-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathlow_level_api_chat_cpp.py
761 lines (655 loc) · 29.5 KB
/
low_level_api_chat_cpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
"""
This is an example implementation of main.cpp from llama.cpp
Quirks:
* Its not exactly alike since this port is designed around programmatic I/O
* Input is always echoed if on, so it should be turned off when using "input()"
* The first antiprompt should be the userprompt like "\nUser:",
because its added when n_predict is reached (aka generation ended prematurely)
* n_predict can be set to -1 for unlimited length responses (or just a really high value)
* Instruction mode adds its own antiprompt.
You should also still be feeding the model with a "primer" prompt that
shows it the expected format.
"""
import ctypes
import sys
from time import time
from os import cpu_count, path
import llama_cpp
from common import GptParams, gpt_params_parse, gpt_random_prompt
import util
# A LLaMA interactive session
class LLaMAInteract:
def __init__(self, params: GptParams) -> None:
# input args
self.params = params
if self.params.path_session is None:
self.params.path_session = ""
if self.params.antiprompt is None:
self.params.antiprompt = ""
if self.params.perplexity:
raise NotImplementedError(
"""************
please use the 'perplexity' tool for perplexity calculations
************"""
)
if self.params.embedding:
raise NotImplementedError(
"""************
please use the 'embedding' tool for embedding calculations
************"""
)
if self.params.n_ctx > 2048:
print(
f"""warning: model does not support \
context sizes greater than 2048 tokens ({self.params.n_ctx} \
specified) expect poor results""",
file=sys.stderr,
)
if self.params.seed <= 0:
self.params.seed = int(time())
print(f"seed = {self.params.seed}", file=sys.stderr)
if self.params.random_prompt:
self.params.prompt = gpt_random_prompt(self.params.seed)
# runtime args
self.input_consumed = 0
self.n_past = 0
self.n_session_consumed = 0
self.first_antiprompt = []
self.remaining_tokens = self.params.n_predict
self.output_echo = self.params.input_echo
self.multibyte_fix = []
# model load
self.lparams = llama_cpp.llama_model_default_params()
self.lparams.n_ctx = self.params.n_ctx
self.lparams.n_parts = self.params.n_parts
self.lparams.seed = self.params.seed
self.lparams.memory_f16 = self.params.memory_f16
self.lparams.use_mlock = self.params.use_mlock
self.lparams.use_mmap = self.params.use_mmap
self.model = llama_cpp.llama_load_model_from_file(
self.params.model.encode("utf8"), self.lparams
)
# Context Params.
self.cparams = llama_cpp.llama_context_default_params()
self.ctx = llama_cpp.llama_new_context_with_model(self.model, self.cparams)
if not self.ctx:
raise RuntimeError(f"error: failed to load model '{self.params.model}'")
if self.params.ignore_eos:
self.params.logit_bias[llama_cpp.llama_token_eos()] = -float("inf")
if len(self.params.lora_adapter) > 0:
if (
llama_cpp.llama_apply_lora_from_file(
self.ctx,
self.params.lora_adapter.encode("utf8"),
(
self.params.lora_base.encode("utf8")
if len(self.params.lora_base) > 0
else None
),
self.params.n_threads,
)
!= 0
):
print("error: failed to apply lora adapter")
return
print(file=sys.stderr)
print(
f"system_info: n_threads = {self.params.n_threads} / {cpu_count()} \
| {llama_cpp.llama_print_system_info().decode('utf8')}",
file=sys.stderr,
)
# determine the required inference memory per token:
if self.params.mem_test:
tmp = [0, 1, 2, 3]
llama_cpp.llama_eval(
self.ctx,
(llama_cpp.c_int * len(tmp))(*tmp),
len(tmp),
0,
self.n_threads,
)
llama_cpp.llama_print_timings(self.ctx)
self.exit()
return
