forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdygraph_model.py
117 lines (101 loc) · 4.94 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import numpy as np
import net
class DygraphModel():
def __init__(self):
self.bucket = 100000
self.absolute_limt = 200.0
def rescale(self, number):
if number > self.absolute_limt:
number = self.absolute_limt
elif number < -self.absolute_limt:
number = -self.absolute_limt
return (number + self.absolute_limt) / (self.absolute_limt * 2 + 1e-8)
def create_model(self, config):
item_emb_size = config.get("hyper_parameters.item_emb_size", 64)
cat_emb_size = config.get("hyper_parameters.cat_emb_size", 64)
act = config.get("hyper_parameters.act", "sigmoid")
is_sparse = config.get("hyper_parameters.is_sparse", False)
use_DataLoader = config.get("hyper_parameters.use_DataLoader", False)
item_count = config.get("hyper_parameters.item_count", 63001)
cat_count = config.get("hyper_parameters.cat_count", 801)
dien_model = net.DIENLayer(item_emb_size, cat_emb_size, act, is_sparse,
use_DataLoader, item_count, cat_count)
return dien_model
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch, config):
hist_item_seq = batch[0]
hist_cat_seq = batch[1]
target_item = batch[2]
target_cat = batch[3]
label = paddle.reshape(batch[4], [-1, 1])
mask = batch[5]
target_item_seq = batch[6]
target_cat_seq = batch[7]
neg_hist_item_seq = batch[8]
neg_hist_cat_seq = batch[9]
return hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask, target_item_seq, target_cat_seq, neg_hist_item_seq, neg_hist_cat_seq
# define loss function by predicts and label
def create_loss(self, raw_pred, label):
avg_loss = paddle.nn.functional.binary_cross_entropy_with_logits(
raw_pred, label, reduction='mean')
return avg_loss
# define optimizer
def create_optimizer(self, dy_model, config):
boundaries = [410000]
base_lr = config.get(
"hyper_parameters.optimizer.learning_rate_base_lr")
values = [base_lr, 0.2]
sgd_optimizer = paddle.optimizer.SGD(
learning_rate=paddle.optimizer.lr.PiecewiseDecay(
boundaries=boundaries, values=values),
parameters=dy_model.parameters())
return sgd_optimizer
# define metrics such as auc/acc
# multi-task need to define multi metric
def create_metrics(self):
metrics_list_name = ["auc"]
auc_metric = paddle.metric.Auc("ROC")
metrics_list = [auc_metric]
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask, target_item_seq, target_cat_seq, neg_hist_item_seq, neg_hist_cat_seq = self.create_feeds(
batch_data, config)
raw_pred, aux_loss = dy_model.forward(
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask,
target_item_seq, target_cat_seq, neg_hist_item_seq,
neg_hist_cat_seq)
loss = self.create_loss(raw_pred, label)
cost = loss + aux_loss
predict = paddle.nn.functional.sigmoid(raw_pred)
# update metrics
predict_2d = paddle.concat(x=[1 - predict, predict], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
print_dict = {'loss': cost}
return cost, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask, target_item_seq, target_cat_seq, neg_hist_item_seq, neg_hist_cat_seq = self.create_feeds(
batch_data, config)
raw_pred, aux_loss = dy_model.forward(
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask,
target_item_seq, target_cat_seq, neg_hist_item_seq,
neg_hist_cat_seq)
predict = paddle.nn.functional.sigmoid(raw_pred)
predict_2d = paddle.concat(x=[1 - predict, predict], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
return metrics_list, None