-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathindex.html
1009 lines (913 loc) · 39 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="ja">
<head
prefix="og: http://ogp.me/ns# fb: http://ogp.me/ns/fb# website: http://ogp.me/ns/website#"
>
<meta charset="utf-8" />
<title>PyTorchチュートリアル(日本語翻訳版)</title>
<meta
content="PyTorch公式チュートリアルの日本語翻訳版です。PyTorch入門として、PyTorchを初めて学ぶ初心者、中級者の方におすすめです。"
name="description"
/>
<meta
name="”author”"
content="”ISID_電通国際情報サービス_AIトランスフォーメーションセンター_小川雄太郎”"
/>
<meta property="og:title" content="PyTorchチュートリアル(日本語訳版)" />
<meta property="og:type" content="website" />
<meta
property="og:url"
content="https://yutaroogawa.github.io/pytorch_tutorials_jp/"
/>
<meta
property="og:image"
content="https://yutaroogawa.github.io/pytorch_tutorials_jp/pytorch_tutorial_jp_eye2.jpg"
/>
<meta
property="og:site_name"
content="PyTorchチュートリアル(日本語翻訳版)"
/>
<meta
property="og:description"
content="PyTorch公式チュートリアルの日本語翻訳版です。PyTorch入門として、PyTorchを初めて学ぶ初心者、中級者の方におすすめです。"
/>
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:site" content="@isid_ai_team" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<link rel="help" href="licencse.html" />
<link rel="icon" href="【★後で修正】アイコンURL licencse.html" />
<link rel="stylesheet" href="css/bootstrap.min.css" />
<link
rel="stylesheet"
href="https://fonts.googleapis.com/css?family=M+PLUS+1p"
/>
<link
href="https://fonts.googleapis.com/css?family=Noto+Sans+JP"
rel="stylesheet"
/>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
<script src="js/bootstrap.min.js"></script>
</head>
<body>
<header class="my-header">
<h1 class="my-header__page-title">
<span class="color_pytorch">PyTorchチュートリアル(日本語翻訳版)</span>
</h1>
</header>
<main class="my-main">
<article>
<section class="about">
<h3 class="section__title">本サイトの概要</h3>
<div class="section__contents">
<p>
[1] 本サイトでは、<a
href="https://pytorch.org/tutorials/index.html"
target="_blank"
>「PyTorch 公式チュートリアル(英語版 version 1.8.0)」</a
>を日本語に翻訳してお届けします。
</p>
<p>
[2]
公式チュートリアルは、①解説ページ、②解説ページと同じ内容のGoogle
Colaboratoryファイル、の2つから構成されています。
<br />
両者は基本的には同じ内容です。本サイトでは<strong
><span class="text-success">
「Google Colaboratoryファイル」</span
></strong
>で、チュートリアルの日本語訳を用意しております(未完成分は順次公開いたします)。
</p>
<p>
[3] 本サイトのチュートリアルの閲覧および実行は、Google
Colaboratory環境を前提とします。
<br />
(本サイトの<a href="./LICENSE.html" target="_blank">ライセンス</a
>はこちらとなります)
</p>
<p>
[4]
本サイトに掲載している、日本語チュートリアルをまとめて配置した<a
href="https://github.com/YutaroOgawa/pytorch_tutorials_jp"
target="_blank"
>GitHubはこちら</a
>となります。
</p>
</div>
</section>
<section class="tutorials_list">
<h3 class="section__title">
0. PyTorch入門<small>(Learn the Basics)</small>
</h3>
<div class="section__contents">
<p>
[0] 目次<small>(table of contents)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_0_intro_jp.ipynb"
class="colab-root"
target="_blank"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[1] テンソル<small>(Tensors)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_1_tensors_tutorial_js.ipynb"
class="colab-root"
target="_blank"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2] データセットとデータローダー<small
>(Datasets & DataLoaders)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_2_data_tutorial_jp.ipynb"
class="colab-root"
target="_blank"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[3] データ変換<small>(Transforms)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_3_transforms_tutorial_jp.ipynb"
class="colab-root"
target="_blank"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[4] モデル構築<small>(Build Model)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_4_buildmodel_tutorial_js.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[5] 自動微分<small>(Autograd)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_5_autogradqs_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[6] 最適化<small>(Optimization Loop)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_6_optimization_tutorial_js.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[7] モデルの保存・読み込み<small
>(Save, Load and Use Model)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_7_saveloadrun_tutorial_js.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[8] クイックスタート<small>(Quickstart)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/0_Learn%20the%20Basics/0_8_quickstart_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / 0.入門の終わり-->