# create internal context
self.n_ctx = llama_cpp.llama_n_ctx(self.ctx)
# Add a space in front of the first character to match OG llama tokenizer behavior
self.params.prompt = " " + self.params.prompt
# Load prompt file
if self.params.file:
with open(self.params.file) as f:
self.params.prompt = f.read()
self.session_tokens: list[llama_cpp.llama_token] = []
if len(self.params.path_session) > 0:
print(
f"attempting to load saved session from '{self.params.path_session}'",
file=sys.stderr,
)
if path.exists(self.params.path_session):
_session_tokens = (llama_cpp.llama_token * (self.params.n_ctx))()
_n_token_count_out = llama_cpp.c_size_t()
if (
llama_cpp.llama_load_session_file(
self.ctx,
self.params.path_session.encode("utf8"),
_session_tokens,
self.params.n_ctx,
ctypes.byref(_n_token_count_out),
)
!= 1
):
print(
f"error: failed to load session file '{self.params.path_session}'",
file=sys.stderr,
)
return
_n_token_count_out = _n_token_count_out.value
self.session_tokens = _session_tokens[:_n_token_count_out]
print(
f"loaded a session with prompt size of {_n_token_count_out} tokens",
file=sys.stderr,
)
else:
print(f"session file does not exist, will create", file=sys.stderr)
# tokenize the prompt
self.embd = []
self.embd_inp = self._tokenize(self.params.prompt)
if len(self.embd_inp) > self.n_ctx - 4:
raise RuntimeError(
f"error: prompt is too long ({len(self.embd_inp)} tokens, max {self.params.n_ctx - 4})"
)
# debug message about similarity of saved session, if applicable
self.n_matching_session_tokens = 0
if len(self.session_tokens) > 0:
for id in self.session_tokens:
if (
self.n_matching_session_tokens >= len(self.embd_inp)
or id != self.embd_inp[self.n_matching_session_tokens]
):
break
self.n_matching_session_tokens += 1
if self.n_matching_session_tokens >= len(self.embd_inp):
print(f"session file has exact match for prompt!")
elif self.n_matching_session_tokens < (len(self.embd_inp) / 2):
print(
f"warning: session file has low similarity to prompt ({self.n_matching_session_tokens} / {len(self.embd_inp)} tokens); will mostly be reevaluated"
)
else:
print(
f"session file matches {self.n_matching_session_tokens} / {len(self.embd_inp)} tokens of prompt"
)
self.need_to_save_session = len(
self.params.path_session
) > 0 and self.n_matching_session_tokens < (len(self.embd_inp) * 3 / 4)
# number of tokens to keep when resetting context
if (
self.params.n_keep < 0
or self.params.n_keep > len(self.embd_inp)
or self.params.instruct
):
self.params.n_keep = len(self.embd_inp)
self.inp_prefix = self._tokenize(self.params.instruct_inp_prefix)
self.inp_suffix = self._tokenize(self.params.instruct_inp_suffix, False)
# in instruct mode, we inject a prefix and a suffix to each input by the user
self.antiecho = None
if self.params.instruct:
self.params.interactive_start = True
_ptn = self._tokenize(self.params.instruct_inp_prefix.strip(), False)
self.first_antiprompt.append(_ptn)
self.antiecho = util.IterSearch(_ptn)
# enable interactive mode if reverse prompt or interactive start is specified
if len(self.params.antiprompt) != 0 or self.params.interactive_start:
self.params.interactive = True
# determine newline token
self.llama_token_newline = self._tokenize("\n", False)
self.llama_token_eot = self._tokenize(" [end of text]\n", False)
if self.params.verbose_prompt:
print(
f"""
prompt: '{self.params.prompt}'
number of tokens in prompt = {len(self.embd_inp)}""",
file=sys.stderr,
)
for i in range(len(self.embd_inp)):
print(
f"{self.embd_inp[i]} -> '{self.token_to_str(self.embd_inp[i])}'",
file=sys.stderr,
)
if self.params.n_keep > 0:
print("static prompt based on n_keep: '")
for i in range(self.params.n_keep):
print(self.token_to_str(self.embd_inp[i]), file=sys.stderr)
