrwtvd/TfixsxjFuF+a8LvPvf7vDci1LeuKJxv8PI8ocXB/q0LSDDpL2CZPnepAji/aMM8LfSCRws4MzzjABqJEEArG6dHAPILtmdHWtl0zw2x6lrspcvyldah5Vm8NeH4jk4+Ufa0PpBvXP6a97xt6jQXmDlF+Wrw+WfRCHTsdYYqodsLPxAxNML0kdeptQOIcZG2eous6cSNw89WaNmzBOC7aYcfYXaxyfKXYdZ35aPumLsdLql6T1bzUKFTr11NiNMwLBboHXdUDgde98nb/y0yvKL8vXob0O1d/H/12S9OB3D9rH5yjf96MWzfi8GYLhbiH8uPlHc96YVH9eWVMs+epP/hLTpPQekq9Sqikw16mwy7AsS/d8dY8kc509PSldE+ZPcAWqHXeclOsYYv71r+a4ccgh0rHHmptXRMt5Hdr5d5OXnqdET2KwjfPGCE7O5cKqwuC1o9TEVB3U46DgI/A3GI9rSxtLNwbLE06foA/O/0AfnP+BXj7j5UZttpRv0btLTGr8ZQdcpl+PMKGWgTC4AJ9PmjfPhF//7W/SrbdKN99swn1fftlcj2ozhXOln+6Uph0nTR4pfTjQhJhNGS19/yvJ59Vxx9nNH3us8dvLxo31YTGJaVL36ILeo9IjzAW0hhJTGofeBNd1sLeTd7BZDiVzsNRxr53rm/O6jiR1qQ//81WZsH9J6n6sdOQ7jY6FQETz/8+EvqV2lsbPlPa9ydx0qPcZ0pCbpXGfuG9GgfYj1uNHuHTrJg0bZsqbNpljckOfOS/tdxnbuEFAlDc6MdtxHLMW3ist+pu5qdfWL93tUnKaDi2VpLxDTEh2BE88YZfvu88d+iaZa959ov2owO+zQ98y95FOXSuNmyyNfkk6YpJ00kJp3KdRbgzx1tVxKrtqVfh20arz12neZnMOXuuvVVlNmcpr7HPAQChcrM9X20Ig2K13Vm9dfuDlwceAnAGu9QAAAAAAAAAAAAAAYNfT4uC3U045RdOnT9d//vOfkOtfeOEFTZ8+XaeeemqLO9dcZ511liZOnKh77rlHkydP1iGHHKILLrhArzUxm8zr9erYY4/VF198oSeeeEIffPCBunXrpl/84hf6+uuvW6n3wG4myi9tnnWW/ZQ//9mETc2cKU2eLJ1/vvS73zVvt+8teU/rS9arf05/nbDXCfrDwX+QJP3nx/+4gkL2KNXbTUDDqv9Iy56QFj8sLXtSWvOKHe4At/k3m0kNnUZLo1404UfVW6VtX0kV68wkhoo1TW4mHixL+uAD6aqrpFGjTKjJSSdJp51mHiecIIU59IZ19dVRNuz3q/Dr6ifiezymb0055BATRBPJEUfYQTZerwloueIKM+n+0EOlm26SevSwJ+/+8INpF85RR0n7OubkV1aaIJRvv3W38/l9un3a7ZKku8ferbuOukuSdPsXt8tXP7H13HPt9i+9FHp/ge93vrHwDS3dsVT7ddlPt4y5RWcNOUtlNWV69PtHI/8DtEeWJS1/2ky0ereTNOsSEyi2+kXzZfCvT5bWT5Ik+S2/rv/0eknSX4/5q648+EqV1ZTpji/uCLnpTaWbtLJwpVYWrlSNryZkm/Zu3Dipe3dTnjo19Beea5rzT5M9TMrob8pbPzcTkddPMqEuNcXBZr/8pf2UO+5oPLlvwQJpSf1N231+ny569yL9e96/NXfzXD35w5O6ecrNduP1b9jvrwc9ZcIo/p+9+w6PqkofOP6dnjrpPSGEEnqXKqCgIAqKHXtB19517WWLa9ffWnfVtSGKBXtFBASkSpdeQkJ678n0+f1xMpmZFEggEMr7eZ55cjNz586ZO/eee+4p73E7YOszsOMlKPhFdb4Xh1V2VXbjclJoUuOyXqsnPkQdZNmV2a0ObA3QBxCgV4OzOjrIpV/gN5N/EBjP/43raPXQ5WJaZVIDa88/33vutGZXqRp8OyxxGBtv2tj4+OuYvwL4BZI50jQaFczLo6AAJk9WA52nT4esLO9r114LoaHNt3EoWrvuz5zpXdbr4S9/ab6OVgtXXeX933e5qYAAqLapwG+eQG8evv/X2mobt3377S1va+hQVX7wBO2w2dRxsLkhXpXDoQL/Xbyfw6eZpIa6jcrNaqAxQOoMGPMxaJpXrZSVqaC28+erst0338Cvv6rAnXZ7Oz63DXwDndTXt74eAQ2jZupyvc8FJoK5n/pOZWvB1sZgjpEneZeLfApbU7dBnwfbtg1fGQ0FruCu0OMvap8WLYaVM9Vjw4NtD0rXVuGDvMulDcGbtHqYsADSrm735vr29S4fYJ4E3vjjDWrttUzuPplB8YO4cdiNADy77Nl2fWaNT5yKA537c/6cg9PtJDIwkp93/8zizMWEGkOxOq18vuXz1t9Y9gfsehXW360exUtbX7dZAjNh85OqDDhvhPq75Fz1+O1MFXjwGBASAle3ckj43n+cCAprCtlX2UIkzQar89S5dKDgGE63szHPR2eCtGta3mAPVeezpXgLAHeNvIufLv+p8eG5Pmwp2kJuVS519joAtt6yFdcTLlxPuMi6S10oHS5HY5C6q66C4ODWv6cTozfgZ7VPgI6kc1SgNmc9OOtJ71bLgAHqpQ0bYP365ttyu8EdNgCCuqgndr4K9YXNVzwcEqeBJ/jd5n/A8isg82PY9d/2b8t3oKPvYMcmzwcFwbRp3penToWHH1bBap95Rg1S/v33tn1kbCz07KmWt2zpmAGfbRLa8KF12d77oqhRMPy/EOAtVLrdqo7zhRfUMTV9ugo4fMklqoxxzTWwadMRSvNBGjXKu49tNlWv8pe/qPu+kSPhrrvaObZVo4G0/RT4fIKXaDRwQwtxD7VaFcTfIyRE7dOmevf2BjcNC1P7vzVut/vAAbFqvOdljx6qvN0Sz0D7Y57TogLn/DQIvk6AP25U9co7X4P196r6gYr2RZx//Y/XAbhm0DVoNBpmDp7p9/xRL74h6K2zDlb/BawN97pu/yB4CzK8wd2WZy9ncdZicqtV+XpV7irvIHLf8qStHFbNhGUXQ22m3/ZiYvzrIQ+FJ7Bb0+O8aYBDp8vJc8ufA+DOkXdyYd8LSQhJYFPhJn7e3RD0oI35fmfxBH6LCoyia3hXuoZ3JTUsFVD3lbtKd0HilIa13ZDztVqMHQ9n/amCYYujzrw981iZs5LE0ETuGnUXM4fMxOl28uSSJxvXCQhQdR++1q+HNQdRnegJ/KbVaIkKimp8XqvREhMc07hOY9m2ycQIvv+X1Zc11h2NThnNmhvWND7uGHkHcHjqlnzL5omh3uBcCaEJjUGQPeu8s+4dHC4Ho5NHYzaZOafXOQB8sfWLxuvg11+rNplhw+D991UQ/4kTVRtV374qqH5RUYd/jbbZ9YYKWL/tOVVHc8qPMG0XnLUNxn4JXa8AjdYvIPr336vy2YYNsHMnvPaaKj8Uei77Xa9o7dPAEN6+9MWdfoCA9T7BjloL/tz1ChU4Bxruk1q5EU2/vcW6qFaF9vQGdmtN4lne5U2PNpvER4g289Sbhg0AU6Ra3voMfBnnfeyd3XnpEwenLX2DjvLy4/HgvPO8yzfeqO7d161TE+lNnw4P+lbLd2+lI1ZwKiTt5wa6qegx3noS3Ooa8V131d+mqbbUB2j10KWFm3wPY7hfW/eBgrwfUF2Wt9059VI1GSKo9gZPPfXKq1UA9E7kdqs2pb17VR3Ypk2we7dqkz+RTpupUyGo4VD56iu1T5pqz/7YVrytsb64JY2B344DnsBuk7pN4q2z32p8TEuf5vd6Z6mqgsWL4Y03VHDphx5SAab/9jc1SWh29gE3IYQQQpww3G7V76ekRE0+WF5+aBN+CiGEEEII0chlVxMhOupOrIpHIYQQQgghhDgGHHTgtwceeICEhAT+8pe/MHHiRJ5++mlmzZrF008/zYQJE7jxxhtJTEzkoYce6sj0turHH39k/vz5vPHGG9x4441MmDCBt99+m0mTJvHXv/4V535aPd555x02b97MZ599xuWXX86kSZOYO3cu6enp3H///Uck/UIcc9o44+XMmTBokPelt96C0aPVIIFPP23/x/571b8BKKotovsr3bnwswsBqLXX8u76dkbDOtbZa1RHxK9iVcdEfRDEjIPk6RB7qpop11rS2ansMG63CnSyapUKHPjVV+oYmjsXfv5ZdYBsM21DD1GXFWg4hmv2QOFCWHmVehQvU8/X5UHREtg3F/Z+qALs7Z0F2V9Aacd3BHzwQTj3XNW57cILYe1a1Vn322/VY948uPLK9m1zxgwYPLj113W6hoW0qyEoueWVhr7UuDhzpndgcFOewAcajZqBubWJu6OiwGBQA6Q9nE6VR/zrX96BWmazN0BkcTHcfLN/0Cm7XQVSqatTg4P/7/9a/54eszbOYmvxVoIMQdTYaqix1RBkCGJL8RY+3PQhoAZtRzSM23r9dbjjDhWopbgY/vgD/vpXlVaHy8HfF/8dUIMo//7b39E2DLh5ZfUrlNQdP+dgm+z5H6y9HUpXwfjvYMIvMPg5CB8MsaeoY0yvgjPM3jSb1bmriQ6Kpk90H07vdjpajZb3NrzH2ry1fpt9b/17dPl3F8779DzSX03n7Dln+83GfKIwGLyBHO12FQjujTdg61YVGPG552DcuHZsUKuD/o97/y9ZBstmqAHfTu/ArnPP9Z7bmzapgI23366CNE6ZogJU5uSo1/+19F8szlrMtPRpLL12Kb2je/PGmjf4attXagWTz+Bji6cTvVsNqM75GjY+BNt8MgZxWGRXentP+w4KBW8guOyq7FYHtoI3cMthDfwW0CTwW0BYs3XofY9fAIlG+mAY9BQAgYGq43hr9HrYWaYG3/aI7OH3WveI7oAanOvuxEbOm25qW3ChsDB44IHWX49o/lMe0NSp0KWL/3Pdu/sHdQEVJKSxTNHg4oshyRtbkMsuU/cCTcXHq9eqrQcO/NYYKAgVjCQqimYefVSVQf7+d+/AoLVrYeBASEtTA5fPP9+bd7VJ1ytBo1fLv1+oAufU5UDF5sZ7H7cbXnwRUlNVut54A/LyVBqCgqCyUgV/K+ng4oFvkN9//lN9ji+3u2FQs2dgcdkfkPG+eqHrpTDizfZ/aGh3b3CMnf+GrE/A5YTQHt5Bne3aXkPh0lKoAlsDGCMhYhDkfgN734Pyde3f7v5EngQRDRFjtvwTCn9TA6fjJ0JIt3Zv7j6fsW4PPqiOOV979qjrdb29nldWvQJARnkGkz6cxI+7fgTgu53fsbV4a5s/8/zzvQHfPv645WPaEwzQU84tqy/jtp9u47afbms8nzyv0bXhRqNiI+Q1BP1Ivw3O3qPy1fao2Qs/D4E/H4PAJDh9CZzyA/R/DPo+CP2fgIghh7cDSZPA9IfiiSfU9aSpxx475E0fUzyD4QL0AVQ9WEXdw3XUPVzHD5f9AMDGgo1YHdY2BccorSv1vtDz5uYfFjMe4idTZ69jb7kK2Da993Sm9JjS+OgdrS6OW4u3sr1kO6ACdXSL8J7DyeZkTDp1MfCsExur7ulao9FooKcKOkfhr5DxgTpWu1wIve7yWU9dizymToX//Q9yc1VQjLlzYcIEqKvXQM+GzNpSCD/2gXV3q8CI+T+2npBDZU73D2aR9RGsuBx2vXb4PhN46invIE27HZ5+Wg1AfughdV1sK60W7r3X+/+FF6rALp5so7xcXWv3tR6L8OA0BBzE7YLV14OtUu3LHjeC0XsMX3ONKtf89a8wZgx8+KH6zT/5BD77DF56qXkZ6mij1zevl/nf/9Rv+MfBVnl1vwGMLRTQAAY94/fv1Vc3H8R90UX+5UeA665rvqm77vLP3p99tuWAjunp0H9oDfUNwUsOFBDL4+mnm29Lo1ED648L6++FLf+C6p1w1lY45Tt1fY4aCQlnquPdp17gQHaU7ODXjF8B+Nviv6H7h65x0oXfMn9jS1F7Km4Pj9K6Uh5Z8Aj3zLuHe+bdw7J9y/xX6H49mKLV8r7P4Nuu8NNg+P18v9UW7FWB305OOZmbht3U+AjUB+JwOViStUStmDBFBY1sjdbQuPjoo60HJO3Vq23fz+60N15/PQENPZoGOPxmxzeNAag+2PgBF3x2QWN9ZnsDEXcGi8PC5iIV1XvOBXPYe+fexkdUoMp/1uavVQFbGwLCs/Z2yPxItanYq8FR21nJF61wu9088dsTgKqr+ueSfzber8zaOMsvUMEjj7RcF9BensBvMUExjeeAh+f64Bf4rUlQ40B9IEadEVD3WbvKVMDgHhEt1y15Xu9InskdYoNjMem9F1Wjztj4HbKrsnG6nLy17i0AVuSsIPr5aMa+NxYAu8vOexvew2ZT9TjFxapdZulS1R4zZYoK/nbBBSq/Sk/v8K/RNtsbAodHDoded0JQIux9HxZOgOWXwNanIe9H+vZVwXA8vvxS1V/36qXqtIuLfbaZfC6YfaK4+xrahsYmX1od9G4hCA6ALlBdWz1SzleB+P3WCYJ+D/s/1+vO5tsKToNuLRSODqTPfvq89LgJQtMhviHybdFv8F03WHMrrLoOaju6wC2OazEqb6FigzeQUuqlMO5LsJWAtchbzrSWqbb23B9Uu3vWJ7Dvc/V/+YbOSP0Jy+a0sTJnJStzVrI6d3XjRGmN2tg3qK22bVN1mU89BY8/rto3X3xRPZ577hDuR49z990HyQ1dOex2tf+GDVP1Ud9+22TlsD7q3q6p/n9XwdfaSqOB/n878DqgArp5JhxrarBPfUCvO1uua9YaYNAzfnUAzz3X8sSANW3tJhAQp9oZQLUveI7VmJPB3Eu1PeR+owY6doJffoFJk1RA8KlTYdYsWLZMBfSbN099/6N9UoGOFBbmDfJcXq7KoF98oeoTd+yA//53/4H/m1qdqyYpSQpNwv2Eu/Hx6YWqs+IfuX90attvR9pTrmbMSAtP83veU0/ueb0zPPWUOsZPPVUFYz7tNDXh2f33q/rVfv3A5eq05AkhhBCHn8sB1buhYAFkf6X6GmV+pO6D8+eDpYjsbNUvbMgQNTnRnXfCm2/CnDmqDHT//aq/vBBCCLE/VVWqf+KWLapvzcaN6j6s0yb0EUJ0vrK1sPwy+KEv/HYWbHxYTQq5/QXY8ACsvaOzUyiEEEIIIYQQokE7evP4i4mJYdGiRVxxxRX89ttv/Pbbb2g0msYOESNGjGD27NnExMQcYEsd46uvviIkJISLLrrI7/lrr72Wyy67jFWrVjFmzJhW39urVy9G+4xA1+v1XHHFFTz88MPk5uaS1HS0kRDHGrcb6nPVAFNbhZopXKNDxX90g9upBl3rfQJn+I6eO8jOTnq96mR49tktd0hrTxaxOnc1y7OXY9AauGvkXWogLmqw/JzNc3hl1SvcMfIO9O3pqHgsq8+Fgl/Ucvwk6DJD/Wab/wmlq6FgvnrtwgrQBXRaMjvCb7+pDl9ZWSpo4KOPqsGzgYGqA1hVlQr81WbDXoXFZ0H5elh6nhokEdIDul+nBooAuGww7yRV2Rl/Bgx+FoK7QNFiqMtVgT7K1qrBEMaw/X5ce4T5bKqsTAVq8B3453Kp7xrWjo/U6eD772H8eMjI8H/tb3+DhISGf4xhMOJ/8NsU/5UG/AMSz2r8NzRUdbAcOdIbSAJg1CgVYMXj9NPVQOe77/bf3LRpKjgMqJmpX3hBDdZq2mk3MFAFgnnqKdXwNH8+vPeeCviXnq6CYG3fDtXVal8FBalBSO+9pwYkWSz+27vpJhVo4/HfVKCrXlG9eH/D+wD0ju7Nuvx1PL7ocS7pfwnh4QH88INKX2EhvPqqevh66SX4+M+P2VW2i6jAKIINwWpQIdA1vCuZFZm8sPwFnjndf2DzUacuByo2qSArxnAwmFXQE1B5vy4AovczUNWXuRdojer8Kf4dokaobRnDYdfrKl+KHk1N9Hge/FVNOx5mCuO6b1UP7sTQRHKqcrjz5ztZeu1SNBoNLyx/gb/O/yupYam8NPklvtj2BW+ufZPTZ53OD5f9QFRQB4zyO4Y89JAKbPD22yq4i2+wH4DExJbf16q0a9RM57veaP6aKQbiJhIUBN99B2eeqWYXLy+H11qIFbEka0ljIERPIJt6u8okZn47k6EJQ0lNOhuSz4ecL2H1DVC1Qw0sTzlPzbpeuqqdX+DE43KpvNfh8M7oqdOpgAkmU9ti23gGhcYExfgNCgUVHOWPvD/IrsxuDI7QdGArqMAt+TX5hzXwm9lk9nstzNRC4LeQNBj0NKzzGQip0cGYTyA4tfGpG25QgwKaBgjt318F9zzjCzXo3TMY16N7pPq/zl5HXnUeSeYD3xfabLBkiRq8VFWlAo1FRKhyMaisVa9XAxbaKjAQvv4aLr1Udcpo+toon2z6oYdUsNKmQZafeEINAmovnU4NKLrDp333hRfUddhXUhJccQV88IE3Xf/6l/86Wq3qlDh0qPf41Wjg3XchIMjReMw1DfwWagxtXK62VkPDv6Gh8PDD/kFhzjtPBawENaj3iy/g8stVMDS3GzIzvesGtKeIbE5X5aTV10Ftpgqc00RNnYlnnlGB3aKi4PnnVXChw23iRFWWeuopWLkSunZVg4Xi41UZaflytU9eeu5myP9ZBTFada0aNG3urQIfHIzhb8Gi06AmA5ZfCrpr1UCquvZE1Gsw8J8qXbVZ8OvJ0OMWFQwupIe3XNLRNBoY9T4smgyWAjVY3BQLAbEqKHQ7DR2qro93363K3CedpIIlx8ermZh371ZBZNZpP6C4rpik0CQmdZvU+H43btblr+OF5S/w7vS2BTWPj1cBeq65Rg1+6tVLBYNLS1N50ebNKgDV7HlbGsupX8/4ujGQZkldCRd9fhFL9y0lozyDbum3qiBURYth8ZnqPiisj5rprx3BXxRNQ50D6v3uhpO+4k8VcDuzIdjcJU617lEuKUn9tk895X3uwgtVnnMi8QyWGxw/mFCTN28emTQSUEEjNhZubDU4hu//ZfVlpEU0DEQz91IBcvIbAg7qAuCk10CjYXvJdtwNAds9gd48ekX1Yk3eGrYUb2k8rlPDUv3KN1qNlu6R3dlavJUdJTugIYDOY4+pe9CmwZ0GDWoIPh5yHxQuguKlsOoaFSAypAdYi/3Wv/Za7/mdn++9122m9z1qgOm+T8FWDjv+7f+6J9hQRxv2KtTshpIVzV+LGgUh3Zs/f4h69VKBz665puVgp411EG3wl7+oTqmvvgobNqi8NixM1ZN4gsidckpHpNpHxGAY+CRserRh0MU8MPdR143qnY2rFfrECUtJgRD/4gvh4Wog9tHunHNUGfmhh5rXowQGtvB7Hai+ODAOhv8Xlvm309D/b5B8jt9TUVEqqNsbDbejAQHw5JPNNzlyJIwdC7//rv7v1UtNSuCra1c1INr3HjkgQA2arnB4f6yY4CYBsYL9A2J5DB0Kl1yiAvl5PPigCiR8XAjrr/46rVC6AgKmqyDHhlAVFK4mQwWsjBrRps298Yf6EU9KPIlL+l3S+PzcbXNZmbOSN/54g9envt74fK2tlrxqdRLrtXq6hndtrOs/HJbtW8YlX6h0fXDuB7y6+lVOef8U/jnhnzww9gEV8MkYASd/DkvOAUe1elRs9G4kqAtVTlfjtfDJiU9yatdTG1/eXb6bXzN+ZUHGAs7qeZY6V8Z8pLZX2STwnbkPDP1347+9e6t7ohkz/FebOVMFYWqLolpvj/39BTh0u90887uqq5zQdQJdzCpC5Zk9zmT2n7NZnLWYFdkrGJ3SQsTuo8SfhX/icDkAGBQ/qPF5jUbD4PjBLNi7gLV5a7lswGUwtuE3tZbAiiuab+wwHneifX7a/ROrc1cTagwlISSBTYWqQbF3dG+2l2znySVP8v657wMqmPvChaos3rS9Y8aMtpc1PIHf4kLimr0WFxzXuE5pvQpY3LRsq9FoiAiIoLC2kNL60saAip66JA/P/2X1ZZTWlXZoffa+ShWQK9ncfEKfZHMyhbWF7Kvcx0+7f2Jf5T7MJjP/mvgvNA33YJsKN/HWurd4c+2b/HXMX7nySh3vvqvqs154QZV14xp2j8MBu3ap/yMPIt77Iet1twriWPYH7HwNUi5SQY5TLoQvo8HtgK6qrubf/1YB3r74ovlmDAafNjedSdULzB/tvWcFSL/DP4ByW6XfBgXzIM8nuLPWAGM+VvfWvs/1vA02+QR6G/ikX10moO6Tks6G3O8antCocpZvW35bJU1V32vnK/7PD/inCnANMOoDWDgRqrapepKmbQaB7SjIHy8c9WCvAKdFHWNul6qn0hrBYMauiWDVKtWGWVGhAjJFRKg6UFDFZZOpnRP2HOsGPa0mGarNUu3s3a6F4G6q3dBz/+BywIJTVf1T7CkqQHRwKpSshPocsFepNsbgVL/g2+LwWJmzkuu/vZ4aWw23j7idZ5c9S4/IHrx99tv0i+3X4Z93000qgAGotoTLLvO2nYA6TGy2Dv/Y44LZDD/8oOr69+5t/np006ql3vdB/k/e/xOmQNpV7f/g1EtVMMbtzzd5QaMmGPPcXxpCYNQsWHAKjZMvggp+6pmUBlS73uDnVIBR322NfA/C+3POOSrQxcsvq8BoaWkqKFpcnGrvWLlSBZB66SUOTB8MJ72h7gVyv4Ul0yD5AtWOoWthlo8j7OabVXlWq1X1D6mpB37P8e6FF1SbxtdfqwHqF17o/3pbg6ODdxKToQlD/Z4fEj8EgHJLOXvK9zSbFOxY43a72VWqgkz7TogC3kBwGeUZOF1OdFpds/cfbj/95M3XL7rIv007OlrV6UngNyGEEMet3B9g5dVgK4Vhr6jgzBqdKqdbCsFaCpZCHn78CmbPVm/5/PPmZSAhhBCiNQUFql/N77+rtpvHHlOTOoeEqHutoiI1ubynP22buV2qr6Bvnz+NXtWN6wKkjVUctdxuNbasstJ/rIVWq+qhzeb29Vtri5Ur1WQm+flqjGNiomqP1GpVepxO1efJM/6vvL6cvRWqglen0dEvtl/jGNi6OjX+YPduqK1VdaNhYWpbGo06r0NDW56AvUUrrlTtfpHDYfx3aiKr/F9UP8IyVXfmzP2VWb+czvLlqn11/HjVV9ZoVJ/pdqv9OGWKd5JqIQ5J9R7Y8ZIawxgxTE0QrzWpMdJut2qTjRwOCZMOvC0hhBDiSHK71ITDLru6XoGq69OaVF+ujhz3Zq9W4/1KV6u27Zixqn+3pVClw+WAoGTocjFuNFRWqv5+9fWq/Ol0qrKcwaDKk/HxHZc0IcThc0jRkXr27MmqVatYs2YNq1evpqKigvDwcEaMGMFJJ53UUWlsk82bN9OnTx/0ev+vNLBhJM7mzZtbDfy2efNmxrXQ29Lz3i1btrQa+M1qtWL1iVRTVVWlFgoXgSUcAuJV5ZajRg2icdaC1kR9aD+KLeVo0JASluK3zQpLBVXWKgL0AQQZgiirL8OgNZAQ6l+7kF+dj91lJyIggtDKdZD7PViKIHacysgdtWogYXXDLOhdrwRLngpU5AnyZQhT6ziqVSAjXQDO1MvIs9lw4yYhJAGDzjuiv8ZW02p6jgS3290YqCIuOM5vIKfD5WgcLJQYmugX/Ku+XlWAWCzqYhUSoipsDmNCVYdUT2WnVq86jelDcQK51bkAzfav3Wknv0bNfJwUmtSxHW5yvlYBrWzlqmNdcFc1i3LdPjWAye1SjYhNBuB1hC5dVIAKz+xT+fmqU97ZZ8Mtt7R9O59t+YwUcwpn9TyLf53mjSJRZ69jfcF6am21/Jb5GwPjBmJxWAgzhTUO/AWwOqwU1hai1WiJCYqhsFYN6Es2J6vBXU3WA0gxpzQbdGa3Q2mpqhw3Gg9mj3QQcy+Ysg6y5qjzevFZDXmOQT0ih0FQinew/QG43W4cLgd2lx2X24VOo8ONG7fbjVajxaAzoNfq/fMek3/NXU5VDi63i+igaIIMauBBba16+Aao0evVvvPt/L4/Q4eqWctWrlQBh376SR1DOk8cAZfqENa/fxv3XdypMG0XZH2sgg78+YTquK8LhLjTIbw/xI5XQR9yv1Mzkmd/AQExqtHCUqA6hhqjsFnLKKivRIOGJHOS37FUZa2iwlKBUWckOiiakroSimuLqXfUE2QIQq/VU2mpJEAfQHRQNDHBMTz8sJFTTlEz+K5dq4J2hIerfeapNL36ajX4tD2SkmDRIhWAZeFCVaF8550qMISfhDNg9Eew7Vl1jUi/TQ2gaWLAALWdf/xDBVCZMkUFfQts0j/2zjvVzcF//qMG1V98sfotfS/X994LF1ygZvRes0b9ruPHq+e7NfRLnDcPFiyAH39UldllZWqwxKmnqhlhfQdYX3ONmv3uwQdVR9mePdW2JkyADzZ8hgYNY7uM5berf2vMZ50uJ6d+cCpZFVl8uvlTrh58NaNHqyBB336rOlTs3KnO/9RU9ZmXXOri8nnvk2JO4bHxj/GXYd4R/oszF3PlV1fyzY5vuHf0vY2BbJrmKfX2eorrilssD7SmtK6UWnstwYbgZoPEPMdXqDGUekc9DpeDyMDIZgF0cqtycbqdRJnCCd79X5WHmGIh5QK1QtV2FbSlfD3og3GanibPpa5XcSFxGHXezK/SUkmlVR3HsbHj4cyNsG+uGtix8HvQBqgBVPZq1aE87nTeXf8ueq2es3qexfeXft+4T2pttYx+ZzT7Kvfxy55f2FO+h1dWvcL0XtO5fMDlVFgqOC3tNLpHdOfV1a9y+ZeX8+mFn/rl9a0NQrc5bRTUFOz3XDXpTAToA7zfp8lA2bL6MmpsNQQZgnC5XVgcFswmM+EB4X7rFdQUYHPaCA8Ix2wy43SqmcctFnUOezquehqRwsKdFFlaLhtYHBaKaovQoCHZnIxOp+Gtt9T1c84cFRCxokKdZ8OGqaBL7aLRwEmvq/N88z+gLhsC41VHo563qKB9qNkkt25V58O776oGJa1W5buXXgqjxtVyxkcPkhSaxLOnP8uUHt4Akq+ufpX/rfsfDy54kI/P/xjN2M9VubVgnspjM95TlRumKEi9DOJPb3PyPdckz772lVed1+o50BZWq7p+1der7xoSohqs6utV8L3KSpVfRUaq/MiXXt+xwZ5cLhUMYeFC1VB/7rmqcT4oSKXBbldpPf30tg28rLHVkGJOoW9M32av9Yvpx5q8NdhcNvRaPSnmlGazg4MKtFJtrcbl7tie2HaXnRRzCoGGwGbBfBNCE0gxpzT/PdNvA5cVMt6F4DQ10KRJwEqNBl58Ue23999Xv+OZZ6prT2ioKv+lmFPoH+tfmOge0Z0Us8qfc6py2hT4rbAQfv5ZBX6LiFANr56sydMIejB69YJVq+CZZ+Cbb9RvfvLJ6nrXw2dMglargqD26aOCv4WFqaBtl156cJ8LauZ1mw3eeUdd21vrCPL22yrAxsqVKoCI5zrua+BAdSw/9JAqGz7+uPotqq31jfs6KtD/+mY2mRtfszr9I8XefbeqjPzvf1Xglxdf9L8UTJ2qztk331TX89JS1XB/1llqUE27dLsaYk5Wx1reT2CvBFOkurdOPp/QhDP480+VP2/YoAYwpKaqc9VgUN/XalVB+Lp0OfDH+ZYl40P8a1rL68uptlUTqA8kJjiGJ59Uv/E338DixWpAzB9/qDLyqaeqtKAPggnzVDk251sVbLNsjSrzdbkYYifgjj+D7cXbWLpvKdtLtuNwORgQO4BNhZsw6oz0ienDuC7jSI9KRxPSFaZsgOy5sO9zqN6ldn7MeHUOdmlHgTUwAc7cDJmzoXgJ7Hm7of4kAMIGQPgASG4SYasDApUTPgDO2qICMWV/CbV7VX4SNarhO8w48DZ83HqrOra++kqVXzMzVaDWhAR1/3vuuW5uWaXuax8d/yg3DPMOePsj9w8u+OwClmQtoaC6AJtLjYRpWjfgKT9qNVqSzclcfLEaQPz557BsmbqH+P13NZC9Rw91nP+8+2dSzCkMjh/M9N7T/dI8uftkthVv46ddP3HriFthwgLI+Up1Ni5dBdU7QB8CidMgenTz36E1IV1VuTDrYyhZrgLsGcNVw4a9Sg3sDW5+fWlNSV0JdfY6QowhRAb6X+yKaotaLZd1pH/8Q+3X2bPVNffZZ0+8fmz7KveRYk5hQtcJfs9HBUUxMmkkedV5bC/eTogxBJPO1KzuMCIwojE/r7M3id4+Zo7q+G4thiEvqvPT5zNDjCGNATg8Tko8iSVZS6iwVFBcW0yKOYVRyc2DVo9KGkW1tZqSOm8UMq1WBfLr0UNdv2pq1Hn6yCOeQBChMHGhqk/L/Vbll9U7wBipgkDEnwFRI9Fo1HauvFIFO/vxR9UJKihIlZXPP7/hPlmrV9+xx02w82UVBEhjUAEgkqa3O79pdKC80BgGp/8Ou9+CjP+p+7LQdEi9ROXTh2mw39Spaibh559X+6SqSpVNrr9e7efGe9LAKIKNwX7vbVq39MorKvjR11+rAb+Fheq6OnWqOhfT2p6V4HA5cLqcuNwuNBoNWo0Wp8uJVqNFp9V5y5/9HlH3RFmfQOECdVzqg1VeGHsqpF7Cd9+p6+7vv6vyx0svqfobg0H9FFarKu+MHNnw4S4nOKpU0AiXQ9Xd6UPUwGgfngkOrFZVztdo1DFkNkOtQ91/m3SmZkFqfPNJh8vRar7YUr3eXXep4DlPPKHKD1qturbcc49/ObPNulwI9ndgx/+pQA3pt6ugLC14+WV1T7NkidqPLX2eRqMmNLjqKrVv/ve/5kGIQQUQMBrVNmNi1Lk5ciSszatszHua3ud3CetCijml8Vjwvea++65q7J4/X9VnPfroQewLX45adQ00hIO+kweY97xZ5bO538PO12HbC6qDttaggsCHDVDHuo/qanUfZbd7g1kHB4MhwMrCzIWkmFN44pQnmJY+rfE9/WP785fv/sJvWb9Rba1mVe4qvtr2FZmVmfSK6kX/2P7Mz5hPja2G8V3Gc27vc4kLiWu1DOxbLxMd1LaAmR9t+ojHFj3GgNgBTO4+mU2Fmzgl9RS6hXfjP2v+w57yPbw85WWVF8WdCufshW3PqWCkznoVIDPpHEi7ivU5axrbnjxBTz3O6nEWO0p2sKN0h/fJkG4waQWsv0cFLzFGqGD4PW9tdgxcfLE61l96Se3nK69U9zptLWtUWCoaj/Om+UOyObnxteXZyymoKaBbRDc+v+hzv7rFUFMoc7fO5cNNHx49gd/sVaqNzeRN5+6y3aSYU4gJjml2To/rMo6dpTvJq2mIDhp7Ckzdoe4zcr6E+gJ1X2TureopW7pnsVerhzFM5f1NOJ2qTshmU/V8oPKkwEBVv6Bx1Khjx+0CndE/GLLTov4P9B7bNps6vzzb0+nUfXVoaMt53RHnsqu2Q1C/g7aVRLnd6nqpC2p2bfNjr1L7VxegylUNB/m7698lxZzCLcNv4cGxDzauvqVoC2d+dCaLsxaTW5XbWC8zcKBqS7j3XlUHERGhgolee23bzxtPHVS/mOZBbTwB55xuJyadiRRzCl3DuzZbr09MH4w6I3anHZvT1uL2fOuWsquyOzTwW529jhRzCgPjmkcmHRQ3iKLaIursdXy741tSzCnM6DeD20bc1rhOtbWahZkLsTqsrMhZwf/+N5arrlLXvoUL1X2m3e4dnJCUpIJxHM7Ab263qrux2dTnNAbtT79N3avnfKnu33e/1VBvYFQTi4T2gEjVP8VkgrlzYcUKdd+2bZt6buxYVUeWnu7zgVHDYdxXsPnvalvdrodu14BG09j20VLZq8XXNFoY9aEKIFy4AML6Qr9HVXttU30fUPVKud9Brzv8A+L4GvUhrL5e1VcM+CckTD74nTv4eTXxz77PVPtxrztVYDmPwHhVz5P1Mez5H1jy1bUrcgSkXQ3RI1stx7vdbnKqcnDjbtaHA1T+VlrqLde2yGkFWxmgUZ+rM7W4msPhnRAsIEAdJ35tzW632rdOi8rDNDq1LX0Ibq2J8nJ1/2ezqTp/o9H7fk/dbXBAPYZtj0PpSghKVRPXmGKgZq/aL9W7QBdAdthLfP65iR07VLt1crL3tmy/eZHnu+oCG9tgWv6yDYHnjBEdMsmbxaLa2YOD9/M7eBJ+sHVtwV1UHV/WR1D4mzpfnfXqmpowRZ0PiVPUeqHpqg0+/yfVRgkqWGvO12CMxFpXSGF9dWP7mG/7aq2tltL6UvRaPYmh7Z0RyfsVy8vVvVd0tPe621J/Bw/Pa+EB4Y0T1DTtm3SgPj/19apdLzS0eQDxw6KVegOHy8HLK1/m1dWvMiZlDKOTRxNoCOThcQ+zOGsx0z+ZzkNjH2LmkJkdGqT50UdVO82GDSqv3rFD3Ut7Bq7Z7TBmjMqrPb9PeLjKP5p+lfAwN0ZNhbeMpQtUf90O1SfO5VBvOoRg+578Jjrav3/Dgeyvb5vL7SKnSk2eEh8S79fufiADB6qJ8d55RwXOKylRec9556kJkPzET1SB2LY+BfGTVZDRg/ktNRoY8pyqL9/2vMqXIoaogKJNJ4+LHQdj58KWf6nravfroNvM5p/b4yaVF+55W3VI7/sQxE1o/Lh//1v1+fj2W1i6VNUZeMoGAwe20MelQU2NOjb8BiCmzlDpzfpIDWjc9oy6PhjCVF131AjVx7Ij1exVg9bsleq+UG8Gtx0cdSqfA4gYwh9/dOWjj1R/umuvVe1JZrM61lwu9Z3/8hdI7Omt/w7Qe68HdfY67z2y1qWCtpZvUP0BI4epe5+avaovqa0UQntR2e3GVss3nr4mLdazOy2qj6HO5FeOz67Mxo2bmKAYAg3e+9wDHec2m3dyR99rUkAAfPmlKsd9+qlq76qqUuX99vaFyKvOI8WcwvjU8X7Pd4/sTq+oXtTZ69hesr1DA7/tr13Pt/zo6ZPS0u/g6ePQUr1pa59pNpkxm8ykR6X7vdYzqmfjvUhudW5jAOiE0AS/a5dv2oIMQZRbylvsG3ww9TLz53vL5o88os5P3zpUiwVuv13l/R4Wi2oH90xSERTkHeSMy+7th4274Z5b0xCIwK3yHmNkwzoN9+Zao3ewjdOintMH7b8c5sNz/W96nO8vr7davX2EQJW/wsIOb5tSTY0qZ9hsKg8xGNS+Cw0FDS51L+60AC7V99HDU2Y2RbZ+z++jzl5HSV1JYzulr6bt177sdlWfYrGo63prfUbr69V573Co/RYevv88xelyttoXu8M5asFWqfaXMULV+7S4Xp2amFsf2BjIeH/p3F+/9/aoqlLHQUSEt//m/tpQC2sKsTqthJnCqLZVt1oGbi2vP1QFBap9JTdXHavp6eqv57hwudQ1olcPmzqnXfaGujbP/nGDvUYtGsze+iin1Vun6HZ6g3frg5rX9Tnq1bpuuypLGsJAq9/vcb6/ugKbTf0OFou6pkVEePs3e9TXqzzOZlP1jEaj91zFXq2OM1Bp1ehUnuV2qmDaoPK4NrTteb6DTqNr1s/JM0alpXP1ULjdKrhMZaU658PC/O+5PcLC2lbv6XKp7fhOiqrR+OelGo1/Ob2mRpXf7Xb1fr1e1QmFhoLBVaLGT7gcDf0WDGrZMwmeRos7IIGcujLcuIkNjvUre3nGFbR0j9qq6FHQ534VVKP0D3V8egIQFy9V43bcDt55R7V5rlql+j59+61q5/IcP3a76k/d1knpPGNmHA61D/T65teg0NCG55yWhuumzSewj65h3EuAOr86kCfvadrXc399ew9Vfr7at4WF6nunpfn3c3e71XHZrRtqPzhqVL8h34ki0KpjxmBuyIdc3uf96lI8HYN9DnJ7lcpv3A0NbJ66Kl1gmyd42F85rNVyvNOmxoc561W/BENouyaU2N/1qdpa3azM6HKptg7fPtIajTef8wSh8pTzPOe32+3tRx0a6jNpRxvZ7Srvtdu9bTZ6vfqNDYH1lNS33D/fU7fUUj7ZGk/f/Zb6LbXYV9lpa+gfYPNek3Qm1Y7i+1u4HA3jzixqPa2h4boV2uYC5P6uT+3tR9Csv7WjVj2c1oYJMUJabD9rK0+51WpV+ZynX7Yvl8u/fGs0qnJBYKB/GcZv7AAt9ENxORrOA6v/xB4agypXGMLaNDDf6XJSUFOAy+0iMjDSL4+qsFQ0/vZBhiAsDgsWhwWHy4FBZ2gcn6XX6gnQBxCgD2jbNcTtgsyPVB01QPQY1c/AWqyuZ3XZoA8mqttdnHtuFFFRqq9SRobaZ755v++EhXV13v3vcqmHVqt+i6AgCLMuUe0vNXtUvUloT5V/1eer4FGOWuhyMfnmk1odT+YpPza9lh4qz1jWluqEfcfPRARGeF/w5MEum09bQSjojK2OiXO6nORV5/mNp/XkX00nbfeMiYv0VpVgtar80JMvabVqnZCQ5uOsOkptrbcM1HRC+fDw5mXSluyvDOw7xtmoMzYuN22r99x/hJnCCDMGecsYWr23HK/RqHKvRguGMHLryltsd/ItGySGJlJrr6W8vpw6ex1ajZZgYzBV1ip0Gh2hplDCA8IpyA7k6ac1bNum+uteeKFq2/SUPS0WVR4ICC9n4d6FLM5aTF51Hv1i+mFz2thdvruxX+SpXU/F5Xaxu2w32VXZ1NnrSDYnU15fjsVhISooiu4R3UkK6cLvv+tYvVrV+3smdvCUWz1V8nannV/2LGLu1rnsq9xHv5h+DE0Yys97fqawppBxXcZxYd8LcRX14Ycf1GRcXbq03Affs70KSwWV1krsTjshxhCcbicWhwWjzkh4QDhhpjB0ExeocTrl6+H381T/F62xYQaWCgiIw60NpK5OHUM+w+ObcbgcrM//k1W5q9hXuY9AfSBdwrqwuWgzZpOZ/rH9GZU8imBjcKv1Y77XJLfb3eqYuGb1Y253wwSO9T75uaYhPzfh1AaRW6smfdvfWKyooKhWj3NP+aZZuu014KxruCfTNNxfhrSr39fB1KH6Xi+1WnWPGRbWtvP5YDkc3s91OlUe4rmvA3V9qa1VaXI4Goq2Gm9QmcjINraj6EzqmmYIb7gOaxsC6dSocY11uaptvI2B31q7Bnjyc1D7t011Ri67mhjYVq76upuiVP7lrFP5mcsCukBqgtJavSbtb7zn0WR/ddkt9td3u3za4B0+9S3Bbb7P8K0fa3qP4XuutnVsbX29Kv/U16tjMCTEO/bac102GCBUs7ehHFOj2v4NoQ11AXXqtwYIH6TGkNurveWGxvs6t6rv0+jUcWvJV2UMrb7hONarY8NlaygzG1QZqg3lTN9r7H6vq55yr8uufgeX3f930AWCPpjshj4bTfMb3/u7g4pZYa9W+8DdULDUNMTKMIS2PdCVo7ZhGy5vgCxPe66zDtCqulRP/ur5ro33Uzr1mj4Uu9tNfk1+YznB9/vs79huC5tN5YWevM5TjmvvvWp7eeoMLZbW75M6Qmt9IfbX3tEWnuC7nv7FWq23DdCvbtBW6Y25otH4HL8hFJdoyMtTZZKQEHUN8j2nPW3AtZqW711bqluyWr1lHKfTO55bp1P5Q0yM9/7Tt8++b1nOaIRI1yrY9boaR5I0XU38jFsFLa3aofKExKnURM2gpkZ9VnCwupb69kfytN0U1Kp716a/g993CApH2xh4WwsNbXzYyqFqp2qLNoaxx34xTz+j+hAkJqoysCcQMahjqrj4MAZ+28+5im9bh8vprafytN0ZwkBnbLGeycNTJ9b0umq3+4/VN5nUcRMU1PTzmkz02RDQ3KUPIadh0uCm5bCDqgduo/2NifOt06i0VrY4Jr7Fa2nT+ky3S/0OGj3ojFg1gRTWFbX4fXzb9aKCorA77X7xZQCcbicaNBh1Rgw6Q4fW2x4Mp9N/nI1O5+2P6FtW9s2TXC7vPXJoqLd863Z723Q85Vu9XpW9zWbIq2m5jdjTL8w3v/HcU3k+z7esXF/f9u+ncbsPtsdecw6Hgz///BOA/v37YziCPdLT09Pp1q0bP//8s9/z+fn5JCYm8tRTT/HQQw+1+F6j0cjMmTP573//6/f8ihUrGDNmDB9//DGXtjJK/m9/+xt///vfmz0/ZcqU/X5/N24KwwrJiMug1lRLbGUsYfVh7Ivah9VgpUtJF7oWd8XoMFIdUE2JuYSKoAqCrcFo3BpqAmoIqwsjpjqG0PrQxo4ZHaXGVENeRB6FYYWggYiaCIrNxQTaAomviCehPAGT0//i/e133wFwztlnt7TJdq3nWael9damrSUvMo/EskRSSrwF+cLwQjJjM4mqjmLk9nHszZhOQcFI6utjiYlZT2hoJgaDGlRqtwdht4fSu/dHHfodLuizi1O75mLUOflmRzcKaoJJCKmlS1g1k7vvw+WG/1s5mCeDd1MdVE3fnL50L+ze+P6M2Ay2pGwhpD6EU7ee6ve77m+fHMx3OJ65NC4qAyspDynHYrAQWh9KrakWrVtLeG04EbURaN1aFvZfiMVoYcjeISSXeStttidsZ1fiLiJqIhi7Y2zj89XVSezaNYO8vHG43Tq0WjvR0RtJT59DRMQuvzQc6nF+MOu11aEeI9mR2WxI20CwJZi0Iu/o2jpjHRnxGYTWhXLy9rHk7p1GSclAHI4g4uNXERSUj05nRaNx4XbrcTpNRERsbzwvfdN2KOnrDKUhpeyN3Ut5cDkRtRFE1ESQG5mLXW8npTSFLsVdCHB0XMNFU8fqfjtRODQOFg5YiNVgZVjGMBLLvRV7f6b8SWZsJnEVcYzYM8Lvfa2dq/nh+azpvgaT3cTonaPRulVh2a61s7zXcpxaJyfvOJl90fvIjs4moTyBkzJOanx/VUAVi/stRuPWMHHzRIJsbatks+gtlIaWUhpSigYNwZZgKoIrCLIGEVUTRWRNJDr3YaxJ7gBlwWVkxWRRElpCWF0YEbUR5EbkggaSS5NJKU3BYrCwtM9SNG4NI3aPwOBoKM9p4I/uf2AxWhi2Zxj1xnq2pmwlpD6EcdvHNU5cbjFaWNx3MS6Ni/HbxmPPPpnKyh44HIGEh+8iMLAInc7ekBdqcbn0BASUkpO4ha3JWwmxhBBbFYveocdmsFEYVojFYGFQ1iCSytvWweB41Nr5sC1pG7vjdxNVHcXond5ByVWBVSzpswStW8uELRP8jvPW8ky3G/btm0Re3nhqapIxmzMID9+NwVADuHE4grHZzPTr9z80mvbfQnVk2UAIcWKwGCz83ut36o319CzoicGprklu3OyO341T62TUzlFE1R69DYNNHQ/3q0fiO7hxsyduD9uTthNWF0Z0VTR6lx6r3kphWCE2vY0hmUOIrzz+pl5pbf8WhBXwR48/MNlNnLTnJG8ZWGdndY/VuDVuxm4bS3h9+JFOshCHzfGQZ7ZmTdoa8iPzSSlJYXDW4MbnD/Z+1dfRVKbWa51cN2QrQxOKqLSaWJCRTGl9ID0jK0iLqGRUciF2p4bLPr2MpX/cTmVld4zGKrp1+5bAwBJ0OmvD7K8BOJ0mopKWsanLJvIi8oitiiW6KhoNGkpDSikMKySqJoohmUOoN9SzqucqQN3reth1dnKic4isjmTEnhGNZQtxaA50rp6ckseZPTPpH1uKVgMuN+RWhbAiJ57vdnSj0mpqtq39be9g1jvYc2HHjkvJzT2F+vpo0tPnEBm5Hb2+Do3GictlwOEIIDi4gMDA0oPafkvsWjsbum6gILyAuMo4ImtU43Z1YDV5EXmE1odyUsZJzfKH4znPPBH1ji7juiFb6BVdAUB5vYml+xKZu7UnFZb2dSxqC73Wydnpexmfmkv3yKrG54trA1hfEMvcLT34ZcV95OePweEIoHfv2UREbMdorEKjceF0mrBYIomM2El8WClGnRObU0e9XY/LDQF6Z2OnQqdLQ2ZBfzZvvoGamiTCwvbSvfsXmEyVaLV2QIPTaQI0RETs8EvnkWx3Gp+ay8S0bPrGlBGgdzakHfKqQ1ibH8u76/s17DsXZ3TPYkb/nYQHqAGo2ZUh/JqRwvc707C7dMQF13Jh390MjCshIdTbHmR1aMmsMDN3a09W5R5/9zYnio66JhUUjCQn51RKSgZgt3sGfboIDs6jZ8+5pKQs7LA0t9WuuF1sT95OaH0op2491e81T9tOTGUMo3Y3Dz59vMqMzuTP1D8x15n92rqqA6rJjcoltjKW4buHo0Xds5eX9yQzcyp5eSfjcqn8Oygon5SUBfTo8QVBRivn9d7D8KRCuoZXodeqeneXG0rqAlmfH8PrfwwiP38UubmnUF7eC7dbQ1hYBgZDHS6XHoslgvDw3Tx0/sOc2TOTEKOdd9f3pbAmiPAAGylh1YxMKsCkd/LN9u7Mz2jDbAyHybCEQs7smcWQ+GIMOtWjtMpqYGNBDN/tTGN7iSr3DIgtYXrvDIYlFKLTqvw3uyqUpVlJ/LCrK3V2bzn+QOeg260lO/s0cnPHUVo6AHdDO15gYBEJCcvp2/fdozaovRs3u+N2syNxB+Z6M7GVsRidRmoCaigIK0Dr1jJ071Aia/07Qx4ov6mo6EFW1hkUFg7HalXv1WgchIXtIT39E3ac8n9UBleSnpdOr/xeje+z6C3MHzQfgJO3nczy3stxa9yM2jmKmGpvsIQicxGreq5C49Jw5oYz0bl1uFxacnJOIyfnVEpL+0HDORIcnENKygJ69vyiXd+hveudOLxtd5rG/5of4Ac6bxyOALKzTyMr6wyqq7sCoNXaiI7eRM+enxEZuf2A23Lj5udBP+PQOxiaMdSvjbciqIKlfZYCMHnjZEyO9t8TCn91ddGsX38vZWWqjBoZuYV+/d4mPDzjoLZ3tPXPc+Om3lhPrakWp9ZJgD2AekM9BqeBYGswAfaANvcbdWgc7I3dy574PQTaAkkuTUbr1pIdlU2dqY5uRd3oVtgNvUtPv5hSzuyZyZD4YkJNdqwObeM1I6cqhI829eI9bQl74/YSXRVNlxLvNbYspIzM2EwiqyNVn5aGfC8vbzQ5OadRVDQUt1t19g8KKiAxcSm9e3+ERtOxE44dLq0dI8WhxaxMX4nWpeWMjWegd3kHNKzssZLisGLSCtPol9OPsuAyisKKqAiuIKwuDKfWSa2plsjaSNWPuC6sw/sD15pqKQgvoDi0GK1bS2h9KKWhpQRbg4mrjCO2Ug0s25q0layYLKKqo4irjEPn0lFsLqYorIjImkgGZw4m0O4/uPVQzge3W0tGxjTy80+mri6O2Nh1hIXtwWCoQaNx43AEYLOF0bPbt/SNzyPI4KDCYqK0LgCnW4PZZMOgdWHSO7E49BTWBBIdZMGkd1Jeb8Lq1KHBjUnvRKdxo9W4qbEZqLa1re/zxi4b2Rezj7iKONLzvcH1SkNL2Zq8lWBLMOO3nEr23mnk5Y2ltjaBqKgtTb5DIDabmR49vkCvtzT7zAPtu9bSlpExjaysKdTVxZGW9j0xMRswGGrRaBy43XocjkACA0vol7SdMJMNh0tDfk0wDpeWQL0TvdZJoEHd82dVhGJ36Zp9ZtPPdeOmIKyAjLgM6kx1xFXGEVIfQnZ0NnadndSSVFKLUzE4jA1lrpFUVPTAZKrAbM5Cr6/D6TRitYYTFbWVrl2/Z8+e8ygpGUhNTRfM5gyCggrR6Ww4nSas1nBSusxjy+QnsRgtDMwcSGppamN69nfedUR+PjEtm/GpufSJLqPcEkBxbSBuID2qnHq7ga+2d+PbHd0ZHF/EmT2yGBRfQpDBgd2pRatx43BpyKww8876Pvwn9k9qAmvom92X7kXePuOe+6wgSxATt0xsV5/x+vpIMjPPoqBgNDU1nr70TkJDs0lL+x7rqNfYkbiDsNowxm/3BsJ0aB38MvAXnDonI3eOJCMuozGP6p/jnSyxIrCCpX1VH7rT/zydALu3/+uR6vscqLcTbHSg07ipselxubVoNa7G+0eNBmpsBmb028kZPbKwOXV8tqUnuVUhmE1WYoLrGRRXglHn4q21/Uk2VzOlRxap4dVsL4kgpyoEq0NHang1Y7vkUV5v4pYfx7MhOotdCbsIqw0jvjIeg8NAWUgZhWGFhFhDGJw5mJD6ULKyzqCgYDSVld0JCCjFbM5Er6/D5TJgtYY39DurZt++SdTVJdClyy9ER2/yO1ft9iCCggoIDc31+ebuZleBlsq3re1fFy6yYrLYkbiDAFsAieWJBNoCyYnKoTy4nISKBHrn9mb+l7+26Xfw3fbRVmbNzx/Jtm1XU1cXR3z8arp0+aWhjc2Gy6XDZgtDp7MSFta2smF5UDnbk7ZTFVhFVE0UiWWJ5EfkUxpaSkh9CL3zerd6HwqHd5/4fk5rzp52NhZLZGMds8FQjVarAqR6g49oCAus4LRuOcSF1JFXHczusnDq7Xpig+sINdkID7BRaTGyKNN/wP2hloEdGgdloWWUhpRSb6wnvC6c6gAV9D2qOoro6mi/e6Sm3/tw5jfdIirpGVmBTutiZ2kElRYjRp26VsYE1aHTutlWHElp/YGDfJh0Dq4buoVBcSXk1wSzbF8CVVYTCaG1RAfVkxRaQ63dwEsrhuByewdLtrZ/qwKrWJ6+HJfGRY+CHo39ZZxaJ7vjd2NwGjh5+8n0CXQyo98uekWXU1ATxM7SCGpsBrQaN5cP2IHVqeONPwawJCu52We29LmVgZVkR2dTaC4kyBZEZE0k+RH5aF1aksqSSC5LxlnVhYyMc6iq6orJVE5c3GpMpoqG4w5cLgMajZ2AgHJKSwdgtwcTGFhMaGhWQ7nIBWhwufTo9RYCAsoPmDa3W8vWrdeQnz+6oYz1JWazqi/UaJw4nQGqrBG/gtUDfqEqqIpuhd0IrfeOms+MyaQyuLLZdXl/v4NVb2Vnwk6yo7IJqwsjpTQFq95KXmSe6tuX35O04jSuHrCDM3pkYXXomL2pN1mVoYSZbMQE1zMsoYgAvYNPNqczpUcW/WNLya8J5pc9qZTXm+gdXUbX8GqGJhThdGu4/cdTKbcc+Prr0DrYnridzNhMImoiSCxPROPWqPwrpJTksmT65PShOrCa1T1Wo3PpSC32lqnsejuZsZmY68yM3jmaySmFnNF9H9FB9azMiSenKgS91k1UkIUL++7G6tDy98Uj2VwUfcC0Wa1mdu2aQUnJAJxOEwkJywkOzmv4/TXY7UG43VpiYjawc+cMKip6otU6iI9fSVBQMVqtFbdbj80WQmBgCYE9f2B199UAJJYnoneq8l91YDWF4YXEl8czZO8QJnYpJD2qHJtTx6bCaCosRswmG6FGO/EhtbjcGn7N6EK1zXjA7wBqfFqdsY46Ux1alxa9S4/FYCHAFkCwNRiD6+jue2G1hlNYOByLJQKjsZrw8F0N5REnnnNQo3ERHJzfpu2VB5WzLm0dDp2D+Ip4Qi2h2HV2isxFqm41P52e+T0PaTxk0/VcuNSY0ZhMagJqiKuMw+gwkheRh96pp2txVxLLEjkzLZeze+0lMtDChxt7k18TQojRRlp4FaOSCwg0OPh+Zxqf7E5iX/Q+cqJy0Ll0JJUlURpSSlVQFTFVMaQWpxJWE8W+fZOoqEjH7dYRG7uWwMDihjZdd8OYOCMBAcVs2nQHFRXdCQgoo1evTwgNzUKnswKaxnvCmJgNLX7Xg60Hzsk5heLiIdhsocTFrSE4OBedzopW68TlUmkzm/diMlW3af9mxmayM2EngbZAEsoTCLQFkheZR2lIKbFVsfTN6YvRYWRvzF4y4jIIsAc09knKicrBYrDQvbA7XYu7EqF3EmK0o9FAtdWIw6VBr3Vh0LnQoMrxFRYj1Tob2dHZ5EbkonPpiK+Ip8RcgsVgIa4yji4lXQi1HIaoJ+KwcWqc7Inbw+743YRYQkgqS0Lv0pMTmUNFcAVdSrrQK68XGreGrJgsMmMyMTgNpJSmUGesozC8EIPDQPfC7iSWJ3JaWg7DEwtxAyuyEyirDyDUZMNsstE1XPXt+Hp7d1YHFrElZQvBlmBiq2IxOoxYDaq/tVVvZVDWIOIq4/ij+x8UhxWTWJbod4+bF5GHXWfnpIyTmBKsyk7J5ho+3ZLO7rIwdBo3vaPLGRhXQlSQhbV5sby5doDfd2/tXN0bs5fNXTZjrjMTV+kN0FoVWEVheCFJpUkM3DOS7duupqRkIHZ7MF26zCckJAe9vh5w43QGYLOZ6dLlV7RaR7PPbOlz25K24uLBDWW5VEJCcomJ2YDJVI5W68DlMmCzmYmM3IrTGUBNTRJOp4Hw8F0EBFSg0fiOiTMQGFiKTmdrw1HSsZwaJyXmEorMRdQE1BBZE0ltQC0OrYPo6mjiKuMItnZsxCYXLvZF72NXwi70Tj1J5UkY7Uayo7OpNdWSWpxK98LuGJ1tn/jH43CNIW+6PYfWwa74XWTEZWCuM5NUnoTOpSMvIo+ykDKSS5Ppndubc9PyOb/PbkJNdt5c05+sSjMhRjtJoTUMii/GpHOyJCvJ795xf99hT+wetiVvw1xnJqY6Bp1Tp8oQYUXUmeoYlDXIb4z/4dgnrYkNriPYYMfl1lBuMeF0aTDpXega6qHcQHFtIE53+wPetHYOOrQOMuIyyIjNIMgaRHJZMm7c5ETlUG+sp3thd9KK0pjePZsL++7CqHMxe1Nv9laYCdQ7iA6qZ2hCMcFGO19u68H8WtiYuhG3xk1cRRzmejN1pjoKwguw6W3039ef5PK27d9uERXcNWoDiaG1/LQrlaX7krA5dfSMrCA1vIq44DqKaoN4e13/FrfX9LsadU6MOidajRu7U4fTrUGDt35PA1idWv46Zh39Y0spqAni4z97UWk1kWKuJjG0lv6xpbiBV1YNZqfbxr6ofRSHFRNsCSaiNqLZ/Wpr9QvNxqgUjGDv3mlUVXUlKmoLcXF/YDRWotU6cLt1DfexRURG7mi2rZa215b963AY2bPnfIqKhmGxRBIbu47Q0H0N+b4Guz0QpzOA9PTP2vQdWvvcpuvlRuSyvut6gmxBjW1CALUBtRSFFdGlpAsDswa2qRxfXx/Ntm1XUl7eG53OSkrKgoa6fU8ZOACXy8C5Iz7juiFbiA2u58NNvfmzMAq91k3X8Ep6RVcQZrKyvSSCz7f6T27UGpvORmF4IYVhhdQb64mujqY8qBytW0tMVQwJFQkEWELJzx9DbW0C4CYycqtPXYWnHG8gMLCIiopeOBxB6HRWQkJy0OkszeZLDAioaFPaPO9xu1VgU9/oTWqbbjQaF/XGWnKic8iLyEPr0hJfEU+xuRirwUp8RTwpJSmEWg9vGfhQ+qFqNW7uP3kNfWPKyK8O5pPN6VRajaSGqXN1QFwJbreG1/8YyJQeqo9UnV3PipwEyupNRAdZ6BtTxkmJRZTXm7j824lsS9pGZkwmUTVRxFXEoXPrKA5VbZNR1VEMyhpEde5o9u49h6qqNMzmDOLi/mgst6h69mCCggqY3H8R/WNVn/aNhdFUWAII1NvV9cusJl5ZkpXExqBi/kz5k0BbIHGVcZjsJixGiyo/GqwMzBrYbCx/a/ukLfW2AGecO5mMuAyyYrIItgbTpaQLdcY68iPyceOmZ0FPkkuTqTfWsyduD/kR+YRYQuhS0oXisGJKQkow15vpUdCDuNpITuuWTZewaiotJrYUR1JjMxARYCXUZCM6yILNqeWXPamUmqrJj8in2FyM0WEk2BJMSWgJoZZQEioSiK2M9Wtf6wht2SdNj7/W9m9VVRe2bp1JVVUaQUEFdO36IwEBpeh09sZxNm63Do3GybZtV1NV1ZXo6I106TKfwMDihrYCPXZ7KDqdhYqKdPbsmY7VGkla2nfEx6/AZKpEo3Hhcumw282YTOXYY7azNXkr1QHVRFVHkViRSJG5iGJzMSa7iT65fYisSKC4WOXlGo2TsLDdGI3VDf0e3LjdWmw2N0uXvk9lZSXmVmdqVdoV+G3v3r0sWrSIsWPHkp7un4l+//33XHfddZSUqJkJIyIieOONN7j44ovbuvlDkp6eTvfu3fnpp5/8nvcEfnv66ad58MEHW3yv0Wjkuuuu4z//+Y/f857Ab3PmzOGSS1qY9R2wWq1YfUKaV1VVkZKS0qad77E2by1bi7ei0WgI1AcyNX1qh85s0BHcbnfHRaU8xFmCKywVDPzPQLKrshmVPIqh8UPZUbqDBXsXEB4QzqabNlFXkML48Wr2qEGD1IzkPXv6b6e8XM2odVBpa229osWwby7U56hZxQOTVFRMjUZFyXTZoftMvtj6BRd+fiF6rZ5gg/fmsc5eh91l55MLPmFG/xktf+aB0neoszCfQF5e+TJ3zbuLIEOQ36w1JXUl2Jw2fr78Z87ocQYAH36oZpR1tdDHrHt32L27yZNt+R3a+5seaL226oBj5NGFj/Kvpf+iW0Q3Xp7yMqtyVvHk0idJCElg1fWr2hxd3S89+3OMHM+5VblsKd4CgElnYkzKmMM7k6RHRx8josP954//cMuPt7T4mk6jY9PNm+gb09f/hf2cq9M+nsYPu34gQB/QOEPv3oq9OFwOZg6eyTvT32Fn6U76vN4HwG+W4gpLBUW1RVw58EpmnTerA77dsae8vpzdZSrjNulNDIgd4FfOeWTBIzz1+1PoNDpO6XoKAGvy1lBlreL8PufzxcVfYHPa6Pt6X/aU72nxM64ZfA3vTX+vXelanbuaiz6/CIDHxz/OgwseJCYohi8u/oI+MX0O5qseP1o5HyosFXR/pTtl9WUtvu2ukXfxf1P+r+VtNdneli0wZIiKrD18uJpB3nQoY4nbWnZuXpPT/HkhxAlre8l2xr47lrL6Mv477b+kmFO47MvLqLZWM/fiuZzb+9zOTuKJ5wjecy/cu5BL5l5CZGAkD419iLvn3U2SOYkvL/6SnlE9D7yBY9F+9u9lX1zGnM1zCDWGMiZlDAAL9i7A4XLw0NiHeOq0p45kSoUQh+D3fb8z7r1xBOgDOCX1lMbn91XuY1vJNs7rfR5fzviyE1PYQdwu2P4i5M9T/8efDsYoNcOf26VmVjJG4Ui5ih9/0rB2LZSUqHrs2FjvLMwul1q+4AK1mdmbZnPrj7cyJH4IUUFR/LDzB545/RnuHHln473t1uKtTP5wMnX2On658heWZi3lnl/u4ayeZzH3orl+Mw+JQ7S/ssH6+2H7897/AxMbZkBs6Fh70uvQ06e+qKPriw+x3FJXB+vXw759UFkJ0dFqJiudjobGUtX+0uUwxE/598p/c//8+zmz55n0iOjBSytf4tbht/LSGS/5za7WSNpFjh+734Q/bmr5NWMknFfgM6tqB3BaYdEkKFbBN4g8CSIGq9misz4G3HDSf6DnTVRVqXbHigo1w6ejoT+tXq9mC+zdW50jbZGRoWZaLC5W7w8P958t0myGsWObvOlItTttfBi2Pg1oIO1qSDpbzWS8dxZkvKtmZLyoSrV5/jYFClsJyJV8Hgx5AX4eoma2jB4D/R5tmPUSWHAK1O2DPg/A4GdaT6s4unXANemWW8DTTSMlBS65BJKToawMfv9dtcO++WYHprmN3t/wPtd+cy0xQTEU/bXI77WLPr+IuVvnHlQ7wLHu6aVP8/DCh+kf258Pz/uQ99a/xyurX2Fcl3HMu2JeYznztdfgjjtaPyxysp0kbR0DpashOBWGvQrRJ6sZXTc/AVv+BYEJvF2cxw03qPfceiu8+morVe/WMij6DWr2qutEYGLD7LEN4Z9cDkg8q80zjne4rc/BxgfUsj4YYsarL1K0WM1unXopjPkYdr8Nf9yIbwArP0P+D3rf5f1/P+egxQJTp8JCn2w6IUFdv4qL1f82m3em36PVmrw1XP7l5VgcFi7pdwkvrXyJi/tdzBtnveGd3dzXfvKb//5XHUeePh9DhqiybH4+rFunXjNNfYDnlj/HhK4TWHi1d+d9tuUzZsydQWRgJCV/LWHwm4PZVLiJZ09/lvtPvr9xvaeWPsUjCx9haMJQ1t6wlvp6OPNMWLzYmw6jUf0OLpcqA5R7xzTv/zscTLuTaG4/501xMZx2GjTMedvM5ZfD7Nlt29bps05nwd4F3Dv6Xl6Y/ELj82+tfYsbv7+R1LBUMu/KbHPaRMvmzYNLL21+HgUGqrbeYcMOYqMnQP+8Skslr61+jaLaInRaHWaTmTtG3uGdWTz3e1hyDuCGPvdDr7shMF5916/iwVoEg57G0fs+Jnwwgd/3/c7o5NFc3O9iVueuZs7mOcSHxLPuhnUkhCbgdsPVV6u+d62pqlIzbB8TWjlGXG4XXf/dleyqbGb0m0G3iG4Nq7h5YcULOFwO1t2wjiEJQ450itvt14xfmfnNTMICwkgNS2Vx1mKen/Q8N53UcL/egdekqio45xx1rYyOhrffVudueDhotVBbCwUFkJ7e9nvug9LKOV1lraLfG/3IqcohLTyNHpE9qLRWsjp3NRo0LL5mMT1N4xg5UtWhde0KP/wAffr476aaGlV3oPUdF3iI+U1tLaxeDZmZqu4uPt77GRqNKm/06aP2Xbv2wf74pGFt3lp2lO5Qk4cag5nSY0pjvd1jj8GTT6r1nn8e7ruv5c2ddpq3vLp8OYwe3fJ6t/5wK2+seYPTu53OkxOebHz+jTVvMGvjLKalT+O7S5sMIjnU/Hz7v2H93YAGJi6AuAlQlwsly1TdSc0e6HEzRI+ClVer9Qb8DbrfCIFx6h7k04bC9sh3mVWt4+qvrybYEExCaELjxxTUFFBjq+HNaW9yw7Ab2vwd1q6FyZPVvTOovvC9eqlr4s6dMG4cfP5jESn/l4LNaWNi2kR0GhXcr6y+jLX5a+kT3Yett25t7M8eERDBhX0vbPyMTYWbWJW7inN6ncM3l3xzcPv3SLNXqYfLDm4HoAWtUd0L2irg+4Y+lAP+Af0fU8vbXoCa3VCXrf4fMwcMZtbnr+eab66hvL6cUcmj+GbHN/ztlL9x/8n3o9Pq+Mc/4Ikn1FuefhpaGaJCTo4qs+zZo3Zbero6Vz11gQ4HDByoztd2O8DvUF5fzpNLnmR76XbiguMot5Tz8NiHGZ40/CA+7Ohlt6trRVkZ1Ner/10ulR8GBKh6poSEA2/H1+LMxczdOhezyUyVtYrz+pzHxLSJh+cLiI5xtOZLvtzu/V9v93OP8fu+35n84WTcuPnkgk+os9dx1ddXEWwI5rdrfmNw/GD4eRiUr4OwAXDWJvXGggVQ8CvU5wJuSLsW4n2O5TbsN5vTRk5VDgAGraF9Y0Taq53lEZcLqqvVee9pszEY1D1hUJDqfzD87eEU1RZx+4jbGZ44nOeWP8fmos1cPehq3j/3/dbT0Mr+2FW6i+eWPYdOq6PKWkXX8K7cf/L9fmORsNeo+yZbJbjtqlyg0TRck0LA3AtyvlZ1g/Zq1S5ljAAaCnIN/QhInNKGnea1sWAjd/x8B1aHlWBjMNXWav7vjP/j5C4nN66zIGMBZ885myBDED9c9gOrc1dzx893MCB2AIuuXkRUUBQsmgwF8yFiKAx/E8y9oWo71GaCvRIsRdBtpirzNN1vTfbdunXqvn3nTlXWe/JJdS0MDla/X1WVKr9s2QI336zKuDNnqvJjly7qt3Q41Dr19aq8nVmRybSPp5FZkclnF33G51s/5/0N7/PAyQ/w9GlPt2/c43E0julIq7ZWc/tPtzN702zuGnUXX23/CoDZ581mdEorBfsOklGeQW6VCpobERhB/1ifgCP1+ZD3I1TvVudVUIpqM/A0wrodkHAmGFXdssvtYkPBBuxOOwC9onv5n89t5Har8khpqTdf8tRDGwwQFgb9+zd506HUAx+m47K4tpjHFj3GluItpIalklOVw+OnPN6sHFRtreattW9RUqfGkEcHRXPDsBsINR1c5Y7b7WZX2S6cLicajYZuEd1a7hcijhn51fn8ffHfKagpIMQYgtPt5PHxjzcbE2V32vl+5/dUWatw46Z7RHfGpY47qM/cWLCRi+deTJW1ivvH3M8/lvyDHpE9+PTCTxvr6WxOG5d9cRlfbPuCh8c+zFWDruK0WadRbavm+0u/V59tr4b8n9W1T6OD4K6gM6llt0vlI1GjIbhJmWg/ZYhXV73KHT/fwZD4IXw540v+vvjvvL/hfS4bcBmzzp2Fw67uMX/9VV3zzj1X9T8JCfHWj1VXww03qDamZp/ZyuceKG2PPAIvvghWKzz1FEyfDnFxagyV1araTEJDISmphW0KrA4r7214j4zyDEw6EwH6AG486Uaig6IP/OajxK7SXdz/6/2U15djNpmptdfyzGnP+NcbVDfUmdjKQBfYECtB6+3/GjtetX97HOC4XLh3YWOb69OnPc1tP96GUWfkqxlftVx3fizc6x2isvoyXl31KuWWctxuN9FB0dw+8nb/MonLAdZSsFf41Huh7jF0gSqv0miosdXwwPwHeGvdW8zoN4Mvt33J1PSpvH7W68QGNwT6amtZw14NNRlgLVafqdGrvFAlSPX/Ck7e72b8ttcWtkqo2KDKdG6X6j/i+5n6YIj19jm3OCxkV6o6PaPOSGp4avNtHsCaNapdYvNmVX80Zowqu/nWs/fr13rd9X61cvyuXQuTJqk8/+STVftZWpr/Ww9L/BPg590/c8FnF5BiTmH+lfN5eOHDzN40m/vH3M+zk55t83coKYFnnlH1+k4nTJmirheBgWo1q1XVy115JVBf0HAslah+PI35iFvlI5HDICCm+Wcf59xuN3vK9+Byu9CgIS0iDb22Y4NvtVtb8wdrKZStg/o8dY4awxvO1YY6DX0whKTB4qlQuQXSroH021TMnZJl4KhT29AZG/vQL9y7kJnfzCTEGEKyOZkVOSt4cfKLXD/0egB++QX+/W/YtAkGD4Zp07zlFrtdnTPdu6u2kbbaUbKDS764hOzKbO4bcx/PLnuW9Kh0PrngE9Ii0g68gYNUWlfKu+vfxeq0YnFY6BXVi0sHXNrs9y+sKeTr7V/jdDtxuV2cnHLyMdHO3NGsVvjxR9iwQf3O6emqTVmrVQ+XS9UDTpum1q+r89Yj2e0qj9Lp1LESFaXy+Opq1VesrEz1r/O0J4Aqb3s+A+CnXT8xa9Ms4oPjyavJ49xe53JJ/0vaXP9UVVVFWFhYxwd+e/jhh3n22WfJyMggNdV7Ady9ezcDBw7EYrGQmppKUFAQ27dvR6vVsnr1aoYMOfwH0ejRo3E6naxevdrv+S1bttC/f3/efPNNbrjhhhbfm5CQwLhx4/jsM//opz/88APTpk1j3rx5TJ48uU3paM/OFwfvt8zfOG3WaSSFJrHuxnWcNus0NhVu8guYVl8PK1fCjh2q4RRUhZlOp07A4GC4994mG+6Agk9buN1uhr41lA0FG7h+yPXM6D+DuVvn8ubaN+kf259NN21qfsKfAB3LjrR6ez1pL6dRWFvIrcNvZUzKGOZunctX279ieOJwVv9F5Sc7dqiGdVtD4HmTCYYOVZWyO3dCt26qUd7PcR74ze12c9mXl/HJ5k+4Y8QdzN02lwpLBUuuWcKwxIPpOSnaTRqajikOl4M+r/dhd9lunj39Wc7vcz4P/PoAX277kmsHX8u7099t/qb9nKuZFZn0fb0vTreTrbdspdxSzoi3RxAZGMmO23aohlfgws8u5IttXzA4fjBXDrySotoinl32LBo0/Hnzn/SL7Xc4v/Yxy+qwMuTNIWwr2cbci+bSM6onQ98citlkZuutW4kPiQdg7ta5XPT5RaSYU1h34zr2lO1h9DujCTQEsvO2nSSZ21/DXVpXymdbPsONG71Wz2UDLiPEGNLRX/HYs5/z4cXlL3Lf/PsYFDeI7y79jnX56zj303MJM4Wx5449jedDs221sL3t2+GLL1QngqoqdY03mVT50elUN4r//neTzrhCCHGYrcxZyWmzTiMmKIZuEd1YlLmo5Y7f4vDo5AGVOVU5zN06F7fbjVFn5Noh1xJk6KRBykfCfq75pXWl9H2jLyV1Jay4bgXZldlc+PmF9I3py7ob1mHSH0rEViHEkTb0zaGsL1hP1/Cu9IvpR72jnoV71QivRVcv4tSup3ZuAo9yBTUFjR0W4kLi6BLWPPJWVkUW53xyDuX15dTZ6zir51m8c847R2aSghNJa9eusnUwr6GeNGYsjPif6sTvdsHnweC0HP7Ab8e4DQUb2FiwEYCUsJT9D6qSdpHjQ+0++D4dXA0TbhkjIaQbVG4FZ5167uJ60HXgSO+M92HVtWp5yIvQ+x7va58GqLQ0BH7rdEei3al2nxoA67JD+p0w7N/q+bK1kDVHBTT1BH7b9gJs+KtngyrAqT5YDSJz1EDcRDWYYu8HoAuC8wrBEKLyx+wvYPd/VcdQCfx2bDvE9uvff/d2uDr5ZNWZvWkwh/p61THwSJu3ex5TPpqCVqPF9qgNnVbX+Nr498azdN/SEzYI+YO/Psizy57l9G6ns2jvIgbFD2LR1Yswm1T/mNWrVWdYp1P99JddBldcoZaXLlXBt3Ys+JqoreepDY77CpLPVeWkJWdD9R6o3gGBCcyqyuPqq9Vq112n3qtv0s/Rt/PVUam+EL5JVp2vY0+B8d+CoaEv0cJJUPirCvw2+AX4rpu69gTEw+DnIPFM1bn550EqQFw7Ar898QT84x9qefRoFUBxwAD1f0aGaut46aXm+/NoVGurZWOhKhcG6gP335GxlfwmN1d1lrbbVUe+n35SkwB5FBaqfiH1iercN2gNatB0g/yafHKqchoniPrLt3/hf+v/x8S0idw72tvx6Pnlz/Nb5m/cNOwm/jPtP9x/vwp2AiqIzUsvwfjxqu/J77+rwJeff9627yA6yH7Om/PPh6/UGFW6dYMHHlB9hXJy4JNP1PXIL3DVfrblmWhsSPwQHhv/WOPz76x/hx92/cDF/S7m0ws/bXPaRHMlJWrwW2lpy69//LEaXN5u0j8P5o+BkhUQ2gumbVfP7Z0FW55SgXHcThj0NPR9kPzqfIa+NZSy+jLmXTGPa76+htzqXBZetbBxkOZbb8GNN6rNJCWpwYTTp6uywooVKp+cO/fYD/wG3nO/JYPiBrHhpg2HMWEdq95e3zgBX6gptLGsd7gUF8OuXZCdrTrk19erXR0YqK7dkyZ1TuA3gB93/cjUj6eSFp7Gllu2cPtPt/PO+ne4dfitvHbWa4DqS7Jihepzsm+fep/R6O2rbDTCXXc1ubc5jvObb7+Fiy9W+2X6dHj2WRWUzKOqSg2m+O47uPtulR/ceKMKxNu9u9pPtbWQlaX6ee92/cqkDye1+nnvnPMOM4fM9H/yUPfvypmw9z3/Oo3qPZD3g3ed8IGw+noVBC5mHJy+RD2/4xUVPL9ClWEZ+S6OrlfS89WeZFZkckGfCzgl9RRW5KxgzuY5JIYmsvfOvc0DG+znO/TtC9u2qeXnn4fbb/dObpmTA/Pnw7XXwlVfXcWHmz4kOiiak1NU0Jfvd36P0+3k9bNe55bht2B32kn+v2SKaosI0Adg0plw46bKWgXAd5d+x7T0aQe3f482Ge+riSeqd6ng4OY+6rd1WtUgVmMU9PUGdna4HI15YYA+wC8v/P13dXyXlam6jSefVGXH0FBV3s/LU0EfBw060l9SCHFMacdYgB92/sC5n55Lv5h+1NpryanKYd4V8xifOl6tV7MXtj0PZavV4P+w/mAIV685a1Ved9JroG9DZeuxlLcfwNKspZw26zQSQxP565i/cttPtzEyaSSLr1nccj+jY7Ds1V6/7PmFc+acQ2p4Kvsq99Etohu/Xf0bMcE+A+1r9qr2ubps1UbnsqlB3PoQCExQ9bm+DlA2yMtT462KilRZ32pVZeWQEBWgc9QoNdB22za1nieYp2fiCrNZXWdPOkltr8paxf3z76ekrgQ3bs5OP5trBl/T4ftKHNjGgo3U2msBGBA74KADfwkhREeosdXw8+6fcbvVWKyp6VOb3Ws7XU6u+/Y6Ptz0IREBEWg0Gn66/CdOSjypfR/WzjGdr6x6hTt/vpPe0b3ZXrKdS/tfyofnfejXBu37NotFXS9B1ZOYWuoe3QF1SxaLqpPLzFT1NfX1KshRQIAKijFihAR+E+3UhuMyqyKLd9e/2zhu8pbhtxxTAfOOBXX2usZgUsHG4AO/QRxxNTUq/snOnep+Sav1nyw8Ohpuve3wjGNakb2CK766AlDHyr2j7+W+Ma3M3tKOemC3W/XH8HwXIQCoy1H18dbShvoFh6q3MpghrC+E9mhc1eqwUmmtBCDYENxq/mW3qzYki0UtG42qXj7oIIbZWR1WFmUuwuV2odPomJg2UcZZiA512AK/jR8/npqaGtatW+f3/O23387rr7/OrbfeyquvvgrAl19+yYUXXsi1117LO++8cxBfo31uuOEG5syZQ3l5OXqfK8Inn3zCpZdeyrJlyxgzZkyL7508eTLZ2dls87SCNnjmmWd46KGHyM3NJTExsU3pkMBvR46nQ3GXsC7sq9zHlQOvZNZ5s9q3kYMdwN0BFfrfbP+Gcz89l+4R3dl26zb6/6c/O0t3MveiuVzQ94L9p9X3c2VW30Py/LLnuf/X+zm92+n8fPnP9Hi1B5kVmXx7ybec3etsQHWAeP99tf5JJ8Gnn6pOngB//KEa7L9pMqHdUR34rYNYHVb+8t1fKKwtBODW4bdyTq9zOjlVQhy9Pt38KZd8cQn9Yvrxw2U/kP5aOlqNlp237Wx5BrQD5CNPL32ahxc+zLm9z6WkroTf9/3erCPb2ry1nPT2SZhNZnLuzuHFFS/y98V/b3kmTuFnRfYKxr43lsTQRFLMKazIWcH709/n6sFX+6138rsnszx7OW9Oe5NFmYv4ZPMnPDruUf458Z+dlPLj1H7OB6vDSq/XepFVmcX8K+fzyqpX+G7ndzw18SkeGvdQ69tqZXtCCHE0Wrh3IfP3zAfUrILSUUkctw5QBv58y+dcPPdiBscPpqSuhLzqPJbPXM7I5JFHMJFCiI7w3vr3mPntTPrH9ufPm/9s/H9A7AA23byps5MnRNu1du1adw/s+D81e/TU7Sp4lcdngRL47VBJu8jxacNDsK0hAFjXK9U5YgiFzI9hxeXq+Y4O/PbrKVC8BIJT4ey96tgqWgJFi2HzP1SQnhMp8Fv2F/D7hWr5lB9VwCGAz4LAWa+WPYHfvu0KtVlqAPSEeSrIJcCKKyFztgr8hlYFNApKhukqYCklK9QgW4+EKZByXutpFUefg5mYqJXjd+ZMeO89tTx3LlzQQhN5Z9lYsJHBbw4GIO+ePBJCExpf6/1ab3aU7uDlKS9zx8g7OimFnevTzZ9SbasG4Nze5/p1xL7hBjUjMqjgY3/7m/97i4vBXPUNptXnqifGfgEp56vlfXO9K+oCIWkqv/wCc+aoQBqVlWpWzbAwNdihqkoFmXvxxcPzPTuEb6DMKeshYjBYy1RQzY0PQvk6FfgtejSsbTiexn8HST6BFeaGg72yzYHfHA5ITVUdhPV6FUAlPv5wfcGjTCv5zaOPwr/+pZafeUYF9GpJra2WiGcjsLvsLb7+2pmvceuIW3l77dvc8H3rE3O8e867XNH/WhITVXAqk0kFLomL20+aD0TKth2jlfOmoEANXnK5ICZGzeoeG+v/1vx8NdP7gbYF8O2Ob5n+yfRWk/Hi5Be5Z/Q9/k/KvV67PPSQOp9b0+GB306kc3XZDNj3mQrGffYeNUu7vQqsJd51jFFgDANgSdYSTpt1Gi63C5fb1ez4Hj4c1qxRyytXwshjvTp/P+fqrtJdpL+WjgYNa29YS1xIHFM/nsqGgg28NPkl7h599xFOrGhVO89pT/Cs6b2m8+2Ob0kNT+XPm/88tIkcj+PAb6AC786bp/rX5uaq8ruhYaxMYKAKuHrpper6unQprF+vyk1VVWqgTnCwKsNefjn0H+gg5vkYKiwV9I/tT1JoEqX1pazJW4NOo6PgvoLmg0MPdf9aS2H5pVC4AEK6qzJ7UCpo9So/rNoGve5Wgd9KVkBoOpy1WdUH1xeApdC7reAuYIzg9dWvc9tPtzE6eTTLr1vOabNOY+Hehbww6QXuHdN0FvPWv8PChXDaaWp58mS1n1vj6TsYYgwh7548thRvYfQ7owkPCCfn7pzGgVMPzH+A55Y/xwV9LmDuxXMbyzLJ5mQy78xsPhD9WC+3uJxgKwV7NbgsoA0AYwSYItu1mdpadfyuWaOO8+pqNUg+IEANzpw4UQWHE0KIjjJv9zw2Faq29BFJIzil6ymtr+x2q/ZIjRZ0J/ZEim+tfYvHFqmg7JGBkSy8aqG3vvdEutfzsbN0J0W1RQD0jelLZGD7roFCCCGEaL/tJduxOCxo0NA/tn+LQd8OqAPb6oUQQogWHcy1RgghRIvaE3usXTEz9+7dy6mnntrs+Z9//hmj0chTT3lnqzv//PMZN24cS5cubc9HHLTzzjuPt99+my+++IIZM2Y0Pv/BBx+QmJjIyP30GDnvvPO45ZZbWLVqVeN6DoeD2bNnM3LkyDYHfRNH1j8n/JNQYyhWpxWtRus3i26btbVw0VpBpenz7SisTO89nWEJw1ibv5YrvrqCnaU7GRw/mPP7nN/mbbT3M0Vztwy/heeWP8evGb/yyMJHyKzIZEj8kMagb+DtGKHVqo6B3XzG6A0frgYinIhMelP7gy0KcQK7uN/FPLf8Odblr+Osj8/C5rRx7+h7Ww761gb3jbmPDzd9yNfbvwbg5JSTuXbwtX7rDEscxqRuk5ifMZ//rPkP/13zXwAeGttCMCzhZ3TKaO4ZdQ/vrH+H7SXbmd5rerOgb6A65Y9+ZzSPLnyUkroS4oLjeGBsK6NFRNu1o+xl0pv454R/ctXXV3HT9zexp3wPSaFJ3DXqrsOeTCGEOFImpk1kYtrEzk6GEJ3uon4Xcc3ua1i0dxE6jY6Hxj4kQd+EOEZdOuBS7v/1fjYXbWZ59nLeWvcWALePuL2TUyZEBylcoP6G9vYGfdv1H9j5GjitnZeu44W0ixyfihapv4ZwGPG2dyCSRnv4PrNun/ob0sNb71S4EDb//fB95tEsuKt3uWqbN/DbBWXe806jgZq9KugbQNrV3qBvTXW9QgV+q8uBvbMg7SoV2Ch6tHrdUQuag+jMLDpXB+bBFot3+WibUy8+xBslq7C20C/wm2dSLN91TjQz+s9o8XmHA776Si3r9XB3C7FNYmKA6LMh42QoWQZrb1eBNmPGQeJUsJVBxUbQqKgQkyerh4fdDnV1aiB9i7PbH20qN6u/WgOEDVDL5evht8n+6+V+r/4GxHmDvpX+oQKSutpXfty4UQV9Axg//gQK+rYf69d7lyfup5o12BjMiKQRLMtexpD4IYxOHk2VrYrZm2YDMCFtAsAB66NGJo9k6VIVvATg9NNbCfoGUrY9Ssydq4K+AVx2WfOgb9Ak6NsBjEw6wDFygNfF/jkc3uCxoMoRb7yhgoN+8QW88MJh+NAT6Vwd8hKUb4DqnfDLCEi7RtVtaLRQuw9KV8OwVwEV+G186nhy78nF5rShQUOSOalxU1lZ3qBvvXodw0Hf2tJ/we2mZ1RPxqSMYXn2cpZlL2Na+jQ2FGzAoDVwxcArjkxaRdu085x+ecrLrMtfx5q8NSSGJvLWtLcOLuhbW/vCtGWdozxfSkpSwb5nztz/egkJcPHF6tE6PdPSpzF702xOTT2VV896lReWv8CavDWc3OXk5kHfOoIpCib8ogLAFS9TgdysJep3MEZAysUQnAbDXodFp6s8c8Gp0G2mmmDA7YbaTHXPM+IdAK4beh3/XPJPVuSs4K21b7Fw70IiAyO56aT2TTiwZIl3+eyzW18PVN9BT7708Z8fsyp3FQAzB89sDPoGcP3Q63lu+XN8t/M7yuvLmbVxVuN6jQPR25gXHhO0OgiIVY9DEBwMU6aohxBCHAln9DiDM3qc0baVNRrQBx7eBB0jbhh2AzcMayWA/7Fy7epg6VHppEeld3YyhBBCiBNK7+jeh76RtpRdDsM4eCGEECcQuT4IIUSnaFfgt5KSElJS/IOTVFRUsGfPHsaNG0doaKjfa4MHD2aNp+fGYXbmmWcyadIkbr75ZqqqqujRowdz5szh559/Zvbs2eh0quHxuuuu44MPPmDPnj2kpqYCMHPmTF5//XUuuuginnnmGWJjY3njjTfYsWMHv/766xFJv2g/g87AI+MfOTIfdpgKKn8/9e