-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMIClassification_CSPlogvar-RFE_SVM.py
190 lines (148 loc) · 5.81 KB
/
MIClassification_CSPlogvar-RFE_SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 6 16:54:10 2024
Classification of the MI signal using SVM
------------------------------------------
The script is used for the offline classification of the MI EEG data. The CSP
spatially filter is used for feature extraction and RFE is used as features
selection. The features are then fed to SVM for classification.
Recursive Feature Elimination (RFE):
Feature selection technique where an external estimator is used to assign
weights to features. The estimator is initially trained on the entire set
of features, and the importance of each feature is determined.The least
important features are then pruned from the current set, and the process
is recursively repeated until the desired number of features is reached.
For better efficiency RFE is run within a cross-validation loop.
Feature Extraction : log-var of CSP filtred data
Feature Selection : RFE features selection
- SVM as estimator
- 5-Fold crossvalidation
- feature scoring based on accuracy
Classification : SVM classifier with 5-Fold crossvalidation
- spliting data using train_test_split
- scaling using StandarScalar
- hyperparameter tuning using GridSearchCV
@author: Abin Jacob
Carl von Ossietzky University Oldenburg
"""
#%% libraries
import mne
import numpy as np
import matplotlib.pyplot as plt
import os.path as op
from sklearn.metrics import confusion_matrix, accuracy_score, PrecisionRecallDisplay, precision_score, recall_score, f1_score
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from mne.decoding import CSP
from sklearn.feature_selection import RFECV
from sklearn.model_selection import StratifiedKFold
#%% load data
rootpath = r'/Users/abinjacob/Documents/02. NeuroCFN/Research Module/RM02/Data'
# EEGLab file to load (.set)
filename = 'P01_MI_AllProcessed.set'
filepath = op.join(rootpath,filename)
# load file in mne
raw = mne.io.read_raw_eeglab(filepath, eog= 'auto', preload= True)
# eeg paramters
sfreq = raw.info['sfreq']
# eeg signal
EEG = raw.get_data()
nchannels, nsamples = EEG.shape
# channel names
chnames = raw.info['ch_names']
# extracting events
events, eventinfo = mne.events_from_annotations(raw, verbose= False)
#%% epoching
tmin = -0.5
tmax = 4
# Events
event_id = {'left_execution': 7, 'left_imagery': 8, 'right_execution': 13, 'right_imagery': 14}
event_names = list(event_id.keys())
# epoching
epochs = mne.Epochs(
raw,
events= events,
event_id= [event_id['left_execution'], event_id['left_imagery'], event_id['right_execution'], event_id['right_imagery']],
tmin=tmin, tmax=tmax,
baseline= (tmin, 0),
preload= True,
event_repeated = 'merge',
reject={'eeg': 4.0}) # Reject epochs based on maximum peak-to-peak signal amplitude (PTP)
#%% prepare the data for classification
# Execution Condition (7 & 13)
# cond = ['7', '13']
# Imagery condition (8 & 14)
cond = ['8', '14']
# create feature vector (X)
X = epochs[cond].get_data()
# label vector (y)
y = epochs[cond].events[:,2]
#%% SVM classifier with 5 fold cross-validation
# split the dataset into trainning and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# -- compute CSP using mne script
# number of components
ncomps = X_train.shape[1]
csp = CSP(n_components=ncomps, reg=None, log=None, transform_into = 'csp_space', norm_trace=False)
trainCSP = csp.fit_transform(X_train, y_train)
testCSP = csp.transform(X_test)
# using log-var of CSP weights as features
X_train = np.log(np.var(trainCSP, axis=2))
X_test = np.log(np.var(testCSP, axis=2))
# -- compute CSP using RFE
# minimum feature to select
minfeat = 6
estimator = SVC(kernel= 'linear', C= 1)
crossval = StratifiedKFold(6)
# initialise RFE with CV
selector = RFECV(
estimator= estimator,
step= 1,
cv= crossval,
scoring= "accuracy",
min_features_to_select= minfeat,
n_jobs= 2,
)
# slecting features using RFE
X_train = selector.fit_transform(X_train, y_train)
X_test = selector.transform(X_test)
# define a pipeline with preprocessing (scaling) and SVM classifier
pipeline = make_pipeline(StandardScaler(), SVC())
# parameter grid for SVM
param_grid = {
'svc__C': [0.1, 1, 10, 100], # SVM regularization parameter
'svc__gamma': [0.001, 0.01, 0.1, 1], # Kernel coefficient for 'rbf'
'svc__kernel': ['linear', 'rbf', 'poly', 'sigmoid'] # Kernel type
}
# apply cros-validaion on training set to find best SVM parameters
clf = GridSearchCV(pipeline, param_grid, cv=5)
# train the pipeline
clf.fit(X_train, y_train)
# display best parameters found by GridSearchCV
print(f'Best Parameters Found: {clf.best_params_}')
# make predictions
y_pred = clf.predict(X_test)
# generate the confusion matrix
cm = confusion_matrix(y_test, y_pred)
tn, fp, fn, tp = cm.ravel()
# calculate model performance
# accuracy
accuracy = accuracy_score(y_test, y_pred)
# precision (positive predictive value)
precision = precision_score(y_test, y_pred, labels=[cond[0],cond[1]], average= 'weighted')
# recall (sensitivy or true positive rate)
recall = recall_score(y_test, y_pred, labels=[cond[0],cond[1]], average= 'weighted')
# f1 score (equillibrium between precision and recall)
f1score = f1_score(y_test, y_pred, labels=[cond[0],cond[1]], average= 'weighted')
# print model performance
print('Confusion Matrix')
print(cm)
print('Model Performance Metrics')
print(f'Accuracy: {accuracy*100:.2f}%')
print(f'Precision: {precision*100:.2f}%')
print(f'Recall: {recall*100:.2f}%')
print(f'F1 Score: {f1score*100:.2f}%')