print("'", file=sys.stderr)
print(file=sys.stderr)
if self.params.interactive:
print("interactive mode on.", file=sys.stderr)
if len(self.params.antiprompt) > 0:
for antiprompt in self.params.antiprompt:
print(f"Reverse prompt: '{antiprompt}'", file=sys.stderr)
if len(self.params.input_prefix) > 0:
print(f"Input prefix: '{self.params.input_prefix}'", file=sys.stderr)
print(
f"""sampling: repeat_last_n = {self.params.repeat_last_n},\
repeat_penalty = {self.params.repeat_penalty},\
presence_penalty = {self.params.presence_penalty},\
frequency_penalty = {self.params.frequency_penalty},\
top_k = {self.params.top_k},\
tfs_z = {self.params.tfs_z},\
top_p = {self.params.top_p},\
typical_p = {self.params.typical_p},\
temp = {self.params.temp},\
mirostat = {self.params.mirostat},\
mirostat_lr = {self.params.mirostat_eta},\
mirostat_ent = {self.params.mirostat_tau},\
generate: n_ctx = {self.n_ctx},\
n_batch = {self.params.n_batch},\
n_predict = {self.params.n_predict},\
n_keep = {self.params.n_keep}
""",
file=sys.stderr,
)
# determine antiprompt tokens
for i in self.params.antiprompt:
self.first_antiprompt.append(self._tokenize(i, False))
self.last_n_tokens = [0] * self.n_ctx # TODO: deque doesnt support slices
if params.interactive:
print(
"""== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to LLaMa.
- If you want to submit another line, end your input in '\\'.
""",
file=sys.stderr,
)
self.set_color(util.CONSOLE_COLOR_PROMPT)
# tokenize a prompt
def _tokenize(self, prompt, bos=True):
_arr = (llama_cpp.llama_token * ((len(prompt) + 1) * 4))()
_n = llama_cpp.llama_tokenize(
self.model,
prompt.encode("utf8", errors="ignore"),
len(prompt),
_arr,
len(_arr),
bos,
False,
)
return _arr[:_n]
def set_color(self, c):
if self.params.use_color:
print(c, end="")
def use_antiprompt(self):
return len(self.first_antiprompt) > 0
# generate tokens
def generate(self):
while (
self.remaining_tokens > 0
or self.params.interactive
or self.params.n_predict == -1
):
# predict
if len(self.embd) > 0:
# infinite text generation via context swapping
# if we run out of context:
# - take the n_keep first tokens from the original prompt (via n_past)
# - take half of the last (n_ctx - n_keep) tokens and recompute the logits in a batch
if self.n_past + len(self.embd) > self.n_ctx:
n_left = self.n_past - self.params.n_keep
self.n_past = self.params.n_keep
# insert n_left/2 tokens at the start of embd from last_n_tokens
_insert = self.last_n_tokens[
self.n_ctx - int(n_left / 2) - len(self.embd) : -len(self.embd)
]
self.embd = _insert + self.embd
self.params.path_session = ""
# try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
if self.n_session_consumed < len(self.session_tokens):
for i in range(len(self.embd)):
if self.embd[i] != self.session_tokens[self.n_session_consumed]:
self.session_tokens = self.session_tokens[
: self.n_session_consumed
]
break
self.n_past += 1
self.n_session_consumed += 1
if self.n_session_consumed >= len(self.session_tokens):
i += 1
break
if i > 0:
self.embd = self.embd[i:]
# evaluate tokens in batches
# embd is typically prepared beforehand to fit within a batch, but not always
# TODO BUG: The batching code causes nonsensical generation
"""for i in range(0, len(self.embd), self.params.n_batch):
n_eval = self.params.n_batch
_arr = (llama_cpp.llama_token * n_eval)(*self.embd[i:i + n_eval])
if llama_cpp.llama_eval(self.ctx, _arr, n_eval, self.n_past, self.params.n_threads) != 0:
print(f"failed to eval")
return
self.n_past += n_eval"""
if (
llama_cpp.llama_eval(
self.ctx,
(llama_cpp.llama_token * len(self.embd))(*self.embd),
len(self.embd),
self.n_past,
)
!= 0
):
raise Exception("Failed to llama_eval!")
if len(self.embd) > 0 and len(self.params.path_session) > 0:
self.session_tokens.extend(self.embd)
self.n_session_consumed = len(self.session_tokens)
self.n_past += len(self.embd)
self.embd = []
if len(self.embd_inp) <= self.input_consumed: # && !is_interacting
# out of user input, sample next token
top_k = (
llama_cpp.llama_n_vocab(self.ctx)
if self.params.top_k <= 0
else self.params.top_k
)
repeat_last_n = (
self.n_ctx
if self.params.repeat_last_n < 0
else self.params.repeat_last_n
)
# optionally save the session on first sample (for faster prompt loading next time)
if len(self.params.path_session) > 0 and self.need_to_save_session:
self.need_to_save_session = False
llama_cpp.llama_save_session_file(
self.ctx,
self.params.path_session.encode("utf8"),
(llama_cpp.llama_token * len(self.session_tokens))(
*self.session_tokens
),
len(self.session_tokens),
)
id = 0
logits = llama_cpp.llama_get_logits(self.ctx)
n_vocab = llama_cpp.llama_n_vocab(self.model)
# Apply params.logit_bias map
for key, value in self.params.logit_bias.items():
logits[key] += value
_arr = (llama_cpp.llama_token_data * n_vocab)(
*[
llama_cpp.llama_token_data(token_id, logits[token_id], 0.0)
for token_id in range(n_vocab)
]
)
candidates_p = llama_cpp.ctypes.pointer(
llama_cpp.llama_token_data_array(_arr, len(_arr), False)
)
# Apply penalties
nl_logit = logits[llama_cpp.llama_token_nl(self.ctx)]
last_n_repeat = min(len(self.last_n_tokens), repeat_last_n, self.n_ctx)
_arr = (llama_cpp.llama_token * last_n_repeat)(
*self.last_n_tokens[len(self.last_n_tokens) - last_n_repeat :]
)
llama_cpp.llama_sample_repetition_penalties(
ctx=self.ctx,
candidates=candidates_p,
last_tokens_data=_arr,
penalty_last_n=last_n_repeat,
penalty_repeat=llama_cpp.c_float(self.params.repeat_penalty),
penalty_freq=llama_cpp.c_float(self.params.frequency_penalty),
penalty_present=llama_cpp.c_float(self.params.presence_penalty),
)
# NOT PRESENT IN CURRENT VERSION ?
# llama_cpp.llama_sample_frequency_and_presence_penalti(self.ctx, candidates_p,
# _arr,
# last_n_repeat, llama_cpp.c_float(self.params.frequency_penalty), llama_cpp.c_float(self.params.presence_penalty))
if not self.params.penalize_nl:
logits[llama_cpp.llama_token_nl()] = nl_logit
if self.params.temp <= 0:
# Greedy sampling
id = llama_cpp.llama_sample_token_greedy(self.ctx, candidates_p)
else:
if self.params.mirostat == 1:
mirostat_mu = 2.0 * self.params.mirostat_tau
mirostat_m = 100
llama_cpp.llama_sample_temperature(
self.ctx, candidates_p, llama_cpp.c_float(self.params.temp)
)
id = llama_cpp.llama_sample_token_mirostat(
self.ctx,
candidates_p,
llama_cpp.c_float(self.params.mirostat_tau),
llama_cpp.c_float(self.params.mirostat_eta),
llama_cpp.c_int(mirostat_m),
llama_cpp.c_float(mirostat_mu),
)
elif self.params.mirostat == 2:
mirostat_mu = 2.0 * self.params.mirostat_tau
llama_cpp.llama_sample_temperature(
self.ctx, candidates_p, llama_cpp.c_float(self.params.temp)
)
