-
Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning
Author(Institute): Jianxun Lian(Microsoft二作)
KeyWords: news recommender; knowledge graph; recommendation reasoning
Dataset: MIND; Bing News -
Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in Recommender System
Author(Institute): Jinfeng Yi(JD三作)
KeyWords: Recommendation; Popularity Bias; Causal Reasoning
Dataset: ML10M; Adressa; Globo; Gowalla; Yelp -
Modeling the Sequential Dependence among Audience Multi-step Conversions with Multi-task Learning in Targeted Display Advertising
Author(Institute): Dongbo Xi(Meituan)
KeyWords: Sequential Dependence; Multi-step Conversions; Multi-task Learning; Targeted Display Advertising
Dataset: Meituan; Co-Branded Credit Cards; Ali-CCP -
Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising
Author(Institute): Yudan Liu(WeChat三作)
KeyWords: Look-alike; Audience Expansion; Meta Learning; Campaign
Dataset: Tencent; WeChat -
Adversarial Feature Translation for Multi-domain Recommendation
Author(Institute): Xiaobo Hao(WeChat)
KeyWords: recommender system; multi-domain recommendation; GAN
Dataset: Netflix; MDR-5B -
Debiasing Learning based Cross-domain Recommendation
Author(Institute): Yuxiao Dong(Alibaba二作)
KeyWords: Debias -
MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems
Author(Institute): Yuxiao Dong(Facebook)
KeyWords: Collaborative Filtering; Recommender Systems; Graph Neural Networks; Negative Samplin
Dataset: Alibaba; Yelp2018; Amazon -
Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation
Author(Institute): Hao Gu(Tencent三作)
KeyWords: Cold-start; Auto-Encoders; Denoise
Dataset: WeChat -
Reinforced Anchor Knowledge Graph Generation for News Recommendation Reasoning
Author(Institute): Jianxun Lian(Microsoft二作)
KeyWords: news recommender; knowledge graph; recommendation reasoning
Dataset: MIND; Bing News -
A Semi-Personalized System for User Cold Start Recommendation on Music Streaming Apps
Author(Institute): Léa Briand(Deezer)
KeyWords: Recommender Systems; User Cold Start; Music Streaming Service; Semi-Personalization; Heterogeneous Data; A/B Testing
Dataset: Deezer -
Architecture and Operation Adaptive Network for Online Recommendations
Author(Institute): Lang Lang(Didi Chuxing) KeyWords: Online Recommendations -
SEMI: A Sequential Multi-Modal Information Transfer Network for E-Commerce Micro-Video Recommendations
Author(Institute): Chenyi Lei(Alibaba)
KeyWords: E-Commerce Micro-Video Recommendation; Information Transfer
Dataset: Taobao -
Curriculum Meta-Learning for Next POI Recommendation
Author(Institute): Miao Fan(Baidu三作)
KeyWords: POI
Dataset: Baidu Map -
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Author(Institute): Wang-Cheng Kang(Google)
KeyWords: Embed Categorical Features
Dataset: Movielens20M; Amazon Book -
Preference Amplification in Recommender Systems
Author(Institute): Smriti Bhagat(Facebook二作)
KeyWords: Recommender systems; echo chambers; filter bubbles; fixed point
Dataset: MovieLens 10M; Yahoo -
Data Poisoning Attack against Recommender System Using Incomplete and Perturbed Data
Author(Institute): Yaliang Li(Alibaba三作)
KeyWords: Attack -
Initialization Matters: Regularizing Manifold-informed Initialization for Neural Recommendation Systems
Author(Institute): Chunyan Miao(Alibaba三作)
KeyWords: network initialization; recommender systems; manifold learning
Dataset: ML-1M; Steam; Anime -
We Know What You Want: An Advertising Strategy Recommender System for Online Advertising
Author(Institute): Junqi Jin(Alibaba二作)
KeyWords: E-commerce; Display Advertisement; Advertising Strategy Recommendation
Dataset: online -
A Unified Solution to Constrained Bidding in Online Display Advertising
Author(Institute): Yue He(Alibaba)
KeyWords: advertising
Dataset: Taobao -
Clustering for Private Interest-based Advertising
Author(Institute): Alessandro Epasto(Google)
KeyWords: Interest-based advertising; clustering; anonymity; privacy
