forked from MinZHANG-WHU/FDCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_test_SZTAKI.py
118 lines (96 loc) · 3.49 KB
/
exp_test_SZTAKI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# -*- coding: utf-8 -*-
"""
@author: ZHANG Min, Wuhan University
@email: [email protected]
"""
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import os
import exp_test
import helper
import argparse
def test_fdcnn(alpha):
# load dataset
base_dir = r"datasets\SZTAKI"
image_seleted = r'Szada\1'
group_dir = os.path.join(base_dir, image_seleted)
data_t1_path = os.path.join(group_dir, "im1.bmp")
data_t2_path = os.path.join(group_dir, "im2.bmp")
label_path = os.path.join(group_dir, "gt.bmp")
t1 = Image.open(data_t1_path)
t1 = np.asarray(t1, dtype=np.float32)
t2 = Image.open(data_t2_path)
t2 = np.asarray(t2, dtype=np.float32)
for i in range(3):
t2[:, :, i] = exp_test.hist_match(t2[:, :, i], t1[:, :, i])
gt = Image.open(label_path)
gt = np.asarray(gt, dtype=np.uint8)
gt = gt.copy()
gt[gt > 0] = 1
out_dir = 'output/SZTAKI/' + image_seleted
exp_test.make_dir(out_dir)
# parameters
dim = 224
bf = 12
t1 = t1[0:448, 0:784, :]
t2 = t2[0:448, 0:784, :]
gt = gt[0:448, 0:784]
mean_rgb = np.array((101.438, 104.358, 93.970), dtype=np.float32)
[h, w, c] = t2.shape
data_t12 = np.abs(t1 - t2)
maxV = np.max(data_t12)
data_t12 = data_t12 / maxV
[model_def, model_weights] = helper.get_fdcnn()
net = exp_test.caffe_net(model_def, model_weights)
# Considering the edge
write_dim = dim - 2 * bf
h_batch = int(h + write_dim - 1) / write_dim
w_batch = int(w + write_dim - 1) / write_dim
new_size = (w_batch * write_dim + 2 * bf, h_batch * write_dim + 2 * bf)
im1 = exp_test.pad_edge(t1, new_size[0], new_size[1], bf)
im2 = exp_test.pad_edge(t2, new_size[0], new_size[1], bf)
im12 = exp_test.pad_edge(data_t12, new_size[0], new_size[1], bf)
cmm = np.zeros((new_size[1], new_size[0]))
all_count = h_batch * w_batch
for i in range(h_batch):
for j in range(w_batch):
print "Progress->", all_count
all_count = all_count - 1
offset_x = j * write_dim
offset_y = i * write_dim
t1_b = im1[offset_y:offset_y + dim, offset_x:offset_x + dim]
t2_b = im2[offset_y:offset_y + dim, offset_x:offset_x + dim]
t12_b = im12[offset_y:offset_y + dim, offset_x:offset_x + dim]
cmm_b = exp_test.block_fdcnn(net, t1_b, t2_b, t12_b, mean_rgb)
cmm_b = cmm_b.reshape([dim, dim])
cmm[offset_y + bf:offset_y + bf + write_dim,
offset_x + bf:offset_x + bf + write_dim] = cmm_b[bf:bf + write_dim, bf:bf + write_dim]
cmm = exp_test.un_pad_edge(cmm, w, h, bf)
bm = exp_test.di_threshold(cmm, alpha)
exp_test.acc_evaluation_pixel(bm, gt)
exp_test.save_im(cmm, os.path.join(out_dir, 'CMM.tif'))
exp_test.save_im(bm, os.path.join(out_dir, 'BM.tif'))
plt.figure("T1")
plt.imshow(np.array(t1, dtype=np.uint8))
plt.show()
plt.figure("T2")
plt.imshow(np.array(t2, dtype=np.uint8))
plt.show()
plt.figure("GT")
plt.imshow(np.array(gt, dtype=np.uint8))
plt.show()
plt.figure("Binary Map")
plt.imshow(bm)
plt.show()
plt.figure("Change Magnitude Map")
plt.imshow(cmm)
plt.legend()
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Test the FDCNN on SZTAKI datasets")
parser.add_argument('--alpha', '-a', type=float, default=2.66, required=True)
args = parser.parse_args()
test_fdcnn(args.alpha)
print 'Done!'