forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_bigdata.yaml
48 lines (45 loc) · 1.78 KB
/
config_bigdata.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
runner:
train_data_dir: "../../../datasets/sign/train"
train_reader_path: "sign_reader" # importlib format
use_gpu: False
use_auc: True
is_train: True # is train
train_batch_size: 1024
epochs: 40
print_interval: 500
#model_init_path: "output_model_sign_all/0" # init model
model_save_path: "output_model_sign_all"
test_data_dir: "../../../datasets/sign/test"
infer_batch_size: 1024
infer_reader_path: "sign_reader" # importlib format
infer_load_path: "output_model_sign_all"
infer_start_epoch: 38
infer_end_epoch: 40
#use inference save model
use_inference: False
save_inference_feed_varnames: ["input"]
save_inference_fetch_varnames: ["slice_0.tmp_0", "slice_1.tmp_0"]
hyper_parameters:
pred_edges: 1 # !=0: use edges in dataset, 0: predict edges using L_0
dim: 8 # dimension of entity and relation embeddings
hidden_layer: 32 # neural hidden layer 32
l0_para: [0.66, -0.1, 1.1] # l0 parameters, which are beta (temprature), zeta (interval_min) and gama (interval_max).
l0_weight: 0.001 # weight of the l0 regularization term
l2_weight: 0.001 # weight of the l2 regularization term
optimizer:
class: adam
learning_rate: 0.05
strategy: async