9MmzONz7Z8BsDfTvkbmrbOGiM6RLAxmLtH3c0jCx/h2WXPAvDo+EcbX9+0Sc0qCDBoEPTs2XwbnpkI2+R46vwghGgXjUbDM6c9w+TZk9lavJUwUxgPj3u46UotvdH//4Y8wqAzMO+KeWRWZAKqEbala8iDYx9kfsZ8Hl34KHaXnVNST2FU8qiO+ErHvecnP8/zk5/f7zqjkkdx2/DbWJa9jGRzMneNuuvQZvQVB+XygZfz2h+vsbV4KyHGEP4x4R8EGqTTihBCCHE8em/6ewdeSQhx1AvQB/CXoX/h6d+f5r5f7mNlzkoiAyO5fODlnZ00ITqGvUr9DfSJDGApgqqtnZMeIY52jlooX6eWUy7wBn073AJi1SBcTwA4gD4PQLpPIFL9CVTXFzkMEs+CvB/hzyfUQOak6WCKBFs5lKwCZx3YK73v6dIwMttpgartaj2PtKtUwKOdL8PKq2Hbc2Duq4If1WZC2Vo4Yw2E9z+iX1McPc46C+bMUcuzZ8OkSZ2bHl8xwTHoNDqcbieFNYWNz1sdViosFQAkhLQjAtAJYt8+b6CrwYMhLKyVFTVaFURhx8uQ953KI5yeSIAaCEqB/o+3+FaDYT/bPRppjeqvy6ECuGmDIKxvY/AHAEK7wx83q+XgNO/zhQtgY/snc6r0yaZbCl51IvINElhTs/91J6ZNZFn2MhJDE3l96ut8t+M7Zm+aTXxIPH1j+gLQL6YfwYZgau21nNH9DLqGdyWjPIP5GfMxm8z0ju7NpiLvNnv0OAxfSrRdG/rpbLze20/nlFMO/SPjQuLoEtaFfZX7mNx9MoPjBrOvah+fbP4EvVbP0IShh/4hJ7AtW6Cw4fKs0agJPUc1dIEYPhyGDpWuV4ckKAnO2qqCYuf/DBV/QuEi0OpVgNLIk8DgH7U3NrjlC05urne5T5/DmejDrB0H1DWDrmF59nLmbJ5DjU1ddM7seSYxwTGHK3XiCIgIjGDzLZsPfUOSOR2083qfx+xNs/lh1w+8yqv8sOuHxucPK1MUJJ/T+uuRQ+DsDMj5EvJ/gczZKliczgQB8RDWv7HMEaAP4O5Rd/Pggge55YdbALhjxB1+Adjawun0LhuNB17/zpF3sjx7Oa+sfoXMiky0Gi23jbjNb52eUT05teup/Jb5G2/88Qbf7fwOrUbLdUOv864kx68QQgghhBBCCHH0k/t3IYQQQgghjjntCvym1+upqKjwe259w7SoJ510UrP1Q0KObEf4L7/8kkceeYTHH3+csrIyevfuzZw5c7jkkksa13E6nTidTtw+NzAmk4kFCxZw//33c/vtt1NXV8fgwYP56aefOKUjenMJ0Yqp6VP55IJPsDlt6LV6pvee7r+CBAk7Im4fcTs5VTm43W5CjCF+nUE2bfKuN3r0fjYi0fCFEG0wqfskHI85cONGq9Gi1WgPaXspYSmkhKXsd52JaROZlj6N7SXbAf/glqJjvHrWq52dhONPO6+XWo2WVdevOkyJEUIIIcRhI/fSQpzQbhl+C88vf54VOSsAuG7IdQQZgjo5VUJ0EE8wqdos73P9H4d+PvUyh1gvJMRxpWoHuOxqOayv9/lfRkL1rsP3uV2v9dIQIwABAABJREFUgNLV6jOyPoHUS0AfqB6gBupq2tWcfuwb8wmsvxey5sCqmeo5jQ7cDaOKe98LOp/rdXBX9bd6N/w8xH9bGg0MeR76/BWKf1fB/WyVKghSxGDo/wSYex3ubySOYpddBq++CqtXw6xZUFcH11wDyclQXg6//67We7QTmjW0Gi2xwbHk1+Rz/XfXE2pUkyA63d4R9vEh8Uc+YUe52lrvcnj4AVbWB0G/h9TD5QB7BbhdYAgHXRuiFxwrYifAnrcBtwqs2eVCFRy4+0z/9TQ6/78AkcMh/U6f/5vks61I8IlJuGPHwSX7eHPmmfDVV2r5009hwoTW152YNpF/Lvkny7KX4XK7WLpvKQATunrfpNPqGJowlKX7lnJ6t9O5b8x9PPP7M8zPmM+whGFoNVp8504tKmr6KeJoU1/vXe6o7o4jk0ayr3IfA2IH8OykZ3lzzZt8svkTBsQOkAmsDtHGjd7lM87wBn3zuPhiVa5oM+mf15xWBwmT1OMQBPoc6lVVh5imY8SM/jO4a95drMheQXZlNgDXDr62k1MlxLFvSo8pBOoD2Vuxl1U5q/h9n7phPLf3ud6VOis/N4ZBt2vV4wBuHn4z3+z4BqvTil6r5/aRtx/wPU0NGuRdXrQIbrhh/+uf3+d8ks3JbC1Wk5JM7zWdtIi0ZuvdMPQGfsv8jb8v/jt2l50pPabQJaxLu9MnhBBCCCGEEEIIIYQQQgghhGi7dvVUT09PZ8GCBX7P/fLLL2g0GsaMGdNs/by8PBISjtwsxyEhIbz88su8/PLLra7z/vvv8/777zd7Pi4ujg8++OAwpk6Ils3oP6Ozk3DCCzWF8sbUN1p8zbfTWVzcEUoQSKdCIY5jOq2u9RcP03n93aXfHZbtCnHMkOuqEEIIcXSS668QJ7RkczL/PuPf7CnfA6jJGYQ4biROawgmtQPK1kHkUHUPqtlPvZAQJzJHtXfZFOtdthSCrfzwfW7aNbDrv1C1FZZfBvs+g4ihgFsFKcufB+cVgfbITnYGdF6QZEMojHgLTnoDytZAzV5wO8AUBea+ENIV1t/nXd8UfeBtBsRCyvnqIYQPrRZ+/RWeeAI+/hjmzlUPXw891DlpA0gITSC/Jp+cqpxWXxf+IiK8y7m57XijVt+2/ORYlHI+rI9T17Q1t6pAmknnqCCYVdvUtSfhDAjtCZWboWIDOK2gM0H8aerRTn36wMCBapK79eth7VoYNsx/Hbe79UvN8ejKK+Hxx6GgAN56S/X9uOEGSEqC4mL46ScVuPDmm2F08mgC9YFUWCr4s/BPlmQtAVRAOF8jkkawdN9S1uavBWBd/rrG5wFOPhkCAsBigXnzwGoFk+kIfmnh1YbyUpRPjMWsrNbXa0+b48ikkXy+9fPGY8Tzd2TSyAOmR+zfhg3e5bPPbnmdIJlb4KjQp48KBltRAcuXQ01NxwVXPFqZTWbO630eH/35EdlV2cQExTC159TOTpYQx7wgQxCTuk/i2x3fcte8u3C4HAyOH0zX8K7t21AnT0plNplZft3yQ9rG9Okq2HN+PnzxBcyfD5N84nQ6nSrPHTdO/a/X6vnv1P+yOnc1oALBteT8PucTFRhFaX0poALBCSGEEEIIIYQQQgghhBBCCCEOr3YFfrvgggt49NFHufHGG7n11lvZvXs3//nPfwgJCWHKlCnN1l+2bBk9evTosMQKccKRAdCdTu+TSzoc+1lRfishhBBCCCGEEEIIIdrl1hG3dnYShGiftg4MrM6ALU+CywZLz4NBT0PCZHDUQ8ly2PUGnPIdGMyHP81CHBO03kXfAIkRQyEgoeX1OoIhFCb9Dpseh+y5kPOVegBotBA1CrSGjv3MtursdietHqJHqUdTukDvsrMeDCEQlAKjZnmfD5SAWKJtQkPhpZfU488/YdcuFSQpOloFroqP77y0xYe0/uHBhmBCjMd51JKDkJwM3bpBRgZs2wbZ2ZCS0tmp6mQ6E4z7GpZMB2sRLL+k4QUN0JDXR4+C5PPVNchRC5mzoft1/tuxlYMuGHTGNn3sXXfBzJlqeepUeOwxmDJF9XlYuRJefRVWrABDJ13mjrSAABXc7fzzYe9e+Mc/1EOnU4ExAO5sCPxl0psYkzKGBXsX8PPunxsDurUU+A28Ad88Qb08z4eHq8/7+GMoK1OB5l59FcwNtwCVlfDOO3DPPYfxi4s2mzwZXnlFLf/wA1x//aFvc2SyCvC2Ln8dbrfbG/gtWQK/HaqNG73Lffp0wAY7u+x9HAsIgBkz4M03VRnv/vvhtddUAGCPRYtgzJjjKzjmHSPvQKtRX3Jsl7EYdCfIBVeIw+zcXufy7Y5vWZmzsvF/P8dDft6G+meD281rr8HFF4Pdrsoxo0ere+jycliyBNLTYfFi79unpk9lavr+g1Ca9CZWXb+KKquaLXtA3IBD/jpCCCGEEEIIIYQQQgghhBBCiP1rV+C3u+++m08//ZS3336b//3vfwC43W6ef/55goOD/dZds2YNu3fv5sYbb+y41AohxBEWE+Nd3rHjCH7w8dAJRQghhDhayHVVCCGEEEIIIcSRFJIGw9+C1ddD3T5Ycfmhba8tAefk3lccy4zh3uW6fd7lcV8egc+OgJNehWEvQ9U2b2Cd0B4qMJxoLqiLd7l8AyRMAmMYpF3ZaUkSR6GWrl1Nn2ty7RowQD2OFgkhrQcwTAiV4IatuegiePZZtXzffTBnjn9wl2XLoF8/FRTrhBE9CqbthJyvIfcbqMtRATZDukPsqRB7CridYIoBazGsuUXlr0nngMsCRUsg412YtgP0MS1/RpNy4bXXwp498NRTUFgIt912BL7nUW7wYNi6FebPh2++UcEJLRYVYHL0aLjqKu+6E7pOYMHeBby6+lXsLjupYal0i+jmtz1PgLddpbvIrswmozzD73mAp59WAY3y82HWLPjySxg+HOrqVOCqgAAJ/Ha0mDwZIiJUsJRvvoHPPlPBVDwKC+G332BGO+67hiYMRa/VU2WtYkvxFjYXbQb8jxFxcPbu9S736tV56RBtc//96pwqL4f//AfmzYOzz1aBN1esgLVroarq+Ar8NiJpBLPOm3XgFYUQ7XJ2r7PRaXQ43Spy73l9zuvkFHWe889Xgd2eeUaVb1esUA9QZczRow9uu90ju3dcIoUQQgghhBBCCCGEEEIIIYQQB9SuwG+BgYEsW7aM//u//2PlypVERkZy0UUXcc455zRbd926dUyfPr3F14QQ4lgxdqzqI+12w++/q7+tjbETQgghhBBCCCGEEEIIcRxrT3C1bldD9EjY8y7kfgvWEhVEKnwAJJ8P+pDDl04hjjXm3qALAmcdlK7unDRotBDWr3M++1gTd6p3uXCBCvwmxHEoPiT+oF470d18M/z3v1BZqYK8rF8PlzfEwF26FBYsgJycEyzwG6gAmd2uVo/WnPwZLDkHHNWw6zX1OARPPglXXgmffAI//QQlJRAUBIMGwQUXgMFwSJs/OrQlQDI0luMDAlSwobPP3v9mJ6ZNhEWQW50LwIS0Cc3W6RreldjgWIpqi3hn/TsAJIYmkmxOblynSxf44w945BEV9K26WgWCAxUQ8Ywz2vAdxRFhMMDjj8Pdd6vDZcYMeOklGDhQ5VmLFqnzZsaMtm8zyBBE/9j+bCjYwPsb3sfmtGE2mekd3fvwfZETRF2ddzlBYrEe9bp1U8GJrrtO5YkZGfDyy97XzWbQt6sXsxDiRBUdFM1Pl/9Eja0GnVbHwLiBnZ2kTnXyyfDddyp45saNUFsLkZEqoHpgYGenTgghhBBCCCGEEEIIIYQQQgjRFhq3uz2jVMSBVFVVERYWRmVlJWazubOTI4ToAMOGwbp1avnjj+HSS/1f37RJdfYUQgghhBBCCCGEEEIIIdqsLbOMtHU2EmnuE8e6hZOg8FfQB8O0PRAY5/96XS4EJXVO2o4VvnlF0zyho/ORb7pAXbYKYjlxEUSd5H1t31zQGiB5etu3J8RR6LXVr3H7T7e3+NqFfS/k84s+P8IpOnYsWgTnnw8VFS2/npsLiYlHNEnHjvp82PM/2PcpWArBYIbwwZB6CaRcKLPUNdXW/dHOsrLD5SDy2UiqbdUAzDp3FlcOurLZemfPOZvvd35PijmF7Kpszu19Ll/N+KrFbdbXw/LlUFamghwNGQKxse1KljgCnnwS/vUvsFiav3b99fD22+3b3k3f38Sba98kOiiakroSTks7jV+v+rXllfdXlhN+wsJUkBuTqeXfShy9tm6Fb76BwkJvMNKzzoLQ0M5OmRBCCCGEEEIIIYQQQgghhBBCCCFEx2hP7DGZK08IIQ7gggu8gd+uv17NPHrxxapD7uzZMH8+bN/euWkUQgghhBBCCCGEEEIIcZySQf/iRBB/ugr85qiFJdNg+FsQOQSq98DOl6G+AMZ+1tmpPPq0FvDmcAcO6XEjbHoUHDUwfyQkTQdTFBQvh6qtMPLdjv9MIY6whJAEAAL0Adw47EYAvt/5PXvK9zS+Jlo2YQLs26fa0j/6CHJyIDBQTbh29dUS9G2/AhOg/2PqIQ7sMJWT9Vo9946+ly3FWwA4vdvpLa43InEE3+/8nuyq7Mb/WxMYCKed1vFpFR3r0Ufhlltg1ixYtgxqayE5GSZNgvPOa//2RiaN5M21b1JSV9L4vzh0+oYerw5H56ZDtF/fvuohhBBCCCGEEEIIIYQQQgghhBBCCCEk8JsQQhzQ3XfDBx/Azp1QV6c6ej76qPf1bt06L21CCCGEEEIIIYQQQgghhBDHvB43wfYXwVoMZWtg3lDQ6MHdEM0h+fzOTZ/w1/s+yPsRSpaD2wU5X3V2ioTocPEh8QA4XA7+74z/Q6PRsKlwE3vK9zS+JloXGgo336weQhyLnjj1iQOuMyJpxH7/F8emyEi46y71OFRyjBweQUFqsk6nE+rrVWBFIYQQQgghhBBCCCGEEEIIIYQQQgghjjXazk6AEEIc7QID4ZdfYNSoll9PTT2y6RFCCCGEEEIIIYQQQghxHHC7D/wQ4kRhDIOxn4PB7H3OE/QNQB905NN0POno/EZnggnzYdDTYIz0Pm8Ig563QdI5HZt+ITpBQmgCoAK/ldaXAlBYW6heC0notHQJIY4evkG8NGgYnjS8E1MjjkZ9YvoQagxt/H9k8shOTM3xI9Kn+LlrV+elQwghhBBCCCGEEEIIIYQQQgghhBBCiEOh7+wECCHEsSA1FVasUAHgZs2CoiKIj4ezzoILL+zs1AkhhBBCCCGEEEIIIYQQQhzjYk+BszNgy78g91tw1EJoD0i5CHrc0NmpOzp1ZoBIfRD0fRB63QW1WaDRQ0gaaGTuOXF8iA+Jb1wurCkkOiiawprCZq8JIU5cEYERvHvOu9Q76gk2BGM2mQ/8JnFC0Wq0LLp6ETW2GnRaXfPrh0bT8ht9n5eA4M0MGACbNqnlHTtg4MDOTY8QQgghhBBCCCGEEEIIIYQQQgghhBAHQwK/CSFEO0yerB5CCCGEEEIIIYQQQgghhBCig5miYOhL6iGODboAMPfq7FQI0eGCDEGYTWaqrFUU1hbSy9WLsvoyABJCEzo5dUKIo8W1Q67t7CSIo9ywxGGdnYTjzqBB8NFHannVKrjoos5NjxBCCCGEEEIIIYQQQgghhBBCCCGEEAdDptsWQgghhBBCCCGEEEIIIYQQQgghhBDCR3xIPABFtUUU1xbjxu33vBBCCCGOvEGDvMsffwwWi//rFRWwevURTZIQQgghhBBCCCGEEEIIIYQQQgghhBDtJoHfhBBCCCGEEEIIIYQQQgghhBBCCCGE8OEJ8FZYU0hRbREAWo2WmKCYzkyWEEIIcUIbMgQ0GrWcnw/XXQc2m/q/sBCmToU9ezovfUIIIYQQQgghhBBCCCGEEEIIIYQQQrSFBH4TQgghhBBCCCGEEEIIIYQQQgghhBDCR0JIAgCFtYUU1hYCEBsci06r68xkCSGEOF643Qd+iGZiYuD0073/f/wxDBwIZ5wB3bvD8uWdlzYhhBBCCCGEEEIIIYQQQgghhBBCCCHaSgK/CSGEEEIIIYQQQgghhBBCCCGEEEII4SM+JB6AwppCCmsK/Z4TQgghROe55x7//3fsgF9+gdrazkmPEEIIIYQQQgghhBBCCCGEEEIIIYQQ7SWB34QQQgghhBBCCCGEEEIIIYQQQgghhPCREJIAQGFtIUW1RX7PCSGEEKLzTJkCF13U+uta6RUrhBBCCCGEEEIIIYQQQgghhBBCCCGOctLFRQghhBBCCCGEEEIIIYQQQgghhBBCCB/xIfEAFNUWUVhb6PecEEIIITrXxx/DAw+ARuP//GWXwXnndU6ahBBCCCGEEEIIIYQQQgghhBBCCCGEaCt9ZydACCGEEEIIIYQQQgghhBBCCCGEEEKIo0lCaAIAhbWFFNUWqedCEjozSUIIIYRooNfDM8/AmWfCzz+DywVnnQWnnNLZKRNCCCGEEEIIIYQQQgghhBBCCCGEEOLAJPCbEEIIIYQQQgghhBBCCCGEEEIIIYQQPuJD4gEorCmksLbQ7zkhhBBCHB1OOUWCvQkhhBBCCCGEEEIIIYQQQgghhBBCiGOPtrMTIIQQQgghhBBCCCGEEEIIIYQQQgghxNHEE+TN6rSys3Sn33NCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQhwsCfwmhBBCCCGEEEIIIYQQQgghhBBCCCGEj5igGPRaPQB7y/cCkBCa0JlJEkIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBDHAQn8JoQQQgghhBBCCCGEEEIIIYQQQgghhA+NRkNscCwAbtwAxIfEd2aShBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIcRxQAK/CSGEEEIIIYQQQgghhBBCCCGEEEII0URCSMJ+/xdCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQor0k8JsQQgghhBBCCCGEEEIIIYQQQgghhBBNxIfENy6HGEMINgZ3YmqEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghxPFAAr8JIYQQQgghhBBCCCGEEEIIIYQQQgjRREJIQovLQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIcLAn8JoQQQgghhBBCCCGEEEIIIYQQQgghRBPxIfEtLgshhBBCCCGEEEIIIYQQQgghhBBCiP9n7z6j7KoKNgC/M5n0SkICJIQaeo10kSbSUYoiTQUE5UNFQUWpAhYEsQGKDRSUXlV6B6X3XiQVkkAgvZeZud+PnWQypJCETCYJz7PWrJx76r6TuXefvc/Z7wEAYFEtN8FvEyZMyAknnJCePXumTZs22XzzzXPNNdcs0LZDhgzJCSeckJ122ildunRJVVVVLrvssqYtMAAAAAAAAAAASy3BbwAAAAAAAAAAAAAsbstN8NuBBx6Yyy+/PGeeeWbuuOOObLXVVjn00ENz1VVXfei2/fr1y5VXXplWrVpl7733XgKlBQAAAAAAAABgabZKx1UapjusMp81AQAAAAAAAAAAAGDB1DR3ARaH22+/Pffcc0+uuuqqHHrooUmSXXbZJYMHD85JJ52Ugw8+OC1atJjn9jvuuGPef//9JMnTTz+dq6++eomUGwAAAAAAAACApdP2vbfPFQdckSTZdKVNm7k0AAAAAAAAAAAAACwPqpu7AIvDzTffnA4dOuSggw5qNP+oo47KsGHD8sQTT8x3++rq5eLXAAAAAAAAAADAYrJSh5Vy+KaH5/BND88mK23S3MUBAAAAAAAAAAAAYDmwXCSevfzyy9lggw1SU1PTaP6mm246a3lTmTp1asaNG9foBwAAAAAAAAAAAAAAAAAAAAAAAGB2y0Xw28iRI9O1a9c55s+cN3LkyCY79s9//vN07tx51k/v3r2b7FgAAAAAAAAAAAAAAAAAAAAAAADAsmmpC3578MEHU1VVtUA/zz///Kztqqqq5rnP+S37qE455ZSMHTt21s/bb7/dZMcCAAAAAAAAAAAAAAAAAAAAAAAAlk01zV2AD1pvvfXyl7/8ZYHWXW211ZIk3bp1y8iRI+dYPmrUqCRJ165dF18BP6B169Zp3bp1k+0fAAAAAAAAAAAAAAAAAAAAAAAAWPYtdcFvq6yySo455piF2maTTTbJ1Vdfndra2tTUNLyll156KUmy8cYbL9YyAgAAAAAAAAAAAAAAAAAAAAAAACyM6uYuwOJwwAEHZMKECbnxxhsbzb/88svTs2fPbLPNNs1UMgAAAAAAAAAAAAAAAAAAAAAAAICkprkLsDjstdde2W233XLcccdl3Lhx6dOnT66++urceeedueKKK9KiRYtZ6x599NG5/PLL079//6y++uqz5t9www1JkgEDBiRJnn766XTo0CFJ8oUvfGGBy1KpVJIk48aN+8jvCwAAAAAAAAAAAAAAAAAAAAAAAFh6zcwcm5lBNj9VlQVZaxkwYcKEnHbaabnuuusyatSorL/++jnllFNyyCGHNFrvyCOPzOWXX56BAwdmjTXWmDW/qqpqnvtemF/RkCFD0rt374UuPwAAAAAAAAAAAAAAAAAAAAAAALBsevvtt7PqqqvOd53lJvhtaVFfX59hw4alY8eOqaqqyrhx49K7d++8/fbb6dSpU3MXDwCYjXoaAJZe6mkAWDqpowFg6aWeBoClkzoaAJZe6mkAWDqpowFg6aWeBoCll3oaAJpfpVLJ+PHj07Nnz1RXV8933ZolVKaPjerq6rmm7XXq1MnJEQAspdTTALD0Uk8DwNJJHQ0ASy/1NAAsndTRALD0Uk8DwNJJHQ0ASy/1NAAsvdTTANC8OnfuvEDrzT8WDgAAAAAAAAAAAAAAAAAAAAAAAICPTPAbAAAAAAAAAAAAAAAAAAAAAAAAQBMT/NbEWrdunTPPPDOtW7du7qIAAB+gngaApZd6GgCWTupoAFh6qacBYOmkjgaApZd6GgCWTupoAFh6qacBYOmlngaAZUtVpVKpNHchAAAAAAAAAAAAAAAAAAAAAAAAAJZn1c1dAAAAAAAAAAAAAAAAAAAAAAAAAIDlneA3AAAAAAAAAAAAAAAAAAAAAAAAgCYm+A0AAAAAAAAAAAAAAAAAAAAAAACgiQl+AwAAAAAAAAAAAAAAAAAAAAAAAGhigt+ayIQJE3LCCSekZ8+eadOmTTbffPNcc801zV0sAPhYefDBB1NVVTXXn8cff7zRus8++2w+85nPpEOHDunSpUsOPPDADBgwoJlKDgDLl/Hjx+cHP/hBdt9993Tv3j1VVVU566yz5rruwtTJF110UdZff/20bt06a665Zs4+++xMnz69Cd8JACxfFrSOPvLII+fatl5//fXnul91NAB8NPfff3+++tWvZv3110/79u3Tq1ev7LfffnnmmWfmWFc7GgCWrAWtp7WlAWDJev7557PPPvtktdVWS9u2bdO1a9dst912ueKKK+ZYV1saAJasBa2ntaUBoPldcsklqaqqSocOHeZYpj0NAM1rXvW09jQALLtqmrsAy6sDDzwwTz31VM4999ysu+66ueqqq3LooYemvr4+hx12WHMXDwA+Vs4555zssssujeZtvPHGs6Zff/317Lzzztl8881z3XXXZcqUKfnRj36UHXbYIc8//3y6d+++pIsMAMuVkSNH5s9//nM222yz7L///rnkkkvmut7C1Mk/+9nPcsYZZ+Tkk0/O7rvvnqeeeiqnn356hg4dmj//+c9L6q0BwDJtQevoJGnbtm3uv//+OeZ9kDoaAD66P/zhDxk5cmS+853vZMMNN8z777+fX/3qV9l2221z11135dOf/nQS7WgAaA4LWk8n2tIAsCSNGTMmvXv3zqGHHppevXpl4sSJufLKK/PlL385gwYNyumnn55EWxoAmsOC1tOJtjQANKehQ4fm+9//fnr27JmxY8c2WqY9DQDNa371dKI9DQDLqqpKpVJp7kIsb26//fbss88+s8LeZtp9993zyiuv5K233kqLFi2asYQA8PHw4IMPZpdddsn111+fL3zhC/Nc74tf/GIeeOCB9O/fP506dUqSDB48OOuss05OPPHEnHfeeUuqyACwXJrZ9VBVVZURI0ake/fuOfPMM3PWWWc1Wm9B6+SRI0dm1VVXzVe+8pX86U9/mrX9Oeeck9NPPz0vv/xyNtxwwyXz5gBgGbagdfSRRx6ZG264IRMmTJjv/tTRALB4vPfee+nRo0ejeRMmTEifPn2y8cYb5957702iHQ0AzWFB62ltaQBYOmy77bYZNmxY3nrrrSTa0gCwNPlgPa0tDQDN67Of/WyqqqrStWvXOepk7WkAaF7zq6e1pwFg2VXd3AVYHt18883p0KFDDjrooEbzjzrqqAwbNixPPPFEM5UMAPig2tra3Hrrrfn85z8/6+JDkqy++urZZZddcvPNNzdj6QBg+VBVVZWqqqr5rrMwdfKdd96ZKVOm5Kijjmq0j6OOOiqVSiX//Oc/F2v5AWB5tSB19MJQRwPA4vHBMJkk6dChQzbccMO8/fbbSbSjAaC5LEg9vTDU0wDQtFZcccXU1NQk0ZYGgKXN7PX0wlBPA8Did8UVV+Shhx7KxRdfPMcy7WkAaF7zq6cXhnoaAJY+gt+awMsvv5wNNthgjgsQm2666azlAMCS881vfjM1NTXp1KlT9thjjzz88MOzlvXv3z+TJ0+eVU/PbtNNN02/fv0yZcqUJVlcAPhYWpg6eWa7epNNNmm03iqrrJIVV1xRuxsAmsDkyZOz8sorp0WLFll11VXzrW99K6NGjWq0jjoaAJrO2LFj8+yzz2ajjTZKoh0NAEuTD9bTM2lLA8CSV19fn9ra2rz//vu5+OKLc9ddd+WHP/xhEm1pAGhu86unZ9KWBoAl77333ssJJ5yQc889N6uuuuocy7WnAaD5fFg9PZP2NAAsmxb+0Sh8qJEjR2attdaaY37Xrl1nLQcAml7nzp3zne98JzvvvHO6deuWfv365fzzz8/OO++c2267LXvsscesenlmPT27rl27plKpZPTo0VlllVWWdPEB4GNlYerkkSNHpnXr1mnfvv1c19XuBoDFa7PNNstmm22WjTfeOEny0EMP5Te/+U3uu+++PPXUU+nQoUOSqKMBoAl985vfzMSJE3Paaacl0Y4GgKXJB+vpRFsaAJrLN77xjfzpT39KkrRq1SoXXnhhjj322CTa0gDQ3OZXTyfa0gDQXL7xjW9kvfXWy3HHHTfX5drTANB8PqyeTrSnAWBZJvitiVRVVS3SMgBg8enbt2/69u076/UOO+yQAw44IJtsskl+8IMfZI899pi1TN0NAEuHBa2T1d0AsOSceOKJjV7vtttu6du3b77whS/kL3/5S6Pl6mgAWPzOOOOMXHnllbnooouyxRZbNFqmHQ0AzWte9bS2NAA0j1NPPTXHHHNM3nvvvdxyyy351re+lYkTJ+b73//+rHW0pQGgeXxYPa0tDQBL3o033phbbrklzz333IfWodrTALBkLWg9rT0NAMuu6uYuwPKoW7duc020HTVqVJK5J9sDAEtGly5dsu++++bFF1/M5MmT061btySZZ91dVVWVLl26LOFSAsDHz8LUyd26dcuUKVMyadKkua6r3Q0ATe+AAw5I+/bt8/jjj8+ap44GgMXv7LPPzk9/+tP87Gc/y7e+9a1Z87WjAaD5zauenhdtaQBoequttlq23HLL7L333vnDH/6Qr3/96znllFPy/vvva0sDQDObXz09L9rSANB0JkyYkG9+85s5/vjj07Nnz4wZMyZjxozJtGnTkiRjxozJxIkTtacBoBksaD09L9rTALBsEPzWBDbZZJO89tprqa2tbTT/pZdeSpJsvPHGzVEsAGCGSqWSpCTQr7322mnbtu2senp2L730Uvr06ZM2bdos6SICwMfOwtTJm2yyyaz5s3v33XczYsQI7W4AWEIqlUqqqxsuM6ijAWDxOvvss3PWWWflrLPOyqmnntpomXY0ADSv+dXT86MtDQBL1tZbb53a2toMGDBAWxoAljKz19Pzoy0NAE1jxIgRGT58eH71q19lhRVWmPVz9dVXZ+LEiVlhhRVy+OGHa08DQDNY0Hp6frSnAWDpJ/itCRxwwAGZMGFCbrzxxkbzL7/88vTs2TPbbLNNM5UMABg9enRuvfXWbL755mnTpk1qamry2c9+NjfddFPGjx8/a7233norDzzwQA488MBmLC0AfHwsTJ285557pk2bNrnssssa7eOyyy5LVVVV9t9//yVUagD4+LrhhhsyadKkbLvttrPmqaMBYPH5yU9+krPOOiunn356zjzzzDmWa0cDQPP5sHp6XrSlAWDJe+CBB1JdXZ211lpLWxoAljKz19Pzoi0NAE1n5ZVXzgMPPDDHzx577JE2bdrkgQceyE9/+lPtaQBoBgtaT8+L9jQALBtqmrsAy6O99toru+22W4477riMGzcuffr0ydVXX50777wzV1xxRVq0aNHcRQSAj4XDDjssq622WrbccsusuOKKefPNN/OrX/0qw4cPb9Q5cfbZZ2errbbKvvvum5NPPjlTpkzJj370o6y44or53ve+13xvAACWI3fccUcmTpw464L/q6++mhtuuCFJsvfee6ddu3YLXCd37do1p59+es4444x07do1u+++e5566qmcddZZOeaYY7Lhhhs2y3sEgGXRh9XR77//fg477LAccsgh6dOnT6qqqvLQQw/lt7/9bTbaaKMcc8wxs/aljgaAxeNXv/pVfvSjH2XPPffMPvvsk8cff7zR8pk35GlHA8CStyD19ODBg7WlAWAJ+/rXv55OnTpl6623zkorrZQRI0bk+uuvz7XXXpuTTjop3bt3T6ItDQDNYUHqaW1pAFjy2rRpk5133nmO+ZdddllatGjRaJn2NAAsWQtaT2tPA8CyrapSqVSauxDLowkTJuS0007Lddddl1GjRmX99dfPKaeckkMOOaS5iwYAHxvnnnturr322gwcODATJkxI165d86lPfSqnnHJKttpqq0brPvPMM/nhD3+Yxx57LDU1Nfn0pz+dX/7yl1l77bWbqfQAsHxZY401Mnjw4LkuGzhwYNZYY40kC1cnX3jhhfn973+fQYMGZeWVV85RRx2V0047LS1btmzKtwIAy5UPq6M7d+6co48+Os8991yGDx+eurq6rL766jnggANy6qmnpnPnznNsp44GgI9m5513zkMPPTTP5bNf4teOBoAla0Hq6dGjR2tLA8AS9re//S1/+9vf8tprr2XMmDHp0KFDNttssxxzzDH50pe+1GhdbWkAWLIWpJ7WlgaApceRRx6ZG264IRMmTGg0X3saAJrfB+tp7WkAWLYJfgMAAAAAAAAAAAAAAAAAAAAAAABoYtXNXQAAAAAAAAAAAAAAAAAAAAAAAACA5Z3gNwAAAAAAAAAAAAAAAAAAAAAAAIAmJvgNAAAAAAAAAAAAAAAAAAAAAAAAoIkJfgMAAAAAAAAAAAAAAAAAAAAAAABoYoLfAAAAAAAAAAAAAAAAAAAAAAAAAJqY4DcAAAAAAAAAAAAAAAAAAAAAAACAJib4DQAAAAAAAAAAAAAAAAAAAAAAAKCJCX4DAAAAAAAAAACARTBo0KBUVVXlyCOPXKjtqqqqsvPOOzdJmQAAAAAAAAAAAFh6CX4DAAAAAAAAAABgmTQzeG32n1atWqV379457LDD8uKLLzZLuXbeeedUVVU1y7EBAAAAAAAAAABYetU0dwEAAAAAAAAAAADgo1h77bXzpS99KUkyYcKEPP7447n66qtz00035f77788nP/nJJjlur1698tprr6Vz584Ltd1rr72Wdu3aNUmZAAAAAAAAAAAAWHoJfgMAAAAAAAAAAGCZ1qdPn5x11lmN5p1++un52c9+ltNOOy0PPPBAkxy3ZcuWWX/99Rd6u0XZBgAAAAAAAAAAgGVfdXMXAAAAAAAAAAAAABa3448/Pkny1FNPJUlqa2vzm9/8Jptttlnatm2bzp07Z5dddsltt902x7b19fW55JJLsvXWW6dr165p165d1lhjjey///75z3/+M2u9QYMGpaqqKkceeeSseVVVVXnooYdmTc/8+eA6O++88xzHHTlyZE488cSsueaaad26dXr06JGDDz44r7766hzrHnnkkamqqsqgQYNy8cUXZ4MNNkibNm2y+uqr5+yzz059ff2i/NoAAAAAAAAAAABoQjXNXQAAAAAAAAAAAABY3KqqqmZNVyqVHHzwwbnpppuy7rrr5pvf/GYmTpyY6667Lvvuu28uuOCCfPvb3561/imnnJJf/OIXWXvttXPYYYelY8eOGTp0aP773//m/vvvz4477jjP45555pm57LLLMnjw4Jx55pmz5m+++ebzLe/IkSOz7bbbpl+/ftl5551zyCGHZNCgQbnhhhty22235Z577sl22203x3YnnXRSHnzwwey7777Zfffd889//jNnnXVWpk2blp/97GcL8RsDAAAAAAAAAACgqQl+AwAAAAAAAAAAYLlz4YUXJkm22mqrXHHFFbnpppuy00475e67706rVq2SJKeddlq22GKLfP/7389nP/vZrLnmmkmSSy65JL169cqLL76Ydu3azdpnpVLJ6NGj53vcs846Kw8++GAGDx6cs846a4HL+4Mf/CD9+vXLKaecknPOOWfW/COPPDJ77rlnjjjiiLz++uuprq5utN0zzzyTF198MausskqS5Iwzzsg666yTiy66KGeeeeas9woAAAAAAAAAAEDzq/7wVQAAAAAAAAAAAGDp1a9fv5x11lk566yz8v3vfz+f+tSn8rOf/Sxt2rTJOeeck8suuyxJ8otf/KJRENqqq66aE088MdOnT8+VV17ZaJ+tWrVKTU3jZ6tWVVWla9eui73806ZNy9VXX51u3brl9NNPb7Rsjz32yB577JE333wzjz766BzbnnHGGbNC35JkxRVXzH777Zfx48fnjTfeWOxlBQAAAAAAAAAAYNEJfgMAAAAAAAAAAGCZ1r9//5x99tk5++yzc+GFF2bw4ME57LDD8uSTT2a77bbLc889l7Zt22brrbeeY9udd945SfL888/PmvfFL34xAwcOzMYbb5wzzjgj9957byZOnNhk5X/99dczefLkbL311mnXrt0ClXGmT3ziE3PMW3XVVZMkY8aMWZzFBAAAAAAAAAAA4CMS/AYAAAAAAAAAAMAybY899kilUkmlUsm0adPy9ttv58orr8wmm2ySJBk3blxWWmmluW678sorJ0nGjh07a96FF16YX/ziF2nZsmV++tOfZrfddsuKK66YI444IiNGjFjs5R83blySLFQZZ+rcufMc82pqapIkdXV1i6uIAAAAAAAAAAAALAaC3wAAAAAAAAAAAFiuderUKcOHD5/rspnzO3XqNGtey5Ytc9JJJ+WVV17J0KFDc9VVV2WHHXbI3//+9xx++OFNUr7Zy7IgZQQAAAAAAAAAAGDZI/gNAAAAAAAAAACA5Vrfvn0zefLkPPnkk3Mse+ihh5Ikm2+++Vy37dmzZw499NDceeedWWeddXLvvfdm8uTJ8z1eixYtkiR1dXULVL71118/bdq0yVNPPZVJkyYtdBkBAAAAAAAAAABYNgh+AwAAAAAAAAAAYLl2xBFHJElOOeWUTJ8+fdb8oUOH5te//nVqampy+OGHJ0mmTp2a+++/P5VKpdE+Jk6cmPHjx6dly5azgt3mpWvXrkmSIUOGLFD5WrVqlUMPPTQjRozIz3/+80bL7r333txxxx3p06dPtt9++wXaHwAAAAAAAAAAAEunmuYuAAAAAAAAAAAAADSlL3/5y7npppvyr3/9K5tuumn23XffTJw4Mdddd11GjhyZX/3qV1lrrbWSJJMnT86uu+6atdZaK9tss01WW221TJgwIbfeemvefffd/PCHP0yrVq3me7xPf/rTueGGG3LQQQdl7733Tps2bbLJJptkn332mec25513Xh566KH89Kc/zaOPPpptttkmgwYNyg033JB27drlb3/7W6qrPesVAAAAAAAAAABgWSb4DQAAAAAAAAAAgOVaVVVVbrjhhlxwwQW5/PLLc9FFF6VVq1b5xCc+ke9+97v53Oc+N2vd9u3b57zzzst9992X//73v3nvvfeywgorZP311895552Xgw8++EOP97WvfS2DBg3KNddck5/97Gepra3NEUccMd/gt+7du+eJJ57IT37yk/zrX//Kf//733Tu3Dn77bdfzjzzzGy88caL5XcBAAAAAAAAAABA86mqVCqV5i4EAAAAAAAAAAAAAAAAAAAAAAAAwPKsurkLAAAAAAAAAAAAAAAAAAAAAAAAALC8E/wGAAAAAAAAAAAAAAAAAAAAAAAA0MQEvwEAAAAAAAAAAAAAAAAAAAAAAAA0McFvAAAAAAAAAAAAAAAAAAAAAAAAAE1M8BsAAAAAAAAAAAAAAAAAAAAAAABAExP8BgAAAAAAAAAAAAAAAAAAAAAAANDEBL8BAAAAAAAAAAAAAAAAAAAAAAAANDHBbwAAAAAAAAAAAAAAAAAAAAAAAABNTPAbAAAAAAAAAAAAAAAAAAAAAAAAQBMT/AYAAAAAAAAAAAAAAAAAAAAAAADQxAS/AQAAAAAAAAAAAAAAAAAAAAAAADQxwW8AAAAAAAAAAAAAAAAAAAAAAAAATUzwGwAAAAAAAAAAAAAAAAAAAAAAAEATE/wGAAAAAAAAAAAAAAAAAAAAAAAA0MQEvwEAAAAAAAAAAAAAAAAAAAAAAAA0McFvAAAAAAAAAAAAAAAAAAAAAAAAAE2sprkLsLypr6/PsGHD0rFjx1RVVTV3cQAAAAAAAAAAAAAAAAAAAAAAAIAmUqlUMn78+PTs2TPV1dXzXVfw22I2bNiw9O7du7mLAQAAAAAAAAAAAAAAAAAAAAAAACwhb7/9dlZdddX5riP4bTHr2LFjkvLL79SpUzOXBgAAAAAAAAAAAAAAAAAAAAAAAGgq48aNS+/evWdlkM2P4LfFrKqqKknSqVMnwW8AAAAAAAAAAAAAAAAAAAAAAADwMTAzg2x+qpdAOQAAAAAAAAAAAAAAAAAAAAAAAAA+1gS/AQAAAAAAAAAAAAAAAAAAAAAAADQxwW8AAAAAAAAAAAAAAAAAAAAAAAAATUzwGwAAAAAAAAAAAAAAAAAAAAAAAEATE/wGAAAAAAAAAAAAAAAAAAAAAAAA0MQEvwEAAAAAAAAAAAAAAAAAAAAAAAA0seUq+G3ChAk54YQT0rNnz7Rp0yabb755rrnmmg/d7qabbsqhhx6aPn36pG3btlljjTVy+OGH580331wCpQYAAAAAAAAAAAAAAAAAAAAAAACWdzXNXYDF6cADD8xTTz2Vc889N+uuu26uuuqqHHrooamvr89hhx02z+3OO++8rLzyyjnttNOy1lpr5e23384555yTT3ziE3n88cez0UYbLcF3AQAAAAAAAAAAAAAAAAAAAAAAACxvqiqVSqW5C7E43H777dlnn31mhb3NtPvuu+eVV17JW2+9lRYtWsx12/feey89evRoNG/YsGFZY4018pWvfCWXXHLJApdj3Lhx6dy5c8aOHZtOnTot2psBAAAAAAAAAAAAAAAAAAAAAAAAlnoLkz1WvYTK1ORuvvnmdOjQIQcddFCj+UcddVSGDRuWJ554Yp7bfjD0LUl69uyZVVddNW+//fZiLysAAAAAAAAAAAAAAAAAAAAAAADw8bLcBL+9/PLL2WCDDVJTU9No/qabbjpr+cIYMGBABg8enI022mi+602dOjXjxo1r9AMAAAAAAAAAAAAAAAAAAAAAAAAwu+Um+G3kyJHp2rXrHPNnzhs5cuQC76u2tjZHH310OnTokBNPPHG+6/785z9P586dZ/307t174QoOAAAAAAAAAAAAAAAAAAAAAAAALPeWm+C3JKmqqlqkZbOrVCo5+uij89///jd///vfPzTI7ZRTTsnYsWNn/bz99tsLVWYAAAAAAAAAAAAAAAAAAAAAAABg+VfT3AVYXLp165aRI0fOMX/UqFFJkq5du37oPiqVSo455phcccUVufzyy7Pffvt96DatW7dO69atF77AAAAAAAAAAAAAAAAAAAAAAAAAwMdGdXMXYHHZZJNN8tprr6W2trbR/JdeeilJsvHGG893+5mhb3/7299yySWX5Etf+lKTlXVZt8Yaa6SqqiqXXXbZh6572WWXpaqqar4/d9555xzbnXXWWR+6XVVVVXbeeeckyZFHHrlA63/wZ9CgQYv3lwMAAAAAAAAAAAAAAAAAAAAAAABzUdPcBVhcDjjggPzlL3/JjTfemIMPPnjW/Msvvzw9e/bMNttsM89tK5VKvva1r+Vvf/tb/vSnP+Woo45aEkX+WOnRo0fWWWeduS5bYYUV5rldp06dsskmm8xz+cxl6667brbffvs5lj/99NOZOnVq1llnnfTo0WOO5W3atPmwogMAAAAAAAAAAAAAAAAAAAAAAMBHttwEv+21117Zbbfdctxxx2XcuHHp06dPrr766tx555254oor0qJFiyTJ0Ucfncsvvzz9+/fP6quvniT59re/nUsvvTRf/epXs8kmm+Txxx+ftd/WrVunb9++zfKelid77bVXLrvssoXerm/fvnnwwQc/dL1TTz01p5566hzz11hjjQwePDinnnpqjjzyyIU+PgAAAAAAAAAAAAAAAAAAAAAAACwOy03wW5LcdNNNOe200/KjH/0oo0aNyvrrr5+rr746hxxyyKx16urqUldXl0qlMmveLbfckiT561//mr/+9a+N9rn66qtn0KBBS6T8AAAAAAAAAAAAAAAAAAAAAAAAwPJpuQp+69ChQy644IJccMEF81znsssuy2WXXdZonmA3AAAAAAAAAAAAAAAAAAAAAAAAoCktV8FvLL1eeOGFHHbYYXn33XfTqVOn9O3bN1/60pey9tprN3fRAAAAAAAAAAAAAAAAAAAAAAAAoMkJfmOJeP755/P888/Pev2vf/0rP/nJT3L22WfntNNOa76CAQAAAAAAAAAAAAAAAAAAAAAAwBJQ3dwFYPnWpUuXHH/88XnkkUcyfPjwTJkyJc8991y+/OUvp66uLqeffnp+97vfzXP7hx56KFVVVfP8+e1vf7vk3gwAAAAAAAAAAAAAAAAAAAAAAAAsoprmLgDLt/333z/7779/o3mbb755/v73v6dbt2757W9/m9NPPz1HHHFEOnbsOMf2nTp1yiabbDLP/ffq1WtxFxkAAAAAAAAAAAAAAAAAAAAAAAAWO8FvNJuzzz47f/jDHzJ27Njcf//92W+//eZYp2/fvnnwwQeXfOEAAAAAAAAAAAAAAAAAAAAAAABgMapu7gLw8dWpU6dstNFGSZJ+/fo1c2kAAAAAAAAAAAAAAAAAAAAAAACg6Qh+o1m1bNkySVJbW9vMJQEAAAAAAAAAAAAAAAAAAAAAAICmI/iNZlNXV5c33ngjSbLqqqs2c2kAAAAAAAAAAAAAAAAAAAAAAACg6Qh+o9lceumlGTNmTFq0aJGdd965uYsDAAAAAAAAAAAAAAAAAAAAAAAATUbwG01m3LhxOfTQQ/Pkk082ml9XV5e//OUv+c53vpMkOfroo9OrV6/mKCIAAAAAAAAAAAAAAAAAAAAAAAAsETXNXQCWXccff3y+//3vz3P5P//5z1xzzTW55ppr0qVLl6y55pqpqanJm2++mTFjxiRJ9tprr1xwwQXz3Mdzzz2XT33qU/Nc3rFjx9xxxx2L/B4AAAAAAAAAAAAAAAAAAAAAAABgSRD8xiKbMGFCJkyYMM/lrVu3zi9+8Ys8+uijefnll9O/f/9Mnjw53bp1yz777JOvfOUrOeigg1JVVTXPfYwbNy6PPPLIPJd37tz5I70HAAAAAAAAAAAAAAAAAAAAAAAAWBKqKpVKpbkLsTwZN25cOnfunLFjx6ZTp07NXRwAAAAAAAAAAAAAAAAAAAAAAACgiSxM9lj1EioTAAAAAAAAAAAAAAAAAAAAAAAAwMeW4DcAAAAAAAAAAAAAAAAAAAAAAACAJib4DQAAAAAAAAAAAAAAAAAAAAAAAKCJNUnw29SpU1NbW9sUuwYAAAAAAAAAAAAAAAAAAAAAAABY5ixy8NvDDz+cH//4xxkzZsyseSNHjsxee+2VDh06pFOnTjnttNMWRxkBAAAAAAAAAAAAAAAAAAAAAAAAlmmLHPz2q1/9Kpdffnm6dOkya973vve93HXXXVlrrbXSpUuXnHvuubnhhhsWRzkBAAAAAAAAAAAAAAAAAAAAAAAAllmLHPz2/PPPZ4cddpj1etKkSbnuuuuy++6754033sgbb7yR1VZbLRdffPFiKSgAAAAAAAAAAAAAAAAAAAAAAADAsmqRg9/ee++99OrVa9brxx57LFOmTMlRRx2VJOnYsWP23XffvP766x+9lAAAAAAAAAAAAAAAAAAAAAAAAADLsEUOfmvTpk3Gjx8/6/VDDz2Uqqqq7LTTTrPmdejQIaNHj/5oJQQAAAAAAAAAAAAAAAAAAAAAAABYxtUs6oZ9+vTJnXfemalTp6a6ujrXXnttNtxww6y88sqz1nnrrbfSo0ePxVJQAAAAAAAAAAAAAAAAAAAAAAAAgGVV9aJu+LWvfS39+vXLOuuskw022CD9+vXLkUce2WidJ554IhtuuOFHLSMAAAAAAAAAAAAAAAAAAAAAAADAMm2Rg9+OPvronHTSSZk0aVLGjBmTY489NieccMKs5Q888EAGDBiQXXfddXGUEwAAAAAAAAAAAAAAAAAAAAAAAGCZtcjBb1VVVTnvvPMyYsSIjBgxIhdffHFatGgxa/n222+f0aNHNwqDa2oTJkzICSeckJ49e6ZNmzbZfPPNc80113zodkOGDMkJJ5yQnXbaKV26dElVVVUuu+yypi8wAAAAAAAAAAAAAAAAAAAAAAAA8LGwyMFvH6ZVq1bp3LlzampqmuoQczjwwANz+eWX58wzz8wdd9yRrbbaKoceemiuuuqq+W7Xr1+/XHnllWnVqlX23nvvJVRaAAAAAAAAAAAAAAAAAAAAAAAA4OPiI6ey3Xzzzbn66qvz+uuvZ9KkSenXr1+S5PXXX8+///3vHH744enVq9dHLuiHuf3223PPPffkqquuyqGHHpok2WWXXTJ48OCcdNJJOfjgg9OiRYu5brvjjjvm/fffT5I8/fTTufrqq5u8vAAAAAAAAAAAAAAAAAAAAAAAAMDHR/WiblhfX5+DDz44X/jCF3LjjTdmwIABGThw4KzlK6ywQk477bT8/e9/XywF/TA333xzOnTokIMOOqjR/KOOOirDhg3LE088Mc9tq6sX+dcAAAAAAAAAAAAAAAAAAAAAAAAA8KEWOfHsN7/5Ta6//voce+yxGT16dL7//e83Wr7SSitlhx12yG233faRC7kgXn755WywwQapqalpNH/TTTedtbwpTJ06NePGjWv0AwAAAAAAAAAAAAAAAAAAAAAAADC7RQ5+u+yyy7Llllvm4osvTqdOnVJVVTXHOn369MnAgQM/UgEX1MiRI9O1a9c55s+cN3LkyCY57s9//vN07tx51k/v3r2b5DgAAAAAAAAAAAAAAAAAAAAAAADAsmuRg9/69euXHXfccb7rdOvWrckC1+ZmbuFzC7LsozjllFMyduzYWT9vv/12kxwHAAAAAAAAAAAAAAAAAAAAAAAAWHbVLOqGbdu2zbhx4+a7zuDBg9OlS5dFPcRCmVfI3KhRo5IkXbt2bZLjtm7dOq1bt26SfQMAAAAAAAAAAAAAAAAAAAAAAADLh+pF3bBv37656667MnXq1LkuHzVqVO68885su+22i1y4hbHJJpvktddeS21tbaP5L730UpJk4403XiLlAAAAAAAAAAAAAAAAAAAAAAAAAPigRQ5++/a3v5233347X/jCFzJ06NBGy/r3758DDjggY8eOzbe//e2PXMgFccABB2TChAm58cYbG82//PLL07Nnz2yzzTZLpBwAAAAAAAAAAAAAAAAAAAAAAAAAH1SzqBvut99+Ofnkk3PuuedmtdVWS/v27ZMkPXr0yMiRI1OpVHLGGWfk05/+9GIr7Pzstdde2W233XLcccdl3Lhx6dOnT66++urceeedueKKK9KiRYskydFHH53LL788/fv3z+qrrz5r+xtuuCFJMmDAgCTJ008/nQ4dOiRJvvCFLyyR9wAAAAAAAAAAAAAAAAAAAAAAAAAsn6oqlUrlo+zgnnvuye9+97s88cQTGTVqVDp16pRtttkm3/72t7PHHnssrnIukAkTJuS0007Lddddl1GjRmX99dfPKaeckkMOOWTWOkceeWQuv/zyDBw4MGusscas+VVVVfPc78L8isaNG5fOnTtn7Nix6dSp0yK9DwAAAAAAAAAAAAAAAAAAAAAAAGDptzDZY4sc/PbWW2+lVatWWXnllRepkMsrwW8AAAAAAAAAAAAAAAAAAAAAAADw8bAw2WPVi3qQNddcM6eddtqibg4AAAAAAAAAAAAAAAAAAAAAAADwsbHIwW9du3ZN165dF2dZAAAAAAAAAAAAAAAAAAAAAAAAAJZLixz8tsMOO+Txxx9fnGUBAAAAAAAAAAAAAAAAAAAAAAAAWC4tcvDbz3/+87z88ss5++yzU1tbuzjLBAAAAAAAAAAAAAAAAAAAAAAAALBcqapUKpVF2fCrX/1q3nzzzTz66KNZeeWVs9lmm2WllVZKVVVV4wNUVeXSSy9dLIVdFowbNy6dO3fO2LFj06lTp+YuDgAAAAAAAAAAAAAAAAAAAAAAANBEFiZ7bJGD36qrqxdovaqqqtTV1S3KIZZJgt8AAAAAAAAAAAAAAAAAAAAAAADg42FhssdqFvUgAwcOXNRNAQAAAAAAAAAAAAAAAAAAAAAAAD5WFjn4bfXVV1+c5QAAAAAAAAAAAAAAAAAAAAAAAABYblU3dwEAAAAAAAAAAAAAAAAAAAAAAAAAlncfOfjtqquuyu67754ePXqkdevW6d69e3bfffdcddVVi6N8AAAAAAAAAAAAAAAAAAAAAAAAAMu8qkqlUlmUDevr63PwwQfnpptuSqVSSdu2bdOjR4+89957mTx5cqqqqrL//vvn+uuvT3X1R86XW2aMGzcunTt3ztixY9OpU6fmLg4AAAAAAAAAAAAAAAAAAAAAAADQRBYme2yRE9kuuuii3Hjjjdlxxx3z2GOPZeLEiRk4cGAmTpyYxx9/PDvttFP++c9/5qKLLlrUQwAAAAAAAAAAAAAAAAAAAAAAAAAsF6oqlUplUTbs27dvpkyZkpdeeik1NTVzLK+trc2mm26aVq1a5fnnn/+o5VxmLEzqHgAAAADAx1qlkgy+JnnrmmT6uKRjn6T3F5OVP5NUVTV36QAAABa/2onJlPeS1ismLTs2d2kAAAAAAAAAAAAAWAwWJntszsS2BfTGG2/kW9/61lxD35KkpqYm++67b373u98t6iEAAAAAAFheTX43efjAZMRjDfPeezDpf0myzjeSLX/fbEUDAABY7Ca/m7x8dtL/L0mlLklVsuJ2yYanJr32ae7SAbC8mDw8+d+FybjXkhbtkhW3TVY/LGndtblLBgAAAAAAAAAAzLDIwW+tWrXKxIkT57vOxIkT06pVq0U9BAAAAAAAy6NKJXn0sMahb7Mb978lWx4AAODjpVJJ3rkjefe+pH5K0qFP0utzSce1m+Z44/sld2+TTBs1eyGSEY8m/9k3ObTSeP0p7yXv3JVMH5u065302Clp1aVpygbA8uN/v09e+GFSO9t9nYOvTF48Pdn98aTT+s1XNgAAAAAAAAAAYJZFDn7r27dvrrvuupx22mnp2bPnHMvfeeedXHfddfnEJz7xkQoIAAAAANCcJk5M7rknee+9pEuXZLvtkt69m7tUy7h37kree6BMV9Uk6367BBmM/1/S7w/NWzYAAGD5Nva15PGvJKOebjz/ue8lm5+XbHDS4j1epZI8cfRsoW9VSeeNkuljkklDGq9bNyV54bTSLqqb3DC/unWy0WnJxmcs3rIBsPwYdnvyzLfmvmz62GTK+4LfAAAAAAAAAABgKbHIwW/f+9738rnPfS5bbrllvve972WnnXbKSiutlOHDh+fBBx/Mr3/964waNSrf/e53F2d5AQAAWBZVVX34OpXKrMmRk0bm90/9PknSp2ufHLbJYU1VMuZj6NDk0kuTW29NRo1KVlwx2XHH5OtfT/r0aVivUkkefzx59NESjtSrV/KZzySrr958ZQdYHCZOTM48s3wXjhnTeNmBByY33tgsxVo+DP13w/Qnr0xW+2LD63W/lQy+dsmXCQAAWP5NH5c8uEcy6e25LKwkY19Z/Mcc/Vzy/n/KdLvVkk/dkHTbqnSqvf9w8vQ3GtZ9/Ijkrevm3Ef91NKOEvwGwLw8/4OG6V6fSzb4YVLdKnn3ruT1XzVfuWBxWZDrzUmja84AAAAAAAAAAEurqkpl0e9yuOCCC3LSSSelrq6u0fxKpZKampqcd955OfHEEz9yIZcl48aNS+fOnTN27Nh06tSpuYsDAACwdFjI4LdrXr4mh954aJJk5Q4rZ9h3h6VqQW/mZ7H47W+T738/+UCTP0my7rrJG2+U6VtvTU4+OXllLmNizz47+dGPFv7Yf3z6jxkzZUyqUpXvf/L7aVHdYuF3AvARTZ+efPrTycMPz315mzbJ5MlLtkzLmu0u3S79RvVLkjz1taeyRpc1Ghbevmky9qWk4zrJPm8s+KA9AACAj+LlHycvnVmmu26V9P1l0nmjZNwbyZsXJ9U1ybaXLdw+K5Vk1NPJoCuSSUOSFm3LPlfdL+m8YfL6b5LnZjw0ccdbk177NN6+dmJS0z55557kwd3LvFYrJBuemvTYsYTUDfxHMnlossdTH+ntA7CcmjAouWXNMr3KXslOtzXub5s0NKnUJu09sYdlmOA3AAAAAAAAAGAptzDZYzUf5UDf+c538rnPfS5XXHFFnn/++YwbNy6dOnVK3759c9hhh2Wttdb6KLsHABazt99O3nsvad06WXvtpG3b2RZOH18GpAy8PBnzUrnpt91qSY+dkvVOSLps3FzFBuBj6L4B982afnfCu3n1/VezUY+NGq80fXzy1vXJ4KuSCf2TqhZJh7WTlXdL1vpq0rpro9UrlRLQM21a0qlTUl29JN7Jsumf/0xmz3Hffvtkt92SMWOS225rmP/vfyf7798wfqJLl2SddZKhQ5Nhw5L//W/hj/3+xPfzjdu+kUrKTndZc5ds3WvrRXwnAIvud79rCH3r1i0577zk858vdckddyTnn5+lf6DZQgavLk5Dxg3J40Men/X6nv735GtbfK28mDY2GftymV5xe6Fv8DFTqSTPPZdce23y9NPJpEnJSisln/xk8qUvJT17NncJYcl69dXk+uuT114r7dXevZNddkn23jtp1br56nKgsRPuPCG3v3l7kuTCvS7Mnn32bOYSsciG3lr+bb1issvdSasu5XX3T5afSUMXbn9TRyQPH5S89+Ccy148NdnzueT9/5TXLdomq+wx53o17cu/Q25smLfjraU8SdJt66T355PRLyxc2QD4+Ji9Hlr3+Dn729r1WqLFAQAAAAAAAAAA5u8jBb8lyZprrpkzzjhjcZQFAGgCEycmv/pVGUz76qsN82tqkl13Ta67LunU6v3kvp2Tca823nhCv/LTaoWk7/lJkpEjkyuuSG6+uQzSnTQpWXHFZOutk//7v2SvvZbcewNgGTL7QPTZB5vMY4D6/YPuT5J0adMlY6aMyf0D728c/Da+f/LAbsnEgY03nNA/effupE2PZM2vJEleeCG59NISZvb222W19u1LmNkZZySf+tRHfXPLn3PPbZj+zW+SE05oeP3LXya33prU1yff+EbDf+HppyennJK0a1fmPfJI8vjjWWj3DLhnVuhbktzZ784PDX6rrU1atJAbBCxeV17ZMH3ttaX9lJSQy69+NfniF5N0bI6SLRvu6X9Po9d3D7i7Ifht8rBk5nd9l00aVhr1bFI3qeF1162TFq0We9kqleSNN5Jbbkn69y/1SK9e5dzg058u7WWgaYwZkxxySHLXXXMu+9e/ShDcddct8WJBs3j33eSww5IHHphz2YUXJj/+ceIKLCwd6urr8o8X/5FRk0clSW567SbBb8uqqaOSUU+X6VUPaAh9m93CBONUKskjhzaE7XTeOFnti0mqklFPJsNuT+qnNwS2rdA3qZ5Pg+PdGe2orls0hL7NboXNFrxsAHy8jHisYbrbNs1XDmhKH7yuPPPCoED01Ffq83+3/l8m105OTXVN/rzvn9OyRcvmLhYAAAAAAAAAMB+GsAHAcmz06GTnnZMXXyyvO3Ysr6uqkuefL4Nsx41LOr11YkPo27rfSdb7dtK2ZzJhQPL2DUlVOWV49tlk772T4cPLqm3bJmuuWcLg/v3vci+l4DeAj5kFSdpayJvtB40ZlAGjB6RFVYt8Y8tv5JyHz8l9A+/L8dsc37DSY18qoW9V1cn630/W+HLSsmMy9pVk0BVJqpMkf/tb8vWvl0CXJFl11RLsMnRocvfdyVZbCX77oEGDkieeKNNrr5185zuNl7dokey3X/LQQ+X3mCQ77lhCCWb+OVRVld/rB3+3lUry5pslgK++Pll55WT99ZOWs407uKPfHUmSPl37pN+ofrmj3x350U4/arSfiRPL/+1ttyUPP5xMmFD2se66ye67l3C66urF9AsBPpYGD06eeaZMr756CQP7oA4dmuDAC1qvLuh6Cxm8ujjdPeDuJMm+6+6bW/93a+4bcF/q6uvSorpFUjuxYcWa2dLzHj8yGftSw+sDhicteizWcr35ZvLlLzfUdR/0i18kJ520WA8JzOYrX2kIfevbN/nud5MNN0zeey+5/fbSTwUfB3V1pR/1+efL6623Lm3XVVct7aUbbphRXS9CXT55+uQZq1elTU2bxV94WM6MmDQiA0eXBwv07tw7K3dYeY51HhvyWEZNHpWa6prU1tfm1v/dmvpKfaqrdD4sjZ55poQ8P/BAOcdo2TJZY41kp52S4z7/UtrNDKHutm3DRrWTG++kpu2CHWzsy8nwe8v06ocl2/2j9FfONGFA0qJdMn3GSU7bng3LXv5x0v8vDa83+WlZP0lW3H7Bjg8AM00rAbVp1S1p3bVMj3omef3XDeus9Olk7aOXfNmAJvfEkCfyl2cbzi0P2/iw7Lb2bs1YIgAAAAAAAADgwyxy8Nuvf/3rnHPOOXnxxRfTs2fPOZYPGzYsm222Wc4444x8+9vf/kiFBAAWzXnnNYS+HXJIcumlSbt25XWlktx7b9KhzfhkyI1lZu/PJ1v8tmEHnTdMOv8oqVRSV5d84QsNoW/nnpt885sl7KBSSV54IXnqqYZNn3gi+de/SijMW2+VwJ0ePZLNN0+OPz7ZcsumfvcALKvuH3h/kuQTq3wi+6y7T855+Jw8OOjBhrCYsa8kIx8vK69/UrL5uQ0bt1896bl3Ul+XoUMbQt86dkyuvTbZc8+GsfLPPZe8++4SfnNLSKWSTJpUws/aLuA41Zkeeqhhevfd550tdMstDdMHHjj/DKIRI5Kzz05uvrkhLG6m9u2Tyy4r5xn1lfrc1a8kgfxkl5/k0BsPzZNDn8zISSPTrV23JCWY7jOfSfr3L9uvsUay224lkO6FF5Lf/CY5//yFessAc3jttYbp7befz3fcB0NXZq64BILVlmb1lfrc0/+eJMl3t/1u/jP4Pxk9ZXSeeeeZbN1r66S6VcPKteOXWLnGjy9h6MOGlddHHFF+evZMhgwpddvMNjOw+L3+esM55LrrlgDf2T9ze+6ZTJ3aPGX7oPr68l0xaVLp+1pppXK+CQusUilt1/f/k0wZnqQ6abtKskLfZIVP5I47WswKfdtllxJMXjPbVdtjjin11sJ69f1Xs9HFGyVJ2rdsn2HfG5ZOrTt95LcDy7NT7zt1VkDCfuvtl38e8s851rnljVKBHbLxIbnljVvyzoR38uw7z2bLnk10oaMJHrTwcTB9enLsseVhAUn5Xu3TJ2ndOvnvf8t5yP5bjcvaMzdoM1vI9L9WbQjMqWqRHFK7YAd96/qG6Y1Obxz6liQd1pqxzxn/p/XTGpZNG5tMGtLweurIhum2vRqmH9wrGfFow+s9nkk69lmw8n1cTRtdfr8t2iStuyfVjU/k6uuTV15JHnushANWV5d24RZbJBtv/IGPYN20ZPLQpH560qpL2d+CfEYBFrPp05NHH03+85/k5ZdLe7Vjx9K+3nPPZNv66XNuNGlIMviqhtc1HQS/wXLquleuS5K0qWmTKbVTct0r1wl+AwAAAAAAAICl3CIHv11//fXZdNNN5xr6liQ9e/bM5ptvnmuuuUbwGwA0g6lTk0suKdOtWiUXX9x4MG1VVQlJyZAHkropZeZqB5d/K5WkvvFI21tvbZOBA8v0AQckP/xh431tvnn5qVSSb3wj+eMfy7IePUpoTI8eJTTuwQeTddZpHPxWW5v065eMGtWwzRprNB7suCAmT04eeCB58skS1DB5cnnPa6yR7LRTstdeC7c/+FiYMKgMQh71bDJ9XNKiddK2Z7LC5skqeybVLRutPmJEMnp0+dx375507twspWZpMvsg09kHvH2Ewaf3DbwvSbLj6jtmy55bpk1Nm4ydOjbPvvNstuq1VTLkXw0rr/Glue+kukX++MdSxyTJySfPWQ/07dv49fS66dn6kq0zfEJJOf3XIf8qx1tGvPtuqe8feqiEsU6eXOZ36lTe6x//mKy//ofvZ/TohulVV53/8Waa337HjEm23joZOLD8iRx+eLLffuU75J13ShDtmDFl3WffeTbvT3o/7Vq2y4EbHJgNVtwgr414LfcMuCeHbHxIkuSEExpC3845J/nBDxpCOCqVch5g7CXwUU2a1DDdseMSPPCC1quLs/5d0C/Nhdj3c+88l5GTR6ZNTZt8svcns+PqO+bW/92au/vfXYLfWndtWHnK8Ibp1b6YjOydDLt9gY+1MC69tCH07fjjkwsvbFi23nrJrrvKz4CmdNVsY82POmruQYutWy+58nxQfX0p4xVXlBCQceMalrVrlxx0UAkshg/1/qPJE0cl4/9XXrdaoQQsTH4nqdQmn7w6f//7IbNWP/74ufeDLso5yJ+f+fOs6YnTJ+aql67K/235fwu/owXRzMFUzwx7Jpc+d2mSZLOVNsuxWx7bZMdiGbMQf5sTpk3I1S9fnSSpqa7Jrf+7Ne+MfyerdFyl0eq3vnlrkmSfdfbJ5OmTc+NrN+bW/93adMFvLJILL2wIfdtjj3KNbGbfVl1dcv/9SecVWiYzH0owfTGEUI+Z8fSl1ismnWZ0kI1/M3nnroZ1umya1HRMpo5o3P5pu3LSacNk3Kvl9eyhcXUTG6ZrJ5a++5kq9R+93Mug2tpy7W/QoGTatFJPrrVW+amuTjLxreTVc5N370km9GvYsLpVCV7d6dZUWq2YSy5Jzjij4UFXHTqUfb33Xvk7ueuuZPfdKslb1yX9/5yMeCypm9ywv5adk3W+kWx2TpLSf3DffXO/NrnLLsneey+p3xCwPHvmmeSww5L/zWhirLVWsuaa5XrO7beXB/I99/sOZeG0UUl9bVK9yLeFAsuY+kp9rn+1BBL/aMcf5dT7T81Nr9+Ui/e5OC1btPyQrQEAAAAAAACA5rLId/j873//y+GHHz7fdTbaaKNceeWVi3oIAOAjGDQoGTmyTG+1VbLCCvNYceqIhul2vWdMVJLr2jbMb7NyHvzPO7Ne7r//vI97000NoW97751cf33jgbz19aVclUryz38mF1xQBkNMnlwG97ZvX25QbtMmueeeZPvtF+z93nFHcuSRZWBG69Yl3GfttcuTr595Jrn1VsFv0Ej99OSp/0sG/LW87rpVGZhWV18GRr16TrLP60n71fPgg8lFFyWPP94QlFFVVT7HvXqVz/KWxjgu16bUTsmU2hIS2r5l+ya9QbxSqeT+gfcnKcFvrVq0ynarbpcHBj2Q+wbeV4LYprzXsEGHtcq/o19M7p7tD3Glz+SRRxpCY/bZ58OPfc3L1+T5d59Py+qWmV4/Pec9cl5u+OINi+NtNbkXXigDCUePLoGMJ55YwtY6dkyGDCnBqzMDVj9M+/YN02PHznu9Vq0apqdOnfd6v/xlZoXHnnVW8qMfNV5+6KEN03f2uzNJw//9rmvumtdGvJY7+92ZQzY+JAMGlAFMSQnoOfnkxuO5q6qSbbaZd1kAFtTs4bYzz39YcHf3vztJsn3v7dO6pnV2WWOXWcFvp+94etK2V9JmpRJ6MOLxhg03Pr2Evn2E4LexU8Zm+MQygr97u+5ZoW1DY/iG2ar1o4+e+/bCQ6HpDBnSML3xxs1Xjnn52teSv85oIu+xR/J//1cCO6ZNS155JXnppWYtHsuKqSOTB/dMascnXbdMtr086bxhWVY3LRnxSNK6ewYPbthk880Xz6EnT5+cy1+4PEly0idPyvmPnp8/PfOnHLvFsalqigrug6FuM4+xhFJUT7nvlNwz4J4kSesWrfPZ9T6bnh3n/sAyPmYWIiT5mpevyYRpE/LJ3p/MSu1Xys2v35y/Pf+3nLrDqbPWGTB6QF59/9VUpSq7rbVbxk8dnxtfuzG3/O+WnLXzWc3+Hj5Wpk9IRj5e2hHTRiVVLUu7ovMGqWu3Xn75y/K7atkyufzyZKWVGjZt0WLGw5BGr5K8PGPm5NlOTjY/Lxl+fzL46oUr08yHKFW3bPi/GvVs8szxDeus++1khc2SiQOTcW+U+qBFq2SDk5L1TkiundHJVtOhhL9V6pNJQxu2X+vopNN6Sf9LFq5sy4lXXklOOy25++5yLbFTp/J/O3Fiaa9/8YvJtX99O7nzE8m0kUnHdZKt/5J03ihJdQmBe/fepG5a/vGP5OtfL/vdbrtyPXOTTcp/3ZQp5YEaa66ZEiD34ozvgTWPSlY/NGm7SjJ9zIyH6JRO01tvTb761eT998t1zX32KQ/ImD699NfedZfgN+CjmzSp3J8xZEi5D+KGG8r3zcxqp7Y2ee65JO02mLFFpXz3dVo/WXW/5NBKcvd2pQ5tTvXTS6jmu/clo59Npr6fpCpp3S3p0CfZ4AfJii7wsHjVV+qzxxV75I0RbyRJzt/t/By88cHNXKrF79G3H83Q8UOzQpsV8r1Pfi+/e+p3GTZ+WO4beF/27LNncxcPAAAAAAAAlm3100sWw9QZoQ2tupaHfs7+oE+ARbTIwW+TJk1K+9lHg89FmzZtMmHChEU9xEKbMGFCTj/99Fx33XUZNWpU1l9//Zx88sk55JBDPnTb9957Lz/4wQ9y6623ZtKkSdlss83y05/+NLvuuusSKDkALH6zjwWqq5vPii07NkxPbgh3S+eNS7DO1BKuU1s72ybzyfu5+OKG6bPOahz6liTV1Un37mW9b36zzNtnn+T888tgiJmDK558sgRKLYihQ5ODD07Gj096904eeaT8O7spUxZsX7AsmDYteeutZMyY8nffsmWy4oplQHqbNgu4k//9fkboW1Wywz+TVT/XeHntxKSqZS6/vIQqJiVU6vrry4Dktm1L0OITT8wnWJLlQm19bT556Sfz3LvPJUm+stlXcvn+lzfZ8V4b8VrenfBukuSe/vfkqaFPZcK00q68f+D9OflTJzeuu6YMTzqsWQZXtutdXtdOTCq1jcbCVn9IP1p9pT7nPXJekuR3e/8uJ951Ym567aa8MeKNrLfieov1PS6KuroyyPGdd8pnf+rUpEOHUldutFFy3HEl9C0pYajbbdd4+698ZcGPNXvowEMPzXu9DTdsmH7kkeRzn5v7ev/8Z8P0McfM/9h39LsjSbJx940zYPSArL/i+klKIFx9pT4DBjT8R37iE80QzjN1RDLy6TKIdPq48nfXqlsJIOyy6bKRFlQ3JRn7ahkgPX38jPfQNemwdtJ2pQ/fHj4mttqqBFxOm1a+C2trk5pF7kldyjVBaMvMEJaubbvmljduSW19aVA+NuSxjJs6Lp1ad0pW3D4ZclPy/n+TCYOSDmvMd5+jJ4/OU8OeSlIC3fqu0ncub6WS/a7ZLw8NLhXYNr22yaNHP5rqGRfUZu+q7t59Ad5IfV0y6e1k2uikdkLSonXSesVyzlHddEG4y4MRI8qA5DFjSjhD+/bJKquUNsv8+hRYvnXo0DD9/vvNV465+e9/G0Lfdt45uf32xm2IrbdulmKxLOr35xL6liTb/K2EvtVNmxFqkKTjukmLNo36TEeNmhEy8xFd/+r1GTNlTDbpsUnO3vns/PmZP+f5d5/PU8Oeyta9lq8/4ieGPJF7BtyTHu17ZK8+e+XyFy7P+Y+cn9/s+ZvGK1YqycRBpZ97+pgyr2XnpN1qJcCnKdpwtZPK+c34fqXdVTelhDm1XSXptk3SeYMP3wdLzF+e/UuS5MubfnlW8Nslz16Skz918qxzyFveuCVJslWvrdKtXbfs0WePJMmz7zyboeOGplenBbyQ0YSGjR+WwWNKouTqXVZf/kIQp40tQWpvX18+1yt9Omm/Wpme9FYy8qmM3G5w3n233L+y7rqNQ98a6bxx0mqFco4/9N8lfC1J1p7RabWwwW9tVin/Tn63fN5btCkhbet9Nxn0j4bv/+47JEP+Wb6Lht2W9D5gzn21aFMe0DLyieSdO5P62qS6JlnriBJm9jEMfhsypDwgauzYZOWVS9DaLrs0fH2PHp28+WaSV35c+utatEl2fah858604jbJGuWhlqef3jD7ppvKPmdq06aE/2bqyORfPy0z1/hysu1fGxeq+6dmle2ww8o1mtVWK/2jq67aeFXXJoHF4eqrG4LUjzkm2XffxstrakpfZt7bsWHm4KuTTc6e+w4X5By4Uik/79xR6q/Rz5bvx9qJ5bu2zUrJSrsmm5+7YG+iblpy/y7JiEfLthv8MOm6RVLTPpnyftn/9Pk8iWg5VqkkgweXfpKxY8v1wE6dSt3Ss+eycdlpcZoypdx/8NprpZ4fP77006+0UrLppgv+4MiZrn352tw74N6s2mnVDBk3JCffd3L2X3//tK5p3TRvoJlc98p1SZJ91903rVq0yn7r7Zc/PP2HXPfKdYLfAAAAAAAAYFENvSV58w/J8PvKtfL2a5UHfk4ZXsYY7nxX0n0hL2ICfMAiD1dcffXV8+ijj853ncceeyyrfvDOxiZ04IEH5qmnnsq5556bddddN1dddVUOPfTQ1NfX57DDDpvndlOnTs2uu+6aMWPG5IILLkiPHj3y+9//PnvuuWfuvffe7LTTTkvsPcDyaPr05PXXk4EDyw1ZkyaVp6qvsEIZ7Nl3znG6wGKw5pplwMK77yZPPVUCmnr0mMuKPXZKqloklbqGwSZV1cneLyWv/HzWE+232qphk7vvTg49dO7HnTy5Ybr1PO6VrFSSU04p061aJddd1zggrk2bZMcd577t3NxyS/l+SUoA3AdD32buE5Z1t96a/PrXyeOPl6C3nXYqn+v6+hIGNWJEcu+9C7izt2YMYOu0XkPo27v3NhrYVul1QE44oYweaNUq+fe/Gw/UX2mleQc9zVelkkwaMiOga3z5/mnRtoRotF+9dIKw1LjwiQvz3LvPZfe1d0+/Uf3y9xf+nq9s+pXsulbThGTfN+C+WdO/e+p3jZY9/NbDmVo7Na1X+nTyyozBd+/ckazzjTJw+rP9k0cOTd66JkkJZ3jwwbLaXXclm2wy7+Pe/ubteeX9V9K7U+98te9X88K7L+Tipy/O+Y+en0s+13yDKkePTr797fL5mzo1+exny/to376cX//znyWY4rHHyvqdO88Z+rawttyynKcPGlQGV/z3v8kOOzRe5623koMOSk6aMTb2yitL3d6lS+P1Ro1qHO4y+3nCB42ePDqPD3k8SfLLx36ZXz72y1nLhk8cnhfefSG9ejU0Hl57beHf24eaV9jRuDeSJ45ORjySdN4k6fXZ8mSO2unJ+P7JgEuTT91UOm+XVuP7Jc9+J3n3vhJYtPJuSZseSaU+mfJOMva1ZLeHF26f9XXJ+DdKeHDt+PIEk5nf5x3XSVp3a5r3AktAp07Jbrslt92WjBuX/Pa3yfe/33idJ58UBDQ3E6dNzMNvle+T61+9Pte/ev2sZbX1tXlw0IP53HqfS1bauQS/pZI88oVk23+U+nza6Dn2WV+pz2E3HZY7+92ZtjVtU1epy6NffTRb9Nyi0XqXv3B5Hhr8ULbptU3atWyXBwY9kD89/acct9VxSUpY6gsvlHUffjj54hfn8SbG/a+0hd+9L2nZqYQ0tF4xqUxPJg9Lpo1Jdn0gEyeWuvjRR5NXXy0Bga1blwG3dXWl7+sf/0haV95LhvwrGfl42b5SV4LjKvVJyy4lZGLlZf8BJNOnJz/+cWnj/+9/ZSBm377l8zRpUjm36Ns3+dGPmrukH11dXQnbvf/+5JlnkokTk44dy3lPXV05pfjZz5JttklDIMnEQSV0tW5KCRFstULSfs2kXfOHxSwpe+6ZXHRRmb7xxuSoo5q3PLN76qmG6Z12+vDgaJYz08clg69J3nsoGf9mOadtMaNjs7426bFjsslZs1a/p/89+dMzf0qSrNhuxVyw5wUNg8YnD2vYb/s1yr9jXkjunu2koec+2X33W2e1V2++OdmicZW2SGaW6cjNj0zblm1z8EYH58/P/jl/evpPy13w20/+85Mkybe2+la+uNEX8/cX/p4/PfOnnLLDKenRvkdSNzV5/oclJKp2QrLKnkm71Uv9O3VEacdsek7S/ZMLfMz6+tIOf/XVEsgwYUKZ17FjCTf95CeTdgN+2tBfsfbRSdcty7nE9AnJxIGlLILfFtnUqeX8/JFHkpdfLqEQrVo1Pvf64x8X/CEVLw5/MU8OfTKtWrTKFzf6Ytq3bJ+ubbtm4JiBuX/g/fnMWp9Jktz65q1JkhfefSEr/3LlRvu47c3b8vUtvj7r9Rsj3siuf981k6ZPSpJcvM/FOWTjD39I3UcxdsrY7HTZThkwekCSZK0V1srTX3s6ndt0btLjLlHPfqeEqLVaIdnj6RLAP7tKfTpPrZoV3j10aPn7mOt1oeoWJTju7RuT9x9Oht6a9Np3LisuoF77JAP/lqSSDLqyfPZX2Lz8DL+/Ifitx84N2zz3vVJHdO1b6pnZrfyZEvw2eWjS7w/JuscvetmWdlPeS96+KRnxWHm/yYx2UqVcI1jziPz2ggMydkYO0I9+lHz60413scIKM9rldz1fZnTo0xD61v+vyUsNjY/69X6QIUO+naR8d88zHHB8v6SufIaz4mz1xD2fSib0m/XyliEDM3582yTl2uTcbo362F2brK9Lht1SrjWNfj7JjP/LqprSb9iqc/LJaxv3odZNaWgnVbcq67hGBI2MHNkwPdf7PWbqtnVpy9RNTt74bbkGMCOsMpntmsfs1z9mTxX74HWRp45N+v+l1L+fuDDpuWd5iEz9tNLHMWHggr+JAX8toW9Jsv31SY8dyud+9Atl/yvtmrTsMP99LIr6uuS9BxqCmaePTVIp98e07JKsuF2yznGL/7gLYMiQ5NRTy/XL8eNLX3SfPqXuGD269K2dfHLymc80S/GWuPr6cp3xwgvLedwBB5T3vs46pc91yJByrXRhgt+m1k7NqfeX+53+8tm/5FeP/Sr3Drg3Fz91cU7c7sQmeidLXl19XW549YYkycTpE/OLR36RMVPGJElufv3m/HHfP6ZVM1+/rFTKPWtjxpS2dF1duUesR4/ygJaPW8AhAM2svq7009ZNKu3Vlh21QwEAAACAOQ29NfnPjMHTm5+frPvtxve8TBuTpAkvdE0aVu6pmj6+XKdv0aZcs++wRrkvFVhuLHLw27777pvf/OY3+etf/5qvfvWrcyy/5JJL8vDDD+c73/nORyrggrr99ttzzz33zAp7S5JddtklgwcPzkknnZSDDz44LVq0mOu2l156aV5++eU8+uij2W7GCPlddtklm222WX7wgx/kiSeeWCLvAZY3EyeWkIqrripBb9/8Zhns2LNnuaFnxIgSIiH4DZpGy5bJsccmZ59dbpo74ojk8ssbbgaeNi254YZkzz17pOvKu5fgnIGXlRuC1zyiDG6sNAw4+eIXS9DB++8nV1xRniR94IENN+CNHFkGux90UEP4zF/+0jCgd3aVSkMoXF1dGbA1e/Dbwlp77YbpV18t+3djYDOqry2hXtPHlhu2U59Uty6Nyba9kpq2zV3CZdJDD5WQtUol2X33EgI3e5jSQms7I1xgyvCkdlJS0648Vb3tKmUwQO3EpP1aqa4ug94qlXLD9UdSOyl57rvJWzckrbokqx+WdFgzqW5TbqiaPCxZoW9DEB3NbtCYQTnjgTPSsrplLtrrorw+4vXsd81+OfbWY/PScS+lbcvF/3m+f9D9SZLu7bqne/vus+a/MeKNTK6dnMeHPJ6dVt8pabdq+a558UdlQN/Ku5Uv/0rdrG2+8Y3kl78sf7s//3kJRJt9QEC/fiXA7NOfTs59+NwkyepdVs9vH/9t6ivlD/7vL/w9Z+98dnp1+kAgx/wGwyxGRxxRAk6TEry6225zX++ii5Lnny+Dz198sTz1fq4WoIKsqlRy7LENIa377JOccEI59ujR5fvnsceSl15K9tijDEoZOjT51KeS004rxx4yJLn22lLPH3lk2T5Jzj8/+cMf5izG1KnJPQPumfV7n5s7+t2RU3fom09/uoSsPP988ve/J1/+cuP9DRqUrLZaCfa5554SQj1pUtKrVxkMXlVVytW9e/KDH3zor6N49NBk9HMl9G3PZ5PqmmTk0yXAoWOf8jNxYAnTnGH69BJ0N3Vq+RNp06aEZzZliMi0aWXAxNSp5fitWpWBrO3aJVX/PSAZ+3KywieS3R4rnc2jnksmvJlk4/IZmvhW0n61Dz9Q7eQy6HrwVUmblZK1jkk6rp20aFdujh3xeAmD631A071ZWAKOO64ESyQl6PKxx5IvfKF8p9x5Z3L77aXvg8YeGvxQptdPT1Wq0ql1wwWlybWTM61uWu7uf3cJflvzyOSls5NpI5NRzyS3b5i07DxjAGZjv3z0l7mz353Zs8+e+d5238tu/9gtX7zhi3n268/OCrQYMWlEvn93See7cK8L06amTfr+qW9Oue+UHLDBAVm5w8qz+qmSEhqw+ebJuus2HOe995JhQ+uy+VufSSa9nfTYJdnlrhI+MOrZ8t02w6h3RuZTu3bLa6+VOuXaa0uA+cwu6EolGTYsqZnwUvLAjsn0MUmf45KtLy3n3HWTykpThif5qCfaS4cf/KCEJCbJ735X+gKXOXVTkoF/n1GXDSvtlRZty8CPSl1SPyXZ4OQccWzvXHll2eTPf06+8pXG4feTJye10yvJq+clr/+69K+sfWzSZZOkpkMJJBr9QvlZd1n8RS2aPfZoCBi+7bbkrLOSE08s4cX19eV79tlnk+ObId9km20aph94IDnjjIbP83Jr6qgyWL92woz+m5S/91Zdko7rNgSfLe+mT0ju3jYZ91rSfcfkUzcm7XsnU0eWgJJKXQmmqa9LqlvkxeEv5vPXfT6ta1rnwPUPzJ+e+VMmTZ+Uy/e/PFVVVeUhG2/OCDEfdluy+sFJ542TvV9OnjkhGV4S+7/61eTMM8t5+y9/may3XnLIIQ0BknffXc4zvvCFBXsbL7/3ch59uwQpnP/o+bnoyYsyfmp5UsY1r1yTX+/x6+UmBOrZd57NbW+Wk7Ru7brlheEvZN1u6+aNkW/kV4/+Kuftdl7y4mnJ/y4o39+f7VceNDD5nRIulCSr7LHAf+OVSnLBBclPf1r6wA8/vLSTN9igtDHHjk3eeCPZrOejaffSGWWjLf+QrPN/ZfrNi0sbqqZjufmGRTJxYrLLLiWos2PHck63++6l3ZuU/6ehQxfuOsMlz5ag/+l107P2heUiw8zPzSXPXpLPrPWZjJs6Lg8NeihJMrVuaoZPHN5oH7f875ZZwW9jp4zNftfsl6Hjh+avn/trfnjvD/PVf30163VbL31XaZqLoZVKJcfcckz6jeqX03c4PVVVVfnJf36SY245Jtd94bryvbSUmzSpXNfp37/0O02eXL4bW7Ys5wh9+yZ93/9vWbnThg2hb6/8PHn9/Fmfq9afuCBHH310/vCHEihx3nnlnH/2X8HMBwh1XPvrJfgtSf7z2aTX50qA/bsL+lSV2ayyV0M75vmTSnBV78+XOmRmeFhS+r2775i8/5/Sh3T3lknH9We0B2az5hHJa78o2z/z7fLU2G5bl36o5cm4/yX3fLK0B9c8MtnuH0mblUsYa1LaT7WT0nm2qmv0nBnhDVbYPBn1dDKhfzL53fLAhh47JVtcmDx5TDJtdKrrx+cznyn9hePHl393330u++q4TrlWUjuxPARi5vf5JmeXv5HXSj9yn7Ub+qFdm5zh6eNKSFTrFZMd/51027aca9ZOTFIpdXH9tOS9B0s9Pfq5pMvmSZdNy0D7+ukloLVlp2Szc5r5zdBUhg8v1xb69y/nUVOnlj7zqqoSHL/LLuXhdtdeW/r433qrPPStY8fSRqtUyjbHHZdssOb7yTt3JeNeTaaNSlquUPruk3K9uvOGyZpfbt43vBjsvXe5XlNfX+7vOOmkpO3cLs+1aJ30+b/kjd+U79N7d0i6bVPaNKMWsh6Z8n75PCfJmkcla36pTL/8k3JdZKbOG5Zz7Q8z+4Me2sy4YWXKe8kz3yoBctNGJituv/APp5mfuqnJA7uXurfLpuUcvesWpY2Q+vIep7y7+L/Ap44s/wcjHp8R/LzxjL6l6hl9S1OTTX6c3XdfJa+9Vv7+X3utcR/lIpn4dgkzH/daOW7LjjP6s+rL9+vKuyUrf/rD99NMrrwy+cUvyvSxx5ZA54/q4qcuzqAxg7LZSptli1W2yPFbH597B9ybn/73pzmq71Hp0qbLgv3fN+F14PlawLI98vYjeWdC6be+6bWbctNrN81aPGbKmNw74N7svc7eTVXK+XriiXLP2hNPNDxUsHfv0o86YULy9tul36Nnz/K9/9JLpY9+rbVK225myPeUKaUPpXuXCcmop5Jxr5fPWqV2xmc6ZaBL908lK27bLO8VWHgz+3IGDCh9bjP7A2pqyrlfnz7Jhhs2dymXoKmjkiH/LOdaU99P2qxS+hiqqsq5bU27Rg8nYSGNeTl59efJyCdLm7XbNuVaSCrlXHXa2GTbv5VztqZQO3FG6PnkcszqNqXtW9M+02urcv31pb58441y3bl799L+qaoq9wHttFMJxmXRPPdceZjIG2+Ufubu3RvuH6utTTbeOPnSl5q7lACLbvr00of27rvlnGrKlNLf0L590q1b+Z5bYBPfKv22E/qX/oWkBOhXKjPu+z+k1KXAsqFuWrkuOWlIuW5ZN7V8pmvaJa26Jd22nGOT2tryPZKU+95rFjl9AKDpTZ5c7kWd/V6TmX1LvXuXvuck5ftv8tAyprFuSmn/t2hbHk7UpkfT9QcAC61SaTgfqa0t9wa2a9c09+O8+mq5T/f118u9Cz17lvvVqqvL9akuXZJTdr62rFxVk6x3Qrkf4f1Hy/0xM/XcN9nsZ3nzzXKPQ//+5b6kmpqGexxqasp1sgVqn9XXJS+flQy4tEyvdVQZq1jTvtxnNvKJpHX3ZO05852AZdciN71++MMf5pprrsnXvva1XHHFFdltt93Sq1evDB06NHfffXf+85//pGfPnjll5kjxJnbzzTenQ4cOOeiggxrNP+qoo3LYYYfliSeeyCc/Ofentt98881Zb731ZoW+JUlNTU2+9KUv5dRTT83QoUPTq1evuW4LzNsDDyR//WuZPuig5Nxz53FytaBnXM11IxXNrq6unPC+8kq5watLl6Rr14bBl/X15SbgDz7lfZ6G3Z4MvroM4O3+qRJ+VDVzZHZ9UplebohdDhrtJ51UglH++98STNCrV7LlluVj98orybhx5Ua6rltckNzzdLlp5KljSzBTy87ldzRDmzbJZZcln/98aTh94QvJmmsm669fbr557rlkzz2T668vN+Q98UQZ6P3aa8l++5Wb+N57r4RXbb11WXbIIeX/d6+9kh//uAzg6dAheeed5PHHy+uXX07+858yb5NNSsdLqxn3tFQqpVPmsMOSQw9Nrr66hC8cfnjy9a8nq69elr/xRgmHOeOMZvuv+HgY+XQJgRn5ZLL2MWXAU6vOyfj+ZXD81JFl8E2vzzZ3SZdJHTuWG2CnTCmdCRMnlu/D2dXXzyVQaGY9+8F6dJMfJ+/cWW5eemifZMNTk07rJmsdnbz5xyQTU1VVnqr9pS+Vz9I++yQ/+Umy2Wbls/ruu2Vgft++5WnbSdJvVL/8d3AZiFddVZ291tkrPdrPuIH/reuTfn8q09tfm6y8a+k0ff6H5ftmynvJ+DcEvy0hoyaPyrkPn5vBYwenU6tOqa3U5pRPnZJ1u5WRBZVKJcfddlwmTZ+UDq065Ih/HpFKpZLqqur0H90/P/nPT3LOrot38FVdfV0eHPRgkuT3e/8+B23U0L771F8/lUfefiT3DbwvO62xU7L1JeWpCdNGJg/uUTqtqluVDvkZVl+9hI985zvJqFElmGyDDZJVVy03kL76agkqa9Xn4Tzy9iNpWd0ywycMz5+f+XOSZIU2K2T0lNH57eO/zfm7n7/Q76e+vqGzsba2fBxbtiwDcuYIkZjHZ7VPn4bpF15Idt11zs/59OnJxRcnn/lMGSy7++4leGXrrct3x9tvJw8+mBx8cLLV7PufT3jd979f6uJ//at0OP7kJ+VnppkDUP761zIQ63//K+cWhx3WuGyHH14GaFx3XQmI/dOfSpjHZz9bbqR7553k3ntL2Z5f/c4kyUEbHpQrD7xy1j7OevCsnPPwObmz3505dYdT89vflvO+ESNKMN4f/5hssUX5vbz4Yjlv+Mc/yrGTss4VV8x58Xmhmhcd1yk3tEwbUS6Ad1ijnCtW1SRPHJkkqd/ykpz7u/Xy7383DFTYdNMySLlFi/J/M3p0ea/du8/3aAvlnnuS3/ym/H1sumn53a68cjlfqq0tf/trr53s1LZnCX6bPqZ897ddqVzInzK8DCROkk9evWDBb8Pvbxj0tek5JcwiKfuZNLSEJbXsJPhtWTP2tWTov8uNHu3XSNr2TKpazhiQNqOdtNrBH58QmJRzn9NOS372s/L6ppvKz0xtPqYP/u4/qn9+/divU11VnXHTxmXdruvmO9t+Jx1adUiS3N3/7iTJHn32yB2H3zFru989+bscf8fxuWfAPWVGy47JNn9NHj6g/I0ljUPfWnVLWrTJo28/mlPvOzVJskbnNfLY249lrRXWyoDRA/L1W7+eaz5/TaqqqvKDe36QkZNHpmV1yxx767HlENUtM3bq2Jx414m5+vNXZ5ttSh33y1+WduImmyTbblsu1A0dWs5tf/azqmy+8YzAurqJ5Xy1umUZCDryieSVUiGOXuvRDB5c+pO7dy9t7dnr96qq0gbPW6+X794kWWX3pF3PEjI0s+009uWk0wbJPq8upv+h5rPyyg3Tb7019/ZJXd2Ch2ndc09y331lX+usU87tWrVq2Of06eUi6AorLJ7yJ0meOCYZfGUJ59nvrXLj6ugXkiE3l5s/qlsmY1/KG2/0nrXJVls1Dn1LZgzArgxLXjg1SSVZ/6Rk85+Xha/9MhnzUjL+9fJ61QPK38XHQIsWpe9mzz1Lu/bss0soS69e5dxu7NjSj9wcwW/bb1/OW//0p3I+ufvupW9pzTXLoJqXXy7nu3N7wMEyZ9DVyYunlPO2zc8rYTIt2pTB9nWTStu8175lQPzHQe3Eco6flPP+dquW6QF/Td5/JBn6r/L6c4MzrL4m+1y1T8ZPG59vb/Pt7LDaDrl34L35x4v/yForrJWzdj4r6X1g0n2H5P3/Jk98NRn9bLLidiUkeWZ9kNJX+te/JkcdVYIrvvKV0nZdaaUSpD1hQvmMLKg/PV36W9bpuk626rXVrPn3D7w/7054N1e8eEW+ufVSEDS5GELUf/KfUhd3bNUxZz909oxdlX39/qnf56TtT8qKrWf0RVVqS8hM+9Vn3MT3TvLGr5MJA0qAxbZ//dDjTZpUgjamTCnXJS65ZB7ngZNWS15bobS3RjyarPXVErjddtXy0JV+f0yqqjOx93dzyy2lDTd2bOlf79atYSBfpVLakXvttUi/nuXWhAml7yEpdf8nP9kQ+paU392qqy74/iZPn5x/vPiPJMnn1vtcurXtliSZVDsp17x8TW5+/eaMmDQiDwx8INPrp6dLmy556mtPpXrGdaPHhzyew286PPcOuDeTpk9Km5o2+dLNX8obI9/INr22ScsWLbPvuvvmb8//Lftfu3+e/trTjR5wMKvQMy3i5+H3T/0+N7x6Q1q3aJ1WM54m2rpF69zw6g35/VO/z7e2/tYi7XdJ+fOfy3fflCklwOf440uYf5s25Vxv1Kjyb9p9O3n2hGTk40m/vyRrfiXZ6JTyc22rGUGdtTnjjHL++L//lYDZf/872WGH0pf9xhvl4QUPPZT07bt7CWXu94dSkKH/blywFgvR2KtpV9o1j3yxfP4f/0r5+aCqqmSbS5O7ty7rVepLUNHsWq9Y6qLNzy/vN0nevaf8NOyonJMu6yYOLv26SdJjxxKOXakv4XmjnysBRW1XyYknDssVV5T/0x//uPSt7r9/qS8nTSrnZ8OHJ4ftd3ry9k0l+On+XZINfljaWW1XaXTY3/ymBHaPGlUebvV//1e+Tzp3Lu2Oe+9Njj22a3bc+Mzk+R8kg64o15BXO7g8/GC2Bxt9ZtfaHHJIcs01JdT48MOTr32ttFtqa8uNoS+8kJxx0nulPTH2tdJf1mGt8jc2s7+lvjZZaeeGc5Bl2bgZbZxW3coDNKqqSgjRO3clb/4+SSX5xIXJcyeW8KO1v55sPeOaUb+/JGNfKn2VU4aXc9MOayZJXhz+Yp4c+mSS0s7/3HqfywptF2dDkPlajHdQ/+CkSs6fcanlF78o1x9XWWVGlkV9+WzW1ZXrkEOHls/8wIEz+lc+aMLA5Na+pS+pz3HJJy4o/ZYD/9Fw3j3lvXIOuIz3Z268cXLyyck555RQpC22KN83a61V6tAXXijfkzfckIaQyrEvlY1HfuBht60W8LPTultDYOmw25J1jisPwFnjy8mo9ZJHZlwT2PCMMiB41DPJ9NGlX7mmQ8O9NpW6pN3qSZ+vl8DHKcOTJ45OPvHbZIXNkt2fTB4/Mhn094/+i/qg6eMaAu+6bVPaZVVVJbzu/YeTd0sfZvbtVx5ss7g8cVQJbm3VLdl/WGkTjHyq1AXTRiWpSkY+mZVW2i+vvVb+9t96a+7Bb7P3ow2fMDyPD3k8SbkGv+PqOzaEew9/sFwrrZ+W9P3VjFCY6qT/n2fsqZJM6Jdk6Q1+23jjMmhj0qTkmWdK/b7SSo3XmTRpwYOex0wZk5/+96dJkheGv5Aev+wxa9nMa+TnfubcxufhS+ihXwtsAct23SvXJUm27719vrHVN2bN/9vzf8u9A+7Nda9c12zBbwcfnAweXKZffXXO/9OkPHx0zTXL/S+rrlrW69hxLjsb9Uzyr8+U7/gNTk7W/27Spnsy+JpyTlU7Phn9fLkn6f2Hy3lJ3eTSJm/Resa5V6X0E3TdqlzrXcYNHlzukXvzzfJdsd56jR9CVltbrh1vvMG0Ego5eVj5PdV0mHGfZFX53VW3LPfuwBJ0++2l/33o0HKd57vfLQ+Nadeu/O2OHj2jP2CmumlJ7bjy78wHGVe3LH2uLTsu+/f51tcld2xa7ndaefdkx3+VduOQf5a2ZJKkUtrSCxK624ymTy//f2PGlOmZ/48z75VaddXGfXrzM3p0Oc8dMaKcB8z8jpvZfujUqYQDPvBAWW/8+HKO3KlTw3dhXV2pZ7Z89/PJ+P+V6yG7z3g4yLDbk+EPNITyv//fEiK/uIx+Pnnx9HJOvsreyUqfLv0CU4aX68/TRiY9dsoxP/xM/j7jdPjqq8s91UtM3bRyjlo3qfRPpFLqiOrWSeuuZTDpMu788xseCnraaaVv6IP3j9XVpbQxh91Wrh20WTlp16vcEzbrfpnaZNUDPfQaWKoMH17ujb3vvlLHnn12uT+694zbWcaPL0EoCxz89vJPkpd+VM5Ddryt9KVMfa+EGlTqyjijca+X8VdAknJeOmhQ+TyOGlXmzQwLmdmFs9125Vx2QdXVlfPpSZPK+XRdXdlfq1blXHf2hybN13PfLw+pa9096Xt+uW42dcY98FPeSSY/nLo2q+WXv+uRO+4o7bN99in36HXuXI45M0zy8MPnHLcEi6x2UnlQ6dQRMx5UWjWjXT+jPdJp/Tmu8cIH3XtvuRf8hRfK/VXHHlvuNWnbtnx3jhlT+k97Tr40ee388r234Wnlwc2V2vIwudqJ5Vxn7a/Nui4NLGbjXk/euLA87KLLpknnjUp7Y2Y/VP30ZJU9ctt/18uf/1zuAdpss3KvV/fu5fxn6tTSttlqqzJWY3H517/KgxYqleSLXyxjED/Yb1mpJBl+RDLoyvLd8eo5yfrfS7ptlXz6gTKmdcQjSZfNctRRJXshKfcFf/Objc8BJ00qfd8LZNRTySvlOme2/H2yzozrfy+eXvqwJr2VJBnb7ahce11Vnn22XGfbfPPGD5SoqyvndZ/7uA3TnvJeuU94+pjyN5aq8lNVVfo7u23dzAVcetXV1+XOfnfm3QnvJkl6tO+RvdfZOy2qF3DwDx/JIge/de/ePQ888EC+9KUv5cEHH8yDDz6YqqqqWTfWb7311rniiivSfXGOZp6Pl19+ORtssEFqPtATv+mmm85aPq/gt5dffjk77LDDHPNnbvvKK6/MM/ht6tSpmTp16qzX48aNW6Tyf2S1k8vTFCq1M24Snfl7qDT0FNR0SHywWIL23bdchPz738tguS22SLbZpgzIqK8vQVG1tcnfPniz1DxCL2rra/PEkCdyV/+78sLwF7LFKlvk/Ynv592J72bn1XfO7mvvnj5d+ywTT69fLOqnl4Gn08eVYKW2Pctnf/qYcjNf3bRyA2GnDZf5x4s/+WS5ueOVV8rJ+Xe/W24Ga9OmnHxOmrSQOxz9QrnBs25Ksur+5Ub68f2Ssa803PhY06k05qePKQnubVctN4vUTihP4K2bWtKZO67X8NToxeCZZ0pA24gR5aaETTctnbM1NQ3hMV27NlyQ+TDt25eLOZdeWsLY/vOfEuKSlM/il788owO2wzrJHk8lr/8mGfSPcjG/dmK5OabHTuVG3pSnST/3XAmX+ec/y43WAweW/W24YWnstG5dBs78+c+lAfTII6UMM627brmJe7/9yuCHiy4qZdpjj/9n777jpKjvP46/Z/ter5Sj9yJVEJCIggXsvZeoscbyMxpLEAvGbjQajS2aqLErltg7YgVEmiC91+v99rbO74/vFY67g6Mcd+Dr+XjcQ9ydnfnu7Mx8++dbN+3du5tKznvvmcB10ag0dqyZkJ+QYC7rigpzriQT0GXCBPPc+fRT898tz8NxOxBrLBAwlZ1w2DS8bzmxXDKPJ6+36YNQWrXqFZ7tqCRbNRWZapbV9ElO7gQz8cWbYRphgznmOipbYQY3F/8itRlH4LedtP/+5n56/HHpu+/MvTBsmJSRYZ4P2dnmmvzmmybuMGWANGGW9Ot9JoDP1+Nr33N4TSU2dX+dc44ZAPXPf5qAjuPG1d1N9+4m4OPMDTP1wPcPaNqaaRrVcZRO7HOi/jP3P7r+8+t1ar9T9efRf1bPruea62LdFOnHc6S2h5sBad4ME/SiYKZZzR3NKhgJ6vGfHted39yprMQsnTPwHGXEZej5uc9r8FODdfHQi3X72Nv1xcov9MnyT9QhsYPePfNduaryu7yKPB3zyjH62w9/05kDztSgtoN2W9pmb5qtosoiSdLBXQ6u897BXQ6uCfz213F/ldpPkI74UVrysLmmgrlmQ3eKea/PNZLMhNFhw6RnnjF5yqJF5s/hMIFexo2T7v/+fknSxftfrCeOeaLmmJ+v+FzjXxqvp35+SjePublJk8nWrzdllalTTV575ZUm70tIMPdqSYlpdNw6QFpjHnzQDMb43/9M4KEHH5T228/sr6zMdLRee63prJg3zwxQmzZN+vOfa/dhWSafPv/8ph1TMmWPt94yAdueftrss3pf++9vjimZZ9GMGaas8cwzZhJt9ecPPli6+GJTZps61bz/zjvmWfbTT7X7GzBA6t/f1n3zTOC38T3Gy+2sncA6vsd43fPdPfph3Q8qqizSwIEpWrDABPX76CMTpOfHqnGZKSkm4Noxx5iJUJ99ZsoFl15qzmNioilTFBSYdN1wQxNPyMj/SMkDzETgD3ubRmdf26oGZ0uK6yDb21YVFaYcEQyaQcnVf9UTc2rKrU0pnzdxUkk0Whtc0OEwx3I6zW9QvTKIJOl3b0iL/yZt+EB6r4sJ5OHNrO00jevY9NUYs46WDnjalBt/vsrcgwndJU+aCWRTMMucL+xdNrxnVoWJVJiJYf6OUmC9VLSwtrPCrloxZnuilWZQbGWOGRSbMsCsWl2ZbepUoQJT12g/oWXqqztwD951l8kr/vlPk4/EquKTDRxonvG7nIbWMIGsiXLKc3TXN3fp33P+rcFtB+vCIRdqY+lGvTj/RT028zHdfsjtunj/i2sCux3ate5EwnFdTUFyaf5SrS5ara4pXU3A3wlzpJ+vNhNJJTMpssuZ0n63KD8c1plTzlTUjuqeQ+9RzzQTEfW+w+7T5GmT9cbCNzSu6zj1y+in5+Y+p0RPoj4777OaIHSVkUpNeGmCXlvwmi4YfIEm9Jygv/3N/KYvvGDq39XlZ6fTdAqOGuWQDvhc+vV+afOn0rsdpLThZnB7qEiSJcV3UY9eXn3/vQmU/MMPpn47erRpr7AsU1fNyZG+/PI0+Ue9IK36r5nImjJYSuhRVc+yTeDafWTQwI03msGkb75p6vP/+Y/pRExMNPnjxo2m3WDy5O3vKxw2+/nqKzMIY8QIMxk8MdH8VoFA7YC53WrAbaZdLX+G9N0pJniTN938LbjTBOlwxevTT4/Wgw+aMs5BB5mO5m7dzMCR4mIT3Pb22zvo8EM+lJb8wwSQKppn2ppcCSaYZv5MydtGpi7+2zFqlCm3PvGEaatas8asblZdzjz99JZL25NPmgDDL71k7ustJ9ckJZmgdPuEuCzTFhgpN22inlSTH5WvNAE3gjlmEmgTA79tKt2ktxa9pf8t+Z/yKvI0rus4fb36a6X6U3VinxN1Sv9TlJXYioMb+ttKh00zZeVNH0kf9pFS9zcTsCLlZnBhXCeVRcI69rUTtb5kva484Eql+9P1a+6vuuqAq/TUz0/pjml3qHtqd/1+8O+lsZ9KSx6R1r9lBo9V3+eWy5zXjidKMm2k/fubOtdbb5k+k8JCU4Y/5BAT+LspKsIVNQGsHjjiAZ3Y98Sa9x74/gHd9MVNevrnp3XFAVfs9f0n87Pn693F78phOTTv8nnqllqbh/7uP7/TD+t+0CPTH9Fd4+40/SZrXjcBgBL7SHGdTFt+MN/UXZqY/8bHmzrnQw+ZvopevUw7dfv2pu24qMg89++/v6N6Hf6ttPjvZrGFdzJNvciVaNpHnT4peT8tXGjqx3PnmjLlwQebunV1f0d5+V7fpdMs2rY1v8PDD5t2hR49zCD59u1N2SA/37SPvvVWw8EEtvbWordUVFmkzLhMvXnamzXtELZta+7muVqct1j/nfdfzcueJ0k6ovsRNWVRScpKzJLf5VcgEtBXq77S9PXT9cHSD/S7Tr/T+YPPVyAc0IEdD5TDcujfc/6t0948TZ+f93md9o5dNWvjLF336XWKc8fp8aMfl79q0uHTxz6tKz+6Utd9ep1GdRyl4Vm7cdTbbjZqlOlP/vlnk/e2a2f6v6oH4+bnmzJWl+P/z/SDrnzO1B1+vtK0acTCJg9L6i/Fd1P79mZfjz0mvf++abOaPdscy+835baa62P4P02wrfm3mcVIJPNs6HSy1H8HFzfsdLJUff+vf6eqv0XmudPpFKlPVUNaYk/p6F/NQLyV/1FNfaDd4WZhlsyqtvE+15jBjvNvNcHupKo69JFS/5v2jfpD+yOkg6aYssfsa80CA4m9TZ9sLGL6ZBN6KCHBPHsffVT6+GPp9ttrJ+tKZoDiFVdIOruLNOFnadF90qbPTNCdak6/mYiWPlL7tTNBkx5+2AwG//vfzfNdMu1qgwaZflj1u8G0dS1/xrR7rXqhdn9xHaXMg2W5fHrpJRPU+LXXGu6bPP54mWCgy582A1oH/tVcy7GglPejtPFjE2S80ynmmmxpu9pWcdBb0sK7TbDC97tJGaPNvVodmMGbac7fmP+ZAFDr3zFtRdX1pFjEnG93iuxIQF+vmqoHfnhAszfN1tiuY3VE9yP05KwndcPnN+jcQefq2lHXqlNyEzvNUc/mss16b8l7+nDZhyoLlWl0x9Gatmaa2iW007G9j9UxvY5Relz6zgVFauRaOv470z8zf77pKwiFTDmoeuGrvDxT/3/+eXPfz5tn2vvHjZPatDH9oGVlZmGqSy7upH79/2LKe5s+lubHSfFVz8eCn819606Sel6y1wd+k0z/0O9+Jz33nGnLuu662vfS0sy4D0km8Mn4H6XFD0mLHjB1GklKHSr1vlrq1sSOIsthAo4secQE1vygtwnq5k03bbsOj5l8Fa2QfrldKvxZyjpGSj/QtKFlT63tK3B6paPmSeN/MoPhs7+UPjtANcFMYyHTX9zm4O0kagf5MqXDvjZ1sg3vm+du6v7mHDk8qu7b2e3Xx9C/S854Kf9H6atDzffypJu/ZU+ac5bYW++9Z8osn35qxrJ07mzKuH6/qRdu2mTGBaT3n6dHZjyij5Z9pIFtBuqkvifplQWv6NIPLtVp/U/T/438P/VM298sbrn5M9MGGS6uym/C0sYPzHM5eT8TgK+VGjrUlAeffNIsZtWxo+k/zMw0/V+bNpnXPv98u7uSJN333X0qCBTo4C4H11mcZN7meRr9n9F6ZPojuuKAK9Q5uQmLIbVi0VhUU36dIsn0c589sLYD2uv06ouVX+jdxe8qGAnK69r+tW7btpbmL9UXK7/Qt2u/Vcekjkr2Jmte9jzt335/HdH9CO3ffv8mD+7/5BOzUPDMmabt/bDDTHnf6zXP802bTCDLZ581fc0LF5r249GjzTgYh8P0q2/eLN36l57K6HaeCSi7+VMzMcOfZZ5Jm78wr8V3MWXluTdKJUtMMMy4DmZcVP50E9CnYr0pGw5/fOdOeivywQdmbN7y5aYvvF07Mz7B7Tb3TVGR5LBsaebF5jnobycNfdiUx8pWmMA22V9UDYLLlFJ337gPYHt69DBtYjNmmP6Bb74xfQV+v2kfKyw0Yz8GJ70oLfirCYg24DYpdZipT5WvNkGmg/lSn/+raW9tjWbMMHlbUZGpc1aPW3E4TL9zICBlZDjVbuhDJihD0Xxp1pVVkyDjzGK7C/5q6rZtx7XawG+xmPSnP5n+lepFTUaNMgteuFymzXPlSvPdmzK16OefzXijxYtN39Htt5u6g8dTe96iUTNmqHrBrzPOMHlIerp5FkajZoyW0ymzCOLCu0z/35eHShmjzMLYnhRp8YMmX+m8uzuorK3+K3P9lq2UNr5v2gnyf9LkyYfL4TDXyqRJtf3Ofr+pJ+XkmLkXJ520/SOGw6bu8Pnn5hydc45pz46LM9dcOGzOydFj1yn+lwuknK+lDieYeoI/ywTjL11mFi7zZkoHNkOA5j3srLNMkNTvv5deftmULarL3dXtj507S+ePeMvMHwiXmAUw4zpKFRvNmOc1r5l6S7jcLPQWLjZ9Dd5M0+8TrTS/rR0zdSlvpimbVGabf6cMMv0DlblV42XyzfiZrKP2/sCVTVRUZAL+Vlaa50BCQu0k5Opgjh6PaU8DIFNGz59pxkQ7fabt3OExz6ho1dxRy6kE/1Dtt59X69eb+2zhQvPR6mDapaWmvW3IEDM2Y8MGU9c66KDaPNq2zfPQ4ZD2a3+UqTsVzDbPxOJfTBkkVGQW1qrMMYuuEPgNrdDGjWYs4KpV5vo+9FBT7nS7zXUeDNaOS2qqcDSs7PJs5VfkK82fpvJwuWzbVlZilpK8SYrFLJ1/vmn/qKgwfU8jRpj8zOEw7d+FhVVBZmXGdWwu26xwNKwET4KKg8VK9aUqMz5TLodL8+ebMvW335pxaFdfbcotcXFmH8XFpr5/5JFN/AIpg8xfxTpzX0cCZixQYKP0672S5VA0brDy8k5Vbq7Zf3KyOW/VwZSr5+tVN/Xbtq2KcIXCsdpI3QmehJo5JsB2FcyRfjzX9M/3ukLqeq6pj+XPMvWQ0mVmAfthj+75tIXLTN9S+RqzaETaAaY/oWKDKcMHNpt6ZPcdmJCDZtO2rVkIo6jIjBVassQ8s/z+2rbRtDRJHZKr+rYKTVtyqNA8C8tWSUsfNWUrd5rkSzd9W06vlHWsmScUKjBtT8W/mrgcPS41QeVDBZI7VUrqLVnu2oDq4VLz+fQDieOxteKFZiEpOyYl9zdl3GjAzFkJl0iKmYXlPE2NboqWlp1t5vPNn2/KD8cdV9vvL5myVzQqHdp/g3m+Fy8w4/H97c24kNzvzILMFeukzqerpOT1msUkfD7TNpySYtoKQqH6QxNs265THnE5XDWLuVYv1Fhaasp/nTubMmF1G4Rk2iEOPVS6+WYzFumbb8yczP79TX0qFjPlOIdDmjjxcOnQL824n8UPSQvvMe1oDrdUvsq0IaUM1AUXmLaP+fNNn9f69abfxuerbeMbN04aOSqqVUWrtCBngfIq8tQjtYfWFK9RnDtOA9oMUK+0XnJnjJJG/dfM7Zp/m7T5S7OQqCvO3DO530n+9lqxQnr7bTM2rndv6YgjTH+qz2e+Q3n5XjVVafeYc6MZg+aKl4Y+aObtBDaaPoVNn5g8YMBtJtB5K2bbtgKRgEqDpXI73QpHw/K5fEryJpkx4HbM5GnRgCSHuTYsR9Uc1yqW04yZsSyVhcqUXZYtW7bi3HEqrixWely60v3pcjqcqoxU6sV5L+rBHx9UNBbVWQPOktvp1v3f369rP71Wfz7wz7pgyAXyu7daFKOxcWa7cc7sb4ll27t+VmbNmqWZM2eqqKhIKSkpGjFihIbvzrCZTdC7d291795dn3zySZ3XN23apKysLN1zzz2aOLHhAboej0d/+MMf9NRTT9V5/ccff9To0aP1yiuv6Kyzzmrws5MnT9Ydd9xR7/Vb/jBULpdb+QG/wlGH/O6IvM6o/O6IQlGn5uWmaFNyjtanrZdlW0orT1N8ZbyyU7JV5i1TRmmGOuZ3lCfiUV5SnnKTchVyhZRUkSRLlorjiuWJeJRRkqHMkkwlOiz5XBE5LFvBiEtR25LTsuV0xORzRWXbUlnIo3DMksthfvJozJItS5ZsWZYth1XVmBF1qNhfqoKEApX7yiVbSqhMUElciZxRp5ICSUovS1dcqIlLKG7lvffflyQdv40IPNXbNLTd0vZLtS59nTJKM5RWmlbzeklciTanbFbborbqteoArV55okpKusiyYmrb9id5PCWyrJgsyzaL99kOtW07e4fTtq3tHFbMDJaQFLOrA+fYJoSOJUm2IjFLs7rNVnF8sbrkdlG7onY1n89OztbqNquVVJGk4SuHy9qis29b56QpaUv0BDWu23r1Ti+SJG0oSVAk5lDUtjQ8K1vRmEOfr+ykb9Z03Oljbm+7aNSjSMSnaNQny4rK7a6QyxVodPutBZ1BRZwROWNO+SK1QYhs2Qp4ArJlyxf2qdRfqrUZa1XqK1VyRbLaFrdVYXyhiuLNd++c11kZJRma0WuGKj2V6r++v9oW184CWZW5SqvbrFZKeYqGrRom23YoN3eIcnOHqKSkq8LhBEUicXI4wvJ6i5Saulh9+77c4DnZHedtW9u5Hea54nbEFLWtqutOclq2XFWvFQR8UgPX0tb7ijgiKoovUlFckUKukOKCcYpZMVV6KuUNe5VSkaLk8mRtTtmsJR2WKDGQqA4FtUExg+6gVmWuUnwwXvuv2l+lOUNVVtZR4XCcEhPXye0ulcNRHVjK3IOJiWvlcgXrpW1b5yQS8SgajVMs5pRtuyTF5HSG5XKVy+kM19l2e7+DJVsJnrDczqjcDltRWwpGnApE3IrEHHI5ovK7InI7Y7JtS5GYJcuSHJY591HbUn7QpTVpG7Qmc40SA4lKL0uXL+RTYUKh8hPy5Yl41HNzT8WF4rSs3TLlJOeoTXEbpZanyrLN8zwnOUcJlQnqu7Gv4oPxsm1Hzb0SizkkOWTblizLrrp3yuVyVe7Qeas9f16Fw4lyOMLyeIobLD85rZiSfSHZtlQc9NZcV1uzbSkUSlQ06pXHU1rnt9xSLOZSKJSkWMwhj6dELleokbT5FQrFy7Ikj6dETmfd7WzbUjicoFjMrVjMLcmWwxGSy1VRb58mbcmKRr1yOivl8ZTKsmxFHBEVxxXXXOf+kCloBjwBeSIec51XJEuheEWjfsViDjkcYTkcEVlWdVA081+HI6xlHRZqffp6ZZSa/Lhasb9YG9M2Kr00XX039NWPvX9UzBHTsJXDlFKRUrPd6szVWtF2hRIDiRqxom6k6Mau37yEPM3vMl+eiEd9N/SVVfX7xBwx/drxV8WsmPZftb+K4ou0vN1yJVUkqUte7YCfgDug5e2Wyx/2a/iKYUp3Sl5XTDHbUnnIJVuWnFZMTocttyMmW1Jx0KWchEJtTN2oSk+lkiqSlFyRrJzkHFW6K5VWlqb2he2VGEysOY7HGVGcOyqP0/RUhKIOVYTdCkWdCjvDyk/IV2F8oULukBICCYo6owq4A/KH/UorS1NqWapK/CVa1n6Zws6w0kvTlVqeqkp3pfIT81XqL1WX3C7qlN9JTru2Qayx+yHkDGlmz5kKuoPqu6GvEiprQ6avarNK+Yn56pzXWeml6ZrTbY5cUZdGLRslV9R0Qtiy9VPPn1ThrVDvjb3lirn0a8df5Q/61XtT7fLbEWdEizosksN2aPjK4cpZfLry8gYpFEpSx45fKSFhoxyOiKRY1bXqUHzCOq3uMsdcSyUZSqysPY9FcUUqTChUt5xu6pbTrU7ZIBZzKBKJUyTil2VF5fGU1nsONp2tJG9IXmdUoahTJUFPVQmmvnDYr3C47r0aU0wBj8nTfWFfnd8k4ogo6ArKkiV/yF/zHRyWLb8rIr87LEtSMOpUWcjT4DOnsfshJzFHv3b6VZ6wp06ZKuwKa33aeqVUpGjg2oHyRD319tXQ/oqKemjz5lEqK+so27YUH79JDkdYlhWTbTsUi7nVo8c7WrfucJWUdJNtO5SaurimnCmZZ5XbXaG2bWc16Ts0tE2D3zVnqHJyhqmiop3i4zcqLm5z1e8dk2QpFnMqK+sHeTyl291f2BFWyBWSZVuKC9ct0wddQUUcEbliLtmyFXVE5Yq55I3UHQgecAcUs2JyR911zu+u2vJ62bq+UZPuBt5zO6JK9oUUijpUEqyarNEA23ZU5UkueTxFcjpNg0aFp0K2bHkjXrlitZ2PtmxVeEykLm/YK5fd9I5J27aq8nO/bNshu+q+sKywXK6g3O7yJu9rS9GoW+FwvGIxj5zOgDyesqo8qq5IxKdQKEGWZcvjKa75rjurOp/2eMrqlEO2ZAaBJCga9dU5v/W/g0vhcJJs21GVtnCdc731c2Rbzxip9rnkdIaq7set01X9W3gVi3llWdGq8kPFTk2md1i24txhxbkjCkcdKg25FYnVTZNtS5FInKJRj2Ixc484HCG53RX1yjiNCbgDmtt1rgKegLrkdpFzi2OsT1+vqCOqQWsHKbW8NiBhdZ0rFnPLtl2yrIhcrkC97+qwYop3h+V3R6u+g0eRmEO2bOUn5mttxloFXUGllKcoszRTuYm5KoovkjfsNfWpstoAcZZs+VwRxXsismRXPc/ditn1Byc29ix0OWJyO6JyWFI4ZlWVfc2+nQ5Thw/HnIrEHPX21dD+Gjrm1tvFucM6suca9UwrUmnQo5WFyQpGnUrzV6prSok6JJZpQ2mC/v7j/g3ub+tjbto0StnZIxQIZCgjY56SktbI4QjV3J+27VR8/CZt7vqjVrVZpdSyVGWU1p7HMl+ZNqVuUkZJhvpt6KfpvaYr7Apr0JpByiytLWeuaLNCq9usVnJ5sgYsOlxr105QSUkXORwRpacvlNtd3fZhrn2nM6SkrB+0qs0qZSdnK608TZklmbJlKzcpV4XxhWpX1E7dcrvVPOsdlq14d0huZ6ymnhSOOhWIuBSK1r3Wt/U7mLw+LK8rJodl8ivbVk25OhKzVFTpVVPqqxtSN2hxh8XyB/06YMUBNeWJiCOiGb1mKOKMaMiqIUovT29S2nZWNOpRKJQkl6tcbnfT2zP2FVuWE7YsG2zZLuOJeBSqqp/tWL5qK94dltsZU3Glt6Ysus2ygTOskDMkh+2Qw3Yo4qjfZrStdEtSLOZUKJQo23Y1mnc5rZjiPWH5XFGFog6VBj2KNvCMM+VzvyKROFmWXVV33/o6seV3RRXvCUuyVRlxqTzkbrDsvavlxzbxFUrymt+iJOhRJGbJ7YjJVdVeHLUtrS9JqJeH7U7RqFuRSLyiUY+czmBV3TymeV3mKS8xTx3zO6rPpj4121e4K/RjbxPNddSyUYoPmZHdpj0gTrGYp6o9QHI4wnK5KuR0BuvkcduqE67NWKsNaRuUXJGszJJMOWNO5SblqiChQBmlGeqW063OdeZxRuVzReRzRRWz1ejvZduWolGfwuE42bZDLldAbnfZVuUMWz5XbTtTKOpQWVUZIhp1q6iop4LBVEmW4uKy5XQGJdU+zy3LVixzkX7u9rMctkN9N/StLRtY0uKsxQq5Qhq0ZpA2p25WdnK22hW1037r99siBba+6feNIs6I9lu3n7yrx2jz5gNVVtZBHk+JEhLWyekMVdVtLNm2Q23a/Ky4uJztnt9qbkdUozpu1sFdNigrsVwx21JOuV8Lc9P19eoOKgjU7fCr27ZU22aUn99PmzaNrqr/bFJS0uqac2I+51RS0molJq6XJBUU9FN29jAVFOynYDBZlhWTz5evtLTF6tz9f/ql79cq9Zeqa05XJQdqB4dsTNmo3ORcZRVkqd/Gfg2kbcu2pfrlzC3PSUP54MgOmzS4XZ46J5eqMuJSOOpQzLaU5q9UfsCn95d016K8tHr7auz87ux229rG74rI64rI44xV9Q85VRE2baPBYIoqK1MUjXrldpt6QG3dw/zX5SpXKK6owfrUls9wK2Zpeu/pijliGr5ieJ3fYVHWIm1M26jM4kx1z+mun7v/rJgVU69Nversb3m75eY6XzuoTjlqW991TcYaLW+3XMkVyXXaDSo8FVqXsU4p5SkavGZwneO4HeY57XHGFIyYsm20Kp9pqH1Dqpsn+cN1r3O/K6J4T0jRmEPFQU+D5WSpbn3V6y2qaj9qmqgVVaXb1NP8Ib8ccjT4njPm1KwesxRyhdRrcy95w7X54urM1Sr1l6r3xt7qVFA3gEpT+852h6zEMo3pvFH9MguUGReQZdkqC3m0sTRei3JT9eHqLAWd4QbbNELOkMLOcL3fwZItvzuieHfYtIGG3aqMmN/8kC7rNTwrRx5nVD+sa6+SoEcZcQFlxgc0qG2eQlGn3l3cQ7M3tanZXyzmVCTiUyTil2Q18tw311KiNyyHFWs0DzF5pb+mDidF5XSauuPW18Ce6HdK9gZ1zqDFapdQoWX5KZq7OVOhqEPdU0uU5q9URlxApSGP/jNnP3VNKdaBHTerV3qRfK6IAmGXIjGHEr0hBcIuzd7URvOzMzSu23p1SirVupJEZZfFSbLldcV0YMdNkqTPV3bW56uzFHKFFHFGatqbIo6IZEnOqFOeqEfuaN2AabGYQ9GoX+Gq39r0OTa9nt9Yn6NUt/wYs2KNtoFt2T4WcUa227bUUJvGrqhOZ0PfodJVWdOuF3FEtD59vfIS8xQfjFe7onYq95arIKFAMSumjgUd1a6onVYvP0VFRb0UCiWqY8ev5fUWVF2Hpg5n206lpCyv06a1O/Mkc2/5FY16ZNtuWVakqh0lUK9c5XdFlOAJKxxzqiTYcBuEVNsnZllReb3FNW24ddlK9oZkWVJxZW27+ObkzVrYaaHcEbfGLB5T57k/r/M85SXlqUNBB/Xd2LfO3jzOiJK8YQXCLpWHGw/053FGlOgJqzjo2UaZ3NSTvK6Yiiobz0Ma+x1Mu0pMDsuMXbBt82s6qtpcJPN61HZoYJs8DcvKUffUYrkcMYWiTkVjluI9YRUEfPpiZSc97V+rkrgSdcvppu453WuOU+Yt04xeM2TZlkYvHS1f2KdYzKnNm0cqP3+giop6KhxOkGVFFReXo9TUJerR450t2shMWTneHZbDMvWkskbqSbGYQ6FQsmIxd9Xzt7TB+z7RE5LPFdluf0f1NSLZ8nqLG8x/q/tNHVZMZSFPTR6ytcb6JrfYoub3dDtiitlSJOZQZcSlQMSpRE9Ih3dfpx5pxXJatjaVxSscdciWtH/7XFWEXfrf4u6as7k2T9rWPRgMJmvTptEqKuql8vJ2VX1IwZr+Dtt2av/9H2rkvth1TiumuKr2x0jM1H+2bleqriP7qsqjoahD5VV9idsq32yr7NXY86ayMlUbNhyi4uJuisU8SkpaXZV/1/bXJSauUe6gN03ZtCRTvTb1qvl8qb9Uv3T+Re6IWyOWj9DMnjMVdoU1YO0AtS2pHWuSnZytBZ0WyB1x66DFB8khhwoLeys7+4CqeyGxqo8tKp+vUMnJK9S///NN+g5ba2y7La+Lxhx33LE1bTlb511b9iH5w3XLvbtTNOpSNFr93HdV1fPL6vX7V28XiXglOeR0BqvGntReu9XtkD5XVC6HXXUtuRSK1r9ft3Xf5OYOUl7eEJWWdpZtO+TzFciyTF+3bTuVnLxCXbt+3KR9VecVWYVZyiqoDYRdkFCglW1XKjGQqGErhzWpn3trtc8bj1yuykafhU4rphRfsE75d2c5rJgSqtrHKiMN9+maNhQzfslhSZGYVVXHdNXLw/yusBI8YUVtS6VBj8JVeWFOzv7asOFgVVamKz19gVJSllblF9VtJA75fPmKj98s27aUkzNMeXmDVFTUS8GgqWd6vcVKSlqt7t3fU3z8puqzJo8zqnj3lu0ynjp9DtUa+x2acm9t/RmP07QFVbfFmfKBS1v3Y9q2qtqW4qvalipMmctqvCzZWB3VPH9NXd9hSaGoU2UhV4PlDbuqPLD1fT6m8waN6rhZfndEX67spNKQR0neoNrEB9QnvVAx29KXqzrpkxKnlrdbLtuylV6aruSKZFV4K5SfmK8KT4W65XRTh4IOsqMeZWePUEFBf5WWdlE0avrqLCtac68NGfJInbbZ2rEQcXI4IvJ4SnaonlxdVm+oLlHdL+yJeOSO7Xhg5saukaK4Iv3c/Wc5Yg79bsnv6tQfZnedrcKEQnXJ7aIueV2Ul5ingoQCVborlRhIVNQRVcAbkC/kU3pputLL0us8mxuzrT7Urd+LOqI19S7LtuSKuRSuql+7o255w17Zlt1o28eujg+orsNFIqbvvKHnuVTd1+lVNGrqOOY5V16nzOJyxGratMx1XjseqVbdspet6rKXU4Gwq175sLF8NeAOqDC+UKX+UkUcESUFklTuLZdt2YoLxSm1LFUJgUQFKtopHE5ULOaU11tcp6xrWPJ6C+uUD3dXfco8Q/yKRr2KRl2ybaccjoiczkq53RU1x/Q4o4pzh+Vy2HJatmJV/a+BsFPBqFMN9ddtfdywM6wl7ZfUjH9MrkiWJUsBd0DZKdly2A71X99fyeWp2rRptAoK+qmsrIO83uKq71+bryYlrVZa2kJt3HiwSkq6Khr1KClpjVyuQNXzwdRD0zPmaenwV1XmK1PPzT3rjIHLTsrWgs4L5Al7NHrp6J3KVxs7v35XRCm+oDzOaFUZ1SGHVbdf29TnHFVj96VgxKGY7TBjPGXL7TRt7WUht0qclSqJKzHPIMtWfDBe5d5yU+YK+ZUcSK7XD9bYd7BtafPmUcrPH6Dy8vbyeovl8+VXPVttxWJO+f35Su/9lpZkLVGZr0xtitsopSJFMSumgoQC5Sblql1RO/Xc3FNF8UVanLVY7qhbbYrbyBPxKOaIqTiuWLlJueqY31E9N/fcpfO7re0aag/YeoxDdZtt9fVr7mlLoahTFWGnnFW/jWWZez1m19Z9q8f027J0Yt8V6p5arIKAT/OzM1QZcalHapHaJgTUNaVEgbBLd327vzZVtZtUeCrkjrrlC/tU4i+RJ+pRcnmy0svSFS3pqPXrx6mkpKscjrBSU5fWeV7ZtiWfL18ZGQsUizkVjVaPWTHjgWvmF1jRqvb36rG3tuLcpvzgdsQUjlkKhN0KROrep9u8RmSr0l2pSnelIs6IHLZDzqhTIXdIzphT3rBX/pBfH773UaO/3ZYaKxM19ptW9w/WjvGWLCta9ewv36F6aHU5KRLxybZdVWOvYjX9hFvWH2rHXFdvV33Miqqx68aW41ojW53fmBVT1IoqVpU/OWyHYlbtv50xpxyNtM9sS3V/Y92xtPXrLLX5pVe27ZbDEZbbveNjQqvzBnPenFuMWYvK4QjVtFmYsSFmDL3LYXLHqG0pHHUoEHHWS9+u1lfDjrAqPZUKuoKKWTF5I16FnWHJklwRl/xhvzwRzy7Nn9nWdtXn19yLbllWWG53oE7749bjZUx+Wft7VZfxnY6YmYcTqx4La37nmG2pOOhRNOZQnHvL8TLSluPPd2S8TJm3TAs6LVDQHVT7wvbyhU05KeAJaGPqRiVUJmi/dftpQvtCDc/Kls8V1YwN7Wr6O9rEBzSkXa6CEafeWtRTsza2rXfMrY9ry1ZRfJFyE3NV5iuTK+ZSYiBRBQkFckVdNf3tdkEvLV9+qgKBTPl8+crK+maLNjHzXS0rqsTEtTV9IdXj700blarqetX9/6Htp82WsrNHVs3piVdy8oqqtt+oqsfS2rZDiekLtKTrnJq6+ZZ9YrlJuSr3lqvvhr7KKqq7eFWjbUvuSm1I3aDs5Gz5wj61LW6roCuogsQCRa2osgqz1L6ovYa3KVS/jAJ5nFEtK0hRWchTNUYvojbxFYrGHPp6dZZ+13mz+qQXqiLs0i856QqE3eqUXKq28RXqlV6kQNile74drtKQt17atk5fwB3Qrx1/VYm/RO2K2tWMjw94A9qUskn+kF/91/dXzIppcYfFqnRXqm1xWyUGEhVzxFQYX6jcpFy1L2yvntk9lemOalzX9eqRViyvM6rcCn/VvJqYeqUVqbDSqxfn9dO6ksTtpk2SsrOHKS9vsMrLs+TxlMjvz60pt5i6QUBdunyujRt/p8LCPqqsTFNi4rqtxmU7FB+/UXa/t7Wo4yLFV8bXKRcGXUGtbLtSvrBPw1YO0/C0UnVOLpXDsrW2OFGVEZfi3GH5XBGl+EIKxxz6cV37Om34jX2HmBVTUVyRChIKauabeCNeUzaIeJRSnqLUslS5Y24F3AFVekz/jDvilm3ZijgjckVd8oV98oV8ddo5t8VRVb/3OKNVz+fqz5l5YjHbUnGlt+Z1M141XtGou2q8ql2VD5bJ4YjV5KnmGeiqaiN2VAU/iFa1aZfVHN/rjMhflV/GquZYlYdNf0xRXJGWtVumkCuk9LJ0pZalqtJTqfyExud3NFVjv0PEiqggsUB5iXkKeAKKC8bJFXOpxF8ib9irtLI0ZZRmaFSbIk3osUaJ3pCmre6oDaXx8jijSvcH1SWlRN6qPuHvCuKVm5yrwrhCxRwxpZWlqcxXppArpITKBGWWZCqlLFXlZZ0VDKYqFnPJ5yuQ01kpVc3BNc8bS05npVauPFHFxT3kdFaqffsfq/rYwlW/jUuxmHO3z1/Nz++vkpJuCoWSlJi4Vh5PkRyOaNXz1ZJk5us1pV8v4ohodeZqrUtfp9TyVKWXpssT9aggvkB5SXmKC8ap16Ze8oV9yk7J1ubkzbJkKb3UjNXMT8yXLVvtitupbVFbDUot0+C2eUrwhLSsIFUlQbd8rqjiqp6Ftm3pu7XttSBq+jBL/aVKqkhSm+I2KkgsUFFckTwRjzrld1J6abrKfGUqTCisaSdLCCaoxF8iV9SlhMoEpZalKi4cV3Wde6rmgTV0nQfl8hQr6A4q6A6aezXqli27pt/YG/bKG/Yq5oiZMZC25Iq5qmZf2+a+ruqf9Ua8NeWWWMxZNbbfVVUGtmRZYXNMd7nCrtq+aaftlGzJtsw8Ddsy7VTVbUFmzHt1mcWU5SzLrsorA3I2cR5ubZnKVrw7Im9VHSNaNQauIuyu08Zb/zlSPe69XA5nSBFHRJGq9rvqcnHUEVXUEZUz5pQr6lLMEdO69HXakLZB8ZXxyizJlCvmUk5yjor9xWpb3Fad8zrLsi1lp2QrNylXlm0pozRDQVdQxXHFckfdalvcVpnFmRqUUayeaUXyOGNaVZikirBbfrdph073VypqW/puXXvNS9ykVW1WKaU8RWnlaXJGnYo4I8pLzKtpT2hb3FZzus1RmbdMXXO71ikbbEjboDJfmfpu7KtDrHgd0X2t2iWUa+aGdsop98vjjKlbarF6pBbL745ozqY2en1h7Ryybd2ry9ot09qMtUovTVeb4to+vjJ/mdalV41bWjVUG9ceocLCfgoGk5WSslR+f74sK1JTVrJtlzp0mFanbrOrbR+hUHxVvba7gsEUxcdvqGpLqm2/ycyco0jEp5KS7gqFkpScvFJeb1G9sldy8kq53RWNpmFrW87n3bIuYub0uhpsu29ITDFFHaYOZ1u2HDGHbMuWLbumDrdj+VFt36XTEZOzOpaJTCyGcNXYr6gjWjO+xbItWbalmCNW0+7qirqarX9td4haUZX5ylTiL1HIFZIn4pEz5lTAE5A76lZiZaISA4lKdsaU5jftY6Uhj8JRhxyWLZfD9LlYlq38Cp/Kw02brxd2hBV0B2ueJa7oVm3UW/VZbm9/1RpuW6qUy1W+Rf+ZaW/xOqPyOM2zMBR1qrxqXKBU2+7scUblqKoz27JqfvuykCk7mr4m0z5oYnSoZvtozKGiLcbAb/kdGjofeUl5ykvMU9AdVFJFkmzLVqm/VL6wTxklGUovTZc75tru1WTLUl5Cnla2XamoI6rUslSll6WrOK5YBQkFijqi6prTVe2K2zXp2kzxVep3nTapfWK5ssvitKE0vmrca1BJ3pD8rojWFifq+3VNq09ZVee/+p6PxEzsDdtWVXnTUlnIpSN6rNPANvmyJf28sa2KKj1VxwwqK7Fc4ZhDL8zroxX+Iq1PM/OpUstTlVyRbGKz+MqUUp6iTvmd6szN3VbacnKGaNOmg1RRkam0tMVKTl5RNa7C1Gtt2yG/P08JCRvq7auh/TV0zK23C4fjtGbNkSou7i7bdigj45eq+k917AWHpJjat5/RpO/Q2HG33q4gvkAr2q5Q2BVWWlma0srSVO4tV35ivgLugLrmdlWHgg516izb+6619593q7JXpGp+X/UcV7uqXydaM1Z5y/aWLZn4Eb6qOQPOLcpAFbIdsZryh2VbcsacijnM2L7qNlCn7VQs6q1pT5RMekw5vio1tlVnTLgpB1WXv7Y959DrjCjRG1LMdqg06K7p595S7VgIb1WfTXWZKqigK1gzps+1xXePOqI1Y199YV/NvVo9Xy/ObWIIhaK1Y5rr/hauqrkW2x+H2hTbGot27qDF6p5arKJKr6at6aDKiEvtEsqV5g+qc3KpghGn3l/aVWO7blCX5FJtLI3X0vxUVUac2q9NgdonlKt9YrmKKz36y3f7a1GHRSpIKFC7onZKDCTKkqUKT4U2p2yWN+JV//X9ZeX11oYNY1Va2llOZ1DJySuq6jrV96pTiYnrlJq6VFLDfWLV/YSVEZdKfGXKS8xTqb9UtmUrqSJJxXHFcsQcSqpMUnpJep1YCbtDwG3aaXKTc+WOuJVZkqmgO6iChAI5Y061L2xfU14Mu8w8W6ftNNe5FaupO7gjbrliTiV6asf+h6JOxWxLLkdMTkdM3qq8Lj/gU6UzXDMW1lFVxqqu18iSPGHTJ9TQ2GvJtIlFrehun0PeVKFQgrKzR6iioq0sK6qkpFVV92Z1+6Ojau5mTGvWHKmyso5KSFivjIx5Ve2UEUkORaNueb0lio/fpFAoUbGYW05n5RbPfKm6PdPprFR5fL5yknNUFFckV8yltLI0FcYXKuwKKzGQqLbFbZVUnqqK8vYKhxNk246qsYdbziOVIpGwvv76FRUXFyspKWmb33W3BH6rFolE9Msvv0iSBgwYILd7961YvT29e/dWjx499PHHH9d5vTrw27333qu//OUvDX7W4/Hooosu0pNPPlnn9erAb6+++qrOPPPMBj8bDAYVDNYGuikpKVGnTp2adPKrzd40WysKVshhOeR1eTWu6zjFe+ovV1IZqVRF2FSA4txx8rl89bb5rXjwhwd10xc3aXDbwXr2+Gd1w+c36KtVX+nG0Tfq3sPvlWyHPv/crFhRVGRWK8rIqF0ZxjTmSEcdtdWOm7qC8S6udLyhZINGPDtCG0s3anSn0RrSdojm58zXd2u/U7uEdpp58cz6KxPv4sq5mnmJtOJZyZUoHb/arLBavMis9lmxzqxE1PZwqePxO37MVmp10Wp9uvxTuZ1uVUYqtX/7/TWq46ia979c+aWOePEI2bLVJbmL4txxKqws1OayzYp3x2vOZXPUwd9Lhx8u/fijWV3o7rulo482UcGjUWndOrMS1Mknb3XwplwjO/qbbm+7ptrVlbolvTjvRV303kXKiMvQf0/6rz5Y+oH+MeMfGt1ptN478z2z8vOupG0X09cSCgOFemzmY1qQs0C903trSf4SnT/4fB3b+9g62/2w7gfdOvVWuRwuZcRlaEneEk0aM0kn9Ttp5w++F5+3fcGkLyfpnu/u0ZB2Q/TE0U/o3u/u1ftL39cZ+52hF058QV6XV1d8eIWenPWk+qT3Ub/M2onE3675VvmBfL152ps6tf+pdXe8jXv16VlP6/IPL5ff5ded4+5UMBrU7V/fLtu29fqpr+uU/qdIkm6bepvu/OZOdUrqpAfHP6gf1v2gf8z4h7qmdNXU86eqa0rXHf6+ueW5Wl6wXJKJhj6k3RC5nc1X5rNtW/9b8j89P/d59c/sr8V5izWgzQBdM/Kahp8127gfft74s8a+MFZloTKdO+hc9UztqVcWvKKl+Ut1TK9j9O6Z78rlcOmy9y/Tv2b/S07Lqb4ZZtLWqqJVqghXaFzXcfri91/IYTl0/3f36y9f/kUpvhTdc+g92lS2SXd9c5d8Lp8+OfcTHdzlYMViZkXS3FyzWqLXa6LEO5215ZE+fcxKEi/Nf0lXfHiFBrQZoHsPu1dXf3y1NpVt0nMnPFfvWfKbs4374dfcX3XGlDO0sXSjnjvhOb2/5H39e86/df3o63X3oXfXvz4buUYWLTKrhsdi0rBhZtVpRwP9BUuWSPfcI82da8qXxx9fG4E/GjWrEiQmSsfuxp8sGjUrcH5UNd7uscdMWhMTzYprFRVm9cmhQ80KSwD2HUWVRfr9O7/XB0s/0K0H36oBbQbowv9dqG6p3TTltCnqk9Fn+zvZSQtzFuqbNd/I6/IqFA3pkC6H1CnH7JTdUBept6/t7a+x7cpWSfNvkQpmSekjpTaHSJ5UqegXyQ5LkXKzukf3Cxre31bH3LzZ1BvXrzf5fJcuJm+o3jwalXr2lLp1k56b85z++OEf1S21m1486UVN/nqyPlz2oa4bdZ0eOOIBOR1O/Xfef3X+u+fL4/TI76ptOC0LlcmyLM26ZJbaWYP173+bVWHcbmnMGLNaYXXbRyxmVq6qXuFvTdEaPf3z04rGoorZMXldXl0+/HJ1TOqonbaH6qu2bevoV47WJ8s/UZw7Tv0yzLU4L3ueIrGILht2mZ469ilWBsG+ZXe2LbUy3639TmOeG6M4d5zG9xhf8/qqwlWalz1PJ/U9SW+f8fbO7Xw75ySvIk/Pzn5WeRV5infHKxwL66KhF6lHWo+dO94e9sHSD3Ty6ycrZsd057g7Fe+J18QvJyoQDuiZ457RRftfpNcXvK4z3zpTGXEZmnPZnJrO39mbZuv4146X1+lV9vXZuuqSZL35plnd7L//lQ44wKyQ5nab1cXy8qQOHaTU1C0SsK3zG8iWph5uVmZrSHw36fiVTfqe778vvfGGtGKFNHKkWck2Ls7U0SzLpHnQIKlrV+m886S33jKfy8w09bmkJLOK7+zZ0pdfSv2H52rcC+O0MHehztjvDB3T6xg9MuMRzd40W6f0O0Wvnfrazq8+29i9+uN50uqXzMpuh34pJfWV8n+S8mdIc66TYmFp+ONm9dKt99XQ/ho65tbbNTXaUQs9L+759h5N+mqS/C5/nf6t4mCx/C6/Fl6xUF1Sumju5rka/+J45VXk6W9H/E3tEtrp8g8vVzga1munvqYT+55Yf+fbeGb+Z85/dPkHpszz0skv6alZT+nF+S/q5H4n68WTXlSce+cWOdpbLc1fqkNfOFQbSjfohtE3aFj7Ybr202u1qWyT7j3sXv3loAb6UndnOX5bVr0ozfiDZEektodJWcdI3gwp+ytp1fNmm9MDZtXP3aV0hZT7rVS5WfJ3lHyZklUViMGOmr92R+w9K7Hujn6nYL5UttKsSOvwVJ1vM+BOdtSsaluySPr2RPP/Bzwldb9IipRJ698xKybm/Si1PVTqcpa06AGz8vGQ+82qreESsxputEIKFkjdfi+lH7AbTwIaUx4q11ervlIwGlTMjql7ancNz6pdzG/NGtPmmZ1t6rPt25u2R4ejehCKNHy4KS/U2NX+61YsEA6ow987qLCyUDeMvkHdUrpJkmJ2TNd9dp1C0ZBmXDxDIzqM2M6e9oBdrRcsvFeaf7Pk8EoHvy+1O8ysZJ4/U5pzrRTYJPWfqDdcQ3TGlDOUGZdZJz+enz1fMzbM0Gn9T9Mbp72hFStM+/jixeb9MWOkIUPMSrzLl0tff23GcXTo0FBifsO+PFTKmWrKzcculRwuKW+GlDNNKpxj8sfuF0pZR9d+ppHffvVqacQI0zfVr5/06adSp62Gn4TDpuy/z2nkefP3v0uTJpm6zq23SpdcUvuci0bNuKJIREpILdeof4/SgpwF6pbSTcOzhquwslBfrDR9gx+d/ZEm9JygiV9M1H3f36f9MvfT4d0PrznO5ys/16+5v+qWMbfor+Pu1O9/L730kknW1VdLp59urn3bltauNe16V1/dtO/Q1O+KnXP33dItt5h///Wv5t/brWJt4/lbEizRmOfGaH72fI3sMFLje4zXrI2z9PHyj9U+ob2mXzxdnZM7N3l/vxXBoMkjNmwwq7BnZJg27i1XX69uqzjqKNOfa1mmDXz0aLOi/ObN0nffSVdcIZ1xxk4kgt9BChVLhbPN6ucOj6mXWdXBZmxTD8gYLTm9isaiemPhG3pt4Wsa2m6o5m6eq4M6H6TLh1+uBE+CSkulQw6R5swxv9uLL5rV5j1VY8Jt27T/dOtm+jb2Ctu4Rk554xS9vehtZcZl1mlvWFO8Rm3i22jJVUuU4kvZQwnFXqs1tPFt51n40bKPdM0n1yjJm6Th7YfrpV9e0p8P/LP+ctBfFOeO0w03SA8+aLZ9/HHzTG7IeeeZspIkvf22GX+z5bPABDuVftg4VYf+91B5nV5lxNUuCFFYWaiKcIWeP+F5nT/k/B36DvW2a43P/Ea+w+OPS1ddZf59/fXS3/627d28s+gd3f/9/eqT0UfZZdlyOpy6Y+wdddoEcstzddMXN+m1Ba/p6hFX690l78rr9Orxox/XmC5jdue3almbPpUK55rx8kl9JXeSaoIu2TEzrj69afX8b7+VHnpI+uUXqX9/Uw9u29a0qUQiUlmZGU82dmxzfRkA+8T4kCZ+h8pIpe765i797Ye/6Q9D/qCycJne+vUt3XbIbbp+9PWmn7NogelPqdwsJfaWvJmmfUmWecbZEan9UXX7O5qYXwYjZr6cw3LUG48bDEobN0rFxVIgYNpazCRvs8ukJKl374b2uh27oW4Ws2N64PsHdNvU23R8n+N1yf6X6A/v/UEJngS9cvIrGpY1bIfLXpFYRN+v/V5loTLZstUhsYOGth+6YwmzY6ZPrGCmJIfpI3GnSLFKKVbVN+VJMf1kTUxfzI7p2dnP6uYvb9bIjiOV7E3WB0s/0O2H3K5rRl1T0xces2N6cd6Luv/7+zWy40gty1+mOHec7jnsntqywbsdpcAG0z92yMfmmln3jun72VQ1iPmAp6XM39UmoJHf68MPa8dSn3aaGQPQkEceka691vz7llukyZPr1xFjMdNf8fzc53XxexcrzZ+m/5zwH/2w7gfd+9296pfRT5+d99nOj4OjPWCHfbTsI70w7wX1TuutpQVLNbDNQF15wJVK9adu/8O7KGZXBWa1GhjoH4tK4SLTJ2lHzD0lmbYNh8+M4djiWVgRrlA0ZrZJ8CTI2pnVpGUum7Iy8yyMRs2fZZl2eL/fjPlvkhbM3zaUbNCDPzyodSXr1DWlq5YXLNcfh/9RE3pOqLft8oLlKggUSJLS/GnqmdZzp4+7qXSTpq2ZJsn8tsOzhqt3+s5kHmgtAuGApvw6RTnlOXI73fI6vTptv9OU5k+rt+3a4rUqD5kAhZnxmXXq/Tti3uZ5uuKjK7SqcJUuHXapHpv5mEZ2GKnHjnqsZlxgYaBQJ71+kqatmab/G/F/OqHvCTr37XNVWFmoF058Qafvd7oUzJM2fiKVrzTtonGdTBupHDJtozEpdYjkb1c3AdtoX7j5y5t173f3akCbAfrnUf/Uk7Oe1OsLX9eRPY/UlNOmyA7Fa+JE064dDErnniv16CHFx5vdBgJmvtBZZ23Vt7eLbR/jx0uff27+/d130u9+J2Dn7At1sxYWiUUUippA2B6nZ+fHskr6atVX+mDpB8pKzNL6kvU6pMshOqHvCQ2Xm1qzaLB27J7lMOP5nHUXf1+Ys1ALcxfKYTnktJwa123cDvfBFBSYOUBr15ryW5cutWOVJVMP6djRzP3dYY08pwsLpSeeMGO0JGncOKlNm7pzgBwO6cQTG9nfLt5Pn6/4XK8vfF3dUrppReEKjegwQucPPl9+t7/+xtST0JBIhVS6zJSb7JjkTpBqAgbGJKdfSuovrXtLKv7FlKWS95Nc8bXb2VEprqOUOliS9MbCN3T9Z9erc3JndUnpUjOH8pqR18jtdOvll824n19/NWWiE080cwY8HtMeX1Rk7qOhO9hE0xJs29YvOb/UlIGzErPUJaXLdj6FporFTN08GDTXRixmnq9utylf+3Zi+HlOeY5idkyWLGXGZ+5QnlpSUqLk5OTdH/ht1apVmjp1qg466CD13qr19YMPPtBFF12kvLw8SVJqaqqeeOIJnX766U1O+K448MADFY1GNXPmzDqvL1y4UAMGDNDTTz+tSy+9tMHPtm/fXmPGjNEbW7Uifvjhhzr22GP16aefavz48Q1+dms7cvKxaz5a9pFu+PwG+V1+lYXKNGnMJJ03+Lwd28lONsg1agcKLrM2ztLBzx2sZF+yPj7nYx3zyjEqCBTo6/O/1siOI+t/YFcHIsTC0oYPpKJ5piHe38FklpbTZKyxkNTzcsnftv4+92HXf3a9HvrxIZ098Gz998T/avR/Rmvmhpl65rhndPH+F+s//5Euushse801plOhSVpb4LdmqEB/teornfz6yUr2JWtd8Tqd3O9kvXTyS7/poJR7FI0ircpTs57SVR9dpS4pXbSycKWuG3WdHhz/YE3Hz/qS9er5aE8Fo0GdOeBMdUvppmlrpumHdT9oUNtBmnvZ3PqdRNt5jjz4w4O64fMbdHyf41VUWaRv13yr5054rt5Atjun3anbvr5NR/c6Wt+u+VZt4tvoq/O/qj+QfF+xnWfmJ8s/0XGvHqeeaT11/YHX65L3L9HwrOGaev7UmsC7FeEKDfvXMC3OW6x3z3hXPdJ6aNi/hinBk6B5l8+r0yl8+9Tb9ddv/qrT9ztdC3IWaEXBCr1/1vs6oscRO5X8FQUr9Pzc52XLNkHohl2m9ontd2pf+5Tt3A+VkUr9Y/o/VFhZKEk6rNthdX+DJj4zv/3WDCZdvNh0svbubYL1ORy1Qd3uvbd+QLho1EySqq4ENqfcXGnTJtOBUx1/2uczExm6d99HJ2oBv3G2bevh6Q9rxoYZclgOZSVk6c5D7/zNBaioZ1t5/s6Ule2YFK00/3W463UM1dv3Lpa1p6+frus/u14Oy6HKSKWuHnF1vTaNI186Up+u+FR3jrtTN4+5Wae8cYreXfyubj7oZt192N27dPxWaxvnN6c8R4OeHKS8ijz9cNEPWl+yXqe8cYr6Z/bXrEtmNdzZBOzN9uHAb5J0xItH6IuVX2hgm4E6ptcxJiDbnGdlydLcy+dqUNtBO7fjvficNNVbv76lM6acoaHthyojLkOfLP9Ejx31mK4aYWZ6lYfK1ebBNjWLyGzt+D7H639n/k+SqVOsWWMmVFdUmCAItm3qQcnJJkBHnW6ObZ3fb06UNvzPtDcPvFPq/gcTVHXu9dLSx6T4LmZBkt3orrtM0AZJ+sMfTJDsuC2KSJs2mckFmZlSdlm2xr4wVquLVuv8wefr6Z+f1gl9TtCbp725awHtGw389ntp9Ytm0PC4z0yndWCTVFG18l+kTErqV7c9vqUWCtlDIrGIhv1rmOZnz9ezxz2r8wafp7HPj9WP63/UwxMe1p9G/alm2yV5S3T4i4erMlKpNvFttKZojd498906QTXq2M4zc+qqqTr/3fMV545TbkWuLtn/Et172L07PWh7b7eiYIUO/e+hKgmWaESHEfpsxWd68IgH9efRf274A3tiAmywQHq/uxQuNsHCRr9iXs+bLm38SFp4p/n/3R34bV+zp54jq1+WfjzX/HvMu1LHE0zw7Lzptdu4k6X0qklCsbAJ/hatMAPzLMv8jq6kqmB7e9ngQtTaFybSb8N1n16nh6c/3OB7w9oP06xLZ+3hFDWT6gXk3MnS0b9KcVkm8FvBz7XbJPVVLKmv+v6zr5YVLFPv9N7ql9FPxcFifb36a0nS7Etna2j7oTr8cBN817Kk1183E/q2VD0BlLbsrQQ2m+CZhXMl2WaCbs14jqgZzzHg1qoBk9uWn2dr/HgTCLldO+npp6WDD64N3FhWZha3GzJk9w+Zac0qKkz/z5o1ZjJyZaUZ4OdymUl3Q4aYQHnLC5brgGcOUCQW0axLZumGz2/Q+0vf192H3q2bx9wsyUxE6/aPbgpGg+qb0VcZcRnKq8jT4rzF8rl8WvOnNZo1rY2OOcYc+/TTzf3QJHvpM3NvN3u2qVfOmyftv78JptKnjxn4GQpJOTmmrnx4I1WShmwo2aBR/x6lvIo8vXzyy/rjh39UIBzQNxd+oyHthtT/wF5a12sJl1wiPfus+feTT0qXX15/G9v+bT3jWqulS82CZuGwec7OnLkPlAG2ca+uK16nvo/3VUW4Qh+c9YF6pffSES8eobXFaxsOTAXsxSKxiIoriyVJPpevzmLnJSXSww9LP/xg2p6HDzflUq+3dnzN4MHS2Web8tm8eaaMFgqZsTrVQT6iUWnCBPMcOfftc/XyLy/rnIHn6L7D79M/Z/5T939/vw7ucrCmXWACBOzWB38rzottW5oyxQTVXr7cBEXt0KE20E40av6/kSkT25RTnlMT3Kd9YvtdmmT6WxMO104kcjpNX8VeE9QUwF5jTdEabS7bLEnqmNRRHZJYWaEpftrwkz5Y+oEkKd4TrysPuLJO2WVfUh4qrxlHneRNUpJ3J+Y0rntLWvQ3qXSp1PFkE9zGnWTaKIMFUrhQGnRX3c9so540fbppL162zIy97ty5dtGZSERKSJCuu85M3v75Z2nlStOGnJZWt1zYp490wgnm/99f8r5On3K6uqd214qCFRrSbog+OuejBgMKAQB+O2zb1uqi1bJly2k5GwygEYqGdMn7l+jNhW+qXUI7VUYqNeX0KRrdafSOHWwHx6n/Y/o/dO2n12pg24Ganz1fZw88W8+f8HyDY9Zs29QvQyFzGJ+vkTbVXeyrLy2VXnvNLFK0fr1ZgDU52eTTkqnnTphgFl0BAABobuFoWOVhEwzN5/I1GqskP782sFf1opcJCWZRuerFx4DWotkCv9188826//77tXLlSnXpUlvxWb58uQYNGqTKykp16dJFcXFxWrx4sRwOh2bOnKmheyA84qWXXqpXX31VhYWFcrlqOxpfe+01nXXWWfr+++81upFaxvjx47Vu3TotWrSozuv33XefJk6cqA0bNigrK6tJ6SDwG3bE6wte15lvnSmXw6VILKKXT35ZZw88u+GN9/GB8y0lFA1pxDMjNC97no7rfZzeX/q+Tup7kt4+421JZkDJiBFmEGf37tJbb5mBaFvasKGBFckb+x32sWBd0Vi0ZrWUXZogCewDKiOVisaisiyrwUAsV310lR7/6XFdOORCPXPcM+rzzz5aUbhCb53+lk7ud3L9HTbhef7Pmf/U3M1zJUkHdzlYvx/8+wa3+2T5J8qvyJckjes2TlmJTSvX7Kuen/u8Hvj+AUlmhaG3z3hbbeLb1NlmzqY5GvXvUUrzp6l9QnvN2TxHb572pk7tf2q9/T3x0xNaUbBCkjSh5wSN79G0gMHYhtawgjEAoPVpDfWpPVjnXlO0Rvs9sZ9s2Xp4wsO67IPL1Ce9j+ZdPk9eVyOB6fZ22zm/n634TEe+dKR6p/dWYWWhSoIlmnnxTA1sO3APJhLYQ/bxwG8/rPtBv/vP75TuT9eaP63Rvd/dq7u/vVun9DtFU06f0tLJa/XeW/Kevlv7nSRpQJsB9doDzphyht5Y+IbaJ7TXiA4jaj5jy952G/T2NHbNBTZL/+toBnv3vFw64Mna9365XVrw12YJ/JaWZla/8/tNkLfk5G1vv6l0k16Y94Js25bP5dOVI66Ux7mLvbyNLsQSNYHwcr6Win4xK5g5fSZwRyxsAs0e+GLdAFb7eOA3yUysGPXvUWoT30a3HnyrrvzoSo3oMEI/XvRjvRWwcspztLxguSSpfUJ7dUvt1viO6RfZYWuL1+rbNd9KktrEt9npRQx2m5xvpS8PNv8e+ZzU/QLz788PkgLra7c7ZknjQZqxbbu7PrXpMzP5J3+m5PJL7hQToMiOmqDa/W6Q2tNOir3bsvxl6vPPPrIsSwv+uEBtE9rqwH8fqKX5S/Xscc/qov0vaukk7h7RkLT0H9KmT6TiX6WkPpKvrSm3hIpMYMdRL0gJXfXs7Gd1yfuXaGi7oZp92Wzd8+09mvTVJE3oMUGfnPuJVq40K9BL0qBBJoADWkYsJs2YYSZLLltmJm8Eg7UBCDp0kCZNqr/QDYwPl36o4149Tqn+VBUECnRS35P01ulv1QkcfPF7F+vfc/6ty4ddriePfVKXvHeJnp3zrC4bdpmeOvYp/fqrCSAWDJoxJt9/XzdQNVqn/HxpwQIpO1sqLzcBAn0+KTXVBJ3p2XPH9vdL9i867c3TFIwGZcnSk8c8qQk9JzS88V5c19vTMjOlvDxzygIBE0gIrdcXX0h3323ypQ4dpPHjTQAoh8MserZokfTOO638GbkD9al7v71XN391s47tfayO632cLvvgMh3U+SB9c8E3v9kA9EC1SKR28vCOyi7LVp9/9lF5uFxTz5+q4149TuWhcs25bI72a7Pf7k0oAAAATH935WazoFk0YPq3XYmm7bgV9NVll2WrNFQqyQRCbGxCOAAArcWm0k0KRUOyLEudkjrtXFvhzoz7YEwVAAAA0CKaLfDbwQcfrLKyMs2ePbvO61dffbUef/xxXXnllXrsscckSW+//bZOPfVUXXjhhfr3v/+9E19jx3z88cc6+uij9dprr+mMM86oef2oo47S/PnztXbtWjkbWTrpySef1BVXXKHp06dr5MiRkqRIJKIhQ4YoISFB06dPb/BzDSHwG3ZUYaBQUTsqh+Wov8JIa5jU/huwKHeRLvvgMtmy5Xf59eopryo9Lr3m/bVrzQqxn38u/fKLifratq1ZOSYnxwxa//QzAtQA2LaNpRvV49Eeisaiuvewe3X959drSLshmn3p7IYbbGlcbXFPzXpKbyx8Q5I0quMo3XPYPS2cIgAAsMe1cDDSR6Y/oms/vdYkRZamXTBNY7qMaZZjtYidOL+PTH9EP67/UZJ0fO/jdc6gc5ojZcCetzsn/e0l9cgjXzpSn674VH8d+1f9ffrfVVxZrPl/nK8BbQa0dNL2em8velunvHGKOiV10tpr12r2ptka9q9h8rv8yrkhRwmehJ3bcWOT0Fe9JE0/z/x77Kcm0E80KH08WArmSaH83R74LRSqndjdsaO0bt1u2/WO2dX2m10ZkLcrx21B135yrR6Z8YgkyeVw6edLf9agtoN2bae0o+39gvnS+92lcInU5Sxp9CstnSIAkCQd8eIR+mLlF3rg8Ac0tutYjXh2hFJ8Kdpw3YYGFwHaJ8SiUqRUshySK8H8t0ooGlL3f3TXhtIN+vy8z3X+u+drY+lGTbtgmg7ucrBWr5a6VcVq3W8/EzwJ2Fv9uO5HFVYWSpLGdB6jRG9infcX5y1W/8f7K84dZ+qyTwxQMBrU4isXq1d6L0nS++9L118vLV1qgh0de6z5byxm6jCLF0vffbfHvxpaE8aF7ZTRo6UfTROxfv7ZBFlE6xcOSytXSkVFUkmJCfyWmip16SKlp2/343uNUDSkQU8O0pL8JUr0JKoiXKHZl83e9bYPAHp85uO66uOr5HP5VBmp1I2jb9T9R9zf0skCAAAAAABoPVp43DsAAAAAo9kCv3Xq1Eljx47Viy++WOf1Xr16ad26dcrNzVViYu1At0MOOUSbNm3S0qVLd/Ar7Jzx48dr1qxZuv/++9WzZ0+9+uqreuaZZ/TSSy/pnHPMJNCLLrpIL7zwglasWKEuXbpIkoLBoIYNG6aSkhLdd999atOmjZ544gm9//77+uKLL3TIIYc0OQ0EfgP2fRUVUnGx5PGYAWisgg2gqa75+Bo9OvNRWbJky9a7Z7yrE/qeULsBA7sBAACwhZgd0/T102XbtuLccRrafmhLJwkAdpsZ62do1L9H1dSRT9/vdL1+6ustnax9QmWkUm3+1kaloVL9dMlPem/Je7rzmzt1av9T9eZpb+78jhsLOLbsKWnWH82/j5wrpQ42gd8+6Fm7TVwn6Ygfdv7YDRg+3EzwlqR588wCHXvcngo4tg+1GVWEK/Ttmm8lSWn+NB3Q4YAd3wmDFPdNK5+XZl4s2VGp7aFShxMkb6YULpaK5kkOrzTskZZOJYDfmHcWvaOT3zhZ/TL6aWzXsXpy1pO6ZuQ1euTIR1o6aS3m7z/+XX/+7M9qE99GOeU5Gt1ptL7/w/c17x9zjPTRR+bf//639Ic/1P18cbHk95u+dmBvd8JrJ+i9Je+pb0ZfLc5brJP7nay3Tn+r3nbLl0uzZkn5+VJhoeR2S+3aSQMGSMOGtUDCgb3cjBnSIYdIwaDUqZN0110mGFxKirR5swmoOHiwdOCBLZ1S/Fb9sO4HvTz/ZUnS4HaDdemwS1s4RcC+IWbH9Lfv/6ZAJCCH5dCfD/yz4j3xLZ0sAAAAAAAAAAAAAKhjR2KPuXZkx3l5eerUqVOd14qKirRixQqNGTOmTtA3SRoyZIhmzZq1I4fYJW+//bYmTZqk2267TQUFBerbt69effVVnXnmmTXbRKNRRaNRbRnvzuv16ssvv9SNN96oq6++WhUVFRoyZIg+/vjjHQr6BuC3IS7O/AHAjpo4ZqKKgkWybVtp/rS6Qd8kJqMCAACgDofl0OhOo1s6GQDQLEZ2HKlbD75Vq4pWSZImjZnUwinad/hcPp3Q9wS9NP8lvbPoHb239D1J0hn7ndE8B4zbot+oeKEJ/Ob0Siesa57jVbn7bumoo0xzykknSfffL40ZIyUnSytXSh9+KB15pDRwYLMmY8/Yh9qM4txxmtBzwq7tZB86H9hC9wukjFHSmtelvB+kZf+UYmHJnSIl9pA6n7m9PQDAbnd8n+PVIbGDFuUt0orCFZKky4df3sKpalmXDbtMd397t3LKcyRJEw+aWOf9p56STjxRmj1buugi6bHHpCFDJK/XBL/6/nvz3w4d9nzagd3txtE36r0l72lx3uKa/29Iz57mD8DuMXKkCQR/773S1KnS+efXfT8tTXrjjZZJGyBJozuNpm8HaAYOy6GbDrqppZMBAAAAAAAAAAAAALuNZdtNnx2RmJio8847T0888UTNa1OnTtVhhx2ma6+9Vg899FCd7SdNmqRHHnlE5eXluy/FrdyORN0DAAAAAAAAAADY3T5Y+oGOe/U4tYlvo5zyHCV4EpRzfY78bv/O79Syav+9ZddSNCS9myWF8qWM0dJhX0sOd93PVuZIvjY7f+xGvPeedN110ooVDb///ffS6N05z3bLc7AtBCYDAGCfccfXd2jytMmSpHFdx+mr879q2QS1AqXBUoWiIUlSelx6vfdjMemzz6Rp06SZM6WiIsntljp3lkaNkq680gSCA/YFX678UuFYWB6nR4d2O7SlkwP8Jm3YIOWYeKRq04bgogAAAAAAAAAAAAAAAGg5OxJ7zLUjO+7du7e+/PLLOq999tlnsixLoxuYObNx40a1b99+Rw4BAAAAAAAAAACAXTC+x3il+FKUU25mPh/X+7hdC/q2LU6P1Pc6af4kKe8H6ZOhUtffS762Uvkqaf27UodjpUF37fZDH3+8+Vu2TPr2Wyk7W3I4pE6dpAMPlLp12+2HBAAAvzE3HXSTLhhygSQpxZfSomlpLRK9idt83+GQjjzS/AH7usO6H9bSSQB+8zp0INgbAAAAAAAAAAAAAAAA9j47FPjtlFNO0S233KLLLrtMV155pZYvX64nn3xSCQkJOrKBEZvff/+9evbsudsSCwAAAAAAAAAAgG3zOD26YvgV+nTFp5JUE6yk2fSfKNkRadGDUvFCad5Ndd/vel6zHr5XL/PX7Gx7DxwEAAC0Jj6XT11SurR0MgAAAAAAAAAAAAAAAAAAALAPsWy76bNUAoGARo0apV9++UWWZUmSbNvW3/72N/35z3+us+2sWbM0YsSIBt/bl5WUlCg5OVnFxcVKSkpq6eQAAAAAAAAAAADsnKq+oG3aspspWilt/EgqWSTZMSmuk5R5kJTIIkEAAAAAAAAAAAAAAAAAAAAAAADYd+1I7DHXjuzY7/fr+++/18MPP6zp06crLS1Np512mo4//vh6286ePVsnnHBCg+8BAAAAAAAAAABgH+P0SZ1ObulUAAAAAAAAAAAAAAAAAAAAAAAAAK2WZdu23dKJ2JfsSNQ9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHuvHYk95thDaQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA3ywCvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMyPwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MwK/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzI/AbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQzAr8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDMj8BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDMCvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMyPwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MwK/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzI/AbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQzAr8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDMj8BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDMCvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAMyPwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MwK/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAzI/AbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQzAr8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQDMj8BsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDMCvwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAM9tnAr+VlZXpT3/6k7KysuTz+TRkyBC99tprTfrs+vXr9ac//UmHHHKIUlJSZFmWnn/++eZNMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDfjH0m8NvJJ5+sF154Qbfffrs+/vhjHXDAATrrrLP0yiuvbPezy5cv18svvyyPx6Ojjz56D6QWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG+Jq6UTsDt89NFH+vzzz/XKK6/orLPOkiSNGzdOa9as0Q033KAzzjhDTqez0c8ffPDBys3NlSTNmjVLr7766h5JNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDfBkdLJ2B3eOedd5SQkKDTTjutzusXXnihNm7cqBkzZmzz8w7HPnEaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALRS+0TEswULFqhfv35yuVx1Xh80aFDN+80lGAyqpKSkzh8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbGmfCPyWn5+vtLS0eq9Xv5afn99sx7733nuVnJxc89epU6dmOxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAvVOrC/z29ddfy7KsJv3NnTu35nOWZTW6z229t6smTpyo4uLimr9169Y127EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7J1cLZ2ArfXp00fPPPNMk7bt3LmzJCk9PV35+fn13i8oKJAkpaWl7b4EbsXr9crr9Tbb/gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs/Vpd4Lf27dvr4osv3qHPDBw4UK+++qoikYhcrtqv9Msvv0iSBgwYsFvTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7otUFftsZJ510kp555hm99dZbOuOMM2pef+GFF5SVlaWRI0fusbTYti1JKikp2WPHBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALDnVcccq45Bti37ROC3o446SkcccYT++Mc/qqSkRD179tSrr76qTz75RC+99JKcTmfNthdddJFeeOEFrVixQl26dKl5fcqUKZKklStXSpJmzZqlhIQESdKpp57a5LSUlpZKkjp16rTL3wsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA61daWqrk5ORtbmPZTQkPtxcoKyvTpEmT9MYbb6igoEB9+/bVxIkTdeaZZ9bZ7oILLtALL7ygVatWqWvXrjWvW5bV6L535BTFYjFt3LhRiYmJsixLJSUl6tSpk9atW6ekpKQd/l4AAKD5kE8DANB6kU8DANA6kUcDANB6kU8DANA6kUcDANB6kU8DANA6kUcDANB6kU8DANB6kU8DANDybNtWaWmpsrKy5HA4trntPhP4rbUqKSlRcnKyiouLKRwBANDKkE8DANB6kU8DANA6kUcDANB6kU8DANA6kUcDANB6kU8DANA6kUcDANB6kU8DANB6kU8DALB32XZYOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADALiPwGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MwK/NTOv16vbb79dXq+3pZMCAAC2Qj4NAEDrRT4NAEDrRB4NAEDrRT4NAEDrRB4NAEDrRT4NAEDrRB4NAEDrRT4NAEDrRT4NAMDexbJt227pRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAvszR0gkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgH0dgd8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoJkR+A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmhmB3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgmRH4rZmUlZXpT3/6k7KysuTz+TRkyBC99tprLZ0sAAB+U77++mtZltXg3/Tp0+tsO3v2bB1++OFKSEhQSkqKTj75ZK1cubKFUg4AwL6ltLRUN954o8aPH6/MzExZlqXJkyc3uO2O5MmPPfaY+vbtK6/Xq27duumOO+5QOBxuxm8CAMC+pal59AUXXNBg3bpv374N7pc8GgCAXfPVV1/pD3/4g/r27av4+Hh16NBBJ5xwgn7++ed621KPBgBgz2pqPk1dGgCAPWvu3Lk65phj1LlzZ/n9fqWlpenAAw/USy+9VG9b6tIAAOxZTc2nqUsDANDynn32WVmWpYSEhHrvUZ8GAKBlNZZPU58GAGDv5WrpBOyrTj75ZP3000+677771Lt3b73yyis666yzFIvFdPbZZ7d08gAA+E255557NG7cuDqvDRgwoObfixcv1tixYzVkyBC98cYbqqys1G233aYxY8Zo7ty5yszM3NNJBgBgn5Kfn69//etfGjx4sE488UQ9++yzDW63I3ny3XffrVtvvVV/+ctfNH78eP3000+65ZZbtGHDBv3rX//aU18NAIC9WlPzaEny+/366quv6r22NfJoAAB23ZNPPqn8/Hxdc8016t+/v3Jzc/XQQw9p1KhR+vTTT3XooYdKoh4NAEBLaGo+LVGXBgBgTyoqKlKnTp101llnqUOHDiovL9fLL7+s8847T6tXr9Ytt9wiibo0AAAtoan5tERdGgCAlrRhwwZdf/31ysrKUnFxcZ33qE8DANCytpVPS9SnAQDYW1m2bdstnYh9zUcffaRjjjmmJthbtfHjx2vhwoVau3atnE5nC6YQAIDfhq+//lrjxo3Tm2++qVNPPbXR7U4//XRNnTpVK1asUFJSkiRpzZo16tWrl6699lrdf//9eyrJAADsk6qbHizLUl5enjIzM3X77bdr8uTJdbZrap6cn5+vjh076ve//72efvrpms/fc889uuWWW7RgwQL1799/z3w5AAD2Yk3Noy+44AJNmTJFZWVl29wfeTQAALtHTk6O2rRpU+e1srIy9ezZUwMGDNAXX3whiXo0AAAtoan5NHVpAABah1GjRmnjxo1au3atJOrSAAC0Jlvn09SlAQBoWccdd5wsy1JaWlq9PJn6NAAALWtb+TT1aQAA9l6Olk7Avuidd95RQkKCTjvttDqvX3jhhdq4caNmzJjRQikDAABbi0Qi+uCDD3TKKafUdD5IUpcuXTRu3Di98847LZg6AAD2DZZlybKsbW6zI3nyJ598osrKSl144YV19nHhhRfKtm29++67uzX9AADsq5qSR+8I8mgAAHaPrYPJSFJCQoL69++vdevWSaIeDQBAS2lKPr0jyKcBAGheGRkZcrlckqhLAwDQ2myZT+8I8mkAAHa/l156SdOmTdMTTzxR7z3q0wAAtKxt5dM7gnwaAIDWh8BvzWDBggXq169fvQ6IQYMG1bwPAAD2nCuvvFIul0tJSUmaMGGCvvvuu5r3VqxYoUAgUJNPb2nQoEFavny5Kisr92RyAQD4TdqRPLm6Xj1w4MA627Vv314ZGRnUuwEAaAaBQEDt2rWT0+lUx44dddVVV6mgoKDONuTRAAA0n+LiYs2ePVv77befJOrRAAC0Jlvn09WoSwMAsOfFYjFFIhHl5ubqiSee0KeffqqbbrpJEnVpAABa2rby6WrUpQEA2PNycnL0pz/9Sffdd586duxY733q0wAAtJzt5dPVqE8DALB32vGlUbBd+fn56t69e73X09LSat4HAADNLzk5Wddcc43Gjh2r9PR0LV++XH/72980duxYffjhh5owYUJNvlydT28pLS1Ntm2rsLBQ7du339PJBwDgN2VH8uT8/Hx5vV7Fx8c3uC31bgAAdq/Bgwdr8ODBGjBggCRp2rRpevjhh/Xll1/qp59+UkJCgiSRRwMA0IyuvPJKlZeXa9KkSZKoRwMA0JpsnU9L1KUBAGgpV1xxhZ5++mlJksfj0aOPPqrLLrtMEnVpAABa2rbyaYm6NAAALeWKK65Qnz599Mc//rHB96lPAwDQcraXT0vUpwEA2JsR+K2ZWJa1U+8BAIDdZ+jQoRo6dGjN/48ZM0YnnXSSBg4cqBtvvFETJkyoeY+8GwCA1qGpeTJ5NwAAe861115b5/+POOIIDR06VKeeeqqeeeaZOu+TRwMAsPvdeuutevnll/XYY49p2LBhdd6jHg0AQMtqLJ+mLg0AQMu4+eabdfHFFysnJ0fvv/++rrrqKpWXl+v666+v2Ya6NAAALWN7+TR1aQAA9ry33npL77//vubMmbPdPJT6NAAAe1ZT82nq0wAA7L0cLZ2AfVF6enqDEW0LCgokNRzZHgAA7BkpKSk69thjNX/+fAUCAaWnp0tSo3m3ZVlKSUnZw6kEAOC3Z0fy5PT0dFVWVqqioqLBbal3AwDQ/E466STFx8dr+vTpNa+RRwMAsPvdcccduuuuu3T33XfrqquuqnmdejQAAC2vsXy6MdSlAQBofp07d9bw4cN19NFH68knn9Sll16qiRMnKjc3l7o0AAAtbFv5dGOoSwMA0HzKysp05ZVX6uqrr1ZWVpaKiopUVFSkUCgkSSoqKlJ5eTn1aQAAWkBT8+nGUJ8GAGDvQOC3ZjBw4EAtWrRIkUikzuu//PKLJGnAgAEtkSwAAFDFtm1JJgJ9jx495Pf7a/LpLf3yyy/q2bOnfD7fnk4iAAC/OTuSJw8cOLDm9S1t3rxZeXl51LsBANhDbNuWw1HbzUAeDQDA7nXHHXdo8uTJmjx5sm6++eY671GPBgCgZW0rn94W6tIAAOxZI0aMUCQS0cqVK6lLAwDQymyZT28LdWkAAJpHXl6esrOz9dBDDyk1NbXm79VXX1V5eblSU1N1zjnnUJ8GAKAFNDWf3hbq0wAAtH4EfmsGJ510ksrKyvTWW2/Vef2FF15QVlaWRo4c2UIpAwAAhYWF+uCDDzRkyBD5fD65XC4dd9xxevvtt1VaWlqz3dq1azV16lSdfPLJLZhaAAB+O3YkTz7yyCPl8/n0/PPP19nH888/L8uydOKJJ+6hVAMA8Ns1ZcoUVVRUaNSoUTWvkUcDALD73HnnnZo8ebJuueUW3X777fXepx4NAEDL2V4+3Rjq0gAA7HlTp06Vw+FQ9+7dqUsDANDKbJlPN4a6NAAAzaddu3aaOnVqvb8JEybI5/Np6tSpuuuuu6hPAwDQApqaTzeG+jQAAHsHV0snYF901FFH6YgjjtAf//hHlZSUqGfPnnr11Vf1ySef6KWXXpLT6WzpJAIA8Jtw9tlnq3Pnzho+fLgyMjK0bNkyPfTQQ8rOzq7TOHHHHXfogAMO0LHHHqu//OUvqqys1G233aaMjAz9+c9/brkvAADAPuTjjz9WeXl5TYf/r7/+qilTpkiSjj76aMXFxTU5T05LS9Mtt9yiW2+9VWlpaRo/frx++uknTZ48WRdffLH69+/fIt8RAIC90fby6NzcXJ199tk688wz1bNnT1mWpWnTpumRRx7Rfvvtp4svvrhmX+TRAADsHg899JBuu+02HXnkkTrmmGM0ffr0Ou9XD8ijHg0AwJ7XlHx6zZo11KUBANjDLr30UiUlJWnEiBFq27at8vLy9Oabb+r111/XDTfcoMzMTEnUpQEAaAlNyaepSwMAsOf5fD6NHTu23uvPP/+8nE5nnfeoTwMAsGc1NZ+mPg0AwN7Nsm3bbulE7IvKyso0adIkvfHGGyooKFDfvn01ceJEnXnmmS2dNAAAfjPuu+8+vf7661q1apXKysqUlpamgw46SBMnTtQBBxxQZ9uff/5ZN910k3788Ue5XC4deuihevDBB9WjR48WSj0AAPuWrl27as2aNQ2+t2rVKnXt2lXSjuXJjz76qB5//HGtXr1a7dq104UXXqhJkybJ7XY351cBAGCfsr08Ojk5WRdddJHmzJmj7OxsRaNRdenSRSeddJJuvvlmJScn1/sceTQAALtm7NixmjZtWqPvb9nFTz0aAIA9qyn5dGFhIXVpAAD2sOeee07PPfecFi1apKKiIiUkJGjw4MG6+OKLde6559bZlro0AAB7VlPyaerSAAC0HhdccIGmTJmisrKyOq9TnwYAoOVtnU9TnwYAYO9G4DcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaGaOlk4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOzrCPwGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM2MwG8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MwI/AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzYzAbwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQzAj8BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADNjMBvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDMCPwGAAAAAAAAAAAAAAAAAMBOWL16tSzL0gUXXLBDn7MsS2PHjm2WNAEAAAAAAAAAAAAAAAAAWi8CvwEAAAAAAAAAAAAAAAAA9krVgde2/PN4POrUqZPOPvtszZ8/v0XSNXbsWFmW1SLHBgAAAAAAAAAAAAAAAAC0Xq6WTgAAAAAAAAAAAAAAAAAAALuiR48eOvfccyVJZWVlmj59ul599VW9/fbb+uqrrzR69OhmOW6HDh20aNEiJScn79DnFi1apLi4uGZJEwAAAAAAAAAAAAAAAACg9SLwGwAAAAAAAAAAAAAAAABgr9azZ09Nnjy5zmu33HKL7r77bk2aNElTp05tluO63W717dt3hz+3M58BAAAAAAAAAAAAAAAAAOz9HC2dAAAAAAAAAAAAAAAAAAAAdrerr75akvTTTz9JkiKRiB5++GENHjxYfr9fycnJGjdunD788MN6n43FYnr22Wc1YsQIpaWlKS4uTl27dtWJJ56ob775pma71atXy7IsXXDBBTWvWZaladOm1fy7+m/rbcaOHVvvuPn5+br22mvVrVs3eb1etWnTRmeccYZ+/fXXettecMEFsixLq1ev1hNPPKF+/frJ5/OpS5cuuuOOOxSLxXbmtAEAAAAAAAAAAAAAAAAAmpGrpRMAAAAAAAAAAAAAAAAAAMDuZllWzb9t29YZZ5yht99+W71799aVV16p8vJyvfHGGzr22GP1j3/8Q//3f/9Xs/3EiRP1wAMPqEePHjr77LOVmJioDRs26Ntvv9VXX32lgw8+uNHj3n777Xr++ee1Zs0a3X777TWvDxkyZJvpzc/P16hRo7R8+XKNHTtWZ555plavXq0pU6boww8/1Oeff64DDzyw3uduuOEGff311zr22GM1fvx4vfvuu5o8ebJCoZDuvvvuHThjAAAAAAAAAAAAAAAAAIDmRuA3AAAAAAAAAAAAAAAAAMA+59FHH5UkHXDAAXrppZf09ttv65BDDtFnn30mj8cjSZo0aZKGDRum66+/Xscdd5y6desmSXr22WfVoUMHzZ8/X3FxcTX7tG1bhYWF2zzu5MmT9fXXX2vNmjWaPHlyk9N74403avny5Zo4caLuueeemtcvuOACHXnkkTr//PO1ePFiORyOOp/7+eefNX/+fLVv316SdOutt6pXr1567LHHdPvtt9d8VwAAAAAAAAAAAAAAAABAy3NsfxMAAAAAAAAAAAAAAAAAAFqv5cuXa/LkyZo8ebKuv/56HXTQQbr77rvl8/l0zz336Pnnn5ckPfDAA3UCoXXs2FHXXnutwuGwXn755Tr79Hg8crnqrq1qWZbS0tJ2e/pDoZBeffVVpaen65Zbbqnz3oQJEzRhwgQtW7ZMP/zwQ73P3nrrrTVB3yQpIyNDJ5xwgkpLS7VkyZLdnlYAAAAAAAAAAAAAAAAAwM4j8BsAAAAAAAAAAAAAAAAAYK+2YsUK3XHHHbrjjjv06KOPas2aNTr77LM1c+ZMHXjggZozZ478fr9GjBhR77Njx46VJM2dO7fmtdNPP12rVq3SgAEDdOutt+qLL75QeXl5s6V/8eLFCgQCGjFihOLi4pqUxmr7779/vdc6duwoSSoqKtqdyQQAAAAAAAAAAAAAAAAA7CICvwEAAAAAAAAAAAAAAAAA9moTJkyQbduybVuhUEjr1q3Tyy+/rIEDB0qSSkpK1LZt2wY/265dO0lScXFxzWuPPvqoHnjgAbndbt1111064ogjlJGRofPPP195eXm7Pf0lJSWStENprJacnFzvNZfLJUmKRqO7K4kAAAAAAAAAAAAAAAAAgN2AwG8AAAAAAAAAAAAAAAAAgH1aUlKSsrOzG3yv+vWkpKSa19xut2644QYtXLhQGzZs0CuvvKIxY8bov//9r84555xmSd+WaWlKGgEAAAAAAAAAAAAAAAAAex8CvwEAAAAAAAAAAAAAAAAA9mlDhw5VIBDQzJkz6703bdo0SdKQIUMa/GxWVpbOOussffLJJ+rVq5e++OILBQKBbR7P6XRKkqLRaJPS17dvX/l8Pv3000+qqKjY4TQCAAAAAAAAAAAAAAAAAPYOBH4DAAAAAAAAAAAAAAAAAOzTzj//fEnSxIkTFQ6Ha17fsGGD/v73v8vlcumcc86RJAWDQX311VeybbvOPsrLy1VaWiq3210T2K0xaWlpkqT169c3KX0ej0dnnXWW8vLydO+999Z574svvtDHH3+snj176ne/+12T9gcAAAAAAAAAAAAAAAAAaJ1cLZ0AAAAAAAAAAAAAAAAAAACa03nnnae3335b//vf/zRo0CAde+yxKi8v1xtvvKH8/Hw99NBD6t69uyQpEAjosMMOU/fu3TVy5Eh17txZZWVl+uCDD7R582bddNNN8ng82zzeoYceqilTpui0007T0UcfLZ/Pp4EDB+qYY45p9DP333+/pk2bprvuuks//PCDRo4cqdWrV2vKlCmKi4vTc889J4eDtV4BAAAAAAAAAAAAAAAAYG9G4DcAAAAAAAAAAAAAAAAAwD7NsixNmTJF//jHP/TCCy/osccek8fj0f7776/rrrtOxx9/fM228fHxuv/++/Xll1/q22+/VU5OjlJTU9W3b1/df//9OuOMM7Z7vEsuuUSrV6/Wa6+9prvvvluRSETnn3/+NgO/ZWZmasaMGbrzzjv1v//9T99++62Sk5N1wgkn6Pbbb9eAAQN2y7kAAAAAAAAAAAAAAAAAALQcy7Ztu6UTAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD7MkdLJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9nUEfgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkbgNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoZgR+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBmRuA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhmBH4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGZG4DcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaGYEfgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkbgNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoZgR+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBmRuA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhmBH4DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGZG4DcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaGYEfgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAZkbgNwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoZgR+AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBmRuA3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGhmrpZOwL4mFotp48aNSkxMlGVZLZ0cAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3Etm2VlpYqKytLDodjm9sS+G0327hxozp16tTSyQAAAAAAAAAAAAAAAAAAAAD+n737jo6jOtg4/Nu+6l225d47YEwxveMQCJ1QQ08I+WihhV6SQCD0mhCaTcCYFtMxpmOMCwZXuXdZstXbqmyd748rabWWbEuybGHzPufs0ezszOzd1ezMnTtz3xERERERERERERERERERERGRXSQvL49evXptcxoFv3WypKQkwHz5ycnJXVwaEREREREREREREREREREREREREREREREREREREREREREREREREdlZqqqq6N27d1MG2bYo+K2T2Ww2AJKTkxX8JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIvIL0JhBti32XVAOEREREREREREREREREREREREREREREREREREREREREREREREREZFfNAW/iYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsZAp+ExERERERERERERERERERERERERERERERERERERERERERERERERHZyRT8JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKykyn4TURERERERERERERERERERERERERERERERERERERERERERERERERkJ9ujgt98Ph/XXXcdOTk5eL1e9tlnHyZPnrzd+f73v/9x7rnnMmjQIOLi4ujXrx/nn38+K1eu3AWlFhEREREREREREREREREREREREREREREREREREREREREREREREZE9nbOrC9CZTj/9dH744QceeOABhgwZwqRJkzj33HOJRCKcd955W53vwQcfpHv37tx+++0MGDCAvLw87r//fvbdd19mzZrFyJEjd+GnEBEREREREREREREREREREREREREREREREREREREREREREREREZE9jc2yLKurC9EZPv74Y0488cSmsLdGxx9/PLm5uWzYsAGHw9HqvEVFRWRnZ8eMKygooF+/flx44YW88MILbS5HVVUVKSkpVFZWkpyc3LEPIyIiIiIiIiIiIiIiIiIiIrw896gAAQAASURBVCIiIiIiIiIiIiIiIiIiIiIiIiIiIiI/e+3JHrPvojLtdFOmTCExMZGzzjorZvwll1xCQUEBs2fP3uq8W4a+AeTk5NCrVy/y8vI6vawiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi8suyxwS/LV68mOHDh+N0OmPG77XXXk2vt8eaNWtYv349I0eO3OZ0fr+fqqqqmIeIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISHN7TPBbaWkp6enpLcY3jistLW3zskKhEJdddhmJiYn8+c9/3ua0//jHP0hJSWl69O7du30FFxEREREREREREREREREREREREREREREREREREREREREREREREZE93h4T/AZgs9k69FpzlmVx2WWXMX36dF555ZXtBrndeuutVFZWNj3y8vLaVWYRERERERERERERERERERERERERERERERERERERERERERERERER2fM5u7oAnSUjI4PS0tIW48vKygBIT0/f7jIsy+Lyyy/n1VdfZeLEiZxyyinbncfj8eDxeNpfYBERERERERERERERERERERERERERERERERERERERERERERERERH5xbB3dQE6y+jRo1m6dCmhUChm/KJFiwAYNWrUNudvDH17+eWXeeGFF7jgggt2WllFRERERERERERERERERERERERERERERERERERERERERERERERE5Jdljwl+O+200/D5fLzzzjsx4ydOnEhOTg4HHnjgVue1LIvf//73vPzyyzz33HNccsklO7u4u7V+/fphs9mYMGHCdqedMGECNpttm4+pU6e2mO+ee+7BZrNx5JFHArBu3brtLqe1x8UXX9y5H15ERERERERERERERERERERERERERERERERERERERERERERERESkA5xdXYDOcsIJJ3Dcccdx5ZVXUlVVxaBBg3j99deZOnUqr776Kg6HA4DLLruMiRMnsnr1avr27QvANddcw4svvsill17K6NGjmTVrVtNyPR4PY8aM6ZLPtCfJzs5m8ODBrb6Wlpa23fm9Xi+HHHJIi/FFRUWsXLkSj8fDfvvt1+L1IUOGtL+wIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIp1sjwl+A/jf//7H7bffzl133UVZWRnDhg3j9ddf55xzzmmaJhwOEw6HsSyradwHH3wAwEsvvcRLL70Us8y+ffuybt26XVL+PdkJJ5zAhAkTOjx/9+7d+e6771qMnzBhApdccslWXxcRERERERERERERERERERERERERERERERERERERERERERERERH5Odijgt8SExN54okneOKJJ7Y6zYQJE1oEkCnYTURERERERERERERERERERERERERERERERERERERERERERERERER2JntXF0BEREREREREREREREREREREREREREREREREREREREREREREREREZE/n7OoCyC/DggULOO+889i8eTPJycmMGTOGCy64gIEDB3Z10URERERERERERERERERERERERERERERERERERERERERERERERER2OgW/yS4xf/585s+f3/T8vffe429/+xv33nsvt99+e9cVTERERERERERERERERERERERERERERERERERERERERERERERERGQXsHd1AWTPlpqaytVXX82MGTMoLCykvr6eefPm8bvf/Y5wOMwdd9zB008/3dXFFBEREREREREREREREREREREREREREREREREREREREREREREREdmpnF1dANmznXrqqZx66qkx4/bZZx9eeeUVMjIyePzxx7njjju46KKLSEpK6ppCioiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOxk9q4ugPxy3XvvvXg8HiorK/nyyy+7ujgiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiO42C36TLJCcnM3LkSABWrVrVxaURERERERERERERERERERERERERERERERERERERERERERERERER2XkU/CZdyuVyARAKhbq4JCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7j4LfpMuEw2GWL18OQK9evbq4NCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7j4LfpMu8+OKLVFRU4HA4OPLII7u6OCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7jYLfZKepqqri3HPPZc6cOTHjw+Ewzz//PNdeey0Al112GT179uyKIoqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjsEs6uLoDsvq6++mpuvPHGrb7+7rvvMnnyZCZPnkxqair9+/fH6XSycuVKKioqADjhhBN44okndlGJRURERERERERERERERERERERERERERERERERERERERERERERERLqGgt+kw3w+Hz6fb6uvezwe/vnPf/L999+zePFiVq9eTV1dHRkZGZx44olceOGFnHXWWdhstl1YahEREREREREREREREREREREREREREREREREREREREREREREREZFdz2ZZltXVhdiTVFVVkZKSQmVlJcnJyV1dHBERERERERERERERERERERERERERERERERERERERERERERERERHZSdqTPWbfRWUSEREREREREREREREREREREREREREREREREREREREREREREREREfnFUvCbiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMhOtlOC3/x+P6FQaGcsWkRERERERERERERERERERERERERERERERERERERERERERERERERkt9Ph4LfvvvuOv/71r1RUVDSNKy0t5YQTTiAxMZHk5GRuv/32ziijiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMhurcPBb4888ggTJ04kNTW1adwNN9zAp59+yoABA0hNTeWBBx7g7bff7oxyioiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjstjoc/DZ//nwOO+ywpue1tbW8+eabHH/88Sxfvpzly5fTp08fnn322U4pqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI7qrDwW9FRUX07Nmz6fnMmTOpr6/nkksuASApKYmTTjqJZcuW7XgpRURERERERERERERERERERERERERERERERERERERERERERERERER2Yx0OfvN6vVRXVzc9/+abb7DZbBxxxBFN4xITEykvL9+xEoqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI7OacHZ1x0KBBTJ06Fb/fj91u54033mDEiBF07969aZoNGzaQnZ3dKQUVEREREREREREREREREREREREREREREREREREREREREREREREREdld2Ts64+9//3tWrVrF4MGDGT58OKtWreLiiy+OmWb27NmMGDFiR8soIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIrJb63Dw22WXXcZNN91EbW0tFRUVXHHFFVx33XVNr3/11VesWbOGY445pjPKKSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKy2+pw8JvNZuPBBx+kpKSEkpISnn32WRwOR9PrhxxyCOXl5TFhcDubz+fjuuuuIycnB6/Xyz777MPkyZO3O9/GjRu57rrrOOKII0hNTcVmszFhwoSdX2ARERERERERERERERERERERERERERERERERERERERERERERERER+UXocPDb9rjdblJSUnA6nTvrLVo4/fTTmThxInfffTeffPIJ+++/P+eeey6TJk3a5nyrVq3itddew+128+tf/3oXlVZEREREREREREREREREREREREREREREREREREREREREREREREREfil2OJVtypQpvP766yxbtoza2lpWrVoFwLJly3j//fc5//zz6dmz5w4XdHs+/vhjPvvsMyZNmsS5554LwFFHHcX69eu56aabOPvss3E4HK3Oe/jhh1NcXAzA3Llzef3113d6eUVERERERERERERERERERERERERERERERERERERERERERERERETkl8Pe0RkjkQhnn302Z555Ju+88w5r1qxh7dq1Ta+npaVx++2388orr3RKQbdnypQpJCYmctZZZ8WMv+SSSygoKGD27Nlbnddu7/DXICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKyXR1OPHvsscd46623uOKKKygvL+fGG2+Meb1bt24cdthhfPTRRztcyLZYvHgxw4cPx+l0xozfa6+9ml7fGfx+P1VVVTEPEREREREREREREREREREREREREREREREREREREREREREREREREZHmOhz8NmHCBPbbbz+effZZkpOTsdlsLaYZNGgQa9eu3aECtlVpaSnp6ektxjeOKy0t3Snv+49//IOUlJSmR+/evXfK+4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjI7qvDwW+rVq3i8MMP3+Y0GRkZOy1wrTWthc+15bUdceutt1JZWdn0yMvL2ynvIyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiK7L2dHZ4yLi6Oqqmqb06xfv57U1NSOvkW7bC1krqysDID09PSd8r4ejwePx7NTli0iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiewZ7R2ccM2YMn376KX6/v9XXy8rKmDp1KuPGjetw4dpj9OjRLF26lFAoFDN+0aJFAIwaNWqXlENEREREREREREREREREREREREREREREREREREREREREREREREREZEsdDn675ppryMvL48wzzyQ/Pz/mtdWrV3PaaadRWVnJNddcs8OFbIvTTjsNn8/HO++8EzN+4sSJ5OTkcOCBB+6ScoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIbMnZ0RlPOeUUbrnlFh544AH69OlDQkICANnZ2ZSWlmJZFnfeeSdHH310pxV2W0444QSOO+44rrzySqqqqhg0aBCvv/46U6dO5dVXX8XhcABw2WWXMXHiRFavXk3fvn2b5n/77bcBWLNmDQBz584lMTERgDPPPHOXfAYRERERERERERERERERERERERERERERERERERERERERERERERER2TPZLMuydmQBn332GU8//TSzZ8+mrKyM5ORkDjzwQK655hrGjx/fWeVsE5/Px+23386bb75JWVkZw4YN49Zbb+Wcc85pmubiiy9m4sSJrF27ln79+jWNt9lsW11ue76iqqoqUlJSqKysJDk5uUOfQ0RERERERERERERERERERERERERERERERERERERERERERERERER+/tqTPdbh4LcNGzbgdrvp3r17hwq5p1Lwm4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMgvQ3uyx+wdfZP+/ftz++23d3R2EREREREREREREREREREREREREREREREREREREREREREREREREZFfjA4Hv6Wnp5Oent6ZZRERERERERERERERERERERERERERERERERERERERERERERERERER2SN1OPjtsMMOY9asWZ1ZFhERERERERERERERERERERERERERERERERERERERERERERERERGRPVKHg9/+8Y9/sHjxYu69915CoVBnlklEREREREREfsGmr5/ORys+YuqqqV1dFBERERERERERERERERERERERERERERERERERERERkU5jsyzL6siMl156KStXruT777+ne/fu7L333nTr1g2bzRb7BjYbL774YqcUdndQVVVFSkoKlZWVJCcnd3VxRERERERERHY7OY/ksMm3CQDfrT4S3AldXCIREREREREREREREREREREREREREREREREREREREZHWtSd7rMPBb3a7vU3T2Ww2wuFwR95it6TgNxEREREREZGOqwvWEX9/fNPzxVcuZmT2yC4skYiI7HTBKtjwNgRKIW0sdDsSbG1rfxYREREREREREREREREREREREREREREREREREelq7ckec3b0TdauXdvRWUVEREREREREWrWhckPM83UV6xT8JiKyJ6taDtNPhapl0XEZ4+CQNyGhd5cVS0REREREREREREREREREREREREREREREREREZGfocPBb3759O7McIiIiIiIisiez2bY/jWXt/HLIz97airXbfC4i0hUsC77+GlauhB494NhjIS6uq0u1B/CthWkHQLAqdnzpLJj7Rzjio64pl4j8LFlW2w4rRERERERERERERERERERERERERERERERERH7O7F1dABERERERERGRRmvL127zuYjIrlZQACeeCEcfDVdcASefDIMGwaefdnXJ9gALbmsZ+tYoHNi1ZRGRn6XSUrjoIkhPh4QEE7z53XddXSoRERERERERERERERERERERERERERERERGRjtvh4LdJkyZx/PHHk52djcfjISsri+OPP55JkyZ1RvlERERERETkF8iyLEKREKFIiHAk3NXFkV1obYUJerNhi3kuItIV1q+H0aPhk09ixxcUwOmnd02Z9hj1RZD3VvS5zQlJQ8Du7royicguEwzCQw/BiBHQvbsJ15wyBSwrOs3XX8PIkfDKK1BeDnV18MUXcMQR8N57XVZ0ERERkR1XuRQKPoHyhbEVIBERERERERERERERERERERERERER+UVwdnTGSCTC2Wefzf/+9z8syyIuLo6cnByKior4/PPP+eKLL3jnnXd46623sNt3OF9OREREREREfkFyi3MZ/a/RABzT/xg+v/DzLi6R7CrrKtYBMLrbaBYWLmx6LiLSFa68EsrKWn8tEtm1ZdkdvbPkHQqqCwD4435/xOVwRV/c+B5YDeGuniw4/H3IHGcC4X64EoJVXVBiEdkVVq+GM86ABQui4woL4auv4J574O67obgYfvtb83dLkQisWLHLiisiIiLSefxl8NN1sO6/0XFJQ2DfJyDnV11WLBERERERERERERERERERERERERER2bU6nMj21FNP8c4773D44Yczc+ZMampqWLt2LTU1NcyaNYsjjjiCd999l6eeeqozyysiIiIiIiK7I8uKPtowfnHR4laHZddbvRpuuw0uvRTuvBMWLmw5TTAIzzwDRx0F++4L554Ln3cwq29txVoADutzWMxzEZFdbeFC+OST6PPkZLj2Wrj4YkhIaBhps7Xt8Qv150//zDVTr+GaqdewonSLlKaKZolPY580oW8A3mw49C3oc+auK6iI7DLBIJx1VmzoW3O5uebvI4/Ehr55PNCr1y96kyoiIiK7u0AlfLpfbOgbQPUK+OaE2HGWBWsmwmcHw4fD4JuTYN1rEAnvuvKKiIiIiIiIiIiIiIiIiIiIiIiIiMhO0+HgtwkTJjB06FA+++wzDjzwwJjXDjjgAKZNm8bQoUN5+eWXd7iQIiIiIiIi8suSW5TbNFxYU0hpbWkXluaXqb4ebrgBhg+Hf/wDXn4Z/v532HtvM77R/Plm3FVXwddfw7x5MHkyHHecmb65SATeeAOuuQauvBKeew4qK2OnWVseG/xWUV9BRX1Fi/JZFrz5JowbBz16wIgRplwFBZ33HYjIL9ubb0aHe/SAH36Axx8328PFi832Ubauor6CvKq8pueLihbFTlDZsK93JUOv02Nfs9lh0BU7uYQi0hUmTTL1xUZJSXDoodCtW3RcOAz/+U/0+QEHwMqVkJcHK1aY6UVERER2O4vugpo23OAgUAlfHgWzL4aSmVC9HAo+gpkXwMzzd3oxRURkD2BZUPwdrHoO1r4KvjVdXSIREREREREREREREREREREREdlCh4Pfli9fzm9+8xucTmerrzudTk466SRWrFjR4cKJiIiIiIjIL1Nuce42n8vO96c/waOPQjDY8rUPPzR/y8vhN7+BpUtbX8ayZdHh776DMWPgnHPgqafg3/+GP/4R+vWDb78101T7qymtMyF/+/fcH7fDDUTD4BqVlsJBB8HZZ8Ps2bB5synDo4/CyJEmLEREZEfNnRsdvusuGDIk+rxfP/jgg11epPaz2bb/2EkWFy2Oeb6ocMvgtyXmb9q+0LC9F5E937//HR3ed19YtAimTzehbg8+CHa7qUOWl5tp4uPhvfegd2/zfNAg+PRTEwYnIiKyK4UiIfwhP/6Qn4gV6eriyO4mUAlrXow+73YMHPERjJsIGbE3WuTHq6Hom9aX41u988ooIiJ7hqpl8PWv4PPD4Ic/wqzfwQcD4dtTwa+bLImIiIiIiIiIiIiIiIiIiIiI/Fy0ntrWBm63m5qamm1OU1NTg9utTnsiIiIiIiLSPo1hMR6HB3/Yz+KixRze9/CWE9ash6X/hPL5YHNC2j7Q/yJI33eXlndPM306vPxy9HlaGpxwAhQWwtdfR8c/+CBs3Bh9fvTR5rF8Obz5ZnR8bq6Z3+dr+V4VFTB/Phx+OKyrWAeA3Wand3Jveif3ZnX5atZVrGNMjzEAWBacd54JfGtNRUUHPrCIyBYsKzb47ZxzWk7Ts+euK8/uqEXwW1Gz4Dd/KfiLzHDS4F1YKhHpSvX18OOP0eevvQZ9+5phlwtuvtmEvjWv551xBnTvHruc+Hg44oidW9ZNm0zAZ2kpdOsGxx4Lffrs3PcUEZGft4vevYhJiyYBMOXsKZw67NSuLZDsXkpmQqjh+pqcE+Hw98HWcJ/GvufD/JvNcOVSWPff6HzZR5rpfatg3aRdWmQREdkN1RbAF0dCfWHL1/Lfg8obIPuwXV4sERERERERERERERERERERERFpqcPBb2PGjOHNN9/k9ttvJycnp8XrmzZt4s0332TffdXZXkRERERERNquPlTP6vLVABw/8Hg+WPEBuUW5LSdc+hAsvB0iwei44m9hxZNw2HvQ6+RdVOI9z7PPRocPOADef98EXgAsWQK33WZCkV55JTrdnXfCvfeCzWae33orvP66Gb7qqmjom90OF18MgwaZUKUpU6LLWFuxFoCeST1xOVz0SenD6vLVTeMBpk6FadOi85x6Klx3nQkSmTwZJkxoxwdtLOz2WFY7Fioie4ING0zYD5hQotTUrUy45fahcbvS0e1GW7ZLltX26brQokIT9DYiawRLipfEBsH5S6LDiQN3cclEZKeqWgHLHoKSWWCFIXko9DoD+p7D/PlOgg1V90MPhWHDWs4+bBg880z0+UEHte1tly+H//wHVqwApxPGjIHzz4eB7dzElJXBX/5i6rmBQHS8zQbXXguPPda+5Ym0hWXBrFnwww9mvRs82IQNJiSwW+zzRXZ3L817iTu+vAOA68Zdx82H3NzqdHPy58QMK/htDxCohJXPQtHXEK43xyY9fwM9Twa7o3Pfq7xZ+u3I26Ohb2Dea8zDZnjju9Hxg6+CsU9G9wUj74QlD3RuuUREZM+y6M5o6JvN3rBPc0Phl7HtcSIiIiIiIiIiIiIiIiIiIiIi0uU6HPx2ww03cPLJJ7Pffvtxww03cMQRR9CtWzcKCwv5+uuvefTRRykrK+P666/vzPKKiIiIiIjIz8lO6IS+rGQZESuC1+ll/MDxJviteIvgt4JPYH6zjrg2O9hcEPGb58GKdr2nRFkWfPtt9PmLL0ZD3wBGjDCBbqtXw6ZNZlzv3nDXXbGrw/DhcM89sHYtfP21Ged0wuefwxFHRKebORPWrzfDa8tNwFuflD4A9E3tGzMeYoPiLrwQJk6MPh8/Hk45pSOfWkQk1urV0eGRI7uuHDus+T64+UZ6FwTELCoywW9nDD+DJcVLWFuxlmp/NUmeJAjXRSd0pUSHv/kNVK+IPj/ue/Bk7PSyikgnWfKACWa2ItFxVUtNgIlvNbNn3900euzYrS9mcbOcyFGjtv2WtbVwySXw5pux4999F/76V5gzB9p6f6L6ejj+ePjxx5avWVZs+LBIZ5k2zQRrb7neJSXBf/8LOrwR2fm+WPsFm3ymgeOzNZ+1GvxWWlvKqrJVTc9n58/eZeWTnWTjezDrQghWRccVfwtrXzaBa/s91f5lhgOw6WOoWQ+OeEjdCzL2N+2WZQ0bersH0vdvOW/j8Vppw7rliIO9/hZ7HBff0wTBiYiItCZcD+teNcOuFDj6S0hvOCAO1cHie7qsaCKdRjd0EhERERERERERERERERERkT1Ih4PfTjrpJB577DFuuukmbr459uJny7JwOp08/PDDnHTSSTtcSBEREdlFImHYPA3K54MVhoS+0O0oiO/VYtKNG2H2bPD5oHt3OPBASE3d5SUWEZE90OIik/QwJGMII7NHNo2zLAtb4wX9i+6KzjDsBhh5J7iSTSfKxfduddmBAASDEB/f9r4BvzRr1kBBgRkeNqz1sI24OJg+Pfp8/HgT6rYlux2++ir6/LzzYkPfAA46yDwA1laYgLfGwLc+yX1ixkPs8u5qtho0OvXUVj+WiEi71NZGh7t377py7K4sy2oKfjt2wLE8PutxqgPV5BbnMq7XOIgEohPbXdHhmvWxwW9WeBeVWER22KbPYMGt0edJQyC+D1TlQt0msIKsjVbpGD1664uqapa/0rfv1qezLPjd7+B//4uO69EDEhJMnTYchurqtn+Ehx+Ohm/FxcH118NJJ0FJCUyeDPPnt31ZIm0xdapZx8Kt7O6qq2HBAgW/iWxPJGLad3akjWfGhhlNw7M2ziIUCeG0xzZyzMmfA4DH4cEf9vND/g+EI2EcdkfH31i6TvVKmHF29AYS7nRI6Ae+NeZmEqF2VCDAVEpWPg2590P95tjXEgfAUV9AZcNNLVJGgH0rl+lYVjT4LX0suFNbTqMGTRER2ZqyudE2t+E3R0PfAJxxsM+D5noQERERERERERERERERERERERH5Wehw8BvAtddey8knn8yrr77K/PnzqaqqIjk5mTFjxnDeeecxYMCAziqniIiIdILSUigqArcb+vQBV7P+9eS9Az9dD7UbtpjLBvs+DkOvAWDGDLj7bvjyy9ib5LpccMcdrQewiIiItEdukekIOTxzOMMyhwFQWldKUU0R3RK7gb/EdGAB6HUajHk4OnPGfnD4+6aTZoONG+Gll2DSJFi+3IxLS4Njj4XbboN99tkFH2o3MmdOdHi//bY+3bx50eGxY7c+3ZdfRofHj9/2e6+rWAdEA9/6pPSJGZ+fD6tWmWlzcmDgwG0vb7uaV2Yg2nl2y/HNBauh6Gvwl5qwwdTRkDhIHW9F9jD19dFhj2cXvnHz7U/z7cqW26W2TtcWbd1+tWPZBdUFVNRXADAyayTDs4YzJ38OiwoXmeA3e7MvtXkInIjsvpY+GB0+4AUYcAnY7GBFIO9tqC/G54tOkpW19UU1D9+Mi9v6dNOnR0Pf4uLgxRfh7LNN+HBREdx3X/uqaK+9Fh2eNCk2UPikk2LrvyI7KhiESy+Nhr6ddBL8/e/mGGfFCnjmmYb1t537/EA4wI3TbsSyLNLj0rn3qK0Ho+/uFmxewKOzHgXgkN6H8Iexf+jiEsmuMnMmTJwI774LhYWmvj5qFJxxhgnt9HjbsPFv+A3lV+WzvnI9dpudeFc8voCPRYWLGNNjTMzkjcFvJw45kY9WfER1oJrlpcsZkTWisz+e0ZYdWEfq/mIsfSga+jbsRhh9LzjjIRIy9ZaKhe1b3vLHYd710eeeTMAG/mITJucvhmBDsm18n+h0+R9B8XfR593HR4PjUvdu76fatkgQNn8BvtVgc5hAusyDwZXYue8jIiJdp/k+pcevWp9GobUiIiIiIiIiIiIiIiIiIiIiIj8bOxT8BtC/f3/uvPPOziiLiIiI7AR+Pzz7LEyeHBvkEh8PJ5wAL78MSb7P4LuzgIaOQpmHQHwv8K2Csh+hNg+AadPgxBMhFGqYLBOGDzedaZcvh7lzW75/RQWsX286M+bkQI8eykUREdmjdGbwTIPcYhP8NixzGN0SupHqTaWivoLc4lwT/Fb4VXTivue2XIDNBu40wASWnnSS2R81V14Ob70FQ4Yo+G1L5eXR4W0Fq1VWRof79t36dEuXRof333/b7722Yi0AWQlZVNZXkhGf0TTesizWr4+uY2PGtLqIVoXDpj7i80FqKvTqZQJB2iVQDj/9GTa8CeG62NeSR8AJ88HuanVWEdn9eL3RYb+/68qxu1pUtAiA7IRsMuIzGJE1gjn5c1hctNhM4GiW5BQob2UJIrJbCdVA8XQz3Ot0GHhZ9DWbHfr81kwWio52buPslNvdbNGhrU83ZUp0+O674dxmhwbZ2fDEExCJtKH8wJo1sGyZGR4yBE45peU07al/igDmuLhiAdRsaAjZ6QdJw8Du4NtvYdMmM9l++5n1ufF3se++Jsiwqqr9b/nt+m95as5TTc8v3/dyeqf03vHP8jP0+uLXeWXBKwB8s+4bfr/v77Gp4XmPd9tt8I9/xI7z++HHH83jggugPWv8jLwZgAkr7pbYjc/XfM6MvBktgt9m588G4MCeB7KxaiNz8ucwe+PsnRf8JjuPZcGmqWY4bQzs889om6bdCX3PgT5nt315QR8svM0MezJh3CsmbMdmg+qVsPRhUx8KN6SLO5qFYBd+CcsfjT73dosOx/eKDv90PVQsij4f93Ls69tiRWDJA7D8MXMzjeYccXDo/yBnK+FAIiKye6lcYv7aXZAyqmvLsi2WBZW5ULMOsEFCH0gebvbDItvTkRs6/YI8Putx6oJ1OO1Objz4Rh0ji4iIiIiIiIiIiIiIiIiI/MzpihkREZE9mM8Hxx8PM2ea504nHHCAufZx8WJ45x14/HFIWno3YIEjHo76DLIOji6kajlUryASgSuuiHa4vf9+uP568DT0UVm+HL780gxHIjBxonl8950JW2nUty88+SScfPLO/vQiItJZwpEwEcskJjjsDuy29iZmtU9jKMzwzOHYbDaGZQ5j1sZZLC5azNH9j4aKhdGJMw40f60IRALNlmKnPujmjDOioW9XXmn2XX36wIYN8MYbsaESe4rqarP/3bzZhJv16WOCBJKS2jZ/fX102OPZ+nSBZl+3axt5Z83DCrKytj6dZVmsLTfBbzdMu4Ebpt3Q9FptsJbi2mJ8vuymcampW19WowUL4LHH4OOPobg4Oj4tDf7wB3jgge0vAzCdc786zgTiAiQPg25HQ6gOSr6HqiVmHRSRPUZCQnS4oKDryrFL7ITOcosKTSjB8MzhAIzINIEYjYFwMYEGvtXR4SM/hk2fwpzLO/ze0vUsC1auhE8/hRUrTBhLVhaMHWvaKBITu7qE0umKpkfr4jm/3upk8fHRYZ9v64trvg0uLjY3EWjN++9Hh886q/Vpmof91gZr+eeMfwKQEZfB1Qde3fTa9OnR6Y46SjctkB0UCcHSh2DVv6F2Q+xrnkw49B3efffwplGXXNJ6GGJycvvf+oPlH8Q8/3DFh1y5/5XtX1BbtOWHshM733+44sOm4fWV68ktzmVU9s844EJ22DvvREPf0tLMOYozzjCr4g8/mMBPoF03KZixwQS/HdDzALolRIPfrjrgqmazWczJN3fVGdtjLOsq1jEnfw5z8udwyZhLOvUztlrWTrrRgjSoXtF0syNyft36tqw9FYHNn0ZD3cY8CjknRF9LGgwHPGf+bw4PBIFAZauLAcBqdjKNZmUomxsN2QUI1ba9fIvuhty/m2FPFvQ+HZzJULUUNk+D+s1tX5aIiPy8harNX1caOBpOfhV8DN+fH51mwMWw72O7vGiAOYey/ElY+XRseyCAKxUOnhS7HxWRdsktyuXPn/656fnhfQ/nwF4HdmGJREREREREREREREREREREZHs6HPz26KOPcv/997Nw4UJycnJavF5QUMDee+/NnXfeyTXXXLNDhRQREZGOeeSRaOjb+PHwyiuQ3ZCXEgzCm29Cgi0PShomGvSH2NA3gOShkDyU6d/AunVm1FFHwa23xk42dKh5WJbprPjKK2Z8WhqceCLk5JjAhM8+g4ULd27wW34+LFoENTWmQ/mgQTBggDrtioh01LnvnMtbS94C4L6j7+O2w27bae9VE6hhbYUJ/xqWOazp76yNs8gtyjUTBaujM3gaksQqFsHUfaLjux/He0XTKCw0T888E559NvryoEFw++0t+8tOXz+d8vpyAMYPHI/HuY3ks5+ZhQvhpptMEGtjUGsjtxu++QbGjdv+cpoHbWwrkKN5aEvzcLctNQ8wiGwjG62srozqQPVWX19bvha3Oxr8FgxufVkA775rAkAav4tjj4Vhw0yw3fffw7Rp7Qh+y5sSDX0bdQ+Muis2GKnoa7A52rgwEdkdDBoUHV6ypOvKsbtaXGxCXEdkmcC34VkmAG5R0SIsy8LmToG4nlCXD9WrojPG94K4rSQ8yW5h1Sq48MJoW8SWrrwytk4me4i6jdHh1L3M30gQFv81Ot6VSnp6NNh35cqtL65v3+g6tGQJ7LVXy2nCYVizxgxnZpp2n+15d9m73PvNvU3PTxpyEv3T+gNQWhqdrl+/7S9LZJvmXgmrXzDDaWNMsJArxYQN5X8AdQUsWhSd/JBDOudtLcvigxUm+G38wPF8uvpTPljxwc4LftsJ4bFttbZ8LbnFubjsLo7qfxTTVk/jg+UfKPhtD/evf0WHJ02CX/0q+vyEE8zz9q5+M/JM8NuBPQ+kW6IJJ24Mg2u0pnwNpXVmR7Fvj32b2q1m589u5yeQXSUSgaVLTX2itBQcDujdGw48EPp51kcnTBsTHV7+ZDTAzWaD4Te17c02TW2Yxw49T2p9GpsNnIlAIQSaVToSB0DmIVDSsM7Zm7VD+kvZYcEqWPawGc48GI6aBs5mDX/1RRCo2PH3ERGRn4mG+njzmyRFghCsiD5vT3hoR0XCJszU7oq9QGP+LbDsITOcPAJ6ngyeDPCtgvwPoWZ968sTkTZpPJdvw4aFxVtL3lLwm4iIiIiIiIiIiIiIiIiIyM9ch4Pf3nrrLfbaa69WQ98AcnJy2GeffZg8ebKC30RERLpAKATPP2+G7XaYMCEa+gbgcsH55wMbmvXG7n6c+WtZUDY3Ot7uYmqzMJ3TTtv6+37zTTT0bexYmDrVdMBtFAiYYLbOFgzCww/DCy9EO/42d+CBMGtW57+vyG7PsqB6JZT/ZDqC2T0QlwNpe4M3e/vzyx6vuKaYd5e92/T8xXkvcsuht2C32XfK+y0tWdo0fOVHV+J2uFlTbjbsucUNwW92V3SGkA+cca0u6623osMXXtj6+zXvc1JUU8Sx/z2WQNh0innl1Ff43d6/a/+H6AKLF8PBB5vQU68XbrwRjj4aUlLMfvH998Hvb9uyunePDufmbn265s0BixbB6ae3Pl1KSnR4/XpIT299unUV67ZZrnUV6xiWFu2gsHr11qf1++FPfzL1IY/H1EeOPDJ2mnYFOa1/1fx1pcCIW2NXHJsNuh3VjoWJyO6gVy/IyoLiYtiwAcrKtr79kpYWFZo0m9ziXP7y2V8ori0GoKS2hMKaQrondofk4Sb4rfwnCPvBse2w1Zl5M5sCm0Zlj+Lh4x/ulLJalnnYd07V5helrs4ExW/caHaPN98Ml19ufk+lpfDVV6auInug5p3KG8NwIyHI/Xt0fEJfxo6NBr8tXLj1xe23H0yebIYXLIBzzmk5TfO6bfPg4m15ZYFpsEr2JFPlr+K/C//LXUfcZYrdrHq3CzKr5Ocq7IfyeSagLRIAVzIkDDCBhg5302R1wToWFC4AID0unSEZQ6LL8K2B1S+a4T5nw0Gvgb1ZSHQ4AKGqmJDt1NTOKf6S4iWsrViLx+Hh/mPu59PVn/Ll2i+pCdSQ4G7jD2U38eGKDwE4pM8hnDH8DKatnsaHKz/k1sO2uFtJ2Y8mlKlkpglRsrtMyGzq3jDw9+DN6oLSS0eUlMAXX5jhHj3g+ONbTmOzte/mL76Aj/mb5wNwYK8D6ZZggt/yqvLIq8yjd0pvIBrwNiBtAGlxaYztMRaAhYULqQ3WEu+K79iH6kShSKipPcvtcOO0d/gykN2aZZnzYnffDZs3m3F2u7khQn1Dptua6fX0b5zB1qyNcfG9EChrGO9oe/BbXYH5G5cD7jQzXPg15N4Xnab3aeb4x7fa7CciYbNvGPJ/5oZMbzTsY5wJYHOCFYL6wuj8e91nwuEWbLGN2568/0XD7EbcFhv6Bqb9X+cARET2HM4k8zdYYY47HG5wxENCP7O/ajx2b0uFqb0HxoVfwZoJ5iY5tRsaypNg9n9DroEe42HF42Z8jxPg8Pdiz/WNDUX3wyLSIY3Bb3/c74/8a+6/eGvJWzx03EPYdIdMERERERERERERERERERGRn60OX/G7YsUKzj///G1OM3LkSF577bWOvoWI7CEsy9xVfdYs02G6rMxcYN+zpwmF2n//ri6hyJ5p3bpowNp++8WGuMQINutl2NgpBQumHRAd7+1ORcWmpqdbyX0F4JlnosN33hkb+gbm99+/oVdNYSFMnGi2DwsWmO0DmIC6ESPgwQdhyBDa5KKL4PXXzfDpp8P118PAgSYQbtEihb6JtGBZsOYlWHS3CdywuyG+N9jsULMBIn44eT0k9OnqkspOFI6E8YdNYoLL7sLlcLWY5r8L/0swEmT8wPHkFueypnwNX6/7mqP7H71TyrS4aHHT8MyNM1u8ZlkWNk+zjtl1BaajtrcbjLob8t6GSpNW1tjBE2Do0O2/9/M/Pk8gHKB7Ync2+zbz5JwnuWCvC7r8gvhAAN59F779FubNM/vPcNgEEA0eDFddBY89Fg1S+e9/4cwzo/MfcEDrYRlbc/DB0eE5c8zmorWv4NBDY6fbmv32g9mmjzSzZ8OYMa1Pt7Zi7TbLtbZiLacfaII9ampM3aGuDuJayf17913Y1FB1OeuslqFvYOoabVbRsF5mjIsGPmx8HzZ/Gp2m7/mQdXDLeUVkt2Szme3XJ5+Y55Mmme1tc+vWQb9+u7pkP3+hSIglxSZd89v13/Lt+m9jXl9UuMgEv6WMgMLPTYjrhjeg/1ZSWhvcN/0+Pl1ttrufrv6US8dcyoislhvzyYsnN4XWnjDoBC7a56KY18vK4D//MfvVn34y+1UwQaVDh8I998AJJ3TggwsvvGBC38D8Xh54IPpaz55wwQVdUy7ZBZzJ0eH6hkq4zQaJA8BfZjqdY0L5G335pQlv82yR+RiJmO1vo7ffhr//HRyO2Ol8PnNTg2DQtDmHQuDcxhmvguoCPlvzGXabnUePf5TLP7icVxa8wp2H34nNZiOr2SHGihVt/+iyhwhWwbwbYO1/TXuIKwW83c0+qi4fso+EY75qmvzJ2U9yyxe3AJDmTWPddetI9jT8DtZNAhpCEkbdHRv6Bg3hC5kkJUVHlZRA3747/jEaw9AO73s4Y7qPoU9KHzZUbuDzNZ9zyrBTdvwNfkY+XGk+6/iB4xk/cDxgQmJLakvIjM80B7I/XAGrG+6MknUYZBwIDi/UrIOVz5jju+47p21DOl9hswysoUM7J7R3Tv4cwlaYBFcCI7NG4rA76JvSl/WV65mRN4NzUs5pmg4gKz6LT1Z+0hSwFrbCzNs0j0P6HLLjhdlBF717EZMWTQLgvNHn8drpv8xrNF54Aa64wgwfeCA8/rg5F+1ymXbCqVMhPiUZ8hpmqG/WeOjtbgLXglXtfNeGRrPGgDUwoW2Fn0efp4yA9LFQ8KEJtSmd3Xobkt1lwkbLfzLBOY2NctmHRcN126Oy2V0Pshoa8mo3mnMCjZKHw/Ab279sERHZ5ebPNzf5mTfP3Binvh7i46FPH/jVr+BPR46MTly1DNL2gh7HwclrYdpBUNrBCyZCtVC5GOqLIVgJzniI62X2b854WPaoOZ4C6D7e3DzHm22Cl8vmmHN2wUqIBM00I++IDX0DsDsVRioxLMucC6ysNG1H6em6cce25BblsqR4CV6nl/uOvo/XFr3GhsoNzMmfw4G9Dtz+AkRERERERERERERERERERKRLdPhyiNraWhIStn13eK/Xi6/5Let3Mp/Px3XXXUdOTg5er5d99tmHyZMnt2neoqIiLr74YjIzM4mPj+eggw7ii8bbhotIh02bZgIVRo6E666DH380nfB8PnNx/SWXdHUJRfZcoVB0eMtOtDHcKdHhuoLocMY4EwLVIDU1+lJBs8m2tLZZZss++2x9uu+/N6Fuf/kL/PAD/N//wf/+B59+Cg89BMOHQ1Ub+9fMnBkNfTv0UHjrLTjkEBN217s3/PrX8Ne/tm1ZIrsLy4LqavN7bOzk3i75H8Ccy00H5uF/gdNL4Ter4KQVcFY1HDu9WRgk5OWZ39kTT5gwjLvugkcfhSlT2v5blZ+fa6deS8L9CSTcn8C4F8cRjoRjXrcsixd+egGAi/a+iPNHm/DvxnE7Q25R7lZfq/RXUlBdYDo7Nto8zfyN6w6j74GU0U0vNT9kLS3d9vsGw0GenfssAC+d/BIZcRnMLZjL7PzZ7f0Inaq42OxPzz4bXnzRhGA88IDpyHrLLTBggAkeev99M31KCpx22jYWaLNt95GVFQ1F27QJPvyw5WJWr4aDDooGcEybZsZtackSOLpZP/q33269WPX1sLbcVCJSvan8evCvmx49k3oC5nWXCw5r+PeHQvDOOy2XVV0Nq1ZFn++77za+j/aK+KPDpbNh5bPRR9XSTnwjEdmp2rAthNjgob/+1QRKN1q+HE48cReX+2fky7Vf8vyPz/P8j8+zqmxVzGurylY1Bcu2pinkNa3ZBvrHq2Hzlw09+ta3Os9HKz8iyZ3ElftdCcDD3z/cYrrK+kqu+vgq3sx9k7eXvM21U6+ltDZaCVi71hxr3nqrCQe/4Qbzd9ky00514YUmXFU65qtoJhJnnNF15ZD2CwRMoM7y5ab+lp/fzmPMjGYbzLK55q/DC79ZDUOvaXopJ8e004AJunp4i59xQYE53tx332jw8KpVcP/9ZvMA5u9TT5kbCTQGydXWmralbXl14atErAjH9D+G3+39O1K9qawuX82MvBkAHHVUdNqvvjIBdPILMvtyWP0CODxwxMdwRjmctAxO3Qinl8Doe5sm9QV8PPT9QwCM7TGW8vpynpr9VHRZ9dGbZ5DYcPeL0h/gdVv08c1JjB0bnezb2IzUDvtgxQeACUOz2Wz8auCvYsbvKar91Xy97mvAfNa+qX0ZmjEUC4uPV35sJto4JRr6tv9zcOy3MPZx2OcBOGQynJKn4O7dTPM2nsYbyOyo7/O+B8Af9jP4qcEMeGIAm32bY14DmtqGZufP5teTfs2pb5za4rWulFuUy+uLXifVm0qqN5XXF72+zfa1PVUoBHfcYYZdLtOeNW6cGQZzvujii6HbkL3MzU/ABKw1OjEXxjzS/jeO72X++ksgWG2G08fCfs9CXM/odM2Pf1b/Z+vLy2is4GyAku+3Pl1bjmub38mhMZguUG5uCNP42DS17Z9VRES6zHXXmZvq3H23OQdy9dUm4PTuu831EcuWAVnNwmjz3tz6wiwr+tjW+LpN8P0FMCUbPjsYcv8GGyab8yEzfgufHQR1hbDwTjN9vwvgyE9g8B+h9+kw6PdwwPOmDl7X/DhpgPlbvRJet0cfnx+G/LKVlJjw/3HjzE2f0tPNzWRHjIDERDj11I4t978L/st9397Hfd/ex4rSPTPt/60lbwFw7IBjSYtL49eDfx0zXkRERERERERERERERERERH6enB2dsW/fvnz//TYuNAVmzpxJr169OvoW7Xb66afzww8/8MADDzBkyBAmTZrEueeeSyQS4bzzztvqfH6/n2OOOYaKigqeeOIJsrOzeeaZZ/jVr37F559/zhFHHLHLPoPInmTNGjj9dHMHzkGDTMhTVlbsNOpAJ7Lz9OkDSUnmwt+5c03gYmJiKxNmHW46uVgRKPgEep9hnh8/E3L/AQtvA8xdoh94wMwyZYq5mLg12c1uxLxmDfTt2/p0F18cDYv65hsTXNPcySe3+aMyb150+NBDdadf2XPl5sK//mV+MytXmoucs7PN/rSoCJKT29FZePmj5m98H9j7H6YTWOUSE2TUyJnE/PV7c8kl5i7y3bvDueea0Eav1wRpffAB9OwJBxzQ2Z9WdrafNv3Ev+b+i6z4LIZlDmP6huk89+Nz/Gn/PzVNM3PjTJaWLCXJncQpw05hr2578eCMB3ln6TuU1paSEZ/R6eXKLTYdUzPiMmKWv6psFRErQm5xLj37HwXORAj5TAeTQVeAK7nFso4+2gSSgensedBBW3/fKcumUFBdwKD0QYwfNJ6L97mYR2Y+wlNznmJcr3Gd+hnb44YbYGlDnthLL5nfYHNnnWW2AW0OVG7ekad5588tOvgcc4wJ/QD4/e9NsMb48SagbcIE+M9/4KefTNjG99+bzrW/+Q28+qoJ6igshL/9DSoqTGCk3W7K+cUXJrjjL38xoXGhEDz2GMTHw9p+JvjtiL5H8O457zaV5cZpN/LIzEdYW2FeP/poE84DcP310K+f2f8DLF5sQnv++MfoZ2keStthqaNMh9vKXAj7TSDEoD9Cr1Ng2jjA2u4i9kihGhPuUpsPwSqIBMAZD54sSBsDCX26uoQirWvjtvCcc8y2DEwQ57hxZjtcWWkCN3+pxx1Lipfw69d+jdPupCZYw97d9mbO7+fgdriBZsFuQLwrvmnYH/ITtsIsKmpI0Ot1CvzgNtuOYBV8dQw4E8y2ZQuNATuXjrmUP4/7M8/9+ByvLnyVvx71V3olR9uf/znjn5TWlXLuqHOJd8Xz4rwXuW/6fTw63tR9r7/e1JsBXnsNTjgh9n3Gdd0uf4/gdkeHa1r+G+VnpqoKHnkEPvnE1OuGDjVtuF4vlJebOtR//hMbiLZVSUPNzQNq80zQ0rAbzO+5FSefDM88Y4bvuMMEu518sqnzPv44HHmkac868cRoAPFdd8Hs2SYQ+dtvYfp0+Oc/4ZRT4LvvzDSPPWZ+w80369XVJhQuO9ti4oKJAJwz6hzcDjdnDD+DF+e9yCsLXuHQPofSs6dZ/vz5sH69qXtffnl0WZYFn30Gxx/f9u9YdhM1eZDX0BF68P9BTsPOIf9DE+LTKG1fcCXy7A/PUlpXyviB4/n70X9n/+f359FZj3L1gVeT7EkGT7PG0dqNkDQIPBnQ/yIo/MocV2ACux9pyBd64QW48krz+2tkWbB5M/To0baPUVJbwsyNMwH4aOVH/LjpR1aWrQTgwxUfErEi2G1dVHlp/sPcmi1DJ7bhszWfEQgHAPj79L9jt9mpCZodz4crPuTCvS+EDQ3/U4cXBlxqhisWmTaERpkHQf8L2/y+0rX69DHH/+vWwcKFsGGDGbcjGsM/Q5FQU5vDlq8FwgHmbZrXYt5GWwa/1YfquePLO6gN1gJw/UHXMyh90I4VdDvu/eZeLCyu2v8qbDYbf/v2b9z7zb28edY2Al92V4EK0zYTrDTtgjYnuFIgvhfl9UMoKjLbmz59IDNzK8vwpEP6/qYdfN1rsNffwbO1idugxwmw6jkzvO5VGHyl2fYnDYJV/zE3XgETNmlvOP5ZOxGww+A/gW+LOylkHQqr/mWGZ10EB082IbuBLRIP23Jcu+616HD5jxD3a0gcBON/Muf+moe+BaugaLqZzl9qQuxs9qbvlwGXxt5ISmRbQrVQtazht1oDNkd0XYrv3ba6gYg0+egjc54FzHHwlClb+RmFx4LdY25gs+Jp6HlqbFB7e1gR+O4sKJlh9h1Hf9Gyvd9fZl4Pm3oPvU6NFmz6adE2PrsLujc7mK7daG7m5Ewy9fHiGeBb1a5jAtnzlJaa6w3WroWMDHjjDXODx8YQX5/PXCvRXl+s+YIL372QNG8a5fXlvLf8Pb6/7Huc9g5fNv2z1BjwNiB1AN+u/5a+KX2bxj903EPYtO8VERERERERERERERERERH5WerwFQwnnXQSjz32GC+99BKXXnppi9dfeOEFvvvuO6699todKmBbffzxx3z22WdNYW8ARx11FOvXr+emm27i7LPPxuFwtDrviy++yOLFi/n+++85qCEJ4KijjmLvvffm5ptvZvbsrr9Tt8juaObMaCfPY45pGfoGDZ2k23pxkS7yE2mX+HgTfPLMM1BXZzrTPvZY7E9uyRLo3TuLpOwjofBL09kk5wTodXqL3+Zhh0H//uZCy6++gn/8w3Sa93jM68uWmTCXSy81nYYBHn7YBLE0XozZqLLSdKIFc6fe7XXQCgbN++blme1KXZ0pXkKC2bYMHx6dds4cs7nYkesWLcuE5c2ZYz5XY2ies6HmFA6bEIiDD+74e+yxQrVQPs8EiAXKIVxjLgx3xIE7Hbofazo8SbstXmxCq3w+0xl93ToTxNac37+Db1K1FNZMgNKZEAkSGfV3TjxxbwoKTIjDvHkt37Pdwn4o/8msI/7ShnUkDHYvuNMg+wgTsCQ7VcSK8KeP/kTEivDXo/7KQb0OYsxzY7j9y9s5c8SZZCeYjuov/PQCAE67k7PeOqtpOBAO8Nqi17jmwGs6vWyNYTEPHPsAl+8bTVoY/a/RLC5azOKixRw/8HjofRasfRlq1sHHo2HodSZwqmxu0zwXXgi33262240hEsceG91H5Oaa/ctJJ8FTc54CICcph8dnPU59qB6AN3Pf5KHjHiInKadzO6u3cUe1/IDo8vbaq/Vp7HZzl/u33zb72Hfegd/+tm3F2Jrrr4d//9vsgwsLTQBs9+4myK2+3gRAAtx2m/n+wIR1jB0LqalmOoDzzzcdNC65BF580Yy7/XYTJNe/vwnWKCw0nZbWVawDoE9KbMWgsXNC4+uXXWbC4yoqTBDTYYfBfvuZbeCihiyhM84woXk+nwn2uekm6N079jNuNRS3NX3Ph4KPwV8MSx6AUXdBQm/zsNli/u+NAQ3r15v3qKsz4+PjzXcxYkRsMM5uKeyHH64wHZrje5uOyklDzW8wVAt1GwFLwW+y2xsxwmxf333XPK+tjW7LIDacZbv2kLaPYDjI76b8Dn/Yzwsnv8BHKz9i8uLJ3Pv1vdx3zH0ALCo0G+ODex/MjEtnNM17//T7uf3L26PBb+5U6HcBrHkp+gathL7lVeYxadEkAPbtsS/51fmM7TGWHwp+4IlZT/DQ8SYULr8qn8dmPYbdZueuI+7C6/QyccFEnp7zNFcfcDX90/qTnx9d7tZCyqXjzjnHdMoEU4844YSWq357jtcrKuC990x9YdUqSE83+1OHwywnEIB774WcnM78FED1KhMEUr3CBF5gM0EFYIJCBv7ehDjt5n7zm2hw+Jdfth7w1uabdths0PtMWP6Y6cD9xREw8k7wdofyBTGT3nADPP+8+f+BCRWeMKHlIm+5JRr8Bqaj+0cfxU5z1lmmvcvvh7feMvXUP//ZhKLPnGlCtSZMgI3hn1hSbFKNb/viNu75+h6qA9UAvJH7Bk/86gniXHFceilc03CI84c/mFC5E080nY8nTzZ1z450MpafuZiNUrPh/PehZBZUNuy3uh2Nz4qGkV51wFUMzxzOYX0OY/qG6Tw952luO+w26Hs2LL7HzLPsYdjvX5A4AMZNgOlnNAW/HXQQDBwIq1ebNtqjjoK77zYBjMuXmzbdceNM8GFbfLzyYyKW+dF+te6rmNcKawqZWzCXA3p2UWp/G0N32+qDFR80Df9v6f9iXpu6aiqBcAB3Y4hTuN6EGXnSzftZIcj/AOoLzXGNgt92G3a7aVu4+27z/NJLTb0jo2GXHAqZ5+PHbyPwq5mIFWFmnglLHJ453AQ3YoLbFhQuYMHmBfgCPpaVLMMfNo2uf9rvT00BiqvKVzF11VTm5M9pWqZlWVz+/uW8tug1Tht2Gu8ue5ev133NzMtmkuLdOYFZCzYv4K0lbxHviufacea6jEdmPsJbS95iweYF7N19753yvrtc8ffw41VQPh96ngzdjwF3JhAydY/890gf/U/69vWyfr1pO99mOGDvM019L+SDzw+H0feaUJtm7Ypt1v3Y6A0qFt5uwvB7n27avCP10ek8maZ9ae3L5vnal6PDMWU7HeZ1h/rNJhRu2v7gSoVgRfvL1vMUcMSbQJ6Fd0DWYeBKgvQx5nxNo4JPYMZZ5nhs2E3Q91yI6wHYIVAK1SvN9nMPsWqVCZBctcoEBdfXm2MMh8NsU84+29zsBisCNRsa9hm1JrTP7jY3IInrBXHd2LQJPv/cnL/JzzcBxi5X9IYXOTlw661d/Yl3odI58OO1UPaDCXnqdpRZ9y0LKhebdWnsU+amGiJtZFnmmK++3hyjer3m+oJfUoZR482BwJwj3upnd3hN/Xb18yZ48bMDoft4s08q+6F9b1pfbELdAHqdFm3rn/t/sTcRG3lndNi3Jjqcvr+Zv+Bjs+3c/z8w7wZTlmWPwMGTTPjbuAkw+zIT/LYzWBFTf6hYaOoMoRogAtjN9jxlJPRqxx0JZad5443ojZwuu8yEHDaXmGhuRtUeVf4qLn3fXNf8zm/f4dFZj/Lhig/554x/muP3PURuUW5Tu9eTc57kyTlPNr22oXIDc/LncGCvdn55nSwUgo0bTd2rrs6cu/d6IS3N1Lu2vKZMRERERERERERERERERETkl6LDwW9/+ctfmDx5Mr///e959dVXOe644+jZsyf5+flMmzaNb7/9lpycHG7dRVcxTpkyhcTERM4666yY8ZdccgnnnXces2fP5uCtpLNMmTKFoUOHNoW+ATidTi644AJuu+028vPz6dmz504tv8ieaPx4czFzQYG54+wVV8CYMbHTFBVB9padexqvUtxGp59VZauo9pvOeb1TepMZvwN3YpdfnnDAXNjqW2OCqdxp5i7DYC78tELQ73d7xNXCt9xifn8FBSZQ5aOPzF1xbTYT4PTttyZMLWnvB+DzQ02nhe/OhIT+4M02F+E3sNvhuefM/KGQCXp59FEYNsz8llesMJ2Gp0wxASzTp8PHH5vf/XnnmYv1CgpMGX71K9PR9x//MBf13XAD/P3vpkNEo82bTcjbbbeZoIWEBNOhuzFQxm43FwVu3GjKdMoppkP4l1+aDmB//rPpKBkMmhCYmTPh5pvb9r1dfjm81JA98OKLJrTG06wPQjhsLi6XLWz+Ar47w1xIPvpvpnOQJx0qc81F1PWF5nen4LcOyc83AUIA/fpBt24tp/G01ldma/vVYTdC0Temw/H8v8CoO6H3Gebxbg7UbcJmM+EKBQXmd19SsoPBb6Vz4JsTwV9i3n/QHxqCAOZDuA7qi0xnNgW/7XQv/vQis/NnY8PGrI2zmFswl8z4TIpri7n5s5uZcOoEqvxVvJFrkjtSvamsLF0JQHZCNgXVBTz/0/NcfcDVnXqH8Cp/FXlVeQAMyxwW89qwzGEsLlpMblFD0sJef4dNn5hOkLUbYN71LZbXo4fZv9x6qwnrOf54GDXKBL2sX2865N1+O/QcO4/vNnwHwIwNM5ixIRpSE4qEeG7uc9x71L2d21m9jXXg698wISoAf/mL2T9lZ0dfr6mBsjK45x6YOtVsJy680ISXHn202WeuWWP2kf/3fyb8ri369TOBsVddFR23eXPL6X79a9MBo3kQUmPoW3MPPmjqHSvNasSKFebR3NoK06OjMeitUd9U83x95XoiVoT0dDsvvmjC3RrN3aJfbmqq+U5uvNF8P6NGmeOR4cPNuvD996YT8IwZtE3v02HZGBNuuvgeyHsHsg+DQIWpPwLBoI3rr4ZXXzXvcccdphNKTo7p7FlTYz5/797Rjum7rYKPTWAwwJhHofdpZnjWJaYeEKw2HYl7ndplRZQOqFoO6yebINi4npDQ13TKs9kbOqwHzb7b0Z60s93fM8/ArFmtbwOd7WlZ7UDbx8/R37/9Oz9t+okeiT0IhoOM6T6GyYsn88CMBzhpyEkc1PugpmC3EZkjYuYdkWWe5xblEo6EcdgdMPqvZptS38oXnHUYuFJ57JtbCEVMyMBF714UM8lzPz7H7YffTqo3lbu/vpu6UB0uu4vT3zgdAIfNgT/s546v7uC101/jL3+BM8808153ndmv9uoVXV55udmP9e/ftu8jEjH7k4ICEwwVDJpj1cZ/b0KCuRnCVu5HsvOFaqCuwOyvIn6IhMxv2uEFdwYkDezUtzv5ZDj8cLPP/+ADOOIIE8rSq5f5fr7+2hz3//Of219WVRWMHm2O+TMzYfZsGDAgdhrL2gk/ocV/hUV3m4CMw6aY9TBQbtpHrDDUbTIdhXfz4DfLMmEoYLZlg7ZymN7mm3ZYFoy8Azb+D2rWQ9mPMP3UVift39+0JzWvZ7bmkENMeO9DD7X+usNh6vVPPAF//KMZ98EH5rGliQtMvaVHYg8GpEVXpAWFC6jyV/He8vc4Z9Q5/OlPJmxu2jTzkSZONI9GI0ZsuWTZI8T3gj5nw4Y3YOXT5nffYzwc8B/Y/CV8dUzTpP/64V+U1JYA8JvXfxOzmEdmPsLVB1xNUvIw6HMObJgMq54zbWE9fmVCgSqjyYF2O/z3v2Y/UVdn6hsnnBBbtHHj2v4xPlxhkhKPG3AcZ488u2n8k3OeZGHhQj5c8WHXBb91oogV4aMVJgXymgOuYZ/u+wBgYfGnj/5EdaCa6eunc8yw62H1f0x79/fnmpCZ1NFwwPPw2SGmnVJ+dgqqC3jxpxcJRoJYlsWxA47liH5HNL1+3XUm6HPxYnMTmp49TX3DZoOffjIBnY37t+3JLcql0l8JwGe/+4yeyeZagLpgHckPJBOKhJi9cTbLSpYBMCBtAM+c+EzT/PM2zWPqqqmsq1hHUU0R2QnZPDjjQV5b9Brjeo3jXyf+i/6p/Xl01qOc+865fHDuB6b+28nu/tok4dUGa+nxSA+Aprrz3V/fzbvnvNvp79kl5lwGVcsgfT84/F0zLm+KCekMmv+jo/QbHnpoPL/9rTmHM368uXHAgQea8OA1a0zb2dlnw8AhV5kw+4oF5hh4xg7cQcGZAGMehh/+aOqNM84CuweImOPo5vb+BxR8YNrHW+PtZurq+z1tztU1ah76ZnO0/bjclQgjbzOhb+Xz4L0+0PM3Zv7CL6PTrXjSHDt4smCfB8wxw+YvYdW/TBhyJGDqwMP+3Lb37QqVS01bVWUuJPQzoatNbRoRiASwBlzGKWcm88EHpg78yivmJiGZmWY7EgyaY7tETxV8fyVsnAIpI2Dw1ZDYzywnUG7OYVQs5qt1v+PEk+zU1Zn1beLEludtGm+S94sx80KoXm4Cn4782IzLmwIFH5pwRIDi78z/Jf99qM2D5BFm3bc5zD8iEgJXCvS/oOs+h+w0S5ea397ChebmKPvuCykp0XaTUMhst9etM9M13mxm//1Nm7rTadreq6rM9rx/f8y2tr4IQtXmOhArHN1WejJ2++N3gAsuMOdYSkrM9RonnBAbgBWJmEDpwYMx5+gLPjTtF1bEnEdrztbG+og3CzLGQekss+8adgPEdYPhfzHX2jTupxL6Q86JUPCRaVOJ62n2NSNvg+VPmnY/gPieMPByc4y0YTLU5ZvpXKlQ9tOOfkWtC1bB50dAxXzodow5l5E8NHoDu2C5OS4I1YEzbueUYRtmzTJ122XLzPo9cqRpS7TbTZtEMGhuvLS1NpsWwn4TsFlX0LDNtcz/24qYfWLKCLN//Jk6/HAT6lhXZ+psN93UMtA5EGjfjZVu+PQGNlRuYHD6YJaXLmd09mg+XPEh93x9DycNOYm9um3ljlu7mbeWvAVA/9T+/GrQr5rGf7n2S5aXLuetJW91WfDbv/8NTz1lzglfcIFpA8nONv/H8nJYsMC0fQwbtv1lAebmU5W50fXc7mpYzxsaiVNGmIeIiMhuxLJMfX75cnNNQiRiQm8bzzmHwzB0qDl+EhER2Zpw2Fw7HAiYNgWbzfQpSEjYSt8CEfllsCzTThooM+f7IkFzjsbuMdewxLXSIUlEREREYtUVmuun6jeb+lTj+Skazk9lH2FuirgzRILmmq5I47UQTnMthDPB1OtEZI/R4eC3rKwsvvrqKy644AK+/vprvv76a2w2G1bDSfQDDjiAV199laysrE4r7LYsXryY4cOH49yix+Vee+3V9PrWgt8WL17MYYcd1mJ847y5ublbDX7z+/34/f6m51VVVR0q/w6zLHOX4VDDnYZtdsDW8GjYcXiyTKCGv9hMa/eYC3uwNeu8ZYf4nC75CLLnycw0d7i+4w745BNz0nHkSBN0EA6bO3XW1JgLqNvCsiy+Wf8N90+/n+kbpnPF2CtYUbqCr9Z9xeVjLuemQ26iT8rWbt0uu7PNm02IWGGhufB36FBzEqJ5P3mPpx0XPM48H/LeNhehHvkxJA42HTuqV5gOfpZl7tQerISatQ13+h1tKsT1myFcD1hmO9rtGHC048rC7bAsqKw0v41AwFzk7HRGP2vjSf2UlLYtr1cvE/xy880m8GXVKngyenNX+vUzF0+SsT8c9TnMv9lcvFuz1jzAHHQMMb1xjzvOdNS+917z+y4pge9MTg4ul7no2uEwv/l77zUXZOfmmlCdRk6n6fh94YUmlOXJJ83j+edh4EDz+TZvNhd0v/OOubAzFDLLjY83d331es2FDcFg9I7ekyfDX/8KL7zQsmMuwN57m++hrK6MN3Pf5O0lbzO2x1gAftz0I2eOOJPfjvwt6XHpHHec6eS7caMJqktONtsur9eUZ9MmcyH5PvtElx8MRzvwOO3OTg1C2m2400yIV7DShDDVrDMnCSoWmQ43pbMh8yDocTwA9aF6VpSuIBwJE7EixLviGZwxGKe9w1XUPdr48eZ38tBDJgxxv/1Mp6TsbLNt2LTJ7FMnT27jAnueBAdOgEV3wbKHYMXjEJdjLv6u2wQ2BzZvJh9/DNdfb37X++1ntgNDhpjfXmmp6Wj5t7/B4UdE+G7Dd7y68FXK68s5ou8RfLLqE0ZljeL8vc43F067UiG+t+nYVrvRdH4O1ZiLc/PehsIvIHEQ9DplO4Xfg7Q1RKETldSWcMsXtwBwz5H30CPRdArdP2d/bvrsJiYumMhlYy5jaclSaoO19Enpw6prVmFvaBAqqimi56M9WVy0mB8KfujUjuNNoW7A8MzhMa81Pl9c3BBKGp8Dx3wF8240HUqa6348jHkEMCGovXrBI4/A/PlmnV3csIjERBPe8NScpwA4a8RZvHnWm02LeX3R65z3v/N47sfnuO2w2/A4t38FRH29WX5xsXnes2d0X2WzmX+n3d4yuGRrzj7b7Afvu8/sk3r2NL/BtDRzQfyKFSbc7i9/MZ1Ebr7Z7KMfecQ8Gnk8JgStPf70J1NXuPFG0/GkUU6OeU8wn+m55+CAA0y9v/Fzg9lPXt+Qx5eRYeoMf/ubmT7YrN/rkUfCiSda/GXyOiAa9NaosY4fCAcoqC6gV3IvTj/d1EluvtnUdRolJJj/ud1ugmW7dzfhMgsXtgwNOfXUdnwZDi8c9Rn89GfY8CZULjKPRun7EUkZQ2mpuYDG7TafOSPDBGg6neZ/4Pe3Ev6zoyGCbbX0Ydg8DbDDoCtMOGtNHtRvMgEtVgRG3AIJbTim6vkbGHwVrHkJfrwKKhZC0mCz/d7wlukY607feZ9Fdo4VT8Kqf4O3BxzyBiQPM/vq8p9g5bPmpIE7/RfX8TYnxwRJ/+lPpiNeo/79YcKELitWl5iTP4f7pt9HgiuBS8dcypryNQBcNuYyXpz3Ihe+eyHzr5jP4iKzo20MemvU+LwuVMfairUMSh9kOn0ePwe+Pdl0wgTTrjngctj3UcoDNfznx/8AMOXsKRzUK3rjjhNeO4F5m+fx77n/5jdDfsPL81/GYXPw39P+S7Inuem9zn3nXCYtmsT1467njDPGMnmy2R999pkJjRowwOxXy8pMGMQ//9m2fWZFhakfr15t9s9vvGE63TY2T1tWQ5tXZS4svMmEA/Q8BbodbU72lc0Ff5GpG6eNgWEtQ2w7zIrA17+CzZ9B2r6w/3PmN125BHxrTQB0uAb2eRgSenfa29rtJgD+nntMe8D06ebR3L33tm1ZCQlw0UXw9NPmf/P003DUUZCVZb7jqioT7HLiiWZcp0keAZ5sCJSYY1iHByJhc3y78E7zPxt2I0+8sjeff27aqi65xHSu9niinXPDYRM42zyw9+fEZjPtHtddZ4Jz9trLBOoPHGjqruXlpv533XVwWFvDjz3pcPRXpm0p7+3Y11JGwl73NT39v/8zddo//tH87hodeig88ED0+YMPmhsKXHWVWQ8ai/CHP8CVV5rnV1xhAjbuu69lGPDBB0PvfgFef/N1AB45/hHOHX1u0+vXfHINT815ilcWvMI5o87B4TA3NHj4YdMptaRZJktiIvzud9v4UmX3dsDzJmBk3SvwzQngTDIBJI3BPK5UakIhHvreHFQ8++tnOaTPIU2zX/zuxczbPI9nfniGWw69Bca9bPZxq1802+LNn0Xfy5ViLvQADjrIbCfvvdeEDjb/WfXpY34TbREIB5i6aioAV4y9gjNGRFOyi2qKWFi4kA9WfMBfj/prB76cn5cf8n+guLYYGzbuOPwOshKiO4HJiyfz2ZrP+HDFhxwz4DE4+gv48VpzHPTRUHDEmYtuglWmvhGvm379XNSH6nl05qPcP/1+EtwJ3HHYHby15C3+Pv3vnDniTB467iH6pfYjOdn8Zm6/HV5/3eyvpk2LLmf4cFOHaIsZeSYJvldyr6bQN4A4Vxx7dduLnzb9xIy8GawqWwXQdC6h0cjskbgdbgLhALM3zsbC4rYvbqN7Ynf6pPThmqnXALB3t735ZNUn3PL5LTx0/EOd2hY4t2Au7y1/D7fDzUfnfUSS29xZxxfw8etJv+a95e8xt2Au++Xs1zRPXbCOSEOAvcfpaWqLtywTjr9unWnXGDXKnBdxOqP1m0jEtBO19TvuVGOfhrlXmjr09xeYOrUnE3qeDDPONPXfHuM56yx4/3246y7TDnj66bGLcbka2oMcXjjyU1hwq9n2W+HoRAn9TKBtewy6wpwzXPxXc24tEr1+hKzDoN/5ZjiuG4yfC7MuhqKvo9MkDjABlT2OM897nwGHf2A+c+3G6HSpe5tQuLa03TQacZvZry17yCxr3X+jr3m7Qa/TTEDprIug5Hv4/DAT5O/tbr7feTeY60v8xVt9iw6xLLOfDVaY9gZHfPQmXTQkPLsS+WZmGvffb9bNxhtNNXZ+BrNepqfDPrZXYdkj5pzu0OsgZRTUbYSSmbDyXxCuwWZ3sffeV/HNN+Z4YsECcz1Dt25m3Wi8bmG/0QFS6vLNtTXudHNOI64XFH4ORdNh/WsADBl3KkcckcK0abBkCbz5pqlXJyeb44GyMnPc+NsdyBXc7Yx9Eub+yfxWZ17U8FvNMG2J351hfqtZR8K6CeZGQd2Ogd5nmpsPFH9n5ls/ySwrfSykDN/Wu0knqKyv5LsN37GhcgNDMoawrGQZQzKGcHDvg0lwN2zwO7Lv2soND95801wXUFtrjuFOP938BhvbzsvKzPDTT5vzHJZltunjxkWD3+rqzE3pUuKr4NNjTPB4j1+Zmwt4s8161BhIbrOZuv5ufiOL7t3hq6/M+ZBp08z30a+fabcMBs0NZwYMgB9/xOxrjvkWfro2GroG5vrAgZebENK2sNnh0Lfgp+tNUOP7fcx5fk+WOY8Mpn3L7oKDJ5lzJ+tfN9figNkvNu4PG8PGxj5l5l/1byiebh6NnAnQ7WgWLDA37ikuNu0GAwaYdaLxHFskYrbdbbp/r91jAqAqF5qAt6ol5iaQ1SugZBaseMJM1+3ozr05Qt475jxSoBwG/t6sl4Fys17WF5rrOvuex1NP7csbb5jPNGmS+b+mp5t9Ul2daZNIb+tplorF8Pkh5lhn2A1m/+9OhU1TTRhcxULY/DmMfbzzPmcnGzUq2q743Xfm+pzDDjPrfyhk6gK1taaO1xafrPyEF+a9QGZ8JuePPp9CXyEeh4cL9rqAVxe+ykXvXsTsy2fjbn691646X9fJGoPf/m///+OGg29oGv/c3Of440d/5K0lb/HQcQ91yTVMK1aYtr9QyByvDRsWDX6rrTXruNdr2kVyc82+4KKLzO98y2vlxg5Zgfeb/c16PuRqE3TpToH8j8x6XrnI1Nf2//cu/5xdxbLMtQm1teYaw0jEnIduvCbBskzdtEuO4UTaIBw2+7xAwGwnIpHoPt9mM9uH5jcR3uPVF5t6VqTetCHbPc067lmAvVPP6e0OLMusG36/+du4bbPZTLuA291w7XNbbHzfBBhjmWNRV7IJkPYXN3SajJgbQnZmB83SubD8UajZAH1+a9oqrLC52VSgzNxQMetgHpz0W267zXy2224z9f7m14fX15vvQDrmxx/h7bdNm8/w4dGbRDS2LVmWuY59SN8yc81zyGeucXXGA/bojpUIxPU2xxc16wEbJPY3x5uhOrCCZj2yOSBtn2btXCIiHRSsMm3o4TqwextudNKszc3moKQ2h7PPNtfGJiWZay369zf1KDD7kKoqE8INpv7VWPdqfqNFh8O0R3hq5kHJd6YdI/NQ07YQroW6zZh2+whkHGC2fyJCOGxuQjVvnjm/etllpi2reZtGOGzObyUmQpW/ipl5MympLaFnck/WV6xnVPYo9u6+N067k6VLTYh+Xp75LY8fHxsIHImYeszee7exgD9eA2teNr/l/f5trvGuLzR1maJvIFhBaMR9PP3qKJYvN9uMM86IXvPe/Bq4vfduR91bZFvCfnMdbaDc7NvcaQ3BOc0yENxpZr3tCpGQOSYI15vzCTYHYG8om2XOabvb2KFXdqqZM+Ff/zLbzL32MjdNauxr3rjNTE+HkUlvQf4Hpt9i/wvNuWt/CdTmm79WEPqc23AzvIb+NIkDzLFeuL6hzcAybTQ61hNpv9p8c94+UAZJg0ybC5jjncZjjMQBfDajJ19/bc4RH3KIyYnwemPrVD17mvPjncXnM+cdi4tN3adPn2hmAZifvtMJA6wXYM4fTHkP/R/0OdXsx0rnQPEM0x/PX8KCmivIzTXXCQ0eHD0f1ti0FImYumJGW+5b5y8xN2KrWGiuOxtyrdk/lv1grv2qWgrORNZmv8TkN2zk5Znv5pBDYq+psixThxs5svO+NxHZeWyWteNXKcydO5c5c+ZQUVFBamoqBxxwAPvtt9/2Z+xEQ4YMYcCAAUydOjVm/KZNm8jJyeH+++/n1ltvbXVet9vNpZdeyr//HXvSf+bMmRx88MFMmjSJc889t9V577nnHu5tpbfaH885GJfLRbXfRdiy43aEcdojuB0RQhEbeVXxVMfVUBlfSb2zHnfYjTvoxhfnwxF2kFSfREptCvaInar4Kqriqgg6g8QF4rBZNmo9tbhCLpLrkkmuTaZvYh29kmuw2yKsr0ymLujE7YjgcYZI9QYAyK+KJz3OT1qcn1DEzqbqBIIRO/GuIHHOMKleP6GIjWWlqWxw+ShMLcQZdpJUn0S8P56quCp8Xh/OiJPuFd1Jqo89o/r+Bx8AcPJvfrPN/1VbpmucZsvpLCxW9FhBnbuOnPIcsquiPefKE8pZn7keV8jF8PzhhIOJlJaOpqamB35/Cm53NTZbCJvNwrJsWJaDQYOmdOpnSPXWs1e3Eron1lIfclJR7yEUsWEDhmeVURd08s36HL5I2GQ+Q1kOWdXRTiklSSXkp+fjDXoZWjAUM+e2v5O2lm1wejkjs8uIdwVZVJhJTdBJnDNERryfnkk+bDaLRYWZLCrKbLGstnwn2xMKuamu7k8gkEQgkITdHsLrLSM5eR0uV9tudV3traY8oRxX2EVaTVrT8XzYHqYsqQws6F7ZneKkYopSikiqSyK1JrVp/np3PcXJxSTWJ9KnpA9Ley7FslkM2jyIRH9i03SliaXkZeThDrkZnj+86f9QVdWH8vLhVFf3Jhz24HD4iY/fTEbGYlJS1sWUdUfW87ZOZ7dFGJBWRarXTzBsp6zOSyhiJ84VxNPw+w+EHSwpTodW1qUt3zPgCFCSXEJZQhnxgXhSalKwbBaV8ZXUuevI8GWQVZVFYUohxcnFJNUl0ausV9P8fpeftdlrsUfsDMkfSunGo6ipySEU8pCVtRCXy4fNFqbxH2dZdhITC3A4Atv9rOGwC5+vN35/KpZlx+OpwOGInsm2LBsOR5CEhE2tfnetfb+Z8XV0S6gh1RvAYY+Y7ULDsupCTlaVpZDgCtEtsRaXPUx5vZdg2I7dZuF1hslOqCUQtvNjYSbrE0opSi4isT6RpLoknBEnde46quKrwIJeZb3wBD2sz1xPraeWdF86nqAJjgk5QpQlleEIO+hb0herfAA+X0/CYS9xcSV4PKXY7ZGYsjscdbhcddv93rYUDrspLR2B35+KwxEkMXEjSUnrW1yr3S+1kj4p1ViWjU2+BNaUJxOxWqY/19VlUFExhFDIi8dTTlraClyu2phpLMtGZeVAamp6EIk48HrLSU1dGTOduRAtg6oqs40AC4+niqSkDcTFmc6VoZCHmpoe1NVlEQ57iETcDd9FPW53JenpS5u+J8sCn68n1dX9Gn6r9SQkbCIpaT1Bdx3FyaZzSnJtctPv28Iy/y8gqzILT9hj+pz4U/H5ehMMJhAOe4lEHDgcAdzuapKSV2OPL6XWXUvAFcDCwhv0EnAGiNgiuENu4gJxOCIOlvZcSsQeYWDhwJj956aUTRSmFpLgT2Dw5sEx393W1t+K+ArWZa3DFXIxoGhA02eI2CKs6baGsD3MgM0DqEisoDSxlNTaVPoV94v+31x1rMhZARYMKxjG8KQ6suLrsYDimjgCYTteZxi3I0yCO0QoYie3OA2fLUydq46QI4QNG66wC7/Tj92y4w66iQvG4Yw4AYs0r5/eKdUkuoN4nabDlD/koDrgotCXQH6dm6q4KmrdtbhDbuID8Vg2i1p3LSFHiMT6RBLrEylLLCM/PZ94f7zZ7jcIOAMUJxeT4E9gQOEAHFY0QWdrv4cadw0re6zEho2ReSMbympsTtnM5tTNxPvjSa1JpSC9AE/Qw/CC2A4la7PWUhlfSUZ1BmF7mIqECtJq0uhbEhtQlNsrl6AjSO/S3mT4zNG4z9eTkpK9qK9PJxBIwrIcuN3VxMdvJrvHDFYNnGX+d0UDSK5LblpW4z7JFXIxIn9E0/+7vj4Vn68PwWA8oVA8NlsYt7uSxMQC4uOLaB+L7om1DEirxOsM4w85KK3zsr4imbpQ9HuKRJxUVfXD708hGEzEsuy4XD7i44tISNxAWUoRde46EvwJuEPRC6Tr3HXUu+pJrksmpTYFGzZSPH76pFST6A7gdYax2cw6UhN0UVQTR0F1YkwJt/Z7KEgtoCilqGnf3sjv9LOm2xps2BhaMBRPyNNiWa0tz7Iag5MBYre90e/BQSiUSDjswmazcDj82GyN01qADZvNwumsi5mvrfXMrbEsqKrqT1VVf2pqehAKeRvey/zG3G4ffftOxe2u3u6yGutUzoiTnPLYVq+SxBJqPbXE++PBBrXuWhL8CU3rcqNNKZsIOoOk1KaQUtd5Jy9q3bWUJJVgs2z0Lou9YLHaU015YjmOiIOe5bE9OgakVdI7uZr6kIPV5amU1LZ+drG6ujfV1X0Ih13ExZWQlrYChyPAxrSNROwR0n3pMfXCsC1Mfno+AN0qu8WsS1tj6r39CASSAYu4uFLsdn/D/rZxHYkQH1/Ynq8GAL8/mcrKAQQCqU2/wYSEfBITC7DZoof2oZCb8vLh+P1pDWUoJiVlNU5nx64EjETslJaOwu9Px+stIT19GXZ7qMV0wWA8ZWUjCAYTSEzcSErK6lb7hNXWZlJZOZhIxEly8hqSkvKJ2CJsTDcdWbMrs/GGoh2xQrYQBekmLbpbRTc84ej/wbKgvHw4tbXZuFw+0tOXxNSTmr9nRcVgwuE4XK4akpPXdeh/AJDgCjIqu5R4VxBfwMXaipSYdS4cdlFb253a2m6Ewx7CDeV1OPy4XNWkpS3D6QxsbfHRMrtrWdnd7LsGbh7YtO+ysFiXvY56Vz29SnuRXpVNJOLEshzYbJGGR2xTj80WweMM0DvZR6rXj8NuURNwErFs2GymbuwPOVlemsJqZy2bUjfhDrlJrkvGHXLjd/qpjq8m4AiQU55Deo3pbeSwReiXWkV6XD0J7hB2m0V9yEFlvYdNvgTK6mI71G1tW9g7uZrhWWUkewKsq0im2u/C5YiQ4AqR6vUDFouLMsivTmqxrNaW19p7tjad3RZhaEY5QzIqSIvzE+c0n8EfNp9hQ2Uis/N7tOkzANTVZVJePhifr1fDvtLZtJ12Ouvo1m02BSM/JOAM0Ku0F5m+6PF3nauO5TnLARi0eRCruptwgeH5w2O2PeXx5azPWo8j4mB03mjAHFuVlo6komIQgUAKwWACDkcAr7eUtLTl0Odb8jLNMe6w/GHYMXX7iC3C0p5LCTqC9C3uS1ptGgmuADlJNWTE1+N2hHHZI0QsG/6wg5qAi3UVyVT6t79ftdsi5CTVkOQOEozY8QVchCJ2PI4wLkcElz1MMOJgXUUSbTle3ZS6icKUlvVmC4ulPZcScAZi6l7bKtuOqKgYhM+Xg9dbTnr6Euz28PZn2oOUJJW0WjewsMhPyydij5DmS6MisQILi8zqTOID8U3TRYiwMaNhW1+VjTcY3UZ4HCFGZpfidYZZXpJGaZ3ZrjavG/Qq6xXTVlYRV0FVfBXukBtv0EtVXBWekIdulbF3oixKLqLeVU9SfVLscUUgicrKgU1tDS5XNYmJBSQkbCQtLkC8K4gNqAk6CUdsuBwWdptp341YNkpqvQTDLny+Hvj96Q3Hs7aGuqHZ59vtQbKzfyIjvoYeibUkewL4ww6CYTsRCxLdIRz2CBX1HpYUx9a3drRtyW6L0CvZR0ZcPQnuIIGwg4hlw2GzcNoj1IUcLC3OiKnzd+bvxrJsVFX1x+fLIRJx43ZXkpKyGq+3gpXdV1LjqSG7Mpucimh9NGQPkds7FwuLIZuGmGNFy0ZtbXZDG1Mc4bBZbxyOOjyeSlJTV+JwRBNlt/YZAo4Aa7PXUu+qJ6s6C3vEbAstLEqTSgHoX9yfBH8CNiyyE+romewjzhnC4wybtouQk4p6N/nViZTXJuLz9SQQSCUUisPprMFub2x7NtvmpKQ8hnffQHqcv9k64yDOFcLtCBPvChEI21lSlElRyV5UV/cmGEwkLq6ooS27sZ3D1Pvdfb9mXfY6nGEnw/OHNx0LW1gsy1mG3+WnZ1lP/C4/JUklJNclM6AomjYctoXJ7ZXbon0iHHZSVTWAQCC56VjP6awhPr6YpKQNrdb7tqdnUjUD06sIR2xsqEwiryqR5tv7pv95yE1Z2UgCgSSSkvJITl7bav3R70+ivHwY4bCH9PRlTe1FzZmbKQyipiYHmy1McvIaEhM3EXAE2Jy6GYCc8pyY9oBtbWNCITelpaMIBJLxeCpIT1+G01nf4n2391v1OkOM6V7E8Kxy4pwhaoNOCqoTWFSUudVj320tryPTbTmNDYvhWWX0T60iLa6eKr+bYNhBxILuibUEI/aYcwWhkJeysmGUlw9rOMag4Te9hsyseWzOXkVpUikptSkk1kc/U423hor4CtJ96aT50ljdfTU2bIzeMBp7s7bG4qRi8tPz8YQ8ZFZlNg0Pz2+9XSbdl06f0tjAm6191jXZa6iKqyKzOjOmLbuxnchu2Rm+cTiuiLkoy2kPMyi9kuyEWhw2i5qgi03VCeRXJ+Jz1lGSXIING71KY9eXyrhKKuMrcYVc9KiM1h+d9ggjs0pJi6snGHZQWBPP2vJkwq20tdbUdKOyciCRiIuEhE2kpq5q1t6wbdtaz+tc0fbQlJoU1nZbi82yMTov9v+wMX1jq9uObX2/O0uS288hfTbRN6Uau82irM7LitJUFhVlUu6u2WqbRkV8Rav1gVRvPUMzKkhwBwmG7ZTWeVlXkUxt0Pzfvc4Qo7JLGZhW2dRWFYrYqQ64KKqJ58eCLJatPwyfrxehUBypqSsbttPRuqDZ7q/D7apvWjMaj8q23KwFQm78/rSGfVoEl6sWmy12W2u3R1qcO9sV553AfP+jssvolVxNgjuEP+QgbNnwOMIN+7M4Pl3dF7Don1rFqOzShmPCoNlvB52U1MaxvDSNQNjOqOxSUjwB1pSnUOV34XWGSfH6GZBm2uN/2pTF5z57U3tU8/N6AVeAkqQS7BE7PSp6xLQDh8NOyspGUl+fhsMRJClpPYmJG9uUTQPmvHK1txpP0EO3qtj6Y/P2sZAjRMAZILkumdTa1JjpClILCDlCpNSkUOOtIeQIkVaTFnMOYFu/zx1VHl9OdVzrn6EwuRC/y09SXRJJ9UnUemqpa2gv8Qa9hOwhgs4gzrCT+EA83oCXupoe1NVlEwrF43JVNaybEUw7qWk3jYsrimlf2tF9Uk1ND4qL96GuLguPp4zk5PU4nXXYbJGGOpULl8tHYqJpn0uPq6NPSjUJLlNHC0ds1ARdlNR6ya9KJBiJriOBQBLl5UMIBJKx2SJ4vSWkpq5p0W7bLaGWwRnl2ID86kTWVSSbdT2phI3pG3GH3IzIjw213pCxgbLEshbnX+w2q+E3UUdd0MXq8pRW2yltWIzuVkqqt55CXwIry1KJWC1X3jhniFHZJcS5wmyoTGpxDN0edpvF8MwyshJqCYYdbPIlNH3WRgmuIAPSKkl0B4lzhYhYNnwB8/0WVCeyPqmIwpRCEusTSfdFk2jqXfUUpRQR749nYOFAbGEXFRVDqK7uS21tNpGIC5st3LDdtON01jFi8DsM71ZEgitIWZ2XsjoPFjZSvX7iXSG8zhD1IScLNmdSX59JbW0WwWAyEGlYBxv3keZYLiVlLXHOID2Ta8iIq8PjNG0aFramcw/rK5Ior/diWXZqa7MajjG8DdtjW1PbnTmPWUeSO0Cv5GpSvQE8zjAOW4RgxE5t0EVFvYc15SlELBvhsBufryf19RkNy/Ngs4VxuWqJiysiK301ie4ALnsEf9hJMGza4xw2C5fDHD/WBV2kev2Myi4l1etnky+eKr+7aZpR2aWEInZm5vVgeWn0uHZbv0G/P4XS0pHU1nYnFIrD46lodr2MHcty0K/fxy3aEdtie/ukbf1WC6oTCYQdpMfV0yPRR7IngMcZwWGLELbs1IccVPtdrChLwWeLUO+qJ+gIYrPMucmAK4AtYjPnYZvOTbatbOGGdbOycgB+fxqhUByRiAuHw4/bXUVW1nxKhn9IjaeGbpXd6FERrdcFHAGW9FoCwOBNg1nVfRWWzWLg5oEk+aPb/WpvNau7rY6pb5k27KGUlw8jEEhpdr1MKSkpq8nOnteu77c9023r2qtqbzWV8ZVN7SqOiIOQPUS923znaTVpDcfInRsU1Nh+XleX1XCc78KyHNjtQZzOOpKT1xIfX0Io5G6YLjumnd1uD+Jy1ZCWtowEbxV9UnykeetxOyL4G45rXHbT9lEbdLKgMDPmWodt/W4iEScVFYOorBzY8Js264jdHsTtriQjI5fMzEXbXVbzNsst24F9Hh+ruq/CbtkZkTcCp9W+dplw2E11dR9qanKIRJw4HH7i4opJSlrX4rzDkIxyeiTW4Au4WFaSTk2wY51R4l1B+qVWkeLxE+cKUxd0UFwbT15lIv5wtPxOe5ihGRVkJZh9bWW9m7yqxIZ9YXQ9ctgiDM8qIzO+jnDETmFNPGvKUwhF7ASDcfh8vRrOsdnweCoa2iVMW5tlgdtdRVycSYePHq8Ox+9PBcDjqTDHq5nzcDoDeBwh+qRUkx7nx+sM4bSb7XlNwEV5vYf1FbHHaDtav3Haw/RK9pEe58dpj1ATcBGxbEQsyIyvJ2LZWFeRxCZfIqFQHDU13aivz9xiPQ/hdNaQmrYMu7eCoDNIqKF9xhlxNm0XnREn7pAbR8SB19H4vvVN296IZcNpt4hYNtP+WJJGxBYhYotg2Sxslg0bNiK2CDbLht2ym+PkzHL27laCxxlmweZMyuq8uBxhktxBeiTV4LBZLCrKYFmdk/KEcnxeH66wi+TaZGq8NdS76vEGvea8a30iNmzU16dTVja04RqHBEKhOGw2c9wTF1dMnz6fNl3zEwgkUF3dh2AwmWAwAbs9iNdbRlLSetxuX5vW2+b14bTa6L7TwmJj+kYsm0VWVRZxwfb3WN3aOtJ0bUfYxciNsT0o8tLzmtpOEuoTKEgvaHF9aMQWYUnPJYQcIfoV92tx/NGabZ3Lbn4s0r28O1XxVRSlFOEMO0muSyYuEEdFfAU13hq8Qa85BxvyUJhSSGliKYn+RJJrk3FEHE3XLyfVJdGjokeLc+bb2idFIk5qa7tRU9ONcDiOcNjcqNpsz32kpq4CLGpqcpqupXG5qhvOd9Jwna+N1NTVxLnr6JUc/T1bllnP7TaLsGWjyu9mQ2USfRuuV6qo9+ALmG1fXEMd02m3KK7xxpxz3NZnaGovqU0ms7rZeT13HZvSNuENeBlYMIxNecdSV5eFZdnIzp6Hy+UDGj8DgJ3ExPyYtp4d3d74fDn4fD2JRNzExRXj9ZbGtFWYOm49Hrf53QJEGq6PtNHQCRILCxuhSPNrZbZxDactTFFKEcVJ5pqt5LpkXGEXVXFmHYkLxJFTnoM3EEdl5YCGfWomdnuo6f8Kph0lIWETaWnLKCsb2dDWnozXW9Z0DU7j95aSuoKNw6a1ul9trHvZI3ZGbhzZpuvH2vr9xruC7N2tmB5JtU3t+6GInYhlY0hGOXYbLC7KoCbgZGhmBR5HiLUVKdQEXCS4gyS6AwzLLMcfcvDN+p7MDPvZnLqZBH+C2TZaNiybRY2nBl+cj24V3ehW2a3N14yHw27Ky4dSVdWP+vp0wmFzrGOzRXA6a0lJWYV38EdsyNyAJ+Shd0n0+puwPcz6rPWAqduWJJU0baOat6nVueuarlkbumloTN17R9ugzLUvgwiFzPUbCQmbWlwPbLNFSIwrw+sM4bBbTee5bJhjXHPNrzl30z2xlm6JtThsEYpq4gmEHbgdYdyOCEmeAOGIjWUlafRJqWZQujnu3eyLpzboxGq4jq1/WhW1QSdvLhlIice0QQadQeL8cXiDXirjK4nYIiTXJZvzjTXdKCnZi9rabOz2EImJG3E4Gm4oDYAdt7sKj6cMvz+dcNiN01nX0O4R+1t1OmsZmlVIelw9YctOoS+eYMRujs+dIdLi6glHbCwuyqA6sP1z9REiTetWwBnAGXbiDJtrmp1hZ9N62NguvuXyOnSMYUEwmNh0ja3TWddwLr2hc3xD25LDURdzPfTWlhcMJlBRMZBgMKnp+l+Ho77pGNayTMd7r7eCSMTRsP5bzc7TRltnbTaLZE8dvZJ9JHmC1AWdTf97MNerBCN2lpemUljvJuAMELaHsbBwhp1N18s6Io6muldbjpNsWHRPrCEroZ54V5DaoItg2Na0zjntVlM7ajD4/+zdeZxVdf0/8NedGWaGfVdEQTTcUbFcywXNJXPLfSuX1EottcXK0NRK08pfpd+00kpKxcyt1NTUXLJyz9xNFBBFZGcYGGaYmfv748LoyCIgwwA+n4/H1cs5n3Pu+9y5937O55zP5/3pnFmz+s1rq87vE1jq115W1jTv2uf4Jfo7NDZ2SnNz5bx+9Q3v+byVVJTPSUV5U8rmjamZXz+UzevbVpj338bm1vcyPmh7taG8IbXVtZlTOSdNhaZ0bOiY+g71KRaKqZpblc5zOqfj3I4faPzMe8s1N5dn1qz+mTOn57zrnrXz6pr5n6VCOnSozQb9XslaXWenoqw5b83snIam8lRXNKZTh7np27n0HXxtWteUFZI1OtelvKyYKbOr09BUnqqKxnnjCuoyt6ksz7zdK03F8lTMG5vQ2FyWpmJSXij9fpUVimkuJrPmVi70GN57nHUd6jK279jMLZ+b3rW9UzGvHTa3fG6mdJ2S6rnVWXfSuhlY1ZjN15yS3h3nZPLs6syor2pJlrhVv0mpbyrPP19fK69O6/G+71sxpf7cMzvOTH2H+hSKhVTPrc7sqtkpbypPx4aO6VrXNeX13TNz5rppaOiSsrKmVFVNnXfvfv415VI7vqpqepqaKlv6UZUe7+5zW5ZCoalVH5zFfc6nTNk8tbX909TUMV26jEtl5bvHqJTOHzt3fzVv9BuVmo416V3bOx0a3/nNm9FpRku/u96zlqyfxtzyuZnaeWpmdJqRQrGQ7nXd01jemNqq2pQXy9Ojtkd6zO6RIb2nZ3CvGaksb8roefeiOnVoTFV5Y3p3mpOm5rI88ka/bNh7etbuVttyP31OY0W6VjWkY0Vjulc3ZE5jee4fvU6ra96L/M0sm5sJPSZkWudp6Tqna7rN7paylGVGxxmZ2XFmus3uln7T+6WhQ0PG9hmbQrGQXrW9WvqPzS2fmyldpqRzfeesO2ndrN9lTjbtOyU9qhvy9qyOqW2oLLXH512nrGsszz2vDszbszq/b2xNTZWZNGnLzJq1dpqaKtOlyxvp0GHWvO/g/L60c9Op09uZPHnL1NX1TUVFXbp0efM9v/uFVFbOTNOaz2Zsn7GpbKxs1W+psawxk7pPSseGjlnv7fWyXpc56dOpLoUkU+qqW50bdO4wN43NhbwytUcamt7//KaYYhoqGlLfoT6NZY0pay5LebE8c8vnlsZQNFamam5VCsVCGioaMrdibprKmlLRVJFioZimsqaWOqSysXKJfuMKKWbD3tPSo7oh9U1lmVDbOXObylqu3Xevqk9TsSzPT+yVmXPm913pnsbGTi33WJLivD7xZenZ8+V5/Y67zatXJ7Q6757f77R3twkZ0G1mulU1ZE5jRWbN7ZDmeVXq2l1Lf7dxM7rmP42NGdd7XKrmVrVquzZUNGRql6npPrt7Bk4e+IHOz99bbm7Z3EzoOSFTO09N97ru6VrXNWXFspZrnJ3rO6f/1P7ZsvvsbLFm6b7Kk+P7ZkZ9VarKm9K9uiFrdi6NX3plao88X9MxNR1rMqtqVprKmtK5vnPmdJiT5kJzqudWp1tdt3Sa0zmzagemvr57mpsrUl09dd79iXefa5SlsnJ6Zs4cmIaG7nmnz3hDq895UkznzhMWeqzLWq9OmrRlpk/fIA0N3dKz58uprp7c8htcLJalublDunR5I5WVsxbY13v311RoypSuUzKp26RUzi31G65qrMr0TtNTW12brnO6Zo0Za6S8uTxv9nozMzvOTPfZpb9DkszsWPo7dKvrlv5T+6dXeVrOd+b3G51/Dl89rw/W1LqOmdBhVt7q+VaKKaZbXbeWv8P8MdT9pvdLr9peaSprSkN56RwtKV0fayxvbLk+1qGxQ9JYlfr6Hmlqqp43jmNWS70yvz5MmlNeVZP6DvWZ02FOmsqa0qGpQ4opprG8sXSNbW51qudWp7nQnLoOdanvUJ/mQnOqGqvSWN6Y5kJzKpoq0nFux1TNrUrj3M7zrml0S3Nzh1RU1M473y3VhcViWbp2H5XZXSeW7us2VqW6oTrlxfI0lDekrrIuKSQ9a3umuqFTZs9eI3V1fTN3bpeUl8+Z951Oy3GUl9enW/fRaSprarnGN7/fR8s1vnm/U+WFZO2utendaU46d5jbcv08KaRzh7nzxk32yNsz1sisWWtl7twuSYrvqlfnv25ZunYbnaaq2pbfwvnvfUNFQ8qay1LZVPotLKaYt3q+lWmdpy32u1pIIZO6TcqMTjPSsb5jes7umbnlc1PTsSYNFQ3pM7NPes/snU171WRQjxmpKCvmjZoumT23Ih07NKaqvCk9O9anqbmQR99cI//rPDUTu00sfXfrO6Uw74pHbXVtZlXPSr9p/dK7tndG9RuVOR3mpN/0funQ9M65weSuk1NXWZd1pqyTdeu7ZWi/yenfdVZL34fG5tK9vcG9pqdjRWNGTe2Rf7zeeizLor6rLfeVZ/VoVXfNqpqVCT0mpGNDxwyeMDgzpmyWmpr1Ul/fPR07Tkll5fR3talKn6W+fZ9aovbUey0qttmz+2bKlM0yZ07flJXVp1Ont+e1Id497veNNDR0zaxZ/TN3bqd06fLWvGs885Ijp1SPdO48fon6EXTu0JD1etakc4e5mTanOjPrS+fEParnpFvV3FRVNGX6nMo88/aSzQTcnOY0l71zzbusuSzFQjHFFFOWspQ1l655L0kbrrK8KZv2nZrOHeZmRn1lJtR2TlNzoaX+ra5oLLXNJ5XGEzaVNaWp0NSy//nPy5vLU9Fcsdzvry2Lxf3u13SqyYyOM9JQ0ZBODZ1S1lyWWdWzUt5U3tI/plOh1Me5oqw5dXPL01QsSyFJeVlzKuZ9FmsbOizROVVSatvMrJ7Z0g7s2NAxsytnp6xYlo4NHdNlTpdWY4gWt79Sv+I1U1fXZ95vZv2888f560tj7Hr3GN0yfqZQSMs9m2JKfUUamwsZPb17ygvF9O08OxWt2npNqSovjS1vbC6de/Xs2JDuVaX8HFPrqtLYXOoP3KGsKdUVTWloKssrU3u26oexqO9gU6EpMzvOzMzqmZlbMTfVc6tTTDH1HerTobFDus7pWhq/37ku6/aYmeqKxkyo7Zy6uRUtYzG6z8sd8vLknnmtrC7je41vuQdQNbcqcytKv63zf/v6zOyzROejvTvWZdu1S9eqxkzvlomzSvdS1u42K3061aVTh8a8Xdsxd786aKF/rwV/k97dJ+G9PeveKfPRtSZlYPfaFIvJ6zO6pq6xouX6WLeqhsxtLsuDY/tnWtnc1FbXtoxrrmqsyuzK2SlvLm/5LFU2LVmbu7Z27Xm/hb1SXT01nTtPaHUuVyyWpbp6WquxZx/03LZYTKZO3SQzZ5bG6FZXT01l5Yx3nbuUrmetueYTC93fsp4/1nWoy7Qupf5yFU0V6T67e6k/WWVdquZWpdesXula13WJPiOlez+lPmZJ6f7tO/d03xlb26vLxAzsPjNdq+ZmZn2H1DaU/i4dOzSmd8c56VDenLdrO+X5t9dqadc0N1fM29/8sQGl6wbV1VNTVT2l5Tc/Sct19vnFyoplKRQrUlfXZ941srJUVtamrGxuq/PzYrF0Tfad8/jmdOw4NWVlDUmKLfd2yspKYz+7VdVnrS6z0qtjfUsuiuZiIeVlzalvLM/4mZ3z6qQB8+rLzi19UFpfHy1LZdW0VFbOLB1Diklh3jHM+z4UUmg5t+tU0ZgB3Uu/X2WFYuobS9fH57dt6xor8uT4NTNrVv/U1fVuudZe6uf+zrXR8vL6dO06brGfmcV9jt77ty+kmF0GvZl+XWZlVkOHvDylZ+oby9OnU126VjWkX5fZaWgqz72vDsignjUZ1KMmleXNmVDbKXMaK9JcTNbsXJf+XWszs6Ey1760Xl7v/Xpqq2vTc1bPdGwo/d40VDRkWpdpqWiqyMBJA1M1p3tLfpfS92bavD6A73xXu3Z9I2v1eTEdOzSmbN5Y9cbmwry2SHFe3VXIjPqKvN1peib0nNDS/lncuMn3e0/evXxx9jxwj0zsPjE1HWvSub5zeszqkcbyxpbrVH1r+qbPzD6pq6zLxO6l8U+d53ROj9k9Stf7q2vTXNacNWaskZ6zeqRPx/p07FC6X/rOeKfmVJQV06GsKU3Fskyo7Zj68rlp6NDQch5f3lyeuRVzW53HF4qFNJY3trR5yuddj2oqK53fzL/HMP9a0vKyJO/dp/c+ZN71x1K/wfnf1XfOWZOysqY0N3fI229vk/r6HunU6e1546hnz2vbFNLcXJGKivo0NVXOu0bSfd791akpFOa+6xyikI4dJ6ex6/hM6zIts6pmtYyvnX8e07GhY6lPVV2XNM7t1nL/u7y8ruWa5/z9zZ07N/fee0tmzJiRbt26LXB877ZcEr/N19jYmGefLXVwGjJkSDp0WHHZazfccMN85CMfyZ133tlq+fzEbz/84Q/z7W9/e6HbVlZW5oQTTsgVV1zRavn8xG8jR47MEUccsdBt6+vrU/+uaXRqamoyYMCAJXrz5ysWi6lvKu2jvFCeDuULf9+ai82Z21SqqCrKKlJeVr7QcstLU3NT/jXuX3lx8ovp06lPptZNzQ7r7JDN1nhXx5TlOLPrQssspNwLk17Ijr/dMTX1NRnab2gGdh+Yt2e9ncfffDzlZeW593P3ZkA+kQ02KM1GsdVWyQMPlGave29YC4S/JLEtrtyTZySjry5lTt368tLMxLPGlGYVrB1dyko75Jy80pAMGzEs42eOz9b9t84Wa2yR5yY9l8fefCz9uvTLA8c+kI36bLTE78kSxdYwozR7af3kpLxzKfP5uzOiF5tLMyav4jPdzjfy2ZE5/a7TU11RnYt3vzi/evJX+de4f+Vbn/hWzt757FRVVOW0O0/LZY9dlqH9hmbb/tu2bHvPa/dk9PTR+cWnf5FTtjklzz9fmk3yySdL6zfYoDR7wty5yYsvlmZMePXV9wTwAT/ny1RuSb1PbLPnzs4/X/9n5jTOSXOxOV2ruuYTAz6Rqop5icqaG3PiX07MiP+OSP+u/XPatqflhckv5Pf//X16d+yd2468LTsM2CGTJyejR5cyFHfoUJqBbP7MFfMzFG+44XtmfVhFZ09NkrdmvpU/PPOHvFnzZjbus3GenvB09tlwn3x6g0+noqx0AaO52JzbXr4tP3/05xnQfUD6dOyTh8c9nC9+7Is5evOjW97jpbYKv28fFr//7+9z7K3Hpmtl12y2xmapKq/KjPoZeWHSC6kqr8ojJz6STfu2Hji0uO/qL5/4Zb781y+noqwi5+x8Tuoa63LRwxelQ3mHjPjMiBy22WGZWT8zn/z9J/P4+Mezbvd1s+PAHTN9zvTcOap0rnTtQdfmiCELP79ZmTz8+sP5yp1fyRs1b+T8Yefnlpduyb/H/Ttn73x2vrbD11rPwJws8vvQXGzOJr/YJP+b8r98Y4dvZOd1d25Z9817v5mXJr+USz91afbZcJ8MvnRwiinm3yf8OwO7lwYSz22am82v2DwzG2bmr0f9NbPnzs4hfzokvTv2zj+O/0fK5s2w+b8p/8v+1++fyvLKjPvquEx/c40cdljy3/+WZov47GeTTTctzSQxZUpp+bHHJo9V/DjfvPebGdh9YKvPwtMTns6E2gn5/Wd+n89t+bk2eIdXEYv4PjQ2N+ak207K1U9fnTU6r5Evb/PljJ4+Or97+nfpWtk1tx5xa3Zbb7eF72sh+1tZzZlTmnHtX/8qzcr2xz8mO+/8zszMxWLy1ltJz55mU4LVzZ9f+nOOvOnIzGmckzO2PyN9OvXJDx/+YWobanP+sPPz3V2+2yavO3vu7Nz60q157M3HsuWaW+a/b/8326+zfQ7Y6IB07PABfmiWtM29NPt6v/0tqtysccn9nyy119c5MNnkW6XZKGteTF69KhlzTdJpneSAcQvf33te85xzkgsuKC3+/vdLs/et9a6ccZMnl9pAV750Qc6+/+xsvsbmOWGrE1rW3zf6vtz2v9uy/0b7589H/Dnr/Xy9jJk+Jr/a91f5wse+0FLuC7d9IVc+dWUO3uTg3HjYjfnDH5Kvf70008yAAcn++5dms2loKLVTJ0xI7r67mOP+fFx+/9/fp1tVt+w9eO8kyR2v3JHahtp86WNfyhX7tr4mtsRWUHt18uzJ2eQXm2Ty7MnZb8P9Wq6d1dTX5N7X7s1GvTfKf7/032VvU8HKaHleW1rJjHx2ZI66+aj079o/p293esvypyc8nZHPjcw2/bfJYyc9tmw7X8x70tDUkCufvDI/fPiH2W6d7bJ217Vz3bPX5Utbfylf3+Hr6dmxZ9rDm2+W6pDnnitdPzvkkNKMXuXlpVm3mptLz/fcMzn59pPzyyd/ma6VXbP7+rsnSf457p+ZOGtiDtjogNx02E2ZPHtytvjlFpk0a1K2Xfuda57T50zPy1NebqlrWE4W91199bfJU6eVZoxMkrKqpNiUFOcleNrud8n6xy24r0Xtb1nLvbfM02clL15Umjl1nxdLs1TOGpu8/UAy7cnSbHpr7p6s99lcckly/vnJzJmla7wbbFBqe771VvLaa8nVV5eua9zw/A05854z07GiY76+w9fzs0d/lpr6mvx4jx/niCFHpLahNn1+1Cf1TfW593P35pPrf7IlnCNuPCJ/fP6POW7ocfnBrj/IoJ8PSmNzY24+7OaW6zKNzY3Z/Q+7p7ahNnd/9u7s+ZE9l+hYx80Yl+2u2i5vz3o7m/XdLOt0Wyez587O4+Mfz+y5szPiMyNyzJbHLPo9XM00Njdmo//bKK9Ney2nbnNqhqwxpGXdd+//bibNnpRbDr8ln9n4M603XJ7n8YtTLCb//Xby0v9753vyblVrJJ95Y/nOnvrGn5N/f7Y0W/2GpyX990uq+5a+q3/brjRz69ZX5OlZX8qLL5budwwcWPqdnj/LdXNzaVbJIUPeuVbTJlbEfaepTyX37VKawXjIucmmZyXlVcnLP0+mPJ5MfCDp0DXZ41/J/XsmU59Ien0s2eDLpVk5yyqT/w5P3r43WXO3ZOtfJBMfSuonJd03S6r6lO5HNs3rYFRsSnpvn1T1em+ErCo+aJ30Lo2NpUdzc+lRVlb6nnXosGRdEpa3lye/nI1/sXGSZPTpozOox6CWdYtqs38YXPfsdTn9rtNTWV6Z/7fn/8tv/vOb3Df6vnx5my/nwk9emDkzO2fHHZOXXirNJnvzzcnHPlb6W843aVLpfKJi+eVBXD288ZfkrbuSxpnJWnsnVX1L/UvmvJ2W38x1j0o69ntnm0V8B99+Oxk0qHRvYeONSzOe9+ixog6knS3i9+Zvf0uOOCKZNi3Zfffkm98svTdduiR1dckbb5R+b8Z2vDUH/vHA9O3Ut9V91BcmvZD7Rt+XvQfvnb8e/dfsfe3euWvUXTl565MzfKfhLeW+9+D38uunfp19N9w3tx15W26/PTnllNJs8337JgcckKy7bul3bsyY5Jlnkida99f+4P2WWLxFfG/+/e/koINK11M//vHk7LNL53ddu5a+S2+9VeojtO2277+vJLnqqaty0m0nZZ1u67S6L/30hKfzwqQX8q1PfCsX7X7REsXGwv34x8n3vleajb1Dh9LM7z16lK6zvP56ct11ySLm+V285Xh+s0prnlu6PtBUN+9aRqlDdArlpTZZ9ZrJvD4SzcXmvFHzRpqLzSmkkH5d+r3Tx6wx+eIXk9/9rvR3+ta3kr33TtZcs3S+N2VK6bzh0ENLs96vEhbxGRk7fWzW+/l6KaaYF055IZv0fSeh/eBLB+fVaa/mF5/+Rb7wsS/kU9d8KveNvi/rdFsnm69RmuTnsTcfy5S6KTlmy2My4jMj2iT05mJz/j3u33l12qvpVtUts+fOzicGfCLr9li3VbmpdVNz28u3ZWbDzHTu0Dmz587OPhvu0+qceLWziO90c7E533vwe/n+Q9/Put3XzU/2/El+9/Tvcvv/bs/eg/fO7w/8ffp06tNSV9TUlO7Rde5c+oy/u5/kRhuVrvMu8JoLed0liW25W4q+4NPnTM9tL9+WSbMnpVfHXplaNzV7D9675XP/058mX/taaZPhw5Mf/GDhu/vyl5Mrrii9P1ddVaqLe/Z856VmzCi9j38Zc00+d8vn0q9Lv3xsrY+1bP/CpBcyevroXLDbBfnOTt9Z9PEsy/s7ZmTy4o9K/b+3vCDpulHpesm0/5TO0+unJusdU+qHPeWx0rruQ0p9x5sbSo8kaW5M+u2RlFfm5ckv50f//FEeG/9YDt/s8PzphT9laL+h+dYnvrVgv8HFHMNDDyUHHphMnVo6t73ootJ5S1XV/GQ4pcdGGyV/+O8f8sXbv5hCoZCLd784b9a8mYv/eXHW7rZ2bjz0xmy3znaZ2zQ3X/7rl/Prp36dQT0GZfhOw3Pva/fmj8//MRv32Ti3HXlbBvcavGzv78qkcVby5Oml61ldN0zWOSDp0K10zWvujFLdV9U7GfLdluuPtQ21mVpXSjjboaxD1ur6TgeAF15Ibr01GTs2WWed5KMfLX335781zc1Jnz7J5puv6AMFVilLWP/WN9bnD8/8Ib94/BfZYZ0dUtdYl+cmPpcztjsjhw85vDROYdSVyRu3JM31ybpHJ9VrJLPfKN0DTHPpnH7D05LO75pcaWX7PV+WsWmL0VxszvXPXZ9zHzg3a3ZeM5/e4NP56SM/zW7r7ZbvDfveguO13h3DYl5n/MzxmdNYmjCsR3WP9Oq4ctzjmDhrYm57+bY0NDWkQ3mHNDY3Zt8N98063d6ZHGtq3dT87JGf5cqnrsyhmx6alya/lDdnvpnhOw3P4ZsdXhqj+PwFydt/T8o7JgMPSyp7JzP/l8yZUPocFcpL/ezefW9nEZ+l8eOT3/42+d//SuP5hg0rtd3nnxeXEnKUriXfffc719A22+ydenX++XTv3qX+9y9Nfiln3nNmHhzzYM7a8az8+41/58GxpednbH9GqiuWYjzccv7MfZiMnjY6P3joB7ntf7flS1t/Kfe+dm9mzZ2V83Y5L5/Z+DMpLM2NnaX4O4ydPjY3PH9DGpsb06WyS6bNmZaDNjmo1X3v1E9NGqaV7v8WKkrXLwpl8/bRnHReP3nv+JMVYUnfk6X8zDU3l65fNjWVnifv3GOrrl66e2yNzY355+v/zFu1b6VTh05pbG7MTgN3St/OrRMwvTDphVz/3PXp3KF0c3z23Nk5fMjhC2/XvF/8xeY8/PrD+efr/8ygHoMyZvqYbL7m5tnzI3suOE6IVcaY6WNyw/M3pKm5KZ0rO2da3bQcvOnBrb+rSWY1zMq/3/h3Gpsb09jcmD6d+mSb/tss05j5x958LD946Ad5ecrLOWKzI/L7Z36fjw/4eIbvNLzls1lTX5Pv3PedXPHEFdl/o/2zzwb75Fv3fiu9O/bOL/f9ZWnc0aR/JaOuSGpfK9WDnddLmuck059Ly/26NXdP+i1ijNJCxjudde9ZueTfl2Rwr8H54Sd/mKv+c1XuGnVX9h68d/5w4B9SXeyd732vNLasubl0P2uNNd7pO1gslr7je+31nvurH/Daxw03JLfdVqp/99or2WST0liksnn5PJqaSvfSBg1asr8Bq6a5TXNbzm0ryyuXrR++c6qVRn1jff7y8l/y0NiHstVaW+W/E/6bLfttmUM3PTRdq7q+/w7ma6pPpj2d1I2fd09ojaTQYd59oXm5KDqunXRc8/32tNIbNSp5+OHS9f2+fZP11y/9Fr77Gt9aa5XySSy1RfxOv/FGqb/CM8+Uxhp/7nOl+2bV85oy9fWl3+J99m2j88dic96seTNNxVKiuTU7r7noMWIr23UDVg5zJpbuncytSSq6JhWd0iqpY1lV6dr7f7+dTH8m6b1tqS9peedk4oOlvsHFxqTTuskmX0+SPDDmgVz++OXpUd0ja3ZeM4+PfzzHDz0+B296cCrKKnLJJaUxe3V1pf+fdFLpO9uhQ6kfR01N6ePad8lyxyYpXf//0/N/yhPjn8hH1/ponnzryeywzg45eNOD06lDp+X9rrWYWjc1D419qDR5WuOc9O3cNzsO3HGB9s+4GePy6JuPprqiOrMaZmXD3htmaL+hS9fe/pApFpNZs5LZs0ufi/nt5Plt5K5dS4+l0djc2KovRP+u/ZfqfKmmpibdu3df/onfRo8enfvvvz877rhjNtxww1brbr/99pxwwgmZPHlykqRnz565/PLLc9hhhy1x4B/EDjvskKampjz2WOsBYc8//3yGDBmSX/3qV/nCFxbe6XattdbKTjvtlBtuuKHV8jvuuCP77rtv7r777uy5554L3fa9lubNZ9k9/PrD2eMPe2SNzmvk78f8PQf+8cA8P+n53HjojTlwkwOTJI88Urr4++qrpc6agwaVLgqXlZW+qA0Npc5ErSyvDpQN00oVV1N96QZ+oayUUK2ia9K5NHPay5NfzrARw1LfWJ9f7furnHzHySkvK88Dxz7QquPPAq/5fvGt7h3LlsLUuqn57X9+m4amhhRSyH4b7dfqItH0OdOz4WUbZtLsSfnsFp/Nx9b6WO4cdWf+9urfsuWaW+bJLzyZuQ3l2XTTUgKzTp1KndP32qv167zwQukmQisrW+K3NmhAD79veC58+MIcvMnBeXDsg+lS2SV3HX3Xwm+CAfna3V/LTx/5aT67xWdzxT5XZJsrt8nLk1/On4/4c/bbaCGZ1t/nd+SuUXflsD8dlvV6rpdZDbNSU1+TPx/x5+wwYIeWMlPrpmbY1cPywqQXcsOhN+TSRy/NQ2Mfyq/3+3VO/OiJbXGYbaK52Jy/vfq31M0tzQ6+7drbZu1uay+88GJ+M3/1xK/ypTu+tNDNenXsldfPeD2dKztn99/vnvtG37fQcgO7D8zo00enudicgT8dmLdq31poucM3OzzXH3J9ttyydCGmUCglC91oET+RTc1N2fF3O+aRNx7JyVufnM9v9fn8+F8/zg3P35D9NtwvfznyLwvf8MPifb4P37rnW/nRv36UozY/Kg+NfSgNTQ258+g789G1Ptp6+8VZic+dmpqSU08tdYifn1Bol11KFyMqKkoD8MeNS7bf/p1OsMDq45E3Hsl+I/dLl8ouGdRjUB5+/eFcud+VOW7oce0d2tJbmRK/jb8rebCUAC3b/yFZ77Olm1CjfvlOmYquyXrvSby6iGP41a+Sb3yjNMjspJNKCVAGDizdgJkzpzRgsHv3ZK11Z2a9n6+XKXVTMqjHoKzVZa3MbJiZ5yY+l0IKeeqLT2Vov6E5829n5if//kl6Vvds1YF89LTRqWusy/UHX5/B9Ydn++1LA6e23z65//53bvi8V2NzYw6+4eD85eW/5KJPXpS6xrqc/+D5OXyzw3Pdwde1JLFdIm1Zry7mM/KH//4hx9x6THpU98gfDvxDZjXMyudu+VwamxvzwHEPtBpACauF1TjxW7FYzJa/3DLPTnw2A7sPzCZ9NkldY10eGvtQkuSuo+/KXoP3ep+9vMtS/i41NTe16qyyqIlYVkbNxeYccsMhueWlW/L9Xb+fAd0G5Lg/H5dPDPhE7vncPS033//6yl+zz3X7ZK0ua+WREx/J0xOezgHXH5C1uqyVZ05+Jn069WnnI1mNLOq7Oulfyb07JimWEnd89KelwWTFxuRPXUuDLrb+RbLBKQvua2H7W9hrLmm595ZpbkomP1y6oV43oZRUpLzqnc7OxbnJgEMz8tZ+Oeqo0ia77pr84Q+lBLPzjRtXujG6/vqlf9fNrcv9Y+5Pc7E5ZYWyDBs0rNXN772u2St/e/Vv2X6d7bPlmlu2LL/+ueszo35Gbjz0xhy86cE57E+H5U8v/Gmhh7RR743y4qkvLnjjejG/mU+OfzI7X71zulR2yRMnPZGv/e1rufGFG3POzufke7t+b9Hv32rqN0/9JifeVrouuFnfzVIoFPJmzZuZNmdatlxzy/zni/9Zqvd3uXrpp8l/5o0KXmvvZINTS8mYx15fSlaYJIfVLd8JjG7fOJn5ctJ7u2TPR0rLxlxbSgTdWFs65k3OLA0EbW8r4r5TY13ywgXJ+L+WBib33zvpNKDUGae5vjSwuccWpUHOz837/uw/tjRQrHZ08sixpfujjTOTvjsmn/jj0h8nq49V/JpskmxxxRZ5duKzGdBtQEsn2OZic16a/FLKC+WZ8I0JH8rzqkmzJuUXj/8i9Y31KaaY/TfaPx8f8PEkpXOD4cOTESNKSRpOP710zaJ371I/jfnXso86qtSHg2WwhN+tqVNLCSFGjy4lO+vTp9Rfpry81KmtoaF036FsKS4JrRIWUV9+/vOleyxJcv31yeGHL3oXn/z9J/P30X/P0H5D85mNPpM3Z76ZK5+6MhVlFXn25GezcZ+Nc/OLN+fgGw5e5D7+fMSfs3nl/tl881Knwg03TB59dAkT8C2qzm+jgYEfCkvw3n37W8VcfHHp+aWXJl/5ylLu9z3ve7FYzI6/2zH/Gvev7LPBPjl686Pz99F/z1X/uSrrdl83L5z6woKdhVfR6zzt4Q9/SI6Zl8N7t92S3/++dXv1tddK/5/fXl0q/g7L1bPPJltsUXq+ww6lic5WeYv5jHz8Nx/Pv9/4d/p06tPyHS8WixlXMy7lhfK89fW30rdz38yYMyMf/+3H8+KkF3PbkbdlXM24nHzHydll3V3yt8/9zcDmldD9o+/PmfecmW5V3TJx1sQcs+UxOfPjZxpcsRgvvZT85z+l8//m5tYJPpqaSgk7d9+9lGT/1VdLSUFmzy6dpxYKpfPUTp2SrbcuJdXa97p9c8crd+SgTQ7K17b/Wq579rpc/sTl2arfVnnspMdaJuZtsTz7WzfOKiWxb25IUiglvq/oXLqm2pYWcQz33VdKkldTk3zqU8lPflIanD3/3L62tpRwe/5gxGfefiZH3HhEiilmWt20bLHmFrn2oGsXSN5w2aOX5at3fzXbrr1tHh//eHZff/dcf/D16V7dvW2Ps70Vm1uSmQKwempsbszEWROTJFXlVendqXc7R7SaaOd7AM9PfD419TVJkg16b/ChvFa/MqhvrE9jc2lCr04dOmkjAauEx958LA+//nCSpGtl13xuy88tXeLQZXDby7flzHvOTO9OvfPWzLdy4kdPzFk7nvXBfjeNNQdYbRSLpf4285MTAQuqry9NxDJ+fOk+SH19aSxdhw6l5PEbb1yaiBFWJm2W+O073/lOLr744rz22mtZ912f/FGjRmWLLbbInDlzsu6666ZTp0556aWXUlZWlsceeyxbbbXVsh/NEvrCF76QkSNHZtq0aal4V612/fXX58gjj8w///nPfPzjH1/otnvuuWfGjRuXF198sdXyiy66KGeddVbefPPN9O/ff4nikPhtxbn5xZtz6J8OTWV5ZeY0zskvPv2LnLLNKe+/4bJoow6UL056MV//29fTVGxKeaE8P9rjRwtkr19oDO9+HZ07P5Arn7wyX7j9C9lu7e1y3zH3ZYPLNshbtW/loeMeyk7r7pRrrillTE5KM5D+8peL31+LlS3xWxt5aOxDLTPa7bDODlmzy6qfpRvaSlNzU/a+du/c89o92bTvpnlh0gv5/q7fz9k7n73wDZbgd+TNmjczfub4JKWEZAv7Dr5d+3YOuuGgTJk9JcUUc8rWp+T07U//wMez0lrMb+acxjlZ92frZuKsifnzEX/O7uvvnkNuOCR3jrozw3canh/sVppi9o/P/TFH3HREKssr88NP/jCFFHLJvy/JmzPfzHm7nJdzh52bJPnu/d/N9x/6fgb3Gpwf7PqD1DXW5YS/nJDmYnMeOPaB7DJol6y3XjJmTKnz4htvJP36LTr0lya/lK1+tVUqyytz6+G35lPXfiqdO3TO86c83yrhCwt3x//uyKTZk5Iku6y7S9bruSzTKazc6upKnWNHjSoNkJs1q7S8c+fSrD677Vbq+AqsfsbNGJfnJz2fJFm769rZfM1VZFro5d1eXZYOY4trT715eymhw9Qnkup+Sae1k/JOSVNd6bHOZ5L1j1/4/hYSc319KTH4Sy+VBtTW1pZuwHTqVJqNZ8cdk498JLno4Yty1n1n5ZPrfTL3HnNvS1LtAzc+MDcffnOS5PE3H8+2V22bJCkvlEZBFFNMc7E5nTp0ysRvTMzVV3bOl79ceu1vfzv54Q8X/9bMaZyTA64/IE+OfzLFFPOJAZ/ITYfdtHIlPHqfc+D5CWMu2fOSjJ0+Npc+dmlO+uhJ+fV+v16BQcIKshonfkuSW1+6NQf+8cCs12O9/O8r/8svHvtFzrj7jOw0cKc8dPxD7R3eSm1O45zs8Yc98s/X/5mKsops0HuDPHz8w+nZsXUW6NPuPC2XPXZZjh96fB5+/eGMmjoqf/vc37L7+ru3U+SrqUV9Vx8+JBl3U1LZq5QUqUOXUlKk2teSBz9dGiTYXonfltDmmyfPPVd6/uqryzhg/l0ue/SynHbXaQtdV1lemclnTk7Xqq55aOxD2eXqXVJRVpHbjrwtHSs65phbj8nrM17PpZ+6NF/ZbiEZGN7nWP/80p9z0A0HpVfHXpk8e3KO2vyoXHvQtR/sgFZRc5vmZsP/2zBjpo/JLYffkv023C8b/t+GeW3aa7npsJty0CYHLbjRiugEWmxObls/mTU26fnRZK/H3xlwOfb65F9Hlp4v78RvY65NHv186fU3+07Sf7+ket411jlvJzUvJuseUZq9dEVblvbU8v4daZydNM1OmufOm4mxe1JWnkx9Krl3p9K6DU9LNj0r6djvnf3NGlsaBN1pye6vw8rqBw/9IOfcf06StCRMLxaLKaaY3dffPfd87p72DG+lN3ly6f5IbW0pgUOhULqW3bdvaZKc1S7hGO1jCevL+jnF/PjHyV13lZIQffSjpU6fXbqU7r289VYp8cjJJyfPvv1stvrVVulc2TmvnvZqvnnPN/O7p3+X07Y9LT/f++dJSgOGB/x0QCbUTsiRQ47Mtmtvm0feeCR/fP6PWbvr2hl7xtjcekt5Djmk9PrHHfdO4rllPYZVrd2/qmlqSn7xi+T225Onnipdxx0ypDTb75w5ycSJyXbbLWSC0cV45u1n8rFffyxdKrvk+VOez64jds3/pvwvfzniL4ufGC7x934fm2xSug6fJK+/ngwY0L7xsHi/+lVywQWl5E977ZXsvXep30ShUDpfeOml5Ec/WvTENiudxXxXL3300px+1+kppNDSx2Na3bTUNdZlj/X3yN8+97eWsmOmj8l2V22XOY1zMqdxTgb1GJR/n/Dv9OrYa4UcBqxq3qh5I5tdvlnqG+vzwHEPZN/r9s2M+hl5/KTHM7Tf0CXf0Wpy7jVzZvLww6Vz2/HjS+e0ZWWlw6uuTrbdNjniiKXf7+TZk1PfWJ8kWavrWks3eRgAAADQ/laTax8AALCqa7PEbzvvvHNqa2vz1FNPtVr+la98Jb/4xS9y6qmn5rLLLkuS3HzzzTnkkENy/PHH5ze/+c0yHMbSufPOO/PpT386119/fQ5/19Sse++9d5555pm8/vrrKZ8/Xdh7XHHFFTnllFPyyCOPZLvttkuSNDY2ZujQoenSpUseeeSRJY5D4rcVq7ahNk3NTSkUCulWtRq+36vBTOgru+Zic7a9cts8+daT2WngTvnH6//IkUOOzHUHX5ekNCvssceWyp58cnL55Uu44w8yC3Ox6G8Pq6lpddMy8rmRKRaL6VzZOccNPa51Ad/9D+59OsR/78Hv5dwHzs3+G+2fSz91ada/dP10KOuQsWeMbUmc19DUkLX/39qZPHty/n7M37NRn40y4KcDUkgho08fnQHdSz3H36h5I4N+NijFFPP6Ga/nwbEP5uibj86mfTfN86eUkvM8+mjymc8kEyaUBkifckqy6aalgSRTpiTPPFPq2LzNNqX4Ln744nz7vm+noqwijc2NufqAq3Ps0GPb9C0DAOZpnps0N5YSSSzqvGw5JL2Y1TAr6/18vUyaPSl/P+bvOeiGgzJjzoz890v/bZXUb/2fr5/R00dn5MEjc8SQI/KNv30jl/z7khyy6SH506F/yttvJ1tumbz9dtK/f3Lrre+cU8w3ZkwyaNAyh7rivc/7O3ra6Ay5YkjKCmWZ0zgnfTv1zQunvpAe1T1WXIzQVpbnrLerSLtxmyu3yRPjn8iV+12Z8x44L2/OfDMPHvdgdl535/YObaXX1NyUOY1zkiRVFVWpKFtwirf6xvp8/LcfzwuTXkiSnLbtabl4j4tXaJwfCouqu24bnNS+mqyxS/LJB0rLnj0/ee68d8qs5InfBgwoJbFPkunTk+7dl2k3LUZPG531Ly1lj/v6Dl9P3059c8crd+Qfr/9jgeQ5W/5yyzzz9jMZ8ZkR2XLNLTP0V0PTtbJr3vzam+la1XXBnS/Bsb4w6YXMrJ+ZJBnab2iqKqo+2AGtwuZPiLPDOjvk9O1OzxE3HZHN19g8//3Sfxc+m/CKSPw27enkrnkTiW11SbLx10rP/3FwMuO5ZOb/Sv9e3onfkmTOxGTCfaWE0A1Tk8aZSaG8lLix86Bk468nC/mdXSmtyAmHasckr1+fvP1AUjc+KTaWksOlOalaI9n83KTvjsu2b1hJ/G/K/7LR/22U8kJ5JnxjQvp06pMtrtgiz058Nr/e99c56WMntXeIwDIoFksJCWfOLCX06tgx6dOnNAvwfF+6/Uv51ZO/yv4b7Z87/ndHelT3yCtfeaVVwu2z7j0rF/3zopZrdQf98aDc8tItOXuns/P93b6fmTOTrbYqJVHu2TO55ZZkl11axzJunIRVK6uGhtJnpK6ulDylZ8/SRF9La/413UE9BmXM9DE5YKMDcusRty68sMRvS2zNNUvJ+AqF0vfZxFirhjfeSJ5/vnSNYebMUoKinj2TgQNLCTmX5+XRNrWY7+qE2glZ+/+tneZic1477bWs13O9DLl8SJ6f9Hx+s/9v8vmtPt+q/Bs1b+SNmtLFl/V7rp81Oq/R5uHDquzXT/46X7z9i6muqM6cxjmtJvkEAAAAAAAAWFm0WeK3AQMGZNiwYfnDH/7QavkGG2yQcePGZdKkSena9Z0BF7vsskveeuut/O9//1vKQ1g2e+65Z5544olcfPHFGTx4cEaOHJkrr7wy11xzTY4++ugkyQknnJARI0bk1Vdfzbrrrpskqa+vz8c+9rHU1NTkoosuyhprrJHLL788t912W+69997s8t6ed4sh8Ruseh5545HsOmLXFIvFdOrQKc+e/GzW7rZ2ktLs4xtvXOpw26VL8te/Jjvt1Hr7MWOSQevJhg/QbpYiYd6U2VMy8GcDM6dxTg7Z9JDc8PwNOXGrE3Pl/le2Kj6/E/5xQ4/LJn02ybfu/Vb22WCf3H7U7a3Kfeb6z+TPL/85F+x2Qe4fc3/ufe3eXPqpS/OV7b7SUqa+PnnwweTvf0/eequU8K2xsdSJ+SMfSb7whVJn5qQ0eP/Wl25Nc7E5VRVV2X+j/T/YewMALF/LKenFj//543zz3m+me1X3zKif0TJA9N2+dc+38qN//SiHb3Z4rj/k+mxw2QYZNXVUbjjkhhy62aFJkpdfTr7//eT225MZM5L11islgWtsLA0q7devNNP7SmsZZpa7+cWb88gbpUka9h68d3Zdb9e2iAxYAe4edXc+de2nUlVelfqm+uz5kT1z92fvbu+wYOks6tzg7m1KSaS6bZzs82Jp2ZyJSd2Ed8p0Wjup6r3gvha2v4W95pKWW8bzljPPTH7yk9LzCy5IvvOdBcs0N5cGai+pTX+xaV6c/GJGfGZEjtnymOz42x3zz3H/zE/3+mnO2P6MlnLzB3HuOHDHDF1zaP7v8f/LKVufkl/s84uF73hFJCZbjcxtmpvBlw3O6zNez1pd1spbtW+1OsdcwIp4fyc+mNw3rPR8+98n632u9PyeTySzx71Tbt9XkvIPb9K+hTLhELSpob8cmv++/d/8dv/fZtigYVn/0vVTUVaRCV+fkN6der//DoBV0qRZk7LBZRtkRv2MJMlle1+WL2/75VZlXp36aja4bINUllfmuVOey2aXb5bG5sa8etqrGdRjUJJk7NjkvPOSP/85mTatNEHDwIGl8+gxY0qJ5yZNWqGHxgpW21Cbo28+OnVz61IoFHLlfldmYPeBCy8s8dsSO+WU5IorSs9//vPktNMWLLOkp8Cw1N7nu7rbiN1y/5j785M9fpL9NtovG/3fRqksr8zb33jbJDbwARWLxYz474jMaZyTskJZjt3y2A/15A4AAAAAAADAyqnNEr917NgxX/3qV3PhhRe2LJs+fXp69eqVnXbaKQ8++GCr8qeffnquuuqqzJo1aykPYdnU1tZm+PDhueGGGzJ16tRsvPHGOeuss3LEEUe0lDnuuOMyYsSIjB49OoMGDWpZ/vbbb+eb3/xmbr/99syePTtDhw7N97///ey+++5LFYPEb7D6+c9/ks9+NnnhhdK/t9giWX/90kD6558vDWwbNap9YwRgyZ16x6m5/InLkySFFPLCqS9k4z4btyrz0uSXsskvNknXyq7p37V/Xp7ycm49/NYcsPEBrcrdNequ7H3t3unftX8m1E5IdUV1xn9tfLpXd19hxwMArEDLKenF7Lmzs91V22XGnBkpFAq546g7MmSNIa3KPDn+yWx95dbpVtUtDxz7QD7664+mc4fOmXjmxHTq0KlV2YaGUrt04sTSINLq6mTAgGSjjZIOHT5QqABt6qS/nJQxM8YkSS765EX5WP+PtW9AsLQWdW7wv18kT85LDPHuJFbz1U1IqvokZRUL7mth+1vYay5puWU8b6mpSfbcM3n00dK/d9219OjZs5TY/oEHki9+MTnmmCXf5zfv+WZ+/K8f56jNj8rln748fX7cJ43NjRn1lVH5SK+PtJSbPXd21v5/a2f6nOnp3KFzZs2dlRdOeSGb9N2kTY71w+iXT/wyJ99xcpJks76b5dmTn01h/vu4DMl5P7DaMclt65WebzY82eIHy2/fqzsJ3aBNXfiPCzP878Oz/0b7Z9i6w/K1v31NwmL4kJg4a2Jmz52dJBnQbUDKy8oXKLP773fPfaPvy8fW+liefOvJ7PWRvXLXZ+9aoNzcuclLL5Wu3U2dmlRWliZv2GyzpFOnBYrzYeJcbplMnlxqnz73XOkt3HffZJddSu3V8eOT++8vTb52+OHtHSmrjaX4rs5PZv/xAR/Pfhvul7PuOyv7bbhf/nLkX9o4SAAAAAAAAABgZdBmid+6du2az33uc7n88stblt1///355Cc/ma9+9au55JJLWpUfPnx4fvazn62wxG8rA4nfYPXU3Jw88UTyr3+Vkr3Nnl3qgLv++smwYckOO7R3hAAsqdHTRueHD/8wSbJej/Vy1k5nLbTczr/bOf94/R9JkrW6rJXXv/p6Kt49IDul2WQHXzY4r017LUlywlYn5Kr9r2rD6AGAFao9kl68y+BLB+fVaa9mp4E75R+v/yOHbXZY/njIH9vktQCAZbCohGONdcn9uyeT/1X69xrDkh5bJikm059JJv8zOWhy0qHbgvta2P4W9prvLdcG5y1NTclNNyV33126Nj5hQmnzNddMttoqOfvsZMiQ99/PfA+NfSi7XL1L+nbqmyv2uSKH/OmQbNR7o7z05ZcWKPu1u7+Wnz7y0yTJbuvtlvuOuW/RO5b4bZnMbZqbJCkvK09Zoaydo0ly787JpH8klT2TT/036Tyg9fqZryRdN2if2IAPrVFTR2WDyzZIx4qOGbLGkDw+/vFctd9VOeGjJ7R3aMBK4I/P/TFH3PTOZKQ3HnpjDt704HaMCD486uuTP/wh+dvfWrdX11qr1F698MJk883bO0pWG0uR+G1q3dT0+0m/NDY3ZnCvwXll6iu57qDrcuTmR7ZxkAAAAAAAAADAymBpco9VLHbte2y44Ya5777WAyv+9re/pVAo5OMf//gC5cePH5+11lpraV4CYKVUVpZsu23pAcCqbb2e6+XX+/36fct96xPfSo/qHkmSfTbYZ4Gkb0lSKBTy2/1/m2fefqZUbsN9lmusAMCH26GbHpqL/nlRSzLawzY9rJ0jAoAPuUUN9H3v8mIx+eQDyatXJW/cmkx6KJn4QFKoSLqsn6x3fFJWvXxja4OkZ+XlyWGHlR7LwycGfCI9q3tm0uxJ+dG/fpQk2XfDfRda9vxh5+eErUpJddbovEbrlUvzd2CROpR3aO8QWtv8e8kDeyYN05I7hyTrHJh0Xi+ZMyGZcG/SY4tkp5vaO0rgQ2Zwr8HZqt9W+c+E/+Tx8Y+nQ1mHHLjJge0dFrCSOHCTA3PYZoeloakhVeVV2X+j/ds7JPjQqKpKTjyx9IA2txTXF3p17JU9PrJH/vrKX/PK1FfSqUMn9QMAAAAAAAAAsFCFYnHJeyVceOGFOfvss3PSSSfl1FNPzahRo/L5z38+xWIx48ePT+fOnVuV33DDDbP++uvnrrvuWu6Br6yWJuseAAAAACzKf976Tz76648mSbpUdsnEb0xMxw4d2zkqAGCZNNUnZZWtk5MtKoHZu733Nt67t1kFE5sdddNRGfncyJZ/33/s/Rk2aNjS7WRJ3rdklXx/PvQmPZw8e24y8cGk2PTO8vLqZNPvJEPOab/YgA+tix6+KGfdd1aS5FODP5U7j76znSMCAGBlNvLZkTn1r6cmSfbfaP9c/Zmr2zcgAAAAAAAAAGCFWZrcY0uV+K2uri7bb799nn322RTmDaooFov58Y9/nK9//eutyj7xxBPZdtttF7pudSbxGwAAAADLy/MTn08xxXTq0Cnr91y/vcMBAJanD2Hit2ufuTafveWzSZLuVd0z+ZuTU1FW0c5RsdKZMzGZ/mzSXJ9Ur5l0H5KUV7V3VMCH1Mz6mXl12qtJkn5d+qVfl37tHBEAAAAAAAAAAAAAK6OlyT22VCMpOnbsmH/+85/56U9/mkceeSS9evXKoYcemv3333+Bsk899VQOOOCAha4DAAAAAN7fZmts1t4hAADtbVEJ4lbBJHD7bLhPfrDrD5Ik6/VcT9I3Fq56jaTfJ9s7CoAkSdeqrhnab2h7hwEAAAAAAAAAAADAaqRQLK4iI0FWEUuTdQ8AAAAAAAAWa1GJ397N7T4AAAAAAAAAAAAAAIB2szS5xypWUEwAAAAAAADA0pLUDQAAAAAAAAAAAAAAYLVR1t4BAAAAAAAAAAAAAAAAAAAAAAAAAKzuJH4DAAAAAAAAAAAAAAAAAAAAAAAAaGMSvwEAAAAAAAAAAAAAAAAAAAAAAAC0MYnfAAAAAAAAAAAAAAAAAAAAAAAAANqYxG8AAAAAAAAAAAAAAAAAAAAAAAAAbUziNwAAAAAAAAAAAAAAAAAAAAAAAIA2JvEbAAAAAAAAAAAAAAAAAAAAAAAAQBuT+A0AAAAAAAAAAAAAAAAAAAAAAACgjUn8BgAAAAAAAAAAAAAAAAAAAAAAANDGJH4DAAAAAAAAAAAAAAAAAAAAAAAAaGMSvwEAAAAAAAAAAAAAAAAAAAAAAAC0MYnfAAAAAAAAAAAAAAAAAAAAAAAAANqYxG8AAAAAAAAAAAAAAAAAAAAAAAAAbUziNwAAAAAAAAAAAAAAAAAAAAAAAIA2JvEbAAAAAAAAAAAAAAAAAAAAAAAAQBuT+A0AAAAAAAAAAAAAAAAAAAAAAACgjUn8BgAAAAAAAAAAAAAAAAAAAAAAANDGJH4DAAAAAAAAAAAAAAAAAAAAAAAAaGMSvwEAAAAAAAAAAAAAAAAAAAAAAAC0sdUm8VttbW3OOOOM9O/fP9XV1Rk6dGiuv/76Jdr2jTfeyBlnnJFddtklPXr0SKFQyNVXX922AQMAAAAAAAAAAAAAAAAAAAAAAAAfGqtN4reDDjooI0aMyLnnnps777wz22yzTY488shcd91177vtqFGjcu2116aysjKf/vSnV0C0AAAAAAAAAAAAAAAAAAAAAAAAwIdJRXsHsDz89a9/zT333JPrrrsuRx55ZJJk1113zdixY3PmmWfm8MMPT3l5+SK333nnnTNp0qQkyRNPPJGRI0eukLgBAAAAAAAAAAAAAAAAAAAAAACAD4ey9g5gebjlllvSpUuXHHrooa2WH3/88Rk/fnweffTRxW5fVrZavA0AAAAAAAAAAAAAAAAAAAAAAADASmq1yHj23HPPZZNNNklFRUWr5VtssUXL+rZSX1+fmpqaVg8AAAAAAAAAAAAAAAAAAAAAAACAd1stEr9NmTIlvXr1WmD5/GVTpkxps9f+4Q9/mO7du7c8BgwY0GavBQAAAAAAAAAAAAAAAAAAAAAAAKyaVrrEbw888EAKhcISPZ5++umW7QqFwiL3ubh1H9RZZ52VGTNmtDzGjRvXZq8FAAAAAAAAAAAAAAAAAAAAAAAArJoq2juA99poo41y5ZVXLlHZgQMHJkl69+6dKVOmLLB+6tSpSZJevXotvwDfo6qqKlVVVW22fwAAAAAAAAAAAAAAAAAAAAAAAGDVt9IlfltrrbVy4oknLtU2m2++eUaOHJnGxsZUVLxzSM8++2ySZMiQIcs1RgAAAAAAAAAAAAAAAAAAAAAAAIClsdIlflsWBx54YK688srcdNNNOfzww1uWjxgxIv3798922223wmIpFotJkpqamhX2mgAAAAAAAAAAAAAAAAAAAAAAAMCKNz/n2PwcZIuzWiR+23vvvbPHHnvk5JNPTk1NTQYPHpyRI0fmrrvuyjXXXJPy8vKWsieccEJGjBiRV199Neuuu27L8htvvDFJ8tprryVJnnjiiXTp0iVJcsghhyxxLDNnzkySDBgw4AMfFwAAAAAAAAAAAAAAAAAAAAAAALDymzlzZrp3777YMoXikqSHWwXU1tZm+PDhueGGGzJ16tRsvPHGOeuss3LEEUe0KnfcccdlxIgRGT16dAYNGtSyvFAoLHLfS/MWNTc3Z/z48enatWsKhUJqamoyYMCAjBs3Lt26dVvq4wIA2o56GgBWXuppAFg5qaMBYOWlngaAlZM6GgBWXuppAFg5qaMBYOWlngaAlZd6GgDaX7FYzMyZM9O/f/+UlZUttuxqk/htZVVTU5Pu3btnxowZTo4AYCWjngaAlZd6GgBWTupoAFh5qacBYOWkjgaAlZd6GgBWTupoAFh5qacBYOWlngaAVcvi08IBAAAAAAAAAAAAAAAAAAAAAAAA8IFJ/AYAAAAAAAAAAAAAAAAAAAAAAADQxiR+a2NVVVU599xzU1VV1d6hAADvoZ4GgJWXehoAVk7qaABYeamnAWDlpI4GgJWXehoAVk7qaABYeamnAWDlpZ4GgFVLoVgsFts7CAAAAAAAAAAAAAAAAAAAAAAAAIDVWVl7BwAAAAAAAAAAAAAAAAAAAAAAAACwupP4DQAAAAAAAAAAAAAAAAAAAAAAAKCNSfwGAAAAAAAAAAAAAAAAAAAAAAAA0MYkfgMAAAAAAAAAAAAAAAAAAAAAAABoYxK/tZHa2tqcccYZ6d+/f6qrqzN06NBcf/317R0WAHyoPPDAAykUCgt9PPLII63KPvXUU9l9993TpUuX9OjRIwcddFBee+21doocAFYvM2fOzDe/+c3sueee6du3bwqFQs4777yFll2aOvmyyy7LxhtvnKqqqqy33no5//zzM3fu3DY8EgBYvSxpHX3ccccttG298cYbL3S/6mgA+GD+/ve/5/Of/3w23njjdO7cOWuvvXYOOOCAPPnkkwuU1Y4GgBVrSetpbWkAWLGefvrp7LPPPhk4cGA6duyYXr16ZYcddsg111yzQFltaQBYsZa0ntaWBoD2d9VVV6VQKKRLly4LrNOeBoD2tah6WnsaAFZdFe0dwOrqoIMOyuOPP56LLrooG264Ya677roceeSRaW5uzlFHHdXe4QHAh8qFF16YXXfdtdWyIUOGtDx/6aWXMmzYsAwdOjQ33HBD5syZk+9+97vZaaed8vTTT6dv374rOmQAWK1MmTIlv/71r7PlllvmM5/5TK666qqFlluaOvmCCy7IOeeck29/+9vZc8898/jjj+fss8/Om2++mV//+tcr6tAAYJW2pHV0knTs2DF///vfF1j2XupoAPjgrrjiikyZMiWnn356Nt1000yaNCmXXHJJtt9++9x9993ZbbfdkmhHA0B7WNJ6OtGWBoAVafr06RkwYECOPPLIrL322pk1a1auvfbafO5zn8uYMWNy9tlnJ9GWBoD2sKT1dKItDQDt6c0338w3vvGN9O/fPzNmzGi1TnsaANrX4urpRHsaAFZVhWKxWGzvIFY3f/3rX7PPPvu0JHubb88998zzzz+f119/PeXl5e0YIQB8ODzwwAPZdddd86c//SmHHHLIIssddthhuf/++/Pqq6+mW7duSZKxY8dmgw02yFe/+tVcfPHFKypkAFgtzb/0UCgUMnny5PTt2zfnnntuzjvvvFbllrROnjJlStZZZ50cc8wx+dWvftWy/YUXXpizzz47zz33XDbddNMVc3AAsApb0jr6uOOOy4033pja2trF7k8dDQDLx8SJE7PGGmu0WlZbW5vBgwdnyJAhuffee5NoRwNAe1jSelpbGgBWDttvv33Gjx+f119/PYm2NACsTN5bT2tLA0D72m+//VIoFNKrV68F6mTtaQBoX4urp7WnAWDVVdbeAayObrnllnTp0iWHHnpoq+XHH398xo8fn0cffbSdIgMA3quxsTG33357Dj744JabD0my7rrrZtddd80tt9zSjtEBwOqhUCikUCgstszS1Ml33XVX5syZk+OPP77VPo4//vgUi8XceuutyzV+AFhdLUkdvTTU0QCwfLw3mUySdOnSJZtuumnGjRuXRDsaANrLktTTS0M9DQBtq0+fPqmoqEiiLQ0AK5t319NLQz0NAMvfNddckwcffDCXX375Auu0pwGgfS2unl4a6mkAWPlI/NYGnnvuuWyyySYL3IDYYostWtYDACvOqaeemoqKinTr1i177bVXHn744ZZ1r776aurq6lrq6XfbYostMmrUqMyZM2dFhgsAH0pLUyfPb1dvvvnmrcqttdZa6dOnj3Y3ALSBurq69OvXL+Xl5VlnnXXy5S9/OVOnTm1VRh0NAG1nxowZeeqpp7LZZpsl0Y4GgJXJe+vp+bSlAWDFa25uTmNjYyZNmpTLL788d999d771rW8l0ZYGgPa2uHp6Pm1pAFjxJk6cmDPOOCMXXXRR1llnnQXWa08DQPt5v3p6Pu1pAFg1Lf3UKLyvKVOmZP31119gea9evVrWAwBtr3v37jn99NMzbNiw9O7dO6NGjcqPf/zjDBs2LHfccUf22muvlnp5fj39br169UqxWMy0adOy1lprrejwAeBDZWnq5ClTpqSqqiqdO3deaFntbgBYvrbccstsueWWGTJkSJLkwQcfzE9/+tPcd999efzxx9OlS5ckUUcDQBs69dRTM2vWrAwfPjyJdjQArEzeW08n2tIA0F5OOeWU/OpXv0qSVFZW5tJLL80Xv/jFJNrSANDeFldPJ9rSANBeTjnllGy00UY5+eSTF7peexoA2s/71dOJ9jQArMokfmsjhUJhmdYBAMvPVlttla222qrl3zvttFMOPPDAbL755vnmN7+Zvfbaq2WduhsAVg5LWieruwFgxfnqV7/a6t977LFHttpqqxxyyCG58sorW61XRwPA8nfOOefk2muvzWWXXZaPfexjrdZpRwNA+1pUPa0tDQDt4zvf+U5OPPHETJw4Mbfddlu+/OUvZ9asWfnGN77RUkZbGgDax/vV09rSALDi3XTTTbntttvyn//8533rUO1pAFixlrSe1p4GgFVXWXsHsDrq3bv3QjPaTp06NcnCM9sDACtGjx49su++++aZZ55JXV1devfunSSLrLsLhUJ69OixgqMEgA+fpamTe/funTlz5mT27NkLLavdDQBt78ADD0znzp3zyCOPtCxTRwPA8nf++efnBz/4QS644IJ8+ctfblmuHQ0A7W9R9fSiaEsDQNsbOHBgtt5663z605/OFVdckS984Qs566yzMmnSJG1pAGhni6unF0VbGgDaTm1tbU499dR85StfSf/+/TN9+vRMnz49DQ0NSZLp06dn1qxZ2tMA0A6WtJ5eFO1pAFg1SPzWBjbffPO8+OKLaWxsbLX82WefTZIMGTKkPcICAOYpFotJShnoP/KRj6Rjx44t9fS7Pfvssxk8eHCqq6tXdIgA8KGzNHXy5ptv3rL83SZMmJDJkydrdwPAClIsFlNW9s5tBnU0ACxf559/fs4777ycd955+c53vtNqnXY0ALSvxdXTi6MtDQAr1rbbbpvGxsa89tpr2tIAsJJ5dz29ONrSANA2Jk+enLfffjuXXHJJevbs2fIYOXJkZs2alZ49e+boo4/WngaAdrCk9fTiaE8DwMpP4rc2cOCBB6a2tjY33XRTq+UjRoxI//79s91227VTZADAtGnTcvvtt2fo0KGprq5ORUVF9ttvv9x8882ZOXNmS7nXX389999/fw466KB2jBYAPjyWpk7+1Kc+lerq6lx99dWt9nH11VenUCjkM5/5zAqKGgA+vG688cbMnj0722+/fcsydTQALD/f//73c9555+Xss8/Oueeeu8B67WgAaD/vV08virY0AKx4999/f8rKyrL++utrSwPASubd9fSiaEsDQNvp169f7r///gUee+21V6qrq3P//ffnBz/4gfY0ALSDJa2nF0V7GgBWDRXtHcDqaO+9984ee+yRk08+OTU1NRk8eHBGjhyZu+66K9dcc03Ky8vbO0QA+FA46qijMnDgwGy99dbp06dPXnnllVxyySV5++23W12cOP/887PNNttk3333zbe//e3MmTMn3/3ud9OnT598/etfb78DAIDVyJ133plZs2a13PB/4YUXcuONNyZJPv3pT6dTp05LXCf36tUrZ599ds4555z06tUre+65Zx5//PGcd955OfHEE7Ppppu2yzECwKro/eroSZMm5aijjsoRRxyRwYMHp1Ao5MEHH8zPfvazbLbZZjnxxBNb9qWOBoDl45JLLsl3v/vdfOpTn8o+++yTRx55pNX6+R3ytKMBYMVbknp67Nix2tIAsIJ94QtfSLdu3bLttttmzTXXzOTJk/OnP/0pf/zjH3PmmWemb9++SbSlAaA9LEk9rS0NACtedXV1hg0btsDyq6++OuXl5a3WaU8DwIq1pPW09jQArNoKxWKx2N5BrI5qa2szfPjw3HDDDZk6dWo23njjnHXWWTniiCPaOzQA+NC46KKL8sc//jGjR49ObW1tevXqlR133DFnnXVWttlmm1Zln3zyyXzrW9/Kv//971RUVGS33XbLT37yk3zkIx9pp+gBYPUyaNCgjB07dqHrRo8enUGDBiVZujr50ksvzS9+8YuMGTMm/fr1y/HHH5/hw4enQ4cObXkoALBaeb86unv37jnhhBPyn//8J2+//Xaampqy7rrr5sADD8x3vvOddO/efYHt1NEA8MEMGzYsDz744CLXv/sWv3Y0AKxYS1JPT5s2TVsaAFaw3/3ud/nd736XF198MdOnT0+XLl2y5ZZb5sQTT8xnP/vZVmW1pQFgxVqSelpbGgBWHscdd1xuvPHG1NbWtlquPQ0A7e+99bT2NACs2iR+AwAAAAAAAAAAAAAAAAAAAAAAAGhjZe0dAAAAAAAAAAAAAAAAAAAAAAAAAMDqTuI3AAAAAAAAAAAAAAAAAAAAAAAAgDYm8RsAAAAAAAAAAAAAAAAAAAAAAABAG5P4DQAAAAAAAAAAAAAAAAAAAAAAAKCNSfwGAAAAAAAAAAAAAAAAAAAAAAAA0MYkfgMAAAAAAAAAAAAAAAAAAAAAAABoYxK/AQAAAAAAAAAAAAAAAAAAAAAAALQxid8AAAAAAAAAAAAAAAAAAAAAAAAA2pjEbwAAAAAAAAAAALAMxowZk0KhkOOOO26ptisUChk2bFibxAQAAAAAAAAAAMDKS+I3AAAAAAAAAAAAVknzE6+9+1FZWZkBAwbkqKOOyjPPPNMucQ0bNiyFQqFdXhsAAAAAAAAAAICVV0V7BwAAAAAAAAAAAAAfxEc+8pF89rOfTZLU1tbmkUceyciRI3PzzTfn73//ez7+8Y+3yeuuvfbaefHFF9O9e/el2u7FF19Mp06d2iQmAAAAAAAAAAAAVl4SvwEAAAAAAAAAALBKGzx4cM4777xWy84+++xccMEFGT58eO6///42ed0OHTpk4403XurtlmUbAAAAAAAAAAAAVn1l7R0AAAAAAAAAAAAALG9f+cpXkiSPP/54kqSxsTE//elPs+WWW6Zjx47p3r17dt1119xxxx0LbNvc3Jyrrroq2267bXr16pVOnTpl0KBB+cxnPpOHHnqopdyYMWNSKBRy3HHHtSwrFAp58MEHW57Pf7y3zLBhwxZ43SlTpuSrX/1q1ltvvVRVVWWNNdbI4YcfnhdeeGGBsscdd1wKhULGjBmTyy+/PJtsskmqq6uz7rrr5vzzz09zc/OyvG0AAAAAAAAAAAC0oYr2DgAAAAAAAAAAAACWt0Kh0PK8WCzm8MMPz80335wNN9wwp556ambNmpUbbrgh++67b37+85/ntNNOayl/1lln5Uc/+lE+8pGP5KijjkrXrl3z5ptv5h//+Ef+/ve/Z+edd17k65577rm5+uqrM3bs2Jx77rkty4cOHbrYeKdMmZLtt98+o0aNyrBhw3LEEUdkzJgxufHGG3PHHXfknnvuyQ477LDAdmeeeWYeeOCB7Lvvvtlzzz1z66235rzzzktDQ0MuuOCCpXjHAAAAAAAAAAAAaGsSvwEAAAAAAAAAALDaufTSS5Mk22yzTa655prcfPPN2WWXXfK3v/0tlZWVSZLhw4fnYx/7WL7xjW9kv/32y3rrrZckueqqq7L22mvnmWeeSadOnVr2WSwWM23atMW+7nnnnZcHHnggY8eOzXnnnbfE8X7zm9/MqFGjctZZZ+XCCy9sWX7cccflU5/6VI499ti89NJLKSsra7Xdk08+mWeeeSZrrbVWkuScc87JBhtskMsuuyznnntuy7ECAAAAAAAAAADQ/srevwgAAAAAAAAAAACsvEaNGpXzzjsv5513Xr7xjW9kxx13zAUXXJDq6upceOGFufrqq5MkP/rRj1olQltnnXXy1a9+NXPnzs21117bap+VlZWpqGg9t2qhUEivXr2We/wNDQ0ZOXJkevfunbPPPrvVur322it77bVXXnnllfzrX/9aYNtzzjmnJelbkvTp0ycHHHBAZs6cmZdffnm5xwoAAAAAAAAAAMCyk/gNAAAAAAAAAACAVdqrr76a888/P+eff34uvfTSjB07NkcddVQee+yx7LDDDvnPf/6Tjh07Ztttt11g22HDhiVJnn766ZZlhx12WEaPHp0hQ4bknHPOyb333ptZs2a1WfwvvfRS6urqsu2226ZTp05LFON8H/3oRxdYts466yRJpk+fvjzDBAAAAAAAAAAA4AOS+A0AAAAAAAAAAIBV2l577ZVisZhisZiGhoaMGzcu1157bTbffPMkSU1NTdZcc82FbtuvX78kyYwZM1qWXXrppfnRj36UDh065Ac/+EH22GOP9OnTJ8cee2wmT5683OOvqalJkqWKcb7u3bsvsKyioiJJ0tTUtLxCBAAAAAAAAAAAYDmQ+A0AAAAAAAAAAIDVWrdu3fL2228vdN385d26dWtZ1qFDh5x55pl5/vnn8+abb+a6667LTjvtlN///vc5+uij2yS+d8eyJDECAAAAAAAAAACw6pH4DQAAAAAAAAAAgNXaVlttlbq6ujz22GMLrHvwwQeTJEOHDl3otv3798+RRx6Zu+66KxtssEHuvffe1NXVLfb1ysvLkyRNTU1LFN/GG2+c6urqPP7445k9e/ZSxwgAAAAAAAAAAMCqQeI3AAAAAAAAAAAAVmvHHntskuSss87K3LlzW5a/+eab+X//7/+loqIiRx99dJKkvr4+f//731MsFlvtY9asWZk5c2Y6dOjQkthtUXr16pUkeeONN5YovsrKyhx55JGZPHlyfvjDH7Zad++99+bOO+/M4MGD84lPfGKJ9gcAAAAAAAAAAMDKqaK9AwAAAAAAAAAAAIC29LnPfS4333xz/vznP2eLLbbIvvvum1mzZuWGG27IlClTcskll2T99ddPktTV1eWTn/xk1l9//Wy33XYZOHBgamtrc/vtt2fChAn51re+lcrKysW+3m677ZYbb7wxhx56aD796U+nuro6m2++efbZZ59FbnPxxRfnwQcfzA9+8IP861//ynbbbZcxY8bkxhtvTKdOnfK73/0uZWXmegUAAAAAAAAAAFiVSfwGAAAAAAAAAADAaq1QKOTGG2/Mz3/+84wYMSKXXXZZKisr89GPfjRf+9rXsv/++7eU7dy5cy6++OLcd999+cc//pGJEyemZ8+e2XjjjXPxxRfn8MMPf9/XO+mkkzJmzJhcf/31ueCCC9LY2Jhjjz12sYnf+vbtm0cffTTf//738+c//zn/+Mc/0r179xxwwAE599xzM2TIkOXyXgAAAAAAAAAAANB+CsVisdjeQQAAAAAAAAAAAAAAAAAAAAAAAACszsraOwAAAAAAAAAAAAAAAAAAAAAAAACA1Z3EbwAAAAAAAAAAAAAAAAAAAAAAAABtTOI3AAAAAAAAAAAAAAAAAAAAAAAAgDYm8RsAAAAAAAAAAAAAAAAAAAAAAABAG5P4DQAAAAAAAAAAAAAAAAAAAAAAAKCNSfwGAAAAAAAAAAAAAAAAAAAAAAAA0MYkfgMAAAAAAAAAAAAAAAAAAAAAAABoYxK/AQAAAAAAAAAAAAAAAAAAAAAAALQxid8AAAAAAAAAAAAAAAAAAAAAAAAA2pjEbwAAAAAAAAAAAAAAAAAAAAAAAABtTOI3AAAAAAAAAAAAAAAAAAAAAAAAgDYm8RsAAAAAAAAAAAAAAAAAAAAAAABAG5P4DQAAAAAAAAAAAAAAAAAAAAAAAKCNSfwGAAAAAAAAAAAAAAAAAAAAAAAA0MYkfgMAAAAAAAAAAAAAAAAAAAAAAABoYxK/AQAAAAAAAAAAAAAAAAAAAAAAALSxivYOYHXT3Nyc8ePHp2vXrikUCu0dDgAAAAAAAAAAAAAAAAAAAAAAANBGisViZs6cmf79+6esrGyxZSV+W87Gjx+fAQMGtHcYAAAAAAAAAAAAAAAAAAAAAAAAwAoybty4rLPOOostI/Hbcta1a9ckpTe/W7du7RwNAAAAAAAAAAAAAAAAAAAAAAAA0FZqamoyYMCAlhxkiyPx23JWKBSSJN26dZP4DQAAAAAAAAAAAAAAAAAAAAAAAD4E5ucgW5yyFRAHAAAAAAAAAAAAAAAAAAAAAAAAwIeaxG8AAAAAAAAAAAAAAAAAAAAAAAAAbUziNwAAAAAAAAAAAAAAAAAAAAAAAIA2JvEbAAAAAAAAAAAAAAAAAAAAAAAAQBuT+A0AAAAAAAAAAAAAAAAAAAAAAACgjUn8BgAAAAAAAAAAAAAAAAAAAAAAANDGVqvEb7W1tTnjjDPSv3//VFdXZ+jQobn++uvfd7ubb745Rx55ZAYPHpyOHTtm0KBBOfroo/PKK6+sgKgBAAAAAAAAAAAAAAAAAAAAAACA1V1FewewPB100EF5/PHHc9FFF2XDDTfMddddlyOPPDLNzc056qijFrndxRdfnH79+mX48OFZf/31M27cuFx44YX56Ec/mkceeSSbbbbZCjwKAAAAAAAAAAAAAAAAAAAAAAAAYHVTKBaLxfYOYnn461//mn322acl2dt8e+65Z55//vm8/vrrKS8vX+i2EydOzBprrNFq2fjx4zNo0KAcc8wxueqqq5Y4jpqamnTv3j0zZsxIt27dlu1gAAAAAAAAAAAAAAAAAAAAAAAAgJXe0uQeK1tBMbW5W265JV26dMmhhx7aavnxxx+f8ePH59FHH13ktu9N+pYk/fv3zzrrrJNx48Yt91gBAAAAAAAAAAAAAAAAAAAAAACAD5fVJvHbc889l0022SQVFRWtlm+xxRYt65fGa6+9lrFjx2azzTZbbLn6+vrU1NS0egAAAAAAAAAAAAAAAAAAAAAAAAC822qT+G3KlCnp1avXAsvnL5syZcoS76uxsTEnnHBCunTpkq9+9auLLfvDH/4w3bt3b3kMGDBg6QIHAAAAAAAAAAAAAAAAAAAAAAAAVnurTeK3JCkUCsu07t2KxWJOOOGE/OMf/8jvf//7903kdtZZZ2XGjBktj3Hjxi1VzAAAAAAAAAAAAAAAAAAAAAAAAMDqr6K9A1heevfunSlTpiywfOrUqUmSXr16ve8+isViTjzxxFxzzTUZMWJEDjjggPfdpqqqKlVVVUsfMAAAAAAAAAAAAAAAAAAAAAAAAPChUdbeASwvm2++eV588cU0Nja2Wv7ss88mSYYMGbLY7ecnffvd736Xq666Kp/97GfbLNZV3aBBg1IoFHL11Vcv1Xb33HNPDj744PTv3z9VVVXp169fhg0blh//+McLlD3vvPNSKBQybNiwJMmYMWNSKBSW+nHcccd98AMGAAAAAAAAAAAAAAAAAAAAAACAD6iivQNYXg488MBceeWVuemmm3L44Ye3LB8xYkT69++f7bbbbpHbFovFnHTSSfnd736XX/3qVzn++ONXRMgfGsViMaecckp++ctfJknWWWedbLnllpk0aVL++c9/5rnnnsuZZ5652H1UV1fnE5/4xALLJ06cmFdeeSVVVVXZeuutF1i/4YYbLp+DAAAAAAAAAAAAAAAAAAAAAAAAgA9gtUn8tvfee2ePPfbIySefnJqamgwePDgjR47MXXfdlWuuuSbl5eVJkhNOOCEjRozIq6++mnXXXTdJctppp+U3v/lNPv/5z2fzzTfPI4880rLfqqqqbLXVVu1yTKuL4cOH55e//GWGDBmS3/72t9lmm21a1tXU1OTBBx98333069cvDz/88ALLr7766hx//PGLXA8AAAAAAAAAAAAAAAAAAAAAAAArg9Um8VuS3HzzzRk+fHi++93vZurUqdl4440zcuTIHHHEES1lmpqa0tTUlGKx2LLstttuS5L89re/zW9/+9tW+1x33XUzZsyYFRL/6ui5557Lj370o/Tt2zf33Xdf1lhjjVbru3Xrlv3226+dogMAAAAAAAAAAAAAAAAAAAAAAIAVY7VK/NalS5f8/Oc/z89//vNFlrn66qtz9dVXt1omsVvb+b//+780NTXl9NNPXyDpGwAAAAAAAAAAAAAAAAAAAAAAAHxYrFaJ31j53HbbbUmSfffdN0899VR+85vf5H//+186deqU7bbbLieeeKKEcAAAAAAAAAAAAAAAAAAAAAAAAKz2JH6jzUyYMCHjx49PoVDI/fffn2984xtpampqWf+Xv/wlF198cW666absvvvu7RgpAAAAAAAAAAAAAAAAAAAAAAAAtK2y9g6A1ddbb72VJCkUCvn617+ebbfdNk899VTq6+vz/PPPZ4899khNTU0OPvjgjBs3rp2jBQAAAAAAAAAAAAAAAAAAAAAAgLYj8RttZtasWUmS5ubmdOnSJXfccUe22mqrVFZWZtNNN82f//zn9O/fPzU1NfnZz37WvsECAAAAAAAAAAAAAAAAAAAAAABAG5L4jTZTXV3d8vyYY45Jz549W63v2LFjvvSlLyVJ7rrrrhUaGwAAAAAAAAAAAAAAAAAAAAAAAKxIEr/RZt6d6G3jjTdeaJlNNtkkSTJmzJgVERIAAAAAAAAAAAAAAAAAAAAAAAC0C4nfaDODBg1KVVVVkrT8/73mL29qalphcQEAAAAAAAAAAAAAAAAAAAAAAMCKJvEbbaa8vDzbbLNNkuS1115baJn5y9dee+0VFhcAAAAAAAAAAAAAAAAAAAAAAACsaBK/0aYOO+ywJMnIkSMzd+7cBdaPGDEiSbLbbrut0LgAAAAAAAAAAAAAAAAAAAAAAABgRZL4jTZ14oknZsCAARkzZkxOP/30NDQ0JEmampoyfPjw/Oc//0llZWW++tWvtnOkAAAAAAAAAAAAAAAAAAAAAAAA0HYkfmOZfeUrX0mfPn0W+XjuuefSsWPH3HzzzenWrVuuuOKK9OvXL9tuu23WWmutXHjhhSkvL8+vf/3rbLrppu19OAAAAAAAAAAAAAAAAAAAAAAAANBmJH5jmdXW1mbKlCmLfDQ2NiZJtt566zzzzDM58cQT07lz5zz99NNJkoMOOij/+te/cuyxx7bjUQAAAAAAAAAAAAAAAAAAAAAAAEDbKxSLxWJ7B7E6qampSffu3TNjxox069atvcMBAAAAAAAAAAAAAAAAAAAAAAAA2sjS5B4rW0ExAQAAAAAAAAAAAAAAAAAAAAAAAHxoSfwGAAAAAAAAAAAAAAAAAAAAAAAA0MbaJPFbfX19Ghsb22LXAAAAAAAAAAAAAAAAAAAAAAAAAKucZU789vDDD+d73/tepk+f3rJsypQp2XvvvdOlS5d069Ytw4cPXx4xAgAAAAAAAAAAAAAAAAAAAAAAAKzSljnx2yWXXJIRI0akR48eLcu+/vWv5+67787666+fHj165KKLLsqNN964POIEAAAAAAAAAAAAAAAAAAAAAAAAWGUtc+K3p59+OjvttFPLv2fPnp0bbrghe+65Z15++eW8/PLLGThwYC6//PLlEigAAAAAAAAAAAAAAAAAAAAAAADAqmqZE79NnDgxa6+9dsu///3vf2fOnDk5/vjjkyRdu3bNvvvum5deeumDRwkAAAAAAAAAAAAAAAAAAAAAAACwClvmxG/V1dWZOXNmy78ffPDBFAqF7LLLLi3LunTpkmnTpn2wCAEAAAAAAAAAAAAAAAAAAAAAAABWcRXLuuHgwYNz1113pb6+PmVlZfnjH/+YTTfdNP369Wsp8/rrr2eNNdZYLoECAAAAAAAAAAAAAAAAAAAAAAAArKrKlnXDk046KaNGjcoGG2yQTTbZJKNGjcpxxx3Xqsyjjz6aTTfd9IPGCAAAAAAAAAAAAAAAAAAAAAAAALBKW+bEbyeccELOPPPMzJ49O9OnT88Xv/jFnHHGGS3r77///rz22mv55Cc/uTziBAAAAAAAAAAAAAAAAAAAAAAAAFhlLXPit0KhkIsvvjiTJ0/O5MmTc/nll6e8vLxl/Sc+8YlMmzatVTK4tlZbW5szzjgj/fv3T3V1dYYOHZrrr7/+fbd74403csYZZ2SXXXZJjx49UigUcvXVV7d9wAAAAAAAAAAAAAAAAAAAAAAAAMCHwjInfns/lZWV6d69eyoqKtrqJRZw0EEHZcSIETn33HNz5513ZptttsmRRx6Z6667brHbjRo1Ktdee20qKyvz6U9/egVFCwAAAAAAAAAAAAAAAAAAAAAAAHxYfOCsbLfccktGjhyZl156KbNnz86oUaOSJC+99FL+8pe/5Oijj87aa6/9gQN9P3/9619zzz335LrrrsuRRx6ZJNl1110zduzYnHnmmTn88MNTXl6+0G133nnnTJo0KUnyxBNPZOTIkW0eLwAAAAAAAAAAAAAAAAAAAAAAAPDhUbasGzY3N+fwww/PIYcckptuuimvvfZaRo8e3bK+Z8+eGT58eH7/+98vl0Dfzy233JIuXbrk0EMPbbX8+OOPz/jx4/Poo48uctuysmV+GwAAAAAAAAAAAAAAAAAAAAAAAADe1zJnPPvpT3+aP/3pT/niF7+YadOm5Rvf+Ear9WuuuWZ22mmn3HHHHR84yCXx3HPPZZNNNklFRUWr5VtssUXL+rZQX1+fmpqaVg8AAAAAAAAAAAAAAAAAAAAAAACAd1vmxG9XX311tt5661x++eXp1q1bCoXCAmUGDx6c0aNHf6AAl9SUKVPSq1evBZbPXzZlypQ2ed0f/vCH6d69e8tjwIABbfI6AAAAAAAAAAAAAAAAAAAAAAAAwKprmRO/jRo1KjvvvPNiy/Tu3bvNEq4tzMKSzy3Jug/irLPOyowZM1oe48aNa5PXAQAAAAAAAAAAAAAAAAAAAAAAAFZdFcu6YceOHVNTU7PYMmPHjk2PHj2W9SWWyqKSzE2dOjVJ0qtXrzZ53aqqqlRVVbXJvgEAAAAAAAAAAAAAAAAAAAAAAIDVQ9mybrjVVlvl7rvvTn19/ULXT506NXfddVe23377ZQ5uaWy++eZ58cUX09jY2Gr5s88+myQZMmTICokDAAAAAAAAAAAAAAAAAAAAAAAA4L2WOfHbaaedlnHjxuWQQw7Jm2++2Wrdq6++mgMPPDAzZszIaaed9oGDXBIHHnhgamtrc9NNN7VaPmLEiPTv3z/bbbfdCokDAAAAAAAAAAAAAAAAAAAAAAAA4L0qlnXDAw44IN/+9rdz0UUXZeDAgencuXOSZI011siUKVNSLBZzzjnnZLfddltuwS7O3nvvnT322CMnn3xyampqMnjw4IwcOTJ33XVXrrnmmpSXlydJTjjhhIwYMSKvvvpq1l133Zbtb7zxxiTJa6+9liR54okn0qVLlyTJIYccskKOAQAAAAAA4MPguuuSCy5Ixo9P9tgj+dnPkv792zsqAAAAAAAAAAAAAAAAaFuFYrFY/CA7uOeee/J///d/efTRRzN16tR069Yt2223XU477bTstddeyyvOJVJbW5vhw4fnhhtuyNSpU7PxxhvnrLPOyhFHHNFS5rjjjsuIESMyevToDBo0qGV5oVBY5H6X5i2qqalJ9+7dM2PGjHTr1m2ZjgMAAAAAAGB1dcMNyeGHt142cGDy6KNJv37tExMAAAAAAAAA/5+9+45vo77/OP7S9t4jduzsvTchkBBGmCFQ9iiUwg9KB9CyC11Ay2pLobRlFCgtKVA2gUAGkAXZe8eJk9iO917a0v3++FiWldiJsxP4PPPwIyfpdPpKOt1973vf7/uUUkoppZRSSimllFJKHaqDyR475OC3wsJC7HY7XXQETgQNflNKKaWUUkoppZRSSimllGrf5s0wejS43fs+dvPN8Oqrx75MSimllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSh2Og8keMx/qi/Ts2ZOHH374UJ+ulFJKKaWUUkqpbxnDgEDgeJdCKaWUUkqdyJ56qv3QN4DGxn3vq66GV16BF1+EwsKjWzallFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSimljrZDDn5LSUkhJSXlSJZFKaWUUkoppZRSJ6FgEB55BLp0AYcDzjwT1q8/3qVSSil10gh4oOhD2PES1G863qVRSh1FVVXw5pudn3/BAujWDW69FX78Y+jTB15++eiVTymllFJKKaWUUkoppZRSSimllFJKKaWUUkoppZRSSqmj7ZCD3yZOnMjSpUuPZFmUUkoppZRSSil1gikrgx/9CM46C372M9i1K/Jxw5D7f/c7qKiAQADmz4dTT4Vly45HiZVSSp1U/E5YeAl8fRmsuB0+GwLL/g8C3uNdMqXUUTBrFvj9kffFxLQ/7+rVMHUqOJ3h+3w+qZvOnHn0yqiUUkoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaXU0XTIwW9PPPEEGzdu5JFHHsG/9ygdpZRSSimllFJKnfQ2bIBTToGXX4Z58+Dvf4cRI2DBgvA8//oXvPDCvs91OuH5549ZUZVSSp2MAl6Yfz6UzY68f+ersOYXx6dMSqmj6rPPIm//+c/Q1ARLlkDXruH7DQPuuEMea8/mzUevjEoppZRSSimllFJKKaWUUkoppZRSSimllFJKKaWUUkodTdZDfeJTTz3FkCFDePTRR3n55ZcZPnw4mZmZmEymiPlMJhOvvvrqYRdUKaWUUkoppZRSx87u3XDaadDYGHl/QwP85CewaRN4vfDII8eleEoppb4Ndr8BlYvaf6wh79iWRSl1TKxdG56+9lr4xS/AZILx4+GTT+BPf5LHFiyAxYuPSxGVUkoppY6+YADcpeDIAIv9eJdGKaWUUkoppZRSSimllFJKKaWUUkoppZRSSh1jhxz89vrrr7dOl5aWUlpa2u58GvymlFJKKaWUUkqdfH79631D30L8fvl/7lwoLDx2ZVJKKXVyWVu2llpXLQBn9DgDs8kcOcO2Z499oZRSx00wCLt2hW/feaeEvoWMHAl33CHTb78d+dzYWOjeHbZuleUopZRSSp20ij+BJd8HXwNYY6HXLTDsD2CLi5wv4IY9H4G7HJKGQ8Yk2PuYSimllFJKKaWUUkoppZRSSimllFJKKaWUUkqdlA45+G1X29E5SimllFJKKaWU+taorIS33jrwfO++G3n7xz+GH/0IFi2CX/7y6JRNKaXUyeOGD29gY8VGAIp+UUROQk74wcYdUL8xfNuRBplnQdVScGqqqFLfRmVl4HbLdHIyjBu37zzjx4NhwEcfhe/r0gUWLoS+fWHdOrjooqNfVrdb6rqFhdCnD0ybBtHRR/91lVJKKfUtt+2vsPrngCG3/c2Q91eoWgLnLQ/P5yyBr78H1W3uSz0FTvsfxHY/liVWSimllFJKKaWUUkoppZRSSimllFJKKaWUUkfBIQe/de+unUmVUkoppZRSSqlvo/feg0AgfHvyZHj8cdi5Ex5+OHz/N9+Ep6++Gv7+dzCZYPhwGDIEXn/9WJVYKaWOvnXrYPt2yMqSYCKL5XiX6MRmGAb5Nfmtt3fU7IgMfiubE56OyoSz50PCAAi4YfmPwFVyzMqqlDo28sObBEaPBrO5/fkqKqC8PHz73/+W0DeQeubMmTB//lErJps3wzXXwIYN4ft69JAguDFjjt7rKqWUUupbrmErrLmb1tC3tmpWhKc91TBn7L7HRNXLYMkNcM7Co1pMpZRSSimllFJKKaWUUkoppZRSSimllFJKKXX0HXLwm1JKKaWUUkoppb6dFi0KT4fCNWJi4NRT4Ywz4Ac/AK8Xdu0Kz/eb30joW8jkyZCcfMyKrJRSR01dHdxxB0yfHr6vXz8JIho//rgV64RX2lSKy+9qvZ1fk8/kHpPDMzRsC08P+4OEvgFYouCU12DLU8emoEqpY2bnzvB0bm7H8+Xlhad79oQpUyIfHz4cjta1idasgQkTwO2OvH/3brj5Zli//ui8rlJKKaW+A7b8EYzAgefb+FjHQdgBV/v3K6WUUkoppZRSSimllFJKKaWUUkoppZRSSqmTivlwF/Dmm29y7rnnkpGRgcPhID09nXPPPZc333zzSJRPKaWUUkoppZRSx9iWLeHpBx6Q0LeQnBz4xz8gPx8CLWNV+/SBQYP2Xc7w4Ue3nEopdbRVVMi2rG3oG0go0fnnH58yHRST6cB/R0l+TX7k7drI2zTtaCmjBbpdGfmY2QIDHzhqZVNKHR+HEvw2ZUr7m6qkpCNWrFaGAbfdtm/oW0igEzktSimllFLtCnig6P3w7bheMO5VGPZ7cGSE7/e7YOdrkc91pAFH79hNKaWUUkoppZRSSimllFJKKaWUUkoppZRSSh171kN9YjAY5Oqrr+aDDz7AMAyio6PJzs6moqKCL774gi+//JL333+fd999F7P5sPPllFJKKaWUUkopdQwEg7Btm0xbrXDRRfvO078/fPRR+PbIkcekaEopdczdeScUFrb/mMdD54PTDOOIlelksXfQ2z7Bb40twW+JQ8GWsO8CzJajVDKl1PFSXx+e3l/wW6guCjBgwNErz94WLoSVK8O3o6LgrLOgoAA2bTp25VBKKaXUt1DtWvC1VIZicuGcxRCdKbd73gTzzpHp0lngb5RpSzRMeBNyLgXnHlj5E3CVHuOCK6WUUkoppZRSSimllFJKKaWUUkoppZRSSqmj4ZAT2Z5//nnef/99Jk2axJIlS2hubmbXrl00NzezdOlSzjjjDD766COef/75I1lepZRSSimllFJKHUUFBeByyXSvXpDQThYPRAZy9Ox59MullFLH2o4d8M474ds2G1x5JZx7Luh1Lg4sv0aC3uLt8QDsqNkRfjAYgOZdMh2nOxGlvis8nvB0cnLH8+Xlhad79DhqxdnHf/8bnk5PlyC4mTNhwwb4z3/Abj92ZVFKKaXUt0zDlvB0/7vDoW8AMV1h0qcyXbc2fP+w30voG0BMDpz+IeRefrRLqpRSSimllFJKKaWUUkoppZRSSimllFJKKaWOAeuhPvH111+nf//+zJ07F6s1cjHjxo1jzpw5DBs2jH/961/cddddh11QpZRSSimllFJKHX1b2oxD7dWr4/n27AlPH+ngt78u+ytVzirMJjO/PeO3mEymI/sCSinVCW++CYYh00lJ8PnnMH683F69Gq66Csg/XqU78e2olaC3Sd0nMXP7TPJr8jEMQ7bprhII+mTG2O7HsZRKqWOpbfCbw9HxfFVV4eljGfy2alV4+vHHYexYmTaZ4IYboLturpRSSinVGYYhFYi22ga/5Uzb9znxveX/+s3yv8kCPW+KnMdsgYEPHLFiKqWUUkoppZRSSimllFJKKaWUUkoppZRSSqnjx3yoT9y2bRsXX3zxPqFvIVarlalTp5KXl3fIhVNKKaWUUkoppdSxVVERnt5f8JvLFZ7Oyur88r1e2LkTtm2T6b35Aj7um3sfjy18jEcWPMLuut2dX7hSSh1BK1aEpx96KBz6BjBqFHzyybEvUyuT6cB/IIEDob+2Orr/CMqvkVS8M3ucCUC9p54aV408GGgOzxidc9TKoJQ6sfj94WmLpeP52tYz09KOXnna8vlg40aZdjjgmmv2nWfSpGNTFqWUUkodQ4YB3npwlYERPLzlFL4LMwfD/2zwXiIsmAplX8rjDVvlf0sUxPboeDmh4LeEgeBI2fdxvTiCUkoppZRSSimllFJKKaWUUkoppZRSSiml1LfCIQe/2e12mpub9ztPc3Mzdrv9UF9CKaWUUkoppZRSx1jboI309I7nc7vD01FRB16u0wnPPgs9ekDv3jBgACQnw+23Q2VleL4tVVvwBsKJcGvK1nS67EopdSStWhWevvHGfR8fOJDIALW2IWod3X8gnQ10O5I685qH8Lr5tRL8NiZ7DLG22Ij7CLTZiVhjw9NfTIT3U8N/7jY7CKXUSa/t6SKfr+P52tYzHY4j9/qGYbC9ejvbq7dTVF8U8diWLeFQ4kGDIC7uyL2uUkoppU5Q5fNh7qnwfhJ8lAXvp8Cy/4PmogM9M1IwAF9fBt9cBQ2bwQiArwFKZsK8c6B2LTRul3lje4Gpg246QR80tlxYMb7vIb4ppZRSSimllFJKKaWUUkoppZRSSimllFJKKXUysB7qE0eOHMk777zDww8/THZ29j6Pl5aW8s477zBq1KjDKqBSSimllFJKKaU6r7wcXn0Vtm0DiwVGjICrroIuXTr3/M4Gbfj94WnrAVoX6uth8mRYuzbyfqcTXnpJwjXuvFPuW126OmKe1aWruWzgZQcst1JKHUmlpfIHkJ0NmZnHtzwnm1pXLTWuGgB6JvekZ3JPNlZsZEfNDsZ1HQfBcMAnZlt42lsP3po2SzqI0Dyl1Amvbd2ybZ1zb23zMjubO7l8Ofz97+E68KhR8MMfyv8hBfUF9PtbPwCy4rIovrsYU8sLbNwYnm/gwM69plJKKaVOYlv+CGvvj7zPVw87XwXDD+Nf7/yy8p6HPR91/HjQB/5GmY7t3ub1GsDvDN8OeOS1AeJ6d/71lVJKqbaMoOyXtj4jwaPWaEgZAz1/CNkXHp0LSyillFJKKaWUUkoppZRSSimllFJKKaUO2iEHv91zzz1MmzaNMWPGcM8993DGGWeQmZlJeXk58+fP55lnnqGmpoa77777SJZXKaWUUkoppZRS7fD74e67JUjN64187IEHYPFiGDnywMtpO+bH2E/eTtvgjr1fb2933x0Z+jZkCPTsKfcVFUXOu6Z0DQDR1mhcfhdrytbsd9nBoATLxcTsP6hOKaUORl5eeHrQoONXjg51lIq0vw33MZRfmw+AzWyja3xXeiZJ8Ft+jdyPqU3YmxE4DiVUSh0PUVHh6bKyzs3n8ex/mQ0NEnI8e3bk/YsXw9/+BsuWwbhxct+SoiWtj5c2lVJYX0j3JAlfqasLP7e35qwopZRS3251G2Hdg+Hb0dkQ3w8atoJ7P5WU9hhB2PxE+PaA+2DwQ2AyQ/FMWP+Q3B9oSb21xobn3fAIbHsmfHvkX8LT9pTw9Jp7pcwhp7wCMTkHV06llFLfDX4XLJwK5V+F7/MAzQVQ9D6c8zWkn3bciqeUUkoppZRSSimllFJKKaWUUkoppZQKO+Tgt6lTp/KXv/yF++67j/vvj7wSsmEYWK1W/vSnPzF16tTDLqRSSimljhHDgIr5ULNaBt/H9YCMMyEqvd1Zy8qguRkyMiAh4ZiXVimllFJt3HEHvPhi+LbNJkFoTU3gdkN1deeW0zZow+3ueL7o6PB0Y2PH85WXw2uvhW+/+CLcdpvkFAWD8Prr8n9IKOjt0gGX8tbGt1qD4Pa2YIGE3H3wgQSCmEwwbBjcfLN8Fm1zkJRS6mA1NYWnc47lePrjEei297JDr3sYrxkKeOuW2A2L2ULPpJ5yf0sgHJY2SZ0B1yG/jlLq5JKZGZ7es6fj+drWR+vqOt4OGwZcf31k6Fu3bhAXB9u2QSAArjabmKV7lkY8f+mepa3Bb05n+P64uAO8EaWOgtJS2LxZQrV79IABA/SYRqljJRAM4A1Ior3NYsNqbr8LxaKCRWyu3AzA1H5T6ZrQ9ZiVUR1hec9LYBtAvzthxFNgiZL7Ct6GmpWdX1bdRvBUyHTPH8DIp8OP9bgWss+HoA+CfrnPZOl4WaF5AMz28HT1cqhcFL7tb1Nx6QzDgKpvYMfL0LgNMEPCAOh6MXS9BMz7KZNSSqmTy/pfRYa+pZ8uF2CoWQ7+5vD+TymllFJKKaWUUkoppZRSSimllFJKKXXcHXLwG8Bdd93FtGnTmD59OmvXrqWhoYGEhARGjhzJddddR69evY5UOZVSSil1tJV8Bqt/AY15kfebLDD6b9D3dgAqKuAf/4D//Ad27QrPNmIEPPQQXHnlsSuyUkoppcTateHQN5MJnnhCws+ioyU84He/6/yy2ga6lZd3PF98fHi6oKDj+ebMCU9fcQX86Efh22azBLWFgt+CRpC1ZWsBuH7o9by18S1Km0opbyonMy6cFPLww/D445GvYxiwbh3cdRf89Kdg0TGrSqnD0DYoqG0AkeqcUMBbz2QJfOuR1CPifixtdjau0vB0yiggCPWbjkEplVJHRShYpG4jEISYbpB+GtiTaXvKqKio40UkJYWnCwpgyJD251u4ED79VKajoyVQ+MorpT5cXQ2PPRYZnLVkzxIAMmMzKW8uZ8meJVw95OrWYit1PHz5JfzxjzB3bmQgdrduEnR9/vnHr2wnuiZvE1urtgKQEZtBt8Rux7lE6mT19DdP89BXDwHw81N+zl/O/0u7893/xf2tIaJ/9v2Zu0+9+5iVUR1hFfPl//i+MPKZcPCZyQw9roNuV3V+WW0D2XrdvO/j9mT53xIFPiDo6XhZbUPhDF/ny7A/fhd8cyWUzIy8v3op7HodTnkdev3gyLyWUkqp48vvhO1/l2lHOkz+HFJGy21fE2z9E3QQcKuUUkoppZRSSimllFJKKaWUUkoppZQ69g67N0/Pnj359a9/fSTKopRSSqmjrLJS/hwOyM0Fuz30wNewcBoYAbmdMAhicqBxOzTvgiYZnL9jB0yeDMXF4WWazTIoce1aeOONyOC3wkL4+GPYtg28XsjJgUmT5M9sPhbvWCmllPpu+OCD8PQ998ADD4RvDx4M77wDnv2MK20rOzs8vXNnx/P17h2ebhsGu7fZs8PTl17a/jyhesHO2p00ehsBOKPHGWTHZ1PSWMKasjWc30cSDz7+OBz6ZrPB7bfDZZdJXWP+fHjhhY7LopRSndV6rAT4jtB4+++S/JqW4LckCX4LBcDtqNkhM0RnS6iCEQRnYfiJ41+XUPIFFx3L4iqljpTdb8KGX0PTXpVIkxXGvkDv3v/Xetf+6pn9+sHnn8v0/uqZH38cnv71r+GqNhktqanw7LPhIC2Xz8WasjUA3DrqVn6/6PetQXAAMTHh57YN/1TqaHrjDfjBD8LBg3FxkJ4OJSXSrrp8uQa/7c/09dP58cwfA3BG9zOYf9P841sgddKalT8rYvov7Bv8VuuqZXnx8tbbc/LnaPDbycpZEr4AUtYF4dC3tg4mFKe6Zb0wmSF5VMfzWVoSxT1VHc9jbnsg2tD5MuzPugfCoW/R2dDzJrAlQt1a2PMhoOm3Sin1rVGxMBwwOvSRcOgbgC0Ohv5OU8/Vya9twv/+6LqulFJKKaWUUkoppZRSSimllFJKqZOAXsZRKaWU+pZrbIRnnoEPP4R168L3Oxxw9tnw1luQsP7XEvpmtsPp70P2RdJh0jCgeik0FwAyEDEU+nbJJfDYYzBkCFRXw4wZsEbGz1JaCjffDLNm0a4nnoAHHzyKb1oppZT6ltm8Gd58E2bOlCDWQACysmDCBLj3XtkPh3z/+/s+32SCqKjOvdbAgeHp/PyO5+vfv3Pzbd4cnh4/fv+vvaZUKhO9k3sTZ49jaMZQCX4rDQe/vfhieP6XX4abbgrfPvdcuOOOzo/7UEqpjsTGhqer9jMuX7Uvv1Z2DDG2GLZVbcNoGWhX1lRGs7eZWHssxOTKsWbL8eaBFDcUM339dAD6pfbjewO/1+58RfVFbKrcBMCAtAH0SOrR4TJra6GoCPx+6NJF9q26D1HqEBW8DUuul2mzA7pOhagucjGB8q+geTe9eoVnX70ampsjt7cgv8d+/cK3d+zo+CU//TQ83fZCBG2FAoZXla7CH/STFJXENUOu4feLfs+a0jW4/W6irFHEx4efs7+wOaWOlNpauO02aX41meBPf5JQ65gYcLvh/fc7H979XTVjW/hA+OvCr6lx1ZASnXIcS6SOpaYmWLZM6up2O/TpA4MGgaWdDK/9qXfXs7hoMQBWs5WtVVvZXbd7nzrkV7u+ImgESYtJo8pZxYKCBa37EHWSadwWnm4biOMqIyIELTqrc8vz1sj/UV0kVAegeiXsfDU8T+aZsrzm3dDUpqIx/AkY8ht4P0luW2PCAdkR8z0JVd/A2vs7V6YQvxPyX5HppBEw5Wuwtql8ucrAW31wy1RKKXXiKv8yPJ11QfvznCgNX65ScBYBJrkgYVSXE6dsSimllFJKKaWUUkoppZRSSimllFJKHSOHHPz2zDPP8Pjjj7N+/Xqys7P3ebykpIThw4fz61//mjvvvPOwCqmUUkqpQ1NWBmecAXl5cjs7W8LezGZYvx4++wyaqipIqFwoM/T6oQzMDTGZIO1USDuVLVtgsYx/YuBAePddsNnkdlqaBL0ZBvh8MGUKbJJx9px1Ftxyi7x2URF8/DEEg0fn/ZaXw+uvw9y5MoC4qQni46W8l18Ov/jF0XldpZRSx5lhQMAlAyMt374Bt//4B9x1l4RgAHTvLvvV4mKYPl32c6Fwtbg4GDp0PwvrxMCZrkGD+HgJj929GyorIT193/naBr8tWSJ1gFDdICQYlOWEpKXt/7XXlEnw27DMYa3/z86f3Xp/dbXs5wFSUuCGG/ZdRlYnx+UqdTTU1Mg6Om8eFBbK7zYzE0aNgquugq5dj3cJVWfl5ISn2wZYqs7ZUSNJTc8te47nlj0X8djO2p0MzRwKcX0k9K1uPQR9YLa1t6hWr615jd/M/w0AqdGpXNTvIuwW+z7zPfTVQ60BcZcPvJz3rnov4nGvF55/Ht55B1askGpESNeust+dNu2g3/KBNRdB4dtQOksCHwwDortA8mjo8yNIGnIUXlSpY8QwYIP8PonuClMWQ2y38OPuSmjKJzERUlOlTuf3S3Db1VdHLuallyLrmV991f5Lut3hULiUFOjde/9FXFK0BIAx2WMYkDaAOHscTd4mVpWs4rRupzECwS2WAACdM0lEQVRoUHjeLVs6+b6V2h/DgIatEnzoLgXMENMVUsZA8kjefdeM2y2z3nor3H13+KlRUXD99cel1CeNJm8TX+2SDUS3xG4U1hfy+fbPuX6YfnDfditXwsMPw/z5Uq9rKz0dNm6EjMxOhIa0VAK/2vUV/qCfAWkDyIzNZEHBAmbvmM2PxvwoYvY5+XMAuG7Idby/5X2KG4v5uvBrzul1zpF4W+pY8jeFp+2p4enPBodD3EwWuMbfueUFveHnhDTlw442Vy4w2yF+AFQtAVcx+F1gjQaLPbKtzmyD2J7y/KY2V1lIn9C5suytbI60mQIMvC8y9A3keCS6y6EtWyml1InHWST/2xIgtrtMN+ZD8SfheZKGQpezj87rBwNQu0b2YUEfONKkvSsmJ/z4jhcg/1WoWxv53JgcGPcqZJ17dMqmvj3aNuZCuC619/3fQR6/h2lvT8Ptd2MxWZhx7Qzi7HHHu1hKKaWUUkoppZRSSimllFJKKaWU2o9DDn579913GTZsWLuhbwDZ2dmMGDGCt99+W4PflFJKqePk978Ph77deSc88wxY2ow92bABkv2LwGhJYss6X/43DPBUhWc0mXn//fAAmGuv3TfYBaRP5QcfhEPfLrkEPvwwctzKDTeAxxO+7fHAmjUy4L6yUubt0gVGjICxY8HaydrK/Plw6aVQXy+3J06UgcI+n4TA/f3vGvymlFLfKsEA7J4ORe9BxQLwt6SL2ZIgeQSMeBpSxx7PEh4RW7bAT38q0126wNtvS6hryMaNUFEh+zuAhAQJeD0cJhMMGBAOw/nwQ7jttsh5Fi+GU0+VoLmmJgl3mzFDglZDAgF48UWwt8nkaVsHaE8o4G1ohqTXhQLgQvdv2SLLBTj99Mh6jVKHzN8M1cvBuQcwwJ4CCQMhrlenwhJD/vUvCWkMhR326AEZGbBtm4Q0ejzw4INH5R2oo6BvX1pDMPPzwemEmJjjXaqTg8vnorixuMPH82vzW4LfekP5lxK8UP4VZJ3X4XMMw2D6Bglzi7JGUe2qZvaO2Vzc/+KI+Ro9jXyw5QMATJj4JO8Talw1pESnALK/PPdcWLBA5h86VPZdmZkSnD5nDmzdehSC34o/hW+uhoATLDGQOg4cqeAshvyXIDpLg9/UcREMwuefw5dfwtKl0i4DEqQ7erQEUeXmdmJBNSuhcbtM97szMvQNICpd/pCAtupqufvRR+GCC6QOC/DXv8I330T+BjdskHajkSPD9+3ZI3XU0Jje+PgD77KX7JHgt7HZY7GYLYzOGs2CggUs2bOE07qdxpAhUrcMBKRdy+MBh6MT712p9tSug6U3SrgpACawOCDQkvQ24W0+/jicenjVVftZVmfqo9/BAe5z8+fiCXjol9qPa4dcyyMLHmFG3ozI4DcjCEXvS9BF5dfS3m22SUBl8kgY9ti+2yt1Qlu4UC464/VKQOLdd8P48TK9eTP8738t7Q5tfxNtf0Pt/FZm7ZgFwNk9z24NfpuVPysi+M0wDObslOC3s3qeRY27hunrpzM3f64Gv52APB4JeZ43D5Ytk4B2i0VCnseNg9//1EZiaOZQe+LhCIWpeapkHetou504MDxdvQwyJ7c/X8JACcyp3yT7jY4uctGZ/cO6h8PTGS2v52uS1w+xJ0PKqAMvSyml1IkvFPZpdoT3E/UbYU2bThK9bzvywW8BL2z4LeS/HA5Rbav/3TDqz7DqZ+Fg1IwzIOtC2Q85C6Dkc2jaeWTLpdR3zIxtM1oDqwHe3fQuPxz5w+NYIqWUUkoppZRSSimllFJKKaWUUkodyCEHv+Xl5XH9AS43P3jwYP773/8e6ksopZRS6jA0NUn4BMgA2iee2DccZehQIL8+fEdUVsuEAR9mtLm/C8XFpa03B7YZn7K3//wnPH3HHe2PPXE4ZCDtE0/A009LmILdLoN/4+OhuFj+Zs2C8zoe+9/K64WbbpLQN4cDZs+ODMUBCWtQSin1LWEYsPhaKHoXTGbodjWkTwJbAjgLoXy+BE98C4Lfnn02PP373++7fxsyRD4Ou132h/X1EuDRYfhbJwc/DxwowW8g++tLLpFQHIC1a+HnP4fly2HQIPkf4J57ZABtbq7s5++4Axoa5HmbN8s8mzdLEFZH1pRKwNun2z9lU+UmKp2SPrKjZgcNngZcroTWeWNjO16OUp3SXASr7oCSmWD4ZTC1PUUGawe9MOQ3MPSRTi1qxQq4+WaZ7tcP3noLRrUZN52fD3V1kc+ZtWMWTd4mAKb1n4bdYkedOMxmCRlauFC2q59+um8oS2OjHL981xiGweR/T2ZRwSIAnjznSe4/7f7Wx3fV7drv83fU7JCJ+L7hO9f/CtJOA1tcu89ZUbKCvOo8kqOS+cnYn/CHRX/gjfVv7BP89sGWD3D6nIzrOo5YWyzzds/jnU3vcPuY2wH473/DoW9XXy232x4n/+53EvJ3RPldsOxmCX1LGg6TP5egtxBvHbjLjvCLHn8NDbB+PZSWSuBeQgL06iUB7RrcemKoqYGLL5ZAX4BTTpHAtfh4CVabMUPCdToV/Fa3Ljyd0VJhDfpg0x/C99uSYMDPOf30cP1x82a47DIJTv3qK3juObjiCglmCYVvgrT5zJsHKSlQVSV106uvDge11dTsvw5sGEZE8Fvo/1DwG0ho0MCBEqzc3Czv/8orI5ezYUNLW5r6zvtwy4fcMuMWAPqk9GHJLUuwmFs2bv5mmHcueCokSHjsS5A+UYLfXOVQNhfierYGLYK0iXboIAKsvktm5M0A4II+F3BBnwt4ZMEjfL79c7wBr9SrjSAsulRC3zBBziWQMg4s0dC8S8JnG3do8NtJxDDggQek7QPkHMCkSeHHL74Y7r//4H4ahmEwK79N8FtcJr+Z/xu+2PlFeF1Cgot31+3GhIlJ3SdR7apm+vrpzNk5h6d46ki9xUga+nhIdu2C888PXxDp/PMl6DkmBnbvhs8+g59dmxoOfnOFz3vR/y6oWgKlsw7uRWNatiMBl4TdOFIl1Pr8tRL+3LhNHk8Y0Kag/+44+C1xEJR8KscPxTOgWwfpoJ3ZP6xuE/Rjazl4bd4F89oEFmaeDWd9EbnsgFfaRkwWcKRIaKZSB8MIQmOe/MY81WC2y3FwwsAOj/uVUkeAtWVb76mCoB/MLd1CTebwhQDhyNczVv0M8v8JmGDQQ7LviuoC3iqoXAyGT+reO16S+XvfKsdJbcsx7PfShqaUOmT/XP1PAMbnjGfpnqX8c/U/NfhNKaWUUkoppZRSSimllFJKKaWUOsEdcvCb0+kk9gCjrKOiomhqajrUl1BKKaXUYSgsDA9YHzlSBra0y9pmf+4uD0/bEiHghqAHiHx+aOBte8rbLKJv347ne+YZ+PWvZfqqq+Dvf4e0tPDjO3bsp8x7mTEDCgrCy9o7FAcOMIBSKSW/d2+dDOayJ+lgLnViK/9SQt8ARv4F+t8Z+figByMGpXg8sHSp7BtrasDlkiCJbt0k4GJ/QWTH26pV4elzzml/HpNJAuBWr5aQivXrYcSIw3vdc84Jh7nu3g2TJ8MvfykDaJ95Brp0kccuuigc3FFQABMnyn3ffAPr1sH118OZZ0pQB8D8+bKs9pQ2llLeLBWJ1aWrWV26OuLxdWXrSE+f2Hp71/5zhZTav6AP5p8HDVsgtgec+oaETplMEAxA/Qbwdz796cknw9N//nNk6BvsWxddUrSEC/57Qevt585/jjtP2Wtbpo67MWMk+A0kEGzKFEhOltuNjRI69Nlnx614x8383fNZWLCQtJg0qpxV/Gnxn/jp2J8Sa5djy/ya/adutz6eMTl8Z81KmDcFci6Fwnf2ec709dMB+N6A73H90Ov5w6I/MGPbDOrd9SRGtcY28O91/wbgmsHXEGOLYd7uefx73b9bg99eey28zPvvbz+ArLPHoZ225yPwtKT7DPuDDHY3gjIIN8SRfoRf9Pj5+GN47DGpw1itMHgwpKbKb2brVrjxRvjb3453KRXAww+HQ9+efhruvXffzBCPp5MLMwJtb8h/QT9sbBOgGtsdBvycCy+U+mTIl1/KX1tmM0ydKkGqIPXbceOkfeurr6ROf801MGwYrFkj69f+6sAF9QWUNUnA4kNfPcTvF/2eiuYKQPbJhmFgMpkYOVKC30DChcaMgZ495fa8eVIfXrq0k5+J+tYKGkF+O/+31LprSY5KZkXJCt7b/B5XD7laZtj5uoS+AZzyOmSEj2GIzoSe3wci9zd7BwQfDsMwKGksAcBqtpIZl3nkFn6CCAQDzMybCcD5fc5nTPYYUqJTqHHVsLBgIef0OgcK320JfQPGvw49b4xciGHste1SJ7rCwvA2eMiQyNC3EJOpczkmIVuqtlBYX4jZZGZyj8nE2eOIs8fR5G1icdFiJveYDMCc/DkAjMwaSXJ0cuv9a8vWUt5UfnR+Zxr6eEjuuCMc+vbOO/uGuBoG+L3DYU+0BLVVzIMBLeFoQ34D+a8cfPBb+umQ95xMF8+AXj+U9nV7koRNhiQNC0/v+jekjYc+P5JQrLYS26TMrrlHnpcwoPVc3UGxJYWnXaUS/maJkkDq5gLw1YUfr1wsgTyln8mxiiVazhUEnBDXB86cI/U5pfYn6IPNT0kAlLMQoru2rDcGNO+W89BXNIE1WtrfqpdKe4CnGvyNst5FZ0HyKEg/7Xi/G6VOSOXlsGUL1NZK6L7DAVlZcpGe9KQhUABgQMNWSBoiAcjXBGDOqfKbg87XMwxD9osFb8tzPZXgawBLDERnQ9b50P/nsLOlwa3/XTC8TQB8dCYkDpbpzU/S2l7Q7055XX8zVH4dnt+WBGmnHPZnpNR30a7aXczdORer2cqbl73J4H8MZsmeJWyq2MTgjMHHu3hKKaWUUkoppZRSSimllFJKKaWU6sAhB791796dxaFRQR1YsmQJOTk5h/oSB62pqYlf/epXvPPOO9TU1DBgwAAefPBBrrnmmgM+t6Kigvvvv59PP/0Up9PJ8OHD+f3vf8/ZZ599DEqulFJKHXnx8eHpysr9zJjapvNs1TeQM02u+nxFHWx6AtY/BEgwTsicOfDDDi4M2zY8Z8cOCdXZm2HAH1r6/FqtMvh+7zzZPn3aX77fL6E2JpM8x2KBiorw4716tf88pdReggHY9S8ofA+qvgZ7MkTnyO/fXSGDX6d8I4NslDoOtlVtaw1vSYtJ4xfjf4EpNACl7QDM7tfK/82FsOE34fsTB+PqcR8//Sn8738S9nbuuRLekJgog2MWLoSdO+Guu47RmzoEUVHh6fr6juebNk2C3wD+/e99Qy8MQz6DzobZXHqpvLbbLbe3boUf/CD8eCj47aqr4Le/Dd9fUAD/+Efkss47D37T8tW8+CL89KeQ3ibfpqEBtm2DyqQ1+y3TmrI1/HTMRLKzoaQEli2D0lIZ1KSOE2+9DPhqLpTBwkEvWGIhKhNSx0H8CZy8W/yJhL4BjHxGBmobQSifH57H7Oj04vLb5FyNHLn/eQ3D4N659wJw57g7+evyv/Logke5cfiNJEUldfo1QerB06dLqOKWLRAIgN0udexgECZMgFdeOYgFBrxQswJqV4OnRgbyma1ST4jpDt2u+E6Fw158cTicaMsWGDsWHnxQwllefBGKi49r8Y6bRxZIkNNvz/gtM7fPZNaOWbyw8gXunSDrdX6t/CB6JvXkHxeFdwqvr32d/236X+vjpIySQaIuCaeheml4AGobvoCPtze+DcBVg69iYPpAhmYMZUPFBt7b/B63jLoFgIK6AubtnocJE1cNvgqH1cFPP/spS/csJa86j36p/SJCzI9Z8Ku7LDwd23KA7K2FD9sEhCQMhIs2H6MCHT2zZ0sdAiT49a23ILPN2wwEIsPiD8QwJGD2iy9g5UoJ+2pslPaA+Hjo0QOeeiryNVTnGAa8/rpMOxxSH947KMdkiqyL7ldcm0achi0SZGK2wYS3JHxpzwetD0+cKHXJsrJ2ltPGlVeGg99A9rX5e+VKTpsmwW8A//oXPPdc5OPBoLQhLSla0nrf1qqtEfOUNpVSWF9I96TuXHUVvPGG3L9rl2z3r7pKwoY++wwGDtx/mdV3w4dbPmRDxQYGpA3gkcmPcPV7V/Powke5YtAVWMyWcB0TIGW0/F+7FhZMDd+feTannfZvFiyQm7NnH354d8j09dO58SMJOTObzHz9w685NffUI7PwvXUmYcswOj9fJy0rXkalUxq89zTs4X+b/ke3xG7UuGqYsW2GBL8VfywzW6Kg+3UyXb9JQo1CUk+BHtd3+nXV8RVqnwBISDgyy5y1Q9qXHBYHP575YwBsLcc7s3bM2if4bVftLsb+cyxGm/X1i51fcP2w478e7a7b3Rqw3DulNz2SehzfAh0HtbUwUzIhycnZN/QNZHNkc9ghbYJcWKLkc2jMP7z2i7bhVNv+Km2VlnYqUbHdZb9QswowYMXtsPkJaYtvK/tCqUcFfeDcA3NOgeTRcpx+sDLaJCSWfwUJ/SC+L1ywFhZfDwVvymNlX0gQN0C/u2Dg/XJewGSSdoHqFWCN32fxSu1j0+Ow8XdgtsPEj6HrxZH1gKbd8ljpXFh6oxwvp0+C7AvkeDnohaZdUnfS4DelIrz1lrSBrFsHublw1llynsXnk2NWjwdm/ucc4JfyhPxXYPSzh/ei6x6CLU9KO/mIp6DrJRCVIeGpTfmyD61bHw5UTm+z3/niDPC3XCzYbIMuU8KP2ZPkf1cJzD8/fH/aaTClTRCc+k7auVMuLpWXJ+dFm5rAZpP1fcQIuOKKg1tek7eJ0187naKGIgB+NfFX/OLUXxz5gh9n/1r7LwAu7HshPZN7ctnAy/jvhv/y6ppXeea8Zw7wbKWUUkoppZRSSimllFJKKaWUUkodL4cc/DZ16lT+8pe/8Nprr3HzzTfv8/grr7zC119/zV3HcAT9ZZddxooVK3jyySfp168fb775Jtdeey3BYJDrrruuw+d5PB7OPvts6urqeO6558jIyODvf/87559/Pl988QVnnHHGMXsPSn3b1NXB3Lmwdq2EQIAMJjSbZbBnbi488sjxLKFS3145ORLWtmwZbN4MS5bAqe2M8TNie2BKHiWDRra/AL1ukcEfe5k2TYJy6uvh/fdh0SIZrBvi88HixXDDDfD553Lf3/8ug733Htvn84HXK9MWi3TU7Mj69fDCCzLYu6IChg2TAfpms5TF6YR77w3PP3euBNB0ZjyhUicbr1d+0xs2yH61uVl+TxaLhDn17Qs/+lEnF7bxd7Dp99JZ/8zZ0hm/7Q/H19gaeJOXJ0EL27bJ787lkte0WuX3eNNNss3pFF+jXL29bp0MavM3g8kif44UyL5IwoLUd1qDp4FL3r6EvOo8xmSPYUXJCgLBAPeddp/MYE8Jz+ythqh0wICAG6oWg7MIukzhF8/dx7+knzuvvAK33LL/16111XLvnHtx+p0A3DHuDibkTjjo8huGhJ9u3CgDbpqb5Xdjtcrg5F694JJL9npS6Pe312D3731PBjiABLr9+c/tv+Zll8HvfifTzz4LSUnwi19IKMrq1fLYXXfBOed07j3Ex8v2ZO/wjL0NGCDBSJ980vE8o0fL9mn7dgl7GTtWguB69ZKgjmeegfvug8YRktrRPbE7Nwy7ofX5M7fPZE3ZGtaUrcFikfCNZ5+Vj+rmm+G//4WUllXC6YS//EWCmSyWzr1XdQiCfljxI9j1OkR1gb4/hcTBYI2V7XpzAdSu6fzA6YAH8v8pg5AbtkFcD7DEgMkKhh+CHhjzD4g5hIsLtN23tf19+dqkP9kSw+/rm6vlPQSc8nqXFHXqZYYOlUF3AF9/DVdf3fG8H279kMVFi+md3Js/nfsnyprLeGfTOzz59ZM8ec6TnXxjEn4zYYLUkfv0kaCaceOkngxSR9i1K/I5q0pWsb1mOwAD0gYwosuI8IOlc2DxdbJd7XWzDM6NaklTcldAw1YZeP4dCn474wwJ8guFCuXnw623hh/vdCASdP4A5SBCT46HBbsXsKBgAanRqfxwxA8ZnD6YWTtm8cfFf+QnY39CjC2GHTU7ABiUPojz+4QHb+6q3RUZ/GYyQ+/bpF66H3Py57SGu/xx8R95dtmz1LhqAJi+YXpr8Nv09dMBiLHFcP8X9wMQa4+lwdPAf9b9h9+f9XtOO03aqED2XT/+8X5e2NcE9Rtl0Lm/CYJu2S7ZEiCmG2TIAXFTkwQD7tol+3ynU36HcXESSHb24EG07pJqVkHSULDGwWnvwO43JIjyW+KlNlk6Dz64byCbxQLZ2Z1bVjAodbdQONljj8H110tbosUibY6bN0s7ozp4JpOso2637C/cbgkOPWQZZ4AjAzwVsPWZcOBJ92skBKtN8JvdDnfcAQ8/vP9FTpsG/fvLcWhHLrss3Lb8179KHfaee+S9LV0q7UO//S0scUrwm81sI9oW3fr8Rk8jBgZL9iyhe1J3LrgA+vWTY2CA6mppk1LfAY35EoxQvUy2+bHdwGSTH0vQC3G9YcRTBI1gawDq/RPu5/KBl9M3pS+bKzfz3ub3uHrI1RDbI7zchm2QMlLqVP1+BrunS/iYt5obb4THH5fZ/vxnWZ/79g0/tapKjqHaa8/tSGF9IT/7/GdEWaN49rxnuX3m7dzw4Q2svX0tcfa4w/+c9rZ3vaWD49qI2x3Vzw/CjG0zWqdv/eTWfR577vznMIUCigIeaSswx4HfCc27pV3KWws9mzT47STSs6e0P+7ZI+cKiouha9fDW2Yo+M3ld/G/Tf/b57Enz3kSX8DHV7u+AqDWXcvKkpUR883ZOee4B78V1Rdx6qun0uBpwISJeEc8y/9vObmJuce1XMdaVJSca/L5JCw4ENhP21DOJRL8Zvjhy0kw9DFI6A8Viw7+haOzJEiuajHUrYXPh0G/OyRYvXl35Ly9bmkJfmvRXLDv8hwpkPM9KHxHbvsaoGLewZcLIH2iBLl7a2Hz4xIqFwqjbmvzU+H3Muovsq2uXg4FbX4XQY88X6n92fW6/J86Xi40BrD7LSh6LzxPz5sk9M1XBzmXwenvyTpXux58tdLGCHJMbjsK9RelTkJz5kCo2+NFF8GHH3bQvyI4Utrr3WWw/W9ywYW+P5FgNl/Dwb2opwa2tOwf+twG/Vv6f+7+r7SVhbQ9p9vc5v7MM6FqCZTNkcDHwW0aASoWQo/rICYXzlsJGx+F4nAdX303NTZKcO/s2dK+88ADckGv1FSp15WWyt/BuuPzO1hXvo5bR93Kx9s+5oEvHuCMHmcwKmvUkX8Tx0kgGOC1Na8BYDFZ+NPiPxFoCWT8z7r/8MTZT+CwaiOqUkoppZRSSimllFJKKaWUUkopdSI65OC3Bx54gLfffptbb72V6dOnM2XKFLp27UpxcTFz5sxh4cKFZGdn88tf/vJIlrdDn332GXPnzm0NewM488wzKSgo4L777uPqq6/G0kHP3ldffZWNGzeyePFiTm0ZQXHmmWcyfPhw7r//fpYtW3ZM3oNS3zbr1sHZZ8sAuTFj4D//kWCItmN/Kir41gx+VupEYzLBr34lYSwg/z/4oHSONJkkOOr11+G11yBn0C/hmyvB3wifD4Gul8qAxLK5rcuLioJf/1pC1nw+CUG48EK5qm5FBXz2GYwaBe+9BwMHysD3Dz6ACy6QwdpZWVBUBB99JM/5+c/hiSfk6tP33QdPPx05YLu+XoIVTj9dwnJCy4zroI//BRdI4NzixXD77fLec3Jk07FxI3z5pQTgdJZhQEMDlJXJ4H2vVzqU2u0QGyvLTkg4qK9EfQcFArBqlQxULy4Orz9tA1kuuEAGLh7Ili1w3nnyOxo6VIIVR42S5YXW1z17DqJwFQvk/+jscOhbwf9g658llC3owxj6GNc89jDvvCNlfvllGVAQCl/0eOQ1Y2M7+Zo1q2DeueCtgf4/l7/obGjMkyAZV5mE7XyXdKYe9B2rAwWNID/46Adsq97Gryb+irtPvZsRL43gwS8fZFTWKM7udbYMktz0ewi4YNWdcOp/IbY7nPY2fHMtFL4NSD00pEuX/b9urauWKW9MYU3ZGp6/4Hme+uYpPs37lNnfn31Q4W/5+RLWtmGDhEY8+aTs95KSJMCkpkb2LZ11663wxz9KYNozz8g+6cYbJTSlpAQ+/RS6dZN93513SuAFSNDbI49I2JzPJ/cdbC77ww/Lvryondyr+Pjw9BNPwLx5Enyzt7Q0GWT74otSBwkEJLiyvRC+NWWSrDSl1xQeO+ux8Gs54iX4rVQev/9+ePNNqX/MmiUBMGedJfvqpUtle/jggwf3XtVBKp4BO2UQCWP+DjmXyvSSG2QQGUioUbcrOre85bdK+JE9BS7cKAONG/Kgeml4HnfloQW/dSRnGqxpGfy89Y+QdooE111WIQPNNvz2oBb38MPw1luyjv/iFxLIeuGFsv77/RLgGAzC6ZN8PPiFrKCpMancP/d+PH4PAM8ufZafjP0J3RLDg7DLmspaQwasZitT+00lxhYDwFdftRxTA1OnwvjxkWWy2WQ7FPL2xre58cMbGZ09Gl/Ax8aKjbx9xdtcOuBSmWHN3RL6ljwSTnlV7it8B3a/GV5I4hDoetFBfTYnM5NJ6j/jx8t3e1g6G4xygguF3fiCPib+ayIGUv6K5gpeXPkid596d2uwW8+kyEpuz2S5XVBXgC/gw2axSQhO/j/BVbzvi3U5F+wpvLH+DQDMJjMLCxZGzDJ/93wK6wvJTcjlP+v/A0Czr5k3N7wZMd8b69/g0TMf5YEHzLz6qoRcPfCAfA1XXCEDCKurWwYWxhlM63oH7HhJ6qrDHoPUsRJUHHCDpxqaC2ioG88tt9r44APZLz76qISvp6TIcuvrJQA2mD4FS+IQCZFb+4Aca3eZAt2uhKqlHDXeOgmzaNwhYZaOdHkPINtqaxz0uumIvuTpp8vgY5Dj8ylTDj2Uvbo6HPrWvbsc47eVnAynnXbIRVVIfenee2X/9H//J8F9ycnhx4uKDiKsz2yF/nfC+l/Juj5rpISI2lOgfP4+s//sZxLeu3nzvosaOVL+t1ik/nvxxVLGvWVmysUB2taB//AH+Wvrt7+FJXsk+O03Z/yGX00Kr0wXvXkRn23/jCVFS7hmyDVYLBL0ds45J93mWR0OVznMHiPhIz1/AONeBbMFSmZJ3QhkhfA382HeLDZUbADg+eXP89Kql6j31APw6MJHuWLQFVh63yL1SX8jrLhNjlcT+sGgB6F6hQS/IcGGP/iBBHxXVsLgwXDppbLN27VLtqMPPND54LfQsXSDp4FfjP8FF/W7iEt2XMLH2z7m3jn38uLUF4/wB3f8fJInoanjc8a31p0Nw+Ddze9SUF/AxoqNDO37U8h/GTBg1c9g9N9kfz5pBnwxUcLf1Amp3l2PP+gHICkqCYtZ6i92Ozz0EPzkJ3KMdf75Epo4frycu9i8Gf73PznvsHf4bHuavc0sKJD20f8b+X9kxWcBEgr67LJnWVe+jpLGEnbW7qTR24jFZOGpc57CbJKG3Y0VG3lt7WvMyZ+DYRiYjtOVaJq8TUx7explTWW8ffnbmEwmrn7vaqa9PY1FP1x0SKGPTU1yrOl2S1uLYcjnHx8v53n2dyGf4yk6Wr7/P/5R6uI/+Qn86U+RbVjbtklbVWrvWyHv79C4DVwlsPwAV4s4kBF/lAA5IwCN26W9sj29boFtz0p7+N7MdgmfAwmi2/ORhI/uzZ4qYW6dYbbCwAdh3QNyoYxP+0p4myUaSmeH50sYAOVfyLGOcw/E5krgdXxf2PAb8FSCxfHdDH4LBiDQLN9F0C+fqSW65YIFegWqfaSMkcDDhi1Sx4rOhOThsv58cyUYQciYDEZLg7W1zedYNhcqF4bDn85fA8kjCBpBnlj0BG9vepvU6FScPid/PvfPTOw+sb0SKPWtVFgYnu7dez/7YrMFhj8Jy26SfdK6B+TvUFhjpC3JUyFtS0ZQLuJgtoOnCvJarhp03lpIP13q15v+AClj5WIJQ38nbWtlc2S+rAshvp/sA1f/XLYLXc6VtmhrZ080q2+z//5X2mZBzo3ufcGAoUMPfplvb3yb19e+Tu/k3jxx9hNM6j6JGz68gWvfv5bVt60m1v7tWPdm7ZhFcaO0r3+49UM+3Pph62PVrmo+2vqRBNUfBy4XLFwofV1KS6UdPiYmHNDs80kfmP79j0vxlFJKqROSYcg+MhCQur/Fok0QSimllFJKKaVUR5xOubiMxyP9iaxWaYdOTDxx+7copZRSSu3tkIPf0tPTmTdvHt///veZP38+8+fPx2QyYbSMhhk3bhzTp08nPT39iBV2fz788EPi4uK48sorI+7/4Q9/yHXXXceyZcuYMKH9wfoffvgh/fv3bw19A7BarXz/+9/noYceori4mK6He8nwE03QL1dlNgJyhshkApMVzDb5U+oIiI2VA6TqahkkUFIiAwVDQUm1tRJ6kXkQg58Nw2Bd+TpmbJtBekw6Na4aEqMSuXLQlWTGdWIkh1IAec9D8aeyDex+HTjSwFkAzmLAkG3kwPulM/px0Ngov4/mZjl5b7W2bKZNMtA1LU3+OmPqVOkgeccd8lu87z75a8tkQkI5XM/CuodkQHjRu5EzpZ4CwN13y0/zscckVGXmTPkLmTRJBgDNnQs33QRffCGdM2fPjlzciBHwm99I+M0rr8gA3bfeguHDZRuxZw+sWQPvvisBkp9+Kh2a//MfGXwbCp2qrYXt22HiRAmA+b//g/ffl3CGl1+Whhq/XwYn9e7d+eC3Rx+F55+HqioZMHzeeTJYzGaTZdXXy58Gv6kDOfNMWLRIpr/5BvaujhpG5weTt53XbJa/trnGFkvk7VYd7VdHPQcLL5Krry+cCt2vh5iuMOIpWHQZBOsA+Q21fQ2zObzIvW937k20jNg32eTPMKB6pWx3SmZCXB+4eHsnF3jkNDbKAP9Nm6RI554L6enhzlOGIZ/F4MEShJWfL4MGx46VbUHocwgGZdtzyimdfOG230vbD/LbnjKwn/f61NdP8dHWj0iKSmLuzrl8tfsr4u0yQvPq965m1W2r6J7UHU77Hyy7WQaEzegmA0YsMVC/IfQi/P3vErq4ZAlcc42EjY0ZI3XUxkYZ7NmvH1x4mYS+rSpdRb/Ufmyp3MKg9EHM2jGL86afd1Dhb6HBsSCv062bBJNZW46+4+I6+K12ICEB5s+HG26AlSslkOOllyLneeIJ+f+ZZ2Sw8/PPS0f6UGfA0Ose7OF5ejosWwaXXAIrVoTv79ED3ngjfHvwYKkPnH++vG7IlCnw+OMyfdZZ8tv5+c8lxKCtmBgJiH5uqwS7DcscFvF46Pamyk14/B6yshwsWCABeCtWyMmaTz8Nz5+ScnDvs1NqVkP1cvDVQ+JgsCdJndEIyHbNCBBIO4u33rGzdi3U1UlIbqj+ENqOBAKyfWg76PiY2fMxVC6SgarpE2WQsK8efA0t2+cAdL8WbJ0YFN5lSngw18bH5DNIGAiDH4btL8qgL3sKjHu5c2VLnwgFb0pZ9nwM2RfIQNqoTFhyowwuG/wrSBl5eJ9BW/ZkmPC2hNWVzoKPu0md154k33VHOtivDhgAn3wCt90mddlp0+S7T0uTerjXK7/VTbEvsb1mOz2TejKxmwxQ7ZPSh9NyT+Obom/41Ve/4j/f+w/+oJ8XVrzAr+b9igFpA7h99O38csEveeCLB3ju/OeY1n8aP/iBhL+9/Tb87W9SpHPOkd+u3y/lKC2V391fl/2Vu2bdhc1s45ye5xAwAqwtW8vl71zOCxe9wG2jb4Mhv4WlP5AA2LW/hK4XQ9IIGD4EZo+WwKsuZ3fu8zWCULdRjrOCPvkuLdFAaPsfBFsSxPfu/Hd2nIwZI+GWN90EO3eG77da5bjhu2RRwSLm7Z5HtDWaRyc/2hp6satuF39Z+hee/uZpbh9zO/k1EvzWK7lXxPNDQXABI0BBfQF9UvqAIxXOXgBfnQXONqNYsy+CCW/S4HPy8baPAZjz/TkSANti1EujWFO2hjc3vMnkHpPJq87DYrJQfHcx6bGy02vwNNDlT10orC9kwe4FnNnzTL74QoJ28vPhxz+WP4slHO731FMG06JXgeGHqAxIHQfx/aHkM6heIoNYgcaBPVm79jSCQQnLGjNGAqvsdllOINBy7Goxw8QPYNHlUk9ZcKG0w9oSw4FCZvuR+6JAwgk+HyqhDV3OhTM+lTbfsi+gYRvUyj6XjEkQ12v/y2pPB9vCn/9cficvvgjPPivHQmedJQP6Ghulrt2/vwTjHkh6Ojz3nIQeFRTAZZfBdddJ3cpul+P1zZvhyislgOSIcZVD7SpwV8i2y57cEpjXZvuVOBjDEktjo7QNOJ3yfYeOj4JB+Yi6dj2IkOzj4K67JGzqL3+R9peZMyV0P9Qus3273Nep4DeQUBFPlbS7NWyFtfdHPh7Xt3UyIUHqb6ecImUIueEGCfkNufBCuWDBTTftW/YbbpDpvevAbSUkQHyKi7VlawEY13VcxONjs8fy2fbPWFocDmE86yxpz7rhBmnPDklMlIsWqG8hW4KEDVTMg7r1UmdOGiq//9rVsF5GmwfTd7UGoN44/EZGdgnXTZ/+5mk2V27mvc3vyWDqiR/BkuuhZiXM7N9SF4qRuhHIfgBpv4yLg3/+U+qL7+7VJHswxw3PLn2W+bvn0yWuC8uKl3H1ezKoOykqiZdWvcTF/S7mon4nf4Bvfk0+myslNfLfl/6bfqnhpOPRL49mdelqZmybwdBJD8O4f0qoxK5/w54PZX9utsmFCUBHy51gtlZt5bfzf8u8XfO465S7mJE3g2ZvM4+d+RiXDrgUk8nE7bfLeZPf/EYu9nLeefsu5yc/6dzrLShYgDfgJcoaxfMXPk+UNQqQ85Bvb3qbsqYy5uTPYWetHASM7TqWeybc0/r84oZiXlv7GmVNZRI2mHkISRSHKRAMcP0H17O2bC3pMem8tlYC2tNj0llbtpbrP7ieD676oDU8b3+CQWln+ewzadt65RUYNCjc7unxyDmauLij1O5yINv/AUUfQtANPW6UerqzCJoLWtpl/DDgHh55pBuNjeFzRG++KcfrMTGwe7e8h9WrITU1Cs74RNoEqve6CKDZBgPuPbjypU+AU6fDqjukPtRW0jAJxAWw2OHs+bBgquxjQhxp8vzUsXI7oR+c9RUs+p6EroXE94PT34Oog2jkG3hvSx3tWWkT2vNR+DGTGdJOlfdbvxEq5svxf/drILblOMHwt7PQbzlvPSz7obQPJY+AnjfJZ161BDw1cmEbaxxVOU/zwcd28vPlwlajR0udse25Aodj36D+E1pnQ+o7mm/0X+W3Wb1Mjklzr4DYbrLuhea1RMH4/8DSm2D3dPA7Iet8iOspfZhCwW9AeVM5N3x4A3N3zuXSAZfy/aHf5xezf8GZ/z6Tx858jAdOf6C1bUKpb7Obb5bzQy+/LP0qKivD5zH9fmk3qa6WiwHR6wfgLpUw6sBeB8mODGnz7QxLFEx4ExZfB6WfwxenQ/ZUCYMzt+luajJJ2PXXl0k9+8tJ8jpRGbKfBmlXMVskhPnryyUM++srwo+FLiZjiaaoSC7wU1oqx0Pdu0u4a+iiaoGAtAN15qJqGEEonydtFBiyH7XGyb7NCMqfNbblgg/Hflvy/vty/rK8HCZPlnakthdKDAQk8D4joxML87ug6hv5zC1REJMLZkfL+2rpZBDdRS6idYK67jq5oMScOVIXTUuT82ypqbKel5bKX6g96EB21+3mR5/+CLPJTIIjgSlvTAGgW2I38qrzuGvWXbwy7ZWT5yJt+zm3/sqaVwC4acRN/P7M37fe/+TXT/K3FX/jlTWvHLfgtwsvlPPcIOv7gepFPp+07wUC4QtBWCxyvi0mBkz+RnCXga8xHEbZtt3WniIXl1JKKaX21lwobR/eWojqIucFTGZkP9LSXyZl7JFtM3aVQukcOQce213qaCaLHAfT0ocyYQBvz+zNP/8p51jPP18utJWcLPs/v1/a5Xr1krqhOniGIf34qqqk3dNqlfOKbZs24uOhW45Pzq17a6Udwxq71zpiyEUbdJyVUuoE4vPB119Lf1ynU8bKJCZG9nsPBiMvNBYMyv4l0GYoaei4y1S5AArfkwvmZF8kbQl+p9wOjbHKvhASBx6396zUiWbLFsjLk3FxGRlyHtVqlfbMUJ/xIUM613/MMKTveUWF1FsMQ9pG244ljIqS33qn7H5LLhob9EHWedJu4qmS81wt/d7pfQuFZUns3CmvHRcnF7pvGz4cCMg4gaioQ/uMlFLqaJg1Sy4IvGWLjJ344Q/lvJndLtvLpibZhp6SMxNKPpFjveyL5ByWrw7c5S3jZ/zQ7So5p62UOnqCfsksMALhc8OYWy6+GAtmS+v4R6dTjlmCQfmZms1Sv4qNDY/R6AyXS/oZut3h5YEsy2aTc5BbtsiYU6dT6nKxseHz0qELpQ7pVw91a2W7YY2TC3aarbSenzICch7anniEPizA3wyF70BDHjhSIHEoWKOlLhc6z+1II5h+FnuKTZSVyTiNmBj5C/VbMgw5/9yv34FfUil1/JkM4/B7JqxcuZLly5dTV1dHUlIS48aNY8yYMUeifJ126qmnEggEWL48cnDupk2bGDJkCC+99BK33XZbu8/Nyspi4sSJvPPOOxH3z5w5k6lTpzJ79mzOPffcdp/r8XjweDyttxsaGsjNzaW+LI+ExETpTGOyyEFyaIdkMuO1xLG0eDkFdQX0Su5FcnQyJkx4Ah521u4kaAQ5Lfc0EhwJrCxZSXFjMbkJuWTHyyir0qZSCusLyY7PZmz2WGJdBTIQ3d8oAxfsiRDwyMbdXS5b6LTTZHBhdcuI/bQJssH31slg7+ZCMJkxul9Psc9LXnUezd5m0mLSyIrPoqCugDp3HRmxGfRN7UtaTCdTh44gwzD4aOtHNHobGZ8zPmJAx56GPXy16yvsFjtXDLqCgM9KXp40eNTXS0U9NPguFJzSwdd66JqLpCNr0CuNnJbolqs/e6WDsMlMML4/726fgyfgYXKPyXRLDB8UFNUXMW/3POwWO1cOurJTHfEPihGEpnxo2ikdYAJuWT+tsbIuxPc/uI7ineDzwfLlsG6ddKgPVZQsFjlR1qePDLCN0EFH4YK6At7a+BaF9YWM6DKCIRlDcPqcrCtbx+bKzZzV8ywuGXAJG8o3sL1mO90Tu0esI1XOKtaUrSE5KpnJPSbz0daPMDCY2m8qKdHhUQq7anexqHARDosjouNTc7MMUK2slAatqCjpeDd48HEKboDwZ9Teyeb9PdaOOncdCwsW4vQ56ZPSh2hrNADNvmZ21OwgKSqJSd0nsaJ4BUUNRfRL7cf4nHCPLJfPxftb3scwDC7qdxEp0SmUl8v3XlkpFWWfLxxUlJAgJ6g704BZXS2BSSUlUlnu0ydciQ79nmNiZHBqpzRshfL5chIitocMqDCZ5DdS+rlUwHvcIAP8WgOK2nT0NAzAAEy4gz5mbJuBx+9hUvdJEevSqtJVFNYX0j+1PwPSBjA7fzb+oJ8x2WOwtukMu6Z0DW6/mzN7nknR5mzmzJFAs6FDZZCA3R7+GoNBaUg92EHNXq8MuJ47V7aLoQr7+efv9bl562D3G1C3Qd5zXB/pbJ80JGJ5Lhd8/DEsXiyNIV26SPjalCnhYBuQE0kffiiN2T6f/GYmTZIwrFDoTVmZnHRavlxOrptMsryRI6V8cXHy/OXLYetWCZxrbJT5EhMhJwd+9rNwJ9iiIhmgu2qV/G7j42Vgz7nnQla3ZlaUrKCksYRuid3IipMPsqypjIL6gtb9qqcplvnzJQigsVE6FLc96PH7JbxuC+/T7Gvm1JxT6ZsaHsBc2VzJ5zs+x2wyc3bPs5m7cy4AVw66kmhbdOt8u+t2s7BgIXaLnWuGXNOp73JVySo2VW6iS1wXzu0duSObsW0Gde46xmSPoai+iPLmcoZmDGVkVnggqj/o5+2NbxM0gpzbawpdbBbZJ4B0aDFbpd4SCok1mXFZk/lg2ycEjSAX9r2Q1JjUfcqTFZfFlOyhUDq7TWeVbrIehU4Q+J2QMIB1pkzWla8jPSadC/pe0LqsQDDA+1vex+13c0b3M9hZu5OihiL6p/bnlJxwilatq5ZP8z7FbDJz6YBLO3UlZm/Ay+fbP6fB08CILiNIcIRT+7ZWbaW8uZyRXUbSO6U3iwoWUeWsok9Kn9b5nD4nO2p2EGWNYlL3STisDorqiyhpLMHpc5Iem47H76HR20i8PZ5uid3Ijs/G47Ixf74MmC8vl3U71Dk9FCR27rkG5tRdrC9fT2F9IYZh0DO5JztqdmC32OmR1IPhmcPJScjB6zWxdCls2CCd+JubZbtgNst+qW/fzu9X5UP3Sifwym/ke/LVS+cURxrE9YYu50Bsd7ZulQEFod+g2y2NHGazNI7edJNB15wgASNA0AhiwoTZZCbQ0hhjNpmxmCyYTWZMvgYZRF27Rl4z4GrpEGOS4I+EQdC9cx2Pl+5ZSl51Ht0SuzG5x+TW+5u8TXy09SMApvabSlJU0gGXFQjItmPTJtnP9+vXfvDb2LEyX77kmTB4cHgAJOwn+K0zA6YOEPwWCMh+ddcu2TaFgr1iYqSsY8Z07qTaztqdfF34NdHWaK4cHBmcPX/3fArrC+mX2g+Xz9XuPh/g8+2fU+msZHjmcIZ3GX7gF+3ke61oruD+ufcTNII8fvbj5CTktD722prXmL97PqOzRnPX+LvkTn8zVCyQ/bqnStal6GxIGQUZZ7YGWOXnw5dfyuDOmhpplAsNGLnwQvii8a+sLFnJpO6TuH7o9a2vublyM88te454ezxPnvMk8Y42lb79fF8ul+wjN26U/ZLLFQ5stFrlpOs+A5EPsI4YhjQqzpwp78fnkxCOCRMkJLVtA2ZNDfz73/KbtVhkn3X55dIw2ZnvYW9OpwQjbt8u9YYf/rD98NMdO+R1q6pkf3/VVfuG3Pl8ElK1fLnUT4YOhauvhqQUH//3yf9hGAb3Trg3IvytormCe+fIgNsnz3my9bgYZLDue+/JNjYUxjhtmmxr8/KknuFyha8g37YR9qAaMCsWQfVS2ZeljJZwME+NBPZULQFLNEb377Ng41jWrpXPYMAAafy1WuVzCAY7CH7r4HsobypnTv4crGYrlw28DIc1POJnZt5Mql3VjMoaRf/kIXg88tlaLOFOA20XbbGAtX65bO999ZA4RIIs/E1SD6hcBNZYjB4/YEFDLYX1hfRJ6dNaVwIobixmZ+1OeiT1YFL3SVLW2rXyG3QVywkxIyB16egusj3P/V7k57i/9dxVKuWoWy91Un9TOBgpOhuyzpX6+QE+t30caD6/U163cpGUAZMMXkscBBmTITa38+8B+R5WrJBAtqIiuZ2ZKfX6c881eGTJvVQ6K7lh2A1M6T2l9Xm7anfx2/m/xWwy88cpf2T6+umsKVvDxG4TJeyyxZrSNWyq3MTF/S7mikFXYDKZKCmBBQtkG1FXJ/tqu13Wv1GjIPeUFTy//HmSopK4/7T7sbV0RPUEPDz9zdM0eBq459R7ZHvurZXvtGa1TPsbZeCMPUXqd1kXQFyPjj/v1g+iEQrelnCTmFwZ6G52SOCUu0zWGUs0DH20U8es3xR+Q35tfnj9ayO0TxqWOYwRXUYcuGx76+S61NQU3hZmZcH113ewDTncQdKHULajNt9e87y48kUWFy1mfM54fjI2vCMLBAP87LOf0exr5vbRt/Pa2tfwBrz8dOxPI+rxbr+b2z6R9tlfnv5LBqa3ORhtLoAdL8tvv8sU6ShoMrO6dDXPLn0Wm9nGSxe/FHEs/c6md/g071P6pfZjQNoAZmybQZ+UPvzmjN9ElPvJr59kc+Vmzu9zPtcNvU7KHJCw8TlzpF7t88n3Om6cHNfGRAUk5K1mNTTvlpP7JitgSFtaVBb0uA6fNYulS2Wfv3OndLwPtXsYhgxQvO++lqvGGUEJDij9XDqNmywQ3RVSxkDmWXJC7kjyVEtAbmOebJ8dGfKaAbeEP9tToM+PZJt9sA6w/paVSV1o3ToZkOnzyb6vVy8JaCm0zW73eNXtd/PupncxMLio70WkxqTS0CDLWrlS6jj19fKyyckSRnvjjdI2cCC1rlo+3/E5AKd3Ox27JVx5WlK0hCZvExO7T6RHoEoCL7y1EnJqT5FgUmeRDAjBgC7nMnPNBSxbJtvcyZOlrSp0jBQ6dsjKguToCmjcLsuzxoE1BjDLcZC7HCzRuBLPZtXaKMpb+pLs3QYROuaLzZK24yhrFN8b8D1sFlvL12AwY9sM6j31nNL1lNZzB31T+nJq7qkRn8O7m97F5XcxIXeChC8SbndbvFja8EwmKfuoUfJ9xcR0ZqVow1UKu/8LjdtknYvtJet4yuh9tvllZRJ4VVoqv71LL21/t7BypQS3+P0yz1ln7TtPdTW8/rrUAa1WaVe6/HKoN+3mN/Nku/Dc+c+RHJ3c+pzlxcv52/K/YbfY+efF/8TU5sWrq2W7X1gox9o33ij79IMSao9vzJftW8At7S7WeBkEnzAAbMehYTngkfIEfXIOy2wLd2QKtiRHW+Nat0vNzdIOUV0tx6KBgLTNdukCgwcbOGJ8ePwevAEvAHaLPWLaYXVQ0VTBV7u/wmwyc/3Q6yM+6+3V21myZwkxthj6p/ZnTdkaUqJTmNpvakSxFxctZkfNjnbrAx35ZNsn1LprGZ01msEZg1vvd/qcvL/5fQwMpvWfRpIjUQJ4qpbIPsnXIO1ilijpqBHbnbz4U/j94j9jNpn524V/I84eDkx+e+PbfLb9MwakDeChiQ+1fM5uqFgoHWndlRL2E5Mrg8cyzgBLuH5fUwP/+5/sTzwe2Q6cf74c50f8JjrYlzt9Tn4+6+e4/e59jqfm5M9h+vrpdInrwi0jb2FZ8bJ22wM2VmxkdelqkqOSubh/J8Mg9nYk6zf1myUQwgjKoO3kkWCLZ2HBQl5Z/Qrx9nj+duHfItal6eunMyd/DkMyhnD/aS0pkt5aCXuo/FqmQyEIKaNbvoeWhpTmQtln+uolNMFsk7bS6Cw5d2aNpqJC2mUqKsLnO0wm2eYkJMBpEwziYv17nVNo+35bkkHNoe135z7OYy4YgKYd8pn4G2SbYTLLnyVW2g3TWup4hiHnElwl8vmaTBLwHJsrHZrMNrm/cYccB/idLZ9DS8ctawIkDGBexQ7+s/4/5MTnMDJrJCZMGBhUNlfyTdE3jM0ey22jb2s9Lm5ulvCA+fNl22S3S1vLWWfJ/qszv5v3Nr/HjG0z6J3cm99O/m3ER/Ds0mdZXbqaM7qfQZWzik2Vm5jSawo3DI9Mmbjr87uoddfywxE/BGhtR2t7XFLaWMqiwkXE2mKZ1n9a6/77oHTwHhbsXsCra14lNTqVP577x9a6sj/o5/6591PlrOKWkbcwMmskW6u2UlRfRHJ0Mj2TelLvqae0sRR/0M+AtAH0Su5FUaGFRYtk3wfhwN1Q3dbnC1+Y50jx+6Wdq7RU9jGJieEBDKG3m5oKvdJ3QPlXciwZk9tSt21ptC2dJXWsbtdAqvRRCZ13WrZM1hGLRc4ljRkjdY7WdjTDgKL3JfzTMCTsP/cyiM5iQ/mGDvdJK4pXsKVqC9nx2ZzT65zwA95aCcRv3in7j8wz5fhm7zAZX5OE5ToL5DW7Xy/n6vfWtAvy/ynbptTxEqLV3nFDZ7atrlLY+brUTSxR0jbUdSrEhNtfqd8ixyuu0pa2VruElyYMhMwzWVK1q/UcfNuwwypnFcv2LCPWHsvUflNb69o+n9QhKitlX2cyyfrTv7+cL8TXIJ0U3eVg+MAcJZ9VwA0Y4EgjkHIaXq/UP0ID0NpejCY0MM0WrJbtTMAj5xnMDjkOCnpbOo8aEJNDflESxcWyHcnKiryoS2gQXFYXg2jnMgkv81TLuRJbvJTNXS7bPVsi9bm/5vM5Ua3nCoYMiQx+C3UCHT8e2bY275J+Gv6WfhqYpG3EngzxfeSY01Us7yEqvaWvScu5Ol/LidG43tIu2UnV1XI+IdRGGjpmjY6WwUeTJnWwzTycNg3DkPa90tnynYT2v9FdpW0vY7L0Z/I75Zg1dK7I3yT9VqK7QuJgmlNO49Fv/khpUylXDLoiol/N3Py5bKjYEHGcfyDBoHwWxcXSfhYTI+dTQt9XKExqs1/qj6OyRjEkI3x+3Bvw8r+N/8PA4OyeZ/Plri8BuLDvhRF9p0LniE2YuHrI1a2/B8OQC9Fs2SLt7VFRsp0dOvT4DJYyDIO1ZWvZWLGR7PhsMmIzWs/rlTaWUumsZFTWKAalDzqir1tTI+uj0yl9AOLiWtpMCP8G4+Nlnj17pD0udHHJvQesZmdDTHCn1FkCzpZAMofM5GuQ+oklStoz2waVHYDLJUHz5eWyrfB45FxCSopsv3JyDrwMCB9/n5Z7Gr1TwiPx2vYjuHLQlRHt/gdSXS3nujZvlv4k9fWy/nTpIm1aF17Y9o2UQ/7LcnxjS4S08RL6ZtlrhTvQPiTokwsJ1KyUkHx/kxwvxuRA0nDZ11kcUserWQ1ls2X/BXLcmzQMMs8O90UzgrJ9LflMviOzTfbtqeMhYxIbNtlYuFDWgW7dpL0l9FsF+e67dIkMfmtulnNO5eVyOzNTLjiYkuSXwNOGLbJNTRou25nmAtmeN2yROsTgX8m+40ip3yzHH56qllDx1JZteT24ymSejDNYkTeQZcuk3D16yL7Rbo8cFDpsGMQmNVPnrsPld2EYBrH2WJq8TVhMFmJsMSRFJREdaJL36iyQdpj4vrIfr98g7ZDuCojOwhj8K5w+J06fE3/Qj81iw4QJb8CL1Wwl2hZNjC0Gc8At/ao8lYBJ9j2hCyM075J9VtIwtnv8rChZQVJUEjkJOVjNVoJGkMrmSvY07GFg+kBGZY1qDemsqJDtYH29/L7NZtl35ubKOXeTSc41Ll4s7Tv19VJHtNulnXX4cDmnGKGDfdI/VvyDpXuWMiF3ArePub31/hpXDffMuYdAMMAjkx+hZ3LPfZfVzvI6I686j6V7lhJri+XyQZdHPLZszzK2VW8jJyGHfqn9mLdrHtG2aCbkTsDUctzoD/r5pugbgkaQ83qfF9Evp6OyeQNebv/0dvxBP3efenfEscjWqq08vuhxTCYT/7jwH1jMFpw+J76AD5PJhN1ix+13YzFZcFgdxNhiCBpBCusL2VW7izp3HYlRiTgsDsqby4mzx9E9sTs9k3sSY9urwbCD78HlgoUL5Zx1SUn4fG3oGMPvl2OMTZtg/XrZP0ycKPtkhyPcP8vlgtFDq4ku/bfUVRMHQfIo2YY07ZR11VMjdYyeN0ldK9Smb7a2lKtlIAyG/D723h52YG7+XEqbShmSMYRRWaNa769ormDWjlnYzLbW87glJXI8VVEhfWpC7QZ2u6zrkyeH93tHQnGxHE/V18tnm5oa2UYdDEJKskFyVInUazFke2eytQTz+qROZjLLBWI68Zl4/B4WFCygormCvil9W/vAGYZBfm0+voCPid0nkh2fTXOz/KZDA44MI9x3wGKRNtf+/eU9lJTI+4iJke8+tI4Eg9Crl8GS+vfa3a+WN5UzO382FpOFKwdfGdHuf9h8DXKM5K2WfaktsaXB3i/bQiMgbUYQvrBRwkCpjwSaWwIySmUdTBzCsuoCtlVvo1tiNzJjww3Nlc5Kdtftpk9KH07NOTWirWt/AgE5L7Vnj9RvPR75vVgs8jl26waW7PWsLVtLWkwaF/YNVxR8AR/vb3kfb8DLOb3OIb8mn111u+id3Dvi4imVzkq+3PkldoudSwZc0hqafyRUVEjYa1mZlLdXr33bA+LjoU9mvrRTBTzy27dEy2/cVy/7c5AgJluStO15qmV/b4sHTPI9Ne+S4830CdLHqHm3/G9PCV+4zN/Ucv46ikDmFAoaS9hevZ2AESAzNpOkqCR21+2mydtETkIOfVP7kuBIoKZG1uGqKvndh8YpQLje0q+f1Fd8Plm/2/YFbj12tBnYjJqWPpxBOYdgtoYvRhj0AGY5p9eJ0KlAMEBhfSE7a3fiCXhIj0knzh5HUUMRvoCPbond6JXcq1N9LjvLMKS+39QUPi8Yqtu0nScuLrJ/cUdqaiQ0tKREtm29e8tzIfy5RUfL9nXjRpk/ISFyHxJ6zaQkyGKO1GkNv4ynsSXKOuSpkONScxRGt2sotmWwqWITRQ1FBIIBeiT1YHfdbixmCzkJOQxOH0xOQk7kb7WjOoRzj9R7nUVSP4vpJvsiZ5u26KRhVCb+iHnz5DcdusB1qH986Hi1s8FvwaAsp6pKlpWREe6r2vZ4qmt2ECvNUt83WWTfaDKFxzoZQbn/CJ/DqnZWk1edR0VzBYlRifRI6kFZUxlVziqirdH0S+237+d7mDZtkr521dXyOY4dG3kc3hr8Zv9C+lQFPRIGYEuU78hTKf1cTNaWvogxcpF5IygXWbZEyXnfgFv2HSarnM+wRCPjDELavqeW+02WyPWnAyWNJXy16yscFgen5p7aWr8OBAMsLlqMP+jn3N7nkm6PbqnHV8k2xJYQrsc37ZB9VPKofftBtcMwDIoaisirzsPtd5Mek05GbAYF9QXUu+vJjMukX2o/kqNSWsOjoOUUSDu52h6PHMe63fIbjYoKby9DH4HdLuvrgcsm/RAqKmR707NnePsbWs8NA1IzPMzd/RlN3ibGZI8hMSrcqWBz5WZKGkv2qePtT4OngbVlayltLCU7PpvcxFx8AR9FDUWUN5XTP60/QzKGYG/aIW2wEA4gD3pa+gdUAoYcnzZuk2M1a6yM1bDGyDrkd4KvFjDJsXIn6jc1rhpm75iNyWRibPbY1jFohmGwsmQl3oCXs3udTZWzitWlq0mLSYvob+30OZm9YzYAF/W7SM6bNm6X7ZivrmUbYZH1PuiR/VTq2E63UzY2Sl+r0Hii2Njw9x/qw3n66VKvCfXvNZtlvrbb87Q08KSsZmPFRrLisiLeQ6O3kc+2f4YJExf3v5gEb3lLP0Ak8NPikN9pwCPnvkzWlnaCA690bferbr+bjNgM4h3xFNYXRuxXo23RBIIBAkYAwzBaf6tBI4jJZMJismA1Wzu3jTMMqFos59dALhZjaVlHAk6p81gcNMWdx8efxbFzp3xWo0fLfm/v7X7PnnJhvp07pe4Vms9qDZ//iYqC0QMKpM22uVAu1BHVRb73gBOqlso+oss5bHX0YUXxClJjUumdHK6fN3mb2Fy5mbSYNM7pdc6hnRPrgMvnYumepZQ0ltAjqQfpsemYMFHrrmVX7S7iHfFMyJ1AUqBR1t+AU96DJVZ+f95aqe8BJA6mKbobxQ3FVDor8fg9pMemU++uJ2AESIpKomt8V9Ji0qiuNtHcLHXt+PjwRaDbrptRUdLeUV0t92VlRV7IAGT+7t2P2McByO+qqEjqX127Svms1shxZ1lZnevz4/a7mZs/lzp3HUMyhkTU/fOq82j0NnJ6t9OJtcUyd+dcLCYLY7LHRKznK0tWEjACTOk1hfRgnbQRBn1SD7JEy3FSqN3WZIHEoayor2RL1RZyEnLITQjvn6pdUmfISchpPV9b1FBErasWm8VGanQqpU2lWEwWMmIz6JbYjVhrYmu922yW7ypU72y7n7I7Arj8Lpw+J4FgAIfVgWEYre1jMbYYom3RNHoaya/Np6i+CKfPSW5iLrWuWlx+FynRKfRO7k1OfDc+/shCXp7U+U87TdqR245dDgRg4KAAxe481pStobihGJvFRm5CLtuqtxFri6Vval9GdhmJpzqL998PjzmaNCn8/bUNfuvWw0ejt5FGTyO+oI8YWwyBYABvwIvdYifBkUCcPQ5L/QbpF+2pln2SI61lW+iS867WWPy5P+B/c4aTny/1x8mT2w9+GzAwQJV3DztqdlDtqsZusZMancqehj1E26LJScihT0ofLCYLX+36imZfMwPTBkaMi95atRUTJib3mEzQCDJ/93wsZgt9U8Lj8PxBP1urtpIUlcSZPc8kxlMhx3QBt/TdsMTIdNAtbUJmO8HUU/l8z2qqXdWM6DIiYl3aUbOj9Zzu+JzxzNg2g0AwwPl9zo8YX7SocBF7GvYwIG2AHBd762RbEjr3aLJI+4nhl/U5tmenQzA7GnNT2ljK3J1zsVvsXDbwMmxmOzt3SntPTU34GL/t8c+UKfuOyzhc9fVyXBs6dxP6DZlMsi8eMULWydJSqdMNHCj9Nvfe16SkdDKMx10hx0nNBXJuIK6n7Jc9FdK+52+WC4p38iI2/qAfp8+Jy+ciYASItkbjC/oIGkFsZlvrb7pTAh45f+Euk/1HTI4cg/vqpY7mbwJrPEbmmXgCHjx+D/6gH4tZxsn5Aj4sZgsOiwOH1bHvxas6Or96KBcnOcy2bI/fw8aKjWyv2U5GbAa5CblYzBaK6osobSqlW2I3hmUOI87fIPVWX6MEo1njpD7gd0o90TCk/2NM9gFfM/S6zb5mPH7J43BYHa1t1HaLnVh7bKfb95qbpe15yxb5zfToEQ7ABVkvMzNh4vBtLX1NSuWcvCNDfssBl/TrM1uh6yVS56lbJ/uupKFyPOWrl3XSVSJ14pzvydiZ5l1yLBiqx3uqZT5fndTvcy7r1LlJl8/F1qqt5NfmkxyV3Ho+vKBecjz6pPRhQNoAotylclwadLe8Zpy07Qbc4RCopKHsdjtZWbISh8VBbmIuCY4Emr3NFDcWU+euY0SXEfRP7d+5+qi/ueX4skbq/faUlgZ7p9Szgl45/9XZQODQOGUM+c2HxvGH2uwxSZ3dWSyfI0h7n9kuxyBBT0sWhpVgXC921BWwoXwDMbYYuiZ0JTkqmaKGIkobS0mMSmR45vDWC8gf8HtwyTmpykrZF6amhtuWQvvf9PSWPi5H0J49Mn4hlFMRHx+5bQ3V74+k8qZy1pevp9HbSJe4LuQm5FLjqqGksQS3383QzKH0Tu7dqXXE45HyNzRIWUPnJ9rWlc1myIzZLhf6dBXLMW5cy3k5T6V83/5mSB7O8sJz+OILOdYfMkQuVhr6TAIBaU/IyoKY1Gp21OygvLmcBEcCuQm5lDWVUeuuJd4eT5+UPqTas/nvf03k5UlZzjorss0wdBGizEw5Tiouln3b2LH7Hofa7TAkZ4McJ7krIGNSS53KBU27pY0v6IW0Uynistbxvqmpssy2+8ZgsOVzimmmyllFo7cRf9BPUlQS9e56TCYTcfY40mLSSLDa5aKJDXmynUkYJMevzhJw7ZF6kDWOwpSn+ehjE6Wl8n7Gj2+5kJIpsv54RIPfDEPaWT2V0u4e10POO3lrZV8ZapdKnyTnV5p3y37EnhTuF+atk7YPazwNKeOZvWM2vqCPUVmjWse6AawtW4vL7+LMHmfSNaErpaXSf7e6WtaLvS8g17Mn9OtRJ8cdRlDGFJus4fbOgBtMJgx7Gt+UrGRn7U56JfciIzbcGbK0sZSC+oJ2x2AcrvKmchYWLMRkMrXWnQFcfhd51Xmkx6QzqfskCusLWVGygpToFLrGhzc+jd5GdtbupGdSTyZ0PQVL7UqpQ1njpT+ZJVraPPzOlr68ZoKp46ly11HWVEaTt0n2t7ZYql3VOCwO0mLS6BLXBYfVgS/gwxf0YRhGaz0+EAxgMpmwmW3YLLbO12+OoIYGWLtW/o+JkWPrtttpw5BjP7td+mXV1sp6n5ERPh8Tmi8uTtabUDtlbGzkehR6OzExUNCUx6qSVSRGJZKTkIPD4sAX9FHSWEJls4xfHJAyhO3bTdTWyjqYmSlla9se0NjYwJAhidTX15PQ3mDsNo5I8FuI3+9nw4YNAAwZMgTbkTxLfQD9+vWjV69ezJo1K+L+0tJSsrOzefzxx/nlL3/Z7nPtdjs333wzL774YsT9S5YsYcKECbz55ptce+217T73d7/7HY888sg+959//vmdev/NjmYq4+UqzdG+aBqjGklqTiK5ORmLET4Sc1vd1MXWYTbMYEDQHCTJmUSU7+j2APSb/fgsvtbbDp8DM+20xh+EGZ98AsC0izs+AAvN09589dH1LO+zHJ/FR1pjGvGueJwOJxUJFZgwMSZ/DAk1PVi58kEaGnphtTYzaNC/iIsrwWyWwUbBoA2fL47U1E0HXbaDma8jpYmlrOq9CrvfTkpjCtagFb/ZT01cDV6bl1E7R5FdF3nAs7/PpDNlm9KrgB+O3ILNHOC1NYPZVp1MrM1Hn5Q6LhuYT2KUl/c39+bf6wbts6zDea/Hg4FBeWI5+Zn5NEU1kVudS0ViBQFzgF7lvcitzsUatLKu2zoK0wtJaUwhuTm59fkViRU0RjcyqGgQvSt6U1fXm7y8a6msHI5hWElM3EFUVA2GYcbpzCQYtHLWWZHJHYe7nh/KfJ21v7IZGNTF1lEdV020N5qgKYjH5iGtMY1EZyImTLhsLpb3WU5jVCMpTSkkOZPwW/yUJ5bjtrkZvGcwPct78/XXT1NX1x+LxcUppzxKYuIOrFY5MA8Gzfh88VitzVgs/n3Kdqjvte3z9+dIr88um4u87DyKUotIbkomoyGD/Mx8LEEL/Ur6kVudixkzXouXPal7KEotIt4dj81voyq+iuzabHKrconxHexIWnGy/laPJ5fNRV2M7FdNmAiYAiQ5k4j2HdxA+4qEClb0XoE1YCWlKQWzYcYwGdTH1ON0OBlSOITuld35cuiXuO1uRuweQW51uCF5bfe1FKUV0bW6K6N2R5487ui36rF6WDhwIW6bm+zabEyG1CYD5gBlyWXEueI4fevp1MfUs7TfUqwBK9m14X2K0+6kMrGS9Pp0TtlxSmsn0gOpjK9kdc/VBMwButR1IcGVQElyCQ0xDaQ2pjJq1ygc/s51TA+YAmzstpHCtEJi3DHk1OQQMAcoSi3Ca/UyoHgAfcv74rV4WdtjLeWJ5cS74smtyaUhuoHSpFKsQSsjd40kvTGyIWZ/vwe/2U9xSjG703djNswkNSdRmlRKemM6PSp7tO4LDAwaoxupiq/C5rdhCVpwOpykNMn+orOfmTpyOvo9BEwBtnTdwq6MXUT5ouhV3ovG6EaKU4qx++2M2D3ioNaRE5VhmNm48VaKis7CMKz06/c2ycmbcTgagCCBQDRudwopKZux25tan9fRew0SZHmf5VQmVpLSmNL62w2aglQkVhDljeL0baezO30327O2k9yUzOnbTg+XB4NZI2bht/gZnT86ot56Mn6+6tvJ7U6homIUHk8yNlsjiYm7sFhk0KjJZGAYZsxmH3FxJce7qPtVnlDO+u7r8dg8dKvqRpQ3ih1dpEPPgOIB9KzsecT3SwYGFQkVFKQX4HQ4yazLpCypjDh3HN2rupPekK77QnXUdLTPL04uZnWv1dh9dqasn9LaNuW1eJk7bC5Bc5DTtp5GSnPKPstqb3lKnQyOZNvSiaYupo7F/RZjwkRqY2rrca3L7qI+tp5uld0YXjj8AEtp3/4+E6fdyc6MnRSlFZHamIrD56A4pZgu9V3oVdaLJFfSIb+n9lhMQS4bmE/XhCaqnVGsKUvH7bfSNb6JGJufOLsPt9/CrB3d8QU71yurJLmEDbkb8Fl89KjsgTVgZWfmTkyYGLhnIN2rulMVX8XSfkux+W0MKB7Q+lyX3cWOrB04vA7O3HQmtuDBn785Wde5o6mj3+qFfXdx/dBtmE0Gb23sz/bqJKJtPjJjXdw6eiNWs8ELK4by+Y4e+yyrveW195qdne9Qv6uamv5s2nQrdXW9SUgoJDt7ETEx5ZjNXvz+aFyudNLS1pOSsu2Ay3LZXHwx7AsAJm2eRKIrPLhiQ+4GdmfsJqMug/6l/Vk0cBEmw8SU9VNaj1cNDL4c8iUuh4thu4fRvTqyV3RH77U8oZzlfZbj8DtIrw+3DzRHNVMbV0tuVS4jCkYc0udzMqqOq2Zx/8VgwAVrL8AaDHcyC7VTZtVmMWZn5MW9DnddOhjjc0q5fug2uic1RtzvD5pYU5rOHxaNJWgc3nnKtk7LLeHmkZtIivLySV5PtlSm4Auaibb6uWfCaqxmg78tH8Zv/v02tbUDsVjcjBv3CElJBz7fcaQdi/NOXeKa+fO5i4h3+Phoay/e3dSHRq+dU7qW0yOpgX6ptXgCFp7+ZjQ3Dt/KOb0KsVsCLC/uQmljLP6giUndS+ie1MjasjS2VKZw1eA8fEELv/5qPPm1iSRHeeiTUs8pOWXE2nwsLspi3u4DDzQ70QVMAfIz89nRZQe2gI3eZb0pTi2mLqaOnJocBhQP2Of8w7HerwYJ4rK7MEzSPcQasBLlP7y+Boe7T6qp6U9p6QQ8nmQSE3eSlJSHxeKltWMnYLM1EhtbfljlPBRliWWs6LMCS8DC+WvPj+gjsaTvEqoSquhV3ovBewbvZynfLgYGe1L2sD1re2t9tDyxnOaoZnpU9KBXeS8cAQdOZwZbttxIRcVoAoEokpO3EhNTjskUwONJpq6uD9dOvZnfnfMFuQmNfLGzG5/v6EGz18bgjGoyYp3kJjRR7YritTUn/+d7Wm4JPxqzgQSHlxdXDmVTRSoOa4DRWRWc3auILnFOFuzuyp+XdG6QaVsd/QY9nkSWLv0dDQ29iY0tZujQF4iL24PV6gIgEIjC40kiIWHX8QsaPcbKy0ezZ8+ZuN2ppKZuJDV1Y5vtDRiGiaioWupzVrOq1yqiPdHk1IQTvhqjGilLLiOtIY3x28ezcOBCGmIaGLBHzmmG5HXJY1vXbSQ2JzJp6yS83ji2bv0+xcWT8PvjMJs9REXVAOBypWGzNXPeeTdGlPVI9ls60HbaZXNRmVCJx+YhwZlAfUw9sZ5Y0hrScAQ6H0h2PNjMASZ2LyE9xkWt28Gu2gS8AQtZ8c3YzEHMJgOX38qK4kyMNu3ZHX0mjY25rFv3U2pr+xMfv4fu3T8nLq4Ei8VNMGjF40nCanWTmbnygMsCKEkqYVWvVUT5okhqTmq9vymqiaboJgbuGUif8j4Rz9Fj7oNTXT2IrVtvoLa2P4ax9wCaIGPHPk6XLssPernH6pj7RDYmu5wRXSpxWAIsLsqiyWsj3uEjOcpNrN2HxWSwZE8WZU2x+Cw+quKrpM+rM4nG6EZsfhvpDemt9d/du88jP/9ynM4uZGSsJD19LXZ7HSaTgdcbT3NzVwYOfB1Lmz6qJ7KO1hG31c2XQ78kaA4yOn80sZ5wmM7yPstx292M3DWSnJocGqIa2Jm5k5LkErLqsvCb/VQlVJFblUuvil7EeA+t/5g6dPvro7Wu+zrKE8tJcCWQW51LTVwN5YnlRHujGblrJPENXVi48C80N+fgcFQzbtwfiIsram03CASs+HwJOBx1mEzBfV6zvdftTNmOpv2VzUD6xVUkVmAJWIj2RlMXW0dyUzLpjelYg1aKiiazbt0dGIaNbt1mM2DAGy39W0QwaMHni6Gs7FRKSyfgdqfQtesikpK2Yzb7MJmCLWNEzMTElNLQZQsreq/A7reT3CR964OmYGv/vGEFw+he1X57YXvvob359p6na3wj/dPqiLX52FGTRLPPit0SJMEhdUizCXbXJVDjchBv9+GwBgDwBcwtn5Mc1ZpMUOOSY++6mDqKk4txOpykNaZRHV9NlDeKrjVdSXYms7eO3kN5+ShWr74Pvz+WrKyvGTTo3zgc1Vgs/pZQxWgCgSjsUdXkZedJW4XfRq+KXnitXgrSCjBhYkjhEHJrciPaNCxBC33L+lKWVEZ1fDWZdZkM3jM4Ypt2oM+3M314O7s+W0xBEqM8RFkDGIYJT6DthRakLl/ndjCpezG9khvwB82sLk3H5bOSGuMmzu4j2irtdV8XZjOuazkZsU5qXFHk1ybiDZjpEufEbglgNRu4/RaW7ski2HLeymf24W9p7zMZJhx+R2tfiYqKkWzadAtOZxbp6avp3fsj7PZ6zGY/hmEmEHBgMgVISCjs1Hs9WgKmAH6zvAczZmyBYze2R538jlaf/CAyNsHAkJxhvz3ifIXaV6OjkV2ZuyhOKSazLpOAOUBVfBW51bn0rOhJrDeWU3NKGJJRg8UcZOkeqccnRXlIdHiItfswm2BRQTbVrnA7dWf2l36zH6/F27r9OxLjyTpjf2Vzu1PweBIJBOzYbE4sFg+hPoEQauepIWB1U5heyM6MnTh8DlKbUilKLSKpOYle5b3IaNz3KicHqnt5LV4aoxsxG2YCpgCWoIUEV0LE2D8wsJmDWM1SJhOy1zIMEwEDvAFZ3+2WQEsbRnCvcbImfEEzbn/nfxduq5uitCKKUoukPAELNfE1dK3pSreqbsR4YzAwKEkuYWvXrXisHnqX96YhuoGy5DLS69MZtGcQCe4E7j51Nad3K6G0MZZ/rBhGcWMsWXHNZMY5GZ5ZRZQ1wH/WDaC0KXyRrI6+r+bmLNat+ylNTTlERVXTt+97REXVYDb7WoJi7BiGGcOwkJ9/KS5XOklJO8jK+gaLxR3xuTgcDcTFF1KQXsDW7K0YJoO+pX2pja2lLLmM1MZUBhcNjjgPfSAHW2/xm/wELFLvMxkm7IEjGDx8kmlyNLEndQ81cTVk1GdQH1OPgUFOTQ4Z9RkHtZ04mO/BaXdSE1eDOWjGErTgsXlIbk4mzh2HCROxNh8ZsU6ibX4aPXY8AQvBNqOmLSaockYROILnmw/V4bYDNzd3weVKIxCIwuGoxWp1yjbHZLRuSxyOGqxW7z7Lam95QVOQioQKSlJKsAasxLpjqUqoIq0hjeza7NZ2HpfNRVFaEXtS9rS2e9bF1pFTnUNudS7RvmiirH6Sozw4rH68AQvegEWCOVtey2wyqHZGY2CiNraWotQiGqIbyKzPpCq+CoffQU51Trt9lY2Wf6aWf+rEEzQFqYqvojyxnBhPDNaglfqYetIa0shoyGit9/nNfioSKqiOryapOQmv1Yvb5iazPlPG5mGmR1I9mbFOzCYoa4rB7bfgsAawW4Kt3/6OmkTcpgC7MnaxM3Mndr+dnOocCtMKCZqD9CnrQ/fK7lgMCw1RDWzK3URVQhUZ9RmkNaSxPWs7AP1K+9Gjogen55Zxz6mrsVkMnl06gq8Ls7GZg/RPq6Ffah2ZsU521ibySV6viPfd0W/VbXOzusdqauJrSHQmkl2TTW1cLeWJ5UT5ohi1cxTxDdksXPhnmptlfzlq1B9JTt6K2RxuR3K5UoiKOrJtSxs3/h+7dl0EWBgy5EW6dl2A3d4MhC7aEIPJZGC1uggE7AQCNgyj7TFlkLbn9NuWV50cAqYAjdGNBE1BTIYJw2QQ74o/QL/S0Na8/XNvHfk2nks5UoIEcTqcGCbZx1kMCzGemHb2c4YcY2CEQ6+BoGFubcsKEqQhpoFmRzPR3mhcdhfR3mgSnYl7HbOc/AwMmh3NeKwerEErAXOAWE9sp8c2h9TV9aGqaihebyLx8buJiytuaaNueR3DhN1eT3R0zUGXseP+HPEUFFyI05mBzdZMRsZKrFZXyzFtqGXZICkpv93lHW4/Ao/Vg9PhxBw0EzAHcPgcxHjbW+dO3PPXBgZeq1falgBbwPatW8dPZHF2LwkOLzZzELffgj9obtPTDwKGGX/QxEV9d5MR66SgPp7t1cn4gma6JTZitwSIsgaod9uZtzsXr8VLcUoxRalFxHnisPvsVCVUkVWbRW51LjHeGIqKJrN9+1W4XOl07bqI3NwvsdmaMJn8GIaFQMCBzeYkLq64U+/BwKAmtobi1GJcdhdpDWlUJlQS64klpyanNWfgSO/jAiZp06uJqyHRlYjH6sFn8ZHRkNGa4QLSzlOeVE5DtGQ31MfUYwla6FIvuQ4hVnOwtW3JbJJ3BiaCBviCcix2sjMM8HoT8fliMAwrZrMPs9kHbfaHoXpoY2MuPl8cVquzpf0p1J9bPheLxUVUVF2nXzuU/dTsaCbeHU9TVBNR3ihSmlI63Sbk8/mYNWvWkQ9+27VrF/PmzeP000+n317xjp9++im33HILVVVVACQnJ/OPf/yDq666qrOLPyz9+vWjd+/efP755xH3h4LfnnjiCR588MF2n2u327nlllt44YUXIu4PBb+99dZbXHPNNe0+1+Px4PF4Wm83NDSQm5vbqQ9fHbrihmIufutitlVv49HJj/L414+THJXMzOtm0j+tf8S8Xq+kj/t8kVfRi4uDuPgj3MhzEDmK721+j2veu4ahmUP59NpPueTtS1hbtpbpl03nmiHtrG+dTeLuKB1z91uw9j5JUR36iKTjmm3grZGrirtLIedSuXrfwb7mCayiuQJ/0I8JE5lxmRFpoi6fizH/HMPmys3cMvIWLul/Cf9Y+Q9m7ZjFBX0uYOZ1MykoMDFypCQn9+4tV8/d+0obTU3hK4m16kxK6cF+pweab38OJf19Pxo8DXzvf99j/u75PHPuM/x3w39ZX76e6ZdN54pBV8g8DXLFtYICST/NyAhfkTEYlKsPXHQRpKQe2bIdT9uqtrGseBkAUdYopvWfdkSvdKhOTO9uepdr3r+GoRlDmX/TfG766CY+3vYxj535GL+a9CsAnlj0BA999RBmkzliO+QPSsVx6S1LOSXnlMgF72c7srZsLae/droMer3xSxo8DVz05kUkOhJZfutyeiXLtvzJr5/kl1/+kn6p/Zj+venM3z2f+7+4n9yEXNb8aE3kFYI7obSxlGvfv5YVJSs4p9c5fJr3Kb+a+Ct+O/m3+6Y1d8LLq17mjs/vYHKPyZQ2llLSWMJbl7/FlN5TIuZ7dumzPPDFA0zsNpEle5YwIXcC0783ncy4zMjPan9Oku2I6sAB9qsLCxbyi9m/IDU6laKGIibkTOCZ856JuErfyczrhcsvlysJxMXBiy/KVaFSUyWRvKlJrnDa9uqmwH7rEE3eJs7691msKFnBG997g+GZwznttdOIskbx9c1f0y+1HwsLFnLG62dgNVtZd/s6HBZpAN1cuZlpb0/DbDJTdV8VydHJnXpNpdShafI28bv5v2NL1RZibbE4rA7+cNYfWq/qo9S3Sgf7fF/AR7dnu1HWVEa8Pb617ukP+mn2NTMqaxSrblvV/rLaWZ5SJ4Uj2bZ0Apq1YxYXv3Ux3RO7s/zW5fxjxT/49bxfc3G/i/nw6g8jrvh5UDrxmTR5m6h2yqV24x3xpESntDvfiarGVcNDXz5EQX0BDouDOHscT53zFF0Twld1uuHDG5i+fjrZ8dlcMfAK3H43L69+GYB3r3y3tf1OHQEd/VaX/wjyX4borjDhTUgdJ1eObNopVw1z7YGsC+RqmHsvq73ltfeaB5rvMPXuLVf9Brmya2bm4S1v+IvDWV++njvG3cG0/tNa77/909vJr83nbxf8jZ+O+yljXh7DqtJVpESntB6HBo0g5c3lJDoSKbmnhBjbXgOg97PNDLWPjewykneufIc31r3BowsfZVzXcSy8aSEO64kdaHEkOX1OEp9MxB/089WNX3FmzzNbHxv2wjA2VGzgT1P+xD0T7ol84jG4KhsgV3f8+nLAgJhu0OsmucJv2VwofEfmucolV009UuaeDlXfQMJAOG+VXBmx8muoWBSeJ+t86i0jW8931NWFz3eErtTt98OFF0pbzVFzrM47NeZD9XLZTtkS5EqxocEZRkCugFuzClb9TO6bsgTSxss2btPj8n01boPMs2DybFlWY56cj7SnytVYTeaWKyn6oes0uaLjt0RpYylvrH+jte3/vN7nMTq7g0uwnsR1uVaHe/76BFbnriP16VSCRpBvbv6G8TnjAbmSZcrTKTR5m5hxzQwu7n/idGw8VgLBAEv2LMEbkMFCI7qMaK1Tu1xy5fe8PLn67uLFcjXetkKrgckEBANytddAs1zl2QjKlV8t0bLNsB7cBZtOSLVrYeMjcoX4jDMh/XS5OrXJLFcv9lRKP42E/gdYUOcZBrz1FsydK1eKHjJE+jjY7bLvCgblvMOdd0ZeZVSJ0PHUyC4juXfCvawtW8sfF/+RlOgU1t++nq4JXXlhxQv85LOfEGOLibj6b0VzBU6fk5envswtI2/ltNNg6VLpI/G3v8HNN4ev6uzxSH+KyZP3KkBnt5nf8naDI6oT55If+Z3B734n048/Dh1cW/agzks/s+QZ7plzD5N7TGbW9bP48cwf86+1/+InY37C3y/6+/6X/V3+vjrh66/ltxO6cvczz8AZZ0BiopwzXbBArlw+duwhLFy/hyNq/XoY3nJ9h1NPlbrBSW8/68i9c+7lz0v+3O7TBqUPYsOPN0T0rWn0NNLoleDzpKikfds71AnjxZUv8ssvf8nwzOGsKl3FVYOu4rkLniPOLh00yspk/S4slDpxVhbYbOG6l98PV18NUdHfnf5N1dVyXFBaCk4nREWF657BoLQ9jhzZ+eW9teEtvv/h9xnRZQRf3fgV175/LZ/v+Jynz3ma+067b98nfIuPV4NBWL0a1qyB4mLZ/6WmSp0z9HhqqrRVAXxd+DX/N+P/iLPHUeWsomdyT16/5HW6J0V2hN7TsIeXVr6EP+jHH/RzTq9zOK/Pecf43Z2cGhqguVnGKPj90pfL4ZDvJkq7DyuljiCnz0mzV8I44h3xOkahk/xBP1VOGedot9hPuv4BR5o34OV/G/9HvacewzAYmjmUyT0mR84U9IG7HLy1EPTKbZMZzA6wJUJcj0Pqu+92h/eXZrO0k0UfQhNwrauWF1a+gNPnxB/0MzZ7LJcPuvzgF6SUUupbpd5dz5I9SzAMA4vZwsRuE4m27buj+XjrxywuWozVbCXKGsWPx/6YtJi08AzeemjaIfvCgFvuM1kAQ/o7pI6DqPR9lruPlv1g0Ajy+KLH+d383zG5x2QWFCzg8oGX89LUl1rHOxkG5OdL+3ZNjbR9m820hllER8OUKeFjfynT4bV9+P3StrB9O5SXy7nd2Nhw+00gAKNGwYABKKWUUkqdMJxOORfn9Up9xWqVulJc3F51JaVOAA0NDSQmJh754LeHHnqIp556ip07d9K9TfLRjh07GDZsGG63m+7duxMTE8PWrVsxm80sX76ckQdzdvYQnXrqqQQCAZYvj7xS46ZNmxgyZAgvvfQSt912W7vPzcrKYuLEibzzzjsR98+cOZOpU6cye/Zszj333E6V42A+fHV4mr3N/Gvtv1pDva4fdn3kQfZJ4K0Nb3HjRzcSZY3C7Xfz2rTXuGH4De3PfKQ6IrgrZHCZrxECLpnfEguOFEgcLGFw3yHry9cz7p/jiLPHMf2y6Ux7axqpMamsu30dGbEZ/POfENp03H03/Ln9vln7OtGC344Cb8DL09/8f3t3HmdlXf6P/3Vg2BGUTUEQUDRUUExB3EFzwSXTNAUroVxyS620SFB4uKSZH1NT+5T9gm8qaoiZa+VGpmGgEmpogYIoyQ4jCCgwvz/m4+jI4qDMnAGez8fjPDjzfr/v+1xnhpnrXOfc93X/NPOXlnerPn7n47P/dvsXOSoojtteuC2nP3B6tm6ydWYtmZXv9f5erjv8oz8Y896bl/bXt8+yFcty1l5n5Qstv5CH/vNQ/vL6X9Jr21557rTnVt/pp/wdufdf9+bE35+YL7b9YkqXl2bawmn58zf+XOnD17Kyshx717F54N8PZPD+g/O7Sb/L7CWz89eBf1290VwVrVy1Mm+/W975ukHdBh81X/uMps6fmncWv5Mk2aHFDtmm6TZrXPfeB+/lg5XlV3hu1qBZClX5wBg2MbNmJf/6V/mJ94sXl79RUVZW/gFLq1bJl79c/oFLhU95DTH3vbnZ///bP9MWTkurxq2yaPmiPHnqk9mr3V5JypvsfHgS45qs8e9XLX3dAsBGYh2vgS998tJc/tfL06ZJm5z+xdOTJD979mdZvnJ5fvPl3+Rbe3xrzftay/5gk7CR/z8fMXFEBt0/KLu03iWT50zO3u33zuPffNwJjhvAnCVz0vXmrlm4bGFeOOOF8sbtTw7J0TsdnQf6f/rVp1gP63r/5t0p5c2RFk8pv/hKVpUfCFinXtKgddLlzMrvx6/rd7oITe+ffTa54ILk+efLm4X071/eMKRRo/KadNq05JBDyk/croofPfajXPPMNWudn/rdqdl+q+0r3merV6deBvYYmCT542t/zKwls3Juz3Nz05E3rb7xp7yPdvLok3P3K3fn23t8O6NeHpVmDZplwukTKjVM3Fzs+as988J/X8he7fZK5y07V4yPmTwmK8tW5m+D/pb9ttuv8kY1dQLsIz2Shf9MmnRM+r2U1Pu/Nzmm35U827/8/oZu/Pb+wmTKL5O545Lls5OmXZK6Dcp/V1etKD+Id+/flI8VW2363OmN3yXjvll+/8AHk22PKv9eLXrlozX1miVb7Lj++96cbOSv5TYHH/7NXJO6hbqZd/G8TebiIxvKlCnJjv/3q7/HHuXNCPiYlcs+Ok4jZeUN7uptmdSt2lVAqRmly0uz26275c1Fb+Yv3/hLvv/n7+efs/5ZqYl26fLStLuuXZZ8sCT7ddgv2zXfLtMXTc+zM57NFvW3yMzvz8xfH2uao44q3+fXvpbcfXcVA/i8jd9cMOsze+SR8otBvvRS+cHB225b/m9SflLynnsm3/nO+u3z/EfOz43/uDE92/XM+Jnj193w3muDKttvv48aiE2YUP6z+Vz83lSbsrLkkkuSn/+8/OD7009PDjusvLl8ofBRY6hzzilvkLNRWMfv6pwlc9L5hs5574P38s/v/DM7t945O9+8c6bMn5K7T7g7X9u1Zi6iDZuqX074Zc566Ky0adIms5fMzuD9B+eqQ64qdlgAAAAAn2r5iuVZWbYyhRTW2JCuSjbkeXTe8wYAgGpVbY3fDjzwwCxevDgvfOLozPPOOy8333xzzjnnnNx0U/kJF2PGjMkJJ5yQQYMG5Te/+c1neBrr54wzzsioUaOyYMGClHx41FWSu+66K/37988zzzyTfffdd43bHnbYYZkxY0YmT55cafzqq6/O4MGD8/bbb6ddu3ZVikPjNzaoz3Jg2UZ4Bbpiu+m5m/LdR7+bQsq/d49+/dEctkN5s8eZM8uvSj5nTrLddslDD61+VfLZs5M2bT6xUz8H2OxMWzgt7698P4UUsmPL1U9oO+2Pp+U3L/4mZ+11Vm456pbscvMumTx3cu44/o4M6D5g9R1W4e/Ir5//dcbPHJ8kOaTzITmp20mrrVm4bGH6juyb/7773yTJpQddmrN7nv0ZniGw0anCCSKzl8zO5DnldVC7Ldqt9vfr6DuPzkP/eWiN215ywCW54uAr1vsxAWCt1vEa+O3St9Pphk5ZVbYqb5z/RmYsmpH9f7t/WjRqkbcufKv8QAgn6LG52QReez017amKiwoc1PGgtGzcssgRbTp+88JvctoDp2WvdntVvOZ/5exX0nHLjp+yJetU1QPoNtLfyTVZsiR5+eXyk7Hffbf8iq9NmiTbbFP+XnnTplXbz9hpY9NnZJ8kSftm7VO3UDeLli/KwmULs1PLnfLaua+VP977S7Lt/2ybRcsX5e/f/nu6tuqatte1zbIVy/LyWS9n1za7rr7zT3kf7b0P3svpD5yehcsWJimvZ/ftsObPDDd15z58bm4ef/Ma5+rVqZfSwaVpWPKJxmo18XnHosnJw7uU39/9J8kuPyq//+LFyfzxyeynyr/e0I3fNjU1ecGh/9ySTPl1sujlpOXeyRY7JSWNkuXzk3f/nex8UdLx5M+2702ZmmWjctGfL8rP/v6zNc71bNcz/zj9H2uc29ydfXZy663l97/3vfKLrHXunNSrl/z3v+VNZfv2rfprCCiGp6c/nT4j+6RenXpZvnJ5vrn7NzPyKyMrrfnws98z9zwzvzz6lzn9j6fnthdvq/j68ceTL32pfO2Xv5zcf38VH/zzNHRb03YU1aqyVRn10qgsX7k8hRRyUreT1t7wfhN4n6emtGpVXqMWCsmyZUl9/TNrvfffTyZNKr/IWWlp+fsLhUKy1VZJ+/ZJv35JnTrFjnId1uN1/ODHBufqZ67OgO4DcsxOx6T/vf2z29a7ZeKZE13gEDaA6Qun54NVH6SQQnZosUOxwwEAAAAAAABYTbU1fuvQoUP69OmT3/3ud5XGd9xxx8yYMSNz5szJFltsUTF+0EEH5b///W/+/e9/r+dTWH+PPPJIjjzyyNx111056aSPmp7069cvkyZNyptvvpm6dddwtcwkt956a84+++yMGzcue++9d5JkxYoV6dGjR5o2bZpx48ZVOQ6N36hxDu7cICbPmZyylKVB3QarHRAyeXJy5ZXlTd8WLky6dk3atSs/we2NN8pPcpv8qp8DsG6TZk3K7r/cPc0aNMvdJ9ydfnf0S9umbTP9gumpV7fe6htoIAl8XhvgBJGfj/t5LvzThdm19a65/+T7s2LViuz+y92zfOXyPHnqk+nTqc8Gf0wANmOf8hr4hHtOyL2T782wg4Zl+qLp+e3E3+b7+3w/PztszSfiwyZJsxCqqKysLMeMOiYT35mYJLlo34tyfu/zixsUm7UVq1ak5U9bpnR5aUU9OeDeARn18qicv/f5+fkRP69Ye97D5+UX43+RM754Rnps0yNnP3x2DtjugPx10F/XvHPvo1XZHZPuyNfv+/oa53pt2yvPnfbc6hM18f2dPTZ5vE/5/d6/Szr/X4x/7JwsmfbRuq8tS+o2qL44NnbFeF/m/QXJ0pnl/5atTOo1Txp3SBpo5srG7+H/PJyj7jwqJXVKcvORN6eQQq4fd30mz52ci/e9ONccek2xQ6y1Hn88+cMfkmeeKb/A2vz55c1cWrVKvvCF5K67ki23LHaUsG5/e/NvFY3K+3bqmy0abFFpfvzb49Prtl7ZsuGWef27r6fTDZ1Surw0L5zxQvZou0eS8kZGjz5avn7o0OScc5Ktty7/+q23kr/9LTm5v2NNNmve5/lMjj8+ue++8vt/+ENy7LFFDQcqmb90fjr9vFPe++C9dNqyU6YumJoxXxuT43Y+rtihAQAAAAAAAAA1YH16j5Wsz47nzp2bDh06VBpbuHBhpk6dmgMOOKBS07ck6dGjRyZMmLA+D/GZ9evXL4ceemjOOuuslJaWpkuXLhk1alQeffTR3H777RVN37797W9n5MiRmTp1ajp27Jgk+da3vpWbb745J554Yq6++uq0adMmt9xyS1577bU89thjNRI/fGYO8Nsgdm6989rndk5uv7280dvUqcncueUN4Bo2LG8At+OOSUr8HIB1223r3dKnU588Ne2pfPO+byZJztrrrMpN39Z0YPcnx/zdB2rQodsfmiR5bd5radOkTV6Z80qWr1yeJvWaZN8O+xY5OgA2ems7sXEtr4HP7XVu7p18b2578bYsWLogdQp1cnbPs6s5SICNU6FQyIMDHix2GFChpE5JvrT9lzJm8pg89vpj6dOpT55444kkSb8u/Sqt/c5e38kvxv8id71yV/4x8x8VY3x+vdv3rrj/z+/8M22atMmZD56ZP772x/Tetvc6tqxmDdt+dH/JGx/d//Ibq6+lsqq8pq7O95Trb1V+g03QAdsdkJI6JVmxakX267Bfdm2za378xI+TJH079y1ydLXbIYeU32Bjtv92+69zvue2PbPHNnvkxXdezKD7B6V0eWn2ardXRdO3pLwx1bXXJnfckVxxRXL55UnjxsmqVcmyZclOOyUn++x38+bn/5lce23y9NPlx299/evJd7+bHHhgstVWycyZyVNPJUccUX6DmtaiUYtc0PuCXP7XyzN1wdR8se0XNX0DAAAAAAAAANaozvosLikpycKFCyuNvfjii0mSvfbaa7X1TZs2/eyRfQZjxozJN77xjVx66aU54ogj8txzz2XUqFE55ZRTKtasXLkyK1euTNnHDpxq0KBBHn/88fTt2zfnnXdejjnmmPz3v//NI488koMOOqhGnwNQe5WUlF+BfL/9kqOOKj9Yfeedy8cBquK7vb6bJJnz3pw0qNsgZ+51ZuUFZWWffgNYl0Lho1tVxj/Frm12Tbst2mXFqhV5ZsYzGTttbJLkwI4Hpn7d+hsqagA2V1V5/fux18B9OvXJrq13zVulb2XJB0tyRJcjsv1W2xfxCUARqBuBjdgRO5Sfdf/Y64/lpVkvZdaSWWlU0igHdar8WdyubXbNAdsdkNLlpZn4zsS0btw6J+xyQjFC3uTs0GKHtG7cOknyVulb2abpNvnXnH8lSfbpsE/xAmu2U9KiZ/n9/9ySLJ21+pr3ZtZsTBsLrw2g2mzRYIvs2XbPJMnTbz6dV+e+mrnvzU1JnZJPbQgFbB7O2POMJMn9r92fJDlzz8qf/TZsmAwdmrz6arJgQTJuXPLAA8kTTyQzZiSvvVbjIcMmYYcdkkmTku99L+ncObn66vImb3vvnRx3XPLQQ8knrl8MNerSgy7N3IvmZu5Fc/P0oKeLHQ4AAAAAAAAAUEutV7uinXbaKY8//nilsT//+c8pFArZd999V1s/c+bMtG3bdrXx6tK0adPccMMNueGGG9a6ZsSIERkxYsRq41tvvXVGjhxZjdEBAJu7Y7sem7EDx6asrCzNGjRLmyZtih0SsKmphpN5D+l8SH436Xd5atpT+eesfyZJvrT9lzb44wBAVdx85M35+1t/T5Ic0eWIIkcDAKyPfjv2S5JMmDkh906+N0l5Y9eGJQ1XWzt4/8FpPqF5+XZd+mk+vgH1bt87D/z7gYx/e3z2ab9PpsyfUjFeVLtdnow9Kln2TvLwLknH/kmTjsmy2cmsJ5KmnZP9Rxc3RmCz07dT3zz39nP525t/S0md8sNrerbrmab1a/YiiEDtdEr3U/LLCb/M+yvfT4OSBunfrf9a1zZvXt6UCtgw2rZNrruu/H5paTJnTvnHpFtvrekbxVdSpyQtG7csdhgAAAAAAAAAQC23Xo3fvvrVr2bIkCE588wzc84552TKlCm59dZb07Rp0xxxxOonWj7zzDPp0qXLBgsWAGBjVqdQJwd2PLDYYQCsl0O3PzS/m/S7PPb6Y/n3vH9XjFUoFNa84cfHq6EhHQCbp4M6HZSDOh1U7DAAgM+gfbP26damW16e/XKuH3d9kvKmbmvSb8d+FY3i2LD2ab9PeeO3meMzYeaEJMk2TbdJpy07FTewtocnff6cvDw8mfu35D83fzRXp0Gy7THFiw3YbPXt3DdXP3N1nn7z6dStU7d8rFPfIkcF1BZbNNgiE78zsdhhwGavWbPyGwAAAAAAAAAAbEzWq/HbhRdemLvvvju//vWvc9tttyVJysrKcu2116ZJkyaV1k6YMCFTpkzJmWeeueGiBQAAoEZ9afsvJUme/+/zScpPBu++dfePFmjqBgAAQBX169IvL89+OaXLS8u//izN3arSgDxRr67FPh32SZJMmDmhovHbPu33KWZIH9nm4PLb0lnJopeSlcuThlsnzXdNShoVOzpgM7Rfh/1Sr069vLnozTzw2gNJypvBAQAAAAAAAAAAAMDnsV6N3xo1apRnnnkm119/fcaNG5cWLVrkxBNPzJe//OXV1r7wwgs59thj1zgHAADAxqHtFm2za+td88qcV5Ikh3Q+pMgRAQAAsLHq16Vfrn322iRJlxZd0qVFlyJHtPnp2a5n6hbqZtaSWRnz6pgkSe/2vYsc1Sc02rr8BlBkTeo3Sa9te+WZGc9kwbIFqV+3fvbrsF+xwwIAAAAAAAAAAABgI7dejd+SpGnTphk6dOinrjvjjDNyxhlnfKagAAAAqD2+uvNXs/j9xUmSY3Y6psjRAAAAsLE6sOOBeemsl5IkzRo0+2w7KSvbgBFtfprUb5LuW3fPxHcmZsLMCUmSfdrv89GCQmHNG35y3M8B2Ez07dQ3z8x4Jkmy97Z7p1G9RkWOCAAAAAAAAAAAAICN3Xo3fgMAAGDzMrzv8AzvO7zYYQAAALCRq1unbrq16VbsMDZ7+7TfJxPfmZgkqVenXvZqt1dxAwKoxU7c9cQsWLYgSXJw54OLHA0AAAAAAAAAAAAAmwKN3wAAAAAAAAA2E73b986tE25Nkuy29W5pVK9RkSMCqL1223q3/OLIXxQ7DAAAAAAAAAAAAAA2IRq/AQAAAAAAAGwmDtvhsFzR94okSfetu1eeLCsrQkQAAAAAAAAAAAAAALD5KJSVOXp/QyotLU3z5s2zaNGiNGvWrNjhAAAAAAAAAAAAAAAAAAAAAAAAANVkfXqP1amhmAAAAAAAAAAAAAAAAAAAAAAAAAA2Wxq/AQAAAAAAAAAAAAAAAAAAAAAAAFQzjd8AAAAAAAAAAAAAAAAAAAAAAAAAqpnGbwAAAAAAAAAAAAAAAAAAAAAAAADVTOM3AAAAAAAAAAAAAAAAAAAAAAAAgGqm8RsAAAAAAAAAAAAAAAAAAAAAAABANdP4DQAAAAAAAAAAAAAAAAAAAAAAAKCaafwGAAAAAAAAAAAAAAAAAAAAAAAAUM00fgMAAAAAAAAAAAAAAAAAAAAAAACoZhq/AQAAAAAAAAAAAAAAAAAAAAAAAFQzjd8AAAAAAAAAAAAAAAAAAAAAAAAAqpnGbwAAAAAAAAAAAAAAAAAAAAAAAADVTOM3AAAAAAAAAAAAAAAAAAAAAAAAgGqm8RsAAAAAAAAAAAAAAAAAAAAAAABANdP4DQAAAAAAAAAAAAAAAAAAAAAAAKCaafwGAAAAAAAAAAAAAAAAAAAAAAAAUM02mcZvixcvzgUXXJB27dqlYcOG6dGjR+66664qbfvWW2/lggsuyEEHHZQtt9wyhUIhI0aMqN6AAQAAAAAAAAAAAAAAAAAAAAAAgM3GJtP47fjjj8/IkSNz2WWX5ZFHHknPnj3Tv3//3HnnnZ+67ZQpU3LHHXekfv36OfLII2sgWgAAAAAAAAAAAAAAAAAAAAAAAGBzUlLsADaEhx9+OH/5y19y5513pn///kmSvn37Zvr06bnoooty0kknpW7dumvd/sADD8ycOXOSJBMmTMioUaNqJG4AAAAAAAAAAAAAAAAAAAAAAABg81Cn2AFsCPfdd1+aNm2aE088sdL4oEGDMnPmzDz33HPr3L5OnU3i2wAAAAAAAAAAAAAAAAAAAAAAAADUUptEx7OXX345O++8c0pKSiqN77bbbhXz1WX58uUpLS2tdAMAAAAAAAAAAAAAAAAAAAAAAAD4uE2i8du8efPSokWL1cY/HJs3b161PfZPfvKTNG/evOLWoUOHanssAAAAAAAAAAAAAAAAAAAAAAAAYONU6xq/PfXUUykUClW6TZw4sWK7QqGw1n2ua+7zGjx4cBYtWlRxmzFjRrU9FgAAAAAAAAAAAAAAAAAAAAAAALBxKil2AJ/0hS98Ib/+9a+rtHa77bZLkrRs2TLz5s1bbX7+/PlJkhYtWmy4AD+hQYMGadCgQbXtHwAAAAAAAAAAAAAAAAAAAAAAANj41brGb23bts1pp522Xtt07949o0aNyooVK1JS8tFTeumll5Ik3bp126AxAgAAAAAAAAAAAAAAAAAAAAAAAKyPOsUOYEM47rjjsnjx4tx7772VxkeOHJl27dpl7733LlJkAAAAAAAAAAAAAAAAAAAAAAAAAElJsQPYEPr165dDDz00Z511VkpLS9OlS5eMGjUqjz76aG6//fbUrVu3Yu23v/3tjBw5MlOnTk3Hjh0rxkePHp0kef3115MkEyZMSNOmTZMkJ5xwQpVjKSsrS5KUlpZ+7ucFAAAAAAAAAAAAAAAAAAAAAAAA1F4f9hz7sAfZuhTKqrJqI7B48eJccsklueeeezJ//vx07do1gwcPzsknn1xp3cCBAzNy5Mi88cYb6dSpU8V4oVBY677X51v01ltvpUOHDusdPwAAAAAAAAAAAAAAAAAAAAAAALBxmjFjRtq3b7/ONZtM47faYtWqVZk5c2a22GKLFAqFlJaWpkOHDpkxY0aaNWtW7PAAgI+RpwGg9pKnAaB2kqMBoPaSpwGgdpKjAaD2kqcBoHaSowGg9pKnAaD2kqcBoPjKysry7rvvpl27dqlTp84615bUUEybjTp16qyx216zZs28OAKAWkqeBoDaS54GgNpJjgaA2kueBoDaSY4GgNpLngaA2kmOBoDaS54GgNpLngaA4mrevHmV1q27LRwAAAAAAAAAAAAAAAAAAAAAAAAAn5vGbwAAAAAAAAAAAAAAAAAAAAAAAADVTOO3atagQYNcdtlladCgQbFDAQA+QZ4GgNpLngaA2kmOBoDaS54GgNpJjgaA2kueBoDaSY4GgNpLngaA2kueBoCNS6GsrKys2EEAAAAAAAAAAAAAAAAAAAAAAAAAbMrqFDsAAAAAAAAAAAAAAAAAAAAAAAAAgE2dxm8AAAAAAAAAAAAAAAAAAAAAAAAA1UzjNwAAAAAAAAAAAAAAAAAAAAAAAIBqpvFbNVm8eHEuuOCCtGvXLg0bNkyPHj1y1113FTssANisPPXUUykUCmu8jRs3rtLaF154IV/60pfStGnTbLnlljn++OPz+uuvFylyANi0vPvuu7n44otz2GGHpXXr1ikUChk2bNga165PTr7pppvStWvXNGjQIJ07d87w4cPzwQcfVOMzAYBNS1Vz9MCBA9dYW3ft2nWN+5WjAeDzeeKJJ/Ktb30rXbt2TZMmTbLtttvm2GOPzfPPP7/aWnU0ANSsquZptTQA1KyJEyfmqKOOynbbbZdGjRqlRYsW2WeffXL77bevtlYtDQA1q6p5Wi0NAMV32223pVAopGnTpqvNqacBoLjWlqfV0wCw8SopdgCbquOPPz7jx4/P1VdfnZ122il33nln+vfvn1WrVmXAgAHFDg8ANitXXXVV+vbtW2msW7duFfdfffXV9OnTJz169Mg999yTZcuW5dJLL80BBxyQiRMnpnXr1jUdMgBsUubNm5df/epX2X333fOVr3wlt9122xrXrU9OvvLKKzN06ND86Ec/ymGHHZbx48dnyJAhefvtt/OrX/2qpp4aAGzUqpqjk6RRo0Z54oknVhv7JDkaAD6/W2+9NfPmzcv555+fXXbZJXPmzMl1112X3r17509/+lMOPvjgJOpoACiGqubpRC0NADVp4cKF6dChQ/r3759tt902S5YsyR133JFvfOMbmTZtWoYMGZJELQ0AxVDVPJ2opQGgmN5+++384Ac/SLt27bJo0aJKc+ppACiudeXpRD0NABurQllZWVmxg9jUPPzwwznqqKMqmr196LDDDssrr7ySN998M3Xr1i1ihACweXjqqafSt2/f/P73v88JJ5yw1nVf+9rX8uSTT2bq1Klp1qxZkmT69OnZcccdc+GFF+aaa66pqZABYJP04VsPhUIhc+fOTevWrXPZZZdl2LBhldZVNSfPmzcv7du3zze/+c387//+b8X2V111VYYMGZKXX345u+yyS808OQDYiFU1Rw8cODCjR4/O4sWL17k/ORoANozZs2enTZs2lcYWL16cLl26pFu3bnnssceSqKMBoBiqmqfV0gBQO/Tu3TszZ87Mm2++mUQtDQC1ySfztFoaAIrrmGOOSaFQSIsWLVbLyeppACiudeVp9TQAbLzqFDuATdF9992Xpk2b5sQTT6w0PmjQoMycOTPPPfdckSIDAD5pxYoVefDBB/PVr3614sOHJOnYsWP69u2b++67r4jRAcCmoVAopFAorHPN+uTkRx99NMuWLcugQYMq7WPQoEEpKyvLH/7whw0aPwBsqqqSo9eHHA0AG8Ynm8kkSdOmTbPLLrtkxowZSdTRAFAsVcnT60OeBoDq1apVq5SUlCRRSwNAbfPxPL0+5GkA2PBuv/32jB07Nrfccstqc+ppACiudeXp9SFPA0Dto/FbNXj55Zez8847r/YBxG677VYxDwDUnHPOOSclJSVp1qxZDj/88Pztb3+rmJs6dWqWLl1akac/brfddsuUKVOybNmymgwXADZL65OTP6yru3fvXmld27Zt06pVK3U3AFSDpUuXZptttkndunXTvn37nHvuuZk/f36lNXI0AFSfRYsW5YUXXsiuu+6aRB0NALXJJ/P0h9TSAFDzVq1alRUrVmTOnDm55ZZb8qc//Sk//OEPk6ilAaDY1pWnP6SWBoCaN3v27FxwwQW5+uqr0759+9Xm1dMAUDyflqc/pJ4GgI3T+l8ahU81b968bL/99quNt2jRomIeAKh+zZs3z/nnn58+ffqkZcuWmTJlSq699tr06dMnDz30UA4//PCKvPxhnv64Fi1apKysLAsWLEjbtm1rOnwA2KysT06eN29eGjRokCZNmqxxrbobADas3XffPbvvvnu6deuWJBk7dmyuv/76PP744xk/fnyaNm2aJHI0AFSjc845J0uWLMkll1ySRB0NALXJJ/N0opYGgGI5++yz87//+79Jkvr16+fGG2/MmWeemUQtDQDFtq48nailAaBYzj777HzhC1/IWWedtcZ59TQAFM+n5elEPQ0AGzON36pJoVD4THMAwIazxx57ZI899qj4+oADDshxxx2X7t275+KLL87hhx9eMSd3A0DtUNWcLHcDQM258MILK3196KGHZo899sgJJ5yQX//615Xm5WgA2PCGDh2aO+64IzfddFP23HPPSnPqaAAorrXlabU0ABTHj3/845x22mmZPXt2HnjggZx77rlZsmRJfvCDH1SsUUsDQHF8Wp5WSwNAzbv33nvzwAMP5MUXX/zUHKqeBoCaVdU8rZ4GgI1XnWIHsClq2bLlGjvazp8/P8maO9sDADVjyy23zNFHH51JkyZl6dKladmyZZKsNXcXCoVsueWWNRwlAGx+1icnt2zZMsuWLct77723xrXqbgCofscdd1yaNGmScePGVYzJ0QCw4Q0fPjxXXHFFrrzyypx77rkV4+poACi+teXptVFLA0D122677bLXXnvlyCOPzK233pozzjgjgwcPzpw5c9TSAFBk68rTa6OWBoDqs3jx4pxzzjk577zz0q5duyxcuDALFy7M+++/nyRZuHBhlixZop4GgCKoap5eG/U0AGwcNH6rBt27d8/kyZOzYsWKSuMvvfRSkqRbt27FCAsA+D9lZWVJyjvQ77DDDmnUqFFFnv64l156KV26dEnDhg1rOkQA2OysT07u3r17xfjHvfPOO5k7d666GwBqSFlZWerU+ehjBjkaADas4cOHZ9iwYRk2bFh+/OMfV5pTRwNAca0rT6+LWhoAalavXr2yYsWKvP7662ppAKhlPp6n10UtDQDVY+7cuZk1a1auu+66bLXVVhW3UaNGZcmSJdlqq61yyimnqKcBoAiqmqfXRT0NALWfxm/V4LjjjsvixYtz7733VhofOXJk2rVrl7333rtIkQEACxYsyIMPPpgePXqkYcOGKSkpyTHHHJMxY8bk3XffrVj35ptv5sknn8zxxx9fxGgBYPOxPjn5iCOOSMOGDTNixIhK+xgxYkQKhUK+8pWv1FDUALD5Gj16dN5777307t27YkyOBoAN5/LLL8+wYcMyZMiQXHbZZavNq6MBoHg+LU+vjVoaAGrek08+mTp16mT77bdXSwNALfPxPL02amkAqD7bbLNNnnzyydVuhx9+eBo2bJgnn3wyV1xxhXoaAIqgqnl6bdTTALBxKCl2AJuifv365dBDD81ZZ52V0tLSdOnSJaNGjcqjjz6a22+/PXXr1i12iACwWRgwYEC222677LXXXmnVqlX+85//5LrrrsusWbMqvTkxfPjw9OzZM0cffXR+9KMfZdmyZbn00kvTqlWrfP/73y/eEwCATcgjjzySJUuWVHzg/69//SujR49Okhx55JFp3LhxlXNyixYtMmTIkAwdOjQtWrTIYYcdlvHjx2fYsGE57bTTsssuuxTlOQLAxujTcvScOXMyYMCAnHzyyenSpUsKhULGjh2bn//859l1111z2mmnVexLjgaADeO6667LpZdemiOOOCJHHXVUxo0bV2n+wwPy1NEAUPOqkqenT5+ulgaAGnbGGWekWbNm6dWrV7beeuvMnTs3v//973P33XfnoosuSuvWrZOopQGgGKqSp9XSAFDzGjZsmD59+qw2PmLEiNStW7fSnHoaAGpWVfO0ehoANm6FsrKysmIHsSlavHhxLrnkktxzzz2ZP39+unbtmsGDB+fkk08udmgAsNm4+uqrc/fdd+eNN97I4sWL06JFi+y///4ZPHhwevbsWWnt888/nx/+8If5+9//npKSkhx88MH52c9+lh122KFI0QPApqVTp06ZPn36GufeeOONdOrUKcn65eQbb7wxN998c6ZNm5ZtttkmgwYNyiWXXJJ69epV51MBgE3Kp+Xo5s2b59vf/nZefPHFzJo1KytXrkzHjh1z3HHH5cc//nGaN2++2nZyNAB8Pn369MnYsWPXOv/xj/jV0QBQs6qSpxcsWKCWBoAa9tvf/ja//e1vM3ny5CxcuDBNmzbN7rvvntNOOy1f//rXK61VSwNAzapKnlZLA0DtMXDgwIwePTqLFy+uNK6eBoDi+2SeVk8DwMZN4zcAAAAAAAAAAAAAAAAAAAAAAACAalan2AEAAAAAAAAAAAAAAAAAAAAAAAAAbOo0fgMAAAAAAAAAAAAAAAAAAAAAAACoZhq/AQAAAAAAAAAAAAAAAAAAAAAAAFQzjd8AAAAAAAAAAAAAAAAAAAAAAAAAqpnGbwAAAAAAAAAAAAAAAAAAAAAAAADVTOM3AAAAAAAAAAAAAAAAAAAAAAAAgGqm8RsAAAAAAAAAAAAAAAAAAAAAAABANdP4DQAAAAAAAAAAAAAAAAAAAAAAAKCaafwGAAAAAAAAAAAAn8G0adNSKBQycODA9dquUCikT58+1RITAAAAAAAAAAAAtZfGbwAAAAAAAAAAAGyUPmy89vFb/fr106FDhwwYMCCTJk0qSlx9+vRJoVAoymMDAAAAAAAAAABQe5UUOwAAAAAAAAAAAAD4PHbYYYd8/etfT5IsXrw448aNy6hRozJmzJg88cQT2XfffavlcbfddttMnjw5zZs3X6/tJk+enMaNG1dLTAAAAAAAAAAAANReGr8BAAAAAAAAAACwUevSpUuGDRtWaWzIkCG58sorc8kll+TJJ5+slsetV69eunbtut7bfZZtAAAAAAAAAAAA2PjVKXYAAAAAAAAAAAAAsKGdd955SZLx48cnSVasWJHrr78+u+++exo1apTmzZunb9++eeihh1bbdtWqVbntttvSq1evtGjRIo0bN06nTp3yla98JX/9618r1k2bNi2FQiEDBw6sGCsUChk7dmzF/Q9vn1zTp0+f1R533rx5ufDCC9O5c+c0aNAgbdq0yUknnZR//etfq60dOHBgCoVCpk2blltuuSU777xzGjZsmI4dO2b48OFZtWrVZ/m2AQAAAAAAAAAAUI1Kih0AAAAAAAAAAAAAbGiFQqHifllZWU466aSMGTMmO+20U84555wsWbIk99xzT44++ujccMMN+e53v1uxfvDgwfnpT3+aHXbYIQMGDMgWW2yRt99+O08//XSeeOKJHHjggWt93MsuuywjRozI9OnTc9lll1WM9+jRY53xzps3L717986UKVPSp0+fnHzyyZk2bVpGjx6dhx56KH/5y1+yzz77rLbdRRddlKeeeipHH310DjvssPzhD3/IsGHD8v777+fKK69cj+8YAAAAAAAAAAAA1U3jNwAAAAAAAAAAADY5N954Y5KkZ8+euf322zNmzJgcdNBB+fOf/5z69esnSS655JLsueee+cEPfpBjjjkmnTt3TpLcdttt2XbbbTNp0qQ0bty4Yp9lZWVZsGDBOh932LBheeqppzJ9+vQMGzasyvFefPHFmTJlSgYPHpyrrrqqYnzgwIE54ogjcuqpp+bVV19NnTp1Km33/PPPZ9KkSWnbtm2SZOjQodlxxx1z00035bLLLqt4rgAAAAAAAAAAABRfnU9fAgAAAAAAAAAAALXXlClTMmzYsAwbNiw/+MEPsv/+++fKK69Mw4YNc9VVV2XEiBFJkp/+9KeVGqG1b98+F154YT744IPccccdlfZZv379lJRUvrZqoVBIixYtNnj877//fkaNGpWWLVtmyJAhleYOP/zwHH744fnPf/6TZ599drVthw4dWtH0LUlatWqVY489Nu+++25ee+21DR4rAAAAAAAAAAAAn53GbwAAAAAAAAAAAGzUpk6dmuHDh2f48OG58cYbM3369AwYMCD/+Mc/ss8+++TFF19Mo0aN0qtXr9W27dOnT5Jk4sSJFWNf+9rX8sYbb6Rbt24ZOnRoHnvssSxZsqTa4n/11VezdOnS9OrVK40bN65SjB/64he/uNpY+/btkyQLFy7ckGECAAAAAAAAAADwOWn8BgAAAAAAAAAAwEbt8MMPT1lZWcrKyvL+++9nxowZueOOO9K9e/ckSWlpabbeeus1brvNNtskSRYtWlQxduONN+anP/1p6tWrlyuuuCKHHnpoWrVqlVNPPTVz587d4PGXlpYmyXrF+KHmzZuvNlZSUpIkWbly5YYKEQAAAAAAAAAAgA1A4zcAAAAAAAAAAAA2ac2aNcusWbPWOPfheLNmzSrG6tWrl4suuiivvPJK3n777dx555054IAD8v/+3//LKaecUi3xfTyWqsQIAAAAAAAAAADAxkfjNwAAAAAAAAAAADZpe+yxR5YuXZp//OMfq82NHTs2SdKjR481btuuXbv0798/jz76aHbcccc89thjWbp06Tofr27dukmSlStXVim+rl27pmHDhhk/fnzee++99Y4RAAAAAAAAAACAjYPGbwAAAAAAAAAAAGzSTj311CTJ4MGD88EHH1SMv/322/mf//mflJSU5JRTTkmSLF++PE888UTKysoq7WPJkiV59913U69evYrGbmvTokWLJMlbb71Vpfjq16+f/v37Z+7cufnJT35Sae6xxx7LI488ki5dumS//far0v4AAAAAAAAAAAConUqKHQAAAAAAAAAAAABUp2984xsZM2ZM7r///uy22245+uijs2TJktxzzz2ZN29errvuumy//fZJkqVLl+aQQw7J9ttvn7333jvbbbddFi9enAcffDDvvPNOfvjDH6Z+/frrfLyDDz44o0ePzoknnpgjjzwyDRs2TPfu3XPUUUetdZtrrrkmY8eOzRVXXJFnn302e++9d6ZNm5bRo0encePG+e1vf5s6dVzrFQAAAAAAAAAAYGOm8RsAAAAAAAAAAACbtEKhkNGjR+eGG27IyJEjc9NNN6V+/fr54he/mO9973v58pe/XLG2SZMmueaaa/L444/n6aefzuzZs7PVVlula9euueaaa3LSSSd96uOdfvrpmTZtWu66665ceeWVWbFiRU499dR1Nn5r3bp1nnvuuVx++eW5//778/TTT6d58+Y59thjc9lll6Vbt24b5HsBAAAAAAAAAABA8RTKysrKih0EAAAAAAAAAAAAAAAAAAAAAAAAwKasTrEDAAAAAAAAAAAAAAAAAAAAAAAAANjUafwGAAAAAAAAAAAAAAAAAAAAAAAAUM00fgMAAAAAAAAAAAAAAAAAAAAAAACoZhq/AQAAAAAAAAAAAAAAAAAAAAAAAFQzjd8AAAAAAAAAAAAAAAAAAAAAAAAAqpnGbwAAAAAAAAAAAAAAAAAAAAAAAADVTOM3AAAAAAAAAAAAAAAAAAAAAAAAgGqm8RsAAAAAAAAAAAAAAAAAAAAAAABANdP4DQAAAAAAAAAAAAAAAAAAAAAAAKCaafwGAAAAAAAAAAAAAAAAAAAAAAAAUM00fgMAAAAAAAAAAAAAAAAAAAAAAACoZhq/AQAAAAAAAAAAAAAAAAAAAAAAAFSz/x+KppnCgo+HAgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -2269,10 +2283,10 @@
" scores,\n",
" one_hot_encoded_sequences,\n",
" sequence_labels=\"\",\n",
- " class_labels=['L2_3IT', 'L5ET','L5IT','L6IT'],\n",
+ " class_labels=[\"L2_3IT\", \"L5ET\", \"L5IT\", \"L6IT\"],\n",
" zoom_n_bases=500,\n",
" title=\"\",\n",
- ") "
+ ")"
]
},
{
diff --git a/docs/tutorials/topic_classification.ipynb b/docs/tutorials/topic_classification.ipynb
index 7e76a104..eeddcb74 100644
--- a/docs/tutorials/topic_classification.ipynb
+++ b/docs/tutorials/topic_classification.ipynb
@@ -13,7 +13,7 @@
"source": [
"We can use the outputs of [pycistopic](https://pycistopic.readthedocs.io/en/latest/) to train a model to predict topic probabilities for a given sequence. \n",
"\n",
- "Since we plan on adding detailed use cases describing topic classification later on, we will only provide a brief overview of the workflow here. Refer to the [introductory notebook](introduction.ipynb) for a more detailed explanation of the CREsted workflow."
+ "Since we plan on adding detailed use cases describing topic classification later on, we will only provide a brief overview of the workflow here. Refer to the [introductory notebook](model_training_and_eval.ipynb) for a more detailed explanation of the CREsted workflow."
]
},
{
diff --git a/pyproject.toml b/pyproject.toml
index 2c9700d3..8719aa0f 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -61,6 +61,8 @@ doc = [
"sphinx-copybutton",
"pandas",
"tensorflow",
+ "ruff",
+ "modisco-lite",
]
test = [
"pytest",
diff --git a/src/crested/__init__.py b/src/crested/__init__.py
index 5d828765..ac352f04 100644
--- a/src/crested/__init__.py
+++ b/src/crested/__init__.py
@@ -20,18 +20,17 @@
import sys
from importlib.metadata import version
-from . import pl, pp, tl
+from . import pl, pp, tl, utils
from ._datasets import get_dataset, get_motif_db
from ._io import import_beds, import_bigwigs
-from ._logging import setup_logging
__all__ = [
"pl",
"pp",
"tl",
+ "utils",
"import_beds",
"import_bigwigs",
- "setup_logging",
"get_dataset",
"get_motif_db",
]
@@ -41,4 +40,4 @@
os.environ["AUTOGRAPH_VERBOSITY"] = "0"
# Setup loguru logging
-setup_logging(log_level="INFO", log_file=None)
+utils.setup_logging(log_level="INFO", log_file=None)
diff --git a/src/crested/_io.py b/src/crested/_io.py
index 0ba7e7b0..44cb2f99 100644
--- a/src/crested/_io.py
+++ b/src/crested/_io.py
@@ -17,7 +17,7 @@
from scipy.sparse import csr_matrix
-def _sort_files(filename: str):
+def _sort_files(filename: PathLike):
"""Sorts files.
Prioritizes numeric extraction from filenames of the format 'Class_X.bed' (X=int).
@@ -110,7 +110,11 @@ def _read_consensus_regions(
) -> pd.DataFrame:
"""Read consensus regions BED file and filter out regions not within chromosomes."""
consensus_peaks = pd.read_csv(
- regions_file, sep="\t", header=None, usecols=[0, 1, 2], dtype={0: str, 1: 'Int32', 2: 'Int32'}
+ regions_file,
+ sep="\t",
+ header=None,
+ usecols=[0, 1, 2],
+ dtype={0: str, 1: "Int32", 2: "Int32"},
)
consensus_peaks["region"] = (
consensus_peaks[0].astype(str)
@@ -475,7 +479,10 @@ def import_bigwigs(
df = pd.DataFrame(
data_matrix,
columns=consensus_peaks["region"],
- index=[os.path.basename(file).rpartition('.')[0].replace('.', '_') for file in bw_files],
+ index=[
+ os.path.basename(file).rpartition(".")[0].replace(".", "_")
+ for file in bw_files
+ ],
)
# Create AnnData object
diff --git a/src/crested/pl/bar/__init__.py b/src/crested/pl/bar/__init__.py
index 30e1974e..ff5d52bc 100644
--- a/src/crested/pl/bar/__init__.py
+++ b/src/crested/pl/bar/__init__.py
@@ -1,2 +1,2 @@
from ._normalization_weights import normalization_weights
-from ._region import region, region_predictions, prediction_bar
+from ._region import prediction, region, region_predictions
diff --git a/src/crested/pl/bar/_normalization_weights.py b/src/crested/pl/bar/_normalization_weights.py
index 83cd97e3..70f98b79 100644
--- a/src/crested/pl/bar/_normalization_weights.py
+++ b/src/crested/pl/bar/_normalization_weights.py
@@ -5,8 +5,8 @@
import matplotlib.pyplot as plt
from anndata import AnnData
-from crested._logging import log_and_raise
from crested.pl._utils import render_plot
+from crested.utils._logging import log_and_raise
def normalization_weights(adata: AnnData, **kwargs) -> plt.Figure:
diff --git a/src/crested/pl/bar/_region.py b/src/crested/pl/bar/_region.py
index d9aac402..1ed73948 100644
--- a/src/crested/pl/bar/_region.py
+++ b/src/crested/pl/bar/_region.py
@@ -7,8 +7,8 @@
from anndata import AnnData
from loguru import logger
-from crested._logging import log_and_raise
from crested.pl._utils import render_plot
+from crested.utils._logging import log_and_raise
def region_predictions(
@@ -179,23 +179,31 @@ def _check_input_params():
return render_plot(fig, **kwargs)
-def prediction_bar(prediction: np.array, classes: list, ylabel='Prediction', xlabel='Cell types', title='Prediction plot', **kwargs) -> plt.Figure:
+
+def prediction(
+ prediction: np.array,
+ classes: list,
+ ylabel="Prediction",
+ xlabel="Cell types",
+ title="Prediction plot",
+ **kwargs,
+) -> plt.Figure:
"""
Bar plot for predictions comparing different classes or cell types.
Parameters
----------
- prediction : np.array
+ prediction
An array containing the prediction values for each class or cell type. It is reshaped if necessary.
- classes : list
+ classes
A list of class or cell type labels corresponding to the predictions.
- ylabel : str, optional
+ ylabel
Label for the y-axis. Default is 'prediction'.
- xlabel : str, optional
+ xlabel
Label for the x-axis. Default is 'cell types'.
- title : str, optional
+ title
Title of the plot. Default is 'Prediction plot'.
- kwargs : dict, optional
+ kwargs
Additional keyword arguments to pass to `render_plot`.
Returns
@@ -208,7 +216,9 @@ def prediction_bar(prediction: np.array, classes: list, ylabel='Prediction', xla
prediction = prediction.flatten()
if len(prediction) != len(classes):
- raise ValueError("The length of prediction array must match the number of classes.")
+ raise ValueError(
+ "The length of prediction array must match the number of classes."
+ )
# Create the bar plot
fig, ax = plt.subplots()
@@ -233,4 +243,4 @@ def prediction_bar(prediction: np.array, classes: list, ylabel='Prediction', xla
kwargs["height"] = default_height
# Use render_plot to finalize and return the figure
- return render_plot(fig, **kwargs)
\ No newline at end of file
+ return render_plot(fig, **kwargs)
diff --git a/src/crested/pl/heatmap/_correlations.py b/src/crested/pl/heatmap/_correlations.py
index c30953c6..b2994091 100644
--- a/src/crested/pl/heatmap/_correlations.py
+++ b/src/crested/pl/heatmap/_correlations.py
@@ -8,8 +8,8 @@
from anndata import AnnData
from loguru import logger
-from crested._logging import log_and_raise
from crested.pl._utils import render_plot
+from crested.utils._logging import log_and_raise
def _generate_heatmap(correlation_matrix, classes, vmin, vmax):
diff --git a/src/crested/pl/hist/_distribution.py b/src/crested/pl/hist/_distribution.py
index 361c1572..484d657a 100644
--- a/src/crested/pl/hist/_distribution.py
+++ b/src/crested/pl/hist/_distribution.py
@@ -8,8 +8,8 @@
from anndata import AnnData
from loguru import logger
-from crested._logging import log_and_raise
from crested.pl._utils import render_plot
+from crested.utils._logging import log_and_raise
def distribution(
diff --git a/src/crested/pl/hist/_locus_scoring.py b/src/crested/pl/hist/_locus_scoring.py
index 7551e0c8..2e5ec3a2 100644
--- a/src/crested/pl/hist/_locus_scoring.py
+++ b/src/crested/pl/hist/_locus_scoring.py
@@ -4,40 +4,81 @@
import matplotlib.pyplot as plt
import numpy as np
-import seaborn as sns
-from anndata import AnnData
-from loguru import logger
-def locus_scoring(scores, coordinates, range, gene_start=None, gene_end=None, title='Predictions across Genomic Regions', bigwig_values=None, bigwig_midpoints=None, filename=None):
+
+def locus_scoring(
+ scores: np.ndarray,
+ range: tuple[int, int],
+ gene_start: int | None = None,
+ gene_end: int | None = None,
+ title: str = "Predictions across Genomic Regions",
+ bigwig_values: np.ndarray | None = None,
+ bigwig_midpoints: list[int] | None = None,
+ filename: str | None = None,
+):
"""
Plot the predictions as a line chart over the entire genomic input and optionally indicate the gene locus.
