-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSSVEP-Classification-SVM-PSDinTangSpace.py
164 lines (131 loc) · 4.5 KB
/
SSVEP-Classification-SVM-PSDinTangSpace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 21 21:50:18 2024
Feature used : PSD
Classifier : SVM classifier with 5-Fold crossvalidation
- spliting data using train_test_split
- scaling using StandarScalar
- hyperparameter tuning using GridSearchCV
@author: Abin Jacob
Carl von Ossietzky University Oldenburg
"""
#%% libraries
import mne
import numpy as np
import matplotlib.pyplot as plt
import os.path as op
from sklearn.metrics import confusion_matrix, accuracy_score, PrecisionRecallDisplay
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from pyriemann.tangentspace import TangentSpace
from pyriemann.estimation import Covariances
from sklearn.utils import shuffle
#%% parameters
# filter
l_freq = 0.1
h_freq = None
# epoching
tmin = -0.2
tmax = 4
# Events
event_id = {'stim_L15': 13, 'stim_L20': 14, 'stim_R15': 15, 'stim_R20': 16}
event_names = list(event_id.keys())
foi = [15, 20, 15, 20] # Freqs of interest
# PSD computation
fmin = 1.0
fmax = 100
# Show filter
show_filter = False
#%% load data
rootpath = r'/Users/abinjacob/Documents/01. Calypso/EEG Coding/SSVEP/DATA'
# EEGLab file to load (.set)
filename = 'P02_SSVEP_preprocessed2Chans.set'
filepath = op.join(rootpath,filename)
# load file in mne
raw = mne.io.read_raw_eeglab(filepath, eog= 'auto', preload= True)
a = raw.info
#Preprocess the data
# extracting events
events, _ = mne.events_from_annotations(raw, verbose= False)
epochs = mne.Epochs(
raw,
events= events,
event_id= [event_id['stim_L15'], event_id['stim_L20'], event_id['stim_R15'], event_id['stim_R20']],
tmin=tmin, tmax=tmax,
baseline= None,
preload= True,
reject={'eeg': 3.0}) # Reject epochs based on maximum peak-to-peak signal amplitude (PTP)
# No rejection due to very high value
#%% Frequency analysis - Calculate power spectral density (PSD)
sfreq = epochs.info["sfreq"]
spectrum = epochs.compute_psd(
method="welch",
n_fft=int(sfreq * (tmax - tmin)),
n_overlap=0,
n_per_seg=None,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
window="boxcar",
verbose=False,
)
psds, freqs = spectrum.get_data(return_freqs=True)
#%% preparing data for classification
# Create a label vector
labels = epochs.events[:,2]
for i in range(0,len(labels)):
if labels[i]==13 or labels[i]==15:
labels[i] = 15
else:
labels[i] = 20
# Refine psds to frequency range around [12,25]
freq_range = range(np.where(np.floor(freqs) == 12)[0][0], np.where(np.ceil(freqs) == 25)[0][0])
# Mean over freq bins
X = psds[:,:,freq_range]
y = labels # labels
#%% RMDM classifier with 5 fold cross-validation
# split the dataset into trainning and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# define a pipeline with estimating covariancec matrix and RMDM classifier
pipeline = make_pipeline(Covariances(), TangentSpace(), StandardScaler(), SVC())
# parameter grid for SVM
param_grid = {
'svc__C': [0.1, 1, 10, 100], # SVM regularization parameter
'svc__gamma': [0.001, 0.01, 0.1, 1], # Kernel coefficient for 'rbf'
'svc__kernel': ['linear', 'rbf', 'poly', 'sigmoid'] # Kernel type
}
# apply cros-validaion on training set to find best SVM parameters
clf = GridSearchCV(pipeline, param_grid, cv=5)
# train the pipeline
clf.fit(X_train, y_train)
# display best parameters found by GridSearchCV
print(f'Best Parameters Found: {clf.best_params_}')
# make predictions
y_pred = clf.predict(X_test)
# generate the confusion matrix
cm = confusion_matrix(y_test, y_pred)
tn, fp, fn, tp = cm.ravel()
# calculate model performance
# accuracy
accuracy = accuracy_score(y_test, y_pred)
# precision (positive predictive value)
precision = (tp)/(tp + fp)
# recall (sensitivy or true positive rate)
recall = (tp)/(tp + fn)
# f1 score (equillibrium between precision and recall)
f1score = (2 * precision * recall) / (precision + recall)
# print model performance
print('Confusion Matrix')
print(cm)
print('Model Performance Metrics')
print(f'Accuracy: {accuracy*100:.2f}%')
print(f'Precision: {precision*100:.2f}%')
print(f'Recall: {recall*100:.2f}%')
print(f'F1 Score: {f1score*100:.2f}%')
# PrecisionRecallDisplay.from_estimator(clf, X_test, y_test)
# PrecisionRecallDisplay.from_predictions(clf, y_test, y_pred)