Skip to content

Latest commit

 

History

History
291 lines (284 loc) · 7.66 KB

syllabus.md

File metadata and controls

291 lines (284 loc) · 7.66 KB
layout title categories lectures
default
Syllabus
schedule
date title who slides reading show
2017-07-25
Introduction; probability theory
trevor
01_intro_prob_theory.pdf
Bishop 1.1-1.2
1
date title who slides reading show
2017-07-27
Probabilistic models and parameter fitting
trevor
02_statistical_schools.pdf
Bishop 2.1*, 2.3*; 1.2.3-1.2.4 (* = first 2 pages)
1
date title who slides reading show
2017-08-01
Linear regression; Intro to regularisation
andrey
03_linear_regression.pdf
Bishop 3.1.1, 3.1.2, 3.1.4
1
date title who slides reading show
2017-08-03
Logistic regression classifier; Basis expansion
andrey
04_logistic_regression.pdf
Bishop 4.3.2, 3.1*
1
date title who slides reading show
2017-08-08
Iterative optimisation of loss functions; Model complexity and bias-variance analysis
andrey
05_optim_regularisation.pdf
Bishop 1.5.5, 3.2
1
date title who slides reading show
2017-08-10
Notes on vectors; Perceptron classifier
andrey
06_vectors_perceptron.pdf
Bishop 4.1.7
1
date title who slides reading show
2017-08-15
Artificial Neural Networks
andrey
07_backpropagation.pdf
Bishop 5.1, 5.2, 5.3
1
date title who slides reading show
2017-08-17
Artificial Neural Networks (cont.)
andrey
08_convnet_autoenc.pdf
Bishop 5.5.6
1
date title who slides reading show
2017-08-22
Support Vector Machines (hard margin)
andrey
09_hard_margin_svm.pdf
Bishop 7.1
1
date title who slides reading show
2017-08-24
Support Vector Machines (soft margin)
andrey
10_soft_margin_svm.pdf
Bishop 7.1.1
1
date title who slides reading show
2017-08-29
Kernel Methods
andrey
11_kernel_methods.pdf
Bishop 6.2
1
date title who slides reading show
2017-08-31
Ensemble Learning; Interim Summary
andrey
12_ensemble_revision.pdf
Bishop 14.2
1
date title who slides reading show
2017-09-05
Unsupervised Learning; Clustering
andrey
13_clustering_gmm.pdf
Bishop 9.1, 9.2
1
date title who slides reading show
2017-09-07
Expectation Maximisation Algorithm
andrey
14_em_algorithm.pdf
Bishop 9.4, 9.2.2
1
date title who slides reading show
2017-09-12
Principal Component Analysis; Multidimensional Scaling
andrey
15_dimred_pca_mds.pdf
Bishop 12.1, 12.4.3, Hastie 14.8
1
date title who slides reading show
2017-09-14
Manifold Learning; Spectral clustering
andrey
16_manifold_learning.pdf
Bishop 12.4.3, Hastie 14.5.3, 14.9
1
date title who slides reading show
2017-09-19
Bayesian inference
trevor
17_bayesian_inference.pdf
Bishop 2.3.6, 4.4-4.5
1
date title slides reading who show
2017-09-21
Bayesian inference (cont.)
18_bayesian_classification.pdf
Bishop 2.1, 3.3, 3.4
trevor
1
date title
2017-09-25
Non-teaching week
date title who slides reading show
2017-10-03
Probabilistic graphical models, fundamentals
trevor
20_pgm_basics.pdf
Bishop 8-8.3.1
1
date title who slides reading show
2017-10-05
Probabilistic graphical models, independence
trevor
21_pgm_indy.pdf
Bishop 8.2-8.3.2
1
date title who slides reading show
2017-10-10
Probabilistic graphical models, inference
trevor
22_pgm_elimination.pdf
Russell and Norvig Chapter 14 (see "Reading" on LMS) or Murphy 20.3
1
date title who slides reading show
2017-10-12
Probabilistic graphical models, statistical inference. Lecture cancelled, please listen to 2016 recording available under LMS in the reading/resources option.
trevor
23_pgm_stat_infer.pdf
Murphy 11.4.4 (generally dip into 11.3-11.4)
1
date title who slides reading show
2017-10-17
Probabilistic graphical models, hidden Markov models and message passing
trevor
24_pgm_message_passing.pdf
Murphy 17 (mainly 17.4-17.5)
1
date title slides who show
2017-10-19
Subject review
25_review.pdf
trevor
1

Syllabus

We'll put the lecture slides in the week that we cover the material, as well as pointers to the required reading. Reading references to Bishop relate to the book Pattern recognition and machine learning by Christopher M. Bishop, 2006. Reading references to Murphy relate to the book Machine Learning : A Probabilistic Perspective by Kevin Murphy, 2014; available in electronic ebook form using the link.

{% for lect in page.lectures %} {% endfor %}
Date Topic Materials
{% if lect.type == "workshop" %} from {% endif %} {{ lect.date | date: "%a %-d/%-m" }} {{ lect.title }} {% for matter in lect.materials %}
{{ matter }} {% endfor %}
{% if lect.show == 1 %} {% if lect.slides %} Slides: {% assign first = 1 %} {% for matter in lect.slides %} {% if first == 1 %} {% assign first = 0 %} {% else %}
  {% endif %} {{ matter }} {% endfor %}
{% endif %} {% if lect.worksheet %} Worksheet: {% assign first = 1 %} {% for matter in lect.worksheet %} {% if first == 1 %} {% assign first = 0 %} {% else %}
  {% endif %} {{ matter }} {% endfor %}
{% endif %} {% if lect.reading %} Reading: {% assign first = 1 %} {% for matter in lect.reading %} {% if first == 1 %} {% assign first = 0 %} {% else %}
  {% endif %} {{ matter }} {% endfor %}
{% endif %} {% if lect.notebook %} Notebook: {% assign first = 1 %} {% for matter in lect.notebook %} {% if first == 1 %} {% assign first = 0 %} {% else %}
  {% endif %} {{ matter }} {% endfor %}
{% endif %} {% endif %}
 {% if lect.show == 2 %}
    {% if lect.reading %}
        <b>Reading: </b>
        {% assign first = 1 %}
        {% for matter in lect.reading %}
            {% if first == 1 %}
                {% assign first = 0 %}
            {% else %}
                <br> &nbsp;
            {% endif %}
            {{ matter }}
        {% endfor %}
        <br>
    {% endif %}
   {% endif %}

All materials Copyright 2017, The University of Melbourne, and should not be reproduced or distributed without permission.