-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
219 lines (171 loc) · 8.66 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import bisect
import glob
import os
import re
import time
import itertools
import numpy as np
import matplotlib.pyplot as plt
import torch
import pytorch_mask_rcnn as pmr
def draw_trajectory(gt_box, pr_box, v_idx):
time_tag = list(range(8))
gt_box_x = []
gt_box_y = []
for box in gt_box:
x, y, _, _ = box
gt_box_x.append(x)
gt_box_y.append(y)
pr_box_x = []
pr_box_y = []
for box in pr_box:
x, y, _, _ = box
pr_box_x.append(x)
pr_box_y.append(y)
fig, ax = plt.subplots()
ax.scatter(gt_box_x, gt_box_y, marker='*', label='ground truth')
ax.scatter(pr_box_x, pr_box_y, marker='x', label='prediction')
for i, txt in enumerate(time_tag):
ax.annotate(time_tag[i], (gt_box_x[i], gt_box_y[i]))
ax.annotate(time_tag[i], (pr_box_x[i], pr_box_y[i]))
x_start = min(min(gt_box_x), min(pr_box_x))
y_start = min(min(gt_box_y), min(pr_box_y))
ax.set_xlim([x_start, x_start+10, 1])
ax.set_ylim([y_start, y_start+10, 1])
ax.legend()
ax.set_title('Moving trajectory (left_up corner)')
fig.savefig('trajectory_plot_new' + str(v_idx)+ '.png')
def main(args):
device = torch.device("cuda" if torch.cuda.is_available() and args.use_cuda else "cpu")
if device.type == "cuda":
pmr.get_gpu_prop(show=True)
print("\ndevice: {}".format(device))
# ---------------------- prepare data loader ------------------------------- #
dataset_train = pmr.datasets(args.dataset, args.data_dir, "train", train=True)
# indices = torch.randperm(len(dataset_train)).tolist()
init_indices = np.random.permutation(list(range(0, len(dataset_train), 60)))
indices = [list(range(v, v+60)) for v in init_indices]
indices = list(itertools.chain.from_iterable(indices))
d_train = torch.utils.data.Subset(dataset_train, indices)
d_test = pmr.datasets(args.dataset, args.data_dir, "val", train=True) # set train=True for eval
args.warmup_iters = max(1000, len(d_train))
# -------------------------------------------------------------------------- #
print(args)
num_classes = max(d_train.dataset.classes) + 1 # including background class
print('num_classes', num_classes)
model = pmr.maskrcnn_resnet50(False, num_classes).to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_lambda = lambda x: 0.1 ** bisect.bisect(args.lr_steps, x)
start_epoch = 0
# find all checkpoints, and load the latest checkpoint
prefix, ext = os.path.splitext(args.ckpt_path)
ckpts = glob.glob(prefix + "-*" + ext)
ckpts.sort(key=lambda x: int(re.search(r"-(\d+){}".format(ext), os.path.split(x)[1]).group(1)))
if ckpts and args.resume:
checkpoint = torch.load(ckpts[-1], map_location=device) # load last checkpoint
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
start_epoch = checkpoint["epochs"]
del checkpoint
torch.cuda.empty_cache()
since = time.time()
print("\nalready trained: {} epochs; to {} epochs".format(start_epoch, args.epochs))
if args.resume:
print("\nevaluation only")
model.eval()
for p in model.parameters():
p.requires_grad_(False)
with torch.no_grad():
eval_output, iter_eval = pmr.evaluate(model, d_test, device, args)
print(eval_output.get_AP())
return
for i in range(0, len(d_test), args.timestep):
image, target = d_test[i]
image = image.to(device)
target = {k: v.to(device) for k, v in target.items() if v is not None}
# t = list(range(1, args.timestep))
t = [args.timestep-1]
with torch.no_grad():
output = model(image, time=t)
pr_boxes = []
gt_boxes = []
for t in range(1, args.timestep):
image_t, target_t = d_test[i+t]
image_t = image_t.to(device)
target_t = {k: v.to(device) for k, v in target_t.items() if v is not None}
