-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathgrit_generate.py
132 lines (125 loc) · 4.75 KB
/
grit_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import multiprocessing as mp
import os
import time
import cv2
from tqdm import tqdm
import sys
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
sys.path.insert(0, 'grit/third_party/CenterNet2/projects/CenterNet2/')
sys.path.append('./grit')
from centernet.config import add_centernet_config
from grit.config import add_grit_config
from grit.predictor import VisualizationDemo, BatchVisualizationDemo
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import json
def save_json(json_list,save_path):
with open(save_path, 'w') as file:
json.dump(json_list, file, indent=4)
def get_image_files(folder_path):
image_files = []
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith('.jpg') or file.endswith('.png'):
image_files.append(os.path.join(root, file))
return image_files
# constants
WINDOW_NAME = "GRiT"
def norm_xy(xy, width, height):
xy[0]=round(xy[0]/width,3)
xy[2]=round(xy[2]/width,3)
xy[1]=round(xy[1]/height,3)
xy[3]=round(xy[3]/height,3)
return xy
def dense_pred_to_normcaption(predictions, width, height):
boxes = predictions["instances"].pred_boxes if predictions["instances"].has("pred_boxes") else None
object_description = predictions["instances"].pred_object_descriptions.data
objects = []
for i in range(len(object_description)):
xy = [a for a in boxes[i].tensor.cpu().detach().numpy()[0]]
box = norm_xy(xy, width, height)
objects.append({"caption":object_description[i],"box":box})
return objects
def setup_cfg(args):
cfg = get_cfg()
if args.cpu:
cfg.MODEL.DEVICE="cpu"
cfg.MODEL.DEVICE=args.device
add_centernet_config(cfg)
add_grit_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# Set score_threshold for builtin models
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold
if args.test_task:
cfg.MODEL.TEST_TASK = args.test_task
cfg.MODEL.BEAM_SIZE = 1
cfg.MODEL.ROI_HEADS.SOFT_NMS_ENABLED = False
cfg.USE_ACT_CHECKPOINT = False
cfg.freeze()
return cfg
def _get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config-file",
default="./grit/configs/GRiT_B_DenseCap_ObjectDet.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--cpu", type=bool, default=False)
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.5,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--test-task",
type=str,
default='DenseCap',
help="Choose a task to have GRiT perform",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=["MODEL.WEIGHTS", "./grit/model_weight/grit_b_densecap.pth"],
nargs=argparse.REMAINDER,
)
parser.add_argument("--image_folder", type=str, default="./images")
parser.add_argument("--output_path", type=str, default="./outputs/grit.json")
parser.add_argument("--batch_size", type=int, default=2)
args = parser.parse_args()
return args
class lazydataset(Dataset):
def __init__(self, data_path) -> None:
super(lazydataset).__init__()
self.image_paths = get_image_files(data_path)
def __len__(self):
return len(self.image_paths)
def __getitem__(self, i):
image_path = self.image_paths[i]
image = read_image(image_path, format="BGR")
return {'image':image, 'img_id': image_path.split('/')[-1]}
def collate_fn(batch):
image = [item['image'] for item in batch]
img_id = [item['img_id'] for item in batch]
return {'image':image, 'img_id':img_id}
if __name__ == "__main__":
json_save=[]
args = _get_args()
cfg = setup_cfg(args)
demo = BatchVisualizationDemo(cfg)
dataset=lazydataset(args.image_folder)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=0,collate_fn=collate_fn)
for batch in tqdm(dataloader):
predictions = demo.run_on_images(batch['image'])
for i in range(len(predictions)):
height, width = batch['image'][i].shape[0], batch['image'][i].shape[1]
objects = dense_pred_to_normcaption(predictions[i], width, height)
json_save.append({"img_id":batch['img_id'][i], "objects":objects})
save_json(json_save, args.output_path)