-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
89 lines (72 loc) · 3.01 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from __future__ import print_function
from __future__ import division
import time
import numpy as np
import torch
from utils.evaluation import evaluate, evaluate_vid
from utils.reranking import re_ranking
from utils.avgmeter import AverageMeter
def do_test(model, queryloader, galleryloader, batch_size, use_gpu, dataset, ranks=[1, 5, 10]):
batch_time = AverageMeter()
model.eval()
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids, _) in enumerate(queryloader):
if use_gpu:
imgs = imgs.cuda()
end = time.time()
features = model(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print('Extracted features for query set, obtained {}-by-{} matrix'.format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids, _) in enumerate(galleryloader):
if use_gpu:
imgs = imgs.cuda()
end = time.time()
features = model(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print('Extracted features for gallery set, obtained {}-by-{} matrix'.format(gf.size(0), gf.size(1)))
print('=> BatchTime(s)/BatchSize(img): {:.3f}/{}'.format(batch_time.avg, batch_size))
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
print('Computing CMC and mAP')
if dataset == 'vehicleid':
cmc, mAP = evaluate_vid(distmat, q_pids, g_pids, q_camids, g_camids, 50)
else:
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, 50)
print('Results ----------')
print('mAP: {:.1%}'.format(mAP))
print('CMC curve')
for r in ranks:
print('Rank-{:<3}: {:.1%}'.format(r, cmc[r - 1]))
print('------------------')
distmat_re = re_ranking(qf, gf, k1=80, k2=15, lambda_value=0.2)
print('Computing CMC and mAP')
if dataset == 'vehicleid':
cmc_re, mAP_re = evaluate_vid(distmat_re, q_pids, g_pids, q_camids, g_camids, 50)
else:
cmc_re, mAP_re = evaluate(distmat_re, q_pids, g_pids, q_camids, g_camids, 50)
print('Re-Ranked Results--')
print('mAP: {:.1%}'.format(mAP_re))
print('CMC curve')
for r in ranks:
print('Rank-{:<3}: {:.1%}'.format(r, cmc_re[r - 1]))
print('------------------')
return cmc[0], distmat, cmc_re[0], distmat_re