if t == 1:
res = output[0]
res["future_boxes"] = res["boxes"]
pr_box, gt_box = pmr.show(image, res, d_test.classes, target, "./images/output{}.jpg".format(i))
pr_boxes.append(pr_box.cpu().detach().numpy())
gt_boxes.append(gt_box[0].cpu().detach().numpy())
pr_box, gt_box = pmr.show(image_t, output[t-1], d_test.classes, target_t, "./images/output{}.jpg".format(i+t))
else:
pr_box, gt_box = pmr.show(image_t, output[t-1], d_test.classes, target_t, "./images/output{}.jpg".format(i+t))
# output[t-1]["future_boxes"] = output[t-1]["boxes"]
# if t == 1:
# pmr.show(image, output[t-1], d_test.classes, "./images/output{}.jpg".format(i))
# pmr.show(image_t, output[t-1], d_test.classes, "./images/output{}.jpg".format(i+t))
# else:
# pmr.show(image_t, output[t-1], d_test.classes, "./images/output{}.jpg".format(i+t))
pr_boxes.append(pr_box.cpu().detach().numpy())
gt_boxes.append(gt_box[0].cpu().detach().numpy())
# if i % 32 == 0 and i < 352:
# draw_trajectory(gt_boxes, pr_boxes, i)
return
# ------------------------------- train ------------------------------------ #
for epoch in range(start_epoch, args.epochs):
print("\nepoch: {}".format(epoch + 1))
A = time.time()
args.lr_epoch = lr_lambda(epoch) * args.lr
print("lr_epoch: {:.5f}, factor: {:.5f}".format(args.lr_epoch, lr_lambda(epoch)))
iter_train = pmr.train_one_epoch(model, optimizer, d_train, device, epoch, args)
A = time.time() - A
B = time.time()
eval_output, iter_eval = pmr.evaluate(model, d_test, device, args)
B = time.time() - B
trained_epoch = epoch + 1
print("training: {:.1f} s, evaluation: {:.1f} s".format(A, B))
pmr.collect_gpu_info("maskrcnn", [1 / iter_train, 1 / iter_eval])
print(eval_output.get_AP())
pmr.save_ckpt(model, optimizer, trained_epoch, args.ckpt_path, eval_info=str(eval_output))
# it will create many checkpoint files during training, so delete some.
prefix, ext = os.path.splitext(args.ckpt_path)
ckpts = glob.glob(prefix + "-*" + ext)
ckpts.sort(key=lambda x: int(re.search(r"-(\d+){}".format(ext), os.path.split(x)[1]).group(1)))
n = 10
if len(ckpts) > n:
for i in range(len(ckpts) - n):
os.system("rm {}".format(ckpts[i]))
# -------------------------------------------------------------------------- #
print("\ntotal time of this training: {:.1f} s".format(time.time() - since))
if start_epoch < args.epochs:
print("already trained: {} epochs\n".format(trained_epoch))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--use-cuda", action="store_true")
parser.add_argument("--resume", action="store_true")
parser.add_argument("--dataset", default="coco", help="coco or voc")
parser.add_argument("--data-dir", default="E:/PyTorch/data/coco2017")
parser.add_argument("--ckpt-path")
parser.add_argument("--results")
parser.add_argument("--seed", type=int, default=3)
parser.add_argument('--lr-steps', nargs="+", type=int, default=[6, 7])
parser.add_argument("--lr", type=float)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--weight-decay", type=float, default=0.0001)
parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--iters", type=int, default=10, help="max iters per epoch, -1 denotes auto")
parser.add_argument("--print-freq", type=int, default=100, help="frequency of printing losses")
parser.add_argument("--timestep", type=int, default=4, help="future prediction time steps")
args = parser.parse_args()
if args.lr is None:
args.lr = 0.001 # lr should be 'batch_size / 16 * 0.02'
if args.ckpt_path is None:
args.ckpt_path = "./maskrcnn_{}.pth".format(args.dataset)
if args.results is None:
args.results = os.path.join(os.path.dirname(args.ckpt_path), "maskrcnn_results.pth")
main(args)