<section class="tutorials_list">
<h3 class="section__title">
1. PyTorch基礎<small>(Learning PyTorch)</small>
</h3>
<div class="section__contents">
<p>
[1] PyTorch60分講座: PyTorchとは?<small
>(DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ:WHAT IS
PYTORCH?)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/1_Learning PyTorch/1_1_tensor_tutorial_jp.ipynb"
class="colab-root"
target="_blank"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2] PyTorch60分講座: Autograd(自動微分)<small
>(AUTOGRAD: AUTOMATIC DIFFERENTIATION)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/1_Learning PyTorch/1_2_autograd_tutorial_jp.ipynb"
class="colab-root"
target="_blank"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[3] PyTorch60分講座: ニューラルネットワーク入門<small
>(NEURAL NETWORKS)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/1_Learning PyTorch/1_3_neural_networks_tutorial_jp.ipynb"
class="colab-root"
target="_blank"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[4] PyTorch60分講座: クラス分類モデルの訓練方法<small
>(TRAINING A CLASSIFIER)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/1_Learning PyTorch/1_4_cifar10_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[5] 例題を用いた、PyTorchの各要素の解説<small
>(LEARNING PYTORCH WITH EXAMPLES)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/1_Learning PyTorch/1_5_learning_pytorch_with_examples_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[6] torch.nnの解説<small>(WHAT IS TORCH.NN REALLY?)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/1_Learning PyTorch/1_6_nn_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[7] TensorBoardを用いたモデル、データと訓練の可視化<small
>(VISUALIZING MODELS, DATA, AND TRAINING WITH
TENSORBOARD)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/1_Learning PyTorch/1_7_visualizing_models_data_and_training_with_tensorboard_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / イントロ終わり-->
<!-- 画像と動画-->
<section class="tutorials_list">
<h3 class="section__title">
2. 画像処理と動画<small>(Image/Video)</small>
</h3>
<div class="section__contents">
<p>
[1] 画像分類タスクに対する転移学習の方法<small
>(TRANSFER LEARNING FOR COMPUTER VISION TUTORIAL)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/2_Image_Video/2_1_transfer_learning_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2] Torchvisionを利用した物体検出のファインチューニング手法<small
>(TORCHVISION OBJECT DETECTION FINETUNING TUTORIAL)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/2_Image_Video/2_2_torchvision_finetuning_instance_segmentation_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[3] 敵対的サンプル(adversarial examples)の生成<small
>(ADVERSARIAL EXAMPLE GENERATION)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/2_Image_Video/2_3_fgsm_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[4] DCGANの実装チュートリアル<small>(DCGAN TUTORIAL)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/2_Image_Video/2_4_dcgan_faces_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / Image/Video終わり-->
<!-- Text -->
<section class="tutorials_list">
<h3 class="section__title">3. 自然言語処理<small>(Text)</small></h3>
<div class="section__contents">
<p>
[1]
TransformerとTorchTextを用いたsequence-to-sequenceモデルの学習<small
>(SEQUENCE-TO-SEQUENCE MODELING WITH NN.TRANSFORMER AND
TORCHTEXT)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/3_NLP/3_1_transformer_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2] 文字単位RNNによる名前(苗字)の分類<small
>(NLP FROM SCRATCH: CLASSIFYING NAMES WITH A CHARACTER-LEVEL
RNN)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/3_NLP/3_2_char_rnn_classification_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[3] 文字単位RNNによる名前(苗字)の生成<small
>(NLP FROM SCRATCH: GENERATING NAMES WITH A CHARACTER-LEVEL
RNN)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/3_NLP/3_3_char_rnn_generation_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[4] sequence to sequenceとアテンションによる翻訳モデル<small
>(NLP FROM SCRATCH: TRANSLATION WITH A SEQUENCE TO SEQUENCE
NETWORK AND ATTENTION)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/3_NLP/3_4_seq2seq_translation_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[5] TorchTextを使用したテキスト分類<small
>(TEXT CLASSIFICATION WITH TORCHTEXT)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/3_NLP/3_5_text_sentiment_ngrams_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[6] TorchTextを使用した言語翻訳<small
