-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpt.py
235 lines (187 loc) · 7.08 KB
/
gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import torch
import torch.nn as nn
import torch.nn.functional as F
torch.manual_seed(42)
# hyperparameters adjusted for cpu-only training
batch_sz = 8
block_sz = 64
max_iters = 3000
eval_interval = 300
learning_rate = 3e-4
device = "cuda" if torch.cuda.is_available() else "cpu"
eval_iters = 200
n_embd = 384
n_head = 6
n_layer = 6
dropout = 0.2
with open("input.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_sz = len(chars)
# creating a simple tokenizer
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [
stoi[c] for c in s
] # encoder: take a string, output a list of integers
decode = lambda l: "".join(
[itos[i] for i in l]
) # decoder: take a list of integers, output a string
# 90/10 data split
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data))
train = data[:n]
val = data[n:]
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train if split == "train" else val
ix = torch.randint(len(data) - block_sz, (batch_sz,))
x = torch.stack([data[i : i + block_sz] for i in ix])
y = torch.stack([data[i + 1 : i + block_sz + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, y = get_batch(split)
logits, loss = model(X, y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
"""implementation of one head of self-attention"""
def __init__(self, head_sz):
super().__init__()
self.key = nn.Linear(n_embd, head_sz, bias=False)
self.query = nn.Linear(n_embd, head_sz, bias=False)
self.value = nn.Linear(n_embd, head_sz, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_sz, block_sz)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
W = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5
W = W.masked_fill(self.tril[:T, :T] == 0, float("-inf"))
W = F.softmax(W, dim=-1)
W = self.dropout(W)
v = self.value(x)
out = W @ v
return out
class MultiHeadAttention(nn.Module):
"""multiple heads of self-attention in parallel"""
def __init__(self, head_sz, num_heads):
super().__init__()
self.heads = nn.ModuleList([Head(head_sz) for _ in range(num_heads)])
self.proj = nn.Linear(head_sz * num_heads, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(x))
return out
class FeedForward(nn.Module):
"""MLP layer with dropout"""
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(
n_embd, 4 * n_embd
), # attention paper uses 1:4 input to inner-layer dimensionality ratio
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
"""Transformer block: communication followed by computation"""
def __init__(self, n_embd, n_head):
super().__init__()
head_sz = n_embd // n_head
self.s_attn = MultiHeadAttention(head_sz, n_head)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.s_attn(self.ln1(x)) # skip connections as our nn gets more dense
x = x + self.ffwd(self.ln2(x))
return x
class GPTLanguageModel(nn.Module):
"""Putting it together"""
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_sz, n_embd)
self.position_embedding_table = nn.Embedding(block_sz, n_embd)
self.blocks = nn.Sequential(
*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]
)
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_sz)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_sz:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
model = GPTLanguageModel()
m = model.to(device)
print(sum(p.numel() for p in m.parameters()) / 1e6, "M parameters")
# optimizer
optimizer = torch.optim.AdamW(m.parameters(), lr=learning_rate)
# training loop
for iter in range(max_iters):
if (
iter % eval_interval == 0 or iter == max_iters - 1
): # at intervals of 300 or at 2999
losses = estimate_loss()
print(
f"step {iter} : training loss {losses['train']:.4f}, validation loss: {losses['val']:.4f}"
)
xb, yb = get_batch("train")
logits, loss = m(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
context = torch.zeros((1,1), dtype= torch.long, device=device)
open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=1000)[0].tolist()))