Dataset: Million Song; MovieLens -
Diversity driven Query Rewriting in Search Advertising
Author(Institute): Nikit Begwani(Microsoft二作)
KeyWords: sponsored search; query rewriting; natural language generation -
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Author(Institute): Chao Du(Alibaba)
KeyWords: click-through rate (CTR); exploration-exploitation trade-off; advertising system; Gaussian process
Dataset: Amazon -
Neural Auction: End-to-End Learning of Auction Mechanisms for E-Commerce Advertising
Author(Institute): Xiangyu Liu(Alibaba)
KeyWords: Learning-based Mechanism Design; Neural Auction; E-commerce Advertising
Dataset: Taobao -
Reinforcing Pretrained Models for Generating Attractive Text Advertisements
Author(Institute): Xiting Wang(Microsoft)
KeyWords: Advertisement Generation; Pretrained Language Models; Reinforcement Learning; Natural Language Generation
Dataset: Microsoft Bing -
Efficient Collaborative Filtering via Data Augmentation and Step-size Optimization
Author(Institute): Xuejun Liao(SAS Institute Inc)
KeyWords: Collaborative Filtering; Data Augmentation
Dataset: MovieLens 1M -
Efficient Data-specific Model Search for Collaborative Filtering
Author(Institute): Quanming Yao(4Paradigm)
KeyWords: Collaborative Filtering
Dataset: MovieLens-100K; MovieLens-1M; Yelp; Amazon-Book -
ML-based Visualization Recommendation: Learning to Recommend Visualizations from Data
Author(Institute): Ryan A. [ Rossi(Adobe二作)
KeyWords: Visualization recommendation; learning-based visualization recommendation; data visualization; machine learning; deep learning
Dataset: Plot.ly -
PURE: Positive-Unlabeled Recommendation with Generative Adversarial Network
Author(Institute): Jianpeng Xu(Walmart)
KeyWords: Recommender systems; Positive-unlabeled learning
Dataset: Movielens; Yelp -
Table2Charts: Recommending Charts by Learning Shared Table Representations
Author(Institute): Mengyu Zhou(Microsoft)
KeyWords: Table2seq; chart recommendation; deep Q-learning; copying mechanism; search sampling; transfer learning; table representations
Dataset: Movielens; Yelp -
Automated Loss Function Search in Recommendations
Author(Institute): Chong Wang(Bytedance四作)
KeyWords: AutoML; Recommender Systems; Loss Functions
Dataset: Criteo; ML-20m -
Bootstrapping Recommendations at Chrome Web Store
Author(Institute): Zhen Qin(Google)
KeyWords: learning to rank; generalized additive models; text embedding
Dataset: CWS -
Contrastive Learning for Debiased Candidate Generation in Large-Scale Recommender Systems
Author(Institute): Chang Zhou(Alibaba)
KeyWords: candidate generation; bias reduction; inverse propensity weighting; contrastive learning; negative sampling
Dataset: ML-1M; Beauty; Steam -
Device-Cloud Collaborative Learning for Recommendation
Author(Institute): Jiangchao Yao(Alibaba)
KeyWords: On-device Intelligence; Cloud Computing
Dataset: Amazon; Movielens-1M; Taobao -
FleetRec: Large-Scale Recommendation Inference on Hybrid GPU-FPGA Clusters
Author(Institute): Kai Zeng(Alibaba四作)
KeyWords: scalable recommendation -
Hierarchical Training: Scaling Deep Recommendation Models on Large CPU Clusters
Author(Institute): Jiangchao Yao(Facebook)
KeyWords: CPU Clusters -
Leveraging Tripartite Interaction Information from Live Stream E-Commerce for Improving Product Recommendation
Author(Institute): Zhuoxuan Jiang(Tencent二作); Dong-Dong Chen(JD三作); Dongsheng Li (Microsoft五作)
KeyWords: graph representation learning; multi-task learning; live streaming E-Commence; product recommendation
Dataset: LSEC-Small; LSECLarge -
Sliding Spectrum Decomposition for Diversified Recommendation
Author(Institute): Yanhua Huang(Xiaohongshu)
KeyWords: Diversified Recommendation; Sliding Spectrum Decomposition; Item Embedding; Determinantal Point Process; CB2CF -
Towards the D-Optimal Online Experiment Design for Recommender Selection
Author(Institute): Da Xu(Walmart)
KeyWords: Recommender Selection
Dataset: Walmart