-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVec3.h
166 lines (153 loc) · 3.53 KB
/
Vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#pragma once
#ifndef VEC_3_H
#define VEC_3_H
#include <iostream>
#include <cmath>
#include <random>
inline double random_double(double x,double y) {
static std::uniform_real_distribution<double> distribution(x, y);
static std::mt19937 generator;
return distribution(generator);
}
class Vec3
{
public:
Vec3() : e{ 0,0,0 } {};
Vec3(double e1, double e2, double e3)
{
e[0] = e1;
e[1] = e2;
e[2] = e3;
}
double x() const
{
return e[0];
}
double y() const
{
return e[1];
}
double z() const
{
return e[2];
}
double r() const
{
return e[0];
}
double g() const
{
return e[1];
}
double b() const
{
return e[2];
}
Vec3 operator-() const
{
return Vec3(-e[0], -e[1], -e[2]);
}
double& operator[](int i) { return e[i]; }
double operator[](int i) const { return e[i]; }
Vec3& operator*=(double e1)
{
e[0] *= e1;
e[1] *= e1;
e[2] *= e1;
return *this;
}
Vec3& operator*=(Vec3 & e1)
{
this->e[0] += e1[0];
this->e[1] += e1[1];
this->e[2] += e1[2];
return *this;
}
Vec3& operator+=(const Vec3& v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
double length() const
{
return std::sqrt(e[0] * e[0] + e[1] * e[1] + e[2] * e[2]);
}
Vec3& operator/=(const double t)
{
return *this *= 1 / t;
}
inline static Vec3 random(double min, double max) {
return Vec3(random_double(min, max), random_double(min, max), random_double(min, max));
}
bool nearZero() const {
const auto epsilon = 1e-8;
return (fabs(e[0]) < epsilon) && (fabs(e[1]) < epsilon) && (fabs(e[2]) < epsilon);
}
private:
double e[3];
};
Vec3 normalize(Vec3 p)
{
return p /= p.length();
}
Vec3 crossProduct(const Vec3 & A,const Vec3 & B)
{
Vec3 P;
P[0] = A[1] * B[2] - A[2] * B[1];
P[1] = A[2] * B[0] - A[0] * B[2];
P[2] = A[0] * B[1] - A[1] * B[0];
return P;
}
double dotProduct(const Vec3& A,const Vec3& B)
{
return A[0] * B[0] + A[1] * B[1] + A[2] * B[2];
}
inline std::ostream& operator<<(std::ostream& out, const Vec3& v) {
return out << v.x() << ' ' << v.y() << ' ' << v.z();
}
inline Vec3 operator+(const Vec3& u, const Vec3& v) {
return Vec3(u.x() + v.x(), u.y() + v.y(), u.z() + v.z());
}
inline Vec3 operator-(const Vec3& u,const Vec3& v) {
return Vec3(u.x() - v.x(), u.y() - v.y(), u.z() - v.z());
}
inline Vec3 operator*(const Vec3& u, const Vec3& v) {
return Vec3(u.x() * v.x(), u.y() * v.y(), u.z() * v.z());
}
inline Vec3 operator*(double t, const Vec3& v) {
return Vec3(t * v.x(), t * v.y(), t * v.z());
}
inline Vec3 operator*(const Vec3& v, double t) {
return t * v;
}
inline Vec3 operator/(const Vec3 & v, double t) {
return (1 / t) * v;
}
Vec3 random_in_unit_sphere() {
while (true) {
auto p = Vec3::random(-1, 1);
if (p.length()*p.length() >= 1) continue;
return p;
}
}
inline Vec3 random_in_unit_disk() {
while (true) {
auto p = Vec3(random_double(-1, 1), random_double(-1, 1), 0);
if (p.length()*p.length() >= 1) continue;
return p;
}
}
Vec3 random_unit_vector() {
return normalize(random_in_unit_sphere());
}
Vec3 reflect(const Vec3& v, const Vec3& n) {
return v - 2 * dotProduct(v, n) * n;
}
Vec3 refract(const Vec3& uv, const Vec3& n, double etai_over_etat) {
auto cos_theta = fmin(dotProduct(-uv, n), 1.0);
Vec3 r_out_perp = etai_over_etat * (uv + cos_theta * n);
Vec3 r_out_parallel = -sqrt(fabs(1.0 - r_out_perp.length()*r_out_perp.length())) * n;
return r_out_perp + r_out_parallel;
}
#endif // !VEC_3