- Additionally, plot values from a bigWig file if provided.
-
- Parameters:
- scores (np.array): An array of prediction scores for each window.
- coordinates (np.array): An array of tuples, each containing the chromosome name and the start and end positions of the sequence for each window.
- model_class (int): The class index to plot from the prediction scores.
- gene_start (int, optional): The start position of the gene locus to highlight on the plot.
- gene_end (int, optional): The end position of the gene locus to highlight on the plot.
- title (str): The title of the plot.
- bigwig_values (np.array, optional): A numpy array of values extracted from a bigWig file for the same coordinates.
- bigwig_midpoints (list, optional): A list of base pair positions corresponding to the bigwig_values.
- """
- # Extract the midpoints of the coordinates for plotting
- midpoints = [(int(start) + int(end)) // 2 for _, start, end in coordinates]
+ Also plots values from a bigWig file if provided.
+
+ Parameters
+ ----------
+ scores
+ An array of prediction scores for each window.
+ range
+ The genomic range of the input.
+ model_class
+ The class index to plot from the prediction scores.
+ gene_start
+ The start position of the gene locus to highlight on the plot.
+ gene_end
+ The end position of the gene locus to highlight on the plot.
+ title
+ The title of the plot.
+ bigwig_values
+ A numpy array of values extracted from a bigWig file for the same coordinates.
+ bigwig_midpoints
+ A list of base pair positions corresponding to the bigwig_values.
+ filename
+ The filename to save the plot to.
+ See Also
+ --------
+ crested.tl.Crested.score_gene_locus
+ crested.utils.extract_bigwig_values_per_bp
+
+ Example
+ --------
+ >>> crested.pl.hist.locus_scoring(
+ ... scores,
+ ... range=(0, 1000),
+ ... gene_start=100,
+ ... gene_end=200,
+ ... title="Predictions across Genomic Regions",
+ ... bigwig_values=bigwig_values,
+ ... bigwig_midpoints=bigwig_midpoints,
+ ... )
+
+ .. image:: ../../../../docs/_static/img/examples/hist_locus_scoring.png
+ """
# Plotting predictions
plt.figure(figsize=(30, 10))
# Top plot: Model predictions
plt.subplot(2, 1, 1)
- plt.plot(np.arange(range[0], range[1]), scores, marker='o', linestyle='-', color='b', label='Prediction Score')
+ plt.plot(
+ np.arange(range[0], range[1]),
+ scores,
+ marker="o",
+ linestyle="-",
+ color="b",
+ label="Prediction Score",
+ )
if gene_start is not None and gene_end is not None:
- plt.axvspan(gene_start, gene_end, color='red', alpha=0.3, label='Gene Locus')
+ plt.axvspan(gene_start, gene_end, color="red", alpha=0.3, label="Gene Locus")
plt.title(title)
- plt.xlabel('Genomic Position')
- plt.ylabel('Prediction Score')
+ plt.xlabel("Genomic Position")
+ plt.ylabel("Prediction Score")
plt.ylim(bottom=0)
plt.xticks(rotation=90)
plt.grid(True)
@@ -46,11 +87,19 @@ def locus_scoring(scores, coordinates, range, gene_start=None, gene_end=None, ti
# Bottom plot: bigWig values
if bigwig_values is not None and bigwig_midpoints is not None:
plt.subplot(2, 1, 2)
- plt.plot(bigwig_midpoints, bigwig_values, linestyle='-', color='g', label='bigWig Values')
+ plt.plot(
+ bigwig_midpoints,
+ bigwig_values,
+ linestyle="-",
+ color="g",
+ label="bigWig Values",
+ )
if gene_start is not None and gene_end is not None:
- plt.axvspan(gene_start, gene_end, color='red', alpha=0.3, label='Gene Locus')
- plt.xlabel('Genomic Position')
- plt.ylabel('bigWig Values')
+ plt.axvspan(
+ gene_start, gene_end, color="red", alpha=0.3, label="Gene Locus"
+ )
+ plt.xlabel("Genomic Position")
+ plt.ylabel("bigWig Values")
plt.xticks(rotation=90)
plt.ylim(bottom=0)
plt.grid(True)
diff --git a/src/crested/pl/patterns/__init__.py b/src/crested/pl/patterns/__init__.py
index 7e67fad8..cd5c30f9 100644
--- a/src/crested/pl/patterns/__init__.py
+++ b/src/crested/pl/patterns/__init__.py
@@ -1,14 +1,17 @@
from importlib.util import find_spec
+
from loguru import logger
from ._contribution_scores import contribution_scores
+
def _optional_function_warning(*args, **kwargs):
logger.error(
"The requested functionality requires the 'tfmodisco' package, which is not installed. "
"Please install it with `pip install crested[tfmodisco]`.",
)
+
if find_spec("modiscolite") is not None:
MODISCOLITE_AVAILABLE = True
else:
@@ -17,25 +20,28 @@ def _optional_function_warning(*args, **kwargs):
if MODISCOLITE_AVAILABLE:
try:
import modiscolite
+
# Import all necessary functions from _modisco_results
from ._modisco_results import (
- create_clustermap,
+ class_instances,
+ clustermap,
+ clustermap_tf_motif,
modisco_results,
- plot_patterns,
- plot_similarity_heatmap,
- plot_pattern_instances ,
- plot_clustermap_tf_motif
+ selected_instances,
+ similarity_heatmap,
+ tf_expression_per_cell_type,
)
except ImportError as e:
logger.error(f"Import error: {e}")
raise
else:
- create_clustermap = _optional_function_warning
+ clustermap = _optional_function_warning
modisco_results = _optional_function_warning
- plot_patterns = _optional_function_warning
- plot_similarity_heatmap = _optional_function_warning
- plot_pattern_instances = _optional_function_warning
- plot_clustermap_tf_motif = _optional_function_warning
+ selected_instances = _optional_function_warning
+ similarity_heatmap = _optional_function_warning
+ class_instances = _optional_function_warning
+ clustermap_tf_motif = _optional_function_warning
+ tf_expression_per_cell_type = _optional_function_warning
# Export these functions for public use
__all__ = [
@@ -45,11 +51,12 @@ def _optional_function_warning(*args, **kwargs):
if MODISCOLITE_AVAILABLE:
__all__.extend(
[
- "create_clustermap",
+ "clustermap",
"modisco_results",
- "plot_patterns",
- "plot_similarity_heatmap",
- "plot_pattern_instances",
- "plot_clustermap_tf_motif"
+ "class_instances",
+ "similarity_heatmap",
+ "selected_instances",
+ "clustermap_tf_motif",
+ "tf_expression_per_cell_type",
]
)
diff --git a/src/crested/pl/patterns/_contribution_scores.py b/src/crested/pl/patterns/_contribution_scores.py
index 744c7562..b0a542ed 100644
--- a/src/crested/pl/patterns/_contribution_scores.py
+++ b/src/crested/pl/patterns/_contribution_scores.py
@@ -5,8 +5,8 @@
import matplotlib.pyplot as plt
import numpy as np
-from crested._logging import log_and_raise
from crested.pl._utils import render_plot
+from crested.utils._logging import log_and_raise
from ._utils import (
_plot_attribution_map,
diff --git a/src/crested/pl/patterns/_modisco_results.py b/src/crested/pl/patterns/_modisco_results.py
index 44e03419..2bfae55e 100644
--- a/src/crested/pl/patterns/_modisco_results.py
+++ b/src/crested/pl/patterns/_modisco_results.py
@@ -1,21 +1,24 @@
from __future__ import annotations
import h5py
-import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
-import modiscolite as modisco
+import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
-from scipy.cluster.hierarchy import linkage, leaves_list
import seaborn as sns
from loguru import logger
+from scipy.cluster.hierarchy import leaves_list, linkage
-from crested._logging import log_and_raise
from crested.pl._utils import render_plot
-from crested.tl._modisco_utils import _trim_pattern_by_ic, _get_ic, _trim, _pattern_to_ppm, compute_ic
+from crested.tl.modisco._modisco_utils import (
+ _pattern_to_ppm,
+ _trim_pattern_by_ic,
+ compute_ic,
+)
from ._utils import _plot_attribution_map
+
def modisco_results(
classes: list[str],
contribution: str,
@@ -62,6 +65,11 @@ def modisco_results(
kwargs
Additional keyword arguments for the plot.
+ See Also
+ --------
+ crested.tl.modisco.tfmodisco
+ crested.pl.render_plot
+
Examples
--------
>>> crested.pl.patterns.modisco_results(
@@ -74,11 +82,6 @@ def modisco_results(
... )
.. image:: ../../../../docs/_static/img/examples/genomic_contributions.png
-
- See Also
- --------
- crested.tl.tfmodisco
- crested.pl.render_plot
"""
if background is None:
background = [0.27, 0.23, 0.23, 0.27]
@@ -131,7 +134,7 @@ def modisco_results(
all_pattern_names = list(hdf5_results[metacluster_name])
for i in range(len(all_pattern_names)):
- pattern_name = 'pattern_'+str(i)
+ pattern_name = "pattern_" + str(i)
if len(classes) > 1:
ax = axes[motif_counter - 1, idx]
elif max_num_patterns > 1:
@@ -188,56 +191,74 @@ def modisco_results(
return render_plot(fig, **kwargs)
-def create_clustermap(
+
+def clustermap(
pattern_matrix: np.ndarray,
classes: list[str],
subset: list[str] | None = None, # Subset option
- figsize: tuple[int, int] = (25,8),
+ figsize: tuple[int, int] = (25, 8),
grid: bool = False,
- color_palette: str | list[str] = "hsv",
cmap: str = "coolwarm",
center: float = 0,
method: str = "average",
dy: float = 0.002,
fig_path: str | None = None,
- pat_seqs: list[tuple[str, np.ndarray]] | None = None
+ pat_seqs: list[tuple[str, np.ndarray]] | None = None,
) -> sns.matrix.ClusterGrid:
"""
Create a clustermap from the given pattern matrix and class labels with customizable options.
Parameters
----------
- pattern_matrix : np.ndarray
+ pattern_matrix
2D NumPy array containing pattern data.
- classes : list[str]
+ classes
List of class labels, matching the rows of the pattern matrix.
- subset : list[str], optional
+ subset
List of class labels to subset the matrix.
- figsize : tuple[int, int], optional
+ figsize
Size of the figure.
- grid : bool, optional
+ grid
Whether to add a grid to the heatmap.
- color_palette : str or list[str], optional
- Color palette for the row colors.
- cmap : str, optional
+ cmap
Colormap for the clustermap.
- center : float, optional
+ center
Value at which to center the colormap.
- method : str, optional
+ method
Clustering method to use.
- dy: float, optional
- Scaling parameter for vertical distance between nucleotides (if pat_seqs is not None) in xticklabels.
- fig_path : str, optional
+ dy
+ Scaling parameter for vertical distance between nucleotides (if pat_seqs is not None) in xticklabels.
+ fig_path
Path to save the figure.
- pat_seqs : list[tuple[str, np.ndarray]], optional
+ pat_seqs
List of sequences to use as xticklabels.
+
+ See Also
+ --------
+ crested.tl.modisco.create_pattern_matrix
+ crested.tl.modisco.generate_nucleotide_sequences
+
+ Examples
+ --------
+ >>> pat_seqs = crested.tl.modisco.generate_nucleotide_sequences(all_patterns)
+ >>> crested.pl.patterns.clustermap(
+ ... pattern_matrix,
+ ... classes=list(adata.obs_names)
+ ... subset=["Lamp5", "Pvalb", "Sst", "Sst-Chodl", "Vip"],
+ ... figsize=(25, 8),
+ ... grid=True,
+ ... )
+
+ .. image:: ../../../../docs/_static/img/examples/pattern_clustermap.png
"""
# Subset the pattern_matrix and classes if subset is provided
if subset is not None:
- subset_indices = [i for i, class_label in enumerate(classes) if class_label in subset]
+ subset_indices = [
+ i for i, class_label in enumerate(classes) if class_label in subset
+ ]
pattern_matrix = pattern_matrix[subset_indices, :]
classes = [classes[i] for i in subset_indices]
-
+
# Remove columns that contain only zero values
non_zero_columns = np.any(pattern_matrix != 0, axis=0)
pattern_matrix = pattern_matrix[:, non_zero_columns]
@@ -248,25 +269,8 @@ def create_clustermap(
data = pd.DataFrame(pattern_matrix)
- #if isinstance(color_palette, str):
- # palette = sns.color_palette(color_palette, len(set(classes)))
- #else:
- # palette = color_palette
-
- #class_lut = dict(zip(set(classes), palette))
- #row_colors = pd.Series(classes).map(class_lut)
-
if pat_seqs is not None:
plt.rc("text", usetex=False) # Turn off LaTeX to speed up rendering
- scaling_factor = 10
-
- # Plot the scaled x-tick labels based on the importance scores
- xtick_labels = [
- (letters, scores) for letters, scores in pat_seqs
- ]
-
- else:
- xtick_labels = True
g = sns.clustermap(
data,
@@ -275,14 +279,18 @@ def create_clustermap(
row_colors=None,
yticklabels=classes,
center=center,
- xticklabels=True if pat_seqs is None else False, # Disable default xticklabels if pat_seqs provided. #xticklabels=xtick_labels,
+ xticklabels=True
+ if pat_seqs is None
+ else False, # Disable default xticklabels if pat_seqs provided. #xticklabels=xtick_labels,
method=method,
dendrogram_ratio=(0.1, 0.1),
- cbar_pos=(1.05, 0.4, 0.01, 0.3)
+ cbar_pos=(1.05, 0.4, 0.01, 0.3),
)
col_order = g.dendrogram_col.reordered_ind
cbar = g.ax_heatmap.collections[0].colorbar
- cbar.set_label('Motif importance', rotation=270, labelpad=20) # Rotate label and add padding
+ cbar.set_label(
+ "Motif importance", rotation=270, labelpad=20
+ ) # Rotate label and add padding
g.ax_heatmap.set_yticklabels(g.ax_heatmap.get_yticklabels(), rotation=0)
# Get the reordered column indices from the clustermap
@@ -292,23 +300,31 @@ def create_clustermap(
if pat_seqs is not None:
reordered_pat_seqs = [pat_seqs[column_indices[i]] for i in col_order]
ax = g.ax_heatmap
- x_positions = np.arange(len(reordered_pat_seqs)) + 0.5 # Shift labels by half a tick to the right
+ x_positions = (
+ np.arange(len(reordered_pat_seqs)) + 0.5
+ ) # Shift labels by half a tick to the right
- constant = (1/figsize[1])*64
+ constant = (1 / figsize[1]) * 64
for i, (letters, scores) in enumerate(reordered_pat_seqs):
previous_spacing = 0
- for j, (letter, score) in enumerate(zip(reversed(letters), reversed(scores))):
- fontsize = score*10
- vertical_spacing = max((constant * score * dy), constant * 0.1 * dy) # Spacing proportional to figsize[1]
+ for _, (letter, score) in enumerate(
+ zip(reversed(letters), reversed(scores))
+ ):
+ fontsize = score * 10
+ vertical_spacing = max(
+ (constant * score * dy), constant * 0.1 * dy
+ ) # Spacing proportional to figsize[1]
ax.text(
- x_positions[i], -(constant*0.002) - previous_spacing, # Adjust y-position based on spacing
- letter,
+ x_positions[i],
+ -(constant * 0.002)
+ - previous_spacing, # Adjust y-position based on spacing
+ letter,
fontsize=fontsize, # Constant font size
- ha='center', # Horizontal alignment
- va='top', # Vertical alignment
- rotation=90, # Rotate the labels vertically
- transform=ax.get_xaxis_transform() # Ensure the text is placed relative to x-axis
+ ha="center", # Horizontal alignment
+ va="top", # Vertical alignment
+ rotation=90, # Rotate the labels vertically
+ transform=ax.get_xaxis_transform(), # Ensure the text is placed relative to x-axis
)
previous_spacing += vertical_spacing
@@ -318,7 +334,7 @@ def create_clustermap(
if grid:
ax = g.ax_heatmap
# Define the grid positions (between cells, hence the +0.5 offset)
- x_positions = np.arange(pattern_matrix.shape[1] + 1)
+ x_positions = np.arange(pattern_matrix.shape[1] + 1)
y_positions = np.arange(len(pattern_matrix) + 1)
# Add horizontal grid lines
@@ -337,16 +353,28 @@ def create_clustermap(
plt.show()
-def plot_patterns(pattern_dict: dict, idcs: list[int]) -> None:
+def selected_instances(pattern_dict: dict, idcs: list[int]) -> None:
"""
Plots the patterns specified by the indices in `idcs` from the `pattern_dict`.
Parameters
----------
pattern_dict
- A dictionary containing pattern data.
+ A dictionary containing pattern data. Each key corresponds to a pattern ID, and the value is a nested structure containing
+ contribution scores and metadata for the pattern. Refer to the output of `crested.tl.modisco.process_patterns`.
idcs
- A list of indices specifying which patterns to plot.
+ A list of indices specifying which patterns to plot. The indices correspond to keys in the `pattern_dict`.
+
+ See Also
+ --------
+ crested.tl.modisco.process_patterns
+
+ Examples
+ --------
+ >>> pattern_indices = [0, 1, 2]
+ >>> crested.pl.patterns.selected_instances(pattern_dict, pattern_indices)
+
+ .. image:: ../../../../docs/_static/img/examples/pattern_selected_instances.png
"""
figure, axes = plt.subplots(nrows=len(idcs), ncols=1, figsize=(8, 2 * len(idcs)))
if len(idcs) == 1:
@@ -364,25 +392,42 @@ def plot_patterns(pattern_dict: dict, idcs: list[int]) -> None:
plt.tight_layout()
plt.show()
-def plot_pattern_instances(pattern_dict: dict, idx: int, class_representative: bool = False) -> None:
+
+def class_instances(
+ pattern_dict: dict, idx: int, class_representative: bool = False
+) -> None:
"""
- Plots all the pattern instances clustered together in the pattern dictionary for a given pattern index.
+ Plots instances of a specific pattern, either the representative pattern per class or all instances for a given pattern index.
Parameters
----------
pattern_dict
- A dictionary containing pattern data.
- idcs
- Index specifying from which pattern the instances to plot.
+ A dictionary containing pattern data. Each key corresponds to a pattern ID, and each value contains instances of the pattern
+ across different classes, along with their contribution scores. Refer to the output of `crested.tl.modisco.process_patterns`.
+ idx
+ The index specifying which pattern's instances to plot. This corresponds to a key in the `pattern_dict`.
class_representative
- Boolean to plot the best pattern per class, or all instances of a pattern in the same class if there would be multiple instances in one class. Default False.
+ If True, only the best representative instance of each class is plotted. If False (default), all instances of the pattern
+ within each class are plotted.
+
+ See Also
+ --------
+ crested.tl.modisco.process_patterns
+
+ Examples
+ --------
+ >>> crested.pl.patterns.class_instances(pattern_dict, 0, class_representative=False)
+
+ .. image:: ../../../../docs/_static/img/examples/pattern_class_instances.png
"""
if class_representative:
- key = 'classes'
+ key = "classes"
else:
- key='instances'
+ key = "instances"
n_instances = len(pattern_dict[str(idx)][key])
- figure, axes = plt.subplots(nrows=n_instances, ncols=1, figsize=(8, 2 * n_instances))
+ figure, axes = plt.subplots(
+ nrows=n_instances, ncols=1, figsize=(8, 2 * n_instances)
+ )
if n_instances == 1:
axes = [axes]
@@ -400,7 +445,8 @@ def plot_pattern_instances(pattern_dict: dict, idx: int, class_representative: b
plt.tight_layout()
plt.show()
-def plot_similarity_heatmap(
+
+def similarity_heatmap(
similarity_matrix: np.ndarray,
indices: list,
fig_size: tuple[int, int] = (30, 15),
@@ -419,6 +465,19 @@ def plot_similarity_heatmap(
Size of the figure for the heatmap.
fig_path
Path to save the figure. If None, the figure will be shown but not saved.
+
+ See Also
+ --------
+ crested.tl.modisco.calculate_similarity_matrix
+
+ Examples
+ --------
+ >>> sim_matrix, indices = crested.tl.modisco.calculate_similarity_matrix(
+ ... all_patterns
+ ... )
+ >>> crested.pl.patterns.similarity_heatmap(sim_matrix, indices, fig_size=(42, 17))
+
+ .. image:: ../../../../docs/_static/img/examples/pattern_similarity_heatmap.png
"""
fig, ax = plt.subplots(figsize=fig_size)
heatmap = sns.heatmap(
@@ -445,99 +504,138 @@ def plot_similarity_heatmap(
plt.savefig(fig_path)
plt.show()
-def plot_tf_expression_per_cell_type(df: pd.DataFrame, tf_list: list, log_transform: bool = False, title: str = "TF Expression per Cell Type") -> None:
+
+def tf_expression_per_cell_type(
+ df: pd.DataFrame,
+ tf_list: list,
+ log_transform: bool = False,
+ title: str = "TF Expression per Cell Type",
+) -> None:
"""
Plots the expression levels of specified transcription factors (TFs) per cell type.
- Parameters:
- - df (pd.DataFrame): The DataFrame containing mean gene expression data per cell type.
- - tf_list (list): A list of transcription factors (TFs) to plot.
- - log_transform (bool): Whether to log-transform the TF expression values.
- - title (str): The title of the plot.
-
- Returns:
- - None
+ Parameters
+ ----------
+ df
+ The DataFrame containing mean gene expression data per cell type.
+ tf_list
+ A list of transcription factors (TFs) to plot.
+ log_transform
+ Whether to log-transform the TF expression values.
+ title
+ The title of the plot.
"""
# Check if all specified TFs are in the DataFrame
missing_tfs = [tf for tf in tf_list if tf not in df.columns]
if missing_tfs:
- raise ValueError(f"The following TFs are not found in the DataFrame: {missing_tfs}")
+ raise ValueError(
+ f"The following TFs are not found in the DataFrame: {missing_tfs}"
+ )
# Subset the DataFrame to include only the specified TFs
tf_expression_df = df[tf_list]
# Apply log transformation if specified
if log_transform:
- tf_expression_df = np.log(tf_expression_df+1)
+ tf_expression_df = np.log(tf_expression_df + 1)
# Plot the TF expression per cell type
- ax = tf_expression_df.plot(kind='bar', figsize=(12, 5), width=0.8)
+ ax = tf_expression_df.plot(kind="bar", figsize=(12, 5), width=0.8)
ax.set_title(title)
ax.set_xlabel("Cell Type")
ax.set_ylabel("Log Mean TF Expression" if log_transform else "Mean TF Expression")
ax.legend(title="Transcription Factors")
- plt.xticks(rotation=45, ha='right')
+ plt.xticks(rotation=45, ha="right")
plt.tight_layout()
plt.show()
-def plot_clustermap_tf_motif(
- data: np.ndarray,
- cluster_on_dim: str = 'gex',
- class_labels: Optional[List[str]] = None,
- pattern_labels: Optional[List[str]] = None,
- color_idx: str = 'gex',
- size_idx: str = 'contrib',
+
+def clustermap_tf_motif(
+ data: np.ndarray,
+ cluster_on_dim: str = "gex",
+ class_labels: None | list[str] = None,
+ pattern_labels: None | list[str] = None,
+ color_idx: str = "gex",
+ size_idx: str = "contrib",
grid: bool = True,
- log_transform: bool = False,
- normalize: bool = False
+ log_transform: bool = False,
+ normalize: bool = False,
) -> None:
"""
- Plot a clustermap from a 3D matrix where one third dimension is indicated by dot size
- and the other by color.
-
- Parameters:
- - data: 3D numpy array with shape (len(classes), #patterns, 2)
- - cluster_on_dim: str, either 'gex' or 'contrib', indicating which third dimension to cluster on
- - class_labels: list of strings, labels for the classes
- - pattern_labels: list of strings, labels for the patterns
- - color_idx: str, either 'gex' or 'contrib', indicating the dimension to use for color
- - size_idx: str, either 'gex' or 'contrib', indicating the dimension to use for size
- - grid: bool, whether to add a grid to the figure
- - log_transform: bool, whether to apply log transformation to the data
- - normalize: bool, whether to normalize the data
+ Plot a clustermap from a 3D matrix where one third dimension is indicated by dot sizen and the other by color.
+
+ Parameters
+ ----------
+ data
+ 3D numpy array with shape (len(classes), #patterns, 2)
+ cluster_on_dim
+ either 'gex' or 'contrib', indicating which third dimension to cluster on
+ class_labels
+ labels for the classes
+ pattern_labels
+ labels for the patterns
+ color_idx
+ either 'gex' or 'contrib', indicating the dimension to use for color
+ size_idx
+ either 'gex' or 'contrib', indicating the dimension to use for size
+ grid
+ whether to add a grid to the figure
+ log_transform
+ whether to apply log transformation to the data
+ normalize
+ whether to normalize the data
+
+ See Also
+ --------
+ crested.tl.modisco.create_tf_ct_matrix
+
+ Examples
+ --------
+ >>> crested.pl.patterns.clustermap_tf_motif(
+ ... tf_ct_matrix,
+ ... cluster_on_dim="gex",
+ ... class_labels=classes,
+ ... pattern_labels=tf_pattern_annots,
+ ... color_idx="gex",
+ ... size_idx="contrib",
+ ... )
+
+ .. image:: ../../../../docs/_static/img/examples/pattern_tf_motif_clustermap.png
"""
# Ensure data is a numpy array
data = np.array(data)
assert data.shape[2] == 2, "The third dimension of the data should be 2."
# Some additional data prep for more logical plotting
- if color_idx=='gex':
+ if color_idx == "gex":
for col_idx in range(data.shape[1]):
for ct_idx in range(data.shape[0]):
- if data[ct_idx, col_idx,1]<0:
- data[ct_idx, col_idx,0] = -data[ct_idx, col_idx,0]
- data[ct_idx, col_idx,1] = np.abs(data[ct_idx, col_idx,1])
+ if data[ct_idx, col_idx, 1] < 0:
+ data[ct_idx, col_idx, 0] = -data[ct_idx, col_idx, 0]
+ data[ct_idx, col_idx, 1] = np.abs(data[ct_idx, col_idx, 1])
# Default labels if none provided
if class_labels is None:
- class_labels = [f'Class {i}' for i in range(data.shape[0])]
+ class_labels = [f"Class {i}" for i in range(data.shape[0])]
if pattern_labels is None:
- pattern_labels = [f'Pattern {i}' for i in range(data.shape[1])]
+ pattern_labels = [f"Pattern {i}" for i in range(data.shape[1])]
# Mapping from string to index
- dim_mapping = {'gex': 0, 'contrib': 1}
+ dim_mapping = {"gex": 0, "contrib": 1}
# Choose the dimension to cluster on
clustering_data = data[:, :, dim_mapping[cluster_on_dim]]
-
+
if log_transform:
clustering_data = np.log(clustering_data)
-
+
if normalize:
- clustering_data = clustering_data / np.linalg.norm(clustering_data, axis=1, keepdims=True)
+ clustering_data = clustering_data / np.linalg.norm(
+ clustering_data, axis=1, keepdims=True
+ )
# Perform hierarchical clustering
- linkage_matrix = linkage(clustering_data, method='ward')
+ linkage_matrix = linkage(clustering_data, method="ward")
cluster_order = leaves_list(linkage_matrix)
# Reorder data according to clustering
@@ -555,24 +653,28 @@ def plot_clustermap_tf_motif(
# Determine color scale limits to center on zero
max_val = np.max(color_data)
min_val = np.min(color_data)
-
+
# Define the normalization to center at zero
norm = mcolors.TwoSlopeNorm(vmin=min_val, vcenter=0, vmax=max_val)
# Use the norm parameter in scatter
sc = ax.scatter(
- np.tile(np.arange(data_ordered.shape[1]), data_ordered.shape[0]),
- np.repeat(np.arange(data_ordered.shape[0]), data_ordered.shape[1]),
- s=size_data.flatten() * 500,
- c=color_data.flatten(),
- cmap='coolwarm',
+ np.tile(np.arange(data_ordered.shape[1]), data_ordered.shape[0]),
+ np.repeat(np.arange(data_ordered.shape[0]), data_ordered.shape[1]),
+ s=size_data.flatten() * 500,
+ c=color_data.flatten(),
+ cmap="coolwarm",
alpha=0.6,
- norm=norm # Apply the centered colormap
-)
+ norm=norm, # Apply the centered colormap
+ )
# Add color bar
cbar = plt.colorbar(sc, ax=ax)
- label = 'Average pattern contribution score' if dim_mapping[color_idx] == 1 else 'Average TF expression, signed by activation/repression'
+ label = (
+ "Average pattern contribution score"
+ if dim_mapping[color_idx] == 1
+ else "Average TF expression, signed by activation/repression"
+ )
cbar.set_label(label)
# Set labels
@@ -580,12 +682,14 @@ def plot_clustermap_tf_motif(
ax.set_yticks(np.arange(data_ordered.shape[0]))
# Reduce the number of x-axis labels displayed
- ax.set_xticklabels([pattern_labels[i] for i in range(data_ordered.shape[1])], rotation=90)
+ ax.set_xticklabels(
+ [pattern_labels[i] for i in range(data_ordered.shape[1])], rotation=90
+ )
ax.set_yticklabels([class_labels[i] for i in cluster_order])
ax.set_xlim([-0.5, len(pattern_labels) + 0.5])
- plt.xlabel('Patterns')
- plt.ylabel('Classes')
+ plt.xlabel("Patterns")
+ plt.ylabel("Classes")
plt.grid(grid)
plt.tight_layout()
plt.show()
diff --git a/src/crested/pl/scatter/_class_density.py b/src/crested/pl/scatter/_class_density.py
index 3386355c..c17ad539 100644
--- a/src/crested/pl/scatter/_class_density.py
+++ b/src/crested/pl/scatter/_class_density.py
@@ -8,8 +8,8 @@
from loguru import logger
from scipy.stats import gaussian_kde, pearsonr, spearmanr
-from crested._logging import log_and_raise
from crested.pl._utils import render_plot
+from crested.utils._logging import log_and_raise
def class_density(
diff --git a/src/crested/pp/_regions.py b/src/crested/pp/_regions.py
index 05df2076..38d58db7 100644
--- a/src/crested/pp/_regions.py
+++ b/src/crested/pp/_regions.py
@@ -9,7 +9,7 @@
from anndata import AnnData
from loguru import logger
-from crested._logging import log_and_raise
+from crested.utils._logging import log_and_raise
def _read_chromsizes(chromsizes_file: PathLike) -> dict[str, int]:
@@ -95,5 +95,4 @@ def _check_input_params(chromsizes_file):
if len(regions_to_keep) < len(adata.var_names):
adata._inplace_subset_var(regions_to_keep)
-
adata.var_names.name = "region"
diff --git a/src/crested/pp/_utils.py b/src/crested/pp/_utils.py
index 144aa04e..4d94cce9 100644
--- a/src/crested/pp/_utils.py
+++ b/src/crested/pp/_utils.py
@@ -15,12 +15,12 @@ def _calc_gini(targets: np.ndarray) -> np.ndarray:
Parameters
----------
- targets : np.ndarray
+ targets
A 2D numpy array where each row represents a set of target values.
Returns
-------
- np.ndarray
+ gini scores
A 2D numpy array with the same shape as `targets` containing Gini scores,
where each score is assigned to the position of the maximum value in each row.
"""
@@ -45,6 +45,7 @@ def _gini(array: np.ndarray) -> float:
return gini_scores
+
def _calc_proportion(arr: np.ndarray, scale=False):
"""
Compute relative specificity scores for a given 1D or 2D array.
@@ -55,9 +56,9 @@ def _calc_proportion(arr: np.ndarray, scale=False):
Parameters
----------
- arr : np.ndarray
+ arr
Input array (1D or 2D).
- scale : bool, optional
+ scale
Whether to scale the specificity scores by multiplying with orginal array.
Returns
@@ -78,8 +79,10 @@ def _calc_proportion(arr: np.ndarray, scale=False):
elif arr.ndim == 2:
total_per_row = np.sum(arr, axis=1, keepdims=True)
total_per_row[total_per_row == 0] = 1e-9
- specificity_scores = (arr / total_per_row) * arr if scale else arr / total_per_row
+ specificity_scores = (
+ (arr / total_per_row) * arr if scale else arr / total_per_row
+ )
else:
raise ValueError("Input array must be 1D or 2D.")
-
+
return specificity_scores
diff --git a/src/crested/tl/__init__.py b/src/crested/tl/__init__.py
index 72ff740a..25796bb0 100644
--- a/src/crested/tl/__init__.py
+++ b/src/crested/tl/__init__.py
@@ -5,15 +5,6 @@
from . import data, losses, metrics, zoo
from ._configs import TaskConfig, default_configs
from ._crested import Crested
-from ._utils import extract_bigwig_values_per_bp
-
-
-def _optional_function_warning(*args, **kwargs):
- logger.error(
- "The requested functionality requires the 'tfmodisco' package, which is not installed. "
- "Please install it with `pip install crested[tfmodisco]`.",
- )
-
if find_spec("modiscolite") is not None:
MODISCOLITE_AVAILABLE = True
@@ -24,38 +15,14 @@ def _optional_function_warning(*args, **kwargs):
try:
import modiscolite
- from crested.tl._tfmodisco import (
- calculate_similarity_matrix,
- create_pattern_matrix,
- generate_nucleotide_sequences,
- match_h5_files_to_classes,
- pattern_similarity,
- process_patterns,
- generate_html_paths,
- calculate_mean_expression_per_cell_type,
- read_motif_to_tf_file,
- tfmodisco,
- find_pattern_matches,
- create_pattern_tf_dict,
- create_tf_ct_matrix
- )
+ from . import modisco
except ImportError as e:
logger.error(f"Import error: {e}")
raise
else:
- create_pattern_matrix = _optional_function_warning
- generate_nucleotide_sequences = _optional_function_warning
- match_h5_files_to_classes = _optional_function_warning
- process_patterns = _optional_function_warning
- tfmodisco = _optional_function_warning
- calculate_similarity_matrix = _optional_function_warning
- pattern_similarity = _optional_function_warning
- calculate_mean_expression_per_cell_type = _optional_function_warning
- generate_html_paths = _optional_function_warning
- find_pattern_matches = _optional_function_warning
- read_motif_to_tf_file = _optional_function_warning
- create_pattern_tf_dict = _optional_function_warning
- create_tf_ct_matrix = _optional_function_warning
+ logger.warning(
+ "modiscolite is not installed, 'crested.tl.modisco' module will not be available."
+ )
__all__ = [
@@ -66,24 +33,7 @@ def _optional_function_warning(*args, **kwargs):
"TaskConfig",
"default_configs",
"Crested",
- "extract_bigwig_values_per_bp",
]
if MODISCOLITE_AVAILABLE:
- __all__.extend(
- [
- "calculate_similarity_matrix",
- "create_pattern_matrix",
- "generate_nucleotide_sequences",
- "match_h5_files_to_classes",
- "pattern_similarity",
- "process_patterns",
- "tfmodisco",
- "calculate_mean_expression_per_cell_type",
- "generate_html_paths",
- "find_pattern_matches",
- "read_motif_to_tf_file",
- "create_pattern_tf_dict",
- "create_tf_ct_matrix"
- ]
- )
+ __all__.extend("modisco")
diff --git a/src/crested/tl/_configs.py b/src/crested/tl/_configs.py
index a6d99bce..91f944b5 100644
--- a/src/crested/tl/_configs.py
+++ b/src/crested/tl/_configs.py
@@ -7,7 +7,7 @@
import keras
-from crested.tl.losses import CosineMSELoss, CosineMSELogLoss
+from crested.tl.losses import CosineMSELogLoss
from crested.tl.metrics import (
ConcordanceCorrelationCoefficient,
PearsonCorrelation,
@@ -159,7 +159,7 @@ def to_dict(self) -> dict:
}
-def default_configs(task: str, num_classes: int = None) -> TaskConfig:
+def default_configs(task: str, num_classes: int | None = None) -> TaskConfig:
"""
Get default loss, optimizer, and metrics for an existing task.
diff --git a/src/crested/tl/_crested.py b/src/crested/tl/_crested.py
index b127e553..a277f576 100644
--- a/src/crested/tl/_crested.py
+++ b/src/crested/tl/_crested.py
@@ -4,28 +4,29 @@
import os
from datetime import datetime
+from typing import Any
import keras
import numpy as np
from anndata import AnnData
from loguru import logger
-from tqdm import tqdm
-from typing import Callable, Any
from pysam import FastaFile
+from tqdm import tqdm
-
-from crested._logging import log_and_raise
from crested.tl import TaskConfig
-from crested.tl._utils import (
- _weighted_difference,
+from crested.tl.data import AnnDataModule
+from crested.tl.data._dataset import SequenceLoader
+from crested.utils import (
EnhancerOptimizer,
- generate_motif_insertions,
- generate_mutagenesis,
hot_encoding_to_sequence,
one_hot_encode_sequence,
)
-from crested.tl.data import AnnDataModule
-from crested.tl.data._dataset import SequenceLoader
+from crested.utils._logging import log_and_raise
+from crested.utils._utils import (
+ _weighted_difference,
+ generate_motif_insertions,
+ generate_mutagenesis,
+)
if os.environ["KERAS_BACKEND"] == "tensorflow":
from crested.tl._explainer_tf import Explainer
@@ -522,7 +523,7 @@ def test(self, return_metrics: bool = False) -> dict | None:
# Log the evaluation results
for metric_name, metric_value in evaluation_metrics.items():
logger.info(f"Test {metric_name}: {metric_value:.4f}")
-
+ return None
if return_metrics:
return evaluation_metrics
@@ -602,6 +603,7 @@ def predict(
if anndata is not None and model_name is not None:
logger.info(f"Adding predictions to anndata.layers[{model_name}].")
anndata.layers[model_name] = predictions.T
+ return None
else:
return predictions
@@ -644,8 +646,6 @@ def predict_sequence(self, sequence: str) -> np.ndarray:
Parameters
----------
- model
- A trained Keras model
sequence
A string containing a DNA sequence (A, C, G, T).
@@ -667,59 +667,60 @@ def score_gene_locus(
gene_start: int,
gene_end: int,
class_name: str,
- strand: str = '+',
+ strand: str = "+",
upstream: int = 50000,
downstream: int = 10000,
window_size: int = 2114,
central_size: int = 1000,
step_size: int = 50,
- ):
+ ) -> tuple[np.ndarray, np.ndarray, int, int, int]:
"""
Score regions upstream and downstream of a gene locus using the model's prediction.
+
The model predicts a value for the central 1000bp of each window.
- Parameters:
+ Parameters
----------
- chr_name : str
+ chr_name
The chromosome name (e.g., 'chr12').
- gene_start : int
+ gene_start
The start position of the gene locus (TSS for + strand).
- gene_end : int
+ gene_end
The end position of the gene locus (TSS for - strand).
- class_name : str
+ class_name
Output class name for prediction.
- strand : str
+ strand
'+' for positive strand, '-' for negative strand. Default '+'.
- upstream : int
+ upstream
Distance upstream of the gene to score. Default 50 000.
- downstream : int
+ downstream
Distance downstream of the gene to score. Default 10 000.
- window_size : int
+ window_size
Size of the window to use for scoring. Default 2114.
- central_size : int
+ central_size
Size of the central region that the model predicts for. Default 1000.
- step_size : int
+ step_size
Distance between consecutive windows. Default 50.
- Returns:
- --------
- scores : np.array
+ Returns
+ -------
+ scores
An array of prediction scores across the entire genomic range.
- coordinates : np.array
+ coordinates
An array of tuples, each containing the chromosome name and the start and end positions of the sequence for each window.
- min_loc : int
+ min_loc
Start position of the entire scored region.
- max_loc : int
+ max_loc
End position of the entire scored region.
- tss_position : int
+ tss_position
The transcription start site (TSS) position.
"""
# Adjust upstream and downstream based on the strand
- if strand == '+':
+ if strand == "+":
start_position = gene_start - upstream
end_position = gene_end + downstream
tss_position = gene_start # TSS is at the gene_start for positive strand
- elif strand == '-':
+ elif strand == "-":
end_position = gene_end + upstream
start_position = gene_start - downstream
tss_position = gene_end # TSS is at the gene_end for negative strand
@@ -734,10 +735,7 @@ def score_gene_locus(
# Initialize an array to store the scores, filled with zeros
scores = np.zeros(total_length)
- # List to store coordinates of each window
- coordinates = []
-
- # Get class index
+ # Get class index
all_class_names = list(self.anndatamodule.adata.obs_names)
idx = all_class_names.index(class_name)
@@ -765,25 +763,35 @@ def score_gene_locus(
all_coordinates.append((chr_name, int(window_start), int(window_end)))
# Stack sequences for batch processing
- all_sequences = np.squeeze(np.stack(all_sequences),axis=1)
+ all_sequences = np.squeeze(np.stack(all_sequences), axis=1)
# Perform batched predictions
predictions = self.model.predict(all_sequences, verbose=0)
# Map predictions to the score array
- for i, (pos, prediction) in enumerate(zip(range(start_position, end_position, step_size), predictions)):
+ for _, (pos, prediction) in enumerate(
+ zip(range(start_position, end_position, step_size), predictions)
+ ):
window_start = pos
central_start = pos + (window_size - central_size) // 2
central_end = central_start + central_size
- scores[central_start - start_position:central_end - start_position] += prediction[idx]
- #if strand == '+':
+ scores[
+ central_start - start_position : central_end - start_position
+ ] += prediction[idx]
+ # if strand == '+':
# scores[central_start - start_position:central_end - start_position] += prediction[idx]
- #else:
+ # else:
# scores[total_length - (central_end - start_position):total_length - (central_start - start_position)] += prediction[idx]
# Normalize the scores based on the number of times each position is included in the central window
- return scores / ratio, np.array(all_coordinates), start_position, end_position, tss_position
+ return (
+ scores / ratio,
+ np.array(all_coordinates),
+ start_position,
+ end_position,
+ tss_position,
+ )
def calculate_contribution_scores(
self,
@@ -1105,7 +1113,7 @@ def tfmodisco_calculate_and_save_contribution_scores_sequences(
sequences=sequences,
class_names=[class_name],
method=method,
- disable_tqdm=True
+ disable_tqdm=True,
)
# Transform the contrib scores and one hot numpy arrays to (#regions, 4, seq_len), the expected format of modisco-lite.
@@ -1124,7 +1132,6 @@ def tfmodisco_calculate_and_save_contribution_scores_sequences(
f"Contribution scores and one-hot encoded sequences saved to {output_dir}"
)
-
def tfmodisco_calculate_and_save_contribution_scores(
self,
adata: AnnData,
@@ -1226,7 +1233,7 @@ def enhancer_design_motif_implementation(
target_len: int | None = None,
preserve_inserted_motifs: bool = True,
enhancer_optimizer: EnhancerOptimizer | None = None,
- **kwargs: dict[str, Any]
+ **kwargs: dict[str, Any],
) -> tuple[list[dict], list] | list:
"""
Create synthetic enhancers for a specified class using motif implementation.
@@ -1278,13 +1285,12 @@ def enhancer_design_motif_implementation(
target = all_class_names.index(target_class)
elif target is None:
- raise ValueError("`target` need to be specified when `target_class` is None")
-
+ raise ValueError(
+ "`target` need to be specified when `target_class` is None"
+ )
if enhancer_optimizer is None:
- enhancer_optimizer = EnhancerOptimizer(
- optimize_func = _weighted_difference
- )
+ enhancer_optimizer = EnhancerOptimizer(optimize_func=_weighted_difference)
# get input sequence length of the model
seq_len = (
@@ -1359,14 +1365,16 @@ def enhancer_design_motif_implementation(
masked_locations=inserted_motif_locations,
)
- mutagenesis_predictions = self.model.predict(mutagenesis, verbose=False)
+ mutagenesis_predictions = self.model.predict(
+ mutagenesis, verbose=False
+ )
# determine the best insertion site
best_mutation = enhancer_optimizer.get_best(
- mutated_predictions = mutagenesis_predictions,
- original_prediction = current_prediction,
- target = target,
- **kwargs
+ mutated_predictions=mutagenesis_predictions,
+ original_prediction=current_prediction,
+ target=target,
+ **kwargs,
)
sequence_onehot = mutagenesis[best_mutation : best_mutation + 1]
@@ -1411,7 +1419,7 @@ def enhancer_design_in_silico_evolution(
no_mutation_flanks: tuple | None = None,
target_len: int | None = None,
enhancer_optimizer: EnhancerOptimizer | None = None,
- **kwargs: dict[str, Any]
+ **kwargs: dict[str, Any],
) -> tuple[list[dict], list] | list:
"""
Create synthetic enhancers for a specified class using in silico evolution (ISE).
@@ -1458,12 +1466,12 @@ def enhancer_design_in_silico_evolution(
target = all_class_names.index(target_class)
elif target is None:
- raise ValueError("`target` need to be specified when `target_class` is None")
+ raise ValueError(
+ "`target` need to be specified when `target_class` is None"
+ )
if enhancer_optimizer is None:
- enhancer_optimizer = EnhancerOptimizer(
- optimize_func = _weighted_difference
- )
+ enhancer_optimizer = EnhancerOptimizer(optimize_func=_weighted_difference)
# get input sequence length of the model
seq_len = (
@@ -1500,10 +1508,7 @@ def enhancer_design_in_silico_evolution(
designed_sequences: list[str] = []
intermediate_info_list: list[dict] = []
- sequence_onehot_prev_iter = np.zeros(
- (n_sequences, seq_len, 4),
- dtype=np.uint8
- )
+ sequence_onehot_prev_iter = np.zeros((n_sequences, seq_len, 4), dtype=np.uint8)
# calculate total number of mutations per sequence
_, L, A = sequence_onehot_prev_iter.shape
@@ -1521,11 +1526,10 @@ def enhancer_design_in_silico_evolution(
for _iter in tqdm(range(n_mutations)):
baseline_prediction = self.model.predict(
- sequence_onehot_prev_iter,
- verbose = False
+ sequence_onehot_prev_iter, verbose=False
)
-
- if _iter == 0 :
+
+ if _iter == 0:
for i in range(n_sequences):
# initialize info
intermediate_info_list.append(
@@ -1534,9 +1538,7 @@ def enhancer_design_in_silico_evolution(
sequence_onehot_prev_iter[i]
),
"changes": [(-1, "N")],
- "predictions": [
- baseline_prediction[i]
- ],
+ "predictions": [baseline_prediction[i]],
"designed_sequence": "",
}
)
@@ -1544,36 +1546,35 @@ def enhancer_design_in_silico_evolution(
# do all possible mutations
for i in range(n_sequences):
mutagenesis[i] = generate_mutagenesis(
- sequence_onehot_prev_iter[i: i+1],
- include_original=False, flanks=no_mutation_flanks
+ sequence_onehot_prev_iter[i : i + 1],
+ include_original=False,
+ flanks=no_mutation_flanks,
)
mutagenesis_predictions = self.model.predict(
mutagenesis.reshape(
(n_sequences * TOTAL_NUMBER_OF_MUTATIONS_PER_SEQ, seq_len, 4)
),
- verbose=False
+ verbose=False,
)
mutagenesis_predictions = mutagenesis_predictions.reshape(
(
n_sequences,
TOTAL_NUMBER_OF_MUTATIONS_PER_SEQ,
- mutagenesis_predictions.shape[1]
+ mutagenesis_predictions.shape[1],
)
)
for i in range(n_sequences):
best_mutation = enhancer_optimizer.get_best(
- mutated_predictions = mutagenesis_predictions[i],
- original_prediction = baseline_prediction[i],
- target = target,
- **kwargs
+ mutated_predictions=mutagenesis_predictions[i],
+ original_prediction=baseline_prediction[i],
+ target=target,
+ **kwargs,
)
sequence_onehot_prev_iter[i] = mutagenesis[
- i,
- best_mutation : best_mutation + 1,
- :
+ i, best_mutation : best_mutation + 1, :
]
if return_intermediate:
mutation_index = best_mutation // 3 + no_mutation_flanks[0]
@@ -1590,24 +1591,18 @@ def enhancer_design_in_silico_evolution(
# get final sequence
for i in range(n_sequences):
best_mutation = enhancer_optimizer.get_best(
- mutated_predictions = mutagenesis_predictions[i],
- original_prediction = baseline_prediction[i],
- target = target,
- **kwargs
+ mutated_predictions=mutagenesis_predictions[i],
+ original_prediction=baseline_prediction[i],
+ target=target,
+ **kwargs,
)
designed_sequence = hot_encoding_to_sequence(
- mutagenesis[
- i,
- best_mutation : best_mutation + 1,
- :
- ]
- )
-
- designed_sequences.append(
- designed_sequence
+ mutagenesis[i, best_mutation : best_mutation + 1, :]
)
+ designed_sequences.append(designed_sequence)
+
if return_intermediate:
intermediate_info_list[i]["designed_sequence"] = designed_sequence
diff --git a/src/crested/tl/_explainer_tf.py b/src/crested/tl/_explainer_tf.py
index 7dd36917..bcf0bacf 100644
--- a/src/crested/tl/_explainer_tf.py
+++ b/src/crested/tl/_explainer_tf.py
@@ -7,7 +7,7 @@
import numpy as np
import tensorflow as tf
-from crested.tl._utils import generate_mutagenesis
+from crested.utils._utils import generate_mutagenesis
class Explainer:
diff --git a/src/crested/tl/data/_dataset.py b/src/crested/tl/data/_dataset.py
index 173fb8dc..dc2013dd 100644
--- a/src/crested/tl/data/_dataset.py
+++ b/src/crested/tl/data/_dataset.py
@@ -13,7 +13,7 @@
from scipy.sparse import spmatrix
from tqdm import tqdm
-from crested.tl._utils import one_hot_encode_sequence
+from crested.utils import one_hot_encode_sequence
def _read_chromsizes(chromsizes_file: PathLike) -> dict[str, int]:
diff --git a/src/crested/tl/modisco/__init__.py b/src/crested/tl/modisco/__init__.py
new file mode 100644
index 00000000..1d136d60
--- /dev/null
+++ b/src/crested/tl/modisco/__init__.py
@@ -0,0 +1,16 @@
+from ._tfmodisco import (
+ calculate_mean_expression_per_cell_type,
+ calculate_similarity_matrix,
+ create_pattern_matrix,
+ create_pattern_tf_dict,
+ create_tf_ct_matrix,
+ find_pattern,
+ find_pattern_matches,
+ generate_html_paths,
+ generate_nucleotide_sequences,
+ match_h5_files_to_classes,
+ pattern_similarity,
+ process_patterns,
+ read_motif_to_tf_file,
+ tfmodisco,
+)
diff --git a/src/crested/tl/_modisco_utils.py b/src/crested/tl/modisco/_modisco_utils.py
similarity index 81%
rename from src/crested/tl/_modisco_utils.py
rename to src/crested/tl/modisco/_modisco_utils.py
index ba4b826e..475fd2ee 100644
--- a/src/crested/tl/_modisco_utils.py
+++ b/src/crested/tl/modisco/_modisco_utils.py
@@ -3,14 +3,14 @@
import modiscolite as modisco
import numpy as np
import pandas as pd
-from tangermeme.tools import tomtom as tangermeme_tomtom
-import torch
+from loguru import logger
+
def _trim_pattern_by_ic_old(
pattern: dict,
pos_pattern: bool,
min_v: float,
- background: list[float] = None,
+ background: list[float] | None = None,
pseudocount: float = 1e-6,
) -> dict:
"""
@@ -55,6 +55,7 @@ def _trim_pattern_by_ic_old(
return _trim(pattern, start_idx, end_idx)
+
def _trim_pattern_by_ic(
pattern: dict,
pos_pattern: bool,
@@ -99,6 +100,7 @@ def _trim_pattern_by_ic(
return _trim(pattern, start_idx, end_idx)
+
def _trim(pattern: dict, start_idx: int, end_idx: int) -> dict:
"""
Trims the pattern to the specified start and end indices.
@@ -123,23 +125,23 @@ def _trim(pattern: dict, start_idx: int, end_idx: int) -> dict:
for k in pattern["seqlets"].keys():
seqlet_dict[k] = pattern["seqlets"][k][:]
# do actual trimming
- seqlets_sequences = pattern['seqlets']['sequence']
+ seqlets_sequences = pattern["seqlets"]["sequence"]
trimmed_sequences = [seq[start_idx:end_idx] for seq in seqlets_sequences]
- seqlet_dict['sequence'] = trimmed_sequences
+ seqlet_dict["sequence"] = trimmed_sequences
return {
"sequence": np.array(pattern["sequence"])[start_idx:end_idx],
"contrib_scores": np.array(pattern["contrib_scores"])[start_idx:end_idx],
"hypothetical_contribs": np.array(pattern["hypothetical_contribs"])[
start_idx:end_idx
],
- "seqlets" : seqlet_dict
+ "seqlets": seqlet_dict,
}
def _get_ic(
contrib_scores: np.ndarray,
pos_pattern: bool,
- background: list[float] = None,
+ background: list[float] | None = None,
) -> np.ndarray:
"""
Computes the information content (IC) for the given contribution scores.
@@ -170,35 +172,42 @@ def _get_ic(
)
return ppm * (np.sum(ic, axis=1)[:, None])
+
def _one_hot_to_count_matrix(sequences):
"""
Convert a set of one-hot encoded sequences to a count matrix.
- Args:
- sequences (numpy.ndarray): A numpy array of shape (n_sequences, sequence_length, 4),
- representing the one-hot encoded sequences.
+ Parameters
+ ----------
+ sequences
+ A numpy array of shape (n_sequences, sequence_length, 4), representing the one-hot encoded sequences.
- Returns:
- count_matrix (numpy.ndarray): A count matrix of shape (sequence_length, 4)
- where each entry represents the count of
- A, C, G, or T at each position.
+ Returns
+ -------
+ count_matrix
+ A count matrix of shape (sequence_length, 4) where each entry represents the count of A, C, G, or T at each position.
"""
# Sum the one-hot encoded sequences along the first axis (the sequence axis)
count_matrix = np.sum(sequences, axis=0)
return count_matrix
+
def _count_matrix_to_ppm(count_matrix, pseudocount=1.0):
"""
- Convert a count matrix to a position weight matrix (PWM) by adding pseudocounts
- and normalizing by the total counts per position.
+ Convert a count matrix to a position weight matrix (PWM) by adding pseudocounts and normalizing by the total counts per position.
- Args:
- count_matrix (numpy.ndarray): A count matrix of shape (sequence_length, 4).
- pseudocount (float): A pseudocount added to each nucleotide count to avoid zeros.
+ Parameters
+ ----------
+ count_matrix
+ A count matrix of shape (sequence_length, 4).
+ pseudocount
+ A pseudocount added to each nucleotide count to avoid zeros.
- Returns:
- pwm (numpy.ndarray): The position weight matrix of shape (sequence_length, 4).
+ Returns
+ -------
+ pwm
+ The position weight matrix of shape (sequence_length, 4).
"""
# Add pseudocount to avoid zero probabilities
count_matrix += pseudocount
@@ -211,17 +220,22 @@ def _count_matrix_to_ppm(count_matrix, pseudocount=1.0):
return ppm
+
def _ppm_to_pwm(ppm, background_frequencies=None):
"""
Convert a Position Probability Matrix (PPM) to a Position Weight Matrix (PWM) using log-odds.
- Args:
- ppm (numpy.ndarray): A PPM of shape (sequence_length, 4) where each value is a probability.
- background_frequencies (list or numpy.ndarray): Background frequencies for A, C, G, T.
- Default is [0.27, 0.23, 0.23, 0.27].
+ Parameters
+ ----------
+ ppm
+ A PPM of shape (sequence_length, 4) where each value is a probability.
+ background_frequencies
+ Background frequencies for A, C, G, T. Default is [0.27, 0.23, 0.23, 0.27].
- Returns:
- pwm (numpy.ndarray): The Position Weight Matrix of shape (sequence_length, 4).
+ Returns
+ -------
+ pwm
+ The Position Weight Matrix of shape (sequence_length, 4).
"""
if background_frequencies is None:
# Uniform background frequencies for A, C, G, T
@@ -237,28 +251,37 @@ def _ppm_to_pwm(ppm, background_frequencies=None):
return pwm
+
def _pattern_to_ppm(pattern):
- seqs = np.array(pattern['seqlets']['sequence'])
+ seqs = np.array(pattern["seqlets"]["sequence"])
count_matrix = _one_hot_to_count_matrix(seqs)
ppm = _count_matrix_to_ppm(count_matrix)
return ppm
-def compute_ic(ppm, background_freqs=[0.28,0.22,0.22,0.28]):
+def compute_ic(ppm, background_freqs: list | None = None):
"""
Compute the information content (IC) of a Position Probability Matrix (PPM).
- Args:
- ppm: 2D numpy array where rows correspond to positions in the motif, and
- columns correspond to symbols (A, T, C, G for example).
- background_freqs: 1D numpy array with the background frequencies of each symbol.
+ Parameters
+ ----------
+ ppm
+ 2D numpy array where rows correspond to positions in the motif, and columns correspond to symbols (A, T, C, G for example).
+ background_freqs
+ 1D numpy array with the background frequencies of each symbol.
- Returns:
- total_ic: Total information content of the PPM.
- ic_per_position: Information content per position in the motif.
- ic_per_element: 2D array of information content per element in the PPM.
+ Returns
+ -------
+ total_ic
+ Total information content of the PPM.
+ ic_per_position
+ Information content per position in the motif.
+ ic_per_element
+ 2D array of information content per element in the PPM.
"""
# Ensure ppm is a numpy array
+ if background_freqs is None:
+ background_freqs = [0.28, 0.22, 0.22, 0.28]
ppm = np.array(ppm)
background_freqs = np.array(background_freqs)
@@ -269,7 +292,9 @@ def compute_ic(ppm, background_freqs=[0.28,0.22,0.22,0.28]):
for i in range(ppm.shape[0]): # for each position in the motif
for j in range(ppm.shape[1]): # for each symbol (A, T, C, G)
if ppm[i, j] > 0: # Avoid log(0)
- ic_per_element[i, j] = ppm[i, j] * np.log2(ppm[i, j] / background_freqs[j])
+ ic_per_element[i, j] = ppm[i, j] * np.log2(
+ ppm[i, j] / background_freqs[j]
+ )
# IC per position is the sum of IC values across symbols at each position
ic_per_position = np.sum(ic_per_element, axis=1)
@@ -279,6 +304,7 @@ def compute_ic(ppm, background_freqs=[0.28,0.22,0.22,0.28]):
return total_ic, ic_per_position, ic_per_element
+
def l1(X: np.ndarray) -> np.ndarray:
"""
Normalizes the input array using the L1 norm.
@@ -357,6 +383,7 @@ def pad_pattern(pattern: dict, pad_len: int = 2) -> dict:
)
return p0
+
def match_score_patterns(a: dict, b: dict) -> float:
"""
Computes the match score between two patterns.
@@ -372,13 +399,18 @@ def match_score_patterns(a: dict, b: dict) -> float:
-------
Match score between the patterns.
"""
-
- _,_,ic_a = compute_ic(a['ppm'])
- _,_,ic_b = compute_ic(b['ppm'])
+ _, _, ic_a = compute_ic(a["ppm"])
+ _, _, ic_b = compute_ic(b["ppm"])
+ try:
+ from tangermeme.tools import tomtom as tangermeme_tomtom
+ except ImportError as e:
+ raise ImportError("Please install tangermeme to use this function.") from e
try:
- score = tangermeme_tomtom.tomtom(Qs = [ic_a.T], Ts = [ic_b.T])[0,0][0]
- except Exception as e:
- print(f"Warning: TOMTOM error while comparing patterns {a['id']} and {b['id']}. Returning no match.")
+ score = tangermeme_tomtom.tomtom(Qs=[ic_a.T], Ts=[ic_b.T])[0, 0][0]
+ except Exception as e: # noqa: BLE001
+ print(
+ f"Warning: TOMTOM error while comparing patterns {a['id']} and {b['id']}. Returning no match."
+ )
print(f"Error details: {e}")
score = 1
@@ -386,6 +418,7 @@ def match_score_patterns(a: dict, b: dict) -> float:
return log_score
+
def _match_score_patterns_old(a: dict, b: dict) -> float:
"""
Computes the match score between two patterns.
diff --git a/src/crested/tl/_tfmodisco.py b/src/crested/tl/modisco/_tfmodisco.py
similarity index 89%
rename from src/crested/tl/_tfmodisco.py
rename to src/crested/tl/modisco/_tfmodisco.py
index 6e3e398b..5cd252d4 100644
--- a/src/crested/tl/_tfmodisco.py
+++ b/src/crested/tl/modisco/_tfmodisco.py
@@ -3,15 +3,22 @@
import os
import re
+import anndata
import h5py
import modiscolite as modisco
import numpy as np
import pandas as pd
from loguru import logger
-import anndata
-from crested._logging import log_and_raise
-from ._modisco_utils import match_score_patterns, read_html_to_dataframe, _get_ic, _trim_pattern_by_ic, _pattern_to_ppm, compute_ic
+from crested.utils._logging import log_and_raise
+
+from ._modisco_utils import (
+ _pattern_to_ppm,
+ _trim_pattern_by_ic,
+ compute_ic,
+ match_score_patterns,
+ read_html_to_dataframe,
+)
def _calculate_window_offsets(center: int, window_size: int) -> tuple:
@@ -194,20 +201,21 @@ def add_pattern_to_dict(
-------
Updated dictionary with the new pattern.
"""
-
ppm = _pattern_to_ppm(p)
ic, ic_pos, ic_mat = compute_ic(ppm)
- p['ppm']=ppm
+ p["ppm"] = ppm
p["ic"] = np.mean(ic_pos)
all_patterns[str(idx)] = {}
all_patterns[str(idx)]["pattern"] = p
all_patterns[str(idx)]["pos_pattern"] = pos_pattern
-
- all_patterns[str(idx)]['ppm']=ppm
- all_patterns[str(idx)]["ic"] = np.mean(ic_pos)#np.mean(_get_ic(p["contrib_scores"], pos_pattern))
+
+ all_patterns[str(idx)]["ppm"] = ppm
+ all_patterns[str(idx)]["ic"] = np.mean(
+ ic_pos
+ ) # np.mean(_get_ic(p["contrib_scores"], pos_pattern))
all_patterns[str(idx)]["instances"] = {}
- all_patterns[str(idx)]["instances"][p['id']] = p
+ all_patterns[str(idx)]["instances"][p["id"]] = p
all_patterns[str(idx)]["classes"] = {}
all_patterns[str(idx)]["classes"][cell_type] = p
return all_patterns
@@ -264,10 +272,10 @@ def match_to_patterns(
ppm = _pattern_to_ppm(p)
ic, ic_pos, ic_mat = compute_ic(ppm)
p_ic = np.mean(ic_pos)
- p['ic'] = p_ic
- p['ppm'] = ppm
+ p["ic"] = p_ic
+ p["ppm"] = ppm
- p['class']=cell_type
+ p["class"] = cell_type
for pat_idx, pattern in enumerate(all_patterns.keys()):
sim = match_score_patterns(p, all_patterns[pattern]["pattern"])
@@ -288,8 +296,10 @@ def match_to_patterns(
all_patterns[str(match_idx)]["instances"][pattern_id] = p
- if(cell_type in all_patterns[str(match_idx)]["classes"].keys()):
- ic_class_representative = all_patterns[str(match_idx)]["classes"][cell_type]['ic']
+ if cell_type in all_patterns[str(match_idx)]["classes"].keys():
+ ic_class_representative = all_patterns[str(match_idx)]["classes"][cell_type][
+ "ic"
+ ]
if p_ic > ic_class_representative:
all_patterns[str(match_idx)]["classes"][cell_type] = p
else:
@@ -332,13 +342,13 @@ def post_hoc_merging(
pattern_list = list(all_patterns.items())
def should_merge(p1, p2):
- """ Helper to check if two patterns should merge based on the similarity threshold. """
+ """Helper to check if two patterns should merge based on the similarity threshold."""
sim = max(
match_score_patterns(p1["pattern"], p2["pattern"]),
- match_score_patterns(p2["pattern"], p1["pattern"])
+ match_score_patterns(p2["pattern"], p1["pattern"]),
)
return sim > sim_threshold, sim
-
+
iterations = 0 # Track number of iterations for debugging
while True:
merged_patterns = {}
@@ -408,15 +418,17 @@ def should_merge(p1, p2):
print(f"Total iterations: {iterations}")
# Debugging step to check for any remaining patterns exceeding the similarity threshold
- for i, (idx1, pattern1) in enumerate(final_patterns.items()):
- for j, (idx2, pattern2) in enumerate(final_patterns.items()):
+ for i, (idx1, _) in enumerate(final_patterns.items()):
+ for j, (idx2, _) in enumerate(final_patterns.items()):
if i >= j:
continue
sim = pattern_similarity(final_patterns, idx1, idx2)
if sim > sim_threshold:
- print(f"Warning: Patterns {idx1} and {idx2} exceed similarity threshold with similarity {sim}")
+ print(
+ f"Warning: Patterns {idx1} and {idx2} exceed similarity threshold with similarity {sim}"
+ )
return final_patterns
@@ -439,20 +451,23 @@ def merge_patterns(pattern1: dict, pattern2: dict) -> dict:
merged_classes = {}
for cell_type in pattern1["classes"].keys():
if cell_type in pattern2["classes"].keys():
- ic_a = pattern1["classes"][cell_type]['ic']
- ic_b = pattern2["classes"][cell_type]['ic']
- merged_classes[cell_type] = pattern1["classes"][cell_type] if ic_a > ic_b else pattern2["classes"][cell_type]
+ ic_a = pattern1["classes"][cell_type]["ic"]
+ ic_b = pattern2["classes"][cell_type]["ic"]
+ merged_classes[cell_type] = (
+ pattern1["classes"][cell_type]
+ if ic_a > ic_b
+ else pattern2["classes"][cell_type]
+ )
else:
- merged_classes[cell_type] = pattern1["classes"][cell_type]
+ merged_classes[cell_type] = pattern1["classes"][cell_type]
for cell_type in pattern2["classes"].keys():
if cell_type not in merged_classes.keys():
- merged_classes[cell_type] = pattern2["classes"][cell_type]
+ merged_classes[cell_type] = pattern2["classes"][cell_type]
merged_classes = {**pattern1["classes"], **pattern2["classes"]}
merged_instances = {**pattern1["instances"], **pattern2["instances"]}
-
if pattern2["ic"] > pattern1["ic"]:
representative_pattern = pattern2["pattern"]
highest_ic = pattern2["ic"]
@@ -464,13 +479,11 @@ def merge_patterns(pattern1: dict, pattern2: dict) -> dict:
"pattern": representative_pattern,
"ic": highest_ic,
"classes": merged_classes,
- "instances": merged_instances
+ "instances": merged_instances,
}
-def pattern_similarity(
- all_patterns: dict, idx1: int, idx2: int
-) -> float:
+def pattern_similarity(all_patterns: dict, idx1: int, idx2: int) -> float:
"""
Computes the similarity between two patterns.
@@ -528,13 +541,13 @@ def normalize_rows(arr: np.ndarray) -> np.ndarray:
return normalized_array
-def find_pattern(id_: str, pattern_dict: dict) -> int | None:
+def find_pattern(pattern_id: str, pattern_dict: dict) -> int | None:
"""
Finds the index of a pattern by its ID.
Parameters
----------
- id_
+ pattern_id
The ID of the pattern to find.
pattern_dict
A dictionary containing pattern data.
@@ -544,10 +557,10 @@ def find_pattern(id_: str, pattern_dict: dict) -> int | None:
The index of the pattern if found, otherwise None.
"""
for idx, p in enumerate(pattern_dict):
- if id_ == pattern_dict[p]["pattern"]["id"]:
+ if pattern_id == pattern_dict[p]["pattern"]["id"]:
return idx
for c in pattern_dict[p]["classes"]:
- if id_ == pattern_dict[p]["classes"][c]["id"]:
+ if pattern_id == pattern_dict[p]["classes"][c]["id"]:
return idx
return None
@@ -565,6 +578,10 @@ def match_h5_files_to_classes(
classes
list of class names to match against file names.
+ See Also
+ --------
+ crested.tl.modisco.tfmodisco
+
Returns
-------
A dictionary where keys are class names and values are paths to the corresponding .h5 files if matched, None otherwise.
@@ -584,7 +601,7 @@ def match_h5_files_to_classes(
def process_patterns(
matched_files: dict[str, str | list[str] | None],
- sim_threshold: float = 3,
+ sim_threshold: float = 3.0,
trim_ic_threshold: float = 0.1,
discard_ic_threshold: float = 0.1,
verbose: bool = False,
@@ -605,6 +622,10 @@ def process_patterns(
verbose
Flag to enable verbose output.
+ See Also
+ --------
+ crested.tl.modisco.match_h5_files_to_classes
+
Returns
-------
All processed patterns with metadata.
@@ -631,22 +652,20 @@ def process_patterns(
for metacluster_name in list(hdf5_results.keys()):
pattern_idx = 0
for i in range(len(list(hdf5_results[metacluster_name]))):
- p = 'pattern_'+str(i)
+ p = "pattern_" + str(i)
pattern_ids.append(
f"{cell_type.replace(' ', '_')}_{metacluster_name}_{pattern_idx}"
)
is_pos = metacluster_name == "pos_patterns"
pattern = _trim_pattern_by_ic(
- hdf5_results[metacluster_name][p],
- is_pos,
- trim_ic_threshold
- )
+ hdf5_results[metacluster_name][p],
+ is_pos,
+ trim_ic_threshold,
+ )
# store file path so it is possible to track back
# where the pattern comes from.
pattern["file_path"] = h5_file
- trimmed_patterns.append(
- pattern
- )
+ trimmed_patterns.append(pattern)
is_pattern_pos.append(is_pos)
pattern_idx = pattern_idx + 1
@@ -694,6 +713,11 @@ def create_pattern_matrix(
normalize
Flag to indicate whether to normalize the rows of the matrix.
+ See Also
+ --------
+ crested.tl.modisco.process_patterns
+ crested.pl.patterns.clustermap
+
Returns
-------
The resulting pattern matrix, optionally normalized.
@@ -729,6 +753,10 @@ def calculate_similarity_matrix(all_patterns: dict) -> np.ndarray:
Returns
-------
A 2D numpy array containing the similarity values.
+
+ See Also
+ --------
+ crested.pl.patterns.similarity_heatmap
"""
indices = list(all_patterns.keys())
num_patterns = len(indices)
@@ -751,6 +779,10 @@ def generate_nucleotide_sequences(all_patterns: dict) -> list[tuple[str, np.ndar
all_patterns
dictionary containing pattern data.
+ See Also
+ --------
+ crested.tl.modisco.process_patterns
+
Returns
-------
list of tuples containing sequences and their normalized heights.
@@ -885,7 +917,7 @@ def find_pattern_matches(
+ "_"
+ pattern_id_parts[-2]
+ "."
- + 'pattern'
+ + "pattern"
+ "_"
+ pattern_id_parts[-1]
)
@@ -1005,7 +1037,7 @@ def create_tf_ct_matrix(
classes: list[str],
log_transform: bool = True,
normalize: bool = True,
- min_tf_gex: float = 0
+ min_tf_gex: float = 0,
) -> tuple[np.ndarray, list[str]]:
"""
Creates a tensor (matrix) of transcription factor (TF) expression and cell type contributions.
@@ -1013,11 +1045,11 @@ def create_tf_ct_matrix(
Parameters
----------
pattern_tf_dict
- A dictionary with pattern indices and their TFs.
+ A dictionary with pattern indices and their TFs. See `crested.tl.modisco.create_pattern_tf_dict`.
all_patterns
- A list of patterns with metadata.
+ A list of patterns with metadata. See `crested.tl.modisco.process_patterns`.
df
- A DataFrame containing gene expression data.
+ A DataFrame containing gene expression data. See `crested.tl.modisco.calculate_mean_expression_per_cell_type`
classes
A list of cell type classes.
log_transform
@@ -1027,12 +1059,16 @@ def create_tf_ct_matrix(
min_tf_gex
The minimal GEX value to select potential TF candidates. Default 0.
+ See Also
+ --------
+ crested.tl.modisco.create_pattern_tf_dict, crested.tl.modisco.process_patterns, crested.tl.modisco.calculate_mean_expression_per_cell_type
+
Returns
-------
A tuple containing the TF-cell type matrix and the list of TF pattern annotations.
"""
total_tf_patterns = sum(len(pattern_tf_dict[p]["tfs"]) for p in pattern_tf_dict)
- tf_ct_matrix = np.zeros((len(classes), total_tf_patterns,2))
+ tf_ct_matrix = np.zeros((len(classes), total_tf_patterns, 2))
tf_pattern_annots = []
counter = 0
@@ -1040,9 +1076,7 @@ def create_tf_ct_matrix(
ct_contribs = np.zeros(len(classes))
for ct in all_patterns[p_idx]["classes"]:
idx = np.argwhere(np.array(classes) == ct)[0][0]
- contribs = np.mean(
- all_patterns[p_idx]["classes"][ct]["contrib_scores"]
- )
+ contribs = np.mean(all_patterns[p_idx]["classes"][ct]["contrib_scores"])
ct_contribs[idx] = contribs
for tf in pattern_tf_dict[p_idx]["tfs"]:
@@ -1065,27 +1099,31 @@ def create_tf_ct_matrix(
# Logic to remove columns where tf_gex is zero for all non-zero ct_contribs
initial_columns = tf_ct_matrix.shape[1]
columns_to_keep = []
-
+
for col in range(initial_columns):
tf_gex_col = tf_ct_matrix[:, col, 0]
ct_contribs_col = tf_ct_matrix[:, col, 1]
-
+
# Identify non-zero ct_contribs
non_zero_contribs = ct_contribs_col != 0
-
+
# Check if all non-zero ct_contribs have zero tf_gex values
- if np.any(non_zero_contribs) and np.any(tf_gex_col[non_zero_contribs] > min_tf_gex):
+ if np.any(non_zero_contribs) and np.any(
+ tf_gex_col[non_zero_contribs] > min_tf_gex
+ ):
columns_to_keep.append(col)
# Convert columns_to_keep to a boolean mask
columns_to_keep = np.array(columns_to_keep)
-
+
# Filter the matrix and annotations based on the columns_to_keep
final_columns = len(columns_to_keep)
removed_columns = initial_columns - final_columns
tf_ct_matrix = tf_ct_matrix[:, columns_to_keep, :]
- tf_pattern_annots = [annot for i, annot in enumerate(tf_pattern_annots) if i in columns_to_keep]
+ tf_pattern_annots = [
+ annot for i, annot in enumerate(tf_pattern_annots) if i in columns_to_keep
+ ]
# Print stats about the number of columns removed
print(f"Total columns before filtering: {initial_columns}")
@@ -1094,20 +1132,23 @@ def create_tf_ct_matrix(
return tf_ct_matrix, tf_pattern_annots
+
def calculate_mean_expression_per_cell_type(
- file_path: str,
- cell_type_column: str
- ) -> pd.DataFrame:
+ file_path: str, cell_type_column: str
+) -> pd.DataFrame:
"""
- Reads an AnnData object from an H5AD file and calculates the mean gene expression
- per cell type subclass.
+ Reads an AnnData object from an H5AD file and calculates the mean gene expression per cell type subclass.
- Parameters:
- - file_path (str): The path to the H5AD file containing the single-cell RNA-seq data.
- - cell_type_column (str): The column name in the cell metadata that defines the cell type subclass.
+ Parameters
+ ----------
+ file_path
+ The path to the H5AD file containing the single-cell RNA-seq data.
+ cell_type_column
+ The column name in the cell metadata that defines the cell type subclass.
- Returns:
- - pd.DataFrame: A DataFrame containing the mean gene expression per cell type subclass.
+ Returns
+ -------
+ A DataFrame containing the mean gene expression per cell type subclass.
"""
# Read the AnnData object from the specified H5AD file
adata: anndata.AnnData = anndata.read_h5ad(file_path)
@@ -1123,7 +1164,8 @@ def calculate_mean_expression_per_cell_type(
raise ValueError(f"Column '{cell_type_column}' not found in cell metadata")
# Calculate the mean gene expression per cell type subclass
- mean_expression_per_cell_type: pd.DataFrame = gene_expression_df.groupby(cell_metadata[cell_type_column]).mean()
+ mean_expression_per_cell_type: pd.DataFrame = gene_expression_df.groupby(
+ cell_metadata[cell_type_column]
+ ).mean()
return mean_expression_per_cell_type
-
diff --git a/src/crested/tl/zoo/_simple_convnet.py b/src/crested/tl/zoo/_simple_convnet.py
index ed360fed..149ff6e8 100644
--- a/src/crested/tl/zoo/_simple_convnet.py
+++ b/src/crested/tl/zoo/_simple_convnet.py
@@ -10,7 +10,7 @@ def simple_convnet(
num_classes: int,
num_conv_blocks: int = 3,
num_dense_blocks: int = 2,
- residual: int = 0,
+ residual: bool = False,
first_activation: str = "exponential",
activation: str = "swish",
output_activation: str = "softplus",
diff --git a/src/crested/tl/zoo/utils/__init__.py b/src/crested/tl/zoo/utils/__init__.py
index f1629954..5dcdb780 100644
--- a/src/crested/tl/zoo/utils/__init__.py
+++ b/src/crested/tl/zoo/utils/__init__.py
@@ -1 +1 @@
-from ._layers import *
+from ._layers import * # noqa: F403
diff --git a/src/crested/tl/zoo/utils/_layers.py b/src/crested/tl/zoo/utils/_layers.py
index bcdcbd27..9f790d40 100644
--- a/src/crested/tl/zoo/utils/_layers.py
+++ b/src/crested/tl/zoo/utils/_layers.py
@@ -360,7 +360,7 @@ def dilated_residual(
inputs: keras.KerasTensor,
filters: int,
kernel_size: int = 3,
- rate_mult: int = 2,
+ rate_mult: float = 2.0,
dropout: float = 0,
conv_type: str = "standard",
repeat: int = 1,
diff --git a/src/crested/utils/__init__.py b/src/crested/utils/__init__.py
new file mode 100644
index 00000000..48f686d6
--- /dev/null
+++ b/src/crested/utils/__init__.py
@@ -0,0 +1,7 @@
+from ._logging import setup_logging
+from ._utils import (
+ EnhancerOptimizer,
+ extract_bigwig_values_per_bp,
+ hot_encoding_to_sequence,
+ one_hot_encode_sequence,
+)
diff --git a/src/crested/_logging.py b/src/crested/utils/_logging.py
similarity index 95%
rename from src/crested/_logging.py
rename to src/crested/utils/_logging.py
index ad6e3119..bd81d4cb 100644
--- a/src/crested/_logging.py
+++ b/src/crested/utils/_logging.py
@@ -32,7 +32,7 @@ def setup_logging(log_level: str = "INFO", log_file: str | None = None):
)
-def log_and_raise(exception_class: Exception):
+def log_and_raise(exception_class: type[Exception]):
"""Decorator to both log and raise exceptions."""
def decorator(func):
diff --git a/src/crested/tl/_utils.py b/src/crested/utils/_utils.py
similarity index 72%
rename from src/crested/tl/_utils.py
rename to src/crested/utils/_utils.py
index 52f61485..fa5f8b26 100644
--- a/src/crested/tl/_utils.py
+++ b/src/crested/utils/_utils.py
@@ -1,8 +1,10 @@
from __future__ import annotations
+import os
from typing import Any, Callable
import numpy as np
+import pandas as pd
import pyBigWig
@@ -19,7 +21,9 @@ def str_to_uint8(string) -> np.ndarray:
return np.frombuffer(string.encode("ascii"), dtype=np.uint8)
# 256 x 4
- hot_encoding_table = np.zeros((np.iinfo(np.uint8).max + 1, len(alphabet)), dtype=dtype)
+ hot_encoding_table = np.zeros(
+ (np.iinfo(np.uint8).max + 1, len(alphabet)), dtype=dtype
+ )
# For each ASCII value of the nucleotides used in the alphabet
# (upper and lower case), set 1 in the correct column.
@@ -42,7 +46,23 @@ def str_to_uint8(string) -> np.ndarray:
def one_hot_encode_sequence(sequence: str, expand_dim: bool = True) -> np.ndarray:
- """One hot encode a DNA sequence."""
+ """
+ One hot encode a DNA sequence.
+
+ Will return a numpy array with shape (len(sequence), 4) if expand_dim is True, otherwise (4,).
+ Alphabet is ACGT.
+
+ Parameters
+ ----------
+ sequence
+ The DNA sequence to one hot encode.
+ expand_dim
+ Whether to expand the dimensions of the output array.
+
+ Returns
+ -------
+ The one hot encoded DNA sequence.
+ """
if expand_dim:
return np.expand_dims(
HOT_ENCODING_TABLE[np.frombuffer(sequence.encode("ascii"), dtype=np.uint8)],
@@ -95,11 +115,24 @@ def generate_motif_insertions(x, motif, flanks=(0, 0), masked_locations=None):
return np.concatenate(x_mut, axis=0), insertion_locations
+
class EnhancerOptimizer:
- def __init__(
- self,
- optimize_func: Callable[..., np.intp]
- ) -> None:
+ """
+ Class to optimize the mutated sequence based on the original prediction.
+
+ Can be passed as the 'enhancer_optimizer' argument to :func:`crested.tl.Crested.enhancer_design_in_silico_evolution`
+
+ Parameters
+ ----------
+ optimize_func
+ Function to optimize the mutated sequence based on the original prediction.
+
+ See Also
+ --------
+ crested.tl.Crested.enhancer_design_in_silico_evolution
+ """
+
+ def __init__(self, optimize_func: Callable[..., int]) -> None:
self.optimize_func = optimize_func
def get_best(
@@ -107,20 +140,19 @@ def get_best(
mutated_predictions: np.ndarray,
original_prediction: np.ndarray,
target: int | np.ndarray,
- **kwargs: dict[str, Any]
- ) -> np.intp:
+ **kwargs: dict[str, Any],
+ ) -> int:
+ """Get the index of the best mutated sequence based on the original prediction."""
return self.optimize_func(
- mutated_predictions,
- original_prediction,
- target,
- **kwargs
+ mutated_predictions, original_prediction, target, **kwargs
)
+
def _weighted_difference(
mutated_predictions: np.ndarray,
original_prediction: np.ndarray,
target: int,
- class_penalty_weights: np.ndarray | None = None
+ class_penalty_weights: np.ndarray | None = None,
):
if len(original_prediction.shape) == 1:
original_prediction = original_prediction[None]
@@ -144,7 +176,9 @@ def _weighted_difference(
def build_one_hot_decoding_table() -> np.ndarray:
"""Get hot decoding table to decode a one hot encoded sequence to a DNA sequence string."""
- one_hot_decoding_table = np.full(np.iinfo(np.uint8).max + 1, ord("N"), dtype=np.uint8)
+ one_hot_decoding_table = np.full(
+ np.iinfo(np.uint8).max + 1, ord("N"), dtype=np.uint8
+ )
one_hot_decoding_table[1] = ord("A")
one_hot_decoding_table[2] = ord("C")
one_hot_decoding_table[4] = ord("G")
@@ -157,7 +191,18 @@ def build_one_hot_decoding_table() -> np.ndarray:
def hot_encoding_to_sequence(one_hot_encoded_sequence: np.ndarray) -> str:
- """Decode a one hot encoded sequence to a DNA sequence string."""
+ """
+ Decode a one hot encoded sequence to a DNA sequence string.
+
+ Parameters
+ ----------
+ one_hot_encoded_sequence
+ A numpy array with shape (x, 4) with dtype=np.float32.
+
+ Returns
+ -------
+ The DNA sequence string of length x.
+ """
# Convert hot encoded seqeuence from:
# (x, 4) with dtype=np.float32
# to:
@@ -189,24 +234,30 @@ def hot_encoding_to_sequence(one_hot_encoded_sequence: np.ndarray) -> str:
)
return sequence
-
+
+
def get_value_from_dataframe(df: pd.DataFrame, row_name: str, column_name: str):
"""
Retrieves a single value from a DataFrame based on the given row index and column name.
-
- Parameters:
- - df: pd.DataFrame - The DataFrame to retrieve the value from.
- - row_name: str - The name of the row.
- - column_name: str - The name of the column.
-
- Returns:
- - The value at the specified row index and column name, or an error message if the column is not found.
+
+ Parameters
+ ----------
+ df
+ The DataFrame to retrieve the value from.
+ row_name
+ The name of the row.
+ column_name
+ The name of the column.
+
+ Returns
+ -------
+ The value at the specified row index and column name, or an error message if the column is not found.
"""
try:
# Check if the column exists in the DataFrame
if column_name not in df.columns:
raise KeyError(f"Column '{column_name}' not found in DataFrame.")
-
+
# Retrieve the value
value = df.loc[row_name, column_name]
return value
@@ -215,25 +266,29 @@ def get_value_from_dataframe(df: pd.DataFrame, row_name: str, column_name: str):
return str(e)
except IndexError:
# Handle the case where the row index is out of bounds
- return f"Row index '{row_index}' is out of bounds for DataFrame with {len(df)} rows."
- except Exception as e:
- # Handle any other unexpected exceptions
- return f"An error occurred: {str(e)}"
+ return f"Row index is out of bounds for DataFrame with {len(df)} rows."
-def extract_bigwig_values_per_bp(bigwig_file, coordinates):
+def extract_bigwig_values_per_bp(
+ bigwig_file: os.PathLike, coordinates: list[tuple[str, int, int]]
+) -> tuple[np.ndarray, list[int]]:
"""
Extract per-base pair values from a bigWig file for the given genomic coordinates.
- Parameters:
- bigwig_file (str): Path to the bigWig file.
- coordinates (np.array): An array of tuples, each containing the chromosome name and the start and end positions of the sequence.
-
- Returns:
- bw_values (np.array): A numpy array of values from the bigWig file for each base pair in the specified range.
- all_midpoints (list): A list of all base pair positions covered in the specified coordinates.
+ Parameters
+ ----------
+ bigwig_file
+ Path to the bigWig file.
+ coordinates
+ An array of tuples, each containing the chromosome name and the start and end positions of the sequence.
+
+ Returns
+ -------
+ bw_values
+ A numpy array of values from the bigWig file for each base pair in the specified range.
+ all_midpoints
+ A list of all base pair positions covered in the specified coordinates.
"""
-
# Calculate the full range of coordinates
min_coord = min([int(start) for _, start, _ in coordinates])
max_coord = max([int(end) for _, _, end in coordinates])
@@ -258,4 +313,4 @@ def extract_bigwig_values_per_bp(bigwig_file, coordinates):
bw.close()
- return bw_values, all_midpoints
\ No newline at end of file
+ return bw_values, all_midpoints