-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathimage_text_matching.py
54 lines (53 loc) · 2.47 KB
/
image_text_matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from typing import Any
import torch
from PIL import Image
from argparse import ArgumentParser
from lavis.models import load_model_and_preprocess
import os
import json
from tqdm import tqdm
import re
def save_json(json_list,save_path):
with open(save_path, 'w') as file:
json.dump(json_list, file, indent=4)
class blip_matching:
def __init__(self, name, device) -> None:
if "blip2" in name:
model, vis_processors, text_processors = load_model_and_preprocess(name, "pretrain", device=device, is_eval=True)
else:
model, vis_processors, text_processors = load_model_and_preprocess(name, "large", device=device, is_eval=True)
self.model=model
self.vis_processors=vis_processors
self.text_processors=text_processors
self.device=device
def match_score(self, img_src, caption, crop_box=None):
raw_image = Image.open(img_src).convert("RGB")
w,h=raw_image.size
if crop_box is not None:
raw_image = raw_image.crop((int(crop_box[0]*w), int(crop_box[1]*h), int(crop_box[2]*w), int(crop_box[3]*h)))
img = self.vis_processors["eval"](raw_image).unsqueeze(0).to(self.device)
txt = self.text_processors["eval"](caption)
itm_output = self.model({"image": img, "text_input": txt}, match_head="itm")
itm_scores = torch.nn.functional.softmax(itm_output, dim=1)
return round(itm_scores[:, 1].item(), 3)
def _get_args():
parser = ArgumentParser()
parser.add_argument("--image_folder", type=str, default="./images")
parser.add_argument("--ann_path", type=str, default="./outputs/sam_blip2.json")
parser.add_argument("--output_path", type=str, default="./outputs/sam_blip2_score.json")
parser.add_argument("--device", type=str, default="cuda:0")
args = parser.parse_args()
return args
if __name__=="__main__":
args = _get_args()
# blip_image_text_matching or blip2_image_text_matching
model = blip_matching(name="blip2_image_text_matching", device=args.device)
with open(args.ann_path, 'r') as f:
data = json.load(f)
for i in tqdm(range(len(data))):
img_id = data[i]["img_id"]
path=os.path.join(args.image_folder, img_id)
for j in range(len(data[i]['objects'])):
score = model.match_score(img_src=path,caption=data[i]['objects'][j]['caption'],crop_box=data[i]['objects'][j]['box'])
data[i]['objects'][j]['score']=score
save_json(json_list=data, save_path=args.output_path)