id = llama_cpp.llama_sample_token_mirostat_v2(
self.ctx,
candidates_p,
llama_cpp.c_float(self.params.mirostat_tau),
llama_cpp.c_float(self.params.mirostat_eta),
llama_cpp.c_float(mirostat_mu),
)
else:
# Temperature sampling
llama_cpp.llama_sample_top_k(
self.ctx,
candidates_p,
top_k,
min_keep=llama_cpp.c_size_t(1),
)
llama_cpp.llama_sample_tail_free(
self.ctx,
candidates_p,
llama_cpp.c_float(self.params.tfs_z),
min_keep=llama_cpp.c_size_t(1),
)
llama_cpp.llama_sample_typical(
self.ctx,
candidates_p,
llama_cpp.c_float(self.params.typical_p),
min_keep=llama_cpp.c_size_t(1),
)
llama_cpp.llama_sample_top_p(
self.ctx,
candidates_p,
llama_cpp.c_float(self.params.top_p),
min_keep=llama_cpp.c_size_t(1),
)
llama_cpp.llama_sample_temperature(
self.ctx, candidates_p, llama_cpp.c_float(self.params.temp)
)
id = llama_cpp.llama_sample_token(self.ctx, candidates_p)
# print("`{}`".format(candidates_p.size))
self.last_n_tokens.pop(0)
self.last_n_tokens.append(id)
# replace end of text token with newline token when in interactive mode
if (
id == llama_cpp.llama_token_eos(self.ctx)
and self.params.interactive
and not self.params.instruct
):
id = self.llama_token_newline[0]
self.embd.append(id)
if self.use_antiprompt():
# tokenize and inject first reverse prompt
self.embd_inp += self.first_antiprompt[0]
for id in self.first_antiprompt[0]:
self.embd.append(id)
else:
# add it to the context
self.embd.append(id)
# echo this to console
self.output_echo = True
# decrement remaining sampling budget
self.remaining_tokens -= 1
else:
# output to console if input echo is on
self.output_echo = self.params.input_echo
# some user input remains from prompt or interaction, forward it to processing
while len(self.embd_inp) > self.input_consumed:
self.embd.append(self.embd_inp[self.input_consumed])
self.last_n_tokens.pop(0)
self.last_n_tokens.append(self.embd_inp[self.input_consumed])
self.input_consumed += 1
if len(self.embd) >= self.params.n_batch:
break
# display tokens
if self.output_echo:
for id in self.embd:
if self.antiecho != None:
for r in self.antiecho(id):
yield r
else:
yield id
# reset color to default if we there is no pending user input
if self.params.input_echo and len(self.embd_inp) == self.input_consumed:
self.set_color(util.CONSOLE_COLOR_DEFAULT)
if self.params.interactive and len(self.embd_inp) <= self.input_consumed:
# if antiprompt is present, stop
if self.use_antiprompt():
if True in [
i == self.last_n_tokens[-len(i) :]
for i in self.first_antiprompt
]:
break
# if we are using instruction mode, and we have processed the initial prompt
if self.params.interactive_start:
break
# end of text token
if len(self.embd) > 0 and self.embd[-1] == llama_cpp.llama_token_eos(
self.ctx
):
if not self.params.instruct:
for i in self.llama_token_eot:
yield i
break
# respect n_predict even if antiprompt is present
if (
self.params.interactive
and self.remaining_tokens <= 0
and self.params.n_predict != -1
):
