-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSSVEP-Classification-SVM.py
216 lines (174 loc) · 6.36 KB
/
SSVEP-Classification-SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 12 17:48:24 2024
Classification of the SSVEP signal using SVM
---------------------------------------------
Feature used: PSD
@author: Abin Jacob
Carl von Ossietzky University Oldenburg
"""
#%% libraries
import mne
import numpy as np
import matplotlib.pyplot as plt
import os.path as op
from sklearn.metrics import confusion_matrix, accuracy_score, PrecisionRecallDisplay
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
#%% parameters
# filter
l_freq = 0.1
h_freq = None
# epoching
tmin = -0.2
tmax = 4
# Events
event_id = {'stim_L15': 13, 'stim_L20': 14, 'stim_R15': 15, 'stim_R20': 16}
event_names = list(event_id.keys())
foi = [15, 20, 15, 20] # Freqs of interest
# PSD computation
fmin = 1.0
fmax = 100
# Show filter
show_filter = False
#%% load data
rootpath = r'L:\Cloud\NeuroCFN\RESEARCH PROJECT\Research Project 02\Classification\Data'
# EEGLab file to load (.set)
filename = 'P02_SSVEP_preprocessed24Chans.set'
filepath = op.join(rootpath,filename)
# load file in mne
raw = mne.io.read_raw_eeglab(filepath, eog= 'auto', preload= True)
a = raw.info
#Preprocess the data
# extracting events
events, _ = mne.events_from_annotations(raw, verbose= False)
epochs = mne.Epochs(
raw,
events= events,
event_id= [event_id['stim_L15'], event_id['stim_L20'], event_id['stim_R15'], event_id['stim_R20']],
tmin=tmin, tmax=tmax,
baseline= None,
preload= True,
reject={'eeg': 3.0}) # Reject epochs based on maximum peak-to-peak signal amplitude (PTP)
# No rejection due to very high value
#%% Frequency analysis - Calculate power spectral density (PSD)
sfreq = epochs.info["sfreq"]
spectrum = epochs.compute_psd(
method="welch",
n_fft=int(sfreq * (tmax - tmin)),
n_overlap=0,
n_per_seg=None,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
window="boxcar",
verbose=False,
)
psds, freqs = spectrum.get_data(return_freqs=True)
# # Plot PSD - all 4 conditions
# fig, axs = plt.subplots(2, 2, sharex="all", sharey="none", figsize=(8, 5))
# axs = axs.reshape(-1)
# freq_range = range(np.where(np.floor(freqs) == fmin)[0][0], np.where(np.ceil(freqs) == fmax - 1)[0][0])
# for i in range(0,4):
# # Get all events for specific event ID (condition)
# condition = event_names[i]
# idx = epochs.events[:,2]==event_id[condition]
# # Select only corresponding epochs
# psds_plot = 10 * np.log10(psds[idx,:,:])
# psds_mean = psds.mean(axis=(0, 1))[freq_range] # mean over trials and channels
# psds_std = psds.std(axis=(0, 1))[freq_range]
# # Plot
# axs[i].plot(freqs[freq_range], psds_mean, color="b")
# axs[i].fill_between(
# freqs[freq_range], psds_mean - psds_std, psds_mean + psds_std, color="b", alpha=0.2
# )
# axs[i].set(title=f"PSD spectrum {condition}", ylabel="Power Spectral Density [dB]")
# axs[i].set_xlim(5,45)
# fig.show()
#%% preparing data for classification
# Create a label vector
labels = epochs.events[:,2]
for i in range(0,len(labels)):
if labels[i]==13 or labels[i]==15:
labels[i] = 15
else:
labels[i] = 20
# Refine psds to frequency range around [12,25]
freq_range = range(np.where(np.floor(freqs) == 12)[0][0], np.where(np.ceil(freqs) == 25)[0][0])
# Mean over freq bins
X = psds[:,:,freq_range]
# flatten the 3d EEG PSD matrix into vectors for classifier
trials, chans, timepts = X.shape
X = X.reshape((trials, -1))
y = labels # labels
#%% sanity check by shuffling the features and labels
# X = shuffle(X) ### comment this line
# y = shuffle(y) ### comment this line
# # Plot some samples or features
# plt.figure(figsize=(10, 5))
# for i in range(5): # Plot first 5 samples
# plt.subplot(2, 5, i + 1)
# plt.plot(X[i])
# plt.title(f'Sample {i+1}')
# plt.xlabel('Feature Index')
# plt.ylabel('Feature Value')
# plt.tight_layout()
# plt.show()
# # plot feature in scatter plot
# # Extracting labels 15 and 20 from X
# X_label_15 = X[y == 15]
# X_label_20 = X[y == 20]
# # Plotting
# plt.scatter(X_label_15[:,0:600], X_label_15[:,600:1200], label='Label 15')
# plt.scatter(X_label_20[:,0:600], X_label_20[:,600:1200], label='Label 20')
# plt.xlabel('Feature 1')
# plt.ylabel('Feature 2')
# plt.title('Scatter plot of features colored by labels')
# plt.legend()
# plt.show()
#%% SVM classifier with 5 fold cross-validation
# split the dataset into trainning and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# define a pipeline with preprocessing (scaling) and SVM classifier
pipeline = make_pipeline(StandardScaler(), SVC())
# parameter grid for SVM
param_grid = {
'svc__C': [0.1, 1, 10, 100], # SVM regularization parameter
'svc__gamma': [0.001, 0.01, 0.1, 1], # Kernel coefficient for 'rbf'
'svc__kernel': ['linear', 'rbf', 'poly', 'sigmoid'] # Kernel type
}
# apply cros-validaion on training set to find best SVM parameters
clf = GridSearchCV(pipeline, param_grid, cv=5)
# train the pipeline
clf.fit(X_train, y_train)
# display best parameters found by GridSearchCV
print(f'Best Parameters Found: {clf.best_params_}')
# make predictions
y_pred = clf.predict(X_test)
# generate the confusion matrix
cm = confusion_matrix(y_test, y_pred)
tn, fp, fn, tp = cm.ravel()
# calculate model performance
# accuracy
accuracy = accuracy_score(y_test, y_pred)
# precision (positive predictive value)
precision = (tp)/(tp + fp)
# recall (sensitivy or true positive rate)
recall = (tp)/(tp + fn)
# f1 score (equillibrium between precision and recall)
f1score = (2 * precision * recall) / (precision + recall)
# print model performance
print('Confusion Matrix')
print(cm)
print('Model Performance Metrics')
print(f'Accuracy: {accuracy*100:.2f}%')
print(f'Precision: {precision*100:.2f}%')
print(f'Recall: {recall*100:.2f}%')
print(f'F1 Score: {f1score*100:.2f}%')
# PrecisionRecallDisplay.from_estimator(clf, X_test, y_test)
# PrecisionRecallDisplay.from_predictions(clf, y_test, y_pred)