forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
133 lines (111 loc) · 5.2 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import numpy as np
class FFMLayer(nn.Layer):
def __init__(self, sparse_feature_number, sparse_feature_dim,
dense_feature_dim, sparse_num_field):
super(FFMLayer, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.dense_feature_dim = dense_feature_dim
self.sparse_num_field = sparse_num_field
self.ffm = FFM(sparse_feature_number, sparse_feature_dim,
dense_feature_dim, sparse_num_field)
self.bias = paddle.create_parameter(
shape=[1],
dtype='float32',
default_initializer=paddle.nn.initializer.Constant(value=0.0))
def forward(self, sparse_inputs, dense_inputs):
y_first_order, y_second_order = self.ffm.forward(sparse_inputs,
dense_inputs)
predict = F.sigmoid(y_first_order + y_second_order + self.bias)
return predict
class FFM(nn.Layer):
def __init__(self, sparse_feature_number, sparse_feature_dim,
dense_feature_dim, sparse_num_field):
super(FFM, self).__init__()
self.sparse_feature_number = sparse_feature_number
self.sparse_feature_dim = sparse_feature_dim
self.dense_feature_dim = dense_feature_dim
self.dense_emb_dim = self.sparse_feature_dim
self.sparse_num_field = sparse_num_field
self.init_value_ = 0.1
use_sparse = True
if paddle.is_compiled_with_npu():
use_sparse = False
# sparse part coding
self.embedding_one = paddle.nn.Embedding(
sparse_feature_number,
1,
sparse=use_sparse,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(
mean=0.0,
std=self.init_value_ /
math.sqrt(float(self.sparse_feature_dim)))))
self.embedding = paddle.nn.Embedding(
self.sparse_feature_number,
self.sparse_feature_dim * self.sparse_num_field,
sparse=use_sparse,
weight_attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.TruncatedNormal(
mean=0.0,
std=self.init_value_ /
math.sqrt(float(self.sparse_feature_dim)))))
# dense part coding
self.dense_w_one = paddle.create_parameter(
shape=[self.dense_feature_dim],
dtype='float32',
default_initializer=paddle.nn.initializer.Constant(value=1.0))
self.dense_w = paddle.create_parameter(
shape=[
1, self.dense_feature_dim,
self.dense_emb_dim * self.sparse_num_field
],
dtype='float32',
default_initializer=paddle.nn.initializer.Constant(value=1.0))
def forward(self, sparse_inputs, dense_inputs):
# -------------------- first order term --------------------
sparse_inputs_concat = paddle.concat(sparse_inputs, axis=1)
sparse_emb_one = self.embedding_one(sparse_inputs_concat)
dense_emb_one = paddle.multiply(dense_inputs, self.dense_w_one)
dense_emb_one = paddle.unsqueeze(dense_emb_one, axis=2)
y_first_order = paddle.sum(sparse_emb_one, 1) + paddle.sum(
dense_emb_one, 1)
# -------------------Field-aware second order term --------------------
sparse_embeddings = self.embedding(sparse_inputs_concat)
dense_inputs_re = paddle.unsqueeze(dense_inputs, axis=2)
dense_embeddings = paddle.multiply(dense_inputs_re, self.dense_w)
feat_embeddings = paddle.concat([sparse_embeddings, dense_embeddings],
1)
field_aware_feat_embedding = paddle.reshape(
feat_embeddings,
shape=[
-1, self.sparse_num_field, self.sparse_num_field,
self.sparse_feature_dim
])
field_aware_interaction_list = []
for i in range(self.sparse_num_field):
for j in range(i + 1, self.sparse_num_field):
field_aware_interaction_list.append(
paddle.sum(field_aware_feat_embedding[:, i, j, :] *
field_aware_feat_embedding[:, j, i, :],
1,
keepdim=True))
y_field_aware_second_order = paddle.add_n(field_aware_interaction_list)
return y_first_order, y_field_aware_second_order