>(LANGUAGE TRANSLATION WITH TORCHTEXT)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/3_NLP/3_6_torchtext_translation_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / Image/Video終わり-->
<!-- 深層強化学習 -->
<section class="tutorials_list">
<h3 class="section__title">
4. 深層強化学習<small>(Reinforcement Learning)</small>
</h3>
<div class="section__contents">
<p>
[1] 強化学習(DQN)チュートリアル
<small>(REINFORCEMENT LEARNING (DQN) TUTORIAL)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/4_RL/4_1_reinforcement_q_learning_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2] 強化学習を用いたマリオの訓練
<small>(TRAIN A MARIO-PLAYING RL AGENT)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/4_RL/4_2_mario_rl_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[3] 強化学習チートシート
<small>(RL CHEAT SHEET)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/4_RL/4_3_cheatsheet_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / 深層強化学習終わり-->
<!-- Deploying PyTorch Models in Production -->
<section class="tutorials_list">
<h3 class="section__title">
5. PyTorchモデルのデプロイメント手法<small
>(Deploying PyTorch Models in Production)</small
>
</h3>
<div class="section__contents">
<p>
[1] FlaskのREST APIとしてデプロイする方法(Python環境)<small
>(DEPLOYING PYTORCH IN PYTHON VIA A REST API WITH
FLASK)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/5_Deployment/5_1_flask_rest_api_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2] TorchScript入門<small>(INTRODUCTION TO TORCHSCRIPT)</small>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/5_Deployment/5_2_Intro_to_TorchScript_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[3] C++でのTorchScriptモデルのロード手法<small
>(LOADING A TORCHSCRIPT MODEL IN C++)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/5_Deployment/5_3_LOADING_A_TORCHSCRIPT_MODEL_IN_Cpp_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[4] PyTorchモデルのONNXへの変換とONNXランタイムでの実行<small
>((OPTIONAL) EXPORTING A MODEL FROM PYTORCH TO ONNX AND RUNNING
IT USING ONNX RUNTIME)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/5_Deployment/5_4_super_resolution_with_onnxruntime_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / Deploying PyTorch Models in Production -->
<!-- 6. 並列分散型の訓練手法 -->
<section class="tutorials_list">
<h3 class="section__title">
6. 並列分散型の訓練手法<small
>(Parallel and Distributed Training)</small
>
</h3>
<div class="section__contents">
<p>
[1] PyTorch Distributedの概要<small
>(PYTORCH DISTRIBUTED OVERVIEW)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_1_pytorch_distributed_overview_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2] シングルマシン環境におけるモデル並列訓練<small
>(SINGLE-MACHINE MODEL PARALLEL BEST PRACTICES)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_2_model_parallel_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[3] 分散データ並列訓練入門<small
>(GETTING STARTED WITH DISTRIBUTED DATA PARALLEL)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_3_getting_started_with_distributed_data_parallel_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[4] PyTorchで実装する分散アプリケーション<small
>(WRITING DISTRIBUTED APPLICATIONS WITH PYTORCH)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_4_writing_distributed_applications_with_pytorch_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[5] 分散RPCフレームワーク入門<small
>(GETTING STARTED WITH DISTRIBUTED RPC FRAMEWORK)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_5_getting_started_with_distributed_rpc_framework_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[6] 分散RPCフレームワークを用いたパラメーターサーバーの実装<small
>(IMPLEMENTING A PARAMETER SERVER USING DISTRIBUTED RPC
FRAMEWORK)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_6_implementing_a_parameter_server_using_distributed_rpc_framework_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[7] RPCを用いた分散パイプライン並列化<small
>(DISTRIBUTED PIPELINE PARALLELISM USING RPC)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_7_distributed_pipeline_parallelism_using_rpc_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[8] 非同期実行を用いたバッチRPC処理の実装<small
>(IMPLEMENTING BATCH RPC PROCESSING USING ASYNCHRONOUS
EXECUTIONS)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_8_implementing_batch_rpc_processing_using_asynchronous_executions_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[9] 分散データ並列と分散RPCフレームワークの連携<small
