-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_diffusion.py
208 lines (168 loc) · 6.56 KB
/
train_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gin
gin.add_config_file_search_path('./diffusion/configs')
import torch
import os
import numpy as np
from dataset import CachedSimpleDataset, CombinedDataset
from diffusion.utils import collate_fn
import argparse
parser = argparse.ArgumentParser()
# MDOEL
parser.add_argument("--name", type=str, default="test")
parser.add_argument("--restart", type=int, default=0)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument('--config', action="append", default=[])
parser.add_argument('--model', default="rectified")
# Training
parser.add_argument("--bsize", type=int, default=256)
# DATASET
parser.add_argument(
"--db_path",
type=str,
default=None,
)
parser.add_argument("--db_folder", type=str, default=None)
parser.add_argument("--out_path", type=str, default="./diffusion/runs")
parser.add_argument("--emb_model_path",
type=str,
default=None)
# Puts the dataset in cache prior to training for slow hard drives
parser.add_argument("--use_cache",
type=bool,
default=False,
action=argparse.BooleanOptionalAction)
parser.add_argument("--recache_every", type=int, default=None)
parser.add_argument("--max_samples", type=int, default=None)
parser.add_argument("--num_workers", type=int, default=8)
def add_gin_extension(config_name: str) -> str:
if config_name[-4:] != '.gin':
config_name += '.gin'
return config_name
def main(args):
gin.parse_config_files_and_bindings(
map(add_gin_extension, args.config),
[],
)
if args.restart > 0:
config_path = "./runs/" + args.name + "/config.gin"
with gin.unlock_config():
gin.parse_config_files_and_bindings([config_path], [])
device = "cuda:" + str(args.gpu) if args.gpu >= 0 else "cpu"
######### BUILD MODEL #########
if args.emb_model_path == "music2latent":
from music2latent import EncoderDecoder
emb_model = EncoderDecoder(device=device)
ae_ratio = 4096
else:
emb_model = torch.jit.load(args.emb_model_path) #.to(device)
dummy = torch.randn(1, 1, 4096) #.to(device)
z = emb_model.encode(dummy)
ae_ratio = 4096 // z.shape[-1]
with gin.unlock_config():
gin.bind_parameter("diffusion.utils.collate_fn.ae_ratio", ae_ratio)
if args.model == "rectified":
from diffusion.model import RectifiedFlow
blender = RectifiedFlow(device=device, emb_model=emb_model)
elif args.model == "edm":
from diffusion.model import EDM
blender = EDM(device=device, emb_model=emb_model)
elif args.model == "sCM":
from diffusion.model import sCM
blender = sCM(device=device, emb_model=emb_model)
else:
raise ValueError("Model not recognized")
######### GET THE DATASET #########
structure_type = gin.query_parameter("%STRUCTURE_TYPE")
data_keys = ["z"
] + (["waveform"] if blender.time_transform is not None else
[]) + (["midi"] if structure_type == "midi" else [])
if args.db_folder is not None:
main_folder = args.db_folder
audio_folders = [
os.path.join(main_folder, f) for f in os.listdir(main_folder)
]
db_paths = [f + "/ae_44k" for f in audio_folders]
path_dict = {f: {"name": f, "path": f} for f in db_paths}
dataset = CombinedDataset(
path_dict=path_dict,
keys=data_keys,
freqs="estimate",
config="train",
init_cache=args.use_cache,
num_samples=args.max_samples,
)
train_sampler = dataset.get_sampler()
valset = CombinedDataset(
path_dict=path_dict,
config="val",
freqs="estimate",
keys=data_keys,
init_cache=args.use_cache,
num_samples=args.max_samples,
)
val_sampler = valset.get_sampler()
else:
dataset = CachedSimpleDataset(path=args.db_path,
keys=data_keys,
max_samples=args.max_samples,
recache_every=args.recache_every,
init_cache=args.use_cache,
split = "train")
valset = CachedSimpleDataset(path=args.db_path,
keys=data_keys,
max_samples=args.max_samples,
recache_every=args.recache_every,
split="validation",
init_cache=args.use_cache)
train_sampler, val_sampler = None, None
train_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.bsize,
shuffle=True if train_sampler is None else False,
num_workers=args.num_workers,
drop_last=True,
collate_fn=collate_fn,
sampler=train_sampler if train_sampler is not None else None)
valid_loader = torch.utils.data.DataLoader(
valset,
batch_size=args.bsize,
shuffle=False,
num_workers=args.num_workers,
drop_last=False,
collate_fn=collate_fn,
sampler=val_sampler if val_sampler is not None else None)
print(next(iter(train_loader))["x"].shape)
######### SAVE CONFIG #########
model_dir = os.path.join(args.out_path, args.name)
os.makedirs(model_dir, exist_ok=True)
######### PRINT NUMBER OF PARAMETERS #########
num_el = 0
for p in blender.net.parameters():
num_el += p.numel()
print("Number of parameters - unet : ", num_el / 1e6, "M")
if blender.encoder is not None:
num_el = 0
for p in blender.encoder.parameters():
num_el += p.numel()
print("Number of parameters - encoder : ", num_el / 1e6, "M")
if blender.encoder_time is not None:
num_el = 0
for p in blender.encoder_time.parameters():
num_el += p.numel()
print("Number of parameters - encoder_time : ", num_el / 1e6, "M")
if blender.classifier is not None:
num_el = 0
for p in blender.classifier.parameters():
num_el += p.numel()
print("Number of parameters - classifier : ", num_el / 1e6, "M")
######### TRAINING #########
d = {
"model_dir": model_dir,
"dataloader": train_loader,
"validloader": valid_loader,
"restart_step": args.restart,
}
blender.fit(**d)
if __name__ == "__main__":
args = parser.parse_args()
main(args)