# If we arent in instruction mode, fix the current generation by appending the antiprompt.
# Makes it so if chat ends prematurely you dont append the AI's text etc.
if not self.params.instruct:
self.embd_inp += self.first_antiprompt[0]
self.n_remain = self.params.n_predict
break
self.params.interactive_start = False
def __enter__(self):
return self
def __exit__(self, type, value, tb):
self.exit()
def exit(self):
llama_cpp.llama_free(self.ctx)
self.set_color(util.CONSOLE_COLOR_DEFAULT)
def token_to_str(self, token_id: int) -> bytes:
size = 32
buffer = (ctypes.c_char * size)()
n = llama_cpp.llama_token_to_piece(
self.model, llama_cpp.llama_token(token_id), buffer, size
)
assert n <= size
return bytes(buffer[:n])
# return past text
def past(self):
for id in self.last_n_tokens[-self.n_past :]:
yield self.token_to_str(id).decode("utf8", errors="ignore")
# write input
def input(self, prompt: str):
if (
self.params.instruct
and self.last_n_tokens[-len(self.inp_prefix) :] != self.inp_prefix
):
self.embd_inp += self.inp_prefix
self.embd_inp += self._tokenize(prompt)
if self.params.instruct:
self.embd_inp += self.inp_suffix
# write output
def output(self):
self.remaining_tokens = self.params.n_predict
for id in self.generate():
cur_char = self.token_to_str(id)
# Add remainder of missing bytes
if None in self.multibyte_fix:
self.multibyte_fix[self.multibyte_fix.index(None)] = cur_char
# Return completed utf char
if len(self.multibyte_fix) > 0 and not None in self.multibyte_fix:
yield (b"".join(self.multibyte_fix)).decode("utf8")
self.multibyte_fix = []
continue
# Contains multi-byte UTF8
for num, pattern in [(2, 192), (3, 224), (4, 240)]:
# Bitwise AND check
if pattern & int.from_bytes(cur_char, "little") == pattern:
self.multibyte_fix = [cur_char] + ([None] * (num - 1))
# Stop incomplete bytes from passing
if len(self.multibyte_fix) > 0:
continue
yield cur_char.decode("utf8")
# read user input
def read_input(self):
out = ""
while (t := input()).endswith("\\"):
out += t[:-1] + "\n"
return out + t + "\n"
# interactive mode
def interact(self):
for i in self.output():
print(i, end="", flush=True)
self.params.input_echo = False
# Using string instead of tokens to check for antiprompt,
# It is more reliable than tokens for interactive mode.
generated_str = ""
while self.params.interactive:
self.set_color(util.CONSOLE_COLOR_USER_INPUT)
if self.params.instruct:
print("\n> ", end="")
self.input(self.read_input())
else:
print(self.params.input_prefix, end="")
self.input(
f"{self.params.input_prefix}{self.read_input()}{self.params.input_suffix}"
)
print(self.params.input_suffix, end="")
self.set_color(util.CONSOLE_COLOR_DEFAULT)
try:
for i in self.output():
print(i, end="", flush=True)
generated_str += i
for ap in self.params.antiprompt:
if generated_str.endswith(ap):
raise KeyboardInterrupt
except KeyboardInterrupt:
self.set_color(util.CONSOLE_COLOR_DEFAULT)
if not self.params.instruct:
print(self.params.fix_prefix, end="")
self.input(self.params.fix_prefix)
if __name__ == "__main__":
from datetime import datetime
USER_NAME = "User"
AI_NAME = "ChatLLaMa"
time_now = datetime.now()
prompt = f"""Text transcript of a never ending dialog, where {USER_NAME} interacts with an AI assistant named {AI_NAME}.
{AI_NAME} is helpful, kind, honest, friendly, good at writing and never fails to answer {USER_NAME}’s requests immediately and with details and precision.
Transcript below contains only the recorded dialog between two, without any annotations like (30 seconds passed...) or (to himself), just what {USER_NAME} and {AI_NAME} say aloud to each other.
The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long.
The transcript only includes text, it does not include markup like HTML and Markdown.
{USER_NAME}: Hello, {AI_NAME}!
{AI_NAME}: Hello {USER_NAME}! How may I help you today?
{USER_NAME}: What time is it?
{AI_NAME}: It is {time_now.strftime("%H:%M")}.
{USER_NAME}: What year is it?
{AI_NAME}: We are in {time_now.strftime("%Y")}.
{USER_NAME}: What is a cat?
{AI_NAME}: A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
{USER_NAME}: Name a color.
{AI_NAME}: Blue
{USER_NAME}: """
params = gpt_params_parse()
if params.prompt is None and params.file is None:
params.prompt = prompt
with LLaMAInteract(params) as m:
m.interact()