>(COMBINING DISTRIBUTED DATAPARALLEL WITH DISTRIBUTED RPC
FRAMEWORK)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/6_Parallel_Distributed/6_9_combining_distributed_dataparallel_with_distributed_rpc_framework_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / 6. 並列分散型の訓練手法 -->
<!-- 7. 音声 -->
<section class="tutorials_list">
<h3 class="section__title">7. 音声データ<small>(Audio)</small></h3>
<div class="section__contents">
<p>
英語版のチュートリアルサイトでは項目がもう少し細かく分かれていますが、Jupyter
Notebookは同じなので、以下2つにまとめています。
</p>
<p>
[1] torchaudioによる音声データの取り扱い<small
>(AUDIO MANIPULATION WITH TORCHAUDIO)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/7_Audio/7_1_6_audio_preprocessing_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2]
tourchaudioを用いた音声コマンド認識(分類)ニューラルネットワークの構築<small
>(SPEECH COMMAND RECOGNITION WITH TORCHAUDIO)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/7_Audio/7_7_speech_command_recognition_with_torchaudio_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / 7. 音声 -->
<!-- 8. Model Optimization -->
<section class="tutorials_list">
<h3 class="section__title">
8. モデル最適化<small>(Model Optimization)</small>
</h3>
<div class="section__contents">
<p>
[1] PyTorchモジュールのプロファイリング方法<small
>(Profiling your PyTorch Module)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/8_Model_Optimization/8_1_profiler_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[2] Ray Tuneを用いたハイパーパラメータチューニング<small
>(Hyperparameter tuning with Ray Tune)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/8_Model_Optimization/8_2_hyperparameter_tuning_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[3] 枝刈り(Pruning)のチュートリアル<small
>(Pruning Tutorial)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/8_Model_Optimization/8_3_pruning_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[4] LSTM単語言語モデルの動的量子化(ベータ版)<small
>((beta) Dynamic Quantization on an LSTM Word Language
Model)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/8_Model_Optimization/8_4_beta_dynamic_quantization_on_an_lstm_word_language_model_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[5] 画像分類における量子化済み転移学習(ベータ版)<small
>((beta) Quantized Transfer Learning for Computer Vision
Tutorial)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/8_Model_Optimization/8_5_bata_quantized_transfer_learning_for_computer_vision_tutorial_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
<p>
[6] BERTの動的量子化(ベータ版)<small
>((beta) Dynamic Quantization on BERT)</small
>
<a
style="width: max-content; margin: auto"
target="_blank"
href="https://colab.research.google.com/github/YutaroOgawa/pytorch_tutorials_jp/blob/main/notebook/8_Model_Optimization/8_6_beta_dynamic_quantization_on_bert_jp.ipynb"
class="colab-root"
>
<span class="colab-span">日本語解説へ</span>
</a>
</p>
</div>
</section>
<!-- / 8. Model Optimization -->
<!-- 9. Frontend APIs -->
<section class="tutorials_list">
<h3 class="section__title">
9. PyTorchのフロントエンド利用<small>(Frontend APIs)</small>
</h3>
<div class="section__contents">
<p>[・] 現在作成中、少々お待ちください</p>
</div>
</section>
<!-- / 9. Frontend APIs -->
</article>
</main>
<footer class="my-footer">
<small>PyTorchチュートリアル(日本語訳版)</small>
</footer>
</body>
</html>
<style>
/* サイト全体の指定 */
body {
/*font-family: 'M PLUS 1p';*/
font-family: 'Noto Sans JP';
}
/* ヘッダーの指定 */
.my-header {
text-align: center;
margin: 3rem 3rem 4rem 3rem;
}
.my-header__page-title {
color: #333333;
}
/* メインの指定 */
.color_pytorch {
color: #ee4c2c !important;
}
.my-main {
max-width: 1000px;
margin: 0 auto;
}
.section__title {
color: #333333;
margin: 0rem 0rem 1rem 0rem;
}
.section__contents {
color: #333333;
margin: 0rem 0rem 4rem 0.2rem;
line-height: 1.7;
}
/* フッターの指定 */
.my-footer {
text-align: center;
margin: 3rem 3rem 3rem 3rem;
}
/* Google Colaboratory */
.colab-root {
display: inline-block;
background: rgba(255, 255, 255, 0.75);
padding: 4px 8px;
border-radius: 4px;
font-size: 11px !important;
text-decoration: none;
color: #666;
font-weight: 300;
border: solid 1px rgba(0, 0, 0, 0.2);
border-bottom-color: rgba(0, 0, 0, 0.2);
line-height: 16px;
}
span.colab-span {
background-image: url(colab_mark.jpg);
background-repeat: no-repeat;
background-size: 20px;
background-position-y: 2px;
display: inline-block;
padding-left: 24px;
border-radius: 4px